code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : List[Any] = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Optional[int] = 'mobilenet_v1' def __init__( self , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_="relu6" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.9_9_9 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=0.0_0_1 , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""") lowercase__ : List[Any] = num_channels lowercase__ : Optional[Any] = image_size lowercase__ : Union[str, Any] = depth_multiplier lowercase__ : Optional[Any] = min_depth lowercase__ : Tuple = hidden_act lowercase__ : Any = tf_padding lowercase__ : int = classifier_dropout_prob lowercase__ : Optional[int] = initializer_range lowercase__ : Tuple = layer_norm_eps class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Tuple = version.parse('1.11' ) @property def lowercase__ ( self): '''simple docstring''' return OrderedDict([("""pixel_values""", {0: """batch"""})]) @property def lowercase__ ( self): '''simple docstring''' if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})]) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})]) @property def lowercase__ ( self): '''simple docstring''' return 1E-4
12
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self :Union[str, Any] ): __lowerCamelCase : List[Any] =TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) __lowerCamelCase : Dict ={ '''input_ids''': tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } __lowerCamelCase : Optional[int] =model(__lowercase )['''last_hidden_state'''] __lowerCamelCase : str =tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , __lowercase ) # compare the actual values for a slice. __lowerCamelCase : str =tf.convert_to_tensor( [ [ [0.0681762, 0.10894451, 0.06772504], [-0.06423668, 0.02366615, 0.04329344], [-0.06057295, 0.09974135, -0.00070584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
179
0
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __A : Optional[int] = logging.get_logger(__name__) # General docstring __A : List[Any] = 'RegNetConfig' # Base docstring __A : List[Any] = 'facebook/regnet-y-040' __A : str = [1, 1_088, 7, 7] # Image classification docstring __A : Any = 'facebook/regnet-y-040' __A : str = 'tabby, tabby cat' __A : List[str] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self :str ,_UpperCamelCase :int ,_UpperCamelCase :int = 3 ,_UpperCamelCase :int = 1 ,_UpperCamelCase :int = 1 ,_UpperCamelCase :Optional[str] = "relu" ,**_UpperCamelCase :Union[str, Any] ,): super().__init__(**_UpperCamelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb snake_case_ : Any = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) snake_case_ : Any = tf.keras.layers.ConvaD( filters=_UpperCamelCase ,kernel_size=_UpperCamelCase ,strides=_UpperCamelCase ,padding="""VALID""" ,groups=_UpperCamelCase ,use_bias=_UpperCamelCase ,name="""convolution""" ,) snake_case_ : Tuple = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="""normalization""" ) snake_case_ : str = ACTaFN[activation] if activation is not None else tf.identity def a__ ( self :Optional[int] ,_UpperCamelCase :Tuple ): snake_case_ : List[Any] = self.convolution(self.padding(_UpperCamelCase ) ) snake_case_ : Optional[int] = self.normalization(_UpperCamelCase ) snake_case_ : int = self.activation(_UpperCamelCase ) return hidden_state class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self :Optional[int] ,_UpperCamelCase :RegNetConfig ,**_UpperCamelCase :int ): super().__init__(**_UpperCamelCase ) snake_case_ : List[Any] = config.num_channels snake_case_ : Union[str, Any] = TFRegNetConvLayer( out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name="""embedder""" ,) def a__ ( self :Optional[Any] ,_UpperCamelCase :str ): snake_case_ : str = shape_list(_UpperCamelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) snake_case_ : Optional[Any] = tf.transpose(_UpperCamelCase ,perm=(0, 2, 3, 1) ) snake_case_ : Optional[Any] = self.embedder(_UpperCamelCase ) return hidden_state class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self :Dict ,_UpperCamelCase :int ,_UpperCamelCase :int = 2 ,**_UpperCamelCase :Tuple ): super().__init__(**_UpperCamelCase ) snake_case_ : Tuple = tf.keras.layers.ConvaD( filters=_UpperCamelCase ,kernel_size=1 ,strides=_UpperCamelCase ,use_bias=_UpperCamelCase ,name="""convolution""" ) snake_case_ : int = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="""normalization""" ) def a__ ( self :Union[str, Any] ,_UpperCamelCase :tf.Tensor ,_UpperCamelCase :bool = False ): return self.normalization(self.convolution(_UpperCamelCase ) ,training=_UpperCamelCase ) class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self :Tuple ,_UpperCamelCase :int ,_UpperCamelCase :int ,**_UpperCamelCase :List[Any] ): super().__init__(**_UpperCamelCase ) snake_case_ : Any = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_UpperCamelCase ,name="""pooler""" ) snake_case_ : int = [ tf.keras.layers.ConvaD(filters=_UpperCamelCase ,kernel_size=1 ,activation="""relu""" ,name="""attention.0""" ), tf.keras.layers.ConvaD(filters=_UpperCamelCase ,kernel_size=1 ,activation="""sigmoid""" ,name="""attention.2""" ), ] def a__ ( self :Any ,_UpperCamelCase :Dict ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] snake_case_ : Optional[int] = self.pooler(_UpperCamelCase ) for layer_module in self.attention: snake_case_ : Optional[int] = layer_module(_UpperCamelCase ) snake_case_ : str = hidden_state * pooled return hidden_state class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self :List[str] ,_UpperCamelCase :RegNetConfig ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int = 1 ,**_UpperCamelCase :Dict ): super().__init__(**_UpperCamelCase ) snake_case_ : List[str] = in_channels != out_channels or stride != 1 snake_case_ : Optional[int] = max(1 ,out_channels // config.groups_width ) snake_case_ : List[str] = ( TFRegNetShortCut(_UpperCamelCase ,stride=_UpperCamelCase ,name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" ,name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. snake_case_ : Any = [ TFRegNetConvLayer(_UpperCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name="""layer.0""" ), TFRegNetConvLayer( _UpperCamelCase ,stride=_UpperCamelCase ,groups=_UpperCamelCase ,activation=config.hidden_act ,name="""layer.1""" ), TFRegNetConvLayer(_UpperCamelCase ,kernel_size=1 ,activation=_UpperCamelCase ,name="""layer.2""" ), ] snake_case_ : Any = ACTaFN[config.hidden_act] def a__ ( self :List[str] ,_UpperCamelCase :int ): snake_case_ : Optional[Any] = hidden_state for layer_module in self.layers: snake_case_ : List[Any] = layer_module(_UpperCamelCase ) snake_case_ : str = self.shortcut(_UpperCamelCase ) hidden_state += residual snake_case_ : List[str] = self.activation(_UpperCamelCase ) return hidden_state class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self :List[str] ,_UpperCamelCase :RegNetConfig ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int = 1 ,**_UpperCamelCase :Tuple ): super().__init__(**_UpperCamelCase ) snake_case_ : int = in_channels != out_channels or stride != 1 snake_case_ : Optional[int] = max(1 ,out_channels // config.groups_width ) snake_case_ : Optional[int] = ( TFRegNetShortCut(_UpperCamelCase ,stride=_UpperCamelCase ,name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" ,name="""shortcut""" ) ) snake_case_ : Dict = [ TFRegNetConvLayer(_UpperCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name="""layer.0""" ), TFRegNetConvLayer( _UpperCamelCase ,stride=_UpperCamelCase ,groups=_UpperCamelCase ,activation=config.hidden_act ,name="""layer.1""" ), TFRegNetSELayer(_UpperCamelCase ,reduced_channels=int(round(in_channels / 4 ) ) ,name="""layer.2""" ), TFRegNetConvLayer(_UpperCamelCase ,kernel_size=1 ,activation=_UpperCamelCase ,name="""layer.3""" ), ] snake_case_ : Any = ACTaFN[config.hidden_act] def a__ ( self :List[Any] ,_UpperCamelCase :Union[str, Any] ): snake_case_ : Dict = hidden_state for layer_module in self.layers: snake_case_ : int = layer_module(_UpperCamelCase ) snake_case_ : Optional[Any] = self.shortcut(_UpperCamelCase ) hidden_state += residual snake_case_ : List[Any] = self.activation(_UpperCamelCase ) return hidden_state class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self :str ,_UpperCamelCase :RegNetConfig ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int = 2 ,_UpperCamelCase :int = 2 ,**_UpperCamelCase :Dict ): super().__init__(**_UpperCamelCase ) snake_case_ : Any = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer snake_case_ : Dict = [ # downsampling is done in the first layer with stride of 2 layer(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,stride=_UpperCamelCase ,name="""layers.0""" ), *[layer(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def a__ ( self :List[str] ,_UpperCamelCase :Any ): for layer_module in self.layers: snake_case_ : Optional[int] = layer_module(_UpperCamelCase ) return hidden_state class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self :str ,_UpperCamelCase :RegNetConfig ,**_UpperCamelCase :List[Any] ): super().__init__(**_UpperCamelCase ) snake_case_ : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _UpperCamelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name="""stages.0""" ,) ) snake_case_ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_UpperCamelCase ,config.depths[1:] ) ): self.stages.append(TFRegNetStage(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,depth=_UpperCamelCase ,name=F'''stages.{i+1}''' ) ) def a__ ( self :Any ,_UpperCamelCase :tf.Tensor ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = True ): snake_case_ : Union[str, Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: snake_case_ : Dict = hidden_states + (hidden_state,) snake_case_ : Optional[int] = stage_module(_UpperCamelCase ) if output_hidden_states: snake_case_ : Dict = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_UpperCamelCase ,hidden_states=_UpperCamelCase ) @keras_serializable class __UpperCamelCase ( tf.keras.layers.Layer ): lowercase : List[str] = RegNetConfig def __init__( self :List[Any] ,_UpperCamelCase :Optional[int] ,**_UpperCamelCase :Optional[Any] ): super().__init__(**_UpperCamelCase ) snake_case_ : int = config snake_case_ : Union[str, Any] = TFRegNetEmbeddings(_UpperCamelCase ,name="""embedder""" ) snake_case_ : List[str] = TFRegNetEncoder(_UpperCamelCase ,name="""encoder""" ) snake_case_ : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_UpperCamelCase ,name="""pooler""" ) @unpack_inputs def a__ ( self :Tuple ,_UpperCamelCase :tf.Tensor ,_UpperCamelCase :Optional[bool] = None ,_UpperCamelCase :Optional[bool] = None ,_UpperCamelCase :bool = False ,): snake_case_ : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ : str = self.embedder(_UpperCamelCase ,training=_UpperCamelCase ) snake_case_ : int = self.encoder( _UpperCamelCase ,output_hidden_states=_UpperCamelCase ,return_dict=_UpperCamelCase ,training=_UpperCamelCase ) snake_case_ : Optional[int] = encoder_outputs[0] snake_case_ : Union[str, Any] = self.pooler(_UpperCamelCase ) # Change to NCHW output format have uniformity in the modules snake_case_ : Dict = tf.transpose(_UpperCamelCase ,perm=(0, 3, 1, 2) ) snake_case_ : Optional[int] = tf.transpose(_UpperCamelCase ,perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: snake_case_ : Dict = tuple([tf.transpose(_UpperCamelCase ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCamelCase ,pooler_output=_UpperCamelCase ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,) class __UpperCamelCase ( lowercase__ ): lowercase : Union[str, Any] = RegNetConfig lowercase : Optional[Any] = 'regnet' lowercase : Tuple = 'pixel_values' @property def a__ ( self :Tuple ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) ,dtype=tf.floataa )} __A : Dict = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' __A : Optional[Any] = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , lowercase__ , ) class __UpperCamelCase ( lowercase__ ): def __init__( self :str ,_UpperCamelCase :RegNetConfig ,*_UpperCamelCase :Optional[Any] ,**_UpperCamelCase :Optional[Any] ): super().__init__(_UpperCamelCase ,*_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : List[Any] = TFRegNetMainLayer(_UpperCamelCase ,name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(_UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_UpperCamelCase ,config_class=_CONFIG_FOR_DOC ,modality="""vision""" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def a__ ( self :Any ,_UpperCamelCase :tf.Tensor ,_UpperCamelCase :Optional[bool] = None ,_UpperCamelCase :Optional[bool] = None ,_UpperCamelCase :Any=False ,): snake_case_ : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ : Optional[Any] = self.regnet( pixel_values=_UpperCamelCase ,output_hidden_states=_UpperCamelCase ,return_dict=_UpperCamelCase ,training=_UpperCamelCase ,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , lowercase__ , ) class __UpperCamelCase ( lowercase__ , lowercase__ ): def __init__( self :Dict ,_UpperCamelCase :RegNetConfig ,*_UpperCamelCase :List[str] ,**_UpperCamelCase :List[str] ): super().__init__(_UpperCamelCase ,*_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : List[Any] = config.num_labels snake_case_ : int = TFRegNetMainLayer(_UpperCamelCase ,name="""regnet""" ) # classification head snake_case_ : Any = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels ,name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_UpperCamelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def a__ ( self :List[str] ,_UpperCamelCase :tf.Tensor = None ,_UpperCamelCase :tf.Tensor = None ,_UpperCamelCase :bool = None ,_UpperCamelCase :bool = None ,_UpperCamelCase :Dict=False ,): snake_case_ : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ : Any = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ : List[Any] = self.regnet( _UpperCamelCase ,output_hidden_states=_UpperCamelCase ,return_dict=_UpperCamelCase ,training=_UpperCamelCase ) snake_case_ : List[str] = outputs.pooler_output if return_dict else outputs[1] snake_case_ : Optional[int] = self.classifier[0](_UpperCamelCase ) snake_case_ : Union[str, Any] = self.classifier[1](_UpperCamelCase ) snake_case_ : int = None if labels is None else self.hf_compute_loss(labels=_UpperCamelCase ,logits=_UpperCamelCase ) if not return_dict: snake_case_ : Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_UpperCamelCase ,logits=_UpperCamelCase ,hidden_states=outputs.hidden_states )
707
'''simple docstring''' import random from typing import Any def UpperCAmelCase ( lowerCamelCase_ :list ): '''simple docstring''' for _ in range(len(lowerCamelCase_ ) ): snake_case_ : Union[str, Any] = random.randint(0 , len(lowerCamelCase_ ) - 1 ) snake_case_ : Any = random.randint(0 , len(lowerCamelCase_ ) - 1 ) snake_case_ , snake_case_ : List[str] = data[b], data[a] return data if __name__ == "__main__": __A : Optional[int] = [0, 1, 2, 3, 4, 5, 6, 7] __A : Optional[int] = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
267
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class UpperCamelCase__ : """simple docstring""" A__ : Union[str, Any] = 4_2 A__ : Tuple = 4_2 class UpperCamelCase__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ ) -> int: A__ = [[] for _ in range(__lowerCAmelCase )] A__ = size def __getitem__( self , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: return iter(self._graph[vertex] ) @property def snake_case__ ( self ) -> Tuple: return self._size def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__lowerCAmelCase , __lowerCAmelCase ) ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: A__ = deque([start_vertex] ) A__ = [None] * self.size A__ = 0 while queue: A__ = queue.popleft() A__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: A__ = current_distance + edge.weight A__ = distances[edge.destination_vertex] if ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and new_distance >= dest_vertex_distance ): continue A__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
104
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "" __A = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __A = None # compression type in fsspec. ex: "gzip" __A = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[str] , __lowerCAmelCase : str = "" , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[dict] = None , **__lowerCAmelCase : Optional[int] ): """simple docstring""" super().__init__(self , **__lowerCAmelCase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode _lowerCAmelCase = fsspec.open( __lowerCAmelCase , mode='rb' , protocol=__lowerCAmelCase , compression=self.compression , client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) _lowerCAmelCase = os.path.basename(self.file.path.split('::' )[0] ) _lowerCAmelCase = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) _lowerCAmelCase = None @classmethod def a ( cls : int , __lowerCAmelCase : Optional[int] ): """simple docstring""" return super()._strip_protocol(__lowerCAmelCase ).lstrip('/' ) def a ( self : Union[str, Any] ): """simple docstring""" if self.dir_cache is None: _lowerCAmelCase = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} _lowerCAmelCase = {f['name']: f} def a ( self : Optional[Any] , __lowerCAmelCase : str ): """simple docstring""" return self.file.open().read() def a ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : str = "rb" , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Tuple=None , **__lowerCAmelCase : Dict , ): """simple docstring""" _lowerCAmelCase = self._strip_protocol(__lowerCAmelCase ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "bz2" __A = "bz2" __A = ".bz2" class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "gzip" __A = "gzip" __A = ".gz" class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "lz4" __A = "lz4" __A = ".lz4" class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "xz" __A = "xz" __A = ".xz" class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "zstd" __A = "zstd" __A = ".zst" def __init__( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : str = "rb" , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[dict] = None , __lowerCAmelCase : int = DEFAULT_BLOCK_SIZE , **__lowerCAmelCase : Optional[int] , ): """simple docstring""" super().__init__( fo=__lowerCAmelCase , mode=__lowerCAmelCase , target_protocol=__lowerCAmelCase , target_options=__lowerCAmelCase , block_size=__lowerCAmelCase , **__lowerCAmelCase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 _lowerCAmelCase = self.file.__enter__ class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCAmelCase = file_ def __enter__( self : List[Any] ): """simple docstring""" self._file.__enter__() return self def __exit__( self : List[str] , *__lowerCAmelCase : int , **__lowerCAmelCase : Optional[int] ): """simple docstring""" self._file.__exit__(*__lowerCAmelCase , **__lowerCAmelCase ) def __iter__( self : Any ): """simple docstring""" return iter(self._file ) def a ( self : int ): """simple docstring""" return next(self._file ) def __getattr__( self : Tuple , __lowerCAmelCase : Dict ): """simple docstring""" return getattr(self._file , __lowerCAmelCase ) def fixed_enter(*__lowerCAmelCase : List[str] , **__lowerCAmelCase : int ): return WrappedFile(_enter(*__lowerCAmelCase , **__lowerCAmelCase ) ) _lowerCAmelCase = fixed_enter
309
0
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Any = '''time_series_transformer''' A__ : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[Any] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : str = "student_t" , __lowerCamelCase : str = "nll" , __lowerCamelCase : int = 1 , __lowerCamelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowerCamelCase : Optional[Union[str, bool]] = "mean" , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : int = 3_2 , __lowerCamelCase : int = 3_2 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : bool = True , __lowerCamelCase : str = "gelu" , __lowerCamelCase : int = 6_4 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : int = 1_0_0 , __lowerCamelCase : float = 0.0_2 , __lowerCamelCase : Optional[Any]=True , **__lowerCamelCase : List[Any] , ): """simple docstring""" # time series specific configuration _snake_case = prediction_length _snake_case = context_length or prediction_length _snake_case = distribution_output _snake_case = loss _snake_case = input_size _snake_case = num_time_features _snake_case = lags_sequence _snake_case = scaling _snake_case = num_dynamic_real_features _snake_case = num_static_real_features _snake_case = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__lowerCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) _snake_case = cardinality else: _snake_case = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__lowerCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) _snake_case = embedding_dimension else: _snake_case = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _snake_case = num_parallel_samples # Transformer architecture configuration _snake_case = input_size * len(__lowerCamelCase ) + self._number_of_features _snake_case = d_model _snake_case = encoder_attention_heads _snake_case = decoder_attention_heads _snake_case = encoder_ffn_dim _snake_case = decoder_ffn_dim _snake_case = encoder_layers _snake_case = decoder_layers _snake_case = dropout _snake_case = attention_dropout _snake_case = activation_dropout _snake_case = encoder_layerdrop _snake_case = decoder_layerdrop _snake_case = activation_function _snake_case = init_std _snake_case = use_cache super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def __UpperCAmelCase ( self : Dict ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
404
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES snake_case = logging.get_logger(__name__) snake_case = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) snake_case = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) snake_case = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) snake_case = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) snake_case = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) snake_case = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) snake_case = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) snake_case = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) snake_case = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) snake_case = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) snake_case = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) snake_case = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) snake_case = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) snake_case = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCAmelCase ( _BaseAutoModelClass ): A__ : List[Any] = FLAX_MODEL_MAPPING snake_case = auto_class_update(FlaxAutoModel) class UpperCAmelCase ( _BaseAutoModelClass ): A__ : List[str] = FLAX_MODEL_FOR_PRETRAINING_MAPPING snake_case = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class UpperCAmelCase ( _BaseAutoModelClass ): A__ : Dict = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING snake_case = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class UpperCAmelCase ( _BaseAutoModelClass ): A__ : Union[str, Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING snake_case = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class UpperCAmelCase ( _BaseAutoModelClass ): A__ : Tuple = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING snake_case = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class UpperCAmelCase ( _BaseAutoModelClass ): A__ : Dict = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING snake_case = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class UpperCAmelCase ( _BaseAutoModelClass ): A__ : int = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING snake_case = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class UpperCAmelCase ( _BaseAutoModelClass ): A__ : int = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING snake_case = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class UpperCAmelCase ( _BaseAutoModelClass ): A__ : List[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING snake_case = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class UpperCAmelCase ( _BaseAutoModelClass ): A__ : Optional[Any] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING snake_case = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class UpperCAmelCase ( _BaseAutoModelClass ): A__ : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING snake_case = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class UpperCAmelCase ( _BaseAutoModelClass ): A__ : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING snake_case = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class UpperCAmelCase ( _BaseAutoModelClass ): A__ : List[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING snake_case = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
404
1
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _lowerCAmelCase ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowercase : int =ksize + 1 lowercase : str =np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__magic_name__ ): for x in range(__magic_name__ ): # distance from center lowercase : Optional[Any] =x - ksize // 2 lowercase : List[str] =y - ksize // 2 # degree to radiant lowercase : Optional[int] =theta / 180 * np.pi lowercase : Union[str, Any] =np.cos(_theta ) lowercase : Optional[int] =np.sin(_theta ) # get kernel x lowercase : Tuple =cos_theta * px + sin_theta * py # get kernel y lowercase : Dict =-sin_theta * px + cos_theta * py # fill kernel lowercase : str =np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image UpperCamelCase_ = imread("""../image_data/lena.jpg""") # turn image in gray scale value UpperCamelCase_ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges UpperCamelCase_ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: UpperCamelCase_ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) UpperCamelCase_ = out / out.max() * 255 UpperCamelCase_ = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
92
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : np.ndarray ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(lowercase_ , lowercase_ ) ) ) def SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : np.ndarray ): if dataset.ndim != value_array.ndim: lowercase = ( """Wrong input data's dimensions... """ F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(lowercase_ ) try: if dataset.shape[1] != value_array.shape[1]: lowercase = ( """Wrong input data's shape... """ F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(lowercase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: lowercase = ( """Input data have different datatype... """ F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(lowercase_ ) lowercase = [] for value in value_array: lowercase = euclidean(lowercase_ , dataset[0] ) lowercase = dataset[0].tolist() for dataset_value in dataset[1:]: lowercase = euclidean(lowercase_ , lowercase_ ) if dist > temp_dist: lowercase = temp_dist lowercase = dataset_value.tolist() answer.append([vector, dist] ) return answer def SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : np.ndarray ): return np.dot(lowercase_ , lowercase_ ) / (norm(lowercase_ ) * norm(lowercase_ )) if __name__ == "__main__": import doctest doctest.testmod()
588
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction def UpperCAmelCase ( A : int , A : int ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCAmelCase ( A : int ): SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Optional[Any] = 11 SCREAMING_SNAKE_CASE : str = int('''1''' + '''0''' * digit_len ) for num in range(_lowerCAmelCase , _lowerCAmelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowerCAmelCase , _lowerCAmelCase ): solutions.append(F"""{num}/{den}""" ) den += 1 num += 1 SCREAMING_SNAKE_CASE : Any = 10 return solutions def UpperCAmelCase ( A : int = 2 ): SCREAMING_SNAKE_CASE : int = 1.0 for fraction in fraction_list(_lowerCAmelCase ): SCREAMING_SNAKE_CASE : List[Any] = Fraction(_lowerCAmelCase ) result *= frac.denominator / frac.numerator return int(_lowerCAmelCase ) if __name__ == "__main__": print(solution())
711
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : Dict = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( snake_case_ , unittest.TestCase ): _lowerCAmelCase : Union[str, Any] = DebertaVaTokenizer _lowerCAmelCase : List[Any] = DebertaVaTokenizerFast _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : int = True def __lowercase ( self : Optional[Any] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Tuple = DebertaVaTokenizer(lowerCAmelCase__ , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self : List[str] , lowerCAmelCase__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = '''this is a test''' SCREAMING_SNAKE_CASE : Tuple = '''this is a test''' return input_text, output_text def __lowercase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = '''<pad>''' SCREAMING_SNAKE_CASE : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __lowercase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(lowerCAmelCase__ ) , 3_00_01 ) def __lowercase ( self : str ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def __lowercase ( self : List[str] ): """simple docstring""" # fmt: off SCREAMING_SNAKE_CASE : int = ''' \tHeLLo!how \n Are yoU? ''' SCREAMING_SNAKE_CASE : Optional[Any] = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on SCREAMING_SNAKE_CASE : Any = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def __lowercase ( self : Dict ): """simple docstring""" pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def __lowercase ( self : str ): """simple docstring""" pass def __lowercase ( self : int ): """simple docstring""" # fmt: off SCREAMING_SNAKE_CASE : List[Any] = '''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE : Any = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on SCREAMING_SNAKE_CASE : Dict = DebertaVaTokenizer(lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = DebertaVaTokenizerFast(lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __lowercase ( self : Optional[Any] ): """simple docstring""" # fmt: off SCREAMING_SNAKE_CASE : Optional[int] = '''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE : List[str] = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on SCREAMING_SNAKE_CASE : Union[str, Any] = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __lowercase ( self : Any ): """simple docstring""" # fmt: off SCREAMING_SNAKE_CASE : List[Any] = '''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE : Dict = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on SCREAMING_SNAKE_CASE : Tuple = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __lowercase ( self : Dict ): """simple docstring""" # fmt: off SCREAMING_SNAKE_CASE : str = '''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE : Union[str, Any] = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on SCREAMING_SNAKE_CASE : List[Any] = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __lowercase ( self : Union[str, Any] ): """simple docstring""" # fmt: off SCREAMING_SNAKE_CASE : Optional[int] = ''' \tHeLLo!how \n Are yoU? ''' SCREAMING_SNAKE_CASE : Optional[Any] = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on SCREAMING_SNAKE_CASE : List[str] = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __lowercase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE : Optional[int] = '''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __lowercase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = '''This is a test''' SCREAMING_SNAKE_CASE : List[str] = [13, 1, 43_98, 25, 21, 12_89] SCREAMING_SNAKE_CASE : Tuple = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] SCREAMING_SNAKE_CASE : Any = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] SCREAMING_SNAKE_CASE : List[str] = DebertaVaTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = DebertaVaTokenizerFast(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # fmt: off SCREAMING_SNAKE_CASE : Optional[Any] = '''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE : int = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] SCREAMING_SNAKE_CASE : Dict = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] SCREAMING_SNAKE_CASE : List[Any] = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __lowercase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE : str = DebertaVaTokenizer(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode('''sequence builders''' ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode('''multi-sequence build''' ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , lowerCAmelCase__ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , lowerCAmelCase__ , ) @slow def __lowercase ( self : Optional[Any] ): """simple docstring""" # fmt: off SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
464
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class lowercase_ : """simple docstring""" def __init__( self : List[str], UpperCamelCase__ : Dict, UpperCamelCase__ : Dict=13, UpperCamelCase__ : Union[str, Any]=7, UpperCamelCase__ : List[str]=False, UpperCamelCase__ : List[Any]=True, UpperCamelCase__ : str=False, UpperCamelCase__ : Tuple=False, UpperCamelCase__ : str=19, UpperCamelCase__ : Tuple=32, UpperCamelCase__ : Optional[Any]=5, UpperCamelCase__ : int=4, UpperCamelCase__ : str=37, UpperCamelCase__ : List[str]="gelu", UpperCamelCase__ : Union[str, Any]=0.1, UpperCamelCase__ : List[Any]=0.1, UpperCamelCase__ : int=5_12, UpperCamelCase__ : int=16, UpperCamelCase__ : str=2, UpperCamelCase__ : Any=0.02, UpperCamelCase__ : Any=3, UpperCamelCase__ : Any=4, UpperCamelCase__ : Union[str, Any]=None, ) -> Tuple: _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def __UpperCAmelCase ( self : Tuple ) -> List[Any]: _A = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size], self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) _A = ids_tensor([self.batch_size], self.num_choices ) _A = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : str ) -> Dict: _A = EsmConfig( vocab_size=33, hidden_size=self.hidden_size, pad_token_id=1, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, is_folding_model=UpperCamelCase__, esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False}, ) return config def __UpperCAmelCase ( self : Dict, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Optional[int], UpperCamelCase__ : str, UpperCamelCase__ : Dict, UpperCamelCase__ : List[Any], UpperCamelCase__ : int ) -> List[str]: _A = EsmForProteinFolding(config=UpperCamelCase__ ).float() model.to(UpperCamelCase__ ) model.eval() _A = model(UpperCamelCase__, attention_mask=UpperCamelCase__ ) _A = model(UpperCamelCase__ ) _A = model(UpperCamelCase__ ) self.parent.assertEqual(result.positions.shape, (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape, (8, self.batch_size, self.seq_length, 7, 2) ) def __UpperCAmelCase ( self : Any ) -> Optional[int]: _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase_ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = False __lowerCAmelCase = (EsmForProteinFolding,) if is_torch_available() else () __lowerCAmelCase = () __lowerCAmelCase = {} if is_torch_available() else {} __lowerCAmelCase = False def __UpperCAmelCase ( self : List[str] ) -> Dict: _A = EsmFoldModelTester(self ) _A = ConfigTester(self, config_class=UpperCamelCase__, hidden_size=37 ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Optional[int] ) -> str: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) @unittest.skip('Does not support attention outputs' ) def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: pass @unittest.skip def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: pass @unittest.skip('Esm does not support embedding resizing' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: pass @unittest.skip('Esm does not support embedding resizing' ) def __UpperCAmelCase ( self : str ) -> Any: pass @unittest.skip('ESMFold does not support passing input embeds!' ) def __UpperCAmelCase ( self : Tuple ) -> Tuple: pass @unittest.skip('ESMFold does not support head pruning.' ) def __UpperCAmelCase ( self : str ) -> Optional[Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def __UpperCAmelCase ( self : Any ) -> Union[str, Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def __UpperCAmelCase ( self : str ) -> Optional[int]: pass @unittest.skip('ESMFold does not support head pruning.' ) def __UpperCAmelCase ( self : Dict ) -> int: pass @unittest.skip('ESMFold does not support head pruning.' ) def __UpperCAmelCase ( self : Dict ) -> Optional[int]: pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]: pass @unittest.skip('ESMFold only has one output format.' ) def __UpperCAmelCase ( self : Tuple ) -> Any: pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: pass @unittest.skip('ESMFold does not support input chunking.' ) def __UpperCAmelCase ( self : int ) -> int: pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def __UpperCAmelCase ( self : Optional[int] ) -> str: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def __UpperCAmelCase ( self : str ) -> str: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def __UpperCAmelCase ( self : str ) -> Tuple: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def __UpperCAmelCase ( self : Tuple ) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: pass @require_torch class lowercase_ ( _UpperCamelCase ): """simple docstring""" @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> str: _A = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() _A = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _A = model(UpperCamelCase__ )['positions'] _A = torch.tensor([2.5_828, 0.7_993, -10.9_334], dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0], UpperCamelCase__, atol=1e-4 ) )
107
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[int] , lowerCamelCase_: Union[str, Any] ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer snake_case : List[str] = flax_key_tuple[:-1] + ("weight",) snake_case : Union[str, Any] = torch.permute(lowerCamelCase_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCamelCase_ ): # linear layer snake_case : int = flax_key_tuple[:-1] + ("weight",) snake_case : Dict = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: snake_case : Any = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Union[str, Any] , lowerCamelCase_: Union[str, Any] , lowerCamelCase_: str ): """simple docstring""" if "metadata" in layer: snake_case : Dict = layer.split("metadata" ) snake_case : Optional[Any] = "".join(split_layer[0] )[:-1] snake_case : Any = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: snake_case : List[str] = layer.split("kvstore" ) snake_case : Tuple = "".join(split_layer[0] )[:-1] snake_case : Union[str, Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: snake_case : List[Any] = layer.split("/" ) snake_case : Union[str, Any] = "/".join(split_layer[:-1] ) snake_case : int = (split_layer[-1],) if "kvstore/path" in layer: snake_case : str = f'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: snake_case : Tuple = "file" else: snake_case : int = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[Any] , lowerCamelCase_: Dict ): """simple docstring""" snake_case : Optional[int] = rename_keys(lowerCamelCase_ ) snake_case : str = {} for k, v in current_block.items(): snake_case : List[str] = v snake_case : List[str] = new_current_block torch.save(lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Tuple , lowerCamelCase_: Optional[Any] , lowerCamelCase_: Dict , lowerCamelCase_: int , lowerCamelCase_: str = WEIGHTS_NAME ): """simple docstring""" snake_case : List[str] = convert_file_size_to_int(lowerCamelCase_ ) snake_case : List[Any] = [] snake_case : Dict = {} snake_case : str = 0 snake_case : List[str] = 0 os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: snake_case : List[Any] = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] snake_case : Union[str, Any] = flatten_dict(lowerCamelCase_ , sep="/" ) snake_case : Optional[int] = {} for layer in checkpoint_info.keys(): snake_case , snake_case , snake_case : Union[str, Any] = get_key_and_tensorstore_dict( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if curr_real_layer_name in all_layers: snake_case : str = content else: snake_case : Any = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file snake_case : Optional[Any] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() snake_case : Tuple = torch.tensor(lowerCamelCase_ ) snake_case : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts snake_case , snake_case : Dict = rename_base_flax_keys(tuple(key.split("/" ) ) , lowerCamelCase_ ) snake_case : Union[str, Any] = "/".join(lowerCamelCase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: snake_case : str = os.path.join( lowerCamelCase_ , weights_name.replace(".bin" , f'''-{len(lowerCamelCase_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(lowerCamelCase_ , lowerCamelCase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block snake_case : Any = {} snake_case : Union[str, Any] = 0 snake_case : Any = raw_weights.to(getattr(lowerCamelCase_ , lowerCamelCase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block snake_case : List[Any] = os.path.join(lowerCamelCase_ , weights_name.replace(".bin" , f'''-{len(lowerCamelCase_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(lowerCamelCase_ , lowerCamelCase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowerCamelCase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index snake_case : List[Any] = {} snake_case : Dict = {} for idx, shard in enumerate(lowerCamelCase_ ): snake_case : List[Any] = weights_name.replace( ".bin" , f'''-{idx+1:05d}-of-{len(lowerCamelCase_ ):05d}.bin''' ) # len(sharded_state_dicts):05d} snake_case : Tuple = os.path.join(lowerCamelCase_ , weights_name.replace(".bin" , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(lowerCamelCase_ , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) snake_case : Union[str, Any] = shard for key in shard: snake_case : List[Any] = shard_file # Add the metadata snake_case : Optional[int] = {"total_size": total_size} snake_case : List[str] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , "w" , encoding="utf-8" ) as f: snake_case : Tuple = json.dumps(lowerCamelCase_ , indent=2 , sort_keys=lowerCamelCase_ ) + "\n" f.write(lowerCamelCase_ ) return metadata, index if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) A = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer snake_case : List[Any] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) snake_case : List[Any] = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) snake_case : Dict = TaTokenizer.from_pretrained("t5-small" ) snake_case : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." snake_case : Dict = tokenizer(lowerCamelCase_ , return_tensors="pt" ).input_ids snake_case : Optional[int] = model.generate(lowerCamelCase_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
449
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __snake_case = logging.get_logger(__name__) class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : List[str] = ["""pixel_values"""] def __init__( self , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = PILImageResampling.BILINEAR , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = 1 / 255 , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) snake_case : str = size if size is not None else {"shortest_edge": 256} snake_case : List[str] = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) snake_case : List[Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} snake_case : str = get_size_dict(UpperCamelCase__ ) snake_case : int = do_resize snake_case : List[str] = size snake_case : int = resample snake_case : Optional[int] = do_center_crop snake_case : Any = crop_size snake_case : Any = do_rescale snake_case : Dict = rescale_factor snake_case : Optional[int] = do_normalize snake_case : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = PILImageResampling.BICUBIC , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) snake_case : Union[str, Any] = get_resize_output_image_size(UpperCamelCase__ , size=size["shortest_edge"] , default_to_square=UpperCamelCase__ ) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Optional[Any]: '''simple docstring''' snake_case : Union[str, Any] = get_size_dict(UpperCamelCase__ ) return center_crop(UpperCamelCase__ , size=(size["height"], size["width"]) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ ) -> Dict: '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Optional[Any]: '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = ChannelDimension.FIRST , **UpperCamelCase__ , ) -> Dict: '''simple docstring''' snake_case : List[str] = do_resize if do_resize is not None else self.do_resize snake_case : int = size if size is not None else self.size snake_case : Optional[Any] = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) snake_case : Tuple = resample if resample is not None else self.resample snake_case : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case : List[Any] = get_size_dict(UpperCamelCase__ ) snake_case : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case : Tuple = image_mean if image_mean is not None else self.image_mean snake_case : Any = image_std if image_std is not None else self.image_std snake_case : str = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case : int = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: snake_case : List[str] = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_center_crop: snake_case : Dict = [self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] if do_rescale: snake_case : Union[str, Any] = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_normalize: snake_case : Dict = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) for image in images] snake_case : Optional[Any] = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] snake_case : Optional[int] = {"pixel_values": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
716
"""simple docstring""" from typing import Any def __lowerCAmelCase ( lowercase : list , lowercase : list , lowercase : dict , lowercase : dict , lowercase : dict , ) -> list: """simple docstring""" _validation( lowercase , lowercase , lowercase , lowercase , lowercase , ) # Creates data structures and fill initial step snake_case : dict = {} snake_case : dict = {} for state in states_space: snake_case : int = observations_space[0] snake_case : Any = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case : Union[str, Any] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowercase ) ): snake_case : Optional[Any] = observations_space[o] snake_case : str = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case : str = "" snake_case : List[Any] = -1 for k_state in states_space: snake_case : Tuple = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case : Optional[Any] = probability snake_case : int = k_state # Update probabilities and pointers dicts snake_case : List[str] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case : List[Any] = arg_max # The final observation snake_case : Dict = observations_space[len(lowercase ) - 1] # argmax for given final observation snake_case : str = "" snake_case : Optional[int] = -1 for k_state in states_space: snake_case : int = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case : Optional[int] = probability snake_case : List[Any] = k_state snake_case : str = arg_max # Process pointers backwards snake_case : List[str] = last_state snake_case : Optional[int] = [] for o in range(len(lowercase ) - 1 , -1 , -1 ): result.append(lowercase ) snake_case : List[str] = pointers[previous, observations_space[o]] result.reverse() return result def __lowerCAmelCase ( lowercase : Any , lowercase : Any , lowercase : Any , lowercase : Any , lowercase : Any , ) -> None: """simple docstring""" _validate_not_empty( lowercase , lowercase , lowercase , lowercase , lowercase , ) _validate_lists(lowercase , lowercase ) _validate_dicts( lowercase , lowercase , lowercase ) def __lowerCAmelCase ( lowercase : Any , lowercase : Any , lowercase : Any , lowercase : Any , lowercase : Any , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def __lowerCAmelCase ( lowercase : Any , lowercase : Any ) -> None: """simple docstring""" _validate_list(lowercase , "observations_space" ) _validate_list(lowercase , "states_space" ) def __lowerCAmelCase ( lowercase : Any , lowercase : str ) -> None: """simple docstring""" if not isinstance(_object , lowercase ): snake_case : List[str] = F'{var_name} must be a list' raise ValueError(lowercase ) else: for x in _object: if not isinstance(lowercase , lowercase ): snake_case : Tuple = F'{var_name} must be a list of strings' raise ValueError(lowercase ) def __lowerCAmelCase ( lowercase : Any , lowercase : Any , lowercase : Any , ) -> None: """simple docstring""" _validate_dict(lowercase , "initial_probabilities" , lowercase ) _validate_nested_dict(lowercase , "transition_probabilities" ) _validate_nested_dict(lowercase , "emission_probabilities" ) def __lowerCAmelCase ( lowercase : Any , lowercase : str ) -> None: """simple docstring""" _validate_dict(_object , lowercase , lowercase ) for x in _object.values(): _validate_dict(lowercase , lowercase , lowercase , lowercase ) def __lowerCAmelCase ( lowercase : Any , lowercase : str , lowercase : type , lowercase : bool = False ) -> None: """simple docstring""" if not isinstance(_object , lowercase ): snake_case : int = F'{var_name} must be a dict' raise ValueError(lowercase ) if not all(isinstance(lowercase , lowercase ) for x in _object ): snake_case : Optional[Any] = F'{var_name} all keys must be strings' raise ValueError(lowercase ) if not all(isinstance(lowercase , lowercase ) for x in _object.values() ): snake_case : Optional[int] = "nested dictionary " if nested else "" snake_case : int = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
117
0
def lowerCAmelCase ( UpperCAmelCase = 100_0000 ) ->int: """simple docstring""" __magic_name__ : int = 1 __magic_name__ : Union[str, Any] = 1 __magic_name__ : Union[str, Any] = {1: 1} for inputa in range(2, UpperCAmelCase ): __magic_name__ : int = 0 __magic_name__ : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __magic_name__ : List[str] = (3 * number) + 1 counter += 1 if inputa not in counters: __magic_name__ : Optional[int] = counter if counter > pre_counter: __magic_name__ : List[Any] = inputa __magic_name__ : List[str] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
154
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowercase_ = logging.get_logger(__name__) lowercase_ = TypeVar('''DatasetType''', Dataset, IterableDataset) def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase = None, UpperCAmelCase = None, UpperCAmelCase = None, UpperCAmelCase = None, UpperCAmelCase = "first_exhausted", ) ->DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(UpperCAmelCase ): if not isinstance(UpperCAmelCase, (Dataset, IterableDataset) ): if isinstance(UpperCAmelCase, (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' '''is an empty dataset dictionary.''' ) raise ValueError( F'''Dataset at position {i} has at least one split: {list(UpperCAmelCase )}\n''' F'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(UpperCAmelCase ) )}\']''' ) raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCAmelCase ).__name__}.''' ) if i == 0: __magic_name__ , __magic_name__ : Union[str, Any] = ( (Dataset, IterableDataset) if isinstance(UpperCAmelCase, UpperCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCAmelCase, UpperCAmelCase ): raise ValueError( F'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, info=UpperCAmelCase, split=UpperCAmelCase, stopping_strategy=UpperCAmelCase ) else: return _interleave_iterable_datasets( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, info=UpperCAmelCase, split=UpperCAmelCase, stopping_strategy=UpperCAmelCase ) def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase = None, UpperCAmelCase = None, UpperCAmelCase = 0, ) ->DatasetType: """simple docstring""" if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(UpperCAmelCase ): if not isinstance(UpperCAmelCase, (Dataset, IterableDataset) ): if isinstance(UpperCAmelCase, (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' '''is an empty dataset dictionary.''' ) raise ValueError( F'''Dataset at position {i} has at least one split: {list(UpperCAmelCase )}\n''' F'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(UpperCAmelCase ) )}\']''' ) raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCAmelCase ).__name__}.''' ) if i == 0: __magic_name__ , __magic_name__ : int = ( (Dataset, IterableDataset) if isinstance(UpperCAmelCase, UpperCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCAmelCase, UpperCAmelCase ): raise ValueError( F'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCAmelCase, info=UpperCAmelCase, split=UpperCAmelCase, axis=UpperCAmelCase ) else: return _concatenate_iterable_datasets(UpperCAmelCase, info=UpperCAmelCase, split=UpperCAmelCase, axis=UpperCAmelCase )
154
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : List[str] = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[str] = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys _UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
"""simple docstring""" def snake_case (A_ :int ): '''simple docstring''' if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) a : Any = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 a : Optional[int] = 1 if upper_limit > 0: a : List[str] = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(A_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: _UpperCamelCase : Union[str, Any] = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
118
0
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [ "decoder.version", "decoder.output_projection.weight", "_float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = emb.weight.shape SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(lowercase , lowercase , bias=lowercase ) SCREAMING_SNAKE_CASE : Any = emb.weight.data return lin_layer def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = torch.load(lowercase , map_location="cpu" ) SCREAMING_SNAKE_CASE : Optional[int] = Namespace(**checkpoint["cfg"]["model"] ) SCREAMING_SNAKE_CASE : str = checkpoint["model"] remove_ignore_keys_(lowercase ) SCREAMING_SNAKE_CASE : str = state_dict["decoder.embed_tokens.weight"].shape[0] SCREAMING_SNAKE_CASE : Any = {key.replace("decoder" , "model" ): val for key, val in state_dict.items()} SCREAMING_SNAKE_CASE : List[str] = XGLMConfig( vocab_size=lowercase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="gelu" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) SCREAMING_SNAKE_CASE : Tuple = XGLMForCausalLM(lowercase ) SCREAMING_SNAKE_CASE : List[Any] = model.load_state_dict(lowercase , strict=lowercase ) print(lowercase ) SCREAMING_SNAKE_CASE : int = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") snake_case = parser.parse_args() snake_case = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
62
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""MaskFormerFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _SCREAMING_SNAKE_CASE = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
163
0
"""simple docstring""" import os import jsonlines import numpy as np from tqdm import tqdm lowerCAmelCase__ = 2048 lowerCAmelCase__ = 4096 lowerCAmelCase__ = 42 lowerCAmelCase__ = os.environ.pop('''PROCESS_TRAIN''', '''false''') lowerCAmelCase__ = {'''null''': 0, '''short''': 1, '''long''': 2, '''yes''': 3, '''no''': 4} def snake_case_ ( A_ : Optional[int] ): '''simple docstring''' def choose_first(A_ : Dict, A_ : Tuple=False ): assert isinstance(A_, A_ ) if len(A_ ) == 1: _lowerCamelCase : List[Any] = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: _lowerCamelCase : Union[str, Any] = {k: [a[k]] for k in a} if len(a['''start_token'''] ) > 0: break return a _lowerCamelCase : List[Any] = {'''id''': example['''id''']} _lowerCamelCase : Tuple = example['''annotations'''] _lowerCamelCase : Union[str, Any] = annotation['''yes_no_answer'''] if 0 in yes_no_answer or 1 in yes_no_answer: _lowerCamelCase : str = ['''yes'''] if 1 in yes_no_answer else ['''no'''] _lowerCamelCase : List[Any] = [] _lowerCamelCase : str = [] _lowerCamelCase : str = ['''<cls>'''] else: _lowerCamelCase : Optional[Any] = ['''short'''] _lowerCamelCase : Optional[int] = choose_first(annotation['''short_answers'''] ) if len(out['''start_token'''] ) == 0: # answer will be long if short is not available _lowerCamelCase : List[Any] = ['''long'''] _lowerCamelCase : List[str] = choose_first(annotation['''long_answer'''], is_long_answer=A_ ) _lowerCamelCase : Any = [] answer.update(A_ ) # disregard some samples if len(answer['''start_token'''] ) > 1 or answer["start_token"] == answer["end_token"]: _lowerCamelCase : List[str] = True else: _lowerCamelCase : List[str] = False _lowerCamelCase : int = ['''start_token''', '''end_token''', '''start_byte''', '''end_byte''', '''text'''] if not all(isinstance(answer[k], A_ ) for k in cols ): raise ValueError('''Issue in ID''', example['''id'''] ) return answer def snake_case_ ( A_ : Dict, A_ : Dict=False ): '''simple docstring''' _lowerCamelCase : int = _get_single_answer(A_ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element _lowerCamelCase : int = example['''document''']['''tokens'''] _lowerCamelCase : int = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) return { "context": " ".join(A_ ), "answer": { "start_token": -1_00, # ignore index in cross-entropy "end_token": -1_00, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples _lowerCamelCase : Tuple = ['''start_token''', '''end_token'''] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 _lowerCamelCase : Tuple = example['''document''']['''tokens'''] _lowerCamelCase : str = answer['''start_token'''] _lowerCamelCase : List[str] = answer['''end_token'''] _lowerCamelCase : str = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 _lowerCamelCase : Any = ''' '''.join(context[start_token:end_token] ) # checking above code if assertion: _lowerCamelCase : Optional[Any] = doc['''is_html'''][answer['''start_token'''] : answer['''end_token''']] _lowerCamelCase : Optional[Any] = doc['''token'''][answer['''start_token'''] : answer['''end_token''']] _lowerCamelCase : Optional[Any] = ''' '''.join([old[i] for i in range(len(A_ ) ) if not is_html[i]] ) if new != old: print('''ID:''', example['''id'''] ) print('''New:''', A_, end='''\n''' ) print('''Old:''', A_, end='''\n\n''' ) return { "context": " ".join(A_ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def snake_case_ ( A_ : Any, A_ : List[Any], A_ : str=20_48, A_ : Any=40_96, A_ : Optional[int]=True ): '''simple docstring''' _lowerCamelCase : Any = get_context_and_ans(A_, assertion=A_ ) _lowerCamelCase : str = out['''answer'''] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } _lowerCamelCase : Optional[Any] = tokenizer(example['''question''']['''text'''], out['''context'''] ).input_ids _lowerCamelCase : Dict = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element _lowerCamelCase : List[Any] = [] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Any = input_ids[:q_len] _lowerCamelCase : Tuple = range(A_, len(A_ ), max_length - doc_stride ) for i in doc_start_indices: _lowerCamelCase : str = i + max_length - q_len _lowerCamelCase : Tuple = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['''category'''][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_00] * len(A_ ), "end_token": [-1_00] * len(A_ ), "category": category, }, } _lowerCamelCase : Optional[Any] = out['''context'''].split() _lowerCamelCase : List[str] = splitted_context[answer['''end_token''']] _lowerCamelCase : Any = len( tokenizer( ''' '''.join(splitted_context[: answer['''start_token''']] ), add_special_tokens=A_, ).input_ids ) _lowerCamelCase : Dict = len( tokenizer(''' '''.join(splitted_context[: answer['''end_token''']] ), add_special_tokens=A_ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token _lowerCamelCase : Tuple = len(tokenizer(A_, add_special_tokens=A_ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 _lowerCamelCase : str = input_ids[answer['''start_token'''] : answer['''end_token'''] + 1] # right & left are inclusive _lowerCamelCase : str = answer['''start_token'''] _lowerCamelCase : Optional[int] = answer['''end_token'''] if assertion: _lowerCamelCase : Dict = tokenizer.decode(A_ ) if answer["span"] != new: print('''ISSUE IN TOKENIZATION''' ) print('''OLD:''', answer['''span'''] ) print('''NEW:''', A_, end='''\n\n''' ) if len(A_ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } _lowerCamelCase : Tuple = input_ids[:q_len] _lowerCamelCase : Optional[Any] = range(A_, len(A_ ), max_length - doc_stride ) _lowerCamelCase : Tuple = [] _lowerCamelCase : Dict = [] _lowerCamelCase : List[str] = [] _lowerCamelCase : List[str] = [] # null, yes, no, long, short for i in doc_start_indices: _lowerCamelCase : List[str] = i + max_length - q_len _lowerCamelCase : Union[str, Any] = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: _lowerCamelCase : Tuple = start_token - i + q_len _lowerCamelCase : Optional[Any] = end_token - i + q_len answers_category.append(answer['''category'''][0] ) # ["short"] -> "short" else: _lowerCamelCase : Optional[int] = -1_00 _lowerCamelCase : Union[str, Any] = -1_00 answers_category.append('''null''' ) _lowerCamelCase : List[Any] = inputs[-1][start_token : end_token + 1] answers_start_token.append(A_ ) answers_end_token.append(A_ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('''ISSUE in strided for ID:''', example['''id'''] ) print('''New:''', tokenizer.decode(A_ ) ) print('''Old:''', tokenizer.decode(A_ ), end='''\n\n''' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def snake_case_ ( A_ : Tuple, A_ : str, A_ : Tuple=20_48, A_ : Union[str, Any]=40_96, A_ : Optional[Any]=False ): '''simple docstring''' _lowerCamelCase : List[Any] = get_strided_contexts_and_ans( A_, A_, doc_stride=A_, max_length=A_, assertion=A_, ) return example def snake_case_ ( A_ : Union[str, Any], A_ : str ): '''simple docstring''' with jsonlines.open(A_, '''a''' ) as writer: for example in tqdm(A_, total=len(A_ ), desc='''Saving samples ... ''' ): _lowerCamelCase : str = example['''labels'''] for ids, start, end, cat in zip( example['''input_ids'''], labels['''start_token'''], labels['''end_token'''], labels['''category'''], ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { '''input_ids''': ids, '''start_token''': start, '''end_token''': end, '''category''': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer lowerCAmelCase__ = load_dataset('''natural_questions''') lowerCAmelCase__ = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') lowerCAmelCase__ = data['''train''' if PROCESS_TRAIN == '''true''' else '''validation'''] lowerCAmelCase__ = { '''tokenizer''': tokenizer, '''doc_stride''': DOC_STRIDE, '''max_length''': MAX_LENGTH, '''assertion''': False, } lowerCAmelCase__ = data.map(prepare_inputs, fn_kwargs=fn_kwargs) lowerCAmelCase__ = data.remove_columns(['''annotations''', '''document''', '''id''', '''question''']) print(data) np.random.seed(SEED) lowerCAmelCase__ = '''nq-training.jsonl''' if PROCESS_TRAIN == '''true''' else '''nq-validation.jsonl''' save_to_disk(data, file_name=cache_file_name)
598
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase__ = ''' Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)["depth"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline("depth-estimation") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to("cuda") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> img = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/cat.png" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda") >>> prompt = "A robot, 4k photo" >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature" >>> generator = torch.Generator(device="cuda").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save("robot_cat.png") ``` ''' def snake_case_ ( A_ : Optional[int], A_ : int, A_ : int=8 ): '''simple docstring''' _lowerCamelCase : Optional[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCamelCase : Dict = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __snake_case ( _lowercase): def __init__( self : List[str] , __lowerCAmelCase : UNetaDConditionModel , __lowerCAmelCase : DDPMScheduler , __lowerCAmelCase : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , movq=__lowerCAmelCase , ) _lowerCamelCase : str = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] ): """simple docstring""" if latents is None: _lowerCamelCase : Optional[int] = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=__lowerCAmelCase , dtype=__lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _lowerCamelCase : Any = latents.to(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Any=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _lowerCamelCase : Tuple = torch.device(f'''cuda:{gpu_id}''' ) _lowerCamelCase : Optional[int] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Tuple=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _lowerCamelCase : Optional[int] = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=__lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCamelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCamelCase , _lowerCamelCase : List[str] = cpu_offload_with_hook(__lowerCAmelCase , __lowerCAmelCase , prev_module_hook=__lowerCAmelCase ) # We'll offload the last model manually. _lowerCamelCase : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self : Optional[int] , __lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , __lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : int = 5_1_2 , __lowerCAmelCase : int = 5_1_2 , __lowerCAmelCase : int = 1_0_0 , __lowerCAmelCase : float = 4.0 , __lowerCAmelCase : int = 1 , __lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , ): """simple docstring""" _lowerCamelCase : int = self._execution_device _lowerCamelCase : List[Any] = guidance_scale > 1.0 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : List[Any] = torch.cat(__lowerCAmelCase , dim=0 ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : Dict = torch.cat(__lowerCAmelCase , dim=0 ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : List[str] = torch.cat(__lowerCAmelCase , dim=0 ) _lowerCamelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase , dim=0 ) _lowerCamelCase : Union[str, Any] = negative_image_embeds.repeat_interleave(__lowerCAmelCase , dim=0 ) _lowerCamelCase : int = hint.repeat_interleave(__lowerCAmelCase , dim=0 ) _lowerCamelCase : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__lowerCAmelCase ) _lowerCamelCase : List[str] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=__lowerCAmelCase ) self.scheduler.set_timesteps(__lowerCAmelCase , device=__lowerCAmelCase ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Tuple = self.movq.config.latent_channels _lowerCamelCase , _lowerCamelCase : List[Any] = downscale_height_and_width(__lowerCAmelCase , __lowerCAmelCase , self.movq_scale_factor ) # create initial latent _lowerCamelCase : Optional[int] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : int = {'''image_embeds''': image_embeds, '''hint''': hint} _lowerCamelCase : List[str] = self.unet( sample=__lowerCAmelCase , timestep=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , added_cond_kwargs=__lowerCAmelCase , return_dict=__lowerCAmelCase , )[0] if do_classifier_free_guidance: _lowerCamelCase , _lowerCamelCase : str = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.chunk(2 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = variance_pred.chunk(2 ) _lowerCamelCase : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCamelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCamelCase , _lowerCamelCase : Any = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Any = self.scheduler.step( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase , )[0] # post-processing _lowerCamelCase : Optional[int] = self.movq.decode(__lowerCAmelCase , force_not_quantize=__lowerCAmelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _lowerCamelCase : Union[str, Any] = image * 0.5 + 0.5 _lowerCamelCase : List[Any] = image.clamp(0 , 1 ) _lowerCamelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCamelCase : Union[str, Any] = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
598
1
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): lowercase : int = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowercase : Optional[int] = Vector() def __lowerCamelCase ( self ): lowercase : List[Any] = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(SCREAMING_SNAKE_CASE__ ) , '''(0,0,0,0,0,1)''' ) def __lowerCamelCase ( self ): lowercase : List[Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 4 ) def __lowerCamelCase ( self ): lowercase : Optional[Any] = Vector([1, 2] ) lowercase : Optional[int] = Vector([1, 2, 3, 4, 5] ) lowercase : Optional[Any] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowercase : Any = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def __lowerCamelCase ( self ): lowercase : str = Vector([1, 2, 3] ) lowercase : int = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __lowerCamelCase ( self ): lowercase : List[str] = Vector([1, 2, 3] ) lowercase : List[Any] = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __lowerCamelCase ( self ): lowercase : Any = Vector([1, 2, 3] ) lowercase : List[str] = Vector([2, -1, 4] ) # for test of dot product lowercase : int = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' ) self.assertEqual((a * b) , 0 ) def __lowerCamelCase ( self ): self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 ) def __lowerCamelCase ( self ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' ) def __lowerCamelCase ( self ): lowercase : Any = Vector([1, 2, 3] ) lowercase : Tuple = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) , '''(3,4,7)''' ) def __lowerCamelCase ( self ): lowercase : Optional[Any] = Vector([1, 0, 0, 0, 0, 0] ) lowercase : List[str] = x.copy() self.assertEqual(str(SCREAMING_SNAKE_CASE__ ) , str(SCREAMING_SNAKE_CASE__ ) ) def __lowerCamelCase ( self ): lowercase : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(SCREAMING_SNAKE_CASE__ ) , '''(0,1,0)''' ) def __lowerCamelCase ( self ): lowercase : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(SCREAMING_SNAKE_CASE__ ) ) def __lowerCamelCase ( self ): lowercase : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowercase : Optional[int] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def __lowerCamelCase ( self ): lowercase : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowercase : List[Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def __lowerCamelCase ( self ): lowercase : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __lowerCamelCase ( self ): lowercase : int = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowercase : Any = Vector([1, 2, 3] ) self.assertEqual('''(14,32,50)''' , str(a * x ) ) self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) ) def __lowerCamelCase ( self ): lowercase : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(SCREAMING_SNAKE_CASE__ ) ) def __lowerCamelCase ( self ): lowercase : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def __lowerCamelCase ( self ): lowercase : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowercase : str = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) ) def __lowerCamelCase ( self ): lowercase : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowercase : int = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) ) def __lowerCamelCase ( self ): self.assertEqual( '''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
319
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __SCREAMING_SNAKE_CASE : def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=14 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=99 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=0.02 , ): lowercase : Any = parent lowercase : Any = batch_size lowercase : Union[str, Any] = seq_length lowercase : Dict = is_training lowercase : List[Any] = use_input_mask lowercase : Optional[int] = use_token_type_ids lowercase : Union[str, Any] = use_labels lowercase : Any = vocab_size lowercase : List[Any] = hidden_size lowercase : str = rotary_dim lowercase : Tuple = num_hidden_layers lowercase : Dict = num_attention_heads lowercase : Optional[int] = intermediate_size lowercase : Optional[int] = hidden_act lowercase : List[str] = hidden_dropout_prob lowercase : Any = attention_probs_dropout_prob lowercase : Union[str, Any] = max_position_embeddings lowercase : List[Any] = initializer_range lowercase : str = None lowercase : Dict = vocab_size - 1 lowercase : List[Any] = vocab_size - 1 lowercase : Optional[Any] = vocab_size - 1 def __lowerCamelCase ( self ): lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : List[Any] = None if self.use_input_mask: lowercase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def __lowerCamelCase ( self ): lowercase : str = self.prepare_config_and_inputs() lowercase , lowercase , lowercase : int = config_and_inputs lowercase : List[str] = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Union[str, Any] = 20 lowercase : Optional[int] = model_class_name(SCREAMING_SNAKE_CASE__ ) lowercase : int = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) lowercase : Union[str, Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowercase : str = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , position_ids=SCREAMING_SNAKE_CASE__ , ) lowercase : Dict = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowercase : int = model( input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE__ , ) lowercase : Tuple = model(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : str = 20 lowercase : List[Any] = model_class_name(SCREAMING_SNAKE_CASE__ ) lowercase : Any = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowercase : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE__ ) lowercase : int = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowercase : List[Any] = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , position_ids=SCREAMING_SNAKE_CASE__ , ) lowercase : Optional[int] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowercase : str = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE__ , position_ids=SCREAMING_SNAKE_CASE__ , ) lowercase : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __SCREAMING_SNAKE_CASE ( A__ , A__ , unittest.TestCase ): A : Optional[Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () A : Union[str, Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __lowerCamelCase ( self ): lowercase : List[Any] = FlaxGPTJModelTester(self ) def __lowerCamelCase ( self ): for model_class_name in self.all_model_classes: lowercase , lowercase , lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): for model_class_name in self.all_model_classes: lowercase , lowercase , lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @tooslow def __lowerCamelCase ( self ): lowercase : str = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) lowercase : int = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) lowercase : Tuple = False lowercase : List[Any] = model.config.eos_token_id lowercase : Optional[int] = jax.jit(model.generate ) lowercase : Optional[Any] = jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences lowercase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = [ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @is_pt_flax_cross_test def __lowerCamelCase ( self ): lowercase , lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowercase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase : List[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase : List[str] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Union[str, Any] = pt_inputs['''input_ids'''].shape lowercase : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE__ ): lowercase : int = 0 lowercase : List[str] = 1 lowercase : int = 0 lowercase : Optional[Any] = 1 lowercase : Dict = pt_model_class(SCREAMING_SNAKE_CASE__ ).eval() lowercase : int = model_class(SCREAMING_SNAKE_CASE__ , dtype=jnp.floataa ) lowercase : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = fx_state with torch.no_grad(): lowercase : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE__ ).to_tuple() lowercase : Union[str, Any] = fx_model(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE__ , from_pt=SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = fx_model_loaded(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def __lowerCamelCase ( self ): lowercase , lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowercase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase : Any = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase : Any = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Dict = pt_model_class(SCREAMING_SNAKE_CASE__ ).eval() lowercase : Tuple = model_class(SCREAMING_SNAKE_CASE__ , dtype=jnp.floataa ) lowercase : List[Any] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE__ , fx_model.params ) lowercase , lowercase : Optional[int] = pt_inputs['''input_ids'''].shape lowercase : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE__ ): lowercase : Dict = 0 lowercase : List[Any] = 1 lowercase : str = 0 lowercase : Tuple = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowercase : List[Any] = pt_model(**SCREAMING_SNAKE_CASE__ ).to_tuple() lowercase : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : int = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE__ , from_flax=SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): lowercase : Dict = pt_model_loaded(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def __lowerCamelCase ( self ): for model_class_name in self.all_model_classes: lowercase : Dict = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) lowercase : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
319
1
from random import randint from tempfile import TemporaryFile import numpy as np def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = 0 if start < end: SCREAMING_SNAKE_CASE_ : str = randint(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = a[end] SCREAMING_SNAKE_CASE_ : Union[str, Any] = a[pivot] SCREAMING_SNAKE_CASE_ : List[str] = temp SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = _in_place_partition(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) count += _in_place_quick_sort(lowerCAmelCase__ , lowerCAmelCase__ , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase__ , p + 1 , lowerCAmelCase__ ) return count def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : int = randint(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = a[end] SCREAMING_SNAKE_CASE_ : int = a[pivot] SCREAMING_SNAKE_CASE_ : int = temp SCREAMING_SNAKE_CASE_ : List[str] = start - 1 for index in range(lowerCAmelCase__ , lowerCAmelCase__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value SCREAMING_SNAKE_CASE_ : Any = new_pivot_index + 1 SCREAMING_SNAKE_CASE_ : Dict = a[new_pivot_index] SCREAMING_SNAKE_CASE_ : List[str] = a[index] SCREAMING_SNAKE_CASE_ : Tuple = temp SCREAMING_SNAKE_CASE_ : Dict = a[new_pivot_index + 1] SCREAMING_SNAKE_CASE_ : Any = a[end] SCREAMING_SNAKE_CASE_ : Optional[Any] = temp return new_pivot_index + 1, count __lowerCamelCase : List[str] = TemporaryFile() __lowerCamelCase : Any = 1_00 # 1000 elements are to be sorted __lowerCamelCase , __lowerCamelCase : int = 0, 1 # mean and standard deviation __lowerCamelCase : List[str] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array __lowerCamelCase : str = np.load(outfile) __lowerCamelCase : Tuple = len(M) - 1 __lowerCamelCase : Optional[int] = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
714
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __lowerCamelCase : Optional[int] = '''pt''' elif is_tf_available(): __lowerCamelCase : str = '''tf''' else: __lowerCamelCase : int = '''jax''' class a__ ( A__ , unittest.TestCase ): A = PerceiverTokenizer A = False def __UpperCamelCase ( self : str ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE_ : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCamelCase ( self : Any ): """simple docstring""" return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def __UpperCamelCase ( self : Optional[int],**_A : List[Any] ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname,**_A ) def __UpperCamelCase ( self : List[Any],_A : Optional[Any],_A : str=False,_A : Tuple=20,_A : Tuple=5 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [] for i in range(len(_A ) ): try: SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.decode([i],clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ : int = list(filter(lambda _A : re.match(R"^[ a-zA-Z]+$",t[1] ),_A ) ) SCREAMING_SNAKE_CASE_ : Dict = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1],add_special_tokens=_A ),_A ) ) if max_length is not None and len(_A ) > max_length: SCREAMING_SNAKE_CASE_ : List[str] = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: SCREAMING_SNAKE_CASE_ : int = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ : List[Any] = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ : str = tokenizer.decode(_A,clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: SCREAMING_SNAKE_CASE_ : Dict = ( tokenizer.decode([toks_ids[0]],clean_up_tokenization_spaces=_A ) + " " + tokenizer.decode(toks_ids[1:],clean_up_tokenization_spaces=_A ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ : str = " " + output_txt SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(_A,add_special_tokens=_A ) return output_txt, output_ids def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.perceiver_tokenizer SCREAMING_SNAKE_CASE_ : Union[str, Any] = "Unicode €." SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(_A ) SCREAMING_SNAKE_CASE_ : int = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["input_ids"],_A ) # decoding SCREAMING_SNAKE_CASE_ : str = tokenizer.decode(_A ) self.assertEqual(_A,"[CLS]Unicode €.[SEP]" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer("e è é ê ë" ) SCREAMING_SNAKE_CASE_ : Tuple = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["input_ids"],_A ) # decoding SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.decode(_A ) self.assertEqual(_A,"[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ),"[CLS]e è é ê ë[SEP]" ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.perceiver_tokenizer SCREAMING_SNAKE_CASE_ : List[str] = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off SCREAMING_SNAKE_CASE_ : Optional[Any] = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on SCREAMING_SNAKE_CASE_ : str = tokenizer(_A,padding=_A,return_tensors=_A ) self.assertIsInstance(_A,_A ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A,_A ) self.assertEqual((2, 38),batch.input_ids.shape ) self.assertEqual((2, 38),batch.attention_mask.shape ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.perceiver_tokenizer SCREAMING_SNAKE_CASE_ : Any = ["A long paragraph for summarization.", "Another paragraph for summarization."] SCREAMING_SNAKE_CASE_ : List[str] = tokenizer(_A,padding=_A,return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids",_A ) self.assertIn("attention_mask",_A ) self.assertNotIn("decoder_input_ids",_A ) self.assertNotIn("decoder_attention_mask",_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.perceiver_tokenizer SCREAMING_SNAKE_CASE_ : int = [ "Summary of the text.", "Another summary.", ] SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer( text_target=_A,max_length=32,padding="max_length",truncation=_A,return_tensors=_A ) self.assertEqual(32,targets["input_ids"].shape[1] ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length,42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : str = " He is very happy, UNwant\u00E9d,running" SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.encode(_A,add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : int = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = after_tokenizer.encode(_A,add_special_tokens=_A ) self.assertListEqual(_A,_A ) shutil.rmtree(_A ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ : Optional[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Tuple = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) SCREAMING_SNAKE_CASE_ : int = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) SCREAMING_SNAKE_CASE_ : str = tokenizer.encode(_A,add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : str = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : str = after_tokenizer.encode(_A,add_special_tokens=_A ) self.assertListEqual(_A,_A ) self.assertIn("new_additional_special_token",after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length,42 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.__class__.from_pretrained(_A,model_max_length=43 ) self.assertEqual(tokenizer.model_max_length,43 ) shutil.rmtree(_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A,"special_tokens_map.json" ),encoding="utf-8" ) as json_file: SCREAMING_SNAKE_CASE_ : Optional[int] = json.load(_A ) with open(os.path.join(_A,"tokenizer_config.json" ),encoding="utf-8" ) as json_file: SCREAMING_SNAKE_CASE_ : int = json.load(_A ) SCREAMING_SNAKE_CASE_ : Any = [F'<extra_id_{i}>' for i in range(125 )] SCREAMING_SNAKE_CASE_ : List[Any] = added_tokens_extra_ids + [ "an_additional_special_token" ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_A,"special_tokens_map.json" ),"w",encoding="utf-8" ) as outfile: json.dump(_A,_A ) with open(os.path.join(_A,"tokenizer_config.json" ),"w",encoding="utf-8" ) as outfile: json.dump(_A,_A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ : Dict = tokenizer_class.from_pretrained( _A,) self.assertIn( "an_additional_special_token",tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"],tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ),) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ : Union[str, Any] = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token",lstrip=_A )] SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer_class.from_pretrained( _A,additional_special_tokens=_A,) self.assertIn("a_new_additional_special_token",tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"],tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ),) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ),"�" ) def __UpperCamelCase ( self : Dict ): """simple docstring""" pass def __UpperCamelCase ( self : int ): """simple docstring""" pass def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" pass def __UpperCamelCase ( self : List[str] ): """simple docstring""" pass def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.get_tokenizers(fast=_A,do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): SCREAMING_SNAKE_CASE_ : str = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A,_A )
316
0
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) lowerCAmelCase__ :List[str] = logging.getLogger(__name__) def lowerCAmelCase__ ( a__: str ) -> List[str]: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=a__ ) _UpperCAmelCase = { 'repo_id': str(a__ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a__ , 'git_log.json' ) , 'w' ) as f: json.dump(a__ , a__ , indent=4 ) def lowerCAmelCase__ ( a__: int ) -> Union[str, Any]: '''simple docstring''' if params.n_gpu <= 0: _UpperCAmelCase = 0 _UpperCAmelCase = -1 _UpperCAmelCase = True _UpperCAmelCase = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 _UpperCAmelCase = int(os.environ['WORLD_SIZE'] ) _UpperCAmelCase = int(os.environ['N_GPU_NODE'] ) _UpperCAmelCase = int(os.environ['RANK'] ) # number of nodes / node ID _UpperCAmelCase = params.world_size // params.n_gpu_per_node _UpperCAmelCase = params.global_rank // params.n_gpu_per_node _UpperCAmelCase = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 _UpperCAmelCase = 1 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 1 _UpperCAmelCase = 1 _UpperCAmelCase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode _UpperCAmelCase = params.node_id == 0 and params.local_rank == 0 _UpperCAmelCase = params.n_nodes > 1 # summary _UpperCAmelCase = F'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def lowerCAmelCase__ ( a__: int ) -> Dict: '''simple docstring''' np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
618
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCAmelCase__ :int = logging.get_logger(__name__) def lowerCAmelCase__ ( a__: Dict ) -> List[str]: '''simple docstring''' _UpperCAmelCase = R'\w+[.]\d+' _UpperCAmelCase = re.findall(a__ , a__ ) for pat in pats: _UpperCAmelCase = key.replace(a__ , '_'.join(pat.split('.' ) ) ) return key def lowerCAmelCase__ ( a__: Optional[int] , a__: Dict , a__: List[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _UpperCAmelCase = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer _UpperCAmelCase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _UpperCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _UpperCAmelCase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": _UpperCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _UpperCAmelCase = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _UpperCAmelCase = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCAmelCase__ ( a__: Any , a__: Optional[Any] , a__: int=4_2 ) -> List[str]: '''simple docstring''' _UpperCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _UpperCAmelCase = flax_model.init_weights(PRNGKey(a__ ) ) _UpperCAmelCase = flatten_dict(a__ ) _UpperCAmelCase = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _UpperCAmelCase = rename_key(a__ ) _UpperCAmelCase = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters _UpperCAmelCase , _UpperCAmelCase = rename_key_and_reshape_tensor(a__ , a__ , a__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown _UpperCAmelCase = jnp.asarray(a__ ) return unflatten_dict(a__ )
618
1
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _lowerCamelCase : List[str] = random.Random() if is_torch_available(): import torch def __lowerCamelCase (UpperCAmelCase__ : Dict , UpperCAmelCase__ : str=1.0 , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Tuple=None ): if rng is None: SCREAMING_SNAKE_CASE = global_rng SCREAMING_SNAKE_CASE = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase ( unittest.TestCase ): def __init__( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int=7 , _UpperCamelCase : Optional[Any]=400 , _UpperCamelCase : List[str]=2_000 , _UpperCamelCase : List[str]=1 , _UpperCamelCase : List[str]=0.0 , _UpperCamelCase : Optional[Any]=16_000 , _UpperCamelCase : str=True , _UpperCamelCase : int=True , ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = min_seq_length SCREAMING_SNAKE_CASE = max_seq_length SCREAMING_SNAKE_CASE = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE = feature_size SCREAMING_SNAKE_CASE = padding_value SCREAMING_SNAKE_CASE = sampling_rate SCREAMING_SNAKE_CASE = return_attention_mask SCREAMING_SNAKE_CASE = do_normalize def __snake_case( self : Dict ) -> str: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __snake_case( self : int , _UpperCamelCase : Union[str, Any]=False , _UpperCamelCase : Dict=False ) -> Tuple: '''simple docstring''' def _flatten(_UpperCamelCase : int ): return list(itertools.chain(*_UpperCamelCase ) ) if equal_length: SCREAMING_SNAKE_CASE = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE = [np.asarray(_UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( a , unittest.TestCase ): lowercase__ : List[Any] = ASTFeatureExtractor def __snake_case( self : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = ASTFeatureExtractionTester(self ) def __snake_case( self : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE = [np.asarray(_UpperCamelCase ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values SCREAMING_SNAKE_CASE = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) # Test batched SCREAMING_SNAKE_CASE = feat_extract(_UpperCamelCase , padding=_UpperCamelCase , return_tensors="np" ).input_values SCREAMING_SNAKE_CASE = feat_extract(_UpperCamelCase , padding=_UpperCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCamelCase , _UpperCamelCase ): self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE = np.asarray(_UpperCamelCase ) SCREAMING_SNAKE_CASE = feat_extract(_UpperCamelCase , return_tensors="np" ).input_values SCREAMING_SNAKE_CASE = feat_extract(_UpperCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCamelCase , _UpperCamelCase ): self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) @require_torch def __snake_case( self : str ) -> Dict: '''simple docstring''' import torch SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE = np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __snake_case( self : Optional[int] , _UpperCamelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' from datasets import load_dataset SCREAMING_SNAKE_CASE = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE = ds.sort("id" ).select(range(_UpperCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def __snake_case( self : List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on SCREAMING_SNAKE_CASE = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE = ASTFeatureExtractor() SCREAMING_SNAKE_CASE = feature_extractor(_UpperCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1_024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _UpperCamelCase , atol=1e-4 ) )
647
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowercase ( unittest.TestCase ): def __init__( self : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : Dict=7 , _UpperCamelCase : Union[str, Any]=3 , _UpperCamelCase : Optional[int]=30 , _UpperCamelCase : List[Any]=400 , _UpperCamelCase : Dict=True , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Any=True , _UpperCamelCase : List[Any]=[0.5, 0.5, 0.5] , _UpperCamelCase : Tuple=[0.5, 0.5, 0.5] , _UpperCamelCase : Tuple=True , _UpperCamelCase : List[Any]=1 / 255 , _UpperCamelCase : Optional[Any]=True , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = size if size is not None else {"shortest_edge": 18, "longest_edge": 1_333} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_factor SCREAMING_SNAKE_CASE = do_pad def __snake_case( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __snake_case( self : Any , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any]=False ) -> List[Any]: '''simple docstring''' if not batched: SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(_UpperCamelCase , Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.size else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE = int(self.size["shortest_edge"] * h / w ) SCREAMING_SNAKE_CASE = self.size["shortest_edge"] elif w > h: SCREAMING_SNAKE_CASE = self.size["shortest_edge"] SCREAMING_SNAKE_CASE = int(self.size["shortest_edge"] * w / h ) else: SCREAMING_SNAKE_CASE = self.size["shortest_edge"] SCREAMING_SNAKE_CASE = self.size["shortest_edge"] else: SCREAMING_SNAKE_CASE = [] for image in image_inputs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE = max(_UpperCamelCase , key=lambda _UpperCamelCase : item[0] )[0] SCREAMING_SNAKE_CASE = max(_UpperCamelCase , key=lambda _UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( a , unittest.TestCase ): lowercase__ : Optional[int] = DetaImageProcessor if is_vision_available() else None def __snake_case( self : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = DetaImageProcessingTester(self ) @property def __snake_case( self : int ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __snake_case( self : List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , "image_mean" ) ) self.assertTrue(hasattr(_UpperCamelCase , "image_std" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_rescale" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_pad" ) ) self.assertTrue(hasattr(_UpperCamelCase , "size" ) ) def __snake_case( self : Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1_333} ) self.assertEqual(image_processor.do_pad , _UpperCamelCase ) def __snake_case( self : str ) -> List[Any]: '''simple docstring''' pass def __snake_case( self : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) SCREAMING_SNAKE_CASE = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case( self : List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __snake_case( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: SCREAMING_SNAKE_CASE = json.loads(f.read() ) SCREAMING_SNAKE_CASE = {"image_id": 39_769, "annotations": target} # encode them SCREAMING_SNAKE_CASE = DetaImageProcessor() SCREAMING_SNAKE_CASE = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _UpperCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _UpperCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _UpperCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _UpperCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _UpperCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _UpperCamelCase ) ) # verify orig_size SCREAMING_SNAKE_CASE = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _UpperCamelCase ) ) # verify size SCREAMING_SNAKE_CASE = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _UpperCamelCase ) ) @slow def __snake_case( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: SCREAMING_SNAKE_CASE = json.loads(f.read() ) SCREAMING_SNAKE_CASE = {"file_name": "000000039769.png", "image_id": 39_769, "segments_info": target} SCREAMING_SNAKE_CASE = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them SCREAMING_SNAKE_CASE = DetaImageProcessor(format="coco_panoptic" ) SCREAMING_SNAKE_CASE = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , masks_path=_UpperCamelCase , return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _UpperCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _UpperCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _UpperCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _UpperCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _UpperCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _UpperCamelCase ) ) # verify masks SCREAMING_SNAKE_CASE = 822_873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , _UpperCamelCase ) # verify orig_size SCREAMING_SNAKE_CASE = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _UpperCamelCase ) ) # verify size SCREAMING_SNAKE_CASE = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _UpperCamelCase ) )
647
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A__: Tuple = logging.get_logger(__name__) A__: Tuple = { '''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''', } class _a ( UpperCamelCase__ , UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """focalnet""" def __init__( self: Union[str, Any] , __lowerCamelCase: Dict=224 , __lowerCamelCase: Tuple=4 , __lowerCamelCase: Union[str, Any]=3 , __lowerCamelCase: List[Any]=96 , __lowerCamelCase: Any=False , __lowerCamelCase: Optional[int]=[192, 384, 768, 768] , __lowerCamelCase: Tuple=[2, 2, 6, 2] , __lowerCamelCase: List[Any]=[2, 2, 2, 2] , __lowerCamelCase: Any=[3, 3, 3, 3] , __lowerCamelCase: List[Any]="gelu" , __lowerCamelCase: Any=4.0 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Union[str, Any]=0.1 , __lowerCamelCase: str=False , __lowerCamelCase: Union[str, Any]=1e-4 , __lowerCamelCase: List[str]=False , __lowerCamelCase: List[Any]=False , __lowerCamelCase: Optional[Any]=False , __lowerCamelCase: List[str]=0.02 , __lowerCamelCase: Optional[int]=1e-5 , __lowerCamelCase: Dict=32 , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: List[str]=None , **__lowerCamelCase: Any , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) UpperCamelCase__: Optional[int] = image_size UpperCamelCase__: Optional[int] = patch_size UpperCamelCase__: Any = num_channels UpperCamelCase__: Any = embed_dim UpperCamelCase__: Dict = use_conv_embed UpperCamelCase__: Dict = hidden_sizes UpperCamelCase__: Optional[Any] = depths UpperCamelCase__: Optional[int] = focal_levels UpperCamelCase__: Optional[int] = focal_windows UpperCamelCase__: List[str] = hidden_act UpperCamelCase__: Any = mlp_ratio UpperCamelCase__: List[str] = hidden_dropout_prob UpperCamelCase__: Dict = drop_path_rate UpperCamelCase__: Optional[Any] = use_layerscale UpperCamelCase__: Optional[int] = layerscale_value UpperCamelCase__: Any = use_post_layernorm UpperCamelCase__: List[Any] = use_post_layernorm_in_modulation UpperCamelCase__: Optional[int] = normalize_modulator UpperCamelCase__: Tuple = initializer_range UpperCamelCase__: int = layer_norm_eps UpperCamelCase__: List[str] = encoder_stride UpperCamelCase__: List[Any] = ["stem"] + [F"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] UpperCamelCase__ , UpperCamelCase__: List[Any] = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
380
def lowerCAmelCase_ ( A_): if not all(char in "01" for char in bin_string): raise ValueError("Non-binary value was passed to the function") if not bin_string: raise ValueError("Empty string was passed to the function") UpperCamelCase__: List[Any] = "" while len(A_) % 3 != 0: UpperCamelCase__: int = "0" + bin_string UpperCamelCase__: Optional[int] = [ bin_string[index : index + 3] for index in range(len(A_)) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: UpperCamelCase__: Union[str, Any] = 0 for index, val in enumerate(A_): oct_val += int(2 ** (2 - index) * int(A_)) oct_string += str(A_) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
380
1
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__(self , *lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ): '''simple docstring''' super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase : int = eval_examples _UpperCamelCase : str = post_process_function def lowercase_ (self , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__ = "eval" , **lowerCAmelCase__ , ): '''simple docstring''' _UpperCamelCase : Optional[int] = gen_kwargs.copy() _UpperCamelCase : int = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) _UpperCamelCase : List[str] = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) _UpperCamelCase : Optional[int] = gen_kwargs _UpperCamelCase : Tuple = self.eval_dataset if eval_dataset is None else eval_dataset _UpperCamelCase : Dict = self.get_eval_dataloader(lowerCAmelCase__ ) _UpperCamelCase : Tuple = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _UpperCamelCase : Dict = self.compute_metrics _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Union[str, Any] = time.time() _UpperCamelCase : Dict = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _UpperCamelCase : Optional[int] = eval_loop( lowerCAmelCase__ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , metric_key_prefix=lowerCAmelCase__ , ) finally: _UpperCamelCase : Dict = compute_metrics _UpperCamelCase : Optional[int] = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowerCAmelCase__ , lowerCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _UpperCamelCase : Union[str, Any] = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase : Union[str, Any] = self.compute_metrics(lowerCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): _UpperCamelCase : List[str] = metrics.pop(lowerCAmelCase__ ) metrics.update(output.metrics ) else: _UpperCamelCase : str = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowerCAmelCase__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _UpperCamelCase : Any = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCAmelCase__ ) return metrics def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__ = "test" , **lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : str = gen_kwargs.copy() _UpperCamelCase : Any = self.get_test_dataloader(lowerCAmelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. _UpperCamelCase : Any = self.compute_metrics _UpperCamelCase : Union[str, Any] = None _UpperCamelCase : Optional[int] = time.time() _UpperCamelCase : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _UpperCamelCase : List[Any] = eval_loop( lowerCAmelCase__ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , metric_key_prefix=lowerCAmelCase__ , ) finally: _UpperCamelCase : Optional[Any] = compute_metrics _UpperCamelCase : List[str] = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowerCAmelCase__ , lowerCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _UpperCamelCase : List[Any] = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , "predict" ) _UpperCamelCase : Any = self.compute_metrics(lowerCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): _UpperCamelCase : Optional[Any] = metrics.pop(lowerCAmelCase__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCAmelCase__ )
709
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCAmelCase = ["""image_processor""", """tokenizer"""] __UpperCAmelCase = """BridgeTowerImageProcessor""" __UpperCAmelCase = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __call__(self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): '''simple docstring''' _UpperCamelCase : Any = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) # add pixel_values + pixel_mask _UpperCamelCase : Union[str, Any] = self.image_processor( lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ , do_center_crop=lowerCAmelCase__ , **lowerCAmelCase__ ) encoding.update(lowerCAmelCase__ ) return encoding def lowercase_ (self , *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def lowercase_ (self , *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : List[str] = self.tokenizer.model_input_names _UpperCamelCase : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
239
0
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCamelCase : def __init__( self :Optional[int] , __magic_name__ :List[str] , __magic_name__ :Dict=13 , __magic_name__ :Union[str, Any]=32 , __magic_name__ :Optional[int]=2 , __magic_name__ :int=3 , __magic_name__ :List[str]=16 , __magic_name__ :int=[1, 2, 1] , __magic_name__ :Union[str, Any]=[2, 2, 4] , __magic_name__ :List[str]=2 , __magic_name__ :Tuple=2.0 , __magic_name__ :List[Any]=True , __magic_name__ :Tuple=0.0 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.1 , __magic_name__ :int="gelu" , __magic_name__ :Union[str, Any]=False , __magic_name__ :str=True , __magic_name__ :Dict=0.02 , __magic_name__ :int=1E-5 , __magic_name__ :Optional[int]=True , __magic_name__ :str=None , __magic_name__ :Union[str, Any]=True , __magic_name__ :List[str]=10 , __magic_name__ :Optional[int]=8 , __magic_name__ :Tuple=["stage1", "stage2", "stage3"] , __magic_name__ :Optional[Any]=[1, 2, 3] , ) ->Union[str, Any]: lowercase : Tuple = parent lowercase : int = batch_size lowercase : Optional[Any] = image_size lowercase : List[Any] = patch_size lowercase : Optional[Any] = num_channels lowercase : str = embed_dim lowercase : str = depths lowercase : List[Any] = num_heads lowercase : str = window_size lowercase : List[str] = mlp_ratio lowercase : List[str] = qkv_bias lowercase : int = hidden_dropout_prob lowercase : Optional[int] = attention_probs_dropout_prob lowercase : Tuple = drop_path_rate lowercase : Any = hidden_act lowercase : List[str] = use_absolute_embeddings lowercase : str = patch_norm lowercase : str = layer_norm_eps lowercase : str = initializer_range lowercase : List[Any] = is_training lowercase : List[str] = scope lowercase : List[str] = use_labels lowercase : Dict = type_sequence_label_size lowercase : Any = encoder_stride lowercase : int = out_features lowercase : Dict = out_indices def __snake_case ( self :List[str] ) ->Any: lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : List[str] = None if self.use_labels: lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Optional[int] = self.get_config() return config, pixel_values, labels def __snake_case ( self :List[str] ) ->int: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __snake_case ( self :List[Any] , __magic_name__ :Any , __magic_name__ :int , __magic_name__ :str ) ->List[str]: lowercase : Optional[Any] = MaskFormerSwinModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase : int = model(snake_case__ ) lowercase : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __snake_case ( self :List[Any] , __magic_name__ :List[Any] , __magic_name__ :Any , __magic_name__ :Optional[Any] ) ->int: lowercase : Union[str, Any] = MaskFormerSwinBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase : Any = model(snake_case__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(snake_case__ ): lowercase : List[str] = ["""stem"""] lowercase : List[Any] = MaskFormerSwinBackbone(config=snake_case__ ) def __snake_case ( self :int ) ->Dict: lowercase : int = self.prepare_config_and_inputs() lowercase , lowercase , lowercase : List[str] = config_and_inputs lowercase : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase (__UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Tuple = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : Any = False _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : str = False def __snake_case ( self :Union[str, Any] ) ->List[str]: lowercase : Optional[Any] = MaskFormerSwinModelTester(self ) lowercase : Dict = ConfigTester(self , config_class=snake_case__ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def __snake_case ( self :List[str] ) ->List[str]: pass def __snake_case ( self :Dict ) ->Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self :List[str] ) ->Union[str, Any]: return def __snake_case ( self :Any ) ->int: lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __snake_case ( self :int ) ->Dict: lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*snake_case__ ) @unittest.skip("""Swin does not use inputs_embeds""" ) def __snake_case ( self :Dict ) ->Tuple: pass @unittest.skip("""Swin does not support feedforward chunking""" ) def __snake_case ( self :List[Any] ) ->Any: pass def __snake_case ( self :List[str] ) ->Any: lowercase , lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Any = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def __snake_case ( self :Optional[Any] ) ->List[Any]: lowercase , lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[Any] = model_class(snake_case__ ) lowercase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Optional[int] = [*signature.parameters.keys()] lowercase : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def __snake_case ( self :str ) ->str: pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def __snake_case ( self :Dict ) ->Optional[int]: pass def __snake_case ( self :Optional[Any] , __magic_name__ :Dict , __magic_name__ :List[str] , __magic_name__ :str , __magic_name__ :Optional[Any] ) ->Dict: lowercase : Any = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowercase : List[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowercase : Union[str, Any] = outputs.hidden_states lowercase : Tuple = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) # Swin has a different seq_length lowercase : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __snake_case ( self :List[str] ) ->Union[str, Any]: lowercase , lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowercase : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase : Tuple = True self.check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : List[str] = True self.check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def __snake_case ( self :List[Any] ) ->Dict: lowercase , lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Optional[int] = 3 lowercase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase : int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase : List[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase : Tuple = True self.check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : int = True self.check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def __snake_case ( self :int ) ->List[str]: pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def __snake_case ( self :Dict ) ->List[str]: pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def __snake_case ( self :List[Any] ) ->int: pass def __snake_case ( self :List[Any] ) ->Any: lowercase , lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__magic_name__ :List[str] ): lowercase : List[str] = 0 return t def check_equivalence(__magic_name__ :Any , __magic_name__ :Optional[int] , __magic_name__ :int , __magic_name__ :Dict={} ): with torch.no_grad(): lowercase : Tuple = model(**snake_case__ , return_dict=snake_case__ , **snake_case__ ) lowercase : str = model(**snake_case__ , return_dict=snake_case__ , **snake_case__ ).to_tuple() def recursive_check(__magic_name__ :List[str] , __magic_name__ :Optional[Any] ): if isinstance(snake_case__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(snake_case__ , snake_case__ ): recursive_check(snake_case__ , snake_case__ ) elif isinstance(snake_case__ , snake_case__ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(snake_case__ , snake_case__ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(snake_case__ ) , set_nan_tensor_to_zero(snake_case__ ) , atol=1E-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(snake_case__ ).any()} and `inf`: {torch.isinf(snake_case__ )}. Dict has""" f""" `nan`: {torch.isnan(snake_case__ ).any()} and `inf`: {torch.isinf(snake_case__ )}.""" ) , ) recursive_check(snake_case__ , snake_case__ ) for model_class in self.all_model_classes: lowercase : List[Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase : Optional[Any] = self._prepare_for_class(snake_case__ , snake_case__ ) lowercase : Tuple = self._prepare_for_class(snake_case__ , snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ ) lowercase : int = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) lowercase : int = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ ) lowercase : Any = self._prepare_for_class(snake_case__ , snake_case__ ) lowercase : Tuple = self._prepare_for_class(snake_case__ , snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ , {"""output_hidden_states""": True} ) lowercase : Any = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) lowercase : List[Any] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ , {"""output_hidden_states""": True} ) @require_torch class UpperCamelCase (unittest.TestCase , __UpperCAmelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = (MaskFormerSwinBackbone,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : List[Any] = MaskFormerSwinConfig def __snake_case ( self :Optional[Any] ) ->Dict: lowercase : str = MaskFormerSwinModelTester(self ) def __snake_case ( self :List[Any] ) ->Tuple: lowercase , lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Any = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: lowercase : Union[str, Any] = backbone_class(snake_case__ ) backbone.to(snake_case__ ) backbone.eval() lowercase : str = backbone(**snake_case__ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , snake_case__ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowercase : Tuple = backbone(**snake_case__ , output_hidden_states=snake_case__ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase , lowercase , lowercase : Tuple = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowercase : str = backbone(**snake_case__ , output_attentions=snake_case__ ) self.assertIsNotNone(outputs.attentions )
264
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class a ( unittest.TestCase , __UpperCAmelCase ): def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __lowerCAmelCase = load_tool("text-to-speech" ) self.tool.setup() def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase = self.tool("hey" ) __lowerCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) __lowerCAmelCase = self.tool("hey" ) __lowerCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
611
0
from typing import Dict from .base import GenericTensor, Pipeline class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): def __lowerCAmelCase ( self, _a=None, _a=None, _a=None, **_a ) -> Union[str, Any]: if tokenize_kwargs is None: __SCREAMING_SNAKE_CASE = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( "truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)" ) __SCREAMING_SNAKE_CASE = truncation __SCREAMING_SNAKE_CASE = tokenize_kwargs __SCREAMING_SNAKE_CASE = {} if return_tensors is not None: __SCREAMING_SNAKE_CASE = return_tensors return preprocess_params, {}, postprocess_params def __lowerCAmelCase ( self, _a, **_a ) -> Optional[int]: __SCREAMING_SNAKE_CASE = self.framework __SCREAMING_SNAKE_CASE = self.tokenizer(_a, return_tensors=_a, **_a ) return model_inputs def __lowerCAmelCase ( self, _a ) -> int: __SCREAMING_SNAKE_CASE = self.model(**_a ) return model_outputs def __lowerCAmelCase ( self, _a, _a=False ) -> int: # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self, *_a, **_a ) -> Optional[Any]: return super().__call__(*_a, **_a )
721
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _A ( __snake_case :List[str] , __snake_case :List[Any]=0.9_9_9 , __snake_case :str="cosine" , ) -> Any: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__snake_case :str ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__snake_case :Union[str, Any] ): return math.exp(t * -1_2.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __SCREAMING_SNAKE_CASE = [] for i in range(__snake_case ): __SCREAMING_SNAKE_CASE = i / num_diffusion_timesteps __SCREAMING_SNAKE_CASE = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__snake_case ) / alpha_bar_fn(__snake_case ) , __snake_case ) ) return torch.tensor(__snake_case , dtype=torch.floataa ) class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ =[e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE__ =2 @register_to_config def __init__( self, _a = 10_00, _a = 0.0_0085, _a = 0.012, _a = "linear", _a = None, _a = "epsilon", _a = False, _a = False, _a = 1.0, _a = "linspace", _a = 0, ) -> str: if trained_betas is not None: __SCREAMING_SNAKE_CASE = torch.tensor(_a, dtype=torch.floataa ) elif beta_schedule == "linear": __SCREAMING_SNAKE_CASE = torch.linspace(_a, _a, _a, dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __SCREAMING_SNAKE_CASE = ( torch.linspace(beta_start**0.5, beta_end**0.5, _a, dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __SCREAMING_SNAKE_CASE = betas_for_alpha_bar(_a, alpha_transform_type="cosine" ) elif beta_schedule == "exp": __SCREAMING_SNAKE_CASE = betas_for_alpha_bar(_a, alpha_transform_type="exp" ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __SCREAMING_SNAKE_CASE = 1.0 - self.betas __SCREAMING_SNAKE_CASE = torch.cumprod(self.alphas, dim=0 ) # set all values self.set_timesteps(_a, _a, _a ) __SCREAMING_SNAKE_CASE = use_karras_sigmas def __lowerCAmelCase ( self, _a, _a=None ) -> Any: if schedule_timesteps is None: __SCREAMING_SNAKE_CASE = self.timesteps __SCREAMING_SNAKE_CASE = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __SCREAMING_SNAKE_CASE = 1 if len(_a ) > 1 else 0 else: __SCREAMING_SNAKE_CASE = timestep.cpu().item() if torch.is_tensor(_a ) else timestep __SCREAMING_SNAKE_CASE = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCAmelCase ( self ) -> List[str]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCAmelCase ( self, _a, _a, ) -> torch.FloatTensor: __SCREAMING_SNAKE_CASE = self.index_for_timestep(_a ) __SCREAMING_SNAKE_CASE = self.sigmas[step_index] __SCREAMING_SNAKE_CASE = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCAmelCase ( self, _a, _a = None, _a = None, ) -> str: __SCREAMING_SNAKE_CASE = num_inference_steps __SCREAMING_SNAKE_CASE = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __SCREAMING_SNAKE_CASE = np.linspace(0, num_train_timesteps - 1, _a, dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": __SCREAMING_SNAKE_CASE = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE = (np.arange(0, _a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __SCREAMING_SNAKE_CASE = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE = (np.arange(_a, 0, -step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __SCREAMING_SNAKE_CASE = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __SCREAMING_SNAKE_CASE = np.log(_a ) __SCREAMING_SNAKE_CASE = np.interp(_a, np.arange(0, len(_a ) ), _a ) if self.config.use_karras_sigmas: __SCREAMING_SNAKE_CASE = self._convert_to_karras(in_sigmas=_a, num_inference_steps=self.num_inference_steps ) __SCREAMING_SNAKE_CASE = np.array([self._sigma_to_t(_a, _a ) for sigma in sigmas] ) __SCREAMING_SNAKE_CASE = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = torch.from_numpy(_a ).to(device=_a ) __SCREAMING_SNAKE_CASE = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __SCREAMING_SNAKE_CASE = torch.from_numpy(_a ) __SCREAMING_SNAKE_CASE = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_a ).startswith("mps" ): # mps does not support float64 __SCREAMING_SNAKE_CASE = timesteps.to(_a, dtype=torch.floataa ) else: __SCREAMING_SNAKE_CASE = timesteps.to(device=_a ) # empty dt and derivative __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __SCREAMING_SNAKE_CASE = defaultdict(_a ) def __lowerCAmelCase ( self, _a, _a ) -> int: # get log sigma __SCREAMING_SNAKE_CASE = np.log(_a ) # get distribution __SCREAMING_SNAKE_CASE = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __SCREAMING_SNAKE_CASE = np.cumsum((dists >= 0), axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __SCREAMING_SNAKE_CASE = low_idx + 1 __SCREAMING_SNAKE_CASE = log_sigmas[low_idx] __SCREAMING_SNAKE_CASE = log_sigmas[high_idx] # interpolate sigmas __SCREAMING_SNAKE_CASE = (low - log_sigma) / (low - high) __SCREAMING_SNAKE_CASE = np.clip(_a, 0, 1 ) # transform interpolation to time range __SCREAMING_SNAKE_CASE = (1 - w) * low_idx + w * high_idx __SCREAMING_SNAKE_CASE = t.reshape(sigma.shape ) return t def __lowerCAmelCase ( self, _a, _a ) -> torch.FloatTensor: __SCREAMING_SNAKE_CASE = in_sigmas[-1].item() __SCREAMING_SNAKE_CASE = in_sigmas[0].item() __SCREAMING_SNAKE_CASE = 7.0 # 7.0 is the value used in the paper __SCREAMING_SNAKE_CASE = np.linspace(0, 1, _a ) __SCREAMING_SNAKE_CASE = sigma_min ** (1 / rho) __SCREAMING_SNAKE_CASE = sigma_max ** (1 / rho) __SCREAMING_SNAKE_CASE = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __lowerCAmelCase ( self ) -> List[Any]: return self.dt is None def __lowerCAmelCase ( self, _a, _a, _a, _a = True, ) -> Union[SchedulerOutput, Tuple]: __SCREAMING_SNAKE_CASE = self.index_for_timestep(_a ) # advance index counter by 1 __SCREAMING_SNAKE_CASE = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __SCREAMING_SNAKE_CASE = self.sigmas[step_index] __SCREAMING_SNAKE_CASE = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __SCREAMING_SNAKE_CASE = self.sigmas[step_index - 1] __SCREAMING_SNAKE_CASE = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __SCREAMING_SNAKE_CASE = sigma_hat if self.state_in_first_order else sigma_next __SCREAMING_SNAKE_CASE = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __SCREAMING_SNAKE_CASE = sigma_hat if self.state_in_first_order else sigma_next __SCREAMING_SNAKE_CASE = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __SCREAMING_SNAKE_CASE = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: __SCREAMING_SNAKE_CASE = pred_original_sample.clamp( -self.config.clip_sample_range, self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __SCREAMING_SNAKE_CASE = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __SCREAMING_SNAKE_CASE = sigma_next - sigma_hat # store for 2nd order step __SCREAMING_SNAKE_CASE = derivative __SCREAMING_SNAKE_CASE = dt __SCREAMING_SNAKE_CASE = sample else: # 2. 2nd order / Heun's method __SCREAMING_SNAKE_CASE = (sample - pred_original_sample) / sigma_next __SCREAMING_SNAKE_CASE = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __SCREAMING_SNAKE_CASE = self.dt __SCREAMING_SNAKE_CASE = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __lowerCAmelCase ( self, _a, _a, _a, ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __SCREAMING_SNAKE_CASE = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 __SCREAMING_SNAKE_CASE = self.timesteps.to(original_samples.device, dtype=torch.floataa ) __SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device, dtype=torch.floataa ) else: __SCREAMING_SNAKE_CASE = self.timesteps.to(original_samples.device ) __SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device ) __SCREAMING_SNAKE_CASE = [self.index_for_timestep(_a, _a ) for t in timesteps] __SCREAMING_SNAKE_CASE = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __SCREAMING_SNAKE_CASE = sigma.unsqueeze(-1 ) __SCREAMING_SNAKE_CASE = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Dict: return self.config.num_train_timesteps
214
0
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase( lowercase_ , lowercase_=() , lowercase_=None , lowercase_="no" , lowercase_="29500" ): _lowerCamelCase : str = False _lowerCamelCase : Any = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): _lowerCamelCase : int = True elif "IPython" in sys.modules: _lowerCamelCase : int = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: _lowerCamelCase : Optional[Any] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , lowercase_ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: _lowerCamelCase : Any = 8 _lowerCamelCase : List[Any] = PrepareForLaunch(lowercase_ , distributed_type='''TPU''' ) print(F"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(lowercase_ , args=lowercase_ , nprocs=lowercase_ , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*lowercase_ ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowercase_ , master_addr='''127.0.01''' , master_port=lowercase_ , mixed_precision=lowercase_ ): _lowerCamelCase : Optional[Any] = PrepareForLaunch(lowercase_ , distributed_type='''MULTI_GPU''' ) print(F"""Launching training on {num_processes} GPUs.""" ) try: start_processes(lowercase_ , args=lowercase_ , nprocs=lowercase_ , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _lowerCamelCase : List[Any] = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*lowercase_ ) def __UpperCAmelCase( lowercase_ , lowercase_=() , lowercase_=2 ): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowercase_ , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): _lowerCamelCase : Tuple = PrepareForLaunch(lowercase_ , debug=lowercase_ ) start_processes(lowercase_ , args=lowercase_ , nprocs=lowercase_ , start_method='''fork''' )
114
import os def __UpperCAmelCase( ): with open(os.path.dirname(lowercase_ ) + '''/p022_names.txt''' ) as file: _lowerCamelCase : Optional[int] = str(file.readlines()[0] ) _lowerCamelCase : List[Any] = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Tuple = 0 for i, name in enumerate(lowercase_ ): for letter in name: name_score += ord(lowercase_ ) - 64 total_score += (i + 1) * name_score _lowerCamelCase : Optional[int] = 0 return total_score if __name__ == "__main__": print(solution())
114
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Union[str, Any] = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __UpperCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
417
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase__ ( snake_case_ ): """simple docstring""" __magic_name__ = ["""pixel_values"""] def __init__( self , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = PILImageResampling.BILINEAR , UpperCAmelCase__ = True , UpperCAmelCase__ = 1 / 2_5_5 , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = True , **UpperCAmelCase__ , ) -> None: super().__init__(**UpperCAmelCase__ ) _A : Tuple = size if size is not None else {'''shortest_edge''': 2_2_4} _A : Any = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) _A : Tuple = crop_size if crop_size is not None else {'''height''': 2_5_6, '''width''': 2_5_6} _A : Optional[int] = get_size_dict(UpperCAmelCase__ , param_name='''crop_size''' ) _A : Union[str, Any] = do_resize _A : int = size _A : Union[str, Any] = resample _A : List[str] = do_rescale _A : Union[str, Any] = rescale_factor _A : int = do_center_crop _A : Union[str, Any] = crop_size _A : int = do_flip_channel_order def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = PIL.Image.BILINEAR , UpperCAmelCase__ = None , **UpperCAmelCase__ , ) -> np.ndarray: _A : Optional[Any] = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) _A : Any = get_resize_output_image_size(UpperCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=UpperCAmelCase__ ) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , **UpperCAmelCase__ , ) -> np.ndarray: _A : List[Any] = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(UpperCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , **UpperCAmelCase__ , ) -> Optional[int]: return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> np.ndarray: return flip_channel_order(UpperCAmelCase__ , data_format=UpperCAmelCase__ ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = ChannelDimension.FIRST , **UpperCAmelCase__ , ) -> PIL.Image.Image: _A : Union[str, Any] = do_resize if do_resize is not None else self.do_resize _A : Any = resample if resample is not None else self.resample _A : Tuple = do_rescale if do_rescale is not None else self.do_rescale _A : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor _A : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _A : Union[str, Any] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) _A : Optional[int] = size if size is not None else self.size _A : Tuple = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) _A : Any = crop_size if crop_size is not None else self.crop_size _A : str = get_size_dict(UpperCAmelCase__ , param_name='''crop_size''' ) _A : Union[str, Any] = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. _A : Tuple = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: _A : List[str] = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_center_crop: _A : Union[str, Any] = [self.center_crop(image=UpperCAmelCase__ , size=UpperCAmelCase__ ) for image in images] if do_rescale: _A : str = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: _A : Dict = [self.flip_channel_order(image=UpperCAmelCase__ ) for image in images] _A : int = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] _A : List[Any] = {'''pixel_values''': images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> Optional[int]: _A : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(UpperCAmelCase__ ): _A : int = target_sizes.numpy() _A : Optional[int] = [] for idx in range(len(UpperCAmelCase__ ) ): _A : Optional[int] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=UpperCAmelCase__ ) _A : Tuple = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase__ ) else: _A : Any = logits.argmax(dim=1 ) _A : int = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
417
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a : Union[str, Any] = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys a : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
640
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' snake_case_ = [False] * len(__UpperCAmelCase ) snake_case_ = [] queue.append(__UpperCAmelCase ) snake_case_ = True while queue: snake_case_ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__UpperCAmelCase ) snake_case_ = True snake_case_ = u return visited[t] def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Tuple: '''simple docstring''' snake_case_ = [-1] * (len(__UpperCAmelCase )) snake_case_ = 0 while bfs(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ): snake_case_ = float('''Inf''' ) snake_case_ = sink while s != source: # Find the minimum value in select path snake_case_ = min(__UpperCAmelCase, graph[parent[s]][s] ) snake_case_ = parent[s] max_flow += path_flow snake_case_ = sink while v != source: snake_case_ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow snake_case_ = parent[v] return max_flow a : List[Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] a ,a : int = 0, 5 print(ford_fulkerson(graph, source, sink))
640
1
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class __snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] ,dtype=tf.floataa ,) lowerCAmelCase__ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] ,dtype=tf.intaa ,) # expected non filtered idx as noted above lowerCAmelCase__ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] ,dtype=tf.floataa ,) # expected non filtered values as noted above lowerCAmelCase__ = tf_top_k_top_p_filtering(a_ ,top_k=10 ,top_p=0.6 ,min_tokens_to_keep=4 ) lowerCAmelCase__ = output[output != -float('inf' )] lowerCAmelCase__ = tf.cast( tf.where(tf.not_equal(a_ ,tf.constant(-float('inf' ) ,dtype=tf.floataa ) ) ) ,dtype=tf.intaa ,) tf.debugging.assert_near(a_ ,a_ ,rtol=1e-1_2 ) tf.debugging.assert_equal(a_ ,a_ ) @require_tf class __snake_case ( unittest.TestCase , SCREAMING_SNAKE_CASE ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): SCREAMING_SNAKE_CASE__ = { 'AutoModelForCausalLM': TFAutoModelForCausalLM, 'AutoModelForSpeechSeq2Seq': TFAutoModelForSpeechSeqaSeq, 'AutoModelForSeq2SeqLM': TFAutoModelForSeqaSeqLM, 'AutoModelForVision2Seq': TFAutoModelForVisionaSeq, 'LogitsProcessorList': TFLogitsProcessorList, 'MinLengthLogitsProcessor': TFMinLengthLogitsProcessor, 'create_tensor_fn': tf.convert_to_tensor, 'floats_tensor': floats_tensor, 'return_tensors': 'tf', } @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # TF-only test: tf.saved_model export lowerCAmelCase__ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase__ = 2 lowerCAmelCase__ = 2 class __snake_case ( tf.Module ): def __init__( self ,a_ ): """simple docstring""" super(a_ ,self ).__init__() lowerCAmelCase__ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) ,tf.intaa ,name='input_ids' ), tf.TensorSpec((None, input_length) ,tf.intaa ,name='attention_mask' ), ) ,jit_compile=a_ ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = self.model.generate( input_ids=a_ ,attention_mask=a_ ,max_new_tokens=a_ ,return_dict_in_generate=a_ ,) return {"sequences": outputs["sequences"]} lowerCAmelCase__ = [[2, 0], [102, 103]] lowerCAmelCase__ = [[1, 0], [1, 1]] lowerCAmelCase__ = DummyModel(model=a_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a_ ,a_ ,signatures={'serving_default': dummy_model.serving} ) lowerCAmelCase__ = tf.saved_model.load(a_ ).signatures['serving_default'] for batch_size in range(1 ,len(a_ ) + 1 ): lowerCAmelCase__ = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } lowerCAmelCase__ = serving_func(**a_ )['sequences'] lowerCAmelCase__ = test_model.generate(**a_ ,max_new_tokens=a_ ) tf.debugging.assert_equal(a_ ,a_ ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # TF-only test: tf.saved_model export lowerCAmelCase__ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 class __snake_case ( tf.Module ): def __init__( self ,a_ ): """simple docstring""" super(a_ ,self ).__init__() lowerCAmelCase__ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) ,tf.intaa ,name='input_ids' ), tf.TensorSpec((batch_size, None) ,tf.intaa ,name='attention_mask' ), ) ,jit_compile=a_ ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = self.model.generate( input_ids=a_ ,attention_mask=a_ ,max_new_tokens=a_ ,return_dict_in_generate=a_ ,) return {"sequences": outputs["sequences"]} lowerCAmelCase__ = [[2], [102, 103]] lowerCAmelCase__ = [[1], [1, 1]] lowerCAmelCase__ = DummyModel(model=a_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a_ ,a_ ,signatures={'serving_default': dummy_model.serving} ) lowerCAmelCase__ = tf.saved_model.load(a_ ).signatures['serving_default'] for input_row in range(len(a_ ) ): lowerCAmelCase__ = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } lowerCAmelCase__ = serving_func(**a_ )['sequences'] lowerCAmelCase__ = test_model.generate(**a_ ,max_new_tokens=a_ ) tf.debugging.assert_equal(a_ ,a_ ) @slow @require_tensorflow_text def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' ,filename='spiece.model' ,local_dir=a_ ) class __snake_case ( tf.keras.layers.Layer ): def __init__( self ): """simple docstring""" super().__init__() lowerCAmelCase__ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(a_ ,'spiece.model' ) ,'rb' ).read() ) lowerCAmelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,*a_ ,**a_ ): """simple docstring""" lowerCAmelCase__ = self.tokenizer.tokenize(a_ ) lowerCAmelCase__ , lowerCAmelCase__ = text.pad_model_inputs( a_ ,max_seq_length=64 ,pad_value=self.model.config.pad_token_id ) lowerCAmelCase__ = self.model.generate(input_ids=a_ ,attention_mask=a_ ) return self.tokenizer.detokenize(a_ ) lowerCAmelCase__ = CompleteSentenceTransformer() lowerCAmelCase__ = tf.keras.layers.Input(shape=(1,) ,dtype=tf.string ,name='inputs' ) lowerCAmelCase__ = complete_model(a_ ) lowerCAmelCase__ = tf.keras.Model(a_ ,a_ ) keras_model.save(a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # Has PT equivalent: this test relies on random sampling lowerCAmelCase__ = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } lowerCAmelCase__ = 14 lowerCAmelCase__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase__ = 'Hello, my dog is cute and' lowerCAmelCase__ = tokenizer(a_ ,return_tensors='tf' ) lowerCAmelCase__ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase__ = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) lowerCAmelCase__ = model.generate(**a_ ,eos_token_id=a_ ,**a_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) lowerCAmelCase__ = [638, 198] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) lowerCAmelCase__ = model.generate(**a_ ,eos_token_id=a_ ,**a_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # Has PT equivalent: ample use of framework-specific code lowerCAmelCase__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase__ = 'Hugging Face is a technology company based in New York and Paris.' lowerCAmelCase__ = bart_tokenizer(a_ ,return_tensors='tf' ).input_ids lowerCAmelCase__ = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase__ = bart_model.generate(a_ ).numpy() class __snake_case ( SCREAMING_SNAKE_CASE ): def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_=None ,**a_ ): """simple docstring""" return super().call(a_ ,**a_ ) lowerCAmelCase__ = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase__ = bart_model.generate(a_ ,foo='bar' ).numpy() self.assertTrue(np.array_equal(a_ ,a_ ) ) class __snake_case ( bart_model.model.encoder.__class__ ): def SCREAMING_SNAKE_CASE_ ( self ,a_ ,**a_ ): """simple docstring""" return super().call(a_ ,**a_ ) lowerCAmelCase__ = FakeEncoder(bart_model.config ,bart_model.model.shared ) lowerCAmelCase__ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowerCAmelCase__ = bart_model.generate(a_ ).numpy() with self.assertRaises(a_ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(a_ ,foo='bar' )
604
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : Tuple = {} class __snake_case ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ = 'llama' SCREAMING_SNAKE_CASE__ = ['past_key_values'] def __init__( self ,a_=3_2000 ,a_=4096 ,a_=1_1008 ,a_=32 ,a_=32 ,a_=None ,a_="silu" ,a_=2048 ,a_=0.02 ,a_=1e-6 ,a_=True ,a_=0 ,a_=1 ,a_=2 ,a_=1 ,a_=False ,a_=None ,**a_ ,): """simple docstring""" lowerCAmelCase__ = vocab_size lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = hidden_size lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = num_key_value_heads lowerCAmelCase__ = hidden_act lowerCAmelCase__ = initializer_range lowerCAmelCase__ = rms_norm_eps lowerCAmelCase__ = pretraining_tp lowerCAmelCase__ = use_cache lowerCAmelCase__ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=a_ ,bos_token_id=a_ ,eos_token_id=a_ ,tie_word_embeddings=a_ ,**a_ ,) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,a_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'got {self.rope_scaling}' ) lowerCAmelCase__ = self.rope_scaling.get('type' ,a_ ) lowerCAmelCase__ = self.rope_scaling.get('factor' ,a_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(a_ ,a_ ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
604
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase :Union[str, Any] = logging.get_logger(__name__) lowerCamelCase :Optional[Any] = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Dict = 'mra' def __init__(self , lowercase=50265 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=1 , lowercase=0.02 , lowercase=1E-5 , lowercase="absolute" , lowercase=4 , lowercase="full" , lowercase=0 , lowercase=0 , lowercase=1 , lowercase=0 , lowercase=2 , **lowercase , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) A_ : Dict = vocab_size A_ : Optional[Any] = max_position_embeddings A_ : Any = hidden_size A_ : str = num_hidden_layers A_ : Dict = num_attention_heads A_ : int = intermediate_size A_ : int = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : Union[str, Any] = attention_probs_dropout_prob A_ : Any = initializer_range A_ : List[Any] = type_vocab_size A_ : str = layer_norm_eps A_ : Tuple = position_embedding_type A_ : List[Any] = block_per_row A_ : Optional[int] = approx_mode A_ : Optional[Any] = initial_prior_first_n_blocks A_ : Union[str, Any] = initial_prior_diagonal_n_blocks
667
import re from filelock import FileLock try: import nltk a_ : Optional[Any] = True except (ImportError, ModuleNotFoundError): a_ : Union[str, Any] = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def __lowerCAmelCase ( _UpperCamelCase : str ) -> str: '''simple docstring''' re.sub('<n>' , '' , _UpperCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_UpperCamelCase ) )
439
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCAmelCase = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
245
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase = { "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
245
1
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets UpperCamelCase__ : List[Any] = datasets.logging.get_logger(__name__) UpperCamelCase__ : Tuple = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' UpperCamelCase__ : Optional[int] = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' UpperCamelCase__ : int = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://unbabel.github.io/COMET/html/index.html""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """sources""": datasets.Value("""string""" , id="""sequence""" ), """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/Unbabel/COMET"""] , reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] , ) def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Any ): """simple docstring""" if self.config_name == "default": __SCREAMING_SNAKE_CASE : Any = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""" ) ) else: __SCREAMING_SNAKE_CASE : Dict = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def UpperCamelCase__ ( self : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Tuple=False ): """simple docstring""" if gpus is None: __SCREAMING_SNAKE_CASE : str = 1 if torch.cuda.is_available() else 0 __SCREAMING_SNAKE_CASE : Optional[int] = {"""src""": sources, """mt""": predictions, """ref""": references} __SCREAMING_SNAKE_CASE : int = [dict(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) for t in zip(*data.values() )] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.scorer.predict(lowerCAmelCase__ , gpus=lowerCAmelCase__ , progress_bar=lowerCAmelCase__ ) return {"mean_score": mean_score, "scores": scores}
578
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: float | Decimal , _lowerCamelCase: float = 10**-10 ): __SCREAMING_SNAKE_CASE : List[Any] = a while True: __SCREAMING_SNAKE_CASE : Optional[Any] = Decimal(_lowerCamelCase ) - ( Decimal(eval(_lowerCamelCase ) ) / Decimal(eval(str(diff(_lowerCamelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowerCamelCase ) ) < precision: # noqa: S307 return float(_lowerCamelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
578
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "convbert" def __init__( self :List[Any] , __A :List[Any]=3_0522 , __A :int=768 , __A :Dict=12 , __A :int=12 , __A :int=3072 , __A :Any="gelu" , __A :List[str]=0.1 , __A :Any=0.1 , __A :Union[str, Any]=512 , __A :List[str]=2 , __A :Optional[int]=0.0_2 , __A :Union[str, Any]=1E-12 , __A :Tuple=1 , __A :Tuple=0 , __A :int=2 , __A :Union[str, Any]=768 , __A :int=2 , __A :str=9 , __A :Tuple=1 , __A :Optional[int]=None , **__A :Optional[Any] , ) -> int: """simple docstring""" super().__init__( pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A , ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = embedding_size SCREAMING_SNAKE_CASE__ = head_ratio SCREAMING_SNAKE_CASE__ = conv_kernel_size SCREAMING_SNAKE_CASE__ = num_groups SCREAMING_SNAKE_CASE__ = classifier_dropout class UpperCamelCase_ ( UpperCamelCase__ ): @property def _snake_case ( self :Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
59
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any ): return {key.lstrip("""-""" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = ArgumentParser( """HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = parser.add_subparsers(help="""datasets-cli command helpers""" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(UpperCamelCase__ ) EnvironmentCommand.register_subcommand(UpperCamelCase__ ) TestCommand.register_subcommand(UpperCamelCase__ ) RunBeamCommand.register_subcommand(UpperCamelCase__ ) DummyDataCommand.register_subcommand(UpperCamelCase__ ) # Parse args SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = parser.parse_known_args() if not hasattr(UpperCamelCase__ , """func""" ): parser.print_help() exit(1 ) SCREAMING_SNAKE_CASE__ = parse_unknown_args(UpperCamelCase__ ) # Run SCREAMING_SNAKE_CASE__ = args.func(UpperCamelCase__ , **UpperCamelCase__ ) service.run() if __name__ == "__main__": main()
59
1
import math UpperCAmelCase : str = 10 UpperCAmelCase : int = 7 UpperCAmelCase : Any = BALLS_PER_COLOUR * NUM_COLOURS def __lowerCamelCase ( lowerCamelCase__ : int = 20 ): '''simple docstring''' lowerCamelCase = math.comb(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , lowerCamelCase__ ) lowerCamelCase = NUM_COLOURS * (1 - missing_colour / total) return f'{result:.9f}' if __name__ == "__main__": print(solution(20))
457
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor UpperCAmelCase : Any = random.Random() def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any]=1.0 , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : int=None ): '''simple docstring''' if rng is None: lowerCamelCase = global_rng lowerCamelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self , A , A=7 , A=4_00 , A=20_00 , A=24 , A=24 , A=0.0 , A=1_60_00 , A=True , A=True , ) -> str: '''simple docstring''' lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = min_seq_length lowerCamelCase = max_seq_length lowerCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase = feature_size lowerCamelCase = num_mel_bins lowerCamelCase = padding_value lowerCamelCase = sampling_rate lowerCamelCase = return_attention_mask lowerCamelCase = do_normalize def __A ( self ) -> List[str]: '''simple docstring''' return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __A ( self , A=False , A=False ) -> Tuple: '''simple docstring''' def _flatten(A ): return list(itertools.chain(*A ) ) if equal_length: lowerCamelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase = [np.asarray(A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase ( a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : str = SpeechaTextFeatureExtractor if is_speech_available() else None def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = SpeechaTextFeatureExtractionTester(self ) def __A ( self , A ) -> List[Any]: '''simple docstring''' self.assertTrue(np.all(np.mean(A , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(A , axis=0 ) - 1 ) < 1e-3 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase = [np.asarray(A ) for speech_input in speech_inputs] # Test feature size lowerCamelCase = feature_extractor(A , padding=A , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input lowerCamelCase = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features lowerCamelCase = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test batched lowerCamelCase = feature_extractor(A , return_tensors="""np""" ).input_features lowerCamelCase = feature_extractor(A , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCamelCase = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowerCamelCase = np.asarray(A ) lowerCamelCase = feature_extractor(A , return_tensors="""np""" ).input_features lowerCamelCase = feature_extractor(A , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase = ["""longest""", """max_length""", """do_not_pad"""] lowerCamelCase = [None, 16, None] for max_length, padding in zip(A , A ): lowerCamelCase = feature_extractor( A , padding=A , max_length=A , return_attention_mask=A ) lowerCamelCase = inputs.input_features lowerCamelCase = inputs.attention_mask lowerCamelCase = [np.sum(A ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase = ["""longest""", """max_length""", """do_not_pad"""] lowerCamelCase = [None, 16, None] for max_length, padding in zip(A , A ): lowerCamelCase = feature_extractor( A , max_length=A , padding=A , return_tensors="""np""" , return_attention_mask=A ) lowerCamelCase = inputs.input_features lowerCamelCase = inputs.attention_mask lowerCamelCase = [np.sum(A ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase = feature_extractor( A , padding="""max_length""" , max_length=4 , truncation=A , return_tensors="""np""" , return_attention_mask=A , ) lowerCamelCase = inputs.input_features lowerCamelCase = inputs.attention_mask lowerCamelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase = feature_extractor( A , padding="""longest""" , max_length=4 , truncation=A , return_tensors="""np""" , return_attention_mask=A , ) lowerCamelCase = inputs.input_features lowerCamelCase = inputs.attention_mask lowerCamelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase = feature_extractor( A , padding="""longest""" , max_length=16 , truncation=A , return_tensors="""np""" , return_attention_mask=A , ) lowerCamelCase = inputs.input_features lowerCamelCase = inputs.attention_mask lowerCamelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def __A ( self ) -> Optional[int]: '''simple docstring''' import torch lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase = np.random.rand(1_00 , 32 ).astype(np.floataa ) lowerCamelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCamelCase = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __A ( self , A ) -> Any: '''simple docstring''' from datasets import load_dataset lowerCamelCase = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech lowerCamelCase = ds.sort("""id""" ).select(range(A ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on lowerCamelCase = self._load_datasamples(1 ) lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase = feature_extractor(A , return_tensors="""pt""" ).input_features self.assertEquals(input_features.shape , (1, 5_84, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , A , atol=1e-4 ) )
457
1
'''simple docstring''' import operator def __snake_case (__UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None ): """simple docstring""" lowerCamelCase_ : List[Any] = operator.lt if reverse else operator.gt lowerCamelCase_ : Union[str, Any] = solution or [] if not arr: return solution lowerCamelCase_ : Union[str, Any] = [arr.pop(0 )] for i, item in enumerate(snake_case_ ): if _operator(snake_case_ , sublist[-1] ): sublist.append(snake_case_ ) arr.pop(snake_case_ ) # merging sublist into solution list if not solution: solution.extend(snake_case_ ) else: while sublist: lowerCamelCase_ : Optional[Any] = sublist.pop(0 ) for i, xx in enumerate(snake_case_ ): if not _operator(snake_case_ , snake_case_ ): solution.insert(snake_case_ , snake_case_ ) break else: solution.append(snake_case_ ) strand_sort(snake_case_ , snake_case_ , snake_case_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
719
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( _lowerCAmelCase ,_lowerCAmelCase ,unittest.TestCase ): A = StableDiffusionSAGPipeline A = TEXT_TO_IMAGE_PARAMS A = TEXT_TO_IMAGE_BATCH_PARAMS A = TEXT_TO_IMAGE_IMAGE_PARAMS A = TEXT_TO_IMAGE_IMAGE_PARAMS A = False def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowerCamelCase_ : int = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) lowerCamelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase_ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowerCamelCase_ : Dict = CLIPTextModel(UpperCamelCase_ ) lowerCamelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowerCamelCase_ : Any = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCamelCase ( self : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any]=0 ) -> Tuple: """simple docstring""" if str(UpperCamelCase_ ).startswith('''mps''' ): lowerCamelCase_ : Any = torch.manual_seed(UpperCamelCase_ ) else: lowerCamelCase_ : str = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowerCamelCase_ : Tuple = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" lowerCamelCase_ : str = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) lowerCamelCase_ : int = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCamelCase_ : str = '''.''' lowerCamelCase_ : int = torch.manual_seed(0 ) lowerCamelCase_ : int = sag_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) lowerCamelCase_ : Dict = output.images lowerCamelCase_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ : Tuple = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" lowerCamelCase_ : List[Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowerCamelCase_ : Optional[Any] = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCamelCase_ : Tuple = '''.''' lowerCamelCase_ : Tuple = torch.manual_seed(0 ) lowerCamelCase_ : List[Any] = sag_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) lowerCamelCase_ : Optional[int] = output.images lowerCamelCase_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ : Dict = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ : Any = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowerCamelCase_ : Optional[Any] = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCamelCase_ : List[str] = '''.''' lowerCamelCase_ : Optional[Any] = torch.manual_seed(0 ) lowerCamelCase_ : int = sag_pipe( [prompt] , width=768 , height=512 , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) lowerCamelCase_ : Union[str, Any] = output.images assert image.shape == (1, 512, 768, 3)
418
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int ): # Initialise PyTorch model UpperCamelCase_ : int = FunnelConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_ : int = FunnelBaseModel(_SCREAMING_SNAKE_CASE ) if base_model else FunnelModel(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_funnel(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
635
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Dict = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] SCREAMING_SNAKE_CASE : int = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Any = {F'''funnel-transformer/{name}''': 512 for name in _model_names} SCREAMING_SNAKE_CASE : Tuple = {F'''funnel-transformer/{name}''': {"do_lower_case": True} for name in _model_names} class UpperCamelCase ( __a ): a__ :Dict = VOCAB_FILES_NAMES a__ :Dict = PRETRAINED_VOCAB_FILES_MAP a__ :Dict = PRETRAINED_INIT_CONFIGURATION a__ :str = FunnelTokenizer a__ :List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ :int = 2 def __init__(self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase="<unk>" , __UpperCamelCase="<sep>" , __UpperCamelCase="<pad>" , __UpperCamelCase="<cls>" , __UpperCamelCase="<mask>" , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase="##" , **__UpperCamelCase , ) -> List[Any]: super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , clean_text=__UpperCamelCase , tokenize_chinese_chars=__UpperCamelCase , strip_accents=__UpperCamelCase , wordpieces_prefix=__UpperCamelCase , **__UpperCamelCase , ) UpperCamelCase_ : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCamelCase ) != tokenize_chinese_chars ): UpperCamelCase_ : List[Any] = getattr(__UpperCamelCase , normalizer_state.pop("""type""" ) ) UpperCamelCase_ : Union[str, Any] = do_lower_case UpperCamelCase_ : Tuple = strip_accents UpperCamelCase_ : Dict = tokenize_chinese_chars UpperCamelCase_ : Union[str, Any] = normalizer_class(**__UpperCamelCase ) UpperCamelCase_ : Dict = do_lower_case def A_ (self , __UpperCamelCase , __UpperCamelCase=None ) -> Dict: UpperCamelCase_ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ (self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: UpperCamelCase_ : Optional[Any] = [self.sep_token_id] UpperCamelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ (self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: UpperCamelCase_ : int = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase )
635
1
def lowerCAmelCase_ ( __lowerCamelCase ): if len(__lowerCamelCase ) < 2: return collection def circle_sort_util(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> bool: __snake_case : Tuple = False if low == high: return swapped __snake_case : str = low __snake_case : str = high while left < right: if collection[left] > collection[right]: __snake_case : int = ( collection[right], collection[left], ) __snake_case : List[Any] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __snake_case : Tuple = ( collection[right + 1], collection[left], ) __snake_case : str = True __snake_case : Tuple = low + int((high - low) / 2 ) __snake_case : Dict = circle_sort_util(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __snake_case : int = circle_sort_util(__lowerCamelCase , mid + 1 , __lowerCamelCase ) return swapped or left_swap or right_swap __snake_case : Tuple = True while is_not_sorted is True: __snake_case : str = circle_sort_util(__lowerCamelCase , 0 , len(__lowerCamelCase ) - 1 ) return collection if __name__ == "__main__": _snake_case : Any = input("Enter numbers separated by a comma:\n").strip() _snake_case : Optional[int] = [int(item) for item in user_input.split(",")] print(circle_sort(unsorted))
714
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _snake_case : int = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } _snake_case : Dict = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase=False ): __snake_case , __snake_case : Any = create_model( "HTSAT-tiny" , "roberta" , __lowerCamelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=__lowerCamelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : int = {} __snake_case : List[Any] = R".*sequential.(\d+).*" __snake_case : Any = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __snake_case : Optional[int] = key.replace(__lowerCamelCase , __lowerCamelCase ) if re.match(__lowerCamelCase , __lowerCamelCase ): # replace sequential layers with list __snake_case : List[Any] = re.match(__lowerCamelCase , __lowerCamelCase ).group(1 ) __snake_case : str = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(__lowerCamelCase )//3}.linear.' ) elif re.match(__lowerCamelCase , __lowerCamelCase ): __snake_case : Any = int(re.match(__lowerCamelCase , __lowerCamelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __snake_case : List[str] = 1 if projecton_layer == 0 else 2 __snake_case : Tuple = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value __snake_case : List[str] = value __snake_case : Optional[int] = mixed_qkv.size(0 ) // 3 __snake_case : List[str] = mixed_qkv[:qkv_dim] __snake_case : int = mixed_qkv[qkv_dim : qkv_dim * 2] __snake_case : str = mixed_qkv[qkv_dim * 2 :] __snake_case : int = query_layer __snake_case : Tuple = key_layer __snake_case : List[str] = value_layer else: __snake_case : Tuple = value return model_state_dict def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ): __snake_case , __snake_case : List[str] = init_clap(__lowerCamelCase , enable_fusion=__lowerCamelCase ) clap_model.eval() __snake_case : Union[str, Any] = clap_model.state_dict() __snake_case : Any = rename_state_dict(__lowerCamelCase ) __snake_case : Dict = ClapConfig() __snake_case : Dict = enable_fusion __snake_case : Optional[Any] = ClapModel(__lowerCamelCase ) # ignore the spectrogram embedding layer model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) transformers_config.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _snake_case : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") _snake_case : Tuple = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
203
0
"""simple docstring""" import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class a__ : def __init__( self :List[Any] , _lowerCamelCase :str = None , _lowerCamelCase :uuid.UUID = None , _lowerCamelCase :Dict=None , _lowerCamelCase :int=None ): '''simple docstring''' if not conversation_id: UpperCamelCase_ : int =uuid.uuida() if past_user_inputs is None: UpperCamelCase_ : Union[str, Any] =[] if generated_responses is None: UpperCamelCase_ : List[Any] =[] UpperCamelCase_ : uuid.UUID =conversation_id UpperCamelCase_ : List[str] =past_user_inputs UpperCamelCase_ : List[str] =generated_responses UpperCamelCase_ : Optional[str] =text def __eq__( self :List[Any] , _lowerCamelCase :List[str] ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCamelCase_ ( self :Any , _lowerCamelCase :str , _lowerCamelCase :bool = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' f'''with: "{text}".''' ) UpperCamelCase_ : int =text else: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' f'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: UpperCamelCase_ : Tuple =text def lowerCamelCase_ ( self :Dict ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) UpperCamelCase_ : int =None def lowerCamelCase_ ( self :Any , _lowerCamelCase :str ): '''simple docstring''' self.generated_responses.append(_lowerCamelCase ) def lowerCamelCase_ ( self :Optional[int] ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self :List[Any] ): '''simple docstring''' UpperCamelCase_ : Any =f'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): UpperCamelCase_ : Optional[int] ='user' if is_user else 'bot' output += f'''{name} >> {text} \n''' return output @add_end_docstrings( A__ , R''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class a__ ( A__ ): def __init__( self :List[str] , *_lowerCamelCase :Optional[Any] , **_lowerCamelCase :Optional[Any] ): '''simple docstring''' super().__init__(*_lowerCamelCase , **_lowerCamelCase ) if self.tokenizer.pad_token_id is None: UpperCamelCase_ : List[str] =self.tokenizer.eos_token def lowerCamelCase_ ( self :Any , _lowerCamelCase :Dict=None , _lowerCamelCase :Dict=None , _lowerCamelCase :Any=None , **_lowerCamelCase :str ): '''simple docstring''' UpperCamelCase_ : Dict ={} UpperCamelCase_ : List[Any] ={} UpperCamelCase_ : Optional[int] ={} if min_length_for_response is not None: UpperCamelCase_ : int =min_length_for_response if minimum_tokens is not None: UpperCamelCase_ : Optional[Any] =minimum_tokens if "max_length" in generate_kwargs: UpperCamelCase_ : Any =generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: UpperCamelCase_ : List[Any] =clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_lowerCamelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self :Any , _lowerCamelCase :Union[Conversation, List[Conversation]] , _lowerCamelCase :List[Any]=0 , **_lowerCamelCase :Any ): '''simple docstring''' UpperCamelCase_ : List[Any] =super().__call__(_lowerCamelCase , num_workers=_lowerCamelCase , **_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) == 1: return outputs[0] return outputs def lowerCamelCase_ ( self :str , _lowerCamelCase :Conversation , _lowerCamelCase :Dict=32 ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( f'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): UpperCamelCase_ : Optional[int] =self.tokenizer._build_conversation_input_ids(_lowerCamelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version UpperCamelCase_ : str =self._legacy_parse_and_tokenize(_lowerCamelCase ) if self.framework == "pt": UpperCamelCase_ : Tuple =torch.LongTensor([input_ids] ) elif self.framework == "tf": UpperCamelCase_ : Optional[Any] =tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCamelCase_ ( self :Tuple , _lowerCamelCase :int , _lowerCamelCase :Tuple=10 , **_lowerCamelCase :Tuple ): '''simple docstring''' UpperCamelCase_ : List[Any] =generate_kwargs.get('max_length' , self.model.config.max_length ) UpperCamelCase_ : Optional[Any] =model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(f'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) UpperCamelCase_ : Optional[Any] =max_length - minimum_tokens UpperCamelCase_ : List[str] =model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: UpperCamelCase_ : List[Any] =model_inputs['attention_mask'][:, -trim:] UpperCamelCase_ : Tuple =model_inputs.pop('conversation' ) UpperCamelCase_ : List[str] =max_length UpperCamelCase_ : Optional[int] =self.model.generate(**_lowerCamelCase , **_lowerCamelCase ) if self.model.config.is_encoder_decoder: UpperCamelCase_ : Optional[int] =1 else: UpperCamelCase_ : Optional[int] =n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCamelCase_ ( self :Dict , _lowerCamelCase :Tuple , _lowerCamelCase :int=True ): '''simple docstring''' UpperCamelCase_ : List[Any] =model_outputs['output_ids'] UpperCamelCase_ : Tuple =self.tokenizer.decode( output_ids[0] , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase , ) UpperCamelCase_ : Any =model_outputs['conversation'] conversation.mark_processed() conversation.append_response(_lowerCamelCase ) return conversation def lowerCamelCase_ ( self :Union[str, Any] , _lowerCamelCase :Conversation ): '''simple docstring''' UpperCamelCase_ : List[str] =self.tokenizer.eos_token_id UpperCamelCase_ : Any =[] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) ) if len(_lowerCamelCase ) > self.tokenizer.model_max_length: UpperCamelCase_ : Union[str, Any] =input_ids[-self.tokenizer.model_max_length :] return input_ids
357
"""simple docstring""" # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def A_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCamelCase_ : Tuple =multiprocessing.Manager() UpperCamelCase_ : Dict =manager.list() UpperCamelCase_ : Union[str, Any] =multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def A_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCamelCase_ : Tuple =shutil.rmtree UpperCamelCase_ : List[str] =os.rmdir UpperCamelCase_ : Any =os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCamelCase_ : List[str] ={} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCamelCase_ : Optional[Any] =rmtree UpperCamelCase_ : str =rmdir UpperCamelCase_ : Dict =chdir @contextlib.contextmanager def A_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def A_ ( ): UpperCamelCase_ : str =WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def A_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class a__ ( A__ ): pass class a__ ( io.StringIO ): def lowerCamelCase_ ( self :Any , *_lowerCamelCase :Any , **_lowerCamelCase :Tuple ): '''simple docstring''' raise OSError def lowerCamelCase_ ( self :Union[str, Any] , *_lowerCamelCase :Any , **_lowerCamelCase :Tuple ): '''simple docstring''' raise OSError def lowerCamelCase_ ( self :Tuple , *_lowerCamelCase :str , **_lowerCamelCase :List[str] ): '''simple docstring''' raise OSError def lowerCamelCase_ ( self :List[str] , *_lowerCamelCase :Optional[int] , **_lowerCamelCase :str ): '''simple docstring''' return False class a__ ( contextlib._RedirectStream ): # type: ignore UpperCAmelCase__ = '''stdin''' @contextlib.contextmanager def A_ ( __lowercase ): if root == ".": yield return UpperCamelCase_ : List[str] =os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def A_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCamelCase_ : Any =None UpperCamelCase_ : Any =None import os UpperCamelCase_ : Union[str, Any] ='1' UpperCamelCase_ : Union[str, Any] =None UpperCamelCase_ : Optional[Any] =None UpperCamelCase_ : Optional[Any] =None UpperCamelCase_ : Optional[Any] =None UpperCamelCase_ : Dict =None UpperCamelCase_ : List[Any] =None UpperCamelCase_ : Any =None UpperCamelCase_ : str =None UpperCamelCase_ : Optional[int] =None UpperCamelCase_ : Union[str, Any] =None UpperCamelCase_ : str =None UpperCamelCase_ : str =None UpperCamelCase_ : List[Any] =None UpperCamelCase_ : Optional[Any] =None UpperCamelCase_ : str =None UpperCamelCase_ : List[str] =None UpperCamelCase_ : Optional[Any] =None UpperCamelCase_ : int =None UpperCamelCase_ : Optional[Any] =None UpperCamelCase_ : Tuple =None UpperCamelCase_ : List[Any] =None UpperCamelCase_ : Tuple =None UpperCamelCase_ : Dict =None UpperCamelCase_ : Optional[int] =None UpperCamelCase_ : str =None UpperCamelCase_ : Union[str, Any] =None UpperCamelCase_ : int =None import shutil UpperCamelCase_ : List[str] =None UpperCamelCase_ : Optional[Any] =None UpperCamelCase_ : Dict =None import subprocess UpperCamelCase_ : Optional[int] =None # type: ignore UpperCamelCase_ : Union[str, Any] =None import sys UpperCamelCase_ : Union[str, Any] =None UpperCamelCase_ : Tuple =None UpperCamelCase_ : Union[str, Any] =None UpperCamelCase_ : Dict =None UpperCamelCase_ : Any =None
357
1
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py A = """src/transformers""" A = """docs/source/en/tasks""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: """simple docstring""" with open(UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: __UpperCAmelCase : Any = f.readlines() # Find the start prompt. __UpperCAmelCase : Dict = 0 while not lines[start_index].startswith(UpperCamelCase ): start_index += 1 start_index += 1 __UpperCAmelCase : Tuple = start_index while not lines[end_index].startswith(UpperCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. A = direct_transformers_import(TRANSFORMERS_PATH) A = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). A = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def _UpperCamelCase ( UpperCamelCase ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = TASK_GUIDE_TO_MODELS[task_guide] __UpperCAmelCase : List[Any] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase , set() ) __UpperCAmelCase : Tuple = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase=False ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = _find_text_in_file( filename=os.path.join(UpperCamelCase , UpperCamelCase ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) __UpperCAmelCase : Optional[Any] = get_model_list_for_task(UpperCamelCase ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCamelCase , UpperCamelCase ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
717
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _UpperCamelCase ( UpperCamelCase ) -> Tuple: """simple docstring""" __UpperCAmelCase : str = model.config __UpperCAmelCase : int = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) __UpperCAmelCase : Union[str, Any] = MBartConfig( is_decoder=UpperCamelCase , is_encoder_decoder=UpperCamelCase , add_cross_attention=UpperCamelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=UpperCamelCase , add_final_layer_norm=UpperCamelCase , ) return encoder_config, decoder_config def _UpperCamelCase ( UpperCamelCase ) -> Union[str, Any]: """simple docstring""" if "encoder.model" in name: __UpperCAmelCase : Union[str, Any] = name.replace("encoder.model" , "encoder" ) if "decoder.model" in name: __UpperCAmelCase : Dict = name.replace("decoder.model" , "decoder" ) if "patch_embed.proj" in name: __UpperCAmelCase : Dict = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __UpperCAmelCase : str = name.replace("patch_embed.norm" , "embeddings.norm" ) if name.startswith("encoder" ): if "layers" in name: __UpperCAmelCase : Dict = "encoder." + name if "attn.proj" in name: __UpperCAmelCase : List[Any] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "mask" not in name: __UpperCAmelCase : int = name.replace("attn" , "attention.self" ) if "norm1" in name: __UpperCAmelCase : Optional[Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __UpperCAmelCase : str = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __UpperCAmelCase : str = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __UpperCAmelCase : Union[str, Any] = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": __UpperCAmelCase : List[Any] = "encoder.layernorm.weight" if name == "encoder.norm.bias": __UpperCAmelCase : Tuple = "encoder.layernorm.bias" return name def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> List[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): __UpperCAmelCase : Any = orig_state_dict.pop(UpperCamelCase ) if "qkv" in key: __UpperCAmelCase : Any = key.split("." ) __UpperCAmelCase : List[Any] = int(key_split[3] ) __UpperCAmelCase : Any = int(key_split[5] ) __UpperCAmelCase : str = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __UpperCAmelCase : List[Any] = val[:dim, :] __UpperCAmelCase : Union[str, Any] = val[dim : dim * 2, :] __UpperCAmelCase : Any = val[-dim:, :] else: __UpperCAmelCase : List[str] = val[:dim] __UpperCAmelCase : List[Any] = val[dim : dim * 2] __UpperCAmelCase : Tuple = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __UpperCAmelCase : Dict = val return orig_state_dict def _UpperCamelCase ( UpperCamelCase , UpperCamelCase=None , UpperCamelCase=False ) -> List[str]: """simple docstring""" # load original model __UpperCAmelCase : Dict = DonutModel.from_pretrained(UpperCamelCase ).eval() # load HuggingFace model __UpperCAmelCase , __UpperCAmelCase : List[str] = get_configs(UpperCamelCase ) __UpperCAmelCase : Tuple = DonutSwinModel(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = MBartForCausalLM(UpperCamelCase ) __UpperCAmelCase : int = VisionEncoderDecoderModel(encoder=UpperCamelCase , decoder=UpperCamelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = original_model.state_dict() __UpperCAmelCase : List[str] = convert_state_dict(UpperCamelCase , UpperCamelCase ) model.load_state_dict(UpperCamelCase ) # verify results on scanned document __UpperCAmelCase : List[Any] = load_dataset("hf-internal-testing/example-documents" ) __UpperCAmelCase : Any = dataset["test"][0]["image"].convert("RGB" ) __UpperCAmelCase : Union[str, Any] = XLMRobertaTokenizerFast.from_pretrained(UpperCamelCase , from_slow=UpperCamelCase ) __UpperCAmelCase : str = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __UpperCAmelCase : Union[str, Any] = DonutProcessor(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = processor(UpperCamelCase , return_tensors="pt" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __UpperCAmelCase : List[Any] = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" __UpperCAmelCase : Any = "When is the coffee break?" __UpperCAmelCase : Dict = task_prompt.replace("{user_input}" , UpperCamelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __UpperCAmelCase : int = "<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __UpperCAmelCase : Union[str, Any] = "<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __UpperCAmelCase : Dict = "s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __UpperCAmelCase : str = "<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __UpperCAmelCase : Tuple = "hello world" else: raise ValueError("Model name not supported" ) __UpperCAmelCase : Dict = original_model.decoder.tokenizer(UpperCamelCase , add_special_tokens=UpperCamelCase , return_tensors="pt" )[ "input_ids" ] __UpperCAmelCase : int = original_model.encoder.model.patch_embed(UpperCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Tuple = model.encoder.embeddings(UpperCamelCase ) assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) # verify encoder hidden states __UpperCAmelCase : int = original_model.encoder(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model.encoder(UpperCamelCase ).last_hidden_state assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-2 ) # verify decoder hidden states __UpperCAmelCase : int = original_model(UpperCamelCase , UpperCamelCase , UpperCamelCase ).logits __UpperCAmelCase : List[str] = model(UpperCamelCase , decoder_input_ids=UpperCamelCase ).logits assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) processor.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""naver-clova-ix/donut-base-finetuned-docvqa""", required=False, type=str, help="""Name of the original model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, required=False, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub.""", ) A = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
487
0
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 @flax_register_to_config class SCREAMING_SNAKE_CASE ( nn.Module , _a , _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _SCREAMING_SNAKE_CASE = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = (320, 640, 1_280, 1_280) _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 8 _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = 1_280 _SCREAMING_SNAKE_CASE = 0.0 _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = jnp.floataa _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = False def A ( self : int , UpperCamelCase__ : jax.random.KeyArray ): """simple docstring""" UpperCamelCase = (1, self.in_channels, self.sample_size, self.sample_size) UpperCamelCase = jnp.zeros(UpperCamelCase__ , dtype=jnp.floataa ) UpperCamelCase = jnp.ones((1,) , dtype=jnp.intaa ) UpperCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) UpperCamelCase , UpperCamelCase = jax.random.split(UpperCamelCase__ ) UpperCamelCase = {'params': params_rng, 'dropout': dropout_rng} return self.init(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )["params"] def A ( self : Any ): """simple docstring""" UpperCamelCase = self.block_out_channels UpperCamelCase = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCamelCase = self.num_attention_heads or self.attention_head_dim # input UpperCamelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time UpperCamelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) UpperCamelCase = FlaxTimestepEmbedding(UpperCamelCase__ , dtype=self.dtype ) UpperCamelCase = self.only_cross_attention if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = (num_attention_heads,) * len(self.down_block_types ) # down UpperCamelCase = [] UpperCamelCase = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): UpperCamelCase = output_channel UpperCamelCase = block_out_channels[i] UpperCamelCase = i == len(UpperCamelCase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCamelCase = FlaxCrossAttnDownBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: UpperCamelCase = FlaxDownBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(UpperCamelCase__ ) UpperCamelCase = down_blocks # mid UpperCamelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up UpperCamelCase = [] UpperCamelCase = list(reversed(UpperCamelCase__ ) ) UpperCamelCase = list(reversed(UpperCamelCase__ ) ) UpperCamelCase = list(reversed(UpperCamelCase__ ) ) UpperCamelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): UpperCamelCase = output_channel UpperCamelCase = reversed_block_out_channels[i] UpperCamelCase = reversed_block_out_channels[min(i + 1 , len(UpperCamelCase__ ) - 1 )] UpperCamelCase = i == len(UpperCamelCase__ ) - 1 if up_block_type == "CrossAttnUpBlock2D": UpperCamelCase = FlaxCrossAttnUpBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: UpperCamelCase = FlaxUpBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(UpperCamelCase__ ) UpperCamelCase = output_channel UpperCamelCase = up_blocks # out UpperCamelCase = nn.GroupNorm(num_groups=3_2 , epsilon=1E-5 ) UpperCamelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = False , ): """simple docstring""" if not isinstance(UpperCamelCase__ , jnp.ndarray ): UpperCamelCase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(UpperCamelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0: UpperCamelCase = timesteps.astype(dtype=jnp.floataa ) UpperCamelCase = jnp.expand_dims(UpperCamelCase__ , 0 ) UpperCamelCase = self.time_proj(UpperCamelCase__ ) UpperCamelCase = self.time_embedding(UpperCamelCase__ ) # 2. pre-process UpperCamelCase = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) UpperCamelCase = self.conv_in(UpperCamelCase__ ) # 3. down UpperCamelCase = (sample,) for down_block in self.down_blocks: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase , UpperCamelCase = down_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) else: UpperCamelCase , UpperCamelCase = down_block(UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: UpperCamelCase = () for down_block_res_sample, down_block_additional_residual in zip( UpperCamelCase__ , UpperCamelCase__ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) UpperCamelCase = new_down_block_res_samples # 4. mid UpperCamelCase = self.mid_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: UpperCamelCase = down_block_res_samples[-(self.layers_per_block + 1) :] UpperCamelCase = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = up_block( UpperCamelCase__ , temb=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , res_hidden_states_tuple=UpperCamelCase__ , deterministic=not train , ) else: UpperCamelCase = up_block(UpperCamelCase__ , temb=UpperCamelCase__ , res_hidden_states_tuple=UpperCamelCase__ , deterministic=not train ) # 6. post-process UpperCamelCase = self.conv_norm_out(UpperCamelCase__ ) UpperCamelCase = nn.silu(UpperCamelCase__ ) UpperCamelCase = self.conv_out(UpperCamelCase__ ) UpperCamelCase = jnp.transpose(UpperCamelCase__ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=UpperCamelCase__ )
430
'''simple docstring''' def __lowerCamelCase ( A__ ) -> str: """simple docstring""" UpperCamelCase = int(A__ ) if decimal in (0, 1): # Exit cases for the recursion return str(A__ ) UpperCamelCase , UpperCamelCase = divmod(A__ , 2 ) return binary_recursive(A__ ) + str(A__ ) def __lowerCamelCase ( A__ ) -> str: """simple docstring""" UpperCamelCase = str(A__ ).strip() if not number: raise ValueError('No input value was provided' ) UpperCamelCase = '-' if number.startswith('-' ) else '' UpperCamelCase = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return F"""{negative}0b{binary_recursive(int(A__ ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
430
1
from __future__ import annotations _UpperCAmelCase = tuple[int, int, int] _UpperCAmelCase = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase _UpperCAmelCase = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" # -------------------------- default selection -------------------------- # rotors -------------------------- _UpperCAmelCase = """EGZWVONAHDCLFQMSIPJBYUKXTR""" _UpperCAmelCase = """FOBHMDKEXQNRAULPGSJVTYICZW""" _UpperCAmelCase = """ZJXESIUQLHAVRMDOYGTNFWPBKC""" # reflector -------------------------- _UpperCAmelCase = { """A""": """N""", """N""": """A""", """B""": """O""", """O""": """B""", """C""": """P""", """P""": """C""", """D""": """Q""", """Q""": """D""", """E""": """R""", """R""": """E""", """F""": """S""", """S""": """F""", """G""": """T""", """T""": """G""", """H""": """U""", """U""": """H""", """I""": """V""", """V""": """I""", """J""": """W""", """W""": """J""", """K""": """X""", """X""": """K""", """L""": """Y""", """Y""": """L""", """M""": """Z""", """Z""": """M""", } # -------------------------- extra rotors -------------------------- _UpperCAmelCase = """RMDJXFUWGISLHVTCQNKYPBEZOA""" _UpperCAmelCase = """SGLCPQWZHKXAREONTFBVIYJUDM""" _UpperCAmelCase = """HVSICLTYKQUBXDWAJZOMFGPREN""" _UpperCAmelCase = """RZWQHFMVDBKICJLNTUXAGYPSOE""" _UpperCAmelCase = """LFKIJODBEGAMQPXVUHYSTCZRWN""" _UpperCAmelCase = """KOAEGVDHXPQZMLFTYWJNBRCIUS""" def UpperCamelCase ( __lowercase : Tuple ,__lowercase : Optional[Any] ,__lowercase : Optional[Any] ): '''simple docstring''' if (unique_rotsel := len(set(_snake_case ) )) < 3: A_ : Optional[int] = f'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(_snake_case ) # Checks if rotor positions are valid A_ , A_ , A_ : Optional[int] = rotpos if not 0 < rotorposa <= len(_snake_case ): A_ : List[Any] = f'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(_snake_case ) if not 0 < rotorposa <= len(_snake_case ): A_ : List[str] = f'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_snake_case ) if not 0 < rotorposa <= len(_snake_case ): A_ : Optional[int] = f'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_snake_case ) # Validates string and returns dict A_ : Optional[int] = _plugboard(_snake_case ) return rotpos, rotsel, pbdict def UpperCamelCase ( __lowercase : List[str] ): '''simple docstring''' if not isinstance(_snake_case ,_snake_case ): A_ : Optional[int] = f'''Plugboard setting isn\'t type string ({type(_snake_case )})''' raise TypeError(_snake_case ) elif len(_snake_case ) % 2 != 0: A_ : Union[str, Any] = f'''Odd number of symbols ({len(_snake_case )})''' raise Exception(_snake_case ) elif pbstring == "": return {} pbstring.replace(' ' ,'' ) # Checks if all characters are unique A_ : Any = set() for i in pbstring: if i not in abc: A_ : Any = f'''\'{i}\' not in list of symbols''' raise Exception(_snake_case ) elif i in tmppbl: A_ : Union[str, Any] = f'''Duplicate symbol ({i})''' raise Exception(_snake_case ) else: tmppbl.add(_snake_case ) del tmppbl # Created the dictionary A_ : Dict = {} for j in range(0 ,len(_snake_case ) - 1 ,2 ): A_ : Dict = pbstring[j + 1] A_ : List[str] = pbstring[j] return pb def UpperCamelCase ( __lowercase : str ,__lowercase : List[str] ,__lowercase : List[Any] = (rotora, rotora, rotora) ,__lowercase : Dict = "" ,): '''simple docstring''' A_ : Union[str, Any] = text.upper() A_ , A_ , A_ : Union[str, Any] = _validator( _snake_case ,_snake_case ,plugb.upper() ) A_ , A_ , A_ : int = rotor_position A_ , A_ , A_ : Tuple = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 A_ : Optional[Any] = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: A_ : Any = plugboard[symbol] # rotor ra -------------------------- A_ : Union[str, Any] = abc.index(_snake_case ) + rotorposa A_ : Optional[int] = rotora[index % len(_snake_case )] # rotor rb -------------------------- A_ : Dict = abc.index(_snake_case ) + rotorposa A_ : int = rotora[index % len(_snake_case )] # rotor rc -------------------------- A_ : Dict = abc.index(_snake_case ) + rotorposa A_ : Tuple = rotora[index % len(_snake_case )] # reflector -------------------------- # this is the reason you don't need another machine to decipher A_ : Dict = reflector[symbol] # 2nd rotors A_ : int = abc[rotora.index(_snake_case ) - rotorposa] A_ : Dict = abc[rotora.index(_snake_case ) - rotorposa] A_ : Dict = abc[rotora.index(_snake_case ) - rotorposa] # 2nd plugboard if symbol in plugboard: A_ : Union[str, Any] = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_snake_case ): A_ : List[Any] = 0 rotorposa += 1 if rotorposa >= len(_snake_case ): A_ : Union[str, Any] = 0 rotorposa += 1 if rotorposa >= len(_snake_case ): A_ : Tuple = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_snake_case ) return "".join(_snake_case ) if __name__ == "__main__": _UpperCAmelCase = """This is my Python script that emulates the Enigma machine from WWII.""" _UpperCAmelCase = (1, 1, 1) _UpperCAmelCase = """pictures""" _UpperCAmelCase = (rotora, rotora, rotora) _UpperCAmelCase = enigma(message, rotor_pos, rotor_sel, pb) print("""Encrypted message:""", en) print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
707
def UpperCamelCase ( __lowercase : list ): '''simple docstring''' A_ : str = len(__lowercase ) for _ in range(__lowercase ): for i in range(_ % 2 ,arr_size - 1 ,2 ): if arr[i + 1] < arr[i]: A_ , A_ : Optional[Any] = arr[i + 1], arr[i] return arr if __name__ == "__main__": _UpperCAmelCase = list(range(10, 0, -1)) print(F"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
70
0
'''simple docstring''' from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "nielsr/canine-s": 20_48, } # Unicode defines 1,114,112 total “codepoints” UpperCAmelCase_ = 1_11_41_12 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py UpperCAmelCase_ = 0 UpperCAmelCase_ = 0xE000 UpperCAmelCase_ = 0xE001 UpperCAmelCase_ = 0xE002 UpperCAmelCase_ = 0xE003 UpperCAmelCase_ = 0xE004 # Maps special codepoints to human-readable names. UpperCAmelCase_ = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. UpperCAmelCase_ = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class __lowercase ( __magic_name__ ): _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , UpperCamelCase=chr(UpperCamelCase ) , UpperCamelCase=chr(UpperCamelCase ) , UpperCamelCase=chr(UpperCamelCase ) , UpperCamelCase=chr(UpperCamelCase ) , UpperCamelCase=chr(UpperCamelCase ) , UpperCamelCase=chr(UpperCamelCase ) , UpperCamelCase=False , UpperCamelCase=2048 , **UpperCamelCase , ) -> str: __a = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else bos_token __a = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else eos_token __a = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else sep_token __a = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else cls_token __a = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token super().__init__( bos_token=UpperCamelCase , eos_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , add_prefix_space=UpperCamelCase , model_max_length=UpperCamelCase , **UpperCamelCase , ) # Creates a mapping for looking up the IDs of special symbols. __a = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): __a = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. __a = { codepoint: name for name, codepoint in self._special_codepoints.items() } __a = UNICODE_VOCAB_SIZE __a = len(self._special_codepoints ) @property def UpperCamelCase__ ( self ) -> int: return self._unicode_vocab_size def UpperCamelCase__ ( self , UpperCamelCase ) -> List[str]: return list(UpperCamelCase ) def UpperCamelCase__ ( self , UpperCamelCase ) -> int: try: return ord(UpperCamelCase ) except TypeError: raise ValueError(f"invalid token: '{token}'" ) def UpperCamelCase__ ( self , UpperCamelCase ) -> str: try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCamelCase ) except TypeError: raise ValueError(f"invalid id: {index}" ) def UpperCamelCase__ ( self , UpperCamelCase ) -> Any: return "".join(UpperCamelCase ) def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase = None ) -> List[int]: __a = [self.sep_token_id] __a = [self.cls_token_id] __a = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) __a = [1] + ([0] * len(UpperCamelCase )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCamelCase )) + [1] return result def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase = None ) -> List[int]: __a = [self.sep_token_id] __a = [self.cls_token_id] __a = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase = None ) -> List[str]: return ()
539
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): _a = StableUnCLIPImgaImgPipeline _a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _a = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _a = frozenset([] ) def UpperCamelCase__ ( self ) -> List[str]: __a = 32 __a = embedder_hidden_size # image encoding components __a = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __a = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCamelCase , projection_dim=UpperCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __a = StableUnCLIPImageNormalizer(embedding_dim=UpperCamelCase ) __a = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) __a = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) __a = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) __a = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCamelCase , layers_per_block=1 , upcast_attention=UpperCamelCase , use_linear_projection=UpperCamelCase , ) torch.manual_seed(0 ) __a = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=UpperCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __a = AutoencoderKL() __a = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase=0 , UpperCamelCase=True ) -> Dict: if str(UpperCamelCase ).startswith('mps' ): __a = torch.manual_seed(UpperCamelCase ) else: __a = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if pil_image: __a = input_image * 0.5 + 0.5 __a = input_image.clamp(0 , 1 ) __a = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __a = DiffusionPipeline.numpy_to_pil(UpperCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCamelCase__ ( self ) -> int: __a = 'cpu' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableUnCLIPImgaImgPipeline(**UpperCamelCase ) __a = sd_pipe.to(UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase ) __a = self.get_dummy_inputs(UpperCamelCase ) inputs.update({'image_embeds': None} ) __a = sd_pipe(**UpperCamelCase ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __a = np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase__ ( self ) -> Any: __a = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=UpperCamelCase ) def UpperCamelCase__ ( self ) -> Union[str, Any]: __a = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=UpperCamelCase ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCamelCase ) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def UpperCamelCase__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> str: __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) __a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' ) __a = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __a = torch.Generator(device='cpu' ).manual_seed(0 ) __a = pipe(UpperCamelCase , 'anime turle' , generator=UpperCamelCase , output_type='np' ) __a = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ ( self ) -> Optional[int]: __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) __a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' ) __a = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __a = torch.Generator(device='cpu' ).manual_seed(0 ) __a = pipe(UpperCamelCase , 'anime turle' , generator=UpperCamelCase , output_type='np' ) __a = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ ( self ) -> Union[str, Any]: __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) __a = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __a = pipe( UpperCamelCase , 'anime turtle' , num_inference_steps=2 , output_type='np' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
539
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @property def A ( self ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def A ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = self.dummy_uncond_unet SCREAMING_SNAKE_CASE = KarrasVeScheduler() SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=lowercase__ , scheduler=lowercase__ ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=lowercase__ , output_type='numpy' ).images SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=lowercase__ , output_type='numpy' , return_dict=lowercase__ )[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def A ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = 'google/ncsnpp-celebahq-256' SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE = KarrasVeScheduler() SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=lowercase__ , scheduler=lowercase__ ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(num_inference_steps=20 , generator=lowercase__ , output_type='numpy' ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE = np.array([0.578, 0.5_811, 0.5_924, 0.5_809, 0.587, 0.5_886, 0.5_861, 0.5_802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
406
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: SCREAMING_SNAKE_CASE = 1_9_2 SCREAMING_SNAKE_CASE = 7_6_8 SCREAMING_SNAKE_CASE = 1_2 SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = [8_0_0, 1_3_3_3] SCREAMING_SNAKE_CASE = False elif yolos_name == "yolos_s_dWr": SCREAMING_SNAKE_CASE = 3_3_0 SCREAMING_SNAKE_CASE = 1_4 SCREAMING_SNAKE_CASE = 6 SCREAMING_SNAKE_CASE = 1_3_2_0 elif "yolos_s" in yolos_name: SCREAMING_SNAKE_CASE = 3_8_4 SCREAMING_SNAKE_CASE = 1_5_3_6 SCREAMING_SNAKE_CASE = 1_2 SCREAMING_SNAKE_CASE = 6 elif "yolos_b" in yolos_name: SCREAMING_SNAKE_CASE = [8_0_0, 1_3_4_4] SCREAMING_SNAKE_CASE = 9_1 SCREAMING_SNAKE_CASE = 'huggingface/label-files' SCREAMING_SNAKE_CASE = 'coco-detection-id2label.json' SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, repo_type='dataset' ), 'r' ) ) SCREAMING_SNAKE_CASE = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[: config.hidden_size, :] SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE = in_proj_weight[-config.hidden_size :, :] SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_ ): if "backbone" in name: SCREAMING_SNAKE_CASE = name.replace('backbone', 'vit' ) if "cls_token" in name: SCREAMING_SNAKE_CASE = name.replace('cls_token', 'embeddings.cls_token' ) if "det_token" in name: SCREAMING_SNAKE_CASE = name.replace('det_token', 'embeddings.detection_tokens' ) if "mid_pos_embed" in name: SCREAMING_SNAKE_CASE = name.replace('mid_pos_embed', 'encoder.mid_position_embeddings' ) if "pos_embed" in name: SCREAMING_SNAKE_CASE = name.replace('pos_embed', 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' ) if "blocks" in name: SCREAMING_SNAKE_CASE = name.replace('blocks', 'encoder.layer' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE = name.replace('attn.proj', 'attention.output.dense' ) if "attn" in name: SCREAMING_SNAKE_CASE = name.replace('attn', 'attention.self' ) if "norm1" in name: SCREAMING_SNAKE_CASE = name.replace('norm1', 'layernorm_before' ) if "norm2" in name: SCREAMING_SNAKE_CASE = name.replace('norm2', 'layernorm_after' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE = name.replace('mlp.fc2', 'output.dense' ) if "class_embed" in name: SCREAMING_SNAKE_CASE = name.replace('class_embed', 'class_labels_classifier' ) if "bbox_embed" in name: SCREAMING_SNAKE_CASE = name.replace('bbox_embed', 'bbox_predictor' ) if "vit.norm" in name: SCREAMING_SNAKE_CASE = name.replace('vit.norm', 'vit.layernorm' ) return name def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: SCREAMING_SNAKE_CASE = key.split('.' ) SCREAMING_SNAKE_CASE = int(key_split[2] ) SCREAMING_SNAKE_CASE = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE = val[:dim, :] SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE = val[-dim:, :] else: SCREAMING_SNAKE_CASE = val[:dim] SCREAMING_SNAKE_CASE = val[dim : dim * 2] SCREAMING_SNAKE_CASE = val[-dim:] else: SCREAMING_SNAKE_CASE = val return orig_state_dict def UpperCamelCase_ ( ): SCREAMING_SNAKE_CASE = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE = Image.open(requests.get(SCREAMING_SNAKE_CASE_, stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = False ): SCREAMING_SNAKE_CASE = get_yolos_config(SCREAMING_SNAKE_CASE_ ) # load original state_dict SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_, map_location='cpu' )['model'] # load 🤗 model SCREAMING_SNAKE_CASE = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ ) model.eval() SCREAMING_SNAKE_CASE = convert_state_dict(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by YolosImageProcessor SCREAMING_SNAKE_CASE = 8_0_0 if yolos_name != 'yolos_ti' else 5_1_2 SCREAMING_SNAKE_CASE = YolosImageProcessor(format='coco_detection', size=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = image_processor(images=prepare_img(), return_tensors='pt' ) SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = outputs.logits, outputs.pred_boxes SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None, None if yolos_name == "yolos_ti": SCREAMING_SNAKE_CASE = torch.tensor( [[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] ) SCREAMING_SNAKE_CASE = torch.tensor( [[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] ) elif yolos_name == "yolos_s_200_pre": SCREAMING_SNAKE_CASE = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] ) SCREAMING_SNAKE_CASE = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] ) elif yolos_name == "yolos_s_300_pre": SCREAMING_SNAKE_CASE = torch.tensor( [[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] ) SCREAMING_SNAKE_CASE = torch.tensor( [[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] ) elif yolos_name == "yolos_s_dWr": SCREAMING_SNAKE_CASE = torch.tensor( [[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] ) SCREAMING_SNAKE_CASE = torch.tensor( [[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] ) elif yolos_name == "yolos_base": SCREAMING_SNAKE_CASE = torch.tensor( [[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] ) SCREAMING_SNAKE_CASE = torch.tensor( [[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] ) else: raise ValueError(f'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3], SCREAMING_SNAKE_CASE_, atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3], SCREAMING_SNAKE_CASE_, atol=1E-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: SCREAMING_SNAKE_CASE = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('Pushing to the hub...' ) SCREAMING_SNAKE_CASE = model_mapping[yolos_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE_, organization='hustvl' ) model.push_to_hub(SCREAMING_SNAKE_CASE_, organization='hustvl' ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) snake_case = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
406
1
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowercase ): def __init__( self , **a ) -> Tuple: '''simple docstring''' requires_backends(self , ["""bs4"""] ) super().__init__(**a ) def A_ ( self , a ) -> Tuple: '''simple docstring''' _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _UpperCamelCase = parent.find_all(child.name , recursive=a ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(a ) else next(i for i, s in enumerate(a , 1 ) if s is child ) ) _UpperCamelCase = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def A_ ( self , a ) -> List[str]: '''simple docstring''' _UpperCamelCase = BeautifulSoup(a , """html.parser""" ) _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = [] for element in html_code.descendants: if type(a ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue _UpperCamelCase = html.unescape(a ).strip() if not text_in_this_tag: continue all_doc_strings.append(a ) _UpperCamelCase , _UpperCamelCase = self.xpath_soup(a ) stringaxtag_seq.append(a ) stringaxsubs_seq.append(a ) if len(a ) != len(a ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(a ) != len(a ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def A_ ( self , a , a ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = """""" for tagname, subs in zip(a , a ): xpath += F'/{tagname}' if subs != 0: xpath += F'[{subs}]' return xpath def __call__( self , a ) -> BatchFeature: '''simple docstring''' _UpperCamelCase = False # Check that strings has a valid type if isinstance(a , a ): _UpperCamelCase = True elif isinstance(a , (list, tuple) ): if len(a ) == 0 or isinstance(html_strings[0] , a ): _UpperCamelCase = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ F'but is of type {type(a )}.' ) _UpperCamelCase = bool(isinstance(a , (list, tuple) ) and (isinstance(html_strings[0] , a )) ) if not is_batched: _UpperCamelCase = [html_strings] # Get nodes + xpaths _UpperCamelCase = [] _UpperCamelCase = [] for html_string in html_strings: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self.get_three_from_single(a ) nodes.append(a ) _UpperCamelCase = [] for node, tag_list, sub_list in zip(a , a , a ): _UpperCamelCase = self.construct_xpath(a , a ) xpath_strings.append(a ) xpaths.append(a ) # return as Dict _UpperCamelCase = {"""nodes""": nodes, """xpaths""": xpaths} _UpperCamelCase = BatchFeature(data=a , tensor_type=a ) return encoded_inputs
612
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCamelCase__ = logging.getLogger() def __A() -> str: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""-f""" ) _UpperCamelCase = parser.parse_args() return args.f def __A(lowerCAmelCase ) -> Any: """simple docstring""" _UpperCamelCase = {} _UpperCamelCase = os.path.join(lowerCAmelCase , """all_results.json""" ) if os.path.exists(lowerCAmelCase ): with open(lowerCAmelCase , """r""" ) as f: _UpperCamelCase = json.load(lowerCAmelCase ) else: raise ValueError(F'can\'t find {path}' ) return results def __A() -> Tuple: """simple docstring""" _UpperCamelCase = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() lowerCamelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase__ ( __lowercase ): @classmethod def A_ ( cls ) -> Tuple: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = os.path.join(cls.tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) _UpperCamelCase = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def A_ ( cls ) -> str: '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A_ ( self ) -> Any: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(a ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(a , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a , """glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A_ ( self ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(a ) self.assertLess(result["""perplexity"""] , 1_00 ) self.assertTrue(os.path.exists(os.path.join(a , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a , """clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(a ) self.assertLess(result["""perplexity"""] , 42 ) self.assertTrue(os.path.exists(os.path.join(a , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a , """mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = 7 if get_gpu_count() > 1 else 2 _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(a ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertLess(result["""train_loss"""] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(a , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a , """ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(a ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] , 28 ) self.assertGreaterEqual(result["""eval_exact"""] , 28 ) self.assertTrue(os.path.exists(os.path.join(a , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a , """qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(a ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(a , """swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(a ) self.assertGreaterEqual(result["""eval_rouge1"""] , 10 ) self.assertGreaterEqual(result["""eval_rouge2"""] , 2 ) self.assertGreaterEqual(result["""eval_rougeL"""] , 7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] , 7 ) self.assertTrue(os.path.exists(os.path.join(a , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a , """summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(a ) self.assertGreaterEqual(result["""eval_bleu"""] , 30 ) self.assertTrue(os.path.exists(os.path.join(a , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a , """translation_no_trainer""" ) ) ) @slow def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(a ) _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(a ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] , 0.10 ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(a ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(a , """step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a , """image_classification_no_trainer""" ) ) )
612
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCAmelCase : Tuple = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _lowerCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
701
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
0
"""simple docstring""" def lowerCamelCase ( _snake_case = 3 ,_snake_case = 7 ,_snake_case = 1000000 ): UpperCAmelCase__ : str = 0 UpperCAmelCase__ : Any = 1 for current_denominator in range(1 ,limit + 1 ): UpperCAmelCase__ : Dict = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: UpperCAmelCase__ : str = current_numerator UpperCAmelCase__ : Optional[int] = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_00_00_00))
110
"""simple docstring""" def lowerCamelCase ( _snake_case ,_snake_case ): UpperCAmelCase__ : Optional[int] = '' for i in table: res += inp[i - 1] return res def lowerCamelCase ( _snake_case ): return data[1:] + data[0] def lowerCamelCase ( _snake_case ,_snake_case ): UpperCAmelCase__ : str = '' for i in range(len(_snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCamelCase ( _snake_case ,_snake_case ): UpperCAmelCase__ : str = int('0b' + data[0] + data[-1] ,2 ) UpperCAmelCase__ : Optional[Any] = int('0b' + data[1:3] ,2 ) return bin(s[row][col] )[2:] def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase__ : Any = message[:4] UpperCAmelCase__ : Optional[Any] = message[4:] UpperCAmelCase__ : Dict = apply_table(_snake_case ,_snake_case ) UpperCAmelCase__ : Optional[Any] = xor(_snake_case ,_snake_case ) UpperCAmelCase__ : Dict = apply_sbox(_snake_case ,temp[:4] ) # noqa: E741 UpperCAmelCase__ : Tuple = apply_sbox(_snake_case ,temp[4:] ) UpperCAmelCase__ : List[str] = '0' * (2 - len(_snake_case )) + l # noqa: E741 UpperCAmelCase__ : Optional[Any] = '0' * (2 - len(_snake_case )) + r UpperCAmelCase__ : Optional[int] = apply_table(l + r ,_snake_case ) UpperCAmelCase__ : Any = xor(_snake_case ,_snake_case ) return temp + right if __name__ == "__main__": UpperCamelCase__ = input('Enter 10 bit key: ') UpperCamelCase__ = input('Enter 8 bit message: ') UpperCamelCase__ = [6, 3, 7, 4, 8, 5, 10, 9] UpperCamelCase__ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] UpperCamelCase__ = [2, 4, 3, 1] UpperCamelCase__ = [2, 6, 3, 1, 4, 8, 5, 7] UpperCamelCase__ = [4, 1, 3, 5, 7, 2, 8, 6] UpperCamelCase__ = [4, 1, 2, 3, 2, 3, 4, 1] UpperCamelCase__ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCamelCase__ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCamelCase__ = apply_table(key, paa_table) UpperCamelCase__ = temp[:5] UpperCamelCase__ = temp[5:] UpperCamelCase__ = left_shift(left) UpperCamelCase__ = left_shift(right) UpperCamelCase__ = apply_table(left + right, pa_table) UpperCamelCase__ = left_shift(left) UpperCamelCase__ = left_shift(right) UpperCamelCase__ = left_shift(left) UpperCamelCase__ = left_shift(right) UpperCamelCase__ = apply_table(left + right, pa_table) # encryption UpperCamelCase__ = apply_table(message, IP) UpperCamelCase__ = function(expansion, sa, sa, keya, temp) UpperCamelCase__ = temp[4:] + temp[:4] UpperCamelCase__ = function(expansion, sa, sa, keya, temp) UpperCamelCase__ = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption UpperCamelCase__ = apply_table(CT, IP) UpperCamelCase__ = function(expansion, sa, sa, keya, temp) UpperCamelCase__ = temp[4:] + temp[:4] UpperCamelCase__ = function(expansion, sa, sa, keya, temp) UpperCamelCase__ = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
110
1
'''simple docstring''' from __future__ import annotations def A (__lowerCamelCase :list[int | str] ): create_state_space_tree(__lowerCamelCase , [] , 0 , [0 for i in range(len(__lowerCamelCase ) )] ) def A (__lowerCamelCase :list[int | str] , __lowerCamelCase :list[int | str] , __lowerCamelCase :int , __lowerCamelCase :list[int] , ): if index == len(__lowerCamelCase ): print(__lowerCamelCase ) return for i in range(len(__lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _lowerCAmelCase = True create_state_space_tree(__lowerCamelCase , __lowerCamelCase , index + 1 , __lowerCamelCase ) current_sequence.pop() _lowerCAmelCase = False _lowercase = [3, 1, 2, 4] generate_all_permutations(sequence) _lowercase = ["A", "B", "C"] generate_all_permutations(sequence_a)
162
'''simple docstring''' def A (__lowerCamelCase :int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase = f'Input value of [number={number}] must be an integer' raise TypeError(__lowerCamelCase ) if number < 1: _lowerCAmelCase = f'Input value of [number={number}] must be > 0' raise ValueError(__lowerCamelCase ) _lowerCAmelCase = 1 for i in range(1 , __lowerCamelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
162
1
"""simple docstring""" def lowerCamelCase ( _snake_case ,_snake_case ): UpperCAmelCase__ : Union[str, Any] = len(_snake_case ) UpperCAmelCase__ : Dict = len(_snake_case ) UpperCAmelCase__ : str = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] UpperCAmelCase__ : Any = True for i in range(_snake_case ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: UpperCAmelCase__ : Union[str, Any] = True if a[i].islower(): UpperCAmelCase__ : Any = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
110
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue_model_parallelism.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, ] ) class A_ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Any ) -> Optional[int]: if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() ,encoding='utf-8' ,check=__A ,) assert hasattr(self ,'env' ) def __UpperCAmelCase ( self : str ,__A : Tuple ) -> int: # configuration for running training on smdistributed Model Parallel _lowercase = { 'enabled': True, 'processes_per_host': 8, } _lowercase = { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } _lowercase = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} _lowercase = 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" ,instance_count=__A ,instance_type=self.instance_type ,debugger_hook_config=__A ,hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 500, } ,metric_definitions=self.env.metric_definitions ,distribution=__A ,py_version='py36' ,) def __UpperCAmelCase ( self : List[Any] ,__A : Any ) -> Optional[Any]: TrainingJobAnalytics(__A ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def __UpperCAmelCase ( self : Tuple ,__A : Union[str, Any] ) -> Optional[Any]: # create estimator _lowercase = self.create_estimator(__A ) # run training estimator.fit() # result dataframe _lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _lowercase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) _lowercase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' ,99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" ,'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} ,__A )
67
0
"""simple docstring""" import math class __lowerCamelCase : '''simple docstring''' def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int: _a = 0.0 _a = 0.0 for i in range(len(__UpperCAmelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> list[list[int | float]]: for i in range(len(__UpperCAmelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def A_ ( ): """simple docstring""" _a = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _a = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _a = SelfOrganizingMap() _a = 3 _a = 0.5 for _ in range(_lowerCAmelCase ): for j in range(len(_lowerCAmelCase ) ): # training sample _a = training_samples[j] # Compute the winning vector _a = self_organizing_map.get_winner(_lowerCAmelCase, _lowerCAmelCase ) # Update the winning vector _a = self_organizing_map.update(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) # classify test sample _a = [0, 0, 0, 1] _a = self_organizing_map.get_winner(_lowerCAmelCase, _lowerCAmelCase ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
285
"""simple docstring""" from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" if not input_list: return [] _a = [input_list.count(_lowerCAmelCase ) for value in input_list] _a = max(_lowerCAmelCase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(_lowerCAmelCase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
285
1
'''simple docstring''' import numpy as np def __lowercase (_SCREAMING_SNAKE_CASE :np.ndarray , _SCREAMING_SNAKE_CASE :np.ndarray , _SCREAMING_SNAKE_CASE :float = 1E-1_2 , _SCREAMING_SNAKE_CASE :int = 1_00 , ): assert np.shape(_SCREAMING_SNAKE_CASE )[0] == np.shape(_SCREAMING_SNAKE_CASE )[1] # Ensure proper dimensionality. assert np.shape(_SCREAMING_SNAKE_CASE )[0] == np.shape(_SCREAMING_SNAKE_CASE )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_SCREAMING_SNAKE_CASE ) == np.iscomplexobj(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = np.iscomplexobj(_SCREAMING_SNAKE_CASE ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_SCREAMING_SNAKE_CASE , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : List[Any] = 1E1_2 while not convergence: # Multiple matrix by the vector. SCREAMING_SNAKE_CASE : Any = np.dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Normalize the resulting output vector. SCREAMING_SNAKE_CASE : List[Any] = w / np.linalg.norm(_SCREAMING_SNAKE_CASE ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) SCREAMING_SNAKE_CASE : Tuple = vector.conj().T if is_complex else vector.T SCREAMING_SNAKE_CASE : List[Any] = np.dot(_SCREAMING_SNAKE_CASE , np.dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Check convergence. SCREAMING_SNAKE_CASE : Union[str, Any] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : List[Any] = lambda_ if is_complex: SCREAMING_SNAKE_CASE : List[Any] = np.real(lambda_ ) return lambda_, vector def __lowercase (): SCREAMING_SNAKE_CASE : Dict = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) SCREAMING_SNAKE_CASE : Tuple = np.array([41, 4, 20] ) SCREAMING_SNAKE_CASE : Tuple = real_input_matrix.astype(np.complexaaa ) SCREAMING_SNAKE_CASE : Tuple = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T SCREAMING_SNAKE_CASE : Optional[Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": SCREAMING_SNAKE_CASE : Optional[Any] = real_input_matrix SCREAMING_SNAKE_CASE : List[Any] = real_vector elif problem_type == "complex": SCREAMING_SNAKE_CASE : Optional[Any] = complex_input_matrix SCREAMING_SNAKE_CASE : Dict = complex_vector # Our implementation. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = power_iteration(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = np.linalg.eigh(_SCREAMING_SNAKE_CASE ) # Last eigenvalue is the maximum one. SCREAMING_SNAKE_CASE : Dict = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. SCREAMING_SNAKE_CASE : Dict = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_SCREAMING_SNAKE_CASE ) - np.abs(_SCREAMING_SNAKE_CASE ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
507
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer snake_case_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } snake_case_ = { """unc-nlp/lxmert-base-uncased""": 512, } snake_case_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class a__ ( _lowercase ): __magic_name__ : Any = VOCAB_FILES_NAMES __magic_name__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Dict = PRETRAINED_INIT_CONFIGURATION __magic_name__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Any = LxmertTokenizer def __init__(self : Tuple, __UpperCAmelCase : int=None, __UpperCAmelCase : Optional[Any]=None, __UpperCAmelCase : Union[str, Any]=True, __UpperCAmelCase : int="[UNK]", __UpperCAmelCase : Optional[int]="[SEP]", __UpperCAmelCase : Optional[int]="[PAD]", __UpperCAmelCase : List[str]="[CLS]", __UpperCAmelCase : List[str]="[MASK]", __UpperCAmelCase : List[str]=True, __UpperCAmelCase : Optional[int]=None, **__UpperCAmelCase : int, ) -> int: """simple docstring""" super().__init__( __UpperCAmelCase, tokenizer_file=__UpperCAmelCase, do_lower_case=__UpperCAmelCase, unk_token=__UpperCAmelCase, sep_token=__UpperCAmelCase, pad_token=__UpperCAmelCase, cls_token=__UpperCAmelCase, mask_token=__UpperCAmelCase, tokenize_chinese_chars=__UpperCAmelCase, strip_accents=__UpperCAmelCase, **__UpperCAmelCase, ) SCREAMING_SNAKE_CASE : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', __UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', __UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', __UpperCAmelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Dict = getattr(__UpperCAmelCase, normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Dict = do_lower_case SCREAMING_SNAKE_CASE : List[Any] = strip_accents SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : Dict = normalizer_class(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = do_lower_case def lowercase__ (self : int, __UpperCAmelCase : List[str], __UpperCAmelCase : List[Any]=None ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ (self : Optional[Any], __UpperCAmelCase : List[int], __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ (self : Union[str, Any], __UpperCAmelCase : str, __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(__UpperCAmelCase, name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
507
1
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def UpperCAmelCase ( lowercase__ : Optional[int]=32 , lowercase__ : Any=10 , lowercase__ : Dict=100 , lowercase__ : int=1026 , lowercase__ : List[str]=True , lowercase__ : Dict="data/tokenized_stories_train_wikitext103.jbl" , lowercase__ : int="igf_context_pairs.jbl" , ): '''simple docstring''' set_seed(3 ) # generate train_data and objective_set a__ = generate_datasets( a_ , a_ , number=a_ , min_len=1026 , trim=a_ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? a__ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # load pretrained model a__ = load_gpta("""gpt2""" ).to(a_ ) print("""computing perplexity on objective set""" ) a__ = compute_perplexity(a_ , a_ , a_ ).item() print("""perplexity on objective set:""" , a_ ) # collect igf pairs and save to file demo.jbl collect_objective_set(a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def UpperCAmelCase ( lowercase__ : Optional[Any] , lowercase__ : List[Any]=15 , lowercase__ : List[Any]=128 , lowercase__ : Optional[Any]=100 , lowercase__ : Tuple="igf_model.pt" , ): '''simple docstring''' set_seed(42 ) # Load pre-trained model a__ = GPTaLMHeadModel.from_pretrained("""gpt2""" ) # Initialize secondary learner to use embedding weights of model a__ = SecondaryLearner(a_ ) # Train secondary learner a__ = train_secondary_learner( a_ , a_ , max_epochs=a_ , batch_size=a_ , eval_freq=100 , igf_model_path=a_ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def UpperCAmelCase ( lowercase__ : Union[str, Any] , lowercase__ : int , lowercase__ : Optional[Any] , lowercase__ : List[Any]=32 , lowercase__ : Tuple=1000 , lowercase__ : List[Any]=16 , lowercase__ : List[str]=1.0 , lowercase__ : Tuple=recopy_gpta , lowercase__ : Tuple=None , lowercase__ : List[Any]=10 , lowercase__ : str="gpt2_finetuned.pt" , ): '''simple docstring''' a__ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) a__ = RandomSampler(a_ ) a__ = DataLoader(a_ , sampler=a_ ) a__ = max_steps // (len(a_ )) + 1 a__ = 0 a__ = torch.zeros((1, context_len) , dtype=torch.long , device=a_ ) a__ = recopy_model(a_ , a_ , a_ ) model.train() if secondary_learner is not None: secondary_learner.to(a_ ) secondary_learner.eval() a__ = [] a__ = 0 a__ = [] a__ = [] # Compute the performance of the transformer model at the beginning a__ = compute_perplexity(a_ , a_ , a_ ) test_perps.append(a_ ) print("""Test perplexity, step""" , a_ , """:""" , a_ ) for epoch in range(int(a_ ) ): for step, example in enumerate(a_ ): torch.cuda.empty_cache() a__ = random.randint(0 , example.size(2 ) - context_len - 1 ) a__ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() a__ = model(a_ , labels=a_ ) a__ = True if secondary_learner is not None: a__ = secondary_learner.forward( torch.tensor(a_ , dtype=torch.long , device=a_ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(a_ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: a__ = -1 if predicted_q < threshold: a__ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) a__ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() a__ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: a__ = compute_perplexity(a_ , a_ , a_ ) test_perps.append(a_ ) print("""Test perplexity, step""" , a_ , """:""" , a_ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , a_ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def UpperCAmelCase ( ): '''simple docstring''' a__ = argparse.ArgumentParser(description="""Fine-tune a transformer model with IGF on a language modeling task""" ) # Required parameters parser.add_argument( """--data_dir""" , default=a_ , type=a_ , required=a_ , help="""The input data dir. Should contain data files for WikiText.""" , ) parser.add_argument( """--model_name_or_path""" , default=a_ , type=a_ , required=a_ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--data_file""" , type=a_ , default=a_ , help=( """A jbl file containing tokenized data which can be split as objective dataset, """ """train_dataset and test_dataset.""" ) , ) parser.add_argument( """--igf_data_file""" , type=a_ , default=a_ , help="""A jbl file containing the context and information gain pairs to train secondary learner.""" , ) parser.add_argument( """--output_dir""" , default=a_ , type=a_ , required=a_ , help="""The output directory where the final fine-tuned model is stored.""" , ) parser.add_argument( """--tokenizer_name""" , default=a_ , type=a_ , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument("""--seed""" , type=a_ , default=a_ , help="""A seed for reproducible training.""" ) parser.add_argument( """--context_len""" , default=32 , type=a_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--size_objective_set""" , default=100 , type=a_ , help="""number of articles that are long enough to be used as our objective set""" , ) parser.add_argument( """--eval_freq""" , default=100 , type=a_ , help="""secondary model evaluation is triggered at eval_freq""" ) parser.add_argument("""--max_steps""" , default=1000 , type=a_ , help="""To calculate training epochs""" ) parser.add_argument( """--secondary_learner_batch_size""" , default=128 , type=a_ , help="""batch size of training data for secondary learner""" , ) parser.add_argument( """--batch_size""" , default=16 , type=a_ , help="""batch size of training data of language model(gpt2) """ ) parser.add_argument( """--eval_interval""" , default=10 , type=a_ , help=( """decay the selectivity of our secondary learner filter from""" """1 standard deviation above average to 1 below average after 10 batches""" ) , ) parser.add_argument( """--number""" , default=100 , type=a_ , help="""The number of examples split to be used as objective_set/test_data""" ) parser.add_argument( """--min_len""" , default=1026 , type=a_ , help="""The minimum length of the article to be used as objective set""" ) parser.add_argument( """--secondary_learner_max_epochs""" , default=15 , type=a_ , help="""number of epochs to train secondary learner""" ) parser.add_argument("""--trim""" , default=a_ , type=a_ , help="""truncate the example if it exceeds context length""" ) parser.add_argument( """--threshold""" , default=1.0 , type=a_ , help=( """The threshold value used by secondary learner to filter the train_data and allow only""" """ informative data as input to the model""" ) , ) parser.add_argument("""--finetuned_model_name""" , default="""gpt2_finetuned.pt""" , type=a_ , help="""finetuned_model_name""" ) parser.add_argument( """--recopy_model""" , default=a_ , type=a_ , help="""Reset the model to the original pretrained GPT-2 weights after each iteration""" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=a_ , data_file="""data/tokenized_stories_train_wikitext103.jbl""" , igf_data_file="""igf_context_pairs.jbl""" , ) # Load train data for secondary learner a__ = joblib.load("""data/IGF_values.jbl""" ) # Train secondary learner a__ = training_secondary_learner( a_ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="""igf_model.pt""" , ) # load pretrained gpt2 model a__ = GPTaLMHeadModel.from_pretrained("""gpt2""" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model a__ = generate_datasets( context_len=32 , file="""data/tokenized_stories_train_wikitext103.jbl""" , number=100 , min_len=1026 , trim=a_ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( a_ , a_ , a_ , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=a_ , secondary_learner=a_ , eval_interval=10 , finetuned_model_name="""gpt2_finetuned.pt""" , ) if __name__ == "__main__": main()
705
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase : int =16 _lowercase : int =32 def UpperCAmelCase ( lowercase__ : Accelerator , lowercase__ : int = 16 , lowercase__ : str = "bert-base-cased" ): '''simple docstring''' a__ = AutoTokenizer.from_pretrained(lowercase__ ) a__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase__ : int ): # max_length=None => use the model max length (it's actually the default) a__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset a__ = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowercase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase__ : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowercase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. a__ = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) a__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader def UpperCAmelCase ( lowercase__ : Union[str, Any] , lowercase__ : List[Any] ): '''simple docstring''' a__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ = config["""lr"""] a__ = int(config["""num_epochs"""] ) a__ = int(config["""seed"""] ) a__ = int(config["""batch_size"""] ) a__ = args.model_name_or_path set_seed(lowercase__ ) a__ , a__ = get_dataloaders(lowercase__ , lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ = AutoModelForSequenceClassification.from_pretrained(lowercase__ , return_dict=lowercase__ ) # Instantiate optimizer a__ = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) a__ = optimizer_cls(params=model.parameters() , lr=lowercase__ ) if accelerator.state.deepspeed_plugin is not None: a__ = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: a__ = 1 a__ = (len(lowercase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): a__ = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=0 , num_training_steps=lowercase__ , ) else: a__ = DummyScheduler(lowercase__ , total_num_steps=lowercase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ , a__ , a__ , a__ , a__ = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # We need to keep track of how many total steps we have iterated over a__ = 0 # We also need to keep track of the stating epoch so files are named properly a__ = 0 # Now we train the model a__ = evaluate.load("""glue""" , """mrpc""" ) a__ = 0 a__ = {} for epoch in range(lowercase__ , lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): a__ = model(**lowercase__ ) a__ = outputs.loss a__ = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() a__ = 0 for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a__ = model(**lowercase__ ) a__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times a__ , a__ = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase__ ) - 1: a__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] a__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) a__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowercase__ ) a__ = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: a__ = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def UpperCAmelCase ( ): '''simple docstring''' a__ = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowercase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase__ , ) parser.add_argument( """--output_dir""" , type=lowercase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=lowercase__ , default=lowercase__ , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=lowercase__ , default=3 , help="""Number of train epochs.""" , ) a__ = parser.parse_args() a__ = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
412
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A = logging.get_logger(__name__) __A = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class _A ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase : Tuple = 'bit' lowerCamelCase : List[Any] = ['preactivation', 'bottleneck'] lowerCamelCase : List[Any] = ['SAME', 'VALID'] def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : List[str]=64 , __SCREAMING_SNAKE_CASE : Tuple=[256, 512, 1024, 2048] , __SCREAMING_SNAKE_CASE : Optional[Any]=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE : Optional[Any]="preactivation" , __SCREAMING_SNAKE_CASE : int="relu" , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Tuple=32 , __SCREAMING_SNAKE_CASE : Tuple=0.0 , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 , __SCREAMING_SNAKE_CASE : List[str]=1 , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Tuple=None , **__SCREAMING_SNAKE_CASE : Tuple , ) -> List[str]: super().__init__(**__SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: __UpperCAmelCase =global_padding.upper() else: raise ValueError(f'''Padding strategy {global_padding} not supported''' ) __UpperCAmelCase =num_channels __UpperCAmelCase =embedding_size __UpperCAmelCase =hidden_sizes __UpperCAmelCase =depths __UpperCAmelCase =layer_type __UpperCAmelCase =hidden_act __UpperCAmelCase =global_padding __UpperCAmelCase =num_groups __UpperCAmelCase =drop_path_rate __UpperCAmelCase =embedding_dynamic_padding __UpperCAmelCase =output_stride __UpperCAmelCase =width_factor __UpperCAmelCase =["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] __UpperCAmelCase , __UpperCAmelCase =get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
68
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class UpperCAmelCase__ ( __lowerCamelCase ): """simple docstring""" lowerCAmelCase__ : List[Any] = """roc_bert""" def __init__( self , _SCREAMING_SNAKE_CASE=3_0_5_2_2 , _SCREAMING_SNAKE_CASE=7_6_8 , _SCREAMING_SNAKE_CASE=1_2 , _SCREAMING_SNAKE_CASE=1_2 , _SCREAMING_SNAKE_CASE=3_0_7_2 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_1_2 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=7_6_8 , _SCREAMING_SNAKE_CASE=9_1_0 , _SCREAMING_SNAKE_CASE=5_1_2 , _SCREAMING_SNAKE_CASE=2_4_8_5_8 , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: a_ : Optional[int] = vocab_size a_ : str = max_position_embeddings a_ : List[Any] = hidden_size a_ : Optional[Any] = num_hidden_layers a_ : Union[str, Any] = num_attention_heads a_ : List[str] = intermediate_size a_ : List[Any] = hidden_act a_ : str = hidden_dropout_prob a_ : Union[str, Any] = attention_probs_dropout_prob a_ : Any = initializer_range a_ : str = type_vocab_size a_ : Union[str, Any] = layer_norm_eps a_ : str = use_cache a_ : Tuple = enable_pronunciation a_ : Dict = enable_shape a_ : int = pronunciation_embed_dim a_ : List[Any] = pronunciation_vocab_size a_ : int = shape_embed_dim a_ : List[str] = shape_vocab_size a_ : List[Any] = concat_input a_ : List[str] = position_embedding_type a_ : Any = classifier_dropout super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
473
0
import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _a ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = 'microsoft/speecht5_tts' __SCREAMING_SNAKE_CASE = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) __SCREAMING_SNAKE_CASE = 'text_reader' __SCREAMING_SNAKE_CASE = SpeechTaProcessor __SCREAMING_SNAKE_CASE = SpeechTaForTextToSpeech __SCREAMING_SNAKE_CASE = SpeechTaHifiGan __SCREAMING_SNAKE_CASE = ['text'] __SCREAMING_SNAKE_CASE = ['audio'] def __lowerCAmelCase ( self ): if self.post_processor is None: _lowercase ='microsoft/speecht5_hifigan' super().setup() def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ): _lowercase =self.pre_processor(text=UpperCamelCase_ , return_tensors="pt" , truncation=UpperCamelCase_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) _lowercase =load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation" ) _lowercase =torch.tensor(embeddings_dataset[7305]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __lowerCAmelCase ( self , lowerCAmelCase_ ): with torch.no_grad(): return self.model.generate_speech(**UpperCamelCase_ ) def __lowerCAmelCase ( self , lowerCAmelCase_ ): with torch.no_grad(): return self.post_processor(UpperCamelCase_ ).cpu().detach()
704
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCAmelCase__ = logging.get_logger(__name__) class _a ( lowerCamelCase_ ): """simple docstring""" def __lowerCAmelCase ( self , lowerCAmelCase_ ): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase =[label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if len(lowerCAmelCase_ ) == 0 or len(lowerCAmelCase_ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowerCAmelCase_ ) ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase =[sequences] _lowercase =[] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCAmelCase_ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(lowerCamelCase_ ) class _a ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCAmelCase_=ZeroShotClassificationArgumentHandler() , *lowerCAmelCase_ , **lowerCAmelCase_ ): _lowercase =args_parser super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def __lowerCAmelCase ( self ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=TruncationStrategy.ONLY_FIRST , **lowerCAmelCase_ ): _lowercase =self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) _lowercase =self.tokenizer.eos_token try: _lowercase =self.tokenizer( lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , ) except Exception as e: if "too short" in str(lowerCAmelCase_ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _lowercase =self.tokenizer( lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def __lowerCAmelCase ( self , **lowerCAmelCase_ ): if kwargs.get("multi_class" , lowerCAmelCase_ ) is not None: _lowercase =kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) _lowercase ={} if "candidate_labels" in kwargs: _lowercase =self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: _lowercase =kwargs["hypothesis_template"] _lowercase ={} if "multi_label" in kwargs: _lowercase =kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ , ): if len(lowerCAmelCase_ ) == 0: pass elif len(lowerCAmelCase_ ) == 1 and "candidate_labels" not in kwargs: _lowercase =args[0] else: raise ValueError(F'''Unable to understand extra arguments {args}''' ) return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_="This example is {}." ): _lowercase , _lowercase =self._args_parser(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCAmelCase_ , lowerCAmelCase_ ) ): _lowercase =self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCAmelCase_ ) - 1, **model_input, } def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =inputs["candidate_label"] _lowercase =inputs["sequence"] _lowercase ={k: inputs[k] for k in self.tokenizer.model_input_names} _lowercase =self.model(**lowerCAmelCase_ ) _lowercase ={ "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False ): _lowercase =[outputs["candidate_label"] for outputs in model_outputs] _lowercase =[outputs["sequence"] for outputs in model_outputs] _lowercase =np.concatenate([output["logits"].numpy() for output in model_outputs] ) _lowercase =logits.shape[0] _lowercase =len(lowerCAmelCase_ ) _lowercase =N // n _lowercase =logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCAmelCase_ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _lowercase =self.entailment_id _lowercase =-1 if entailment_id == 0 else 0 _lowercase =reshaped_outputs[..., [contradiction_id, entailment_id]] _lowercase =np.exp(lowerCAmelCase_ ) / np.exp(lowerCAmelCase_ ).sum(-1 , keepdims=lowerCAmelCase_ ) _lowercase =scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _lowercase =reshaped_outputs[..., self.entailment_id] _lowercase =np.exp(lowerCAmelCase_ ) / np.exp(lowerCAmelCase_ ).sum(-1 , keepdims=lowerCAmelCase_ ) _lowercase =list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
594
0
from typing import TYPE_CHECKING from ....utils import _LazyModule lowercase : int = {'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
302
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __A : def __init__( self , a__ , a__ , a__ ): if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""" ) _lowerCAmelCase : List[Any] = img _lowerCAmelCase : Dict = img.shape[1] _lowerCAmelCase : Optional[Any] = img.shape[0] _lowerCAmelCase : str = dst_width _lowerCAmelCase : Tuple = dst_height _lowerCAmelCase : Optional[int] = self.src_w / self.dst_w _lowerCAmelCase : List[str] = self.src_h / self.dst_h _lowerCAmelCase : Dict = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def __A ( self ): for i in range(self.dst_h ): for j in range(self.dst_w ): _lowerCAmelCase : int = self.img[self.get_y(a__ )][self.get_x(a__ )] def __A ( self , a__ ): return int(self.ratio_x * x ) def __A ( self , a__ ): return int(self.ratio_y * y ) if __name__ == "__main__": _a , _a : int = 800, 600 _a : Optional[int] = imread('image_data/lena.jpg', 1) _a : Tuple = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
213
0
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). " ,SCREAMING_SNAKE_CASE ,) class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __a : List[Any] = RobertaConfig __a : Union[str, Any] = "roberta" def __init__( self : Union[str, Any] , lowercase : List[str] ) -> Optional[Any]: '''simple docstring''' super().__init__(lowercase ) UpperCamelCase__ = RobertaEmbeddings(lowercase ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " ,SCREAMING_SNAKE_CASE ,) class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __a : Dict = RobertaConfig __a : Tuple = "roberta" def __init__( self : Union[str, Any] , lowercase : Optional[Any] ) -> List[str]: '''simple docstring''' super().__init__(lowercase ) UpperCamelCase__ = config.num_labels UpperCamelCase__ = config.num_hidden_layers UpperCamelCase__ = DeeRobertaModel(lowercase ) UpperCamelCase__ = nn.Dropout(config.hidden_dropout_prob ) UpperCamelCase__ = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(lowercase ) def A ( self : Optional[Any] , lowercase : str=None , lowercase : Tuple=None , lowercase : List[str]=None , lowercase : Union[str, Any]=None , lowercase : int=None , lowercase : Dict=None , lowercase : Optional[int]=None , lowercase : Optional[Any]=-1 , lowercase : Optional[Any]=False , ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = self.num_layers try: UpperCamelCase__ = self.roberta( lowercase , attention_mask=lowercase , token_type_ids=lowercase , position_ids=lowercase , head_mask=lowercase , inputs_embeds=lowercase , ) UpperCamelCase__ = outputs[1] UpperCamelCase__ = self.dropout(lowercase ) UpperCamelCase__ = self.classifier(lowercase ) UpperCamelCase__ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: UpperCamelCase__ = e.message UpperCamelCase__ = e.exit_layer UpperCamelCase__ = outputs[0] if not self.training: UpperCamelCase__ = entropy(lowercase ) UpperCamelCase__ = [] UpperCamelCase__ = [] if labels is not None: if self.num_labels == 1: # We are doing regression UpperCamelCase__ = MSELoss() UpperCamelCase__ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: UpperCamelCase__ = CrossEntropyLoss() UpperCamelCase__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits UpperCamelCase__ = [] for highway_exit in outputs[-1]: UpperCamelCase__ = highway_exit[0] if not self.training: highway_logits_all.append(lowercase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression UpperCamelCase__ = MSELoss() UpperCamelCase__ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: UpperCamelCase__ = CrossEntropyLoss() UpperCamelCase__ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowercase ) if train_highway: UpperCamelCase__ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: UpperCamelCase__ = (loss,) + outputs if not self.training: UpperCamelCase__ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: UpperCamelCase__ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
265
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __a : int = "microsoft/speecht5_tts" __a : int = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) __a : Optional[Any] = "text_reader" __a : Tuple = SpeechTaProcessor __a : int = SpeechTaForTextToSpeech __a : int = SpeechTaHifiGan __a : Optional[int] = ["text"] __a : Union[str, Any] = ["audio"] def A ( self : str ) -> Optional[int]: '''simple docstring''' if self.post_processor is None: UpperCamelCase__ = """microsoft/speecht5_hifigan""" super().setup() def A ( self : List[Any] , lowercase : Any , lowercase : Union[str, Any]=None ) -> Tuple: '''simple docstring''' UpperCamelCase__ = self.pre_processor(text=lowercase , return_tensors="""pt""" , truncation=lowercase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) UpperCamelCase__ = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) UpperCamelCase__ = torch.tensor(embeddings_dataset[7_3_0_5]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def A ( self : Union[str, Any] , lowercase : Optional[int] ) -> int: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowercase ) def A ( self : str , lowercase : Union[str, Any] ) -> Tuple: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowercase ).cpu().detach()
265
1
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowercase_ = 1.0_54_57_18_17e-34 # unit of ℏ : J * s lowercase_ = 3e8 # unit of c : m * s^-1 def lowerCAmelCase (__A , __A , __A): """simple docstring""" if (force, area, distance).count(0) != 1: raise ValueError('''One and only one argument must be 0''') if force < 0: raise ValueError('''Magnitude of force can not be negative''') if distance < 0: raise ValueError('''Distance can not be negative''') if area < 0: raise ValueError('''Area can not be negative''') if force == 0: _a = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _a = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _a = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('''One and only one argument must be 0''') # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
11
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def __lowerCAmelCase ( lowercase : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowerCAmelCase ( ) -> Iterator[int]: """simple docstring""" snake_case : Optional[int] = 2 while True: if is_prime(lowercase ): yield num num += 1 def __lowerCAmelCase ( lowercase : int = 200_0000 ) -> int: """simple docstring""" return sum(takewhile(lambda lowercase : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
178
0
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __snake_case( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ) -> List[str]: debug_launcher(test_script.main ) def __snake_case ( self ) -> Optional[int]: debug_launcher(test_ops.main )
344
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __snake_case( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ) -> Tuple: lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowerCAmelCase = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(A_ ) lowerCAmelCase = -1 lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(A_ ) lowerCAmelCase = model.generate(A_ , max_new_tokens=10 , do_sample=A_ ) lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase = TextStreamer(A_ ) model.generate(A_ , max_new_tokens=10 , do_sample=A_ , streamer=A_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase = cs.out[:-1] self.assertEqual(A_ , A_ ) def __snake_case ( self ) -> List[Any]: lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowerCAmelCase = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(A_ ) lowerCAmelCase = -1 lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(A_ ) lowerCAmelCase = model.generate(A_ , max_new_tokens=10 , do_sample=A_ ) lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) lowerCAmelCase = TextIteratorStreamer(A_ ) lowerCAmelCase = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} lowerCAmelCase = Thread(target=model.generate , kwargs=A_ ) thread.start() lowerCAmelCase = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(A_ , A_ ) def __snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowerCAmelCase = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(A_ ) lowerCAmelCase = -1 lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(A_ ) lowerCAmelCase = model.generate(A_ , max_new_tokens=10 , do_sample=A_ ) lowerCAmelCase = greedy_ids[:, input_ids.shape[1] :] lowerCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase = TextStreamer(A_ , skip_prompt=A_ ) model.generate(A_ , max_new_tokens=10 , do_sample=A_ , streamer=A_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase = cs.out[:-1] self.assertEqual(A_ , A_ ) def __snake_case ( self ) -> int: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCAmelCase = AutoTokenizer.from_pretrained("""distilgpt2""" ) lowerCAmelCase = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(A_ ) lowerCAmelCase = -1 lowerCAmelCase = torch.ones((1, 5) , device=A_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCAmelCase = TextStreamer(A_ , skip_special_tokens=A_ ) model.generate(A_ , max_new_tokens=1 , do_sample=A_ , streamer=A_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCAmelCase = cs.out[:-1] # Remove the final "\n" lowerCAmelCase = tokenizer(A_ , return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __snake_case ( self ) -> Tuple: lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowerCAmelCase = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(A_ ) lowerCAmelCase = -1 lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(A_ ) lowerCAmelCase = TextIteratorStreamer(A_ , timeout=0.0_0_1 ) lowerCAmelCase = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} lowerCAmelCase = Thread(target=model.generate , kwargs=A_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(A_ ): lowerCAmelCase = """""" for new_text in streamer: streamer_text += new_text
344
1
from __future__ import annotations def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = sum(_UpperCAmelCase) create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return result def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): if sum(_UpperCAmelCase) > max_sum or (remaining_nums_sum + sum(_UpperCAmelCase)) < max_sum: return if sum(_UpperCAmelCase) == max_sum: result.append(_UpperCAmelCase) return for index in range(_UpperCAmelCase , len(_UpperCAmelCase)): create_state_space_tree( _UpperCAmelCase , _UpperCAmelCase , index + 1 , [*path, nums[index]] , _UpperCAmelCase , remaining_nums_sum - nums[index] , ) a_ : Tuple = [3, 34, 4, 12, 5, 2] a_ : str = 9 a_ : Dict = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
73
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=1_3 , UpperCAmelCase__ : Optional[Any]=7 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Optional[int]=9_9 , UpperCAmelCase__ : Dict=3_2 , UpperCAmelCase__ : List[str]=5 , UpperCAmelCase__ : Optional[int]=4 , UpperCAmelCase__ : Union[str, Any]=3_7 , UpperCAmelCase__ : Tuple="gelu" , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : int=5_1_2 , UpperCAmelCase__ : List[str]=1_6 , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : str=4 , UpperCAmelCase__ : List[Any]=None , ) -> Any: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase_ ( self : int ) -> Dict: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = BioGptModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , ) -> List[Any]: __SCREAMING_SNAKE_CASE = BioGptForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , *UpperCAmelCase__ : Optional[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE = BioGptModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # create attention mask __SCREAMING_SNAKE_CASE = torch.ones(input_ids.shape , dtype=torch.long , device=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.seq_length // 2 __SCREAMING_SNAKE_CASE = 0 # first forward pass __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ).to_tuple() # create hypothetical next token and extent to next_input_ids __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids __SCREAMING_SNAKE_CASE = ids_tensor((1,) , UpperCAmelCase__ ).item() + 1 __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = random_other_next_tokens # append to next input_ids and attn_mask __SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) __SCREAMING_SNAKE_CASE = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=UpperCAmelCase__ )] , dim=1 , ) # get two different outputs __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )["last_hidden_state"] __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )["last_hidden_state"] # select random slice __SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE = output_from_no_past[:, -1, random_slice_idx].detach() __SCREAMING_SNAKE_CASE = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , *UpperCAmelCase__ : Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = BioGptModel(config=UpperCAmelCase__ ).to(UpperCAmelCase__ ).eval() __SCREAMING_SNAKE_CASE = torch.ones(input_ids.shape , dtype=torch.long , device=UpperCAmelCase__ ) # first forward pass __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) __SCREAMING_SNAKE_CASE = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )["last_hidden_state"] __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ )[ "last_hidden_state" ] # select random slice __SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() __SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any , *UpperCAmelCase__ : Any , UpperCAmelCase__ : int=False ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = BioGptForCausalLM(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) if gradient_checkpointing: model.gradient_checkpointing_enable() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : str , *UpperCAmelCase__ : Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = BioGptModel(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , *UpperCAmelCase__ : Dict ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = BioGptForTokenClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Union[str, Any] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) snake_case__ : Optional[int] = (BioGptForCausalLM,) if is_torch_available() else () snake_case__ : Tuple = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : Optional[Any] = False def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: __SCREAMING_SNAKE_CASE = BioGptModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : int ) -> int: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> Any: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*UpperCAmelCase__ , gradient_checkpointing=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Any: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : int ) -> List[str]: __SCREAMING_SNAKE_CASE = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) __SCREAMING_SNAKE_CASE = "left" # Define PAD Token = EOS Token = 50256 __SCREAMING_SNAKE_CASE = tokenizer.eos_token __SCREAMING_SNAKE_CASE = model.config.eos_token_id # use different length sentences to test batching __SCREAMING_SNAKE_CASE = [ "Hello, my dog is a little", "Today, I", ] __SCREAMING_SNAKE_CASE = tokenizer(UpperCAmelCase__ , return_tensors="pt" , padding=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = inputs["input_ids"].to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.generate( input_ids=UpperCAmelCase__ , attention_mask=inputs["attention_mask"].to(UpperCAmelCase__ ) , ) __SCREAMING_SNAKE_CASE = tokenizer(sentences[0] , return_tensors="pt" ).input_ids.to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.generate(input_ids=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() __SCREAMING_SNAKE_CASE = tokenizer(sentences[1] , return_tensors="pt" ).input_ids.to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.generate(input_ids=UpperCAmelCase__ , max_length=model.config.max_length - num_paddings ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = [ "Hello, my dog is a little bit bigger than a little bit.", "Today, I have a good idea of how to use the information", ] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , [non_padded_sentence, padded_sentence] ) @slow def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = BioGptModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Dict: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = input_dict["input_ids"] __SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = BioGptForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ ( self : List[Any] ) -> str: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = "multi_label_classification" __SCREAMING_SNAKE_CASE = input_dict["input_ids"] __SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __SCREAMING_SNAKE_CASE = BioGptForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" @slow def UpperCAmelCase_ ( self : int ) -> List[Any]: __SCREAMING_SNAKE_CASE = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) __SCREAMING_SNAKE_CASE = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = 4_2_3_8_4 __SCREAMING_SNAKE_CASE = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.tensor( [[[-9.5_236, -9.8_918, 10.4_557], [-11.0_469, -9.6_423, 8.1_022], [-8.8_664, -7.8_826, 5.5_325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: __SCREAMING_SNAKE_CASE = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) __SCREAMING_SNAKE_CASE = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(UpperCAmelCase__ ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = tokenizer("COVID-19 is" , return_tensors="pt" ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.generate( **UpperCAmelCase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = ( "COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the" " causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and" " territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK)," " and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and" " more than 800,000 deaths." ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
682
0
'''simple docstring''' from collections.abc import Callable import numpy as np def __UpperCamelCase ( _A : Tuple , _A : Any , _A : Any , _A : Tuple , _A : Dict ) -> np.array: """simple docstring""" lowerCAmelCase : List[Any] = int(np.ceil((x_end - xa) / step_size ) ) lowerCAmelCase : Tuple = np.zeros((n + 1,) ) lowerCAmelCase : Tuple = ya lowerCAmelCase : Tuple = xa for k in range(_A ): lowerCAmelCase : Dict = y[k] + step_size * ode_func(_A , y[k] ) lowerCAmelCase : Optional[Any] = y[k] + ( (step_size / 2) * (ode_func(_A , y[k] ) + ode_func(x + step_size , _A )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase : str = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=10_00 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=5_12 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) lowerCAmelCase : Any = parser.parse_args() return args def __UpperCamelCase ( _A : Optional[int] ) -> int: """simple docstring""" def fn(_A : Tuple ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] for i in range(len(tokenized_data['input_ids'] ) ): lowerCAmelCase : Optional[Any] = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } lowerCAmelCase : Any = tf.train.Features(feature=_A ) lowerCAmelCase : List[str] = tf.train.Example(features=_A ) lowerCAmelCase : Tuple = example.SerializeToString() records.append(_A ) return records def __UpperCamelCase ( _A : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCAmelCase : Optional[Any] = min(len(_A ) , args.limit ) lowerCAmelCase : Dict = dataset.select(range(_A ) ) print(F"Limiting the dataset to {args.limit} entries." ) lowerCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: lowerCAmelCase : List[Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCAmelCase : Any = tokenize_function(_A ) lowerCAmelCase : Optional[int] = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_A : str ): # Concatenate all texts. lowerCAmelCase : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCAmelCase : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCAmelCase : List[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCAmelCase : str = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCAmelCase : List[Any] = dataset_tokenized.map(_A , batched=_A , batch_size=10_00 , num_proc=4 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 0 for shard in range(0 , len(_A ) , args.shard_size ): lowerCAmelCase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] lowerCAmelCase : List[str] = len(dataset_snapshot['input_ids'] ) lowerCAmelCase : Union[str, Any] = os.path.join(_A , F"dataset-{shard_count}-{records_containing}.tfrecord" ) lowerCAmelCase : List[Any] = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): lowerCAmelCase : Union[str, Any] = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , 'w' ) as f: print(F"Total {args.split} records: {total_records}" , file=_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() main(args)
646
0
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets __lowercase : Optional[Any] =datasets.logging.get_logger(__name__) __lowercase : Optional[Any] ="""\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } """ __lowercase : List[str] ="""\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project's README at https://github.com/google-research/bleurt#readme for more information. """ __lowercase : Optional[Any] =""" BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: 'scores': List of scores. Examples: >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> bleurt = datasets.load_metric(\"bleurt\") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results[\"scores\"]]) [1.03, 1.04] """ __lowercase : str ={ """bleurt-tiny-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip""", """bleurt-tiny-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip""", """bleurt-base-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip""", """bleurt-base-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip""", """bleurt-large-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip""", """bleurt-large-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip""", """BLEURT-20-D3""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip""", """BLEURT-20-D6""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip""", """BLEURT-20-D12""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip""", """BLEURT-20""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip""", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/google-research/bleurt" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/bleurt"] , reference_urls=["https://github.com/google-research/bleurt", "https://arxiv.org/abs/2004.04696"] , ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: List[Any] ) -> Tuple: '''simple docstring''' if self.config_name == "default": logger.warning( "Using default BLEURT-Base checkpoint for sequence maximum length 128. " "You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512')." ) UpperCAmelCase_ ="bleurt-base-128" if self.config_name.lower() in CHECKPOINT_URLS: UpperCAmelCase_ =self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: UpperCAmelCase_ =self.config_name.upper() else: raise KeyError( F'{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}' ) # download the model checkpoint specified by self.config_name and set up the scorer UpperCAmelCase_ =dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) UpperCAmelCase_ =score.BleurtScorer(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Tuple ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.scorer.score(references=_lowerCAmelCase , candidates=_lowerCAmelCase ) return {"scores": scores}
54
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) class a_ ( SCREAMING_SNAKE_CASE__ ): def __init__( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ = nn.ModuleList(SCREAMING_SNAKE_CASE ) def A_( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = True , ) -> Union[ControlNetOutput, Tuple]: """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.nets ) ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = controlnet( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) # merge samples if i == 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = down_samples, mid_sample else: SCREAMING_SNAKE_CASE_ = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def A_( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = save_directory for controlnet in self.nets: controlnet.save_pretrained( SCREAMING_SNAKE_CASE , is_main_process=SCREAMING_SNAKE_CASE , save_function=SCREAMING_SNAKE_CASE , safe_serialization=SCREAMING_SNAKE_CASE , variant=SCREAMING_SNAKE_CASE , ) idx += 1 SCREAMING_SNAKE_CASE_ = model_path_to_save + f'_{idx}' @classmethod def A_( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... SCREAMING_SNAKE_CASE_ = pretrained_model_path while os.path.isdir(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ = ControlNetModel.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) controlnets.append(SCREAMING_SNAKE_CASE ) idx += 1 SCREAMING_SNAKE_CASE_ = pretrained_model_path + f'_{idx}' logger.info(f'{len(SCREAMING_SNAKE_CASE )} controlnets loaded from {pretrained_model_path}.' ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError( f'No ControlNets found under {os.path.dirname(SCREAMING_SNAKE_CASE )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(SCREAMING_SNAKE_CASE )
205
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __A : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , lowerCamelCase__=0 , ): """simple docstring""" __UpperCamelCase : Union[str, Any] =parent __UpperCamelCase : Optional[int] =batch_size __UpperCamelCase : Optional[Any] =seq_length __UpperCamelCase : Union[str, Any] =is_training __UpperCamelCase : Dict =use_input_mask __UpperCamelCase : List[Any] =use_token_type_ids __UpperCamelCase : Any =use_labels __UpperCamelCase : int =vocab_size __UpperCamelCase : Dict =hidden_size __UpperCamelCase : int =num_hidden_layers __UpperCamelCase : Any =num_attention_heads __UpperCamelCase : Dict =intermediate_size __UpperCamelCase : int =hidden_act __UpperCamelCase : int =hidden_dropout_prob __UpperCamelCase : str =attention_probs_dropout_prob __UpperCamelCase : List[Any] =max_position_embeddings __UpperCamelCase : List[str] =type_vocab_size __UpperCamelCase : Union[str, Any] =type_sequence_label_size __UpperCamelCase : Optional[int] =initializer_range __UpperCamelCase : int =num_labels __UpperCamelCase : List[Any] =num_choices __UpperCamelCase : int =scope __UpperCamelCase : List[Any] =projection_dim def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : str =None if self.use_input_mask: # follow test_modeling_tf_ctrl.py __UpperCamelCase : Optional[int] =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : Union[str, Any] =None if self.use_token_type_ids: __UpperCamelCase : Any =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase : List[str] =None __UpperCamelCase : Dict =None __UpperCamelCase : Union[str, Any] =None if self.use_labels: __UpperCamelCase : int =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase : Tuple =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase : List[str] =BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) __UpperCamelCase : str =DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =TFDPRContextEncoder(config=lowerCamelCase__ ) __UpperCamelCase : str =model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) __UpperCamelCase : List[str] =model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) __UpperCamelCase : List[str] =model(lowerCamelCase__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] =TFDPRQuestionEncoder(config=lowerCamelCase__ ) __UpperCamelCase : Tuple =model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) __UpperCamelCase : List[Any] =model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =model(lowerCamelCase__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : int =TFDPRReader(config=lowerCamelCase__ ) __UpperCamelCase : Optional[int] =model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =self.prepare_config_and_inputs() ( __UpperCamelCase ) : Dict =config_and_inputs __UpperCamelCase : int ={'input_ids': input_ids} return config, inputs_dict @require_tf class __A ( a , a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Any =( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) UpperCamelCase__ : Optional[Any] ={"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} UpperCamelCase__ : int =False UpperCamelCase__ : int =False UpperCamelCase__ : Optional[int] =False UpperCamelCase__ : str =False UpperCamelCase__ : Union[str, Any] =False def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =TFDPRModelTester(self ) __UpperCamelCase : Tuple =ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : List[str] =TFDPRContextEncoder.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : List[Any] =TFDPRContextEncoder.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Union[str, Any] =TFDPRQuestionEncoder.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : List[Any] =TFDPRReader.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf class __A ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) __UpperCamelCase : Union[str, Any] =tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] __UpperCamelCase : Union[str, Any] =model(lowerCamelCase__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. __UpperCamelCase : Dict =tf.constant( [ [ 0.03_236_253, 0.12_753_335, 0.16_818_509, 0.00_279_786, 0.3_896_933, 0.24_264_945, 0.2_178_971, -0.02_335_227, -0.08_481_959, -0.14_324_117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
716
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: A_ :List[str] = None A_ :Dict = logging.get_logger(__name__) A_ :Tuple = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} A_ :Union[str, Any] = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''', }, } A_ :Union[str, Any] = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } A_ :Any = '''▁''' # Segments (not really needed) A_ :Tuple = 0 A_ :Union[str, Any] = 1 A_ :Tuple = 2 A_ :str = 3 A_ :int = 4 class __A ( a ): """simple docstring""" UpperCamelCase__ : List[str] =VOCAB_FILES_NAMES UpperCamelCase__ : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Dict ="""left""" UpperCamelCase__ : int =XLNetTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<sep>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<cls>" , lowerCamelCase__="<mask>" , lowerCamelCase__=["<eop>", "<eod>"] , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Optional[Any] =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( vocab_file=lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) __UpperCamelCase : Union[str, Any] =3 __UpperCamelCase : Optional[int] =do_lower_case __UpperCamelCase : Optional[Any] =remove_space __UpperCamelCase : Union[str, Any] =keep_accents __UpperCamelCase : Optional[Any] =vocab_file __UpperCamelCase : List[str] =False if not self.vocab_file else True def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : List[str] =[self.sep_token_id] __UpperCamelCase : str =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : Tuple =[self.sep_token_id] __UpperCamelCase : Dict =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase : Tuple =os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
154
0
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowercase__ : str = logging.getLogger(__name__) def _lowerCAmelCase ( __snake_case : Tuple , __snake_case : Optional[int] ) -> Optional[int]: __A : Tuple = np.argmax(__snake_case , axis=1 ) return np.sum(outputs == labels ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> int: with open(__snake_case , encoding='utf_8' ) as f: __A : Dict = csv.reader(__snake_case ) __A : Optional[Any] = [] next(__snake_case ) # skip the first line for line in tqdm(__snake_case ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _lowerCAmelCase ( __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : List[str] , __snake_case : Union[str, Any] ) -> Any: __A : List[str] = [] for dataset in encoded_datasets: __A : Tuple = len(__snake_case ) __A : List[str] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __A : Dict = np.zeros((n_batch, 2) , dtype=np.intaa ) __A : Dict = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) __A : Any = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(__snake_case ): __A : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __A : Any = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __A : int = with_conta __A : str = with_conta __A : Optional[int] = len(__snake_case ) - 1 __A : List[Any] = len(__snake_case ) - 1 __A : List[Any] = with_conta __A : Tuple = with_conta __A : Dict = mc_label __A : List[str] = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(__snake_case ) for t in all_inputs ) ) return tensor_datasets def _lowerCAmelCase ( ) -> Union[str, Any]: __A : Tuple = argparse.ArgumentParser() parser.add_argument('--model_name' , type=__snake_case , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=__snake_case , type=__snake_case , required=__snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=__snake_case , default='' ) parser.add_argument('--eval_dataset' , type=__snake_case , default='' ) parser.add_argument('--seed' , type=__snake_case , default=42 ) parser.add_argument('--num_train_epochs' , type=__snake_case , default=3 ) parser.add_argument('--train_batch_size' , type=__snake_case , default=8 ) parser.add_argument('--eval_batch_size' , type=__snake_case , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=__snake_case , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=__snake_case , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=__snake_case , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=__snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=__snake_case , default=6.2_5e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=__snake_case , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=__snake_case , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=__snake_case , default=0.01 ) parser.add_argument('--lm_coef' , type=__snake_case , default=0.9 ) parser.add_argument('--n_valid' , type=__snake_case , default=3_74 ) parser.add_argument('--server_ip' , type=__snake_case , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__snake_case , default='' , help='Can be used for distant debugging.' ) __A : List[Any] = parser.parse_args() print(__snake_case ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__snake_case ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __A : str = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __A : List[Any] = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(__snake_case , __snake_case ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __A : Optional[Any] = ['_start_', '_delimiter_', '_classify_'] __A : Tuple = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(__snake_case ) __A : int = tokenizer.convert_tokens_to_ids(__snake_case ) __A : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(__snake_case ) ) model.to(__snake_case ) # Load and encode the datasets def tokenize_and_encode(__snake_case : Optional[Any] ): if isinstance(__snake_case , __snake_case ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__snake_case ) ) elif isinstance(__snake_case , __snake_case ): return obj return [tokenize_and_encode(__snake_case ) for o in obj] logger.info('Encoding dataset...' ) __A : Tuple = load_rocstories_dataset(args.train_dataset ) __A : List[Any] = load_rocstories_dataset(args.eval_dataset ) __A : Any = (train_dataset, eval_dataset) __A : List[Any] = tokenize_and_encode(__snake_case ) # Compute the max input length for the Transformer __A : Dict = model.config.n_positions // 2 - 2 __A : Any = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __A : Optional[Any] = min(__snake_case , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __A : str = pre_process_datasets(__snake_case , __snake_case , __snake_case , *__snake_case ) __A ,__A : Optional[int] = tensor_datasets[0], tensor_datasets[1] __A : str = TensorDataset(*__snake_case ) __A : Optional[int] = RandomSampler(__snake_case ) __A : Optional[Any] = DataLoader(__snake_case , sampler=__snake_case , batch_size=args.train_batch_size ) __A : Optional[Any] = TensorDataset(*__snake_case ) __A : str = SequentialSampler(__snake_case ) __A : Tuple = DataLoader(__snake_case , sampler=__snake_case , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __A : Any = args.max_steps __A : Optional[int] = args.max_steps // (len(__snake_case ) // args.gradient_accumulation_steps) + 1 else: __A : Any = len(__snake_case ) // args.gradient_accumulation_steps * args.num_train_epochs __A : Optional[Any] = list(model.named_parameters() ) __A : List[Any] = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] __A : str = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] __A : Optional[Any] = AdamW(__snake_case , lr=args.learning_rate , eps=args.adam_epsilon ) __A : List[str] = get_linear_schedule_with_warmup( __snake_case , num_warmup_steps=args.warmup_steps , num_training_steps=__snake_case ) if args.do_train: __A ,__A ,__A : Tuple = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): __A : str = 0 __A : str = 0 __A : Tuple = tqdm(__snake_case , desc='Training' ) for step, batch in enumerate(__snake_case ): __A : Tuple = tuple(t.to(__snake_case ) for t in batch ) __A ,__A ,__A ,__A : List[str] = batch __A : str = model(__snake_case , mc_token_ids=__snake_case , lm_labels=__snake_case , mc_labels=__snake_case ) __A : Dict = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __A : Tuple = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __A : List[str] = 'Training loss: {:.2e} lr: {:.2e}'.format(__snake_case , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __A : Dict = model.module if hasattr(__snake_case , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __A : int = os.path.join(args.output_dir , __snake_case ) __A : List[str] = os.path.join(args.output_dir , __snake_case ) torch.save(model_to_save.state_dict() , __snake_case ) model_to_save.config.to_json_file(__snake_case ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __A : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __A : List[str] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(__snake_case ) if args.do_eval: model.eval() __A ,__A : Dict = 0, 0 __A ,__A : Any = 0, 0 for batch in tqdm(__snake_case , desc='Evaluating' ): __A : int = tuple(t.to(__snake_case ) for t in batch ) __A ,__A ,__A ,__A : Any = batch with torch.no_grad(): __A ,__A ,__A ,__A : Any = model( __snake_case , mc_token_ids=__snake_case , lm_labels=__snake_case , mc_labels=__snake_case ) __A : Optional[Any] = mc_logits.detach().cpu().numpy() __A : List[str] = mc_labels.to('cpu' ).numpy() __A : Union[str, Any] = accuracy(__snake_case , __snake_case ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __A : Optional[Any] = eval_loss / nb_eval_steps __A : Any = eval_accuracy / nb_eval_examples __A : Union[str, Any] = tr_loss / nb_tr_steps if args.do_train else None __A : Any = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} __A : str = os.path.join(args.output_dir , 'eval_results.txt' ) with open(__snake_case , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , __snake_case , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowercase__ : int = int(input('''Enter number: ''').strip()) print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
8
1
'''simple docstring''' import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy __lowerCAmelCase : List[str] = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { "artists_file": "artists.json", "lyrics_file": "lyrics.json", "genres_file": "genres.json", } __lowerCAmelCase : Any = { "artists_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json", }, "genres_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json", }, "lyrics_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json", }, } __lowerCAmelCase : Dict = { "jukebox": 512, } class A ( UpperCAmelCase ): a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_LYRIC_TOKENS_SIZES a_ = ['''input_ids''', '''attention_mask'''] def __init__( self : int , __a : str , __a : Optional[int] , __a : Tuple , __a : Union[str, Any]=["v3", "v2", "v2"] , __a : List[Any]=5_1_2 , __a : Tuple=5 , __a : List[Any]="<|endoftext|>" , **__a : Optional[Any] , ) -> Any: __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else unk_token super().__init__( unk_token=__a , n_genres=__a , version=__a , max_n_lyric_tokens=__a , **__a , ) __UpperCAmelCase = version __UpperCAmelCase = max_n_lyric_tokens __UpperCAmelCase = n_genres with open(__a , encoding='''utf-8''' ) as vocab_handle: __UpperCAmelCase = json.load(__a ) with open(__a , encoding='''utf-8''' ) as vocab_handle: __UpperCAmelCase = json.load(__a ) with open(__a , encoding='''utf-8''' ) as vocab_handle: __UpperCAmelCase = json.load(__a ) __UpperCAmelCase = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: __UpperCAmelCase = oov.replace(r'''\-\'''' , r'''\-+\'''' ) __UpperCAmelCase = regex.compile(__a ) __UpperCAmelCase = {v: k for k, v in self.artists_encoder.items()} __UpperCAmelCase = {v: k for k, v in self.genres_encoder.items()} __UpperCAmelCase = {v: k for k, v in self.lyrics_encoder.items()} @property def snake_case__ ( self : Optional[int] ) -> List[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def snake_case__ ( self : Dict ) -> Optional[Any]: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def snake_case__ ( self : Optional[Any] , __a : List[Any] , __a : Tuple , __a : Optional[int] ) -> List[Any]: __UpperCAmelCase = [self.artists_encoder.get(__a , 0 ) for artist in list_artists] for genres in range(len(__a ) ): __UpperCAmelCase = [self.genres_encoder.get(__a , 0 ) for genre in list_genres[genres]] __UpperCAmelCase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __UpperCAmelCase = [[self.lyrics_encoder.get(__a , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def snake_case__ ( self : List[str] , __a : List[Any] ) -> Optional[int]: return list(__a ) def snake_case__ ( self : Union[str, Any] , __a : Union[str, Any] , __a : Any , __a : str , **__a : Optional[Any] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.prepare_for_tokenization(__a , __a , __a ) __UpperCAmelCase = self._tokenize(__a ) return artist, genre, lyrics def snake_case__ ( self : int , __a : str , __a : str , __a : str , __a : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": __UpperCAmelCase = artists[idx].lower() __UpperCAmelCase = [genres[idx].lower()] else: __UpperCAmelCase = self._normalize(artists[idx] ) + '''.v2''' __UpperCAmelCase = [ self._normalize(__a ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __UpperCAmelCase = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) __UpperCAmelCase = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' __UpperCAmelCase = {vocab[index]: index + 1 for index in range(len(__a ) )} __UpperCAmelCase = 0 __UpperCAmelCase = len(__a ) + 1 __UpperCAmelCase = self.vocab __UpperCAmelCase = {v: k for k, v in self.vocab.items()} __UpperCAmelCase = '''''' else: __UpperCAmelCase = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) __UpperCAmelCase = self._run_strip_accents(__a ) __UpperCAmelCase = lyrics.replace('''\\''' , '''\n''' ) __UpperCAmelCase = self.out_of_vocab.sub('''''' , __a ), [], [] return artists, genres, lyrics def snake_case__ ( self : Optional[int] , __a : Tuple ) -> Optional[int]: __UpperCAmelCase = unicodedata.normalize('''NFD''' , __a ) __UpperCAmelCase = [] for char in text: __UpperCAmelCase = unicodedata.category(__a ) if cat == "Mn": continue output.append(__a ) return "".join(__a ) def snake_case__ ( self : int , __a : str ) -> str: __UpperCAmelCase = ( [chr(__a ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )] + [chr(__a ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )] + [chr(__a ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )] + ['''.'''] ) __UpperCAmelCase = frozenset(__a ) __UpperCAmelCase = re.compile(r'''_+''' ) __UpperCAmelCase = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) __UpperCAmelCase = pattern.sub('''_''' , __a ).strip('''_''' ) return text def snake_case__ ( self : Union[str, Any] , __a : List[str] ) -> str: return " ".join(__a ) def snake_case__ ( self : List[str] , __a : Dict , __a : Optional[Union[str, TensorType]] = None , __a : bool = False ) -> Union[str, Any]: # Convert to TensorType if not isinstance(__a , __a ): __UpperCAmelCase = TensorType(__a ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf __UpperCAmelCase = tf.constant __UpperCAmelCase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch __UpperCAmelCase = torch.tensor __UpperCAmelCase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 __UpperCAmelCase = jnp.array __UpperCAmelCase = _is_jax else: __UpperCAmelCase = np.asarray __UpperCAmelCase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __UpperCAmelCase = [inputs] if not is_tensor(__a ): __UpperCAmelCase = as_tensor(__a ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self : Dict , __a : Optional[int] , __a : Union[str, Any] , __a : int="" , __a : Dict="pt" ) -> BatchEncoding: __UpperCAmelCase = [0, 0, 0] __UpperCAmelCase = [artist] * len(self.version ) __UpperCAmelCase = [genres] * len(self.version ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.tokenize(__a , __a , __a ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self._convert_token_to_id(__a , __a , __a ) __UpperCAmelCase = [-INFINITY] * len(full_tokens[-1] ) __UpperCAmelCase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=__a ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def snake_case__ ( self : Tuple , __a : str , __a : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=__a ) ) __UpperCAmelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=__a ) ) __UpperCAmelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=__a ) ) return (artists_file, genres_file, lyrics_file) def snake_case__ ( self : List[Any] , __a : Dict , __a : str , __a : str ) -> str: __UpperCAmelCase = self.artists_decoder.get(__a ) __UpperCAmelCase = [self.genres_decoder.get(__a ) for genre in genres_index] __UpperCAmelCase = [self.lyrics_decoder.get(__a ) for character in lyric_index] return artist, genres, lyrics
654
'''simple docstring''' from ...configuration_utils import PretrainedConfig class A ( UpperCAmelCase ): a_ = '''bert-generation''' def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
654
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase: int = logging.get_logger(__name__) __UpperCamelCase: Any = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class __lowerCAmelCase ( _UpperCamelCase ): '''simple docstring''' _A = "data2vec-vision" def __init__( self: Dict, lowerCamelCase_: Optional[int]=768, lowerCamelCase_: str=12, lowerCamelCase_: str=12, lowerCamelCase_: Any=3072, lowerCamelCase_: Any="gelu", lowerCamelCase_: Union[str, Any]=0.0, lowerCamelCase_: List[Any]=0.0, lowerCamelCase_: Tuple=0.0_2, lowerCamelCase_: Optional[Any]=1E-12, lowerCamelCase_: Any=224, lowerCamelCase_: List[Any]=16, lowerCamelCase_: Union[str, Any]=3, lowerCamelCase_: str=False, lowerCamelCase_: Optional[Any]=False, lowerCamelCase_: Optional[Any]=False, lowerCamelCase_: Any=False, lowerCamelCase_: Union[str, Any]=0.1, lowerCamelCase_: Tuple=0.1, lowerCamelCase_: str=True, lowerCamelCase_: Optional[Any]=[3, 5, 7, 11], lowerCamelCase_: Optional[int]=[1, 2, 3, 6], lowerCamelCase_: str=True, lowerCamelCase_: Optional[int]=0.4, lowerCamelCase_: Any=256, lowerCamelCase_: Optional[Any]=1, lowerCamelCase_: List[str]=False, lowerCamelCase_: str=255, **lowerCamelCase_: Dict, ): super().__init__(**lowerCamelCase_ ) lowercase__ : Optional[Any] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : Optional[int] = attention_probs_dropout_prob lowercase__ : List[Any] = initializer_range lowercase__ : Any = layer_norm_eps lowercase__ : Union[str, Any] = image_size lowercase__ : List[Any] = patch_size lowercase__ : List[str] = num_channels lowercase__ : Optional[int] = use_mask_token lowercase__ : Union[str, Any] = use_absolute_position_embeddings lowercase__ : Any = use_relative_position_bias lowercase__ : Any = use_shared_relative_position_bias lowercase__ : Optional[Any] = layer_scale_init_value lowercase__ : Dict = drop_path_rate lowercase__ : Dict = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__ : Any = out_indices lowercase__ : int = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__ : int = use_auxiliary_head lowercase__ : Dict = auxiliary_loss_weight lowercase__ : List[Any] = auxiliary_channels lowercase__ : List[Any] = auxiliary_num_convs lowercase__ : Union[str, Any] = auxiliary_concat_input lowercase__ : str = semantic_loss_ignore_index class __lowerCAmelCase ( _UpperCamelCase ): '''simple docstring''' _A = version.parse("1.11" ) @property def snake_case__( self: Dict ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case__( self: List[str] ): return 1E-4
266
import argparse import os import re __UpperCamelCase: Any = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __UpperCamelCase: Dict = re.compile(r"""[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict""") # re pattern that matches identifiers in mappings __UpperCamelCase: List[str] = re.compile(r"""\s*\(\s*\"(\S[^\"]+)\"""") def SCREAMING_SNAKE_CASE__ ( _lowercase : int , _lowercase : bool = False ) -> List[str]: '''simple docstring''' with open(_lowercase , 'r' , encoding='utf-8' ) as f: lowercase__ : Union[str, Any] = f.read() lowercase__ : Optional[Any] = content.split('\n' ) lowercase__ : Optional[int] = [] lowercase__ : int = 0 while line_idx < len(_lowercase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: lowercase__ : Tuple = len(re.search(r'^(\s*)\S' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(' ' * indent + '(' ): new_lines.append(lines[line_idx] ) line_idx += 1 lowercase__ : Tuple = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": lowercase__ : Any = line_idx while not lines[line_idx].startswith(' ' * indent + ')' ): line_idx += 1 blocks.append('\n'.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers lowercase__ : List[str] = sorted(_lowercase , key=lambda _lowercase : _re_identifier.search(_lowercase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_lowercase , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(_lowercase ) ) elif "\n".join(_lowercase ) != content: return True def SCREAMING_SNAKE_CASE__ ( _lowercase : bool = False ) -> List[Any]: '''simple docstring''' lowercase__ : List[Any] = [os.path.join(_lowercase , _lowercase ) for f in os.listdir(_lowercase ) if f.endswith('.py' )] lowercase__ : str = [sort_auto_mapping(_lowercase , overwrite=_lowercase ) for fname in fnames] if not overwrite and any(_lowercase ): lowercase__ : List[Any] = [f for f, d in zip(_lowercase , _lowercase ) if d] raise ValueError( f"""The following files have auto mappings that need sorting: {", ".join(_lowercase )}. Run `make style` to fix""" ' this.' ) if __name__ == "__main__": __UpperCamelCase: Tuple = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") __UpperCamelCase: List[Any] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
266
1
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path __A =( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) __A =[ord(letter) for letter in string.ascii_lowercase] __A ={ord(char) for char in VALID_CHARS} __A =["the", "be", "to", "of", "and", "in", "that", "have"] def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = "" lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 for keychar, cipherchar in zip(cycle(lowerCamelCase__ ) , lowerCamelCase__ ): lowerCamelCase_ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowerCamelCase__ ) return decoded def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = [] for key in product(lowerCamelCase__ , repeat=3 ): lowerCamelCase_ = try_key(lowerCamelCase__ , lowerCamelCase__ ) if encoded is not None: possibles.append(lowerCamelCase__ ) return possibles def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): return [possible for possible in possibles if common_word in possible.lower()] def lowerCamelCase_ ( lowerCamelCase__ = "p059_cipher.txt" ): lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = Path(lowerCamelCase__ ).parent.joinpath(lowerCamelCase__ ).read_text(encoding="utf-8" ) lowerCamelCase_ = [int(lowerCamelCase__ ) for number in data.strip().split("," )] lowerCamelCase_ = filter_valid_chars(lowerCamelCase__ ) for common_word in COMMON_WORDS: lowerCamelCase_ = filter_common_word(lowerCamelCase__ , lowerCamelCase__ ) if len(lowerCamelCase__ ) == 1: break lowerCamelCase_ = possibles[0] return sum(ord(lowerCamelCase__ ) for char in decoded_text ) if __name__ == "__main__": print(F"""{solution() = }""")
313
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_( self ) -> None: lowerCamelCase_ = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCamelCase_ = Vector() def SCREAMING_SNAKE_CASE_( self ) -> None: lowerCamelCase_ = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(lowercase ) , "(0,0,0,0,0,1)" ) def SCREAMING_SNAKE_CASE_( self ) -> None: lowerCamelCase_ = Vector([1, 2, 3, 4] ) self.assertEqual(len(lowercase ) , 4 ) def SCREAMING_SNAKE_CASE_( self ) -> None: lowerCamelCase_ = Vector([1, 2] ) lowerCamelCase_ = Vector([1, 2, 3, 4, 5] ) lowerCamelCase_ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCamelCase_ = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def SCREAMING_SNAKE_CASE_( self ) -> None: lowerCamelCase_ = Vector([1, 2, 3] ) lowerCamelCase_ = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def SCREAMING_SNAKE_CASE_( self ) -> None: lowerCamelCase_ = Vector([1, 2, 3] ) lowerCamelCase_ = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def SCREAMING_SNAKE_CASE_( self ) -> None: lowerCamelCase_ = Vector([1, 2, 3] ) lowerCamelCase_ = Vector([2, -1, 4] ) # for test of dot product lowerCamelCase_ = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , "(3.0,6.0,9.0)" ) self.assertEqual((a * b) , 0 ) def SCREAMING_SNAKE_CASE_( self ) -> None: self.assertEqual(str(zero_vector(10 ) ).count("0" ) , 10 ) def SCREAMING_SNAKE_CASE_( self ) -> None: self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , "(0,1,0)" ) def SCREAMING_SNAKE_CASE_( self ) -> None: lowerCamelCase_ = Vector([1, 2, 3] ) lowerCamelCase_ = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , lowercase , lowercase ) ) , "(3,4,7)" ) def SCREAMING_SNAKE_CASE_( self ) -> None: lowerCamelCase_ = Vector([1, 0, 0, 0, 0, 0] ) lowerCamelCase_ = x.copy() self.assertEqual(str(lowercase ) , str(lowercase ) ) def SCREAMING_SNAKE_CASE_( self ) -> None: lowerCamelCase_ = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(lowercase ) , "(0,1,0)" ) def SCREAMING_SNAKE_CASE_( self ) -> None: lowerCamelCase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n" , str(lowercase ) ) def SCREAMING_SNAKE_CASE_( self ) -> None: lowerCamelCase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase_ = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(lowercase , lowercase ) ) def SCREAMING_SNAKE_CASE_( self ) -> None: lowerCamelCase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase_ = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(lowercase , lowercase ) ) def SCREAMING_SNAKE_CASE_( self ) -> None: lowerCamelCase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def SCREAMING_SNAKE_CASE_( self ) -> None: lowerCamelCase_ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCamelCase_ = Vector([1, 2, 3] ) self.assertEqual("(14,32,50)" , str(a * x ) ) self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n" , str(a * 2 ) ) def SCREAMING_SNAKE_CASE_( self ) -> None: lowerCamelCase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n" , str(lowercase ) ) def SCREAMING_SNAKE_CASE_( self ) -> None: lowerCamelCase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def SCREAMING_SNAKE_CASE_( self ) -> None: lowerCamelCase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n" , str(a + b ) ) def SCREAMING_SNAKE_CASE_( self ) -> None: lowerCamelCase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n" , str(a - b ) ) def SCREAMING_SNAKE_CASE_( self ) -> None: self.assertEqual( "|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
313
1
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() snake_case__ = dict(zip(_a , range(len(_a ) ) ) ) snake_case__ = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } snake_case__ = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } snake_case__ = tempfile.mkdtemp() snake_case__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case__ = os.path.join(self.tmpdirname , _a ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) # load decoder from hub snake_case__ = '''hf-internal-testing/ngram-beam-search-decoder''' def SCREAMING_SNAKE_CASE__ ( self:str , **_a:List[Any] ): snake_case__ = self.add_kwargs_tokens_map.copy() kwargs.update(_a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[str] ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , **_a:int ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.get_tokenizer() snake_case__ = self.get_feature_extractor() snake_case__ = self.get_decoder() snake_case__ = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a ) processor.save_pretrained(self.tmpdirname ) snake_case__ = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _a ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match snake_case__ = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_a , '''include''' ): WavaVecaProcessorWithLM( tokenizer=_a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.get_feature_extractor() snake_case__ = self.get_tokenizer() snake_case__ = self.get_decoder() snake_case__ = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a ) snake_case__ = floats_list((3, 10_00) ) snake_case__ = feature_extractor(_a , return_tensors='''np''' ) snake_case__ = processor(_a , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.get_feature_extractor() snake_case__ = self.get_tokenizer() snake_case__ = self.get_decoder() snake_case__ = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a ) snake_case__ = '''This is a test string''' snake_case__ = processor(text=_a ) snake_case__ = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int=(2, 10, 16) , _a:Dict=77 ): np.random.seed(_a ) return np.random.rand(*_a ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.get_feature_extractor() snake_case__ = self.get_tokenizer() snake_case__ = self.get_decoder() snake_case__ = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a ) snake_case__ = self._get_dummy_logits(shape=(10, 16) , seed=13 ) snake_case__ = processor.decode(_a ) snake_case__ = decoder.decode_beams(_a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Union[str, Any] ): snake_case__ = self.get_feature_extractor() snake_case__ = self.get_tokenizer() snake_case__ = self.get_decoder() snake_case__ = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a ) snake_case__ = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: snake_case__ = processor.batch_decode(_a ) else: with get_context(_a ).Pool() as pool: snake_case__ = processor.batch_decode(_a , _a ) snake_case__ = list(_a ) with get_context('''fork''' ).Pool() as p: snake_case__ = decoder.decode_beams_batch(_a , _a ) snake_case__ , snake_case__ , snake_case__ = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_a , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(_a , decoded_processor.logit_score ) self.assertListEqual(_a , decoded_processor.lm_score ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_feature_extractor() snake_case__ = self.get_tokenizer() snake_case__ = self.get_decoder() snake_case__ = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a ) snake_case__ = self._get_dummy_logits() snake_case__ = 15 snake_case__ = -20.0 snake_case__ = -4.0 snake_case__ = processor.batch_decode( _a , beam_width=_a , beam_prune_logp=_a , token_min_logp=_a , ) snake_case__ = decoded_processor_out.text snake_case__ = list(_a ) with get_context('''fork''' ).Pool() as pool: snake_case__ = decoder.decode_beams_batch( _a , _a , beam_width=_a , beam_prune_logp=_a , token_min_logp=_a , ) snake_case__ = [d[0][0] for d in decoded_decoder_out] snake_case__ = [d[0][2] for d in decoded_decoder_out] snake_case__ = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_a , _a ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , _a ) self.assertTrue(np.array_equal(_a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _a , atol=1e-3 ) ) self.assertTrue(np.array_equal(_a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _a , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.get_feature_extractor() snake_case__ = self.get_tokenizer() snake_case__ = self.get_decoder() snake_case__ = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a ) snake_case__ = self._get_dummy_logits() snake_case__ = 2.0 snake_case__ = 5.0 snake_case__ = -20.0 snake_case__ = True snake_case__ = processor.batch_decode( _a , alpha=_a , beta=_a , unk_score_offset=_a , lm_score_boundary=_a , ) snake_case__ = decoded_processor_out.text snake_case__ = list(_a ) decoder.reset_params( alpha=_a , beta=_a , unk_score_offset=_a , lm_score_boundary=_a , ) with get_context('''fork''' ).Pool() as pool: snake_case__ = decoder.decode_beams_batch( _a , _a , ) snake_case__ = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_a , _a ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , _a ) snake_case__ = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _a ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) snake_case__ = processor.decoder.model_container[processor.decoder._model_key] snake_case__ = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() snake_case__ = os.listdir(_a ) snake_case__ = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = snapshot_download('''hf-internal-testing/processor_with_lm''' ) snake_case__ = WavaVecaProcessorWithLM.from_pretrained(_a ) snake_case__ = processor.decoder.model_container[processor.decoder._model_key] snake_case__ = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() snake_case__ = os.listdir(_a ) snake_case__ = os.listdir(_a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) snake_case__ = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) snake_case__ = floats_list((3, 10_00) ) snake_case__ = processor_wavaveca(_a , return_tensors='''np''' ) snake_case__ = processor_auto(_a , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) snake_case__ = self._get_dummy_logits() snake_case__ = processor_wavaveca.batch_decode(_a ) snake_case__ = processor_auto.batch_decode(_a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.get_feature_extractor() snake_case__ = self.get_tokenizer() snake_case__ = self.get_decoder() snake_case__ = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:Union[str, Any] , _a:Dict ): snake_case__ = [d[key] for d in offsets] return retrieved_list def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) snake_case__ = self._get_dummy_logits()[0] snake_case__ = processor.decode(_a , output_word_offsets=_a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_a , _a ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) snake_case__ = self._get_dummy_logits() snake_case__ = processor.batch_decode(_a , output_word_offsets=_a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_a , _a ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_a , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def SCREAMING_SNAKE_CASE__ ( self:Any ): import torch snake_case__ = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=_a ) snake_case__ = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) snake_case__ = iter(_a ) snake_case__ = next(_a ) snake_case__ = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) snake_case__ = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train snake_case__ = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): snake_case__ = model(_a ).logits.cpu().numpy() snake_case__ = processor.decode(logits[0] , output_word_offsets=_a ) snake_case__ = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate snake_case__ = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] snake_case__ = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_a , '''word''' ) ) , _a ) self.assertEqual(''' '''.join(self.get_from_offsets(_a , '''word''' ) ) , output.text ) # output times snake_case__ = torch.tensor(self.get_from_offsets(_a , '''start_time''' ) ) snake_case__ = torch.tensor(self.get_from_offsets(_a , '''end_time''' ) ) # fmt: off snake_case__ = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) snake_case__ = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_a , _a , atol=0.01 ) ) self.assertTrue(torch.allclose(_a , _a , atol=0.01 ) )
33
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCamelCase__ = "CompVis/stable-diffusion-v1-1" lowerCamelCase__ = "CompVis/stable-diffusion-v1-2" lowerCamelCase__ = "CompVis/stable-diffusion-v1-3" lowerCamelCase__ = "CompVis/stable-diffusion-v1-4" class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : AutoencoderKL , __a : CLIPTextModel , __a : CLIPTokenizer , __a : UNetaDConditionModel , __a : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __a : StableDiffusionSafetyChecker , __a : CLIPImageProcessor , __a : bool = True , ) -> List[str]: super()._init_() _UpperCamelCase : Optional[int] = StableDiffusionPipeline.from_pretrained(__a ) _UpperCamelCase : int = StableDiffusionPipeline.from_pretrained(__a ) _UpperCamelCase : List[Any] = StableDiffusionPipeline.from_pretrained(__a ) _UpperCamelCase : int = StableDiffusionPipeline( vae=__a , text_encoder=__a , tokenizer=__a , unet=__a , scheduler=__a , safety_checker=__a , feature_extractor=__a , requires_safety_checker=__a , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict[str, Any]: return {k: getattr(self , __a ) for k in self.config.keys() if not k.startswith("_" )} def __SCREAMING_SNAKE_CASE ( self : Any , __a : Optional[Union[str, int]] = "auto" ) -> Optional[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCamelCase : Tuple = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Any: self.enable_attention_slicing(__a ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Union[str, List[str]] , __a : int = 512 , __a : int = 512 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : Any , ) -> Optional[int]: return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Union[str, List[str]] , __a : int = 512 , __a : int = 512 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : Tuple , ) -> str: return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Union[str, List[str]] , __a : int = 512 , __a : int = 512 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : Tuple , ) -> Any: return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Union[str, List[str]] , __a : int = 512 , __a : int = 512 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : List[Any] , ) -> Union[str, Any]: return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( self : str , __a : Union[str, List[str]] , __a : int = 512 , __a : int = 512 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : int , ) -> List[Any]: _UpperCamelCase : Tuple = "cuda" if torch.cuda.is_available() else "cpu" self.to(__a ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 _UpperCamelCase : List[str] = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get first result from Stable Diffusion Checkpoint v1.2 _UpperCamelCase : Optional[Any] = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get first result from Stable Diffusion Checkpoint v1.3 _UpperCamelCase : str = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get first result from Stable Diffusion Checkpoint v1.4 _UpperCamelCase : str = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
624
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCAmelCase__: int = random.Random() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str: if rng is None: SCREAMING_SNAKE_CASE_ : List[str] = global_rng SCREAMING_SNAKE_CASE_ : Dict = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class snake_case_ ( unittest.TestCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase=7 , __lowerCAmelCase=400 , __lowerCAmelCase=2_000 , __lowerCAmelCase=10 , __lowerCAmelCase=160 , __lowerCAmelCase=8 , __lowerCAmelCase=0.0 , __lowerCAmelCase=4_000 , __lowerCAmelCase=False , __lowerCAmelCase=True , ): SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = min_seq_length SCREAMING_SNAKE_CASE_ : Optional[Any] = max_seq_length SCREAMING_SNAKE_CASE_ : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE_ : Optional[Any] = padding_value SCREAMING_SNAKE_CASE_ : Union[str, Any] = sampling_rate SCREAMING_SNAKE_CASE_ : Any = return_attention_mask SCREAMING_SNAKE_CASE_ : Optional[Any] = do_normalize SCREAMING_SNAKE_CASE_ : Union[str, Any] = feature_size SCREAMING_SNAKE_CASE_ : int = chunk_length SCREAMING_SNAKE_CASE_ : int = hop_length def __A ( self ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __A ( self , __lowerCAmelCase=False , __lowerCAmelCase=False ): def _flatten(__lowerCAmelCase ): return list(itertools.chain(*lowercase_ ) ) if equal_length: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ : Tuple = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ : str = [np.asarray(lowercase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case_ ( snake_case__ , unittest.TestCase ): __lowerCamelCase : Union[str, Any] = WhisperFeatureExtractor if is_speech_available() else None def __A ( self ): SCREAMING_SNAKE_CASE_ : List[str] = WhisperFeatureExtractionTester(self ) def __A ( self ): SCREAMING_SNAKE_CASE_ : int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : Optional[int] = feat_extract_first.save_pretrained(lowercase_ )[0] check_json_file_has_correct_format(lowercase_ ) SCREAMING_SNAKE_CASE_ : List[str] = self.feature_extraction_class.from_pretrained(lowercase_ ) SCREAMING_SNAKE_CASE_ : Dict = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE_ : Tuple = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE_ : List[str] = feat_extract_first.mel_filters SCREAMING_SNAKE_CASE_ : int = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowercase_ , lowercase_ ) ) self.assertEqual(lowercase_ , lowercase_ ) def __A ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : str = os.path.join(lowercase_ , 'feat_extract.json' ) feat_extract_first.to_json_file(lowercase_ ) SCREAMING_SNAKE_CASE_ : Any = self.feature_extraction_class.from_json_file(lowercase_ ) SCREAMING_SNAKE_CASE_ : int = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE_ : Optional[Any] = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE_ : Dict = feat_extract_first.mel_filters SCREAMING_SNAKE_CASE_ : int = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowercase_ , lowercase_ ) ) self.assertEqual(lowercase_ , lowercase_ ) def __A ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ : Any = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ : List[str] = [np.asarray(lowercase_ ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE_ : List[Any] = feature_extractor(lowercase_ , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input SCREAMING_SNAKE_CASE_ : List[Any] = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features SCREAMING_SNAKE_CASE_ : List[Any] = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ : Tuple = feature_extractor(lowercase_ , return_tensors='np' ).input_features SCREAMING_SNAKE_CASE_ : List[Any] = feature_extractor(lowercase_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE_ : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE_ : Optional[int] = np.asarray(lowercase_ ) SCREAMING_SNAKE_CASE_ : Dict = feature_extractor(lowercase_ , return_tensors='np' ).input_features SCREAMING_SNAKE_CASE_ : Any = feature_extractor(lowercase_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) # Test truncation required SCREAMING_SNAKE_CASE_ : Tuple = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] SCREAMING_SNAKE_CASE_ : List[str] = [np.asarray(lowercase_ ) for speech_input in speech_inputs] SCREAMING_SNAKE_CASE_ : Dict = [x[: feature_extractor.n_samples] for x in speech_inputs] SCREAMING_SNAKE_CASE_ : List[Any] = [np.asarray(lowercase_ ) for speech_input in speech_inputs_truncated] SCREAMING_SNAKE_CASE_ : str = feature_extractor(lowercase_ , return_tensors='np' ).input_features SCREAMING_SNAKE_CASE_ : List[str] = feature_extractor(lowercase_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) def __A ( self ): import torch SCREAMING_SNAKE_CASE_ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.random.rand(100 , 32 ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE_ : Tuple = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) SCREAMING_SNAKE_CASE_ : int = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE_ : Any = ds.sort('id' ).select(range(lowercase_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __A ( self ): # fmt: off SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on SCREAMING_SNAKE_CASE_ : Tuple = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ : int = WhisperFeatureExtractor() SCREAMING_SNAKE_CASE_ : Optional[int] = feature_extractor(lowercase_ , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , lowercase_ , atol=1e-4 ) ) def __A ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ : Dict = self._load_datasamples(1 )[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue SCREAMING_SNAKE_CASE_ : Union[str, Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowercase_ )[0] self.assertTrue(np.all(np.mean(lowercase_ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowercase_ ) - 1 ) < 1e-3 ) )
704
from jiwer import compute_measures import datasets lowerCAmelCase__: Union[str, Any] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" lowerCAmelCase__: str = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" lowerCAmelCase__: int = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): def __A ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def __A ( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False ): if concatenate_texts: return compute_measures(__lowerCAmelCase , __lowerCAmelCase )["wer"] else: SCREAMING_SNAKE_CASE_ : List[Any] = 0 SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 for prediction, reference in zip(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple = compute_measures(__lowerCAmelCase , __lowerCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
311
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __magic_name__ : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_12 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): lowercase =parent lowercase =batch_size lowercase =seq_length lowercase =is_training lowercase =use_input_mask lowercase =use_token_type_ids lowercase =use_labels lowercase =vocab_size lowercase =hidden_size lowercase =num_hidden_layers lowercase =num_attention_heads lowercase =intermediate_size lowercase =hidden_act lowercase =hidden_dropout_prob lowercase =attention_probs_dropout_prob lowercase =max_position_embeddings lowercase =type_vocab_size lowercase =type_sequence_label_size lowercase =initializer_range lowercase =num_labels lowercase =num_choices lowercase =scope def _A( self ): lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase =None if self.use_input_mask: lowercase =random_attention_mask([self.batch_size, self.seq_length] ) lowercase =None if self.use_token_type_ids: lowercase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase =None lowercase =None lowercase =None if self.use_labels: lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase =ids_tensor([self.batch_size] , self.num_choices ) lowercase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A( self ): return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , use_stable_embedding=snake_case_ , ) def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): lowercase =OpenLlamaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() lowercase =model(snake_case_ , attention_mask=snake_case_ ) lowercase =model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): lowercase =True lowercase =OpenLlamaModel(snake_case_ ) model.to(snake_case_ ) model.eval() lowercase =model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , ) lowercase =model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , ) lowercase =model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): lowercase =OpenLlamaForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() lowercase =model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): lowercase =True lowercase =True lowercase =OpenLlamaForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() # first forward pass lowercase =model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , use_cache=snake_case_ , ) lowercase =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase =ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase =torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase =torch.cat([input_mask, next_mask] , dim=-1 ) lowercase =model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , output_hidden_states=snake_case_ , )['''hidden_states'''][0] lowercase =model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , past_key_values=snake_case_ , output_hidden_states=snake_case_ , )['''hidden_states'''][0] # select random slice lowercase =ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase =output_from_no_past[:, -3:, random_slice_idx].detach() lowercase =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) def _A( self ): lowercase =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) =config_and_inputs lowercase ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCamelCase__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) UpperCamelCase__ = (OpenLlamaForCausalLM,) if is_torch_available() else () UpperCamelCase__ = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def _A( self ): lowercase =OpenLlamaModelTester(self ) lowercase =ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def _A( self ): self.config_tester.run_common_tests() def _A( self ): lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def _A( self ): lowercase =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase =type self.model_tester.create_and_check_model(*snake_case_ ) def _A( self ): lowercase , lowercase =self.model_tester.prepare_config_and_inputs_for_common() lowercase =3 lowercase =input_dict['''input_ids'''] lowercase =input_ids.ne(1 ).to(snake_case_ ) lowercase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase =OpenLlamaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() lowercase =model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _A( self ): lowercase , lowercase =self.model_tester.prepare_config_and_inputs_for_common() lowercase =3 lowercase ='''single_label_classification''' lowercase =input_dict['''input_ids'''] lowercase =input_ids.ne(1 ).to(snake_case_ ) lowercase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase =OpenLlamaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() lowercase =model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _A( self ): lowercase , lowercase =self.model_tester.prepare_config_and_inputs_for_common() lowercase =3 lowercase ='''multi_label_classification''' lowercase =input_dict['''input_ids'''] lowercase =input_ids.ne(1 ).to(snake_case_ ) lowercase =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase =OpenLlamaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() lowercase =model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def _A( self ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def _A( self , snake_case_ ): lowercase , lowercase =self.model_tester.prepare_config_and_inputs_for_common() lowercase =ids_tensor([1, 10] , config.vocab_size ) lowercase =ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase =OpenLlamaModel(snake_case_ ) original_model.to(snake_case_ ) original_model.eval() lowercase =original_model(snake_case_ ).last_hidden_state lowercase =original_model(snake_case_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase ={'''type''': scaling_type, '''factor''': 10.0} lowercase =OpenLlamaModel(snake_case_ ) scaled_model.to(snake_case_ ) scaled_model.eval() lowercase =scaled_model(snake_case_ ).last_hidden_state lowercase =scaled_model(snake_case_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) )
72
'''simple docstring''' def UpperCamelCase ( lowercase_ : int ) -> int: '''simple docstring''' if n == 1 or not isinstance(lowercase_ , lowercase_ ): return 0 elif n == 2: return 1 else: lowercase =[0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase ( lowercase_ : int ) -> int: '''simple docstring''' lowercase =0 lowercase =2 while digits < n: index += 1 lowercase =len(str(fibonacci(lowercase_ ) ) ) return index def UpperCamelCase ( lowercase_ : int = 1_0_0_0 ) -> int: '''simple docstring''' return fibonacci_digits_index(lowercase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
72
1
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
419
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : List[str] = tempfile.mkdtemp() snake_case__ : Tuple = BlipImageProcessor() snake_case__ : Dict = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) snake_case__ : Dict = BlipaProcessor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ).tokenizer def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ).image_processor def __UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ): snake_case__ : int = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] snake_case__ : Union[str, Any] = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase ( self ): snake_case__ : List[Any] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case__ : Optional[int] = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) snake_case__ : Any = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.get_image_processor() snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : Optional[Any] = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : str = self.prepare_image_inputs() snake_case__ : Optional[int] = image_processor(__SCREAMING_SNAKE_CASE , return_tensors="""np""" ) snake_case__ : int = processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.get_image_processor() snake_case__ : int = self.get_tokenizer() snake_case__ : List[Any] = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """lower newer""" snake_case__ : List[Any] = processor(text=__SCREAMING_SNAKE_CASE ) snake_case__ : int = tokenizer(__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self ): snake_case__ : str = self.get_image_processor() snake_case__ : int = self.get_tokenizer() snake_case__ : List[str] = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = """lower newer""" snake_case__ : Optional[int] = self.prepare_image_inputs() snake_case__ : Tuple = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE ): processor() def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.get_image_processor() snake_case__ : Optional[Any] = self.get_tokenizer() snake_case__ : int = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case__ : List[Any] = processor.batch_decode(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.get_image_processor() snake_case__ : List[Any] = self.get_tokenizer() snake_case__ : List[Any] = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = """lower newer""" snake_case__ : List[Any] = self.prepare_image_inputs() snake_case__ : Optional[Any] = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
419
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
533
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever UpperCAmelCase__ : Union[str, Any] = logging.getLogger(__name__) class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None) -> List[Any]: super().__init__( lowercase_ , question_encoder_tokenizer=lowercase_ , generator_tokenizer=lowercase_ , index=lowercase_ , init_retrieval=lowercase_ , ) __snake_case = None def _a ( self , lowercase_) -> Union[str, Any]: logger.info('initializing retrieval') # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('dist initialized') # needs to be set manually __snake_case = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case = str(distributed_port + 1) __snake_case = dist.new_group(ranks=lowercase_ , backend='gloo') # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('dist not initialized / main') self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group) def _a ( self) -> int: return dist.get_rank(group=self.process_group) == 0 def _a ( self , lowercase_ , lowercase_ , lowercase_=torch.floataa) -> Dict: __snake_case = torch.empty(lowercase_ , dtype=lowercase_) dist.scatter(lowercase_ , src=0 , scatter_list=lowercase_ , group=self.process_group) return target_tensor def _a ( self) -> str: __snake_case = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case = next((addr for addr in addrs if addr.startswith('e')) , lowercase_) return ifname def _a ( self , lowercase_ , lowercase_) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): __snake_case , __snake_case = self._main_retrieve(lowercase_ , lowercase_) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase_) # distributed training __snake_case = dist.get_world_size(group=self.process_group) # gather logic __snake_case = None if self._is_main(): __snake_case = [torch.empty(question_hidden_states.shape , dtype=torch.floataa) for _ in range(lowercase_)] dist.gather(torch.tensor(lowercase_) , dst=0 , gather_list=lowercase_ , group=self.process_group) # scatter logic __snake_case = question_hidden_states.shape[0] __snake_case = [] __snake_case = [] if self._is_main(): assert len(lowercase_) == world_size __snake_case , __snake_case = self._main_retrieve(torch.cat(lowercase_).numpy() , lowercase_) __snake_case , __snake_case = torch.tensor(lowercase_), torch.tensor(lowercase_) __snake_case = self._chunk_tensor(lowercase_ , lowercase_) __snake_case = self._chunk_tensor(lowercase_ , lowercase_) __snake_case = self._scattered(lowercase_ , [n_queries, n_docs] , target_type=torch.intaa) __snake_case = self._scattered(lowercase_ , [n_queries, n_docs, question_hidden_states.shape[1]]) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowercase_)
313
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=False ) -> Tuple: A_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" A_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=False ) -> int: for i in range(config.num_hidden_layers ): if base_model: A_ = """""" else: A_ = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) A_ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[ : config.hidden_size, : ] A_ = in_proj_bias[: config.hidden_size] A_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ = in_proj_weight[ -config.hidden_size :, : ] A_ = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Any: A_ = dct.pop(UpperCAmelCase__ ) A_ = val def UpperCAmelCase__ ( ) -> Optional[Any]: A_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> str: A_ = DeiTConfig() # all deit models have fine-tuned heads A_ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size A_ = 10_00 A_ = """huggingface/label-files""" A_ = """imagenet-1k-id2label.json""" A_ = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) ) A_ = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} A_ = int(deit_name[-6:-4] ) A_ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): A_ = 1_92 A_ = 7_68 A_ = 12 A_ = 3 elif deit_name[9:].startswith("""small""" ): A_ = 3_84 A_ = 15_36 A_ = 12 A_ = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): A_ = 10_24 A_ = 40_96 A_ = 24 A_ = 16 # load original model from timm A_ = timm.create_model(UpperCAmelCase__, pretrained=UpperCAmelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys A_ = timm_model.state_dict() A_ = create_rename_keys(UpperCAmelCase__, UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # load HuggingFace model A_ = DeiTForImageClassificationWithTeacher(UpperCAmelCase__ ).eval() model.load_state_dict(UpperCAmelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor A_ = int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 A_ = DeiTImageProcessor(size=UpperCAmelCase__, crop_size=config.image_size ) A_ = image_processor(images=prepare_img(), return_tensors="""pt""" ) A_ = encoding["""pixel_values"""] A_ = model(UpperCAmelCase__ ) A_ = timm_model(UpperCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase__, outputs.logits, atol=1e-3 ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCamelCase = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
715
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: A_ = json.load(UpperCAmelCase__ ) A_ = LukeConfig(use_entity_aware_attention=UpperCAmelCase__, **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] A_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("""<ent>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) A_ = AddedToken("""<ent2>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens A_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ = state_dict["""embeddings.word_embeddings.weight"""] A_ = word_emb[ent_init_index].unsqueeze(0 ) A_ = word_emb[enta_init_index].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ = state_dict[bias_name] A_ = decoder_bias[ent_init_index].unsqueeze(0 ) A_ = decoder_bias[enta_init_index].unsqueeze(0 ) A_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = F'''encoder.layer.{layer_index}.attention.self.''' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ = state_dict["""entity_predictions.bias"""] A_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ = state_dict[key] else: A_ = state_dict[key] A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__, task="""entity_classification""" ) A_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ = (0, 9) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 33, 7_68) ) A_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 1, 7_68) ) A_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) A_ = """Tokyo is the capital of <mask>.""" A_ = (24, 30) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = encoding["""input_ids"""][0].tolist() A_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) A_ = outputs.entity_logits[0][0].argmax().item() A_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] A_ = {} for entry in data: A_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ = entity_id break A_ = F'''{language}:{entity_name}''' A_ = entity_id return new_mapping if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
667
0
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def a ( lowerCamelCase_ ): '''simple docstring''' # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def a ( lowerCamelCase_ ): '''simple docstring''' # word like '180' or '身高' or '神' for char in word: lowercase__ = ord(lowerCamelCase_ ) if not _is_chinese_char(lowerCamelCase_ ): return 0 return 1 def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = set() for token in tokens: lowercase__ = len(lowerCamelCase_ ) > 1 and is_chinese(lowerCamelCase_ ) if chinese_word: word_set.add(lowerCamelCase_ ) lowercase__ = list(lowerCamelCase_ ) return word_list def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if not chinese_word_set: return bert_tokens lowercase__ = max([len(lowerCamelCase_ ) for w in chinese_word_set] ) lowercase__ = bert_tokens lowercase__ , lowercase__ = 0, len(lowerCamelCase_ ) while start < end: lowercase__ = True if is_chinese(bert_word[start] ): lowercase__ = min(end - start , lowerCamelCase_ ) for i in range(lowerCamelCase_ , 1 , -1 ): lowercase__ = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowercase__ = '''##''' + bert_word[j] lowercase__ = start + i lowercase__ = False break if single_word: start += 1 return bert_word def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] for i in range(0 , len(lowerCamelCase_ ) , 100 ): lowercase__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['''cws'''] ).cws lowercase__ = [get_chinese_word(lowerCamelCase_ ) for r in res] ltp_res.extend(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) lowercase__ = [] for i in range(0 , len(lowerCamelCase_ ) , 100 ): lowercase__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) lowercase__ = [] for input_ids, chinese_word in zip(lowerCamelCase_ , lowerCamelCase_ ): lowercase__ = [] for id in input_ids: lowercase__ = bert_tokenizer._convert_id_to_token(lowerCamelCase_ ) input_tokens.append(lowerCamelCase_ ) lowercase__ = add_sub_symbol(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCamelCase_ ): if token[:2] == "##": lowercase__ = token[2:] # save chinese tokens' pos if len(lowerCamelCase_ ) == 1 and _is_chinese_char(ord(lowerCamelCase_ ) ): ref_id.append(lowerCamelCase_ ) ref_ids.append(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) return ref_ids def a ( lowerCamelCase_ ): '''simple docstring''' # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: lowercase__ = f.readlines() lowercase__ = [line.strip() for line in data if len(lowerCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowercase__ = LTP(args.ltp ) # faster in GPU device lowercase__ = BertTokenizer.from_pretrained(args.bert ) lowercase__ = prepare_ref(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: lowercase__ = [json.dumps(lowerCamelCase_ ) + '''\n''' for ref in ref_ids] f.writelines(lowerCamelCase_ ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) A__ : Optional[Any] = parser.parse_args() main(args)
183
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _UpperCAmelCase ( A__ ): """simple docstring""" @slow @require_torch def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''', '''prajjwal1/bert-tiny''' ) lowercase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase__ = bertabert.config.encoder.vocab_size lowercase__ = tokenizer.sep_token_id lowercase__ = tokenizer.cls_token_id lowercase__ = 128 lowercase__ = datasets.load_dataset('''cnn_dailymail''', '''3.0.0''', split='''train[:1%]''' ) lowercase__ = datasets.load_dataset('''cnn_dailymail''', '''3.0.0''', split='''validation[:1%]''' ) lowercase__ = train_dataset.select(range(32 ) ) lowercase__ = val_dataset.select(range(16 ) ) lowercase__ = 4 def _map_to_encoder_decoder_inputs(lowerCamelCase : str ): # Tokenizer will automatically set [BOS] <text> [EOS] lowercase__ = tokenizer(batch['''article'''], padding='''max_length''', truncation=lowerCamelCase, max_length=512 ) lowercase__ = tokenizer(batch['''highlights'''], padding='''max_length''', truncation=lowerCamelCase, max_length=128 ) lowercase__ = inputs.input_ids lowercase__ = inputs.attention_mask lowercase__ = outputs.input_ids lowercase__ = outputs.input_ids.copy() lowercase__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] lowercase__ = outputs.attention_mask assert all(len(lowerCamelCase ) == 512 for x in inputs.input_ids ) assert all(len(lowerCamelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(lowerCamelCase : Any ): lowercase__ = pred.label_ids lowercase__ = pred.predictions # all unnecessary tokens are removed lowercase__ = tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase ) lowercase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowerCamelCase ) )] ) / len(lowerCamelCase ) return {"accuracy": accuracy} # map train dataset lowercase__ = train_dataset.map( _map_to_encoder_decoder_inputs, batched=lowerCamelCase, batch_size=lowerCamelCase, remove_columns=['''article''', '''highlights'''], ) train_dataset.set_format( type='''torch''', columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''], ) # same for validation dataset lowercase__ = val_dataset.map( _map_to_encoder_decoder_inputs, batched=lowerCamelCase, batch_size=lowerCamelCase, remove_columns=['''article''', '''highlights'''], ) val_dataset.set_format( type='''torch''', columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''], ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = SeqaSeqTrainingArguments( output_dir=lowerCamelCase, per_device_train_batch_size=lowerCamelCase, per_device_eval_batch_size=lowerCamelCase, predict_with_generate=lowerCamelCase, evaluation_strategy='''steps''', do_train=lowerCamelCase, do_eval=lowerCamelCase, warmup_steps=0, eval_steps=2, logging_steps=2, ) # instantiate trainer lowercase__ = SeqaSeqTrainer( model=lowerCamelCase, args=lowerCamelCase, compute_metrics=_compute_metrics, train_dataset=lowerCamelCase, eval_dataset=lowerCamelCase, tokenizer=lowerCamelCase, ) # start training trainer.train()
183
1
def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def UpperCAmelCase ( _lowerCamelCase : int = 100 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = 1 SCREAMING_SNAKE_CASE__ : Dict = 2 for i in range(2 , max_n + 1 ): SCREAMING_SNAKE_CASE__ : Optional[int] = pre_numerator SCREAMING_SNAKE_CASE__ : List[Any] = 2 * i // 3 if i % 3 == 0 else 1 SCREAMING_SNAKE_CASE__ : str = cur_numerator SCREAMING_SNAKE_CASE__ : Any = e_cont * pre_numerator + temp return sum_digits(_lowerCamelCase ) if __name__ == "__main__": print(f"{solution() = }")
26
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __lowercase :str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class _a ( lowercase__ ): """simple docstring""" def __init__( self : List[str] , a : Optional[int] , a : str , a : int=None , a : Optional[Any]=1 ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : Dict = tokenizer SCREAMING_SNAKE_CASE__ : Optional[int] = dataset SCREAMING_SNAKE_CASE__ : Optional[Any] = len(a ) if n_tasks is None else n_tasks SCREAMING_SNAKE_CASE__ : Dict = n_copies def __iter__( self : str ) ->Tuple: SCREAMING_SNAKE_CASE__ : str = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) SCREAMING_SNAKE_CASE__ : int = self.tokenizer(a , padding=a , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _a ( lowercase__ ): """simple docstring""" def __init__( self : Dict , a : int , a : int , a : Tuple ) ->Dict: SCREAMING_SNAKE_CASE__ : Dict = start_length SCREAMING_SNAKE_CASE__ : Any = eof_strings SCREAMING_SNAKE_CASE__ : Any = tokenizer def __call__( self : Any , a : Optional[int] , a : int , **a : Union[str, Any] ) ->List[str]: SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) SCREAMING_SNAKE_CASE__ : int = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(a ) def UpperCAmelCase ( _lowerCamelCase : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = re.split("(%s)" % "|".join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : str=20 , **_lowerCamelCase : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): SCREAMING_SNAKE_CASE__ : str = batch["ids"].shape[-1] SCREAMING_SNAKE_CASE__ : List[Any] = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times SCREAMING_SNAKE_CASE__ : Dict = batch["task_id"].repeat(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Dict = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = accelerator.gather((generated_tokens, generated_tasks) ) SCREAMING_SNAKE_CASE__ : Dict = generated_tokens.cpu().numpy() SCREAMING_SNAKE_CASE__ : Any = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = HfArgumentParser(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric SCREAMING_SNAKE_CASE__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing SCREAMING_SNAKE_CASE__ : str = "false" if args.num_workers is None: SCREAMING_SNAKE_CASE__ : Dict = multiprocessing.cpu_count() # Use dataset load to feed to accelerate SCREAMING_SNAKE_CASE__ : Dict = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer SCREAMING_SNAKE_CASE__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.eos_token SCREAMING_SNAKE_CASE__ : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings SCREAMING_SNAKE_CASE__ : List[Any] = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric SCREAMING_SNAKE_CASE__ : str = load_dataset("openai_humaneval" ) SCREAMING_SNAKE_CASE__ : Any = load_metric("code_eval" ) SCREAMING_SNAKE_CASE__ : Dict = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = args.n_samples // args.batch_size SCREAMING_SNAKE_CASE__ : Dict = TokenizedDataset(_lowerCamelCase , human_eval["test"] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences SCREAMING_SNAKE_CASE__ : Optional[int] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: SCREAMING_SNAKE_CASE__ : int = code_eval_metric.compute(references=[""] , predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Tuple = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for task in tqdm(range(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : List[Any] = human_eval["test"][task]["test"] SCREAMING_SNAKE_CASE__ : List[Any] = f"""check({human_eval['test'][task]['entry_point']})""" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , "w" ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
26
1
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = F'''{sampling_rate}''' SCREAMING_SNAKE_CASE : Any = "1" SCREAMING_SNAKE_CASE : str = "f32le" SCREAMING_SNAKE_CASE : Any = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(lowercase , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: SCREAMING_SNAKE_CASE : List[Any] = ffmpeg_process.communicate(lowercase ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error SCREAMING_SNAKE_CASE : Dict = output_stream[0] SCREAMING_SNAKE_CASE : List[Any] = np.frombuffer(lowercase , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def lowerCamelCase__ ( lowercase , lowercase , lowercase = "f32le" , ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = F'''{sampling_rate}''' SCREAMING_SNAKE_CASE : List[str] = "1" if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : int = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : int = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) SCREAMING_SNAKE_CASE : int = platform.system() if system == "Linux": SCREAMING_SNAKE_CASE : Dict = "alsa" SCREAMING_SNAKE_CASE : List[str] = "default" elif system == "Darwin": SCREAMING_SNAKE_CASE : List[Any] = "avfoundation" SCREAMING_SNAKE_CASE : Tuple = ":0" elif system == "Windows": SCREAMING_SNAKE_CASE : Optional[Any] = "dshow" SCREAMING_SNAKE_CASE : Dict = "default" SCREAMING_SNAKE_CASE : Dict = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample SCREAMING_SNAKE_CASE : Any = _ffmpeg_stream(lowercase , lowercase ) for item in iterator: yield item def lowerCamelCase__ ( lowercase , lowercase , lowercase = None , lowercase = None , lowercase = "f32le" , ): """simple docstring""" if stream_chunk_s is not None: SCREAMING_SNAKE_CASE : List[Any] = stream_chunk_s else: SCREAMING_SNAKE_CASE : Dict = chunk_length_s SCREAMING_SNAKE_CASE : Tuple = ffmpeg_microphone(lowercase , lowercase , format_for_conversion=lowercase ) if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : Union[str, Any] = np.intaa SCREAMING_SNAKE_CASE : str = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Optional[int] = np.floataa SCREAMING_SNAKE_CASE : Any = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: SCREAMING_SNAKE_CASE : List[str] = chunk_length_s / 6 SCREAMING_SNAKE_CASE : str = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(lowercase , (int, float) ): SCREAMING_SNAKE_CASE : Dict = [stride_length_s, stride_length_s] SCREAMING_SNAKE_CASE : Union[str, Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample SCREAMING_SNAKE_CASE : List[Any] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample SCREAMING_SNAKE_CASE : int = datetime.datetime.now() SCREAMING_SNAKE_CASE : Dict = datetime.timedelta(seconds=lowercase ) for item in chunk_bytes_iter(lowercase , lowercase , stride=(stride_left, stride_right) , stream=lowercase ): # Put everything back in numpy scale SCREAMING_SNAKE_CASE : int = np.frombuffer(item["raw"] , dtype=lowercase ) SCREAMING_SNAKE_CASE : Dict = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) SCREAMING_SNAKE_CASE : Optional[Any] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase = False ): """simple docstring""" SCREAMING_SNAKE_CASE : int = B"" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) SCREAMING_SNAKE_CASE : Optional[Any] = 0 for raw in iterator: acc += raw if stream and len(lowercase ) < chunk_len: SCREAMING_SNAKE_CASE : Any = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(lowercase ) >= chunk_len: # We are flushing the accumulator SCREAMING_SNAKE_CASE : int = (_stride_left, stride_right) SCREAMING_SNAKE_CASE : Any = {"raw": acc[:chunk_len], "stride": stride} if stream: SCREAMING_SNAKE_CASE : List[Any] = False yield item SCREAMING_SNAKE_CASE : int = stride_left SCREAMING_SNAKE_CASE : str = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(lowercase ) > stride_left: SCREAMING_SNAKE_CASE : Union[str, Any] = {"raw": acc, "stride": (_stride_left, 0)} if stream: SCREAMING_SNAKE_CASE : Union[str, Any] = False yield item def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 2**24 # 16Mo try: with subprocess.Popen(lowercase , stdout=subprocess.PIPE , bufsize=lowercase ) as ffmpeg_process: while True: SCREAMING_SNAKE_CASE : Optional[int] = ffmpeg_process.stdout.read(lowercase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
62
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Union[str, Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
0
import argparse import os import torch from transformers.utils import WEIGHTS_NAME A = ['small', 'medium', 'large'] A = 'lm_head.decoder.weight' A = 'lm_head.weight' def a(lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = torch.load(lowercase__ ) snake_case_ = d.pop(lowercase__ ) os.makedirs(lowercase__ , exist_ok=lowercase__ ) torch.save(lowercase__ , os.path.join(lowercase__ , lowercase__ ) ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) A = parser.parse_args() for MODEL in DIALOGPT_MODELS: A = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") A = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
46
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = """unispeech-sat""" def __init__( self , __UpperCamelCase=32 , __UpperCamelCase=7_68 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=30_72 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-5 , __UpperCamelCase="group" , __UpperCamelCase="gelu" , __UpperCamelCase=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __UpperCamelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCamelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCamelCase=False , __UpperCamelCase=1_28 , __UpperCamelCase=16 , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=0.05 , __UpperCamelCase=10 , __UpperCamelCase=2 , __UpperCamelCase=0.0 , __UpperCamelCase=10 , __UpperCamelCase=0 , __UpperCamelCase=3_20 , __UpperCamelCase=2 , __UpperCamelCase=0.1 , __UpperCamelCase=1_00 , __UpperCamelCase=2_56 , __UpperCamelCase=2_56 , __UpperCamelCase=0.1 , __UpperCamelCase="mean" , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=2_56 , __UpperCamelCase=(5_12, 5_12, 5_12, 5_12, 15_00) , __UpperCamelCase=(5, 3, 3, 1, 1) , __UpperCamelCase=(1, 2, 3, 1, 1) , __UpperCamelCase=5_12 , __UpperCamelCase=0 , __UpperCamelCase=1 , __UpperCamelCase=2 , __UpperCamelCase=5_04 , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase ) snake_case_ = hidden_size snake_case_ = feat_extract_norm snake_case_ = feat_extract_activation snake_case_ = list(__UpperCamelCase ) snake_case_ = list(__UpperCamelCase ) snake_case_ = list(__UpperCamelCase ) snake_case_ = conv_bias snake_case_ = num_conv_pos_embeddings snake_case_ = num_conv_pos_embedding_groups snake_case_ = len(self.conv_dim ) snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_attention_heads snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = feat_proj_dropout snake_case_ = final_dropout snake_case_ = layerdrop snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = vocab_size snake_case_ = num_clusters snake_case_ = do_stable_layer_norm snake_case_ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ = apply_spec_augment snake_case_ = mask_time_prob snake_case_ = mask_time_length snake_case_ = mask_time_min_masks snake_case_ = mask_feature_prob snake_case_ = mask_feature_length snake_case_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case_ = num_codevectors_per_group snake_case_ = num_codevector_groups snake_case_ = contrastive_logits_temperature snake_case_ = feat_quantizer_dropout snake_case_ = num_negatives snake_case_ = codevector_dim snake_case_ = proj_codevector_dim snake_case_ = diversity_loss_weight # ctc loss snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case_ = list(__UpperCamelCase ) snake_case_ = list(__UpperCamelCase ) snake_case_ = list(__UpperCamelCase ) snake_case_ = xvector_output_dim @property def __lowerCAmelCase ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
46
1
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def UpperCamelCase_ ( ) -> Optional[Any]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCAmelCase : Optional[int] = "__test_patch_submodule_mock__" with patch_submodule(_test_patching , "os.path.join" , _UpperCAmelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def UpperCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" assert _test_patching.open is open _UpperCAmelCase : Optional[int] = "__test_patch_submodule_builtin_mock__" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , "open" , _UpperCAmelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def UpperCamelCase_ ( ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = "__test_patch_submodule_missing_mock__" with patch_submodule(_test_patching , "pandas.read_csv" , _UpperCAmelCase ): pass def UpperCamelCase_ ( ) -> str: """simple docstring""" _UpperCAmelCase : Tuple = "__test_patch_submodule_missing_builtin_mock__" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , "len" , _UpperCAmelCase ) is None with patch_submodule(_test_patching , "len" , _UpperCAmelCase ): assert _test_patching.len is mock assert _test_patching.len is len def UpperCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Dict = "__test_patch_submodule_start_and_stop_mock__" _UpperCAmelCase : List[Any] = patch_submodule(_test_patching , "open" , _UpperCAmelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def UpperCamelCase_ ( ) -> Dict: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCAmelCase : Optional[int] = "__test_patch_submodule_successive_join__" _UpperCAmelCase : Dict = "__test_patch_submodule_successive_dirname__" _UpperCAmelCase : Tuple = "__test_patch_submodule_successive_rename__" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , "os.path.join" , _UpperCAmelCase ): with patch_submodule(_test_patching , "os.rename" , _UpperCAmelCase ): with patch_submodule(_test_patching , "os.path.dirname" , _UpperCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , "os.rename" , _UpperCAmelCase ): with patch_submodule(_test_patching , "os.path.join" , _UpperCAmelCase ): with patch_submodule(_test_patching , "os.path.dirname" , _UpperCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def UpperCamelCase_ ( ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = "__test_patch_submodule_doesnt_exist_mock__" with patch_submodule(_test_patching , "__module_that_doesn_exist__.__attribute_that_doesn_exist__" , _UpperCAmelCase ): pass with patch_submodule(_test_patching , "os.__attribute_that_doesn_exist__" , _UpperCAmelCase ): pass
244
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def UpperCamelCase_ ( ) -> None: """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
244
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } UpperCamelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: for attribute in key.split("." ): __A : Dict = getattr(_lowercase , _lowercase ) if weight_type is not None: __A : str = getattr(_lowercase , _lowercase ).shape else: __A : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __A : Any = value elif weight_type == "weight_g": __A : Tuple = value elif weight_type == "weight_v": __A : Tuple = value elif weight_type == "bias": __A : Dict = value elif weight_type == "running_mean": __A : str = value elif weight_type == "running_var": __A : List[str] = value elif weight_type == "num_batches_tracked": __A : Any = value elif weight_type == "inv_freq": __A : Optional[Any] = value else: __A : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase ) -> Any: __A : Any = [] __A : Any = fairseq_model.state_dict() __A : List[Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __A : List[Any] = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == "group" , ) __A : List[str] = True else: for key, mapped_key in MAPPING.items(): __A : Optional[Any] = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: __A : Optional[Any] = True if "*" in mapped_key: __A : Tuple = name.split(_lowercase )[0].split("." )[-2] __A : Union[str, Any] = mapped_key.replace("*" , _lowercase ) if "pos_bias_u" in name: __A : Union[str, Any] = None elif "pos_bias_v" in name: __A : Optional[Any] = None elif "weight_g" in name: __A : List[Any] = "weight_g" elif "weight_v" in name: __A : Optional[Any] = "weight_v" elif "bias" in name: __A : Any = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj __A : List[Any] = "weight" elif "running_mean" in name: __A : Tuple = "running_mean" elif "inv_freq" in name: __A : Dict = "inv_freq" elif "running_var" in name: __A : Optional[int] = "running_var" elif "num_batches_tracked" in name: __A : List[Any] = "num_batches_tracked" else: __A : Union[str, Any] = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) continue if not is_used: unused_weights.append(_lowercase ) logger.warning(F"Unused weights: {unused_weights}" ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: __A : Any = full_name.split("conv_layers." )[-1] __A : int = name.split("." ) __A : str = int(items[0] ) __A : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __A : str = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __A : Any = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __A : Optional[int] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __A : List[str] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowercase ) @torch.no_grad() def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=True ) -> Optional[int]: if config_path is not None: __A : List[Any] = WavaVecaConformerConfig.from_pretrained(_lowercase , hidden_act="swish" ) else: __A : List[str] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __A : Any = "rotary" if is_finetuned: if dict_path: __A : List[Any] = Dictionary.load(_lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __A : List[Any] = target_dict.pad_index __A : List[Any] = target_dict.bos_index __A : Tuple = target_dict.eos_index __A : Any = len(target_dict.symbols ) __A : Optional[int] = os.path.join(_lowercase , "vocab.json" ) if not os.path.isdir(_lowercase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowercase ) ) return os.makedirs(_lowercase , exist_ok=_lowercase ) __A : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __A : Tuple = 0 __A : int = 1 with open(_lowercase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowercase , _lowercase ) __A : Optional[Any] = WavaVecaCTCTokenizer( _lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowercase , ) __A : Any = True if config.feat_extract_norm == "layer" else False __A : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , ) __A : int = WavaVecaProcessor(feature_extractor=_lowercase , tokenizer=_lowercase ) processor.save_pretrained(_lowercase ) __A : str = WavaVecaConformerForCTC(_lowercase ) else: __A : List[Any] = WavaVecaConformerForPreTraining(_lowercase ) if is_finetuned: __A , __A , __A : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: __A : Optional[int] = argparse.Namespace(task="audio_pretraining" ) __A : int = fairseq.tasks.setup_task(_lowercase ) __A , __A , __A : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowercase ) __A : List[str] = model[0].eval() recursively_load_weights(_lowercase , _lowercase , not is_finetuned ) hf_wavavec.save_pretrained(_lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) UpperCamelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
387
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _a : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=[0, 1, 2, 3] , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=[1, 384, 24, 24] , __UpperCAmelCase=True , __UpperCAmelCase=None , ): __A : Dict = parent __A : Union[str, Any] = batch_size __A : str = image_size __A : Optional[Any] = patch_size __A : str = num_channels __A : str = is_training __A : Optional[Any] = use_labels __A : Union[str, Any] = hidden_size __A : int = num_hidden_layers __A : List[Any] = backbone_out_indices __A : Dict = num_attention_heads __A : Dict = intermediate_size __A : Tuple = hidden_act __A : List[str] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : int = initializer_range __A : List[str] = num_labels __A : str = backbone_featmap_shape __A : int = scope __A : Dict = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __A : Optional[Any] = (image_size // patch_size) ** 2 __A : List[Any] = num_patches + 1 def __UpperCAmelCase( self ): __A : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A : Tuple = None if self.use_labels: __A : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __A : Union[str, Any] = self.get_config() return config, pixel_values, labels def __UpperCAmelCase( self ): __A : Any = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCAmelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : Tuple = DPTModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __A : int = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : Dict = self.num_labels __A : Optional[int] = DPTForDepthEstimation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __A : Dict = model(__UpperCAmelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : int = self.num_labels __A : List[Any] = DPTForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __A : Union[str, Any] = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __UpperCAmelCase( self ): __A : int = self.prepare_config_and_inputs() __A , __A , __A : Dict = config_and_inputs __A : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _a ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Tuple = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCamelCase_ : Dict = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase_ : Tuple = False lowerCamelCase_ : Union[str, Any] = False lowerCamelCase_ : Optional[Any] = False def __UpperCAmelCase( self ): __A : str = DPTModelTester(self ) __A : Dict = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def __UpperCAmelCase( self ): self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def __UpperCAmelCase( self ): pass def __UpperCAmelCase( self ): __A , __A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __A : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def __UpperCAmelCase( self ): __A , __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(__UpperCAmelCase ) __A : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : Any = [*signature.parameters.keys()] __A : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __UpperCAmelCase( self ): __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __UpperCAmelCase( self ): __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__UpperCAmelCase ) def __UpperCAmelCase( self ): __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def __UpperCAmelCase( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __A , __A : str = self.model_tester.prepare_config_and_inputs_for_common() __A : int = True if model_class in get_values(__UpperCAmelCase ): continue __A : Dict = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __A : str = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __A : Optional[Any] = model(**__UpperCAmelCase ).loss loss.backward() def __UpperCAmelCase( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __A , __A : str = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = False __A : Optional[int] = True if model_class in get_values(__UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue __A : Tuple = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.train() __A : Any = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __A : List[Any] = model(**__UpperCAmelCase ).loss loss.backward() def __UpperCAmelCase( self ): __A , __A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __A : str = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __A : List[Any] = model_class(config=__UpperCAmelCase ) # Skip the check for the backbone __A : List[str] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __A : Any = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __UpperCAmelCase( self ): pass @slow def __UpperCAmelCase( self ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __A : Tuple = DPTModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __UpperCAmelCase( self ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type __A , __A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __A : Dict = "add" with self.assertRaises(__UpperCAmelCase ): __A : int = DPTForDepthEstimation(__UpperCAmelCase ) def lowerCamelCase_ ( ) -> Optional[Any]: __A : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class _a ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase( self ): __A : List[str] = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) __A : List[Any] = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(__UpperCAmelCase ) __A : Dict = prepare_img() __A : Optional[int] = image_processor(images=__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __A : List[str] = model(**__UpperCAmelCase ) __A : str = outputs.predicted_depth # verify the predicted depth __A : Optional[int] = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __UpperCAmelCase ) __A : Any = torch.tensor( [[[5.64_37, 5.61_46, 5.65_11], [5.43_71, 5.56_49, 5.59_58], [5.52_15, 5.51_84, 5.52_93]]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __UpperCAmelCase , atol=1e-4 ) )
387
1
def lowerCamelCase_ ( _UpperCamelCase ) -> list[int]: """simple docstring""" snake_case_ : Optional[int] = [0 for i in range(len(_UpperCamelCase ) )] # initialize interval's left pointer and right pointer snake_case_ , snake_case_ : Tuple = 0, 0 for i in range(1 , len(_UpperCamelCase ) ): # case when current index is inside the interval if i <= right_pointer: snake_case_ : Any = min(right_pointer - i + 1 , z_result[i - left_pointer] ) snake_case_ : Tuple = min_edge while go_next(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: snake_case_ , snake_case_ : int = i, i + z_result[i] - 1 return z_result def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> bool: """simple docstring""" return i + z_result[i] < len(_UpperCamelCase ) and s[z_result[i]] == s[i + z_result[i]] def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" snake_case_ : Tuple = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string snake_case_ : Union[str, Any] = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_UpperCamelCase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
60
def UpperCamelCase_( _snake_case : int = 600851475143 ): """simple docstring""" try: __a =int(_snake_case ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) __a =2 __a =0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __a =i while n % i == 0: __a =n // i i += 1 return int(_snake_case ) if __name__ == "__main__": print(f'''{solution() = }''')
242
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Any = {} class a__( lowercase__ ): a_ : Optional[int] = """llama""" a_ : str = ["""past_key_values"""] def __init__( self , _UpperCAmelCase=3_2000 , _UpperCAmelCase=4096 , _UpperCAmelCase=1_1008 , _UpperCAmelCase=32 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase="silu" , _UpperCAmelCase=2048 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-6 , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=None , **_UpperCAmelCase , ) -> Optional[int]: snake_case__ =vocab_size snake_case__ =max_position_embeddings snake_case__ =hidden_size snake_case__ =intermediate_size snake_case__ =num_hidden_layers snake_case__ =num_attention_heads # for backward compatibility if num_key_value_heads is None: snake_case__ =num_attention_heads snake_case__ =num_key_value_heads snake_case__ =hidden_act snake_case__ =initializer_range snake_case__ =rms_norm_eps snake_case__ =pretraining_tp snake_case__ =use_cache snake_case__ =rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , tie_word_embeddings=__lowercase , **__lowercase , ) def _lowercase ( self ) -> Union[str, Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowercase ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"""got {self.rope_scaling}""" ) snake_case__ =self.rope_scaling.get('type' , __lowercase ) snake_case__ =self.rope_scaling.get('factor' , __lowercase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__lowercase , __lowercase ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}""" )
715
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict ) -> Any: assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def a ( UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] ) -> Union[str, Any]: snake_case__ =tmp_path / 'cache' snake_case__ ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case__ =JsonDatasetReader(UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ ).read() _check_json_dataset(UpperCamelCase_ , UpperCamelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] ) -> Optional[int]: snake_case__ =tmp_path / 'cache' snake_case__ ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} snake_case__ =features.copy() if features else default_expected_features snake_case__ =( Features({feature: Value(UpperCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ =JsonDatasetReader(UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() _check_json_dataset(UpperCamelCase_ , UpperCamelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] ) -> List[str]: snake_case__ =tmp_path / 'cache' snake_case__ ={'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} snake_case__ =features.copy() if features else default_expected_features snake_case__ =( Features({feature: Value(UpperCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ =JsonDatasetReader(UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] ) -> str: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} snake_case__ ={'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} snake_case__ =features.copy() snake_case__ =( Features({feature: Value(UpperCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ =tmp_path / 'cache' snake_case__ =JsonDatasetReader(UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] ) -> Any: snake_case__ =tmp_path / 'cache' snake_case__ ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} snake_case__ =JsonDatasetReader(UpperCamelCase_ , cache_dir=UpperCamelCase_ , split=UpperCamelCase_ ).read() _check_json_dataset(UpperCamelCase_ , UpperCamelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] ) -> str: if issubclass(UpperCamelCase_ , UpperCamelCase_ ): snake_case__ =jsonl_path elif issubclass(UpperCamelCase_ , UpperCamelCase_ ): snake_case__ =[jsonl_path] snake_case__ =tmp_path / 'cache' snake_case__ ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} snake_case__ =JsonDatasetReader(UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() _check_json_dataset(UpperCamelCase_ , UpperCamelCase_ ) def a ( UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : str=("train",) ) -> str: assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) for split in splits: snake_case__ =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : str ) -> List[Any]: snake_case__ =tmp_path / 'cache' snake_case__ ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case__ =JsonDatasetReader({'train': jsonl_path} , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ ).read() _check_json_datasetdict(UpperCamelCase_ , UpperCamelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] ) -> Optional[int]: snake_case__ =tmp_path / 'cache' snake_case__ ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} snake_case__ =features.copy() if features else default_expected_features snake_case__ =( Features({feature: Value(UpperCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ =JsonDatasetReader({'train': jsonl_path} , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() _check_json_datasetdict(UpperCamelCase_ , UpperCamelCase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any ) -> Any: if split: snake_case__ ={split: jsonl_path} else: snake_case__ ='train' snake_case__ ={'train': jsonl_path, 'test': jsonl_path} snake_case__ =tmp_path / 'cache' snake_case__ ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} snake_case__ =JsonDatasetReader(UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() _check_json_datasetdict(UpperCamelCase_ , UpperCamelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def a ( UpperCamelCase_ : Union[str, Any] ) -> int: return json.load(UpperCamelCase_ ) def a ( UpperCamelCase_ : str ) -> Union[str, Any]: return [json.loads(UpperCamelCase_ ) for line in buffer] class a__: @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , lines=_UpperCAmelCase ).write() buffer.seek(0 ) snake_case__ =load_json_function(_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert isinstance(exported_content[0] , _UpperCAmelCase ) assert len(_UpperCAmelCase ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , lines=_UpperCAmelCase , orient=_UpperCAmelCase ).write() buffer.seek(0 ) snake_case__ =load_json(_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_UpperCAmelCase , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_UpperCAmelCase ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , lines=_UpperCAmelCase , num_proc=2 ).write() buffer.seek(0 ) snake_case__ =load_json_function(_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert isinstance(exported_content[0] , _UpperCAmelCase ) assert len(_UpperCAmelCase ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , lines=_UpperCAmelCase , orient=_UpperCAmelCase , num_proc=2 ).write() buffer.seek(0 ) snake_case__ =load_json(_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_UpperCAmelCase , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_UpperCAmelCase ) == 10 def _lowercase ( self , _UpperCAmelCase ) -> List[str]: with pytest.raises(_UpperCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: snake_case__ =tmp_path_factory.mktemp('data' ) / f"""test.json.{extension}""" snake_case__ =str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , compression=_UpperCAmelCase ).write() with fsspec.open(_UpperCAmelCase , 'rb' , compression='infer' ) as f: snake_case__ =f.read() with fsspec.open(_UpperCAmelCase , 'rb' , compression='infer' ) as f: snake_case__ =f.read() assert exported_content == original_content
581
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int , __lowerCamelCase : List[str] , __lowerCamelCase : Dict=2 , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Any=7 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : Dict=36 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : str=4 , __lowerCamelCase : Union[str, Any]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Any=16 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : List[str]=6 , __lowerCamelCase : Dict=6 , __lowerCamelCase : int=3 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : Any=None , __lowerCamelCase : Any=1000 , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = text_seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = coordinate_size SCREAMING_SNAKE_CASE = shape_size SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) SCREAMING_SNAKE_CASE = text_seq_length SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 + 1 SCREAMING_SNAKE_CASE = self.text_seq_length + self.image_seq_length def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE = bbox[i, j, 3] SCREAMING_SNAKE_CASE = bbox[i, j, 1] SCREAMING_SNAKE_CASE = t if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE = bbox[i, j, 2] SCREAMING_SNAKE_CASE = bbox[i, j, 0] SCREAMING_SNAKE_CASE = t SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.text_seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _snake_case ( self : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = LayoutLMvaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() # text + image SCREAMING_SNAKE_CASE = model(__lowerCamelCase , pixel_values=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model( __lowerCamelCase , bbox=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase , bbox=__lowerCamelCase , pixel_values=__lowerCamelCase , token_type_ids=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase , bbox=__lowerCamelCase , pixel_values=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only SCREAMING_SNAKE_CASE = model(pixel_values=__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _snake_case ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = LayoutLMvaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model( __lowerCamelCase , bbox=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = LayoutLMvaForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model( __lowerCamelCase , bbox=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = LayoutLMvaForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model( __lowerCamelCase , bbox=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def _snake_case ( self : Any , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = LayoutLMvaModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : List[Any]=False ): SCREAMING_SNAKE_CASE = copy.deepcopy(__lowerCamelCase ) if model_class in get_values(__lowerCamelCase ): SCREAMING_SNAKE_CASE = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(__lowerCamelCase , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__lowerCamelCase ): SCREAMING_SNAKE_CASE = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) elif model_class in get_values(__lowerCamelCase ): SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) elif model_class in [ *get_values(__lowerCamelCase ), ]: SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) elif model_class in [ *get_values(__lowerCamelCase ), ]: SCREAMING_SNAKE_CASE = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__lowerCamelCase , ) return inputs_dict def _snake_case ( self : Any ): self.config_tester.run_common_tests() def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) @slow def _snake_case ( self : Optional[Any] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = LayoutLMvaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : List[Any] ): return LayoutLMvaImageProcessor(apply_ocr=__lowerCamelCase ) if is_vision_available() else None @slow def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).pixel_values.to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([[1, 2]] ) SCREAMING_SNAKE_CASE = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass SCREAMING_SNAKE_CASE = model( input_ids=input_ids.to(__lowerCamelCase ) , bbox=bbox.to(__lowerCamelCase ) , pixel_values=pixel_values.to(__lowerCamelCase ) , ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __lowerCamelCase , atol=1e-4 ) )
16
from typing import Any class __lowercase : def __init__( self , lowercase_) -> str: __snake_case = data __snake_case = None def __repr__( self) -> str: return F"Node({self.data})" class __lowercase : def __init__( self) -> Dict: __snake_case = None def __iter__( self) -> Any: __snake_case = self.head while node: yield node.data __snake_case = node.next def __len__( self) -> int: return sum(1 for _ in self) def __repr__( self) -> str: return "->".join([str(lowercase_) for item in self]) def __getitem__( self , lowercase_) -> Any: if not 0 <= index < len(self): raise ValueError('list index out of range.') for i, node in enumerate(self): if i == index: return node return None def __setitem__( self , lowercase_ , lowercase_) -> None: if not 0 <= index < len(self): raise ValueError('list index out of range.') __snake_case = self.head for _ in range(lowercase_): __snake_case = current.next __snake_case = data def _a ( self , lowercase_) -> None: self.insert_nth(len(self) , lowercase_) def _a ( self , lowercase_) -> None: self.insert_nth(0 , lowercase_) def _a ( self , lowercase_ , lowercase_) -> None: if not 0 <= index <= len(self): raise IndexError('list index out of range') __snake_case = Node(lowercase_) if self.head is None: __snake_case = new_node elif index == 0: __snake_case = self.head # link new_node to head __snake_case = new_node else: __snake_case = self.head for _ in range(index - 1): __snake_case = temp.next __snake_case = temp.next __snake_case = new_node def _a ( self) -> None: # print every node data print(self) def _a ( self) -> Any: return self.delete_nth(0) def _a ( self) -> Any: # delete from tail return self.delete_nth(len(self) - 1) def _a ( self , lowercase_ = 0) -> Any: if not 0 <= index <= len(self) - 1: # test if index is valid raise IndexError('List index out of range.') __snake_case = self.head # default first node if index == 0: __snake_case = self.head.next else: __snake_case = self.head for _ in range(index - 1): __snake_case = temp.next __snake_case = temp.next __snake_case = temp.next.next return delete_node.data def _a ( self) -> bool: return self.head is None def _a ( self) -> None: __snake_case = None __snake_case = self.head while current: # Store the current node's next node. __snake_case = current.next # Make the current node's next point backwards __snake_case = prev # Make the previous node be the current node __snake_case = current # Make the current node the next node (to progress iteration) __snake_case = next_node # Return prev in order to put the head at the end __snake_case = prev def A ( ) -> None: '''simple docstring''' __snake_case = LinkedList() assert linked_list.is_empty() is True assert str(snake_case__ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(snake_case__ ) == i linked_list.insert_nth(snake_case__ , i + 1 ) assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(snake_case__ ) == 9 assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __snake_case = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(-8 , 1 ) ) def A ( ) -> None: '''simple docstring''' __snake_case = [ -9, 100, Node(7734_5112 ), 'dlrow olleH', 7, 5555, 0, -192.55_555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] __snake_case = LinkedList() for i in test_input: linked_list.insert_tail(snake_case__ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(snake_case__ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __snake_case = linked_list.delete_head() assert result == -9 assert ( str(snake_case__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __snake_case = linked_list.delete_tail() assert result == 12.2 assert ( str(snake_case__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __snake_case = linked_list.delete_nth(10 ) assert result is None assert ( str(snake_case__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(snake_case__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(snake_case__ ) assert ( str(snake_case__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(snake_case__ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def A ( ) -> str: '''simple docstring''' from doctest import testmod testmod() __snake_case = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(snake_case__ ) print('\nReading/changing Node data using indexing:' ) print(f"Element at Position 1: {linked_list[1]}" ) __snake_case = input('Enter New Value: ' ).strip() print('New list:' ) print(snake_case__ ) print(f"length of linked_list is : {len(snake_case__ )}" ) if __name__ == "__main__": main()
313
0
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar __lowerCAmelCase : Optional[Any] = TypeVar('''T''') class _lowerCAmelCase ( Generic[T] ): """simple docstring""" def __init__( self , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : int = data snake_case_ : Optional[int] = self snake_case_ : int = 0 class _lowerCAmelCase ( Generic[T] ): """simple docstring""" def __init__( self ) -> int: '''simple docstring''' snake_case_ : dict[T, DisjointSetTreeNode[T]] = {} def UpperCAmelCase__ ( self , _lowercase ) -> Any: '''simple docstring''' snake_case_ : List[str] = DisjointSetTreeNode(A__ ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[int]: '''simple docstring''' snake_case_ : Any = self.map[data] if elem_ref != elem_ref.parent: snake_case_ : str = self.find_set(elem_ref.parent.data ) return elem_ref.parent def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' if nodea.rank > nodea.rank: snake_case_ : Tuple = nodea else: snake_case_ : str = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Union[str, Any]: '''simple docstring''' self.link(self.find_set(A__ ) , self.find_set(A__ ) ) class _lowerCAmelCase ( Generic[T] ): """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' snake_case_ : dict[T, dict[T, int]] = {} def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' if node not in self.connections: snake_case_ : Dict = {} def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Any: '''simple docstring''' self.add_node(A__ ) self.add_node(A__ ) snake_case_ : int = weight snake_case_ : int = weight def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Any = [] snake_case_ : str = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda _lowercase : x[2] ) # creating the disjoint set snake_case_ : List[Any] = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(A__ ) # MST generation snake_case_ : Union[str, Any] = 0 snake_case_ : int = 0 snake_case_ : Dict = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: snake_case_ : Union[str, Any] = edges[index] index += 1 snake_case_ : Tuple = disjoint_set.find_set(A__ ) snake_case_ : Union[str, Any] = disjoint_set.find_set(A__ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(A__ , A__ , A__ ) disjoint_set.union(A__ , A__ ) return graph
719
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _SCREAMING_SNAKE_CASE ( snake_case ): lowerCamelCase_ = ['image_processor', 'tokenizer'] lowerCamelCase_ = 'ViltImageProcessor' lowerCamelCase_ = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Tuple , snake_case_ : int=None , snake_case_ : Optional[int]=None , **snake_case_ : Union[str, Any] ): """simple docstring""" A : Tuple = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , snake_case_ , ) A : str = kwargs.pop('''feature_extractor''' ) A : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(snake_case_ , snake_case_ ) A : Optional[Any] = self.image_processor def __call__( self : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , snake_case_ : bool = True , snake_case_ : Union[bool, str, PaddingStrategy] = False , snake_case_ : Union[bool, str, TruncationStrategy] = None , snake_case_ : Optional[int] = None , snake_case_ : int = 0 , snake_case_ : Optional[int] = None , snake_case_ : Optional[bool] = None , snake_case_ : Optional[bool] = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = True , snake_case_ : Optional[Union[str, TensorType]] = None , **snake_case_ : List[Any] , ): """simple docstring""" A : Any = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_token_type_ids=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) # add pixel_values + pixel_mask A : Optional[Any] = self.image_processor(snake_case_ , return_tensors=snake_case_ ) encoding.update(snake_case_ ) return encoding def _UpperCAmelCase ( self : Any , *snake_case_ : Any , **snake_case_ : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def _UpperCAmelCase ( self : Tuple , *snake_case_ : Union[str, Any] , **snake_case_ : str ): """simple docstring""" return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" A : Optional[int] = self.tokenizer.model_input_names A : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _UpperCAmelCase ( self : List[str] ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , snake_case_ , ) return self.image_processor_class @property def _UpperCAmelCase ( self : str ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , snake_case_ , ) return self.image_processor
256
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _SCREAMING_SNAKE_CASE : lowerCamelCase_ = 42 lowerCamelCase_ = 42 class _SCREAMING_SNAKE_CASE : def __init__( self : List[str] , snake_case_ : int ): """simple docstring""" A : list[list[Edge]] = [[] for _ in range(snake_case_ )] A : Union[str, Any] = size def __getitem__( self : Any , snake_case_ : int ): """simple docstring""" return iter(self._graph[vertex] ) @property def _UpperCAmelCase ( self : str ): """simple docstring""" return self._size def _UpperCAmelCase ( self : Tuple , snake_case_ : int , snake_case_ : int , snake_case_ : int ): """simple docstring""" if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(snake_case_ , snake_case_ ) ) def _UpperCAmelCase ( self : str , snake_case_ : int , snake_case_ : int ): """simple docstring""" A : Tuple = deque([start_vertex] ) A : list[int | None] = [None] * self.size A : str = 0 while queue: A : Optional[Any] = queue.popleft() A : List[str] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: A : Tuple = current_distance + edge.weight A : Dict = distances[edge.destination_vertex] if ( isinstance(snake_case_ , snake_case_ ) and new_distance >= dest_vertex_distance ): continue A : Optional[int] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
256
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def A_ ( snake_case : int ) -> int: '''simple docstring''' def is_in_circle(snake_case : float , snake_case : float ) -> bool: __UpperCamelCase = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __UpperCamelCase = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(snake_case ) ) # The ratio of the area for circle to square is pi/4. __UpperCamelCase = proportion * 4 print(f"The estimated value of pi is {pi_estimate}" ) print(f"The numpy value of pi is {pi}" ) print(f"The total error is {abs(pi - pi_estimate )}" ) def A_ ( snake_case : int , snake_case : Callable[[float], float] , snake_case : float = 0.0 , snake_case : float = 1.0 , ) -> float: '''simple docstring''' return mean( function_to_integrate(uniform(snake_case , snake_case ) ) for _ in range(snake_case ) ) * (max_value - min_value) def A_ ( snake_case : int , snake_case : float = 0.0 , snake_case : float = 1.0 ) -> None: '''simple docstring''' def identity_function(snake_case : float ) -> float: return x __UpperCamelCase = area_under_curve_estimator( snake_case , snake_case , snake_case , snake_case ) __UpperCamelCase = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(f"Estimated value is {estimated_value}" ) print(f"Expected value is {expected_value}" ) print(f"Total error is {abs(estimated_value - expected_value )}" ) print('''******************''' ) def A_ ( snake_case : int ) -> None: '''simple docstring''' def function_to_integrate(snake_case : float ) -> float: return sqrt(4.0 - x * x ) __UpperCamelCase = area_under_curve_estimator( snake_case , snake_case , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f"Estimated value is {estimated_value}" ) print(f"Expected value is {pi}" ) print(f"Total error is {abs(estimated_value - pi )}" ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
451
from collections import Counter from timeit import timeit def A_ ( snake_case : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def A_ ( snake_case : str = "" ) -> bool: '''simple docstring''' if len(snake_case ) == 0: return True __UpperCamelCase = input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string __UpperCamelCase = {} for character in lower_case_input_str: __UpperCamelCase = character_freq_dict.get(snake_case , 0 ) + 1 __UpperCamelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A_ ( snake_case : str = "" ) -> None: '''simple docstring''' print('''\nFor string = ''' , snake_case , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(snake_case ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(snake_case ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": lowercase__ : Tuple = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) lowercase__ : Dict = can_string_be_rearranged_as_palindrome_counter(check_str) print(F"{check_str} can {'' if status else 'not '}be rearranged as a palindrome")
451
1
import string from math import logaa def _lowerCAmelCase ( UpperCamelCase__: str , UpperCamelCase__: str ) -> int: """simple docstring""" A = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) A = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _lowerCAmelCase ( UpperCamelCase__: str , UpperCamelCase__: str ) -> tuple[int, int]: """simple docstring""" A = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' A = corpus_without_punctuation.split("""\n""" ) A = term.lower() return (len([doc for doc in docs if term in doc] ), len(UpperCamelCase__ )) def _lowerCAmelCase ( UpperCamelCase__: int , UpperCamelCase__: int , UpperCamelCase__: Optional[Any]=False ) -> float: """simple docstring""" if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def _lowerCAmelCase ( UpperCamelCase__: int , UpperCamelCase__: int ) -> float: """simple docstring""" return round(tf * idf , 3 )
641
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _lowerCAmelCase ( UpperCamelCase__: Optional[Any] ) -> Optional[int]: """simple docstring""" A = 3_84 if "tiny" in model_name: A = [3, 3, 9, 3] A = [96, 1_92, 3_84, 7_68] if "small" in model_name: A = [3, 3, 27, 3] A = [96, 1_92, 3_84, 7_68] if "base" in model_name: A = [3, 3, 27, 3] A = [1_28, 2_56, 5_12, 10_24] A = 5_12 if "large" in model_name: A = [3, 3, 27, 3] A = [1_92, 3_84, 7_68, 15_36] A = 7_68 if "xlarge" in model_name: A = [3, 3, 27, 3] A = [2_56, 5_12, 10_24, 20_48] A = 10_24 # set label information A = 1_50 A = """huggingface/label-files""" A = """ade20k-id2label.json""" A = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) A = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} A = {v: k for k, v in idalabel.items()} A = ConvNextConfig( depths=UpperCamelCase__ , hidden_sizes=UpperCamelCase__ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) A = UperNetConfig( backbone_config=UpperCamelCase__ , auxiliary_in_channels=UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , ) return config def _lowerCAmelCase ( UpperCamelCase__: int ) -> Dict: """simple docstring""" A = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def _lowerCAmelCase ( UpperCamelCase__: Tuple , UpperCamelCase__: List[str] , UpperCamelCase__: int ) -> Optional[Any]: """simple docstring""" A = dct.pop(UpperCamelCase__ ) A = val def _lowerCAmelCase ( UpperCamelCase__: Optional[int] , UpperCamelCase__: Any , UpperCamelCase__: int ) -> List[Any]: """simple docstring""" A = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } A = model_name_to_url[model_name] A = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location="""cpu""" )["""state_dict"""] A = get_upernet_config(UpperCamelCase__ ) A = UperNetForSemanticSegmentation(UpperCamelCase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A = state_dict.pop(UpperCamelCase__ ) if "bn" in key: A = key.replace("""bn""" , """batch_norm""" ) A = val # rename keys A = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) # verify on image A = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" A = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert("""RGB""" ) A = SegformerImageProcessor() A = processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): A = model(UpperCamelCase__ ) if model_name == "upernet-convnext-tiny": A = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ) elif model_name == "upernet-convnext-small": A = torch.tensor( [[-8.82_36, -8.82_36, -8.67_71], [-8.82_36, -8.82_36, -8.67_71], [-8.76_38, -8.76_38, -8.62_40]] ) elif model_name == "upernet-convnext-base": A = torch.tensor( [[-8.85_58, -8.85_58, -8.69_05], [-8.85_58, -8.85_58, -8.69_05], [-8.76_69, -8.76_69, -8.60_21]] ) elif model_name == "upernet-convnext-large": A = torch.tensor( [[-8.66_60, -8.66_60, -8.62_10], [-8.66_60, -8.66_60, -8.62_10], [-8.63_10, -8.63_10, -8.59_64]] ) elif model_name == "upernet-convnext-xlarge": A = torch.tensor( [[-8.49_80, -8.49_80, -8.39_77], [-8.49_80, -8.49_80, -8.39_77], [-8.43_79, -8.43_79, -8.34_12]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCamelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[f'''upernet-convnext-{size}''' for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowercase : str = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __lowerCamelCase , unittest.TestCase ): __a = UnCLIPImageVariationPipeline __a = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} __a = IMAGE_VARIATION_BATCH_PARAMS __a = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] __a = False @property def _lowerCamelCase ( self ) -> Optional[Any]: return 32 @property def _lowerCamelCase ( self ) -> Tuple: return 32 @property def _lowerCamelCase ( self ) -> Optional[int]: return self.time_input_dim @property def _lowerCamelCase ( self ) -> Dict: return self.time_input_dim * 4 @property def _lowerCamelCase ( self ) -> Optional[int]: return 100 @property def _lowerCamelCase ( self ) -> Union[str, Any]: lowerCamelCase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def _lowerCamelCase ( self ) -> Dict: torch.manual_seed(0 ) lowerCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCAmelCase_ ) @property def _lowerCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) lowerCamelCase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(UpperCAmelCase_ ) @property def _lowerCamelCase ( self ) -> Dict: torch.manual_seed(0 ) lowerCamelCase__ = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } lowerCamelCase__ = UnCLIPTextProjModel(**UpperCAmelCase_ ) return model @property def _lowerCamelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) lowerCamelCase__ = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } lowerCamelCase__ = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def _lowerCamelCase ( self ) -> str: return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _lowerCamelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) lowerCamelCase__ = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _lowerCamelCase ( self ) -> Union[str, Any]: # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) lowerCamelCase__ = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _lowerCamelCase ( self ) -> List[Any]: lowerCamelCase__ = self.dummy_decoder lowerCamelCase__ = self.dummy_text_proj lowerCamelCase__ = self.dummy_text_encoder lowerCamelCase__ = self.dummy_tokenizer lowerCamelCase__ = self.dummy_super_res_first lowerCamelCase__ = self.dummy_super_res_last lowerCamelCase__ = UnCLIPScheduler( variance_type="learned_range" , prediction_type="epsilon" , num_train_timesteps=1000 , ) lowerCamelCase__ = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="epsilon" , num_train_timesteps=1000 , ) lowerCamelCase__ = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCamelCase__ = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=True ) -> List[Any]: lowerCamelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) if str(UpperCAmelCase_ ).startswith("mps" ): lowerCamelCase__ = torch.manual_seed(UpperCAmelCase_ ) else: lowerCamelCase__ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) if pil_image: lowerCamelCase__ = input_image * 0.5 + 0.5 lowerCamelCase__ = input_image.clamp(0 , 1 ) lowerCamelCase__ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCamelCase__ = DiffusionPipeline.numpy_to_pil(UpperCAmelCase_ )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _lowerCamelCase ( self ) -> Tuple: lowerCamelCase__ = 'cpu' lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**UpperCAmelCase_ ) lowerCamelCase__ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase__ = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) lowerCamelCase__ = pipe(**UpperCAmelCase_ ) lowerCamelCase__ = output.images lowerCamelCase__ = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) lowerCamelCase__ = pipe( **UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0] lowerCamelCase__ = image[0, -3:, -3:, -1] lowerCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ = np.array( [ 0.99_97, 0.00_02, 0.99_97, 0.99_97, 0.99_69, 0.00_23, 0.99_97, 0.99_69, 0.99_70, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ) -> List[Any]: lowerCamelCase__ = 'cpu' lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**UpperCAmelCase_ ) lowerCamelCase__ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase__ = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) lowerCamelCase__ = pipe(**UpperCAmelCase_ ) lowerCamelCase__ = output.images lowerCamelCase__ = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) lowerCamelCase__ = pipe( **UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0] lowerCamelCase__ = image[0, -3:, -3:, -1] lowerCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ = np.array([0.99_97, 0.00_03, 0.99_97, 0.99_97, 0.99_70, 0.00_24, 0.99_97, 0.99_71, 0.99_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ) -> Optional[Any]: lowerCamelCase__ = 'cpu' lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**UpperCAmelCase_ ) lowerCamelCase__ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase__ = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) lowerCamelCase__ = [ pipeline_inputs['image'], pipeline_inputs['image'], ] lowerCamelCase__ = pipe(**UpperCAmelCase_ ) lowerCamelCase__ = output.images lowerCamelCase__ = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) lowerCamelCase__ = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] lowerCamelCase__ = pipe( **UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0] lowerCamelCase__ = image[0, -3:, -3:, -1] lowerCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCamelCase__ = np.array( [ 0.99_97, 0.99_89, 0.00_08, 0.00_21, 0.99_60, 0.00_18, 0.00_14, 0.00_02, 0.99_33, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ) -> Union[str, Any]: lowerCamelCase__ = torch.device("cpu" ) class _A : __a = 1 lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**UpperCAmelCase_ ) lowerCamelCase__ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase__ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) lowerCamelCase__ = pipe.decoder.dtype lowerCamelCase__ = 1 lowerCamelCase__ = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCamelCase__ = pipe.prepare_latents( UpperCAmelCase_ , dtype=UpperCAmelCase_ , device=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , scheduler=DummyScheduler() ) lowerCamelCase__ = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCamelCase__ = pipe.prepare_latents( UpperCAmelCase_ , dtype=UpperCAmelCase_ , device=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , scheduler=DummyScheduler() ) lowerCamelCase__ = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) lowerCamelCase__ = pipe( **UpperCAmelCase_ , decoder_latents=UpperCAmelCase_ , super_res_latents=UpperCAmelCase_ ).images lowerCamelCase__ = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) # Don't pass image, instead pass embedding lowerCamelCase__ = pipeline_inputs.pop("image" ) lowerCamelCase__ = pipe.image_encoder(UpperCAmelCase_ ).image_embeds lowerCamelCase__ = pipe( **UpperCAmelCase_ , decoder_latents=UpperCAmelCase_ , super_res_latents=UpperCAmelCase_ , image_embeddings=UpperCAmelCase_ , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def _lowerCamelCase ( self ) -> List[str]: lowerCamelCase__ = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCamelCase__ = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=UpperCAmelCase_ , expected_max_diff=UpperCAmelCase_ ) @skip_mps def _lowerCamelCase ( self ) -> Optional[int]: lowerCamelCase__ = torch_device == 'cpu' lowerCamelCase__ = True lowerCamelCase__ = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=UpperCAmelCase_ , relax_max_difference=UpperCAmelCase_ , additional_params_copy_to_batched_inputs=UpperCAmelCase_ , ) def _lowerCamelCase ( self ) -> Optional[Any]: lowerCamelCase__ = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCamelCase__ = [2, 3] self._test_inference_batch_consistent( batch_sizes=UpperCAmelCase_ , additional_params_copy_to_batched_inputs=UpperCAmelCase_ , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=UpperCAmelCase_ ) @skip_mps def _lowerCamelCase ( self ) -> List[str]: return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self ) -> Any: return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self ) -> Optional[Any]: return super().test_save_load_optional_components() @slow @require_torch_gpu class _A ( unittest.TestCase ): def _lowerCamelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> Optional[Any]: lowerCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png" ) lowerCamelCase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/unclip/karlo_v1_alpha_cat_variation_fp16.npy" ) lowerCamelCase__ = UnCLIPImageVariationPipeline.from_pretrained( "kakaobrain/karlo-v1-alpha-image-variations" , torch_dtype=torch.floataa ) lowerCamelCase__ = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase__ = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase__ = pipeline( UpperCAmelCase_ , generator=UpperCAmelCase_ , output_type="np" , ) lowerCamelCase__ = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ , 15 )
706
"""simple docstring""" def UpperCAmelCase__ ( A__ ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(A__ , A__ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(A__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
274
0
'''simple docstring''' UpperCAmelCase__ : str = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} UpperCAmelCase__ : Any = ["a", "b", "c", "d", "e"] def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Any ) -> Dict: '''simple docstring''' lowerCAmelCase__ = start # add current to visited visited.append(UpperCamelCase_ ) lowerCAmelCase__ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: lowerCAmelCase__ = topological_sort(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # if all neighbors visited add current to sort sort.append(UpperCamelCase_ ) # if all vertices haven't been visited select a new one to visit if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): for vertice in vertices: if vertice not in visited: lowerCAmelCase__ = topological_sort(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # return sort return sort if __name__ == "__main__": UpperCAmelCase__ : Dict = topological_sort("a", [], []) print(sort)
48
import sys def __magic_name__ ( __lowerCAmelCase : str ) -> Union[str, Any]: __lowerCamelCase = len(__lowerCAmelCase ) __lowerCamelCase = [[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )] __lowerCamelCase = [[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )] for chain_length in range(2 , __lowerCAmelCase ): for a in range(1 , n - chain_length + 1 ): __lowerCamelCase = a + chain_length - 1 __lowerCamelCase = sys.maxsize for c in range(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: __lowerCamelCase = cost __lowerCamelCase = c return matrix, sol def __magic_name__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] ) -> List[str]: if i == j: print('''A''' + str(__lowerCAmelCase ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__lowerCAmelCase , __lowerCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCAmelCase , optimal_solution[i][j] + 1 , __lowerCAmelCase ) print(''')''' , end=''' ''' ) def __magic_name__ ( ) -> Optional[Any]: __lowerCamelCase = [30, 35, 15, 5, 10, 20, 25] __lowerCamelCase = len(__lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 __lowerCamelCase , __lowerCamelCase = matrix_chain_order(__lowerCAmelCase ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
298
0
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = (DPMSolverSDEScheduler,) UpperCAmelCase_ = 10 def UpperCAmelCase_ ( self :Union[str, Any] , **lowerCamelCase :List[str] ) -> List[Any]: UpperCAmelCase__ = { "num_train_timesteps": 1100, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "noise_sampler_seed": 0, } config.update(**lowerCamelCase ) return config def UpperCAmelCase_ ( self :str ) -> str: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def UpperCAmelCase_ ( self :Any ) -> Optional[int]: for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase , beta_end=lowerCamelCase ) def UpperCAmelCase_ ( self :Optional[int] ) -> List[Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase ) def UpperCAmelCase_ ( self :str ) -> int: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def UpperCAmelCase_ ( self :int ) -> Tuple: UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase__ = self.dummy_model() UpperCAmelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase__ = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase__ = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = model(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = output.prev_sample UpperCAmelCase__ = torch.sum(torch.abs(lowerCamelCase ) ) UpperCAmelCase__ = torch.mean(torch.abs(lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.47_82_10_44_92_18_75 ) < 1e-2 assert abs(result_mean.item() - 0.21_78_70_59_64_56_52_77 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_21_11_81_64_06 ) < 1e-2 assert abs(result_mean.item() - 0.2_23_42_90_68_92_29_96_52 ) < 1e-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1e-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1e-3 def UpperCAmelCase_ ( self :List[str] ) -> Optional[Any]: UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config(prediction_type="v_prediction" ) UpperCAmelCase__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase__ = self.dummy_model() UpperCAmelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase__ = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase__ = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = model(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = output.prev_sample UpperCAmelCase__ = torch.sum(torch.abs(lowerCamelCase ) ) UpperCAmelCase__ = torch.mean(torch.abs(lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_24.77_14_92_00_43_94_53 ) < 1e-2 assert abs(result_mean.item() - 0.1_62_26_28_90_14_81_62_84 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_28.1_66_33_60_59_57_03 ) < 1e-2 assert abs(result_mean.item() - 0.1_66_88_32_60_01_16_72_97 ) < 1e-3 else: assert abs(result_sum.item() - 1_19.8_48_75_48_82_81_25 ) < 1e-2 assert abs(result_mean.item() - 0.15_60_53_06_62_53_66_21 ) < 1e-3 def UpperCAmelCase_ ( self :List[str] ) -> List[str]: UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) UpperCAmelCase__ = self.dummy_model() UpperCAmelCase__ = self.dummy_sample_deter.to(lowerCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase__ = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = model(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = output.prev_sample UpperCAmelCase__ = torch.sum(torch.abs(lowerCamelCase ) ) UpperCAmelCase__ = torch.mean(torch.abs(lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.46_95_73_97_46_09_38 ) < 1e-2 assert abs(result_mean.item() - 0.2_18_05_93_46_07_98_26_35 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_36_37_69_53_12 ) < 1e-2 assert abs(result_mean.item() - 0.2_23_42_90_83_82_41_57_71 ) < 1e-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1e-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1e-3 def UpperCAmelCase_ ( self :Optional[int] ) -> Any: UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**lowerCamelCase , use_karras_sigmas=lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) UpperCAmelCase__ = self.dummy_model() UpperCAmelCase__ = self.dummy_sample_deter.to(lowerCamelCase ) * scheduler.init_noise_sigma UpperCAmelCase__ = sample.to(lowerCamelCase ) for t in scheduler.timesteps: UpperCAmelCase__ = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = model(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = output.prev_sample UpperCAmelCase__ = torch.sum(torch.abs(lowerCamelCase ) ) UpperCAmelCase__ = torch.mean(torch.abs(lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_76.66_97_41_35_74_21_88 ) < 1e-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_77.63_65_35_64_45_31_25 ) < 1e-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1e-2 else: assert abs(result_sum.item() - 1_70.3_13_52_23_38_86_72 ) < 1e-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1e-2
364
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): UpperCAmelCase_ = IFInpaintingSuperResolutionPipeline UpperCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} UpperCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) UpperCAmelCase_ = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCAmelCase_ ( self :str ) -> Optional[Any]: return self._get_superresolution_dummy_components() def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :Dict , lowerCamelCase :Optional[Any]=0 ) -> int: if str(lowerCamelCase ).startswith("mps" ): UpperCAmelCase__ = torch.manual_seed(lowerCamelCase ) else: UpperCAmelCase__ = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) UpperCAmelCase__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) UpperCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) UpperCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) UpperCAmelCase__ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCAmelCase_ ( self :Union[str, Any] ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def UpperCAmelCase_ ( self :List[str] ) -> Dict: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCAmelCase_ ( self :Tuple ) -> Dict: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def UpperCAmelCase_ ( self :Dict ) -> str: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def UpperCAmelCase_ ( self :Dict ) -> str: self._test_save_load_local() def UpperCAmelCase_ ( self :List[str] ) -> List[str]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
364
1
import numpy as np def UpperCAmelCase_ ( __UpperCAmelCase : np.array ) -> np.array: return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
31
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_attention_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_choices def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_attention_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ =True UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( __lowercase , unittest.TestCase ): _snake_case =True _snake_case =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase ) UpperCAmelCase_ =model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
54
0
def SCREAMING_SNAKE_CASE ( snake_case_ : int ): if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(snake_case_ , snake_case_ ): raise TypeError("Input value must be a 'int' type" ) return bin(snake_case_ ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
25
from __future__ import annotations import time __lowerCamelCase : str = list[tuple[int, int]] __lowerCamelCase : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ): snake_case__ : Optional[int] = pos_x snake_case__ : Dict = pos_y snake_case__ : int = (pos_y, pos_x) snake_case__ : Optional[int] = goal_x snake_case__ : Tuple = goal_y snake_case__ : str = parent class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ): snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A ) snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A ) snake_case__ : int = [self.start] snake_case__ : Union[str, Any] = False def _lowercase ( self : Dict ): while self.node_queue: snake_case__ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case__ : Optional[Any] = True return self.retrace_path(__A ) snake_case__ : int = self.get_successors(__A ) for node in successors: self.node_queue.append(__A ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Union[str, Any] , __A : Node ): snake_case__ : str = [] for action in delta: snake_case__ : str = parent.pos_x + action[1] snake_case__ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) ) return successors def _lowercase ( self : Optional[Any] , __A : Node | None ): snake_case__ : Tuple = node snake_case__ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case__ : Tuple = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , __A : str , __A : int ): snake_case__ : str = BreadthFirstSearch(__A , __A ) snake_case__ : int = BreadthFirstSearch(__A , __A ) snake_case__ : Tuple = False def _lowercase ( self : Optional[Any] ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 ) snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case__ : List[str] = True return self.retrace_bidirectional_path( __A , __A ) snake_case__ : Union[str, Any] = current_bwd_node snake_case__ : Dict = current_fwd_node snake_case__ : List[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(__A ), self.bwd_bfs: self.bwd_bfs.get_successors(__A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Any , __A : Node , __A : Node ): snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A ) snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A ) bwd_path.pop() bwd_path.reverse() snake_case__ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowerCamelCase : str = (0, 0) __lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCamelCase : Any = time.time() __lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal) __lowerCamelCase : str = bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) __lowerCamelCase : Optional[Any] = time.time() __lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) __lowerCamelCase : str = bd_bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
25
1
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE__ = logging.getLogger() def UpperCAmelCase__ ( lowerCamelCase_ : Path , lowerCamelCase_ : list ): __a : Tuple = '\n'.join(lowerCamelCase_ ) Path(lowerCamelCase_ ).open('w' ).writelines(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = '''patrickvonplaten/t5-tiny-random''' SCREAMING_SNAKE_CASE__ = '''sshleifer/bart-tiny-random''' SCREAMING_SNAKE_CASE__ = '''sshleifer/tiny-mbart''' SCREAMING_SNAKE_CASE__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _UpperCamelCase( __lowerCamelCase ): def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' __a : Dict = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' __a : str = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() __a : Optional[Any] = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : List[str] = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) __a : Any = 'translation_en_to_de' if model == T5_TINY else 'summarization' __a : Union[str, Any] = f''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(SCREAMING_SNAKE_CASE__ , 'argv' , SCREAMING_SNAKE_CASE__ ): run_generate() assert Path(SCREAMING_SNAKE_CASE__ ).exists() # os.remove(Path(output_file_name)) def __lowerCAmelCase ( self : str ): '''simple docstring''' self.run_eval_tester(SCREAMING_SNAKE_CASE__ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' self.run_eval_tester(SCREAMING_SNAKE_CASE__ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' __a : str = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' __a : Any = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() __a : Dict = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } __a : Dict = Path(self.get_auto_remove_tmp_dir() ) __a : Tuple = str(tmp_dir / 'scores.json' ) __a : List[str] = str(tmp_dir / 'val.target' ) _dump_articles(SCREAMING_SNAKE_CASE__ , text['en'] ) _dump_articles(SCREAMING_SNAKE_CASE__ , text['de'] ) __a : Dict = 'translation_en_to_de' if model == T5_TINY else 'summarization' __a : Any = f''' run_eval_search.py {model} {str(SCREAMING_SNAKE_CASE__ )} {str(SCREAMING_SNAKE_CASE__ )} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(SCREAMING_SNAKE_CASE__ , 'argv' , SCREAMING_SNAKE_CASE__ ): with CaptureStdout() as cs: run_search() __a : List[str] = [' num_beams | length_penalty', model, 'Best score args'] __a : Optional[Any] = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(SCREAMING_SNAKE_CASE__ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(SCREAMING_SNAKE_CASE__ ).exists() os.remove(Path(SCREAMING_SNAKE_CASE__ ) )
47
def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case , snake_case ) -> int: # Return True if there is node that has not iterated. __lowercase = [False] * len(snake_case ) __lowercase = [] queue.append(snake_case ) __lowercase = True while queue: __lowercase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(snake_case ) __lowercase = True __lowercase = u return visited[t] def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Dict: # This array is filled by BFS and to store path __lowercase = [-1] * (len(snake_case )) __lowercase = 0 while bfs(snake_case , snake_case , snake_case , snake_case ): __lowercase = float('Inf' ) __lowercase = sink while s != source: # Find the minimum value in select path __lowercase = min(snake_case , graph[parent[s]][s] ) __lowercase = parent[s] max_flow += path_flow __lowercase = sink while v != source: __lowercase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __lowercase = parent[v] return max_flow SCREAMING_SNAKE_CASE_ : Any = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ : Optional[Any] = 0, 5 print(ford_fulkerson(graph, source, sink))
375
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase : int = { "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = ["ChineseCLIPFeatureExtractor"] _lowerCAmelCase : Optional[int] = ["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
710
import heapq import sys import numpy as np _lowerCAmelCase : str = tuple[int, int] class __snake_case : def __init__( self ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = set() def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf' ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return len(self.elements ) == 0 def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements ,(priority, item) ) self.set.add(a_ ) else: # update # print("update", item) lowerCAmelCase__ = [] ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements ,(pro, xxx) ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" if item in self.set: self.set.remove(a_ ) lowerCAmelCase__ = [] ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements ,(prito, yyy) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.elements[0][1] def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) self.set.remove(a_ ) return (priority, item) def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = np.array(snake_case__ ) lowerCAmelCase__ = np.array(snake_case__ ) return np.linalg.norm(a - b ) def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> Any: """simple docstring""" return consistent_heuristic(snake_case__ , snake_case__ ) // t def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> str: """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Tuple: """simple docstring""" lowerCAmelCase__ = g_function[start] + Wa * heuristics[i](snake_case__ , snake_case__ ) return ans def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ) -> Any: """simple docstring""" lowerCAmelCase__ = np.chararray((n, n) ) for i in range(snake_case__ ): for j in range(snake_case__ ): lowerCAmelCase__ = '*' for i in range(snake_case__ ): for j in range(snake_case__ ): if (j, (n - 1) - i) in blocks: lowerCAmelCase__ = '#' lowerCAmelCase__ = '-' lowerCAmelCase__ = back_pointer[goal] while x != start: ((lowerCAmelCase__) , (lowerCAmelCase__)) = x # print(x) lowerCAmelCase__ = '-' lowerCAmelCase__ = back_pointer[x] lowerCAmelCase__ = '-' for i in range(snake_case__ ): for j in range(snake_case__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowerCAmelCase__ = back_pointer[goal] while x != start: print(snake_case__ , end=' ' ) lowerCAmelCase__ = back_pointer[x] print(snake_case__ ) sys.exit() def UpperCAmelCase_ ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> Union[str, Any]: """simple docstring""" for itera in range(snake_case__ ): open_list[itera].remove_element(snake_case__ ) # print("s", s) # print("j", j) ((lowerCAmelCase__) , (lowerCAmelCase__)) = s lowerCAmelCase__ = (x - 1, y) lowerCAmelCase__ = (x + 1, y) lowerCAmelCase__ = (x, y + 1) lowerCAmelCase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(snake_case__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(snake_case__ ) lowerCAmelCase__ = -1 lowerCAmelCase__ = float('inf' ) if valid(snake_case__ ) and g_function[neighbours] > g_function[s] + 1: lowerCAmelCase__ = g_function[s] + 1 lowerCAmelCase__ = s if neighbours not in close_list_anchor: open_list[0].put(snake_case__ , key(snake_case__ , 0 , snake_case__ , snake_case__ ) ) if neighbours not in close_list_inad: for var in range(1 , snake_case__ ): if key(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) <= Wa * key( snake_case__ , 0 , snake_case__ , snake_case__ ): open_list[j].put( snake_case__ , key(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ) def UpperCAmelCase_ ( ) -> List[str]: """simple docstring""" lowerCAmelCase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list _lowerCAmelCase : Tuple = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} _lowerCAmelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (1_0, 1), (1_1, 1), (1_2, 1), (1_3, 1), (1_4, 1), (1_5, 1), (1_6, 1), (1_7, 1), (1_8, 1), (1_9, 1), ] _lowerCAmelCase : Any = make_common_ground() _lowerCAmelCase : List[str] = blocks_blk # hyper parameters _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : int = 2_0 _lowerCAmelCase : str = 3 # one consistent and two other inconsistent # start and end destination _lowerCAmelCase : Tuple = (0, 0) _lowerCAmelCase : List[str] = (n - 1, n - 1) _lowerCAmelCase : str = 1 def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ) -> str: """simple docstring""" lowerCAmelCase__ = {start: 0, goal: float('inf' )} lowerCAmelCase__ = {start: -1, goal: -1} lowerCAmelCase__ = [] lowerCAmelCase__ = set() for i in range(snake_case__ ): open_list.append(PriorityQueue() ) open_list[i].put(snake_case__ , key(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , snake_case__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(snake_case__ , snake_case__ , snake_case__ ) else: lowerCAmelCase__ , lowerCAmelCase__ = open_list[i].top_show() visited.add(snake_case__ ) expand_state( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) close_list_inad.append(snake_case__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(snake_case__ , snake_case__ , snake_case__ ) else: lowerCAmelCase__ = open_list[0].top_show() visited.add(snake_case__ ) expand_state( snake_case__ , 0 , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) close_list_anchor.append(snake_case__ ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(snake_case__ ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
604
0
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" UpperCamelCase = 1 UpperCamelCase = 3 UpperCamelCase = (32, 32) UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_SCREAMING_SNAKE_CASE ) return image @property def _SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def _SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def _SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(_SCREAMING_SNAKE_CASE ) @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" def extract(*_SCREAMING_SNAKE_CASE : Optional[Any] , **_SCREAMING_SNAKE_CASE : Union[str, Any] ): class A__ : '''simple docstring''' def __init__( self : int ): """simple docstring""" UpperCamelCase = torch.ones([0] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" self.pixel_values.to(_SCREAMING_SNAKE_CASE ) return self return Out() return extract def _SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.dummy_cond_unet UpperCamelCase = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.dummy_vae UpperCamelCase = self.dummy_text_encoder UpperCamelCase = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) UpperCamelCase = 77 UpperCamelCase = self.dummy_image.to(_SCREAMING_SNAKE_CASE ) UpperCamelCase = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk UpperCamelCase = AltDiffusionImgaImgPipeline( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) UpperCamelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_SCREAMING_SNAKE_CASE ) UpperCamelCase = alt_pipe.to(_SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase = 'A painting of a squirrel eating a burger' UpperCamelCase = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) UpperCamelCase = alt_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_SCREAMING_SNAKE_CASE , ) UpperCamelCase = output.images UpperCamelCase = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) UpperCamelCase = alt_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" UpperCamelCase = self.dummy_cond_unet UpperCamelCase = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.dummy_vae UpperCamelCase = self.dummy_text_encoder UpperCamelCase = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) UpperCamelCase = 77 UpperCamelCase = self.dummy_image.to(_SCREAMING_SNAKE_CASE ) # put models in fp16 UpperCamelCase = unet.half() UpperCamelCase = vae.half() UpperCamelCase = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase = AltDiffusionImgaImgPipeline( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) UpperCamelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_SCREAMING_SNAKE_CASE ) UpperCamelCase = alt_pipe.to(_SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase = 'A painting of a squirrel eating a burger' UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = alt_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='np' , image=_SCREAMING_SNAKE_CASE , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 UpperCamelCase = init_image.resize((760, 504) ) UpperCamelCase = 'BAAI/AltDiffusion' UpperCamelCase = AltDiffusionImgaImgPipeline.from_pretrained( _SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() UpperCamelCase = 'A fantasy landscape, trending on artstation' UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , strength=0.7_5 , guidance_scale=7.5 , generator=_SCREAMING_SNAKE_CASE , output_type='np' , ) UpperCamelCase = output.images[0] UpperCamelCase = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) UpperCamelCase = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) UpperCamelCase = init_image.resize((768, 512) ) UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) UpperCamelCase = 'BAAI/AltDiffusion' UpperCamelCase = AltDiffusionImgaImgPipeline.from_pretrained( _SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() UpperCamelCase = 'A fantasy landscape, trending on artstation' UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , strength=0.7_5 , guidance_scale=7.5 , generator=_SCREAMING_SNAKE_CASE , output_type='np' , ) UpperCamelCase = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
280
def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
280
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def _lowerCamelCase ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): _lowerCAmelCase = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } _lowerCAmelCase , _lowerCAmelCase = input_paths_and_base_extractors[compression_format] if input_path is None: _lowerCAmelCase = F'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase_ ) assert base_extractor.is_extractable(lowerCamelCase_ ) _lowerCAmelCase = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(lowerCamelCase_ , lowerCamelCase_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _lowerCAmelCase = file_path.read_text(encoding='utf-8' ) else: _lowerCAmelCase = output_path.read_text(encoding='utf-8' ) _lowerCAmelCase = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def _lowerCamelCase ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): _lowerCAmelCase = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } _lowerCAmelCase = input_paths[compression_format] if input_path is None: _lowerCAmelCase = F'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase_ ) _lowerCAmelCase = Extractor.infer_extractor_format(lowerCamelCase_ ) assert extractor_format is not None _lowerCAmelCase = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _lowerCAmelCase = file_path.read_text(encoding='utf-8' ) else: _lowerCAmelCase = output_path.read_text(encoding='utf-8' ) _lowerCAmelCase = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def _lowerCamelCase ( snake_case , snake_case ): import tarfile _lowerCAmelCase = tmp_path / 'data_dot_dot' directory.mkdir() _lowerCAmelCase = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(lowerCamelCase_ , 'w' ) as f: f.add(lowerCamelCase_ , arcname=os.path.join('..' , text_file.name ) ) return path @pytest.fixture def _lowerCamelCase ( snake_case ): import tarfile _lowerCAmelCase = tmp_path / 'data_sym_link' directory.mkdir() _lowerCAmelCase = directory / 'tar_file_with_sym_link.tar' os.symlink('..' , directory / 'subdir' , target_is_directory=lowerCamelCase_ ) with tarfile.TarFile(lowerCamelCase_ , 'w' ) as f: f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , ) def _lowerCamelCase ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): _lowerCAmelCase = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } _lowerCAmelCase = insecure_tar_files[insecure_tar_file] _lowerCAmelCase = tmp_path / 'extracted' TarExtractor.extract(lowerCamelCase_ , lowerCamelCase_ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _lowerCamelCase ( snake_case ): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number _lowerCAmelCase = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 _lowerCAmelCase = ( b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' b'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' b'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' b'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(lowerCamelCase_ ) assert zipfile.is_zipfile(str(lowerCamelCase_ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(lowerCamelCase_ ) # but we're right
712
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase: int = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Any = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: str = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _lowercase: Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
225
0
lowerCamelCase__ : int = tuple[float, float, float] lowerCamelCase__ : Optional[Any] = tuple[float, float, float] def UpperCAmelCase_ ( __UpperCAmelCase : Pointad , __UpperCAmelCase : Pointad ) -> Vectorad: SCREAMING_SNAKE_CASE_ = end_pointa[0] - end_pointa[0] SCREAMING_SNAKE_CASE_ = end_pointa[1] - end_pointa[1] SCREAMING_SNAKE_CASE_ = end_pointa[2] - end_pointa[2] return (x, y, z) def UpperCAmelCase_ ( __UpperCAmelCase : Vectorad , __UpperCAmelCase : Vectorad ) -> Vectorad: SCREAMING_SNAKE_CASE_ = ab[1] * ac[2] - ab[2] * ac[1] # *i SCREAMING_SNAKE_CASE_ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j SCREAMING_SNAKE_CASE_ = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def UpperCAmelCase_ ( __UpperCAmelCase : Vectorad , __UpperCAmelCase : int ) -> bool: return tuple(round(__UpperCAmelCase , __UpperCAmelCase ) for x in vector ) == (0, 0, 0) def UpperCAmelCase_ ( __UpperCAmelCase : Pointad , __UpperCAmelCase : Pointad , __UpperCAmelCase : Pointad , __UpperCAmelCase : int = 10 ) -> bool: SCREAMING_SNAKE_CASE_ = create_vector(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = create_vector(__UpperCAmelCase , __UpperCAmelCase ) return is_zero_vector(get_ad_vectors_cross(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase )
31
import os import re import shutil import sys import tempfile import unittest import black lowercase : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowercase : List[str] = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir ,"""schedulers/""" ) ) lowercase : Any = self.diffusers_dir shutil.copy( os.path.join(snake_case ,"""src/diffusers/schedulers/scheduling_ddpm.py""" ) ,os.path.join(self.diffusers_dir ,"""schedulers/scheduling_ddpm.py""" ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = """src/diffusers""" shutil.rmtree(self.diffusers_dir ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : Optional[int] = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: lowercase : Optional[Any] = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result lowercase : List[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=119 ) lowercase : int = black.format_str(snake_case ,mode=snake_case ) lowercase : int = os.path.join(self.diffusers_dir ,"""new_code.py""" ) with open(snake_case ,"""w""" ,newline="""\n""" ) as f: f.write(snake_case ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case ) ) == 0 ) else: check_copies.is_copy_consistent(f.name ,overwrite=snake_case ) with open(snake_case ,"""r""" ) as f: self.assertTrue(f.read() ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ,"""DDPMSchedulerOutput""" ,REFERENCE_CODE + """\n""" ,) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ,"""DDPMSchedulerOutput""" ,snake_case ,) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" ,"""TestSchedulerOutput""" ,re.sub("""DDPM""" ,"""Test""" ,snake_case ) ,) # Copy consistency with a really long name lowercase : Dict = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" ,f"{long_class_name}SchedulerOutput" ,re.sub("""Bert""" ,snake_case ,snake_case ) ,) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" ,"""TestSchedulerOutput""" ,snake_case ,overwrite_result=re.sub("""DDPM""" ,"""Test""" ,snake_case ) ,)
336
0
import functools def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] ) -> int: """simple docstring""" snake_case = len(lowerCamelCase__ ) snake_case = len(lowerCamelCase__ ) @functools.cache def min_distance(_UpperCamelCase : Dict , _UpperCamelCase : List[Any] ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa snake_case = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowerCamelCase__ ) , 1 + min_distance(lowerCamelCase__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
715
"""simple docstring""" import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" snake_case = ['a', 'b', 'c'] # Defaults to last layer if both are None snake_case ,snake_case = get_aligned_output_features_output_indices(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , ['c'] ) self.assertEqual(lowerCAmelCase , [2] ) # Out indices set to match out features snake_case ,snake_case = get_aligned_output_features_output_indices(['a', 'c'] , lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , ['a', 'c'] ) self.assertEqual(lowerCAmelCase , [0, 2] ) # Out features set to match out indices snake_case ,snake_case = get_aligned_output_features_output_indices(lowerCAmelCase , [0, 2] , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , ['a', 'c'] ) self.assertEqual(lowerCAmelCase , [0, 2] ) # Out features selected from negative indices snake_case ,snake_case = get_aligned_output_features_output_indices(lowerCAmelCase , [-3, -1] , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , ['a', 'c'] ) self.assertEqual(lowerCAmelCase , [-3, -1] ) def snake_case ( self ): """simple docstring""" with self.assertRaises(lowerCAmelCase ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , lowerCAmelCase ) # Out features must be a list with self.assertRaises(lowerCAmelCase ): verify_out_features_out_indices(('a', 'b') , (0, 1) , ['a', 'b'] ) # Out features must be a subset of stage names with self.assertRaises(lowerCAmelCase ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , ['a'] ) # Out indices must be a list or tuple with self.assertRaises(lowerCAmelCase ): verify_out_features_out_indices(lowerCAmelCase , 0 , ['a', 'b'] ) # Out indices must be a subset of stage names with self.assertRaises(lowerCAmelCase ): verify_out_features_out_indices(lowerCAmelCase , (0, 1) , ['a'] ) # Out features and out indices must be the same length with self.assertRaises(lowerCAmelCase ): verify_out_features_out_indices(['a', 'b'] , (0,) , ['a', 'b', 'c'] ) # Out features should match out indices with self.assertRaises(lowerCAmelCase ): verify_out_features_out_indices(['a', 'b'] , (0, 2) , ['a', 'b', 'c'] ) # Out features and out indices should be in order with self.assertRaises(lowerCAmelCase ): verify_out_features_out_indices(['b', 'a'] , (0, 1) , ['a', 'b'] ) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'] , (0, 1, -1) , ['a', 'b', 'c', 'd'] ) def snake_case ( self ): """simple docstring""" snake_case = BackboneMixin() snake_case = ['a', 'b', 'c'] snake_case = ['a', 'c'] snake_case = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly snake_case = ['a', 'b'] self.assertEqual(backbone.out_features , ['a', 'b'] ) self.assertEqual(backbone.out_indices , [0, 1] ) snake_case = [-3, -1] self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [-3, -1] )
104
0
import torch from transformers import AutoModel class _snake_case ( torch.nn.Module ): def __init__( self: str , __lowerCamelCase: Tuple="sayef/fsner-bert-base-uncased" ) -> str: super(__SCREAMING_SNAKE_CASE , self ).__init__() __UpperCAmelCase : Tuple = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Tuple = torch.nn.CosineSimilarity(3 , 1e-08 ) __UpperCAmelCase : str = torch.nn.Softmax(dim=1 ) def _lowerCamelCase ( self: Optional[int] , **__lowerCamelCase: Optional[int] ) -> int: return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def _lowerCamelCase ( self: Any , __lowerCamelCase: Optional[int] ) -> Optional[Any]: return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str=1 ) -> Optional[Any]: return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: Dict ) -> Optional[Any]: __UpperCAmelCase : Any = W_supports["sizes"].tolist() __UpperCAmelCase : Optional[Any] = W_supports["start_token_id"].item() __UpperCAmelCase : List[str] = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __UpperCAmelCase : int = self.BERT(**__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Dict = None __UpperCAmelCase : Dict = None __UpperCAmelCase : List[Any] = W_supports["input_ids"] == start_token_id __UpperCAmelCase : Dict = W_supports["input_ids"] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: __UpperCAmelCase : Union[str, Any] = 0 else: __UpperCAmelCase : Union[str, Any] = support_sizes[i - 1] __UpperCAmelCase : Optional[Any] = S[s : s + size][start_token_masks[s : s + size]] __UpperCAmelCase : Union[str, Any] = S[s : s + size][end_token_masks[s : s + size]] __UpperCAmelCase : Union[str, Any] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) __UpperCAmelCase : List[Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __UpperCAmelCase : str = torch.vstack((p_starts, p_start) ) __UpperCAmelCase : Optional[int] = torch.vstack((p_ends, p_end) ) else: __UpperCAmelCase : List[str] = p_start __UpperCAmelCase : Optional[int] = p_end return p_starts, p_ends
382
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : str = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
549
0
import operator as op def _snake_case ( A ) -> List[Any]: lowerCAmelCase__ = [] lowerCAmelCase__ = lambda A , A : int(x / y ) # noqa: E731 integer division operation lowerCAmelCase__ = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (30 + len(A )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(A ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(A ) , sep=''' | ''' ) else: lowerCAmelCase__ = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(A ) , sep=''' | ''' ) lowerCAmelCase__ = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(A ) , sep=''' | ''' ) stack.append( str(opr[x](int(A ) , int(A ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(A ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": __UpperCAmelCase = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
704
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __UpperCAmelCase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _snake_case ( A , A , A , A , A ) -> Optional[Any]: for attribute in key.split('''.''' ): lowerCAmelCase__ = getattr(A , A ) if weight_type is not None: lowerCAmelCase__ = getattr(A , A ).shape else: lowerCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ = value elif weight_type == "weight_g": lowerCAmelCase__ = value elif weight_type == "weight_v": lowerCAmelCase__ = value elif weight_type == "bias": lowerCAmelCase__ = value elif weight_type == "running_mean": lowerCAmelCase__ = value elif weight_type == "running_var": lowerCAmelCase__ = value elif weight_type == "num_batches_tracked": lowerCAmelCase__ = value elif weight_type == "inv_freq": lowerCAmelCase__ = value else: lowerCAmelCase__ = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _snake_case ( A , A , A ) -> Any: lowerCAmelCase__ = [] lowerCAmelCase__ = fairseq_model.state_dict() lowerCAmelCase__ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == '''group''' , ) lowerCAmelCase__ = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase__ = '''wav2vec2_conformer.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowerCAmelCase__ = True if "*" in mapped_key: lowerCAmelCase__ = name.split(A )[0].split('''.''' )[-2] lowerCAmelCase__ = mapped_key.replace('''*''' , A ) if "pos_bias_u" in name: lowerCAmelCase__ = None elif "pos_bias_v" in name: lowerCAmelCase__ = None elif "weight_g" in name: lowerCAmelCase__ = '''weight_g''' elif "weight_v" in name: lowerCAmelCase__ = '''weight_v''' elif "bias" in name: lowerCAmelCase__ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase__ = '''weight''' elif "running_mean" in name: lowerCAmelCase__ = '''running_mean''' elif "inv_freq" in name: lowerCAmelCase__ = '''inv_freq''' elif "running_var" in name: lowerCAmelCase__ = '''running_var''' elif "num_batches_tracked" in name: lowerCAmelCase__ = '''num_batches_tracked''' else: lowerCAmelCase__ = None set_recursively(A , A , A , A , A ) continue if not is_used: unused_weights.append(A ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _snake_case ( A , A , A , A , A ) -> Tuple: lowerCAmelCase__ = full_name.split('''conv_layers.''' )[-1] lowerCAmelCase__ = name.split('''.''' ) lowerCAmelCase__ = int(items[0] ) lowerCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(A ) @torch.no_grad() def _snake_case ( A , A , A=None , A=None , A=True ) -> Optional[int]: if config_path is not None: lowerCAmelCase__ = WavaVecaConformerConfig.from_pretrained(A , hidden_act='''swish''' ) else: lowerCAmelCase__ = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowerCAmelCase__ = '''rotary''' if is_finetuned: if dict_path: lowerCAmelCase__ = Dictionary.load(A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase__ = target_dict.pad_index lowerCAmelCase__ = target_dict.bos_index lowerCAmelCase__ = target_dict.eos_index lowerCAmelCase__ = len(target_dict.symbols ) lowerCAmelCase__ = os.path.join(A , '''vocab.json''' ) if not os.path.isdir(A ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(A ) ) return os.makedirs(A , exist_ok=A ) lowerCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 with open(A , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(A , A ) lowerCAmelCase__ = WavaVecaCTCTokenizer( A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=A , ) lowerCAmelCase__ = True if config.feat_extract_norm == '''layer''' else False lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) lowerCAmelCase__ = WavaVecaProcessor(feature_extractor=A , tokenizer=A ) processor.save_pretrained(A ) lowerCAmelCase__ = WavaVecaConformerForCTC(A ) else: lowerCAmelCase__ = WavaVecaConformerForPreTraining(A ) if is_finetuned: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: lowerCAmelCase__ = argparse.Namespace(task='''audio_pretraining''' ) lowerCAmelCase__ = fairseq.tasks.setup_task(A ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=A ) lowerCAmelCase__ = model[0].eval() recursively_load_weights(A , A , not is_finetuned ) hf_wavavec.save_pretrained(A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __UpperCAmelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
98
0
'''simple docstring''' from sklearn.metrics import recall_score import datasets __UpperCamelCase = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" __UpperCamelCase = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" __UpperCamelCase = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=1 , __magic_name__ : List[str]="binary" , __magic_name__ : Tuple=None , __magic_name__ : Dict="warn" , ) -> Any: """simple docstring""" __snake_case : Tuple = recall_score( __magic_name__ , __magic_name__ , labels=__magic_name__ , pos_label=__magic_name__ , average=__magic_name__ , sample_weight=__magic_name__ , zero_division=__magic_name__ , ) return {"recall": float(__magic_name__ ) if score.size == 1 else score}
26
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __magic_name__ ( lowercase__ ): def __init__( self : int , *snake_case_ : Optional[Any] , **snake_case_ : Optional[Any] ): warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead." , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
163
0
import argparse import struct import unittest class lowerCamelCase__ : """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' UpperCamelCase__ = data # Initialize hash values UpperCamelCase__ = [ 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19, ] # Initialize round constants UpperCamelCase__ = [ 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, ] UpperCamelCase__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def snake_case__ ( snake_case ): '''simple docstring''' UpperCamelCase__ = b"\x80" + (b"\x00" * (63 - (len(snake_case ) + 8) % 64)) UpperCamelCase__ = struct.pack(">Q" , (len(snake_case ) * 8) ) return data + padding + big_endian_integer def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase__ = list(struct.unpack(">16L" , snake_case ) ) # add 48 0-ed integers words += [0] * 48 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase__ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) UpperCamelCase__ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) UpperCamelCase__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100000000 # Compression UpperCamelCase__ = self.ror(snake_case , 6 ) ^ self.ror(snake_case , 11 ) ^ self.ror(snake_case , 25 ) UpperCamelCase__ = (e & f) ^ ((~e & 0xFFFFFFFF) & g) UpperCamelCase__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100000000 UpperCamelCase__ = self.ror(snake_case , 2 ) ^ self.ror(snake_case , 13 ) ^ self.ror(snake_case , 22 ) UpperCamelCase__ = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase__ = (sa + maj) % 0x100000000 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = ( g, f, e, ((d + tempa) % 0x100000000), c, b, a, ((tempa + tempa) % 0x100000000), ) UpperCamelCase__ = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase__ = [ ((element + mutated_hash_values[index]) % 0x100000000) for index, element in enumerate(self.hashes ) ] UpperCamelCase__ = "".join([hex(snake_case )[2:].zfill(8 ) for value in self.hashes] ) def snake_case__ ( self , snake_case , snake_case ): '''simple docstring''' return 0xFFFFFFFF & (value << (32 - rotations)) | (value >> rotations) class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ): '''simple docstring''' import hashlib UpperCamelCase__ = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(snake_case ).hash , hashlib.shaaaa(snake_case ).hexdigest() ) def UpperCamelCase_( )-> None: import doctest doctest.testmod() UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file" ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: UpperCamelCase__ = f.read() else: UpperCamelCase__ = bytes(_A , "utf-8" ) print(SHAaaa(_A ).hash ) if __name__ == "__main__": main()
709
from __future__ import annotations def UpperCamelCase_( _A :list[int] , _A :int )-> list[int]: UpperCamelCase__ = 0 UpperCamelCase__ = len(_A ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCamelCase__ = i + 1 else: UpperCamelCase__ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 1_1, 1_5], 9) = }''')
185
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "encoder-decoder" _lowerCAmelCase = True def __init__(self , **_lowercase ): '''simple docstring''' super().__init__(**_lowercase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" __a : List[Any] = kwargs.pop("""encoder""" ) __a : str = encoder_config.pop("""model_type""" ) __a : int = kwargs.pop("""decoder""" ) __a : str = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig __a : List[str] = AutoConfig.for_model(_lowercase , **_lowercase ) __a : int = AutoConfig.for_model(_lowercase , **_lowercase ) __a : Dict = True @classmethod def lowerCAmelCase__(cls , _lowercase , _lowercase , **_lowercase ): '''simple docstring''' logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) __a : List[str] = True __a : Optional[int] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' __a : int = copy.deepcopy(self.__dict__ ) __a : List[str] = self.encoder.to_dict() __a : Tuple = self.decoder.to_dict() __a : Tuple = self.__class__.model_type return output
581
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[Any] = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } __a : List[Any] = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(_lowercase ) , _lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_lowercase ) , x.transpose() ) ) __a : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_lowercase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCAmelCase__(self ): '''simple docstring''' __a : int = np.random.randn(3 , 4 ) __a : Optional[Any] = torch.tensor(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase ) , transpose(_lowercase ).numpy() ) ) __a : Optional[Any] = np.random.randn(3 , 4 , 5 ) __a : Any = torch.tensor(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase , axes=(1, 2, 0) ) , transpose(_lowercase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[Any] = np.random.randn(3 , 4 ) __a : int = tf.constant(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase ) , transpose(_lowercase ).numpy() ) ) __a : Any = np.random.randn(3 , 4 , 5 ) __a : List[str] = tf.constant(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase , axes=(1, 2, 0) ) , transpose(_lowercase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCAmelCase__(self ): '''simple docstring''' __a : Union[str, Any] = np.random.randn(3 , 4 ) __a : Union[str, Any] = jnp.array(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase ) , np.asarray(transpose(_lowercase ) ) ) ) __a : Optional[int] = np.random.randn(3 , 4 , 5 ) __a : Union[str, Any] = jnp.array(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase , axes=(1, 2, 0) ) , np.asarray(transpose(_lowercase , axes=(1, 2, 0) ) ) ) ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_lowercase , (4, 3) ) , np.reshape(_lowercase , (4, 3) ) ) ) __a : Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_lowercase , (12, 5) ) , np.reshape(_lowercase , (12, 5) ) ) ) @require_torch def lowerCAmelCase__(self ): '''simple docstring''' __a : List[Any] = np.random.randn(3 , 4 ) __a : List[Any] = torch.tensor(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (4, 3) ) , reshape(_lowercase , (4, 3) ).numpy() ) ) __a : List[str] = np.random.randn(3 , 4 , 5 ) __a : Any = torch.tensor(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (12, 5) ) , reshape(_lowercase , (12, 5) ).numpy() ) ) @require_tf def lowerCAmelCase__(self ): '''simple docstring''' __a : str = np.random.randn(3 , 4 ) __a : Dict = tf.constant(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (4, 3) ) , reshape(_lowercase , (4, 3) ).numpy() ) ) __a : Tuple = np.random.randn(3 , 4 , 5 ) __a : Optional[Any] = tf.constant(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (12, 5) ) , reshape(_lowercase , (12, 5) ).numpy() ) ) @require_flax def lowerCAmelCase__(self ): '''simple docstring''' __a : str = np.random.randn(3 , 4 ) __a : Tuple = jnp.array(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (4, 3) ) , np.asarray(reshape(_lowercase , (4, 3) ) ) ) ) __a : Tuple = np.random.randn(3 , 4 , 5 ) __a : Optional[int] = jnp.array(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (12, 5) ) , np.asarray(reshape(_lowercase , (12, 5) ) ) ) ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_lowercase ) , np.squeeze(_lowercase ) ) ) __a : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_lowercase , axis=2 ) , np.squeeze(_lowercase , axis=2 ) ) ) @require_torch def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[int] = np.random.randn(1 , 3 , 4 ) __a : List[Any] = torch.tensor(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase ) , squeeze(_lowercase ).numpy() ) ) __a : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) __a : str = torch.tensor(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase , axis=2 ) , squeeze(_lowercase , axis=2 ).numpy() ) ) @require_tf def lowerCAmelCase__(self ): '''simple docstring''' __a : int = np.random.randn(1 , 3 , 4 ) __a : Tuple = tf.constant(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase ) , squeeze(_lowercase ).numpy() ) ) __a : Any = np.random.randn(1 , 4 , 1 , 5 ) __a : List[str] = tf.constant(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase , axis=2 ) , squeeze(_lowercase , axis=2 ).numpy() ) ) @require_flax def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = np.random.randn(1 , 3 , 4 ) __a : Union[str, Any] = jnp.array(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase ) , np.asarray(squeeze(_lowercase ) ) ) ) __a : Any = np.random.randn(1 , 4 , 1 , 5 ) __a : Optional[Any] = jnp.array(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase , axis=2 ) , np.asarray(squeeze(_lowercase , axis=2 ) ) ) ) def lowerCAmelCase__(self ): '''simple docstring''' __a : List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_lowercase , axis=1 ) , np.expand_dims(_lowercase , axis=1 ) ) ) @require_torch def lowerCAmelCase__(self ): '''simple docstring''' __a : Any = np.random.randn(3 , 4 ) __a : Any = torch.tensor(_lowercase ) self.assertTrue(np.allclose(expand_dims(_lowercase , axis=1 ) , expand_dims(_lowercase , axis=1 ).numpy() ) ) @require_tf def lowerCAmelCase__(self ): '''simple docstring''' __a : int = np.random.randn(3 , 4 ) __a : str = tf.constant(_lowercase ) self.assertTrue(np.allclose(expand_dims(_lowercase , axis=1 ) , expand_dims(_lowercase , axis=1 ).numpy() ) ) @require_flax def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = np.random.randn(3 , 4 ) __a : Optional[Any] = jnp.array(_lowercase ) self.assertTrue(np.allclose(expand_dims(_lowercase , axis=1 ) , np.asarray(expand_dims(_lowercase , axis=1 ) ) ) )
581
1
def a__ ( _UpperCamelCase : int ,_UpperCamelCase : int ): if not isinstance(_lowerCamelCase ,_lowerCamelCase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(_lowerCamelCase ,_lowerCamelCase ) or not number >= 1: raise ValueError( '''starting number must be\n and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) __lowerCamelCase = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
706
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py a_ = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. a_ = direct_transformers_import(PATH_TO_TRANSFORMERS) a_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` a_ = re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") a_ = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def a__ ( _UpperCamelCase : Union[str, Any] ): __lowerCamelCase = None # source code of `config_class` __lowerCamelCase = inspect.getsource(_UpperCamelCase ) __lowerCamelCase = _re_checkpoint.findall(_UpperCamelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): __lowerCamelCase = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link __lowerCamelCase = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: __lowerCamelCase = ckpt_name break return checkpoint def a__ ( ): __lowerCamelCase = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue __lowerCamelCase = get_checkpoint_from_config_class(_UpperCamelCase ) __lowerCamelCase = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: __lowerCamelCase = '''\n'''.join(sorted(_UpperCamelCase ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
622
0
from graphs.minimum_spanning_tree_kruskal import kruskal def SCREAMING_SNAKE_CASE ( ) -> str: UpperCamelCase__ : Tuple = 9 UpperCamelCase__ : Optional[int] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCamelCase__ : List[str] = kruskal(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ : List[str] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__lowerCAmelCase ) == sorted(__lowerCAmelCase )
228
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowerCamelCase : List[Any] =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None ) -> str: UpperCamelCase__ : Any = tesseract_config if tesseract_config is not None else "" # apply OCR UpperCamelCase__ : int = to_pil_image(__lowerCAmelCase ) UpperCamelCase__ , UpperCamelCase__ : Dict = pil_image.size UpperCamelCase__ : Optional[Any] = pytesseract.image_to_data(__lowerCAmelCase , lang=__lowerCAmelCase , output_type="dict" , config=__lowerCAmelCase ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[str] = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates UpperCamelCase__ : Tuple = [idx for idx, word in enumerate(__lowerCAmelCase ) if not word.strip()] UpperCamelCase__ : Tuple = [word for idx, word in enumerate(__lowerCAmelCase ) if idx not in irrelevant_indices] UpperCamelCase__ : Union[str, Any] = [coord for idx, coord in enumerate(__lowerCAmelCase ) if idx not in irrelevant_indices] UpperCamelCase__ : List[str] = [coord for idx, coord in enumerate(__lowerCAmelCase ) if idx not in irrelevant_indices] UpperCamelCase__ : Union[str, Any] = [coord for idx, coord in enumerate(__lowerCAmelCase ) if idx not in irrelevant_indices] UpperCamelCase__ : str = [coord for idx, coord in enumerate(__lowerCAmelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCamelCase__ : List[Any] = [] for x, y, w, h in zip(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ : Optional[int] = [x, y, x + w, y + h] actual_boxes.append(__lowerCAmelCase ) # finally, normalize the bounding boxes UpperCamelCase__ : int = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __a ( A__ ): _lowerCAmelCase : int = ['''pixel_values'''] def __init__( self : Dict , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Dict[str, int] = None , SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Optional[str] = None , SCREAMING_SNAKE_CASE : Optional[str] = "" , **SCREAMING_SNAKE_CASE : Any , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = size if size is not None else {"height": 2_24, "width": 2_24} UpperCamelCase__ : str = get_size_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = do_resize UpperCamelCase__ : Union[str, Any] = size UpperCamelCase__ : List[str] = resample UpperCamelCase__ : Dict = apply_ocr UpperCamelCase__ : str = ocr_lang UpperCamelCase__ : List[str] = tesseract_config def __lowercase ( self : List[str] , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : Dict[str, int] , SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE : Dict , ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) UpperCamelCase__ : Union[str, Any] = (size["height"], size["width"]) return resize(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : ImageInput , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : Dict[str, int] = None , SCREAMING_SNAKE_CASE : PILImageResampling = None , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : Optional[str] = None , SCREAMING_SNAKE_CASE : Optional[str] = None , SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE : ChannelDimension = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE : Tuple , ): '''simple docstring''' UpperCamelCase__ : List[str] = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ : Tuple = size if size is not None else self.size UpperCamelCase__ : Any = get_size_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = resample if resample is not None else self.resample UpperCamelCase__ : Any = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCamelCase__ : Any = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCamelCase__ : str = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCamelCase__ : Dict = make_list_of_images(SCREAMING_SNAKE_CASE ) if not valid_images(SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) # All transformations expect numpy arrays. UpperCamelCase__ : Optional[int] = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images] if apply_ocr: requires_backends(self , "pytesseract" ) UpperCamelCase__ : Dict = [] UpperCamelCase__ : List[Any] = [] for image in images: UpperCamelCase__ , UpperCamelCase__ : Any = apply_tesseract(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) words_batch.append(SCREAMING_SNAKE_CASE ) boxes_batch.append(SCREAMING_SNAKE_CASE ) if do_resize: UpperCamelCase__ : Union[str, Any] = [self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) UpperCamelCase__ : Any = [flip_channel_order(SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase__ : str = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase__ : Optional[Any] = BatchFeature(data={"pixel_values": images} , tensor_type=SCREAMING_SNAKE_CASE ) if apply_ocr: UpperCamelCase__ : Tuple = words_batch UpperCamelCase__ : Dict = boxes_batch return data
228
1
def _lowerCAmelCase ( A__: Any ): '''simple docstring''' if not isinstance(A__ , A__ ): UpperCAmelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(A__ ) if number < 0: return False UpperCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
703
from math import factorial def _lowerCAmelCase ( A__: int , A__: int ): '''simple docstring''' if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(A__ ) // (factorial(A__ ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( "If a class of 40 students must be arranged into groups of", f'''4 for group projects, there are {combinations(40, 4)} ways''', "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", f'''are {combinations(10, 3)} ways that first, second and''', "third place can be awarded.", )
391
0
from manim import * class __UpperCamelCase ( _lowerCAmelCase ): def _a ( self : str ) -> Tuple: """simple docstring""" __lowercase = Rectangle(height=0.5 , width=0.5 ) __lowercase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __lowercase = Rectangle(height=0.25 , width=0.25 ) __lowercase = [mem.copy() for i in range(6 )] __lowercase = [mem.copy() for i in range(6 )] __lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) __lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) __lowercase = VGroup(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) __lowercase = Text("""CPU""" , font_size=24 ) __lowercase = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCAmelCase ) __lowercase = [mem.copy() for i in range(4 )] __lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) __lowercase = Text("""GPU""" , font_size=24 ) __lowercase = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_lowerCAmelCase ) __lowercase = [mem.copy() for i in range(6 )] __lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) __lowercase = Text("""Model""" , font_size=24 ) __lowercase = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_lowerCAmelCase ) __lowercase = [] __lowercase = [] for i, rect in enumerate(_lowerCAmelCase ): __lowercase = fill.copy().set_fill(_lowerCAmelCase , opacity=0.8 ) target.move_to(_lowerCAmelCase ) model_arr.append(_lowerCAmelCase ) __lowercase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_lowerCAmelCase ) self.add(*_lowerCAmelCase , *_lowerCAmelCase ) __lowercase = [meta_mem.copy() for i in range(6 )] __lowercase = [meta_mem.copy() for i in range(6 )] __lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) __lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) __lowercase = VGroup(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) __lowercase = Text("""Disk""" , font_size=24 ) __lowercase = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __lowercase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(_lowerCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_lowerCAmelCase ) __lowercase = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase ) ) __lowercase = Square(0.3 ) input.set_fill(_lowerCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _lowerCAmelCase , buff=0.5 ) self.play(Write(_lowerCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_lowerCAmelCase , buff=0.02 ) self.play(MoveToTarget(_lowerCAmelCase ) ) self.play(FadeOut(_lowerCAmelCase ) ) __lowercase = Arrow(start=_lowerCAmelCase , end=_lowerCAmelCase , color=_lowerCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _lowerCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) __lowercase = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase , run_time=3 ) ) __lowercase = {"""run_time""": 1, """fade_in""": True, """fade_out""": True, """buff""": 0.02} self.play( Write(_lowerCAmelCase ) , Circumscribe(model_arr[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) __lowercase = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _lowerCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) __lowercase = AnimationGroup( FadeOut(_lowerCAmelCase , run_time=0.5 ) , MoveToTarget(_lowerCAmelCase , run_time=0.5 ) , FadeIn(_lowerCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_lowerCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: __lowercase = 0.7 self.play( Circumscribe(model_arr[i] , **_lowerCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_lowerCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_lowerCAmelCase , **_lowerCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) __lowercase = a_c __lowercase = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_lowerCAmelCase ) , FadeOut(_lowerCAmelCase , run_time=0.5 ) , ) __lowercase = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase , run_time=3 ) , MoveToTarget(_lowerCAmelCase ) ) self.wait()
80
def snake_case ( lowerCamelCase = 2_000_000 ): '''simple docstring''' __lowercase = [0 for i in range(n + 1 )] __lowercase = 1 __lowercase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , lowerCamelCase ): __lowercase = 1 __lowercase = 0 for i in range(lowerCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'''{solution() = }''')
80
1
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE: Any , SCREAMING_SNAKE_CASE: List[Any] , SCREAMING_SNAKE_CASE: Dict , SCREAMING_SNAKE_CASE: List[Any] ): """simple docstring""" if height >= 1: move_tower(height - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) move_disk(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) move_tower(height - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __snake_case ( SCREAMING_SNAKE_CASE: List[str] , SCREAMING_SNAKE_CASE: Tuple ): """simple docstring""" print('moving disk from' , SCREAMING_SNAKE_CASE , 'to' , SCREAMING_SNAKE_CASE ) def __snake_case ( ): """simple docstring""" _lowerCAmelCase = int(input('Height of hanoi: ' ).strip() ) move_tower(SCREAMING_SNAKE_CASE , 'A' , 'B' , 'C' ) if __name__ == "__main__": main()
491
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE: int ): """simple docstring""" _lowerCAmelCase = generate_pascal_triangle(SCREAMING_SNAKE_CASE ) for row_idx in range(SCREAMING_SNAKE_CASE ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def __snake_case ( SCREAMING_SNAKE_CASE: int ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) _lowerCAmelCase = [] for current_row_idx in range(SCREAMING_SNAKE_CASE ): _lowerCAmelCase = populate_current_row(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) triangle.append(SCREAMING_SNAKE_CASE ) return triangle def __snake_case ( SCREAMING_SNAKE_CASE: list[list[int]] , SCREAMING_SNAKE_CASE: int ): """simple docstring""" _lowerCAmelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 _lowerCAmelCase , _lowerCAmelCase = 1, 1 for current_col_idx in range(1 , SCREAMING_SNAKE_CASE ): calculate_current_element( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return current_row def __snake_case ( SCREAMING_SNAKE_CASE: list[list[int]] , SCREAMING_SNAKE_CASE: list[int] , SCREAMING_SNAKE_CASE: int , SCREAMING_SNAKE_CASE: int , ): """simple docstring""" _lowerCAmelCase = triangle[current_row_idx - 1][current_col_idx - 1] _lowerCAmelCase = triangle[current_row_idx - 1][current_col_idx] _lowerCAmelCase = above_to_left_elt + above_to_right_elt def __snake_case ( SCREAMING_SNAKE_CASE: int ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) _lowerCAmelCase = [[1]] for row_index in range(1 , SCREAMING_SNAKE_CASE ): _lowerCAmelCase = [0] + result[-1] + [0] _lowerCAmelCase = row_index + 1 # Calculate the number of distinct elements in a row _lowerCAmelCase = sum(divmod(SCREAMING_SNAKE_CASE , 2 ) ) _lowerCAmelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] _lowerCAmelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() _lowerCAmelCase = row_first_half + row_second_half result.append(SCREAMING_SNAKE_CASE ) return result def __snake_case ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(SCREAMING_SNAKE_CASE: Callable , SCREAMING_SNAKE_CASE: int ) -> None: _lowerCAmelCase = f"""{func.__name__}({value})""" _lowerCAmelCase = timeit(f"""__main__.{call}""" , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
491
1