code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class SCREAMING_SNAKE_CASE : def __init__( self : str , lowercase__ : Any ): '''simple docstring''' a_ : Any = data a_ : Node | None = None class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ): '''simple docstring''' a_ : List[Any] = None a_ : Tuple = None def __iter__( self : Optional[Any] ): '''simple docstring''' a_ : List[Any] = self.head while self.head: yield node.data a_ : Optional[int] = node.next if node == self.head: break def __len__( self : Any ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : Union[str, Any] ): '''simple docstring''' return "->".join(str(lowercase__ ) for item in iter(self ) ) def lowercase_ ( self : int , lowercase__ : Any ): '''simple docstring''' self.insert_nth(len(self ) , lowercase__ ) def lowercase_ ( self : int , lowercase__ : Any ): '''simple docstring''' self.insert_nth(0 , lowercase__ ) def lowercase_ ( self : Tuple , lowercase__ : int , lowercase__ : Any ): '''simple docstring''' if index < 0 or index > len(self ): raise IndexError("""list index out of range.""" ) a_ : Optional[Any] = Node(lowercase__ ) if self.head is None: a_ : List[Any] = new_node # first node points itself a_ : str = new_node elif index == 0: # insert at head a_ : int = self.head a_ : Tuple = new_node else: a_ : int = self.head for _ in range(index - 1 ): a_ : str = temp.next a_ : List[str] = temp.next a_ : Dict = new_node if index == len(self ) - 1: # insert at tail a_ : Tuple = new_node def lowercase_ ( self : List[str] ): '''simple docstring''' return self.delete_nth(0 ) def lowercase_ ( self : List[str] ): '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def lowercase_ ( self : List[str] , lowercase__ : int = 0 ): '''simple docstring''' if not 0 <= index < len(self ): raise IndexError("""list index out of range.""" ) a_ : Tuple = self.head if self.head == self.tail: # just one node a_ : Dict = None elif index == 0: # delete head node a_ : Union[str, Any] = self.tail.next.next a_ : Optional[Any] = self.head.next else: a_ : int = self.head for _ in range(index - 1 ): a_ : List[Any] = temp.next a_ : str = temp.next a_ : Dict = temp.next.next if index == len(self ) - 1: # delete at tail a_ : Any = temp return delete_node.data def lowercase_ ( self : Tuple ): '''simple docstring''' return len(self ) == 0 def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" a_ : int = CircularLinkedList() assert len(UpperCamelCase__ ) == 0 assert circular_linked_list.is_empty() is True assert str(UpperCamelCase__ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(UpperCamelCase__ ) == i circular_linked_list.insert_nth(UpperCamelCase__ , i + 1 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
442
'''simple docstring''' import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int lowerCAmelCase_ : Any = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): __magic_name__ : Optional[datasets.Features] = None def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : "pyspark.sql.DataFrame" , UpperCamelCase__ : List[int] , ): """simple docstring""" import pyspark def generate_fn(): a_ : Any = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: a_ : int = df_with_partition_id.select("""*""" ).where(F"part_id = {partition_id}" ).drop("""part_id""" ) a_ : str = partition_df.collect() a_ : List[str] = 0 for row in rows: yield F"{partition_id}_{row_id}", row.asDict() row_id += 1 return generate_fn class SCREAMING_SNAKE_CASE ( _BaseExamplesIterable ): def __init__( self : Dict , lowercase__ : "pyspark.sql.DataFrame" , lowercase__ : Optional[int]=None , ): '''simple docstring''' a_ : Tuple = df a_ : Dict = partition_order or range(self.df.rdd.getNumPartitions() ) a_ : Dict = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Optional[Any] ): '''simple docstring''' yield from self.generate_examples_fn() def lowercase_ ( self : Dict , lowercase__ : np.random.Generator ): '''simple docstring''' a_ : Optional[int] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowercase__ ) return SparkExamplesIterable(self.df , partition_order=lowercase__ ) def lowercase_ ( self : Any , lowercase__ : int , lowercase__ : int ): '''simple docstring''' a_ : Optional[int] = self.split_shard_indices_by_worker(lowercase__ , lowercase__ ) return SparkExamplesIterable(self.df , partition_order=lowercase__ ) @property def lowercase_ ( self : List[Any] ): '''simple docstring''' return len(self.partition_order ) class SCREAMING_SNAKE_CASE ( datasets.DatasetBuilder ): __magic_name__ : Optional[int] = SparkConfig def __init__( self : Optional[Any] , lowercase__ : "pyspark.sql.DataFrame" , lowercase__ : str = None , lowercase__ : str = None , **lowercase__ : Dict , ): '''simple docstring''' import pyspark a_ : Dict = pyspark.sql.SparkSession.builder.getOrCreate() a_ : List[str] = df a_ : List[str] = working_dir super().__init__( cache_dir=lowercase__ , config_name=str(self.df.semanticHash() ) , **lowercase__ , ) def lowercase_ ( self : Tuple ): '''simple docstring''' def create_cache_and_write_probe(lowercase__ : Any ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=lowercase__ ) a_ : List[Any] = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowercase__ , """a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: a_ : str = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(lowercase__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def lowercase_ ( self : List[str] ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def lowercase_ ( self : Tuple , lowercase__ : datasets.download.download_manager.DownloadManager ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowercase_ ( self : Any , lowercase__ : int ): '''simple docstring''' import pyspark def get_arrow_batch_size(lowercase__ : List[Any] ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) a_ : Union[str, Any] = self.df.count() a_ : List[str] = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. a_ : str = ( self.df.limit(lowercase__ ) .repartition(1 ) .mapInArrow(lowercase__ , """batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) a_ : List[str] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. a_ : List[str] = min(lowercase__ , int(approx_total_size / max_shard_size ) ) a_ : Union[str, Any] = self.df.repartition(lowercase__ ) def lowercase_ ( self : Optional[Any] , lowercase__ : str , lowercase__ : str , lowercase__ : int , ): '''simple docstring''' import pyspark a_ : str = ParquetWriter if file_format == """parquet""" else ArrowWriter a_ : int = os.path.join(self._working_dir , os.path.basename(lowercase__ ) ) if self._working_dir else fpath a_ : Optional[int] = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. a_ : int = self.config.features a_ : List[str] = self._writer_batch_size a_ : str = self._fs.storage_options def write_arrow(lowercase__ : Optional[Any] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. a_ : int = pyspark.TaskContext().taskAttemptId() a_ : List[str] = next(lowercase__ , lowercase__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) a_ : List[str] = 0 a_ : Union[str, Any] = writer_class( features=lowercase__ , path=working_fpath.replace("""SSSSS""" , F"{shard_id:05d}" ).replace("""TTTTT""" , F"{task_id:05d}" ) , writer_batch_size=lowercase__ , storage_options=lowercase__ , embed_local_files=lowercase__ , ) a_ : List[str] = pa.Table.from_batches([first_batch] ) writer.write_table(lowercase__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: a_ , a_ : Optional[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) shard_id += 1 a_ : Any = writer_class( features=writer._features , path=working_fpath.replace("""SSSSS""" , F"{shard_id:05d}" ).replace("""TTTTT""" , F"{task_id:05d}" ) , writer_batch_size=lowercase__ , storage_options=lowercase__ , embed_local_files=lowercase__ , ) a_ : str = pa.Table.from_batches([batch] ) writer.write_table(lowercase__ ) if writer._num_bytes > 0: a_ , a_ : Any = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowercase__ ) ): a_ : str = os.path.join(os.path.dirname(lowercase__ ) , os.path.basename(lowercase__ ) ) shutil.move(lowercase__ , lowercase__ ) a_ : Any = ( self.df.mapInArrow(lowercase__ , """task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowercase_ ( self : Union[str, Any] , lowercase__ : "datasets.SplitGenerator" , lowercase__ : str = "arrow" , lowercase__ : Optional[Union[str, int]] = None , lowercase__ : Optional[int] = None , **lowercase__ : Optional[int] , ): '''simple docstring''' self._validate_cache_dir() a_ : Dict = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowercase__ ) a_ : Any = not is_remote_filesystem(self._fs ) a_ : str = os.path.join if is_local else posixpath.join a_ : Optional[Any] = """-TTTTT-SSSSS-of-NNNNN""" a_ : int = F"{self.name}-{split_generator.name}{SUFFIX}.{file_format}" a_ : Optional[Any] = path_join(self._output_dir , lowercase__ ) a_ : Dict = 0 a_ : Optional[Any] = 0 a_ : Dict = 0 a_ : List[str] = [] a_ : Dict = [] for task_id, content in self._prepare_split_single(lowercase__ , lowercase__ , lowercase__ ): ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : Tuple = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowercase__ ) a_ : List[Any] = total_num_examples a_ : int = total_num_bytes # should rename everything at the end logger.debug(F"Renaming {total_shards} shards." ) if total_shards > 1: a_ : Dict = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. a_ : List[str] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowercase__ : int , lowercase__ : int , lowercase__ : int , ): rename( lowercase__ , fpath.replace("""SSSSS""" , F"{shard_id:05d}" ).replace("""TTTTT""" , F"{task_id:05d}" ) , fpath.replace("""TTTTT-SSSSS""" , F"{global_shard_id:05d}" ).replace("""NNNNN""" , F"{total_shards:05d}" ) , ) a_ : int = [] a_ : List[str] = 0 for i in range(len(lowercase__ ) ): a_ , a_ : List[str] = task_id_and_num_shards[i] for shard_id in range(lowercase__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowercase__ , len(lowercase__ ) ).map(lambda lowercase__ : _rename_shard(*lowercase__ ) ).collect() else: # don't use any pattern a_ : int = 0 a_ : Any = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" , F"{shard_id:05d}" ).replace("""TTTTT""" , F"{task_id:05d}" ) , fpath.replace(lowercase__ , """""" ) , ) def lowercase_ ( self : Tuple , lowercase__ : "datasets.SplitGenerator" , ): '''simple docstring''' return SparkExamplesIterable(self.df )
442
1
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class _UpperCamelCase : '''simple docstring''' def __init__( self , __lowercase , __lowercase=13 , __lowercase=2 , __lowercase=24 , __lowercase=16 , __lowercase=True , __lowercase=True , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=10 , __lowercase=0.02 , __lowercase=None , __lowercase=2 , __lowercase=2 , ): UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = max_length UpperCAmelCase__ = num_mel_bins UpperCAmelCase__ = is_training UpperCAmelCase__ = use_labels UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = scope UpperCAmelCase__ = frequency_stride UpperCAmelCase__ = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase__ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCAmelCase__ = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCAmelCase__ = frequency_out_dimension * time_out_dimension UpperCAmelCase__ = num_patches + 2 def A__ ( self ): UpperCAmelCase__ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, input_values, labels def A__ ( self ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowercase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def A__ ( self , __lowercase , __lowercase , __lowercase ): UpperCAmelCase__ = ASTModel(config=__lowercase ) model.to(__lowercase ) model.eval() UpperCAmelCase__ = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self ): UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {"""input_values""": input_values} return config, inputs_dict @require_torch class _UpperCamelCase ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : List[Any] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) __lowercase : int = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) __lowercase : Optional[Any] = False __lowercase : int = False __lowercase : str = False __lowercase : List[Any] = False def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def A__ ( self ): UpperCAmelCase__ = ASTModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def A__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""" ) def A__ ( self ): pass def A__ ( self ): UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowercase , nn.Linear ) ) def A__ ( self ): UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__lowercase ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ["""input_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def A__ ( self ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) @slow def A__ ( self ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = ASTModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def snake_case__ ( ) ->Any: UpperCAmelCase__ = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" ) UpperCAmelCase__ , UpperCAmelCase__ = torchaudio.load(_SCREAMING_SNAKE_CASE ) return audio, sampling_rate @require_torch @require_torchaudio class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ): return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ) if is_torchaudio_available() else None ) @slow def A__ ( self ): UpperCAmelCase__ = self.default_feature_extractor UpperCAmelCase__ = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ).to(__lowercase ) UpperCAmelCase__ = self.default_feature_extractor UpperCAmelCase__ , UpperCAmelCase__ = prepare_audio() UpperCAmelCase__ = audio.squeeze().numpy() UpperCAmelCase__ = feature_extractor(__lowercase , sampling_rate=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**__lowercase ) # verify the logits UpperCAmelCase__ = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , __lowercase ) UpperCAmelCase__ = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1e-4 ) )
422
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->Dict: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def snake_case__ ( ) ->Optional[Any]: with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" UpperCAmelCase__ = [1, 2, 3] with pytest.raises(_SCREAMING_SNAKE_CASE ): with parallel_backend("""unsupported backend""" ): map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=2 ) with pytest.raises(_SCREAMING_SNAKE_CASE ): with parallel_backend("""unsupported backend""" ): map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->Tuple: UpperCAmelCase__ = [1, 2] UpperCAmelCase__ = {"""a""": 1, """b""": 2} UpperCAmelCase__ = {"""a""": [1, 2], """b""": [3, 4]} UpperCAmelCase__ = {"""a""": {"""1""": 1}, """b""": 2} UpperCAmelCase__ = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} UpperCAmelCase__ = [2, 3] UpperCAmelCase__ = {"""a""": 2, """b""": 3} UpperCAmelCase__ = {"""a""": [2, 3], """b""": [4, 5]} UpperCAmelCase__ = {"""a""": {"""1""": 2}, """b""": 3} UpperCAmelCase__ = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) == expected_map_nested_sa
422
1
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , *lowerCAmelCase , **lowerCAmelCase ) -> List[str]: '''simple docstring''' warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
291
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) _A = logging.getLogger(__name__) def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = np.argmax(_A , axis=1 ) return np.sum(outputs == labels ) def __UpperCamelCase ( _A ): with open(_A , encoding='''utf_8''' ) as f: lowerCAmelCase_ = csv.reader(_A ) lowerCAmelCase_ = [] next(_A ) # skip the first line for line in tqdm(_A ): output.append((''' '''.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def __UpperCamelCase ( _A , _A , _A , _A , _A , _A ): lowerCAmelCase_ = [] for dataset in encoded_datasets: lowerCAmelCase_ = len(_A ) lowerCAmelCase_ = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase_ = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase_ = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) lowerCAmelCase_ = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_A ): lowerCAmelCase_ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase_ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase_ = with_conta lowerCAmelCase_ = with_conta lowerCAmelCase_ = len(_A ) - 1 lowerCAmelCase_ = len(_A ) - 1 lowerCAmelCase_ = with_conta lowerCAmelCase_ = with_conta lowerCAmelCase_ = mc_label lowerCAmelCase_ = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_A ) for t in all_inputs ) ) return tensor_datasets def __UpperCamelCase ( ): lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=_A , default='''openai-gpt''' , help='''pretrained model name''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''' ) parser.add_argument( '''--output_dir''' , default=_A , type=_A , required=_A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=_A , default='''''' ) parser.add_argument('''--eval_dataset''' , type=_A , default='''''' ) parser.add_argument('''--seed''' , type=_A , default=42 ) parser.add_argument('''--num_train_epochs''' , type=_A , default=3 ) parser.add_argument('''--train_batch_size''' , type=_A , default=8 ) parser.add_argument('''--eval_batch_size''' , type=_A , default=16 ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=_A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , type=_A , default=1 ) parser.add_argument( '''--max_steps''' , default=-1 , type=_A , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=_A , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=_A , default=6.2_5E-5 ) parser.add_argument('''--warmup_steps''' , default=0 , type=_A , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--lr_schedule''' , type=_A , default='''warmup_linear''' ) parser.add_argument('''--weight_decay''' , type=_A , default=0.0_1 ) parser.add_argument('''--lm_coef''' , type=_A , default=0.9 ) parser.add_argument('''--n_valid''' , type=_A , default=374 ) parser.add_argument('''--server_ip''' , type=_A , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=_A , default='''''' , help='''Can be used for distant debugging.''' ) lowerCAmelCase_ = parser.parse_args() print(_A ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_A ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) lowerCAmelCase_ = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(_A , _A ) ) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase_ = ['''_start_''', '''_delimiter_''', '''_classify_'''] lowerCAmelCase_ = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_A ) lowerCAmelCase_ = tokenizer.convert_tokens_to_ids(_A ) lowerCAmelCase_ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_A ) ) model.to(_A ) # Load and encode the datasets def tokenize_and_encode(_A ): if isinstance(_A , _A ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_A ) ) elif isinstance(_A , _A ): return obj return [tokenize_and_encode(_A ) for o in obj] logger.info('''Encoding dataset...''' ) lowerCAmelCase_ = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase_ = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase_ = (train_dataset, eval_dataset) lowerCAmelCase_ = tokenize_and_encode(_A ) # Compute the max input length for the Transformer lowerCAmelCase_ = model.config.n_positions // 2 - 2 lowerCAmelCase_ = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase_ = min(_A , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase_ = pre_process_datasets(_A , _A , _A , *_A ) lowerCAmelCase_ , lowerCAmelCase_ = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase_ = TensorDataset(*_A ) lowerCAmelCase_ = RandomSampler(_A ) lowerCAmelCase_ = DataLoader(_A , sampler=_A , batch_size=args.train_batch_size ) lowerCAmelCase_ = TensorDataset(*_A ) lowerCAmelCase_ = SequentialSampler(_A ) lowerCAmelCase_ = DataLoader(_A , sampler=_A , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase_ = args.max_steps lowerCAmelCase_ = args.max_steps // (len(_A ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase_ = len(_A ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase_ = list(model.named_parameters() ) lowerCAmelCase_ = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] lowerCAmelCase_ = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0}, ] lowerCAmelCase_ = AdamW(_A , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase_ = get_linear_schedule_with_warmup( _A , num_warmup_steps=args.warmup_steps , num_training_steps=_A ) if args.do_train: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='''Epoch''' ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 lowerCAmelCase_ = tqdm(_A , desc='''Training''' ) for step, batch in enumerate(_A ): lowerCAmelCase_ = tuple(t.to(_A ) for t in batch ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = batch lowerCAmelCase_ = model(_A , mc_token_ids=_A , lm_labels=_A , mc_labels=_A ) lowerCAmelCase_ = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase_ = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase_ = '''Training loss: {:.2e} lr: {:.2e}'''.format(_A , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase_ = model.module if hasattr(_A , '''module''' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase_ = os.path.join(args.output_dir , _A ) lowerCAmelCase_ = os.path.join(args.output_dir , _A ) torch.save(model_to_save.state_dict() , _A ) model_to_save.config.to_json_file(_A ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase_ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase_ = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_A ) if args.do_eval: model.eval() lowerCAmelCase_ , lowerCAmelCase_ = 0, 0 lowerCAmelCase_ , lowerCAmelCase_ = 0, 0 for batch in tqdm(_A , desc='''Evaluating''' ): lowerCAmelCase_ = tuple(t.to(_A ) for t in batch ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = batch with torch.no_grad(): lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = model( _A , mc_token_ids=_A , lm_labels=_A , mc_labels=_A ) lowerCAmelCase_ = mc_logits.detach().cpu().numpy() lowerCAmelCase_ = mc_labels.to('''cpu''' ).numpy() lowerCAmelCase_ = accuracy(_A , _A ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase_ = eval_loss / nb_eval_steps lowerCAmelCase_ = eval_accuracy / nb_eval_examples lowerCAmelCase_ = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase_ = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} lowerCAmelCase_ = os.path.join(args.output_dir , '''eval_results.txt''' ) with open(_A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , _A , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) if __name__ == "__main__": main()
431
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor a : Tuple = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : Dict , *a_ : Dict , **a_ : Any ): """simple docstring""" warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , a_ , ) super().__init__(*a_ , **a_ )
680
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch a : Dict = '''sshleifer/bart-tiny-random''' a : str = '''patrickvonplaten/t5-tiny-random''' @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def A ( self : Union[str, Any] ): """simple docstring""" return AutoConfig.from_pretrained(a_ ) def A ( self : str ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) def A ( self : Dict ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def A ( self : Optional[int] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def A ( self : Dict ): """simple docstring""" with self.assertRaises(a_ ): create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=a_ , d=a_ )
680
1
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a : """simple docstring""" @staticmethod def UpperCAmelCase ( *lowerCAmelCase_ , **lowerCAmelCase_ ) -> int: pass @is_pipeline_test @require_vision class a ( unittest.TestCase ): """simple docstring""" @require_torch def UpperCAmelCase ( self ) -> str: _A = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) _A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _A = image_classifier(_lowercase , candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(_lowercase ) , [ [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}], [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}], ] , ) _A = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, ], ] , ) @require_tf def UpperCAmelCase ( self ) -> Optional[Any]: _A = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" ) _A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _A = image_classifier(_lowercase , candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(_lowercase ) , [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}] , ) _A = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, ], [ {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, {"""score""": 0.333, """label""": ANY(_lowercase )}, ], ] , ) @slow @require_torch def UpperCAmelCase ( self ) -> int: _A = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes _A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _A = image_classifier(_lowercase , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(_lowercase ) , [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] , ) _A = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def UpperCAmelCase ( self ) -> Optional[Any]: _A = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" ) # This is an image of 2 cats with remotes and no planes _A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _A = image_classifier(_lowercase , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(_lowercase ) , [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] , ) _A = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 , )
401
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : List[Any] = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowercase__ ( snake_case_ :Union[str, Any] ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowercase__ ( snake_case_ :int , snake_case_ :Dict ): if args.student_type == "roberta": __UpperCAmelCase = False elif args.student_type == "gpt2": __UpperCAmelCase = False def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Union[str, Any] ): if args.student_type == "roberta": __UpperCAmelCase = False def lowercase__ ( ): __UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=snake_case_ , required=snake_case_ , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=snake_case_ , required=snake_case_ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=snake_case_ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=snake_case_ , required=snake_case_ , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=snake_case_ , type=snake_case_ , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=snake_case_ , required=snake_case_ , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=snake_case_ , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=snake_case_ , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=snake_case_ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case_ , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case_ , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=snake_case_ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=snake_case_ , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case_ , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=snake_case_ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=snake_case_ , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=snake_case_ , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=snake_case_ , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case_ , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case_ , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case_ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case_ , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case_ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case_ , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case_ , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=snake_case_ , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=snake_case_ , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=snake_case_ , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=snake_case_ , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=snake_case_ , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=snake_case_ , default=4_000 , help='''Checkpoint interval.''' ) __UpperCAmelCase = parser.parse_args() sanity_checks(snake_case_ ) # ARGS # init_gpu_params(snake_case_ ) set_seed(snake_case_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(snake_case_ ) , snake_case_ , indent=4 ) git_log(args.dump_path ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.student_type] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __UpperCAmelCase = tokenizer.all_special_tokens.index(snake_case_ ) __UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) __UpperCAmelCase = special_tok_ids __UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(snake_case_ ) __UpperCAmelCase = np.maximum(snake_case_ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __UpperCAmelCase = 0.0 # do not predict special tokens __UpperCAmelCase = torch.from_numpy(snake_case_ ) else: __UpperCAmelCase = None __UpperCAmelCase = LmSeqsDataset(params=snake_case_ , data=snake_case_ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) __UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) __UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case_ ) else: __UpperCAmelCase = student_model_class(snake_case_ ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # __UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case_ ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(snake_case_ , snake_case_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(snake_case_ , snake_case_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __UpperCAmelCase = Distiller( params=snake_case_ , dataset=snake_case_ , token_probs=snake_case_ , student=snake_case_ , teacher=snake_case_ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
49
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case : List[Any] = 16 _snake_case : Dict = 32 def _A ( __snake_case :Accelerator , __snake_case :int = 16 ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("bert-base-cased" ) __SCREAMING_SNAKE_CASE = load_dataset("glue" , "mrpc" ) def tokenize_function(__snake_case :str ): # max_length=None => use the model max length (it's actually the default) __SCREAMING_SNAKE_CASE = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __SCREAMING_SNAKE_CASE = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case :Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. __SCREAMING_SNAKE_CASE = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __SCREAMING_SNAKE_CASE = 16 elif accelerator.mixed_precision != "no": __SCREAMING_SNAKE_CASE = 8 else: __SCREAMING_SNAKE_CASE = None return tokenizer.pad( __snake_case , padding="longest" , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors="pt" , ) # Instantiate dataloaders. __SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) __SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case : List[str] = mocked_dataloaders # noqa: F811 def _A ( __snake_case :Optional[Any] , __snake_case :str ) -> Optional[int]: """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , __snake_case ) == "1": __SCREAMING_SNAKE_CASE = 2 # New Code # __SCREAMING_SNAKE_CASE = int(args.gradient_accumulation_steps ) __SCREAMING_SNAKE_CASE = int(args.local_sgd_steps ) # Initialize accelerator __SCREAMING_SNAKE_CASE = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__snake_case ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __SCREAMING_SNAKE_CASE = config["lr"] __SCREAMING_SNAKE_CASE = int(config["num_epochs"] ) __SCREAMING_SNAKE_CASE = int(config["seed"] ) __SCREAMING_SNAKE_CASE = int(config["batch_size"] ) __SCREAMING_SNAKE_CASE = evaluate.load("glue" , "mrpc" ) set_seed(__snake_case ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_dataloaders(__snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __SCREAMING_SNAKE_CASE = model.to(accelerator.device ) # Instantiate optimizer __SCREAMING_SNAKE_CASE = AdamW(params=model.parameters() , lr=__snake_case ) # Instantiate scheduler __SCREAMING_SNAKE_CASE = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() with LocalSGD( accelerator=__snake_case , model=__snake_case , local_sgd_steps=__snake_case , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__snake_case ): __SCREAMING_SNAKE_CASE = model(**__snake_case ) __SCREAMING_SNAKE_CASE = output.loss accelerator.backward(__snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**__snake_case ) __SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) __SCREAMING_SNAKE_CASE = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __snake_case ) def _A ( ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=__snake_case , default=__snake_case , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=__snake_case , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument( "--local_sgd_steps" , type=__snake_case , default=8 , help="Number of local SGD steps or None to disable local SGD" ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
214
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __SCREAMING_SNAKE_CASE : SCREAMING_SNAKE_CASE__ =LEDConfig SCREAMING_SNAKE_CASE__ ={} SCREAMING_SNAKE_CASE__ ="""gelu""" def __init__( self, _a, _a=13, _a=7, _a=True, _a=False, _a=99, _a=32, _a=2, _a=4, _a=37, _a=0.1, _a=0.1, _a=20, _a=2, _a=1, _a=0, _a=4, ) -> Optional[int]: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __SCREAMING_SNAKE_CASE = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __SCREAMING_SNAKE_CASE = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __lowerCAmelCase ( self ) -> List[str]: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) __SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) __SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor], axis=1 ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) __SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, attention_window=self.attention_window, **self.config_updates, ) __SCREAMING_SNAKE_CASE = prepare_led_inputs_dict(_a, _a, _a ) __SCREAMING_SNAKE_CASE = tf.concat( [tf.zeros_like(_a )[:, :-1], tf.ones_like(_a )[:, -1:]], axis=-1, ) __SCREAMING_SNAKE_CASE = global_attention_mask return config, inputs_dict def __lowerCAmelCase ( self, _a, _a ) -> List[str]: __SCREAMING_SNAKE_CASE = TFLEDModel(config=_a ).get_decoder() __SCREAMING_SNAKE_CASE = inputs_dict["input_ids"] __SCREAMING_SNAKE_CASE = input_ids[:1, :] __SCREAMING_SNAKE_CASE = inputs_dict["attention_mask"][:1, :] __SCREAMING_SNAKE_CASE = 1 # first forward pass __SCREAMING_SNAKE_CASE = model(_a, attention_mask=_a, use_cache=_a ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3), config.vocab_size ) __SCREAMING_SNAKE_CASE = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and __SCREAMING_SNAKE_CASE = tf.concat([input_ids, next_tokens], axis=-1 ) __SCREAMING_SNAKE_CASE = tf.concat([attention_mask, next_attn_mask], axis=-1 ) __SCREAMING_SNAKE_CASE = model(_a, attention_mask=_a )[0] __SCREAMING_SNAKE_CASE = model(_a, attention_mask=_a, past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice __SCREAMING_SNAKE_CASE = int(ids_tensor((1,), output_from_past.shape[-1] ) ) __SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx] __SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a, _a, rtol=1E-3 ) def _A ( __snake_case :Any , __snake_case :Dict , __snake_case :List[Any] , __snake_case :List[Any]=None , __snake_case :Optional[Any]=None , __snake_case :Any=None , __snake_case :List[str]=None , ) -> List[str]: """simple docstring""" if attention_mask is None: __SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(__snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE__ =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () SCREAMING_SNAKE_CASE__ =(TFLEDForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ =( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ =True SCREAMING_SNAKE_CASE__ =False SCREAMING_SNAKE_CASE__ =False SCREAMING_SNAKE_CASE__ =False def __lowerCAmelCase ( self ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = TFLEDModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self, config_class=_a ) def __lowerCAmelCase ( self ) -> Any: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Any: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) def __lowerCAmelCase ( self ) -> List[str]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = tf.zeros_like(inputs_dict["attention_mask"] ) __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices, 1, inputs_dict["global_attention_mask"], ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = self.model_tester.seq_length __SCREAMING_SNAKE_CASE = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_a ): __SCREAMING_SNAKE_CASE = outputs.decoder_attentions self.assertEqual(len(_a ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_length, seq_length], ) def check_encoder_attentions_output(_a ): __SCREAMING_SNAKE_CASE = [t.numpy() for t in outputs.encoder_attentions] __SCREAMING_SNAKE_CASE = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_a ), self.model_tester.num_hidden_layers ) self.assertEqual(len(_a ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_length, seq_length], ) self.assertListEqual( list(global_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices], ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = model_class(_a ) __SCREAMING_SNAKE_CASE = model(self._prepare_for_class(_a, _a ) ) __SCREAMING_SNAKE_CASE = len(_a ) self.assertEqual(config.output_hidden_states, _a ) check_encoder_attentions_output(_a ) if self.is_encoder_decoder: __SCREAMING_SNAKE_CASE = model_class(_a ) __SCREAMING_SNAKE_CASE = model(self._prepare_for_class(_a, _a ) ) self.assertEqual(config.output_hidden_states, _a ) check_decoder_attentions_output(_a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model_class(_a ) __SCREAMING_SNAKE_CASE = model(self._prepare_for_class(_a, _a ) ) self.assertEqual(config.output_hidden_states, _a ) check_encoder_attentions_output(_a ) # Check attention is always last and order is fine __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model_class(_a ) __SCREAMING_SNAKE_CASE = model(self._prepare_for_class(_a, _a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(_a ) ) self.assertEqual(model.config.output_hidden_states, _a ) check_encoder_attentions_output(_a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def __lowerCAmelCase ( self ) -> Tuple: pass def __lowerCAmelCase ( self ) -> Optional[int]: # TODO: Head-masking not yet implement pass def _A ( __snake_case :Optional[int] ) -> List[Any]: """simple docstring""" return tf.constant(__snake_case , dtype=tf.intaa ) _snake_case : int = 1e-4 @slow @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> List[Any]: __SCREAMING_SNAKE_CASE = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here __SCREAMING_SNAKE_CASE = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) __SCREAMING_SNAKE_CASE = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) __SCREAMING_SNAKE_CASE = prepare_led_inputs_dict(model.config, _a, _a ) __SCREAMING_SNAKE_CASE = model(**_a )[0] __SCREAMING_SNAKE_CASE = (1, 10_24, 7_68) self.assertEqual(output.shape, _a ) # change to expected output here __SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]], ) tf.debugging.assert_near(output[:, :3, :3], _a, atol=1E-3 ) def __lowerCAmelCase ( self ) -> List[str]: __SCREAMING_SNAKE_CASE = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here __SCREAMING_SNAKE_CASE = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) __SCREAMING_SNAKE_CASE = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) __SCREAMING_SNAKE_CASE = prepare_led_inputs_dict(model.config, _a, _a ) __SCREAMING_SNAKE_CASE = model(**_a )[0] __SCREAMING_SNAKE_CASE = (1, 10_24, model.config.vocab_size) self.assertEqual(output.shape, _a ) # change to expected output here __SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]], ) tf.debugging.assert_near(output[:, :3, :3], _a, atol=1E-3, rtol=1E-3 )
214
1
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = (UnCLIPScheduler,) def UpperCAmelCase ( self : Optional[Any] ,**_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = { '''num_train_timesteps''': 1_000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**_snake_case ) return config def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_snake_case ) def UpperCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_snake_case ) def UpperCAmelCase ( self : List[str] ) -> int: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_snake_case ) def UpperCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_snake_case ) def UpperCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_snake_case ,prev_timestep=_snake_case ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Tuple = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config(variance_type='''fixed_small_log''' ) lowercase__ : List[Any] = scheduler_class(**_snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def UpperCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ : str = self.scheduler_classes[0] lowercase__ : Dict = self.get_scheduler_config(variance_type='''learned_range''' ) lowercase__ : Optional[Any] = scheduler_class(**_snake_case ) lowercase__ : str = 0.5 assert scheduler._get_variance(1 ,predicted_variance=_snake_case ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 ,predicted_variance=_snake_case ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 ,predicted_variance=_snake_case ) - -0.001_0011 < 1e-5 def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : List[str] = scheduler_class(**_snake_case ) lowercase__ : Optional[Any] = scheduler.timesteps lowercase__ : Optional[int] = self.dummy_model() lowercase__ : int = self.dummy_sample_deter lowercase__ : List[str] = torch.manual_seed(0 ) for i, t in enumerate(_snake_case ): # 1. predict noise residual lowercase__ : Optional[Any] = model(_snake_case ,_snake_case ) # 2. predict previous mean of sample x_t-1 lowercase__ : Union[str, Any] = scheduler.step(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case ).prev_sample lowercase__ : str = pred_prev_sample lowercase__ : Any = torch.sum(torch.abs(_snake_case ) ) lowercase__ : str = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**_snake_case ) scheduler.set_timesteps(25 ) lowercase__ : Optional[int] = scheduler.timesteps lowercase__ : Any = self.dummy_model() lowercase__ : Optional[int] = self.dummy_sample_deter lowercase__ : str = torch.manual_seed(0 ) for i, t in enumerate(_snake_case ): # 1. predict noise residual lowercase__ : Optional[int] = model(_snake_case ,_snake_case ) if i + 1 == timesteps.shape[0]: lowercase__ : str = None else: lowercase__ : Tuple = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase__ : Dict = scheduler.step( _snake_case ,_snake_case ,_snake_case ,prev_timestep=_snake_case ,generator=_snake_case ).prev_sample lowercase__ : Optional[Any] = pred_prev_sample lowercase__ : Tuple = torch.sum(torch.abs(_snake_case ) ) lowercase__ : Optional[int] = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def UpperCAmelCase ( self : int ) -> str: """simple docstring""" pass def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" pass
560
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Dict = "efficientnet" def __init__( self : Optional[Any] ,_snake_case : int = 3 ,_snake_case : int = 600 ,_snake_case : float = 2.0 ,_snake_case : float = 3.1 ,_snake_case : int = 8 ,_snake_case : List[int] = [3, 3, 5, 3, 5, 5, 3] ,_snake_case : List[int] = [32, 16, 24, 40, 80, 112, 192] ,_snake_case : List[int] = [16, 24, 40, 80, 112, 192, 320] ,_snake_case : List[int] = [] ,_snake_case : List[int] = [1, 2, 2, 2, 1, 2, 1] ,_snake_case : List[int] = [1, 2, 2, 3, 3, 4, 1] ,_snake_case : List[int] = [1, 6, 6, 6, 6, 6, 6] ,_snake_case : float = 0.25 ,_snake_case : str = "swish" ,_snake_case : int = 2_560 ,_snake_case : str = "mean" ,_snake_case : float = 0.02 ,_snake_case : float = 0.001 ,_snake_case : float = 0.99 ,_snake_case : float = 0.5 ,_snake_case : float = 0.2 ,**_snake_case : List[str] ,) -> Optional[Any]: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : Optional[Any] = num_channels lowercase__ : Any = image_size lowercase__ : Optional[Any] = width_coefficient lowercase__ : Dict = depth_coefficient lowercase__ : Optional[int] = depth_divisor lowercase__ : Optional[int] = kernel_sizes lowercase__ : str = in_channels lowercase__ : Any = out_channels lowercase__ : Union[str, Any] = depthwise_padding lowercase__ : str = strides lowercase__ : List[str] = num_block_repeats lowercase__ : List[str] = expand_ratios lowercase__ : List[str] = squeeze_expansion_ratio lowercase__ : Optional[Any] = hidden_act lowercase__ : Any = hidden_dim lowercase__ : Optional[int] = pooling_type lowercase__ : List[str] = initializer_range lowercase__ : List[Any] = batch_norm_eps lowercase__ : List[Any] = batch_norm_momentum lowercase__ : Tuple = dropout_rate lowercase__ : Tuple = drop_connect_rate lowercase__ : Union[str, Any] = sum(_snake_case ) * 4 class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[str] = version.parse("1.11" ) @property def UpperCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase ( self : Optional[int] ) -> float: """simple docstring""" return 1e-5
560
1
import argparse from collections import defaultdict import yaml _UpperCamelCase : str = """docs/source/en/_toctree.yml""" def __UpperCamelCase ( snake_case ) -> Any: '''simple docstring''' __A = defaultdict(snake_case ) __A = [] __A = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(snake_case ) __A = new_doc_list __A = [key for key, value in counts.items() if value > 1] __A = [] for duplicate_key in duplicates: __A = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(snake_case ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) __A = sorted(snake_case , key=lambda snake_case : s["title"].lower() ) # "overview" gets special treatment and is always first if len(snake_case ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(snake_case ) # Sort return overview_doc def __UpperCamelCase ( snake_case=False ) -> List[str]: '''simple docstring''' with open(snake_case , encoding='''utf-8''' ) as f: __A = yaml.safe_load(f.read() ) # Get to the API doc __A = 0 while content[api_idx]["title"] != "API": api_idx += 1 __A = content[api_idx]['''sections'''] # Then to the model doc __A = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 __A = api_doc[scheduler_idx]['''sections'''] __A = clean_doc_toc(snake_case ) __A = False if new_scheduler_doc != scheduler_doc: __A = True if overwrite: __A = new_scheduler_doc if diff: if overwrite: __A = api_doc with open(snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(snake_case , allow_unicode=snake_case ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def __UpperCamelCase ( snake_case=False ) -> str: '''simple docstring''' with open(snake_case , encoding='''utf-8''' ) as f: __A = yaml.safe_load(f.read() ) # Get to the API doc __A = 0 while content[api_idx]["title"] != "API": api_idx += 1 __A = content[api_idx]['''sections'''] # Then to the model doc __A = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 __A = False __A = api_doc[pipeline_idx]['''sections'''] __A = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: __A = pipeline_doc['''section'''] __A = clean_doc_toc(snake_case ) if overwrite: __A = new_sub_pipeline_doc new_pipeline_docs.append(snake_case ) # sort overall pipeline doc __A = clean_doc_toc(snake_case ) if new_pipeline_docs != pipeline_docs: __A = True if overwrite: __A = new_pipeline_docs if diff: if overwrite: __A = api_doc with open(snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(snake_case , allow_unicode=snake_case ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": _UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _UpperCamelCase : List[str] = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
341
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( snake_case ) -> Dict: '''simple docstring''' __A = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( snake_case , snake_case ) -> List[str]: '''simple docstring''' __A = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( snake_case ) -> Any: '''simple docstring''' __A = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", '''stage2.cls_token''') ) return token def __UpperCamelCase ( ) -> Tuple: '''simple docstring''' __A = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCamelCase ( snake_case , snake_case , snake_case , snake_case ) -> List[Any]: '''simple docstring''' __A = '''imagenet-1k-id2label.json''' __A = 1_0_0_0 __A = '''huggingface/label-files''' __A = num_labels __A = json.load(open(cached_download(hf_hub_url(snake_case , snake_case , repo_type='''dataset''' ) ) , '''r''' ) ) __A = {int(snake_case ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} __A = __A = CvtConfig(num_labels=snake_case , idalabel=snake_case , labelaid=snake_case ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": __A = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": __A = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __A = [2, 2, 2_0] __A = [3, 1_2, 1_6] __A = [1_9_2, 7_6_8, 1_0_2_4] __A = CvtForImageClassification(snake_case ) __A = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) __A = image_size __A = torch.load(snake_case , map_location=torch.device('''cpu''' ) ) __A = OrderedDict() __A = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __A = list_of_state_dict + cls_token(snake_case ) __A = list_of_state_dict + embeddings(snake_case ) for cnt in range(config.depth[idx] ): __A = list_of_state_dict + attention(snake_case , snake_case ) __A = list_of_state_dict + final() for gg in list_of_state_dict: print(snake_case ) for i in range(len(snake_case ) ): __A = original_weights[list_of_state_dict[i][1]] model.load_state_dict(snake_case ) model.save_pretrained(snake_case ) image_processor.save_pretrained(snake_case ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=3_8_4, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=r"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCamelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
341
1
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": a_ = pd.read_csv('sample_data.csv', header=None) a_ = df.shape[:1][0] # If you're using some other dataset input the target column a_ = df.iloc[:, 1:2] a_ = actual_data.values.reshape(len_data, 1) a_ = MinMaxScaler().fit_transform(actual_data) a_ = 1_0 a_ = 5 a_ = 2_0 a_ = len_data - periods * look_back a_ = actual_data[:division] a_ = actual_data[division - look_back :] a_ , a_ = [], [] a_ , a_ = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) a_ = np.array(train_x) a_ = np.array(test_x) a_ = np.array([list(i.ravel()) for i in train_y]) a_ = np.array([list(i.ravel()) for i in test_y]) a_ = Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') a_ = model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) a_ = model.predict(x_test)
76
"""simple docstring""" from math import sqrt def lowerCamelCase_ ( __lowerCAmelCase ) -> bool: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" lowerCamelCase__ =True # 0 and 1 are none primes. if number <= 1: lowerCamelCase__ =False for divisor in range(2 , int(round(sqrt(__lowerCAmelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCamelCase__ =False break # precondition assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "'status' must been from type bool" return status def lowerCamelCase_ ( __lowerCAmelCase ) -> List[str]: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCamelCase__ =list(range(2 , n + 1 ) ) lowerCamelCase__ =[] # this list will be returns. # actual sieve of erathostenes for i in range(len(__lowerCAmelCase ) ): for j in range(i + 1 , len(__lowerCAmelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCamelCase__ =0 # filters actual prime numbers. lowerCamelCase__ =[x for x in begin_list if x != 0] # precondition assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "'ans' must been from type list" return ans def lowerCamelCase_ ( __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" lowerCamelCase__ =[] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(__lowerCAmelCase ): ans.append(__lowerCAmelCase ) # precondition assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "'ans' must been from type list" return ans def lowerCamelCase_ ( __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and number >= 0, "'number' must been an int and >= 0" lowerCamelCase__ =[] # this list will be returns of the function. # potential prime number factors. lowerCamelCase__ =2 lowerCamelCase__ =number if number == 0 or number == 1: ans.append(__lowerCAmelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__lowerCAmelCase ): while quotient != 1: if is_prime(__lowerCAmelCase ) and (quotient % factor == 0): ans.append(__lowerCAmelCase ) quotient /= factor else: factor += 1 else: ans.append(__lowerCAmelCase ) # precondition assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "'ans' must been from type list" return ans def lowerCamelCase_ ( __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCamelCase__ =0 # prime factorization of 'number' lowerCamelCase__ =prime_factorization(__lowerCAmelCase ) lowerCamelCase__ =max(__lowerCAmelCase ) # precondition assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "'ans' must been from type int" return ans def lowerCamelCase_ ( __lowerCAmelCase ) -> List[Any]: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCamelCase__ =0 # prime factorization of 'number' lowerCamelCase__ =prime_factorization(__lowerCAmelCase ) lowerCamelCase__ =min(__lowerCAmelCase ) # precondition assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "'ans' must been from type int" return ans def lowerCamelCase_ ( __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , __lowerCAmelCase ), "compare bust been from type bool" return number % 2 == 0 def lowerCamelCase_ ( __lowerCAmelCase ) -> List[Any]: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , __lowerCAmelCase ), "compare bust been from type bool" return number % 2 != 0 def lowerCamelCase_ ( __lowerCAmelCase ) -> int: '''simple docstring''' assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (number > 2) and is_even(__lowerCAmelCase ) ), "'number' must been an int, even and > 2" lowerCamelCase__ =[] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCamelCase__ =get_prime_numbers(__lowerCAmelCase ) lowerCamelCase__ =len(__lowerCAmelCase ) # run variable for while-loops. lowerCamelCase__ =0 lowerCamelCase__ =None # exit variable. for break up the loops lowerCamelCase__ =True while i < len_pn and loop: lowerCamelCase__ =i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCamelCase__ =False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (len(__lowerCAmelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCamelCase__ =0 while numbera != 0: lowerCamelCase__ =numbera % numbera lowerCamelCase__ =numbera lowerCamelCase__ =rest # precondition assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCamelCase__ =1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCamelCase__ =prime_factorization(__lowerCAmelCase ) lowerCamelCase__ =prime_factorization(__lowerCAmelCase ) elif numbera == 1 or numbera == 1: lowerCamelCase__ =[] lowerCamelCase__ =[] lowerCamelCase__ =max(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ =0 lowerCamelCase__ =0 lowerCamelCase__ =[] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCamelCase__ =prime_fac_a.count(__lowerCAmelCase ) lowerCamelCase__ =prime_fac_a.count(__lowerCAmelCase ) for _ in range(max(__lowerCAmelCase , __lowerCAmelCase ) ): ans *= n else: lowerCamelCase__ =prime_fac_a.count(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ): ans *= n done.append(__lowerCAmelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCamelCase__ =prime_fac_a.count(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ): ans *= n done.append(__lowerCAmelCase ) # precondition assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCamelCase_ ( __lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (n >= 0), "'number' must been a positive int" lowerCamelCase__ =0 lowerCamelCase__ =2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__lowerCAmelCase ): ans += 1 # precondition assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and is_prime( __lowerCAmelCase ), "'ans' must been a prime number and from type int" return ans def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' assert ( is_prime(__lowerCAmelCase ) and is_prime(__lowerCAmelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCamelCase__ =p_number_a + 1 # jump to the next number lowerCamelCase__ =[] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__lowerCAmelCase ): number += 1 while number < p_number_a: ans.append(__lowerCAmelCase ) number += 1 # fetch the next prime number. while not is_prime(__lowerCAmelCase ): number += 1 # precondition assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and ans[0] != p_number_a and ans[len(__lowerCAmelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCamelCase_ ( __lowerCAmelCase ) -> int: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (n >= 1), "'n' must been int and >= 1" lowerCamelCase__ =[] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(__lowerCAmelCase ) # precondition assert ans[0] == 1 and ans[len(__lowerCAmelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCamelCase_ ( __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCamelCase__ =get_divisors(__lowerCAmelCase ) # precondition assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (divisors[0] == 1) and (divisors[len(__lowerCAmelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCamelCase__ =gcd(abs(__lowerCAmelCase ) , abs(__lowerCAmelCase ) ) # precondition assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCamelCase_ ( __lowerCAmelCase ) -> List[Any]: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (n >= 0), "'n' must been a int and >= 0" lowerCamelCase__ =1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCamelCase_ ( __lowerCAmelCase ) -> Tuple: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (n >= 0), "'n' must been an int and >= 0" lowerCamelCase__ =0 lowerCamelCase__ =1 lowerCamelCase__ =1 # this will be return for _ in range(n - 1 ): lowerCamelCase__ =ans ans += fiba lowerCamelCase__ =tmp return ans
530
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class _lowercase ( __a ): """simple docstring""" lowercase__ = '''distilbert''' lowercase__ = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self : Optional[int] , UpperCamelCase__ : int=30522 , UpperCamelCase__ : Any=512 , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Optional[Any]=6 , UpperCamelCase__ : List[Any]=12 , UpperCamelCase__ : List[Any]=768 , UpperCamelCase__ : Tuple=4 * 768 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : List[Any]=0.2 , UpperCamelCase__ : str=0 , **UpperCamelCase__ : Optional[Any] , ) -> List[Any]: '''simple docstring''' __UpperCamelCase =vocab_size __UpperCamelCase =max_position_embeddings __UpperCamelCase =sinusoidal_pos_embds __UpperCamelCase =n_layers __UpperCamelCase =n_heads __UpperCamelCase =dim __UpperCamelCase =hidden_dim __UpperCamelCase =dropout __UpperCamelCase =attention_dropout __UpperCamelCase =activation __UpperCamelCase =initializer_range __UpperCamelCase =qa_dropout __UpperCamelCase =seq_classif_dropout super().__init__(**__UpperCamelCase , pad_token_id=__UpperCamelCase ) class _lowercase ( __a ): """simple docstring""" @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCamelCase ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
707
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowercase ( __a ): """simple docstring""" lowercase__ = ['''image_processor''', '''tokenizer'''] lowercase__ = '''ChineseCLIPImageProcessor''' lowercase__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : int , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[Any]=None , **UpperCamelCase__ : int ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCamelCase__ , ) __UpperCamelCase =kwargs.pop('''feature_extractor''' ) __UpperCamelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =self.image_processor def __call__( self : List[str] , UpperCamelCase__ : str=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : int=None , **UpperCamelCase__ : Dict ) -> Dict: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __UpperCamelCase =self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if images is not None: __UpperCamelCase =self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and images is not None: __UpperCamelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def UpperCAmelCase_ ( self : Any , *UpperCamelCase__ : Dict , **UpperCamelCase__ : str ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : int , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : List[str] ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def UpperCAmelCase_ ( self : Any ) -> str: '''simple docstring''' __UpperCamelCase =self.tokenizer.model_input_names __UpperCamelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase_ ( self : Any ) -> int: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCamelCase__ , ) return self.image_processor_class
296
0
"""simple docstring""" a :Tuple = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def _lowercase ( __lowerCAmelCase ) -> List[str]: # Make sure the supplied data is a bytes-like object if not isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] = F'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(snake_case__ ) SCREAMING_SNAKE_CASE__ : Tuple = """""".join(bin(snake_case__ )[2:].zfill(8 ) for byte in data ) SCREAMING_SNAKE_CASE__ : int = len(snake_case__ ) % 6 != 0 if padding_needed: # The padding that will be added later SCREAMING_SNAKE_CASE__ : Union[str, Any] = B"""=""" * ((6 - len(snake_case__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(snake_case__ ) % 6) else: SCREAMING_SNAKE_CASE__ : List[Any] = B"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(snake_case__ ) , 6 ) ).encode() + padding ) def _lowercase ( __lowerCAmelCase ) -> str: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(snake_case__ , snake_case__ ) and not isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE__ : Tuple = ( """argument should be a bytes-like object or ASCII string, """ F'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(snake_case__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(snake_case__ , snake_case__ ): try: SCREAMING_SNAKE_CASE__ : Optional[int] = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(snake_case__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one SCREAMING_SNAKE_CASE__ : Optional[Any] = encoded_data[:-padding] SCREAMING_SNAKE_CASE__ : Optional[Any] = """""".join( bin(B64_CHARSET.index(snake_case__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: SCREAMING_SNAKE_CASE__ : Dict = """""".join( bin(B64_CHARSET.index(snake_case__ ) )[2:].zfill(6 ) for char in encoded_data ) SCREAMING_SNAKE_CASE__ : Optional[int] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(snake_case__ ) , 8 ) ] return bytes(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
680
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def a ( snake_case__: List[Any] ): '''simple docstring''' if "cls_token" in name: lowercase_ = name.replace('''cls_token''' , '''vit.embeddings.cls_token''' ) if "mask_token" in name: lowercase_ = name.replace('''mask_token''' , '''decoder.mask_token''' ) if "decoder_pos_embed" in name: lowercase_ = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: lowercase_ = name.replace('''pos_embed''' , '''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: lowercase_ = name.replace('''patch_embed.proj''' , '''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase_ = name.replace('''patch_embed.norm''' , '''vit.embeddings.norm''' ) if "decoder_blocks" in name: lowercase_ = name.replace('''decoder_blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: lowercase_ = name.replace('''blocks''' , '''vit.encoder.layer''' ) if "attn.proj" in name: lowercase_ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowercase_ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowercase_ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase_ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase_ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase_ = name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: lowercase_ = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: lowercase_ = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: lowercase_ = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: lowercase_ = name.replace('''norm.weight''' , '''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: lowercase_ = name.replace('''norm.bias''' , '''vit.layernorm.bias''' ) return name def a ( snake_case__: Optional[int] , snake_case__: Any ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase_ = orig_state_dict.pop(snake_case__ ) if "qkv" in key: lowercase_ = key.split('''.''' ) lowercase_ = int(key_split[1] ) if "decoder_blocks" in key: lowercase_ = config.decoder_hidden_size lowercase_ = '''decoder.decoder_layers.''' if "weight" in key: lowercase_ = val[:dim, :] lowercase_ = val[dim : dim * 2, :] lowercase_ = val[-dim:, :] elif "bias" in key: lowercase_ = val[:dim] lowercase_ = val[dim : dim * 2] lowercase_ = val[-dim:] else: lowercase_ = config.hidden_size lowercase_ = '''vit.encoder.layer.''' if "weight" in key: lowercase_ = val[:dim, :] lowercase_ = val[dim : dim * 2, :] lowercase_ = val[-dim:, :] elif "bias" in key: lowercase_ = val[:dim] lowercase_ = val[dim : dim * 2] lowercase_ = val[-dim:] else: lowercase_ = val return orig_state_dict def a ( snake_case__: str , snake_case__: int ): '''simple docstring''' lowercase_ = ViTMAEConfig() if "large" in checkpoint_url: lowercase_ = 1_024 lowercase_ = 4_096 lowercase_ = 24 lowercase_ = 16 elif "huge" in checkpoint_url: lowercase_ = 14 lowercase_ = 1_280 lowercase_ = 5_120 lowercase_ = 32 lowercase_ = 16 lowercase_ = ViTMAEForPreTraining(snake_case__ ) lowercase_ = torch.hub.load_state_dict_from_url(snake_case__ , map_location='''cpu''' )['''model'''] lowercase_ = ViTMAEImageProcessor(size=config.image_size ) lowercase_ = convert_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() lowercase_ = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' lowercase_ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) lowercase_ = ViTMAEImageProcessor(size=config.image_size ) lowercase_ = image_processor(images=snake_case__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowercase_ = model(**snake_case__ ) lowercase_ = outputs.logits if "large" in checkpoint_url: lowercase_ = torch.tensor( [[-0.7_3_0_9, -0.7_1_2_8, -1.0_1_6_9], [-1.0_1_6_1, -0.9_0_5_8, -1.1_8_7_8], [-1.0_4_7_8, -0.9_4_1_1, -1.1_9_1_1]] ) elif "huge" in checkpoint_url: lowercase_ = torch.tensor( [[-1.1_5_9_9, -0.9_1_9_9, -1.2_2_2_1], [-1.1_9_5_2, -0.9_2_6_9, -1.2_3_0_7], [-1.2_1_4_3, -0.9_3_3_7, -1.2_2_6_2]] ) else: lowercase_ = torch.tensor( [[-0.9_1_9_2, -0.8_4_8_1, -1.1_2_5_9], [-1.1_3_4_9, -1.0_0_3_4, -1.2_5_9_9], [-1.1_7_5_7, -1.0_4_2_9, -1.2_7_2_6]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1e-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __a = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
97
0
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase ) class _UpperCAmelCase( _UpperCAmelCase ): lowercase__ = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) lowercase__ = Features({'text': Value('string' )} ) lowercase__ = Features({'summary': Value('string' )} ) lowercase__ = "text" lowercase__ = "summary" @property def UpperCAmelCase ( self) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text", self.summary_column: "summary"}
704
"""simple docstring""" import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Union[str, Any]: """simple docstring""" if openai_config_file == "": _UpperCamelCase = OpenAIGPTConfig() else: _UpperCamelCase = OpenAIGPTConfig.from_json_file(__snake_case ) _UpperCamelCase = OpenAIGPTModel(__snake_case ) # Load weights from numpy load_tf_weights_in_openai_gpt(__snake_case, __snake_case, __snake_case ) # Save pytorch-model _UpperCamelCase = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME _UpperCamelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict(), __snake_case ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__snake_case, '''w''', encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--openai_checkpoint_folder_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--openai_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) _a = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
78
0
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=7, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=99, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=37, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=50, lowerCamelCase=0.0_2, lowerCamelCase=True, lowerCamelCase=None, ) -> Tuple: """simple docstring""" _lowercase : Tuple = parent _lowercase : Optional[Any] = batch_size _lowercase : List[str] = seq_length _lowercase : Optional[Any] = is_training _lowercase : Union[str, Any] = use_input_mask _lowercase : str = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : Tuple = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : List[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : str = max_position_embeddings _lowercase : Any = initializer_range _lowercase : List[str] = use_labels _lowercase : Tuple = scope def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowercase : int = None if self.use_input_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) if self.use_labels: _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowercase : Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" return BertGenerationConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, ) def UpperCamelCase ( self) -> Dict: """simple docstring""" ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : str = self.prepare_config_and_inputs() _lowercase : Any = True _lowercase : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) _lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase, ) -> Any: """simple docstring""" _lowercase : Dict = BertGenerationEncoder(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[Any] = model(lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : List[Any] = model(lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase, ) -> Any: """simple docstring""" _lowercase : int = True _lowercase : Any = BertGenerationEncoder(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, encoder_hidden_states=lowerCamelCase, encoder_attention_mask=lowerCamelCase, ) _lowercase : Optional[int] = model( lowerCamelCase, attention_mask=lowerCamelCase, encoder_hidden_states=lowerCamelCase, ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase, ) -> int: """simple docstring""" _lowercase : str = True _lowercase : str = True _lowercase : Union[str, Any] = BertGenerationDecoder(config=lowerCamelCase).to(lowerCamelCase).eval() # first forward pass _lowercase : Tuple = model( lowerCamelCase, attention_mask=lowerCamelCase, encoder_hidden_states=lowerCamelCase, encoder_attention_mask=lowerCamelCase, use_cache=lowerCamelCase, ) _lowercase : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowercase : Any = ids_tensor((self.batch_size, 3), config.vocab_size) _lowercase : List[str] = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and _lowercase : Optional[Any] = torch.cat([input_ids, next_tokens], dim=-1) _lowercase : Any = torch.cat([input_mask, next_mask], dim=-1) _lowercase : Union[str, Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, encoder_hidden_states=lowerCamelCase, encoder_attention_mask=lowerCamelCase, output_hidden_states=lowerCamelCase, )['hidden_states'][0] _lowercase : Tuple = model( lowerCamelCase, attention_mask=lowerCamelCase, encoder_hidden_states=lowerCamelCase, encoder_attention_mask=lowerCamelCase, past_key_values=lowerCamelCase, output_hidden_states=lowerCamelCase, )['hidden_states'][0] # select random slice _lowercase : str = ids_tensor((1,), output_from_past.shape[-1]).item() _lowercase : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() _lowercase : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, *lowerCamelCase, ) -> List[str]: """simple docstring""" _lowercase : Optional[int] = BertGenerationDecoder(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = self.prepare_config_and_inputs() _lowercase : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, _a, unittest.TestCase ): lowercase_ : str = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase_ : Optional[Any] = (BertGenerationDecoder,) if is_torch_available() else () lowercase_ : List[Any] = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Tuple = BertGenerationEncoderTester(self) _lowercase : int = ConfigTester(self, config_class=lowerCamelCase, hidden_size=37) def UpperCamelCase ( self) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase , _lowercase , _lowercase , _lowercase : str = self.model_tester.prepare_config_and_inputs() _lowercase : Optional[Any] = 'bert' self.model_tester.create_and_check_model(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() _lowercase : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase) @slow def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Optional[int] = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder') self.assertIsNotNone(lowerCamelCase) @require_torch class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder') _lowercase : List[str] = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): _lowercase : Optional[Any] = model(lowerCamelCase)[0] _lowercase : Dict = torch.Size([1, 8, 10_24]) self.assertEqual(output.shape, lowerCamelCase) _lowercase : Optional[Any] = torch.tensor( [[[0.1_7_7_5, 0.0_0_8_3, -0.0_3_2_1], [1.6_0_0_2, 0.1_2_8_7, 0.3_9_1_2], [2.1_4_7_3, 0.5_7_9_1, 0.6_0_6_6]]]) self.assertTrue(torch.allclose(output[:, :3, :3], lowerCamelCase, atol=1E-4)) @require_torch class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Optional[Any] = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder') _lowercase : List[Any] = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): _lowercase : Dict = model(lowerCamelCase)[0] _lowercase : int = torch.Size([1, 8, 5_03_58]) self.assertEqual(output.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor( [[[-0.5_7_8_8, -2.5_9_9_4, -3.7_0_5_4], [0.0_4_3_8, 4.7_9_9_7, 1.8_7_9_5], [1.5_8_6_2, 6.6_4_0_9, 4.4_6_3_8]]]) self.assertTrue(torch.allclose(output[:, :3, :3], lowerCamelCase, atol=1E-4))
89
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def lowercase_ ( __A : dict , __A : str , __A : set , __A : set , __A : dict , __A : dict , __A : PriorityQueue , __A : dict , __A : float | int , ) -> float | int: """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue lowercase : str =cst_fwd.get(__A , np.inf ) lowercase : str =cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) lowercase : int =new_cost_f lowercase : Optional[int] =v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: lowercase : List[Any] =cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowercase_ ( __A : str , __A : str , __A : dict , __A : dict ) -> int: """simple docstring""" lowercase : Optional[Any] =-1 lowercase : Tuple =set() lowercase : str =set() lowercase : List[str] ={source: 0} lowercase : List[str] ={destination: 0} lowercase : Tuple ={source: None} lowercase : List[Any] ={destination: None} lowercase : PriorityQueue[Any] =PriorityQueue() lowercase : PriorityQueue[Any] =PriorityQueue() lowercase : Any =np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): lowercase , lowercase : int =queue_forward.get() visited_forward.add(__A ) lowercase , lowercase : int =queue_backward.get() visited_backward.add(__A ) lowercase : Dict =pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) lowercase : List[Any] =pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: lowercase : Union[str, Any] =shortest_distance return shortest_path_distance SCREAMING_SNAKE_CASE = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } SCREAMING_SNAKE_CASE = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
94
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class _SCREAMING_SNAKE_CASE (unittest.TestCase ): def __snake_case ( self : Tuple )->Any: __SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() # fmt: off __SCREAMING_SNAKE_CASE : int = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on __SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] __SCREAMING_SNAKE_CASE : List[Any] = {"unk_token": "<unk>"} __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCamelCase ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { "do_resize": True, "size": 2_0, "do_center_crop": True, "crop_size": 1_8, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , UpperCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(UpperCamelCase , UpperCamelCase ) def __snake_case ( self : List[Any] , **UpperCamelCase : Union[str, Any] )->Optional[Any]: return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def __snake_case ( self : Optional[Any] , **UpperCamelCase : Tuple )->Dict: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase ) def __snake_case ( self : Any , **UpperCamelCase : Any )->Tuple: return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase ) def __snake_case ( self : Optional[Any] )->Optional[Any]: shutil.rmtree(self.tmpdirname ) def __snake_case ( self : Optional[Any] )->Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE : str = [Image.fromarray(np.moveaxis(UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self : str )->Optional[Any]: __SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Dict = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : Dict = self.get_image_processor() __SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPSegProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase ) __SCREAMING_SNAKE_CASE : int = CLIPSegProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase ) def __snake_case ( self : int )->Dict: __SCREAMING_SNAKE_CASE : Dict = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __SCREAMING_SNAKE_CASE : List[str] = self.get_image_processor(do_normalize=UpperCamelCase , padding_value=1.0 ) __SCREAMING_SNAKE_CASE : Optional[Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase ) def __snake_case ( self : Tuple )->Any: __SCREAMING_SNAKE_CASE : str = self.get_image_processor() __SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[int] = CLIPSegProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(UpperCamelCase , return_tensors="np" ) __SCREAMING_SNAKE_CASE : Any = processor(images=UpperCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __snake_case ( self : str )->Union[str, Any]: __SCREAMING_SNAKE_CASE : Dict = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : List[str] = CLIPSegProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = "lower newer" __SCREAMING_SNAKE_CASE : Any = processor(text=UpperCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __snake_case ( self : Dict )->List[str]: __SCREAMING_SNAKE_CASE : Dict = self.get_image_processor() __SCREAMING_SNAKE_CASE : int = self.get_tokenizer() __SCREAMING_SNAKE_CASE : List[Any] = CLIPSegProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = "lower newer" __SCREAMING_SNAKE_CASE : Dict = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Tuple = processor(text=UpperCamelCase , images=UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase ): processor() def __snake_case ( self : Optional[Any] )->Optional[Any]: __SCREAMING_SNAKE_CASE : Dict = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : str = CLIPSegProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) __SCREAMING_SNAKE_CASE : Any = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(images=UpperCamelCase , visual_prompt=UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "conditional_pixel_values"] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase ): processor() def __snake_case ( self : List[str] )->Dict: __SCREAMING_SNAKE_CASE : Tuple = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Dict = CLIPSegProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE : Optional[int] = processor.batch_decode(UpperCamelCase ) __SCREAMING_SNAKE_CASE : int = tokenizer.batch_decode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase )
717
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _SCREAMING_SNAKE_CASE (UpperCamelCase ): def __init__( self : List[str] , UpperCamelCase : Optional[NestedDataStructureLike[PathLike]] = None , UpperCamelCase : Optional[NamedSplit] = None , UpperCamelCase : Optional[Features] = None , UpperCamelCase : str = None , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : Optional[int] = None , **UpperCamelCase : Dict , )->int: __SCREAMING_SNAKE_CASE : List[str] = path_or_paths __SCREAMING_SNAKE_CASE : Optional[int] = split if split or isinstance(UpperCamelCase , UpperCamelCase ) else "train" __SCREAMING_SNAKE_CASE : Dict = features __SCREAMING_SNAKE_CASE : List[Any] = cache_dir __SCREAMING_SNAKE_CASE : Tuple = keep_in_memory __SCREAMING_SNAKE_CASE : Optional[Any] = streaming __SCREAMING_SNAKE_CASE : Optional[Any] = num_proc __SCREAMING_SNAKE_CASE : int = kwargs @abstractmethod def __snake_case ( self : Optional[int] )->Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class _SCREAMING_SNAKE_CASE (UpperCamelCase ): def __init__( self : Optional[Any] , UpperCamelCase : Optional[Features] = None , UpperCamelCase : str = None , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : Optional[int] = None , **UpperCamelCase : Dict , )->Optional[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = features __SCREAMING_SNAKE_CASE : str = cache_dir __SCREAMING_SNAKE_CASE : Any = keep_in_memory __SCREAMING_SNAKE_CASE : Optional[Any] = streaming __SCREAMING_SNAKE_CASE : int = num_proc __SCREAMING_SNAKE_CASE : Optional[Any] = kwargs @abstractmethod def __snake_case ( self : str )->Union[Dataset, IterableDataset]: pass
447
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer SCREAMING_SNAKE_CASE__ = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast SCREAMING_SNAKE_CASE__ = TaTokenizerFast SCREAMING_SNAKE_CASE__ = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
532
"""simple docstring""" class lowercase : def __init__( self ) -> Any: lowerCAmelCase = """""" lowerCAmelCase = """""" lowerCAmelCase = [] def _snake_case ( self , lowercase , lowercase ) -> int: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: lowerCAmelCase = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: lowerCAmelCase = self.__min_dist_top_down_dp(lowercase , n - 1 ) lowerCAmelCase = self.__min_dist_top_down_dp(m - 1 , lowercase ) lowerCAmelCase = self.__min_dist_top_down_dp(m - 1 , n - 1 ) lowerCAmelCase = 1 + min(lowercase , lowercase , lowercase ) return self.dp[m][n] def _snake_case ( self , lowercase , lowercase ) -> int: lowerCAmelCase = worda lowerCAmelCase = worda lowerCAmelCase = [[-1 for _ in range(len(lowercase ) )] for _ in range(len(lowercase ) )] return self.__min_dist_top_down_dp(len(lowercase ) - 1 , len(lowercase ) - 1 ) def _snake_case ( self , lowercase , lowercase ) -> int: lowerCAmelCase = worda lowerCAmelCase = worda lowerCAmelCase = len(lowercase ) lowerCAmelCase = len(lowercase ) lowerCAmelCase = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty lowerCAmelCase = j elif j == 0: # second string is empty lowerCAmelCase = i elif worda[i - 1] == worda[j - 1]: # last characters are equal lowerCAmelCase = self.dp[i - 1][j - 1] else: lowerCAmelCase = self.dp[i][j - 1] lowerCAmelCase = self.dp[i - 1][j] lowerCAmelCase = self.dp[i - 1][j - 1] lowerCAmelCase = 1 + min(lowercase , lowercase , lowercase ) return self.dp[m][n] if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() SCREAMING_SNAKE_CASE__ = input("Enter the first string: ").strip() SCREAMING_SNAKE_CASE__ = input("Enter the second string: ").strip() print() print(f'The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}') print(f'The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}') print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
532
1
"""simple docstring""" import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a : List[str] = logging.get_logger(__name__) class a_ ( enum.Enum ): a : Optional[Any] = 0 a : Dict = 1 @add_end_docstrings(_UpperCAmelCase ) class a_ ( _UpperCAmelCase ): a : List[Any] = 'generated' def __init__( self : int , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : str ) ->Any: '''simple docstring''' super().__init__(*__UpperCamelCase , **__UpperCamelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def _snake_case ( self : Optional[int] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Any=None , __UpperCamelCase : int=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Dict=None , **__UpperCamelCase : Any , ) ->Tuple: '''simple docstring''' _UpperCAmelCase = {} if truncation is not None: _UpperCAmelCase = truncation _UpperCAmelCase = generate_kwargs _UpperCAmelCase = {} if return_tensors is not None and return_type is None: _UpperCAmelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: _UpperCAmelCase = return_type if clean_up_tokenization_spaces is not None: _UpperCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: _UpperCAmelCase = self.tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) if len(__UpperCamelCase ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) _UpperCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _snake_case ( self : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->Any: '''simple docstring''' return True def _snake_case ( self : Optional[Any] , *__UpperCamelCase : Any , __UpperCamelCase : Dict ) ->Dict: '''simple docstring''' _UpperCAmelCase = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , __UpperCamelCase ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) _UpperCAmelCase = ([prefix + arg for arg in args[0]],) _UpperCAmelCase = True elif isinstance(args[0] , __UpperCamelCase ): _UpperCAmelCase = (prefix + args[0],) _UpperCAmelCase = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) _UpperCAmelCase = self.tokenizer(*__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Dict , *__UpperCamelCase : str , **__UpperCamelCase : Dict ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = super().__call__(*__UpperCamelCase , **__UpperCamelCase ) if ( isinstance(args[0] , __UpperCamelCase ) and all(isinstance(__UpperCamelCase , __UpperCamelCase ) for el in args[0] ) and all(len(__UpperCamelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def _snake_case ( self : List[str] , __UpperCamelCase : Any , __UpperCamelCase : str=TruncationStrategy.DO_NOT_TRUNCATE , **__UpperCamelCase : Optional[int] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = self._parse_and_tokenize(__UpperCamelCase , truncation=__UpperCamelCase , **__UpperCamelCase ) return inputs def _snake_case ( self : str , __UpperCamelCase : Dict , **__UpperCamelCase : Dict ) ->Tuple: '''simple docstring''' if self.framework == "pt": _UpperCAmelCase ,_UpperCAmelCase = model_inputs["""input_ids"""].shape elif self.framework == "tf": _UpperCAmelCase ,_UpperCAmelCase = tf.shape(model_inputs["""input_ids"""] ).numpy() _UpperCAmelCase = generate_kwargs.get("""min_length""" , self.model.config.min_length ) _UpperCAmelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(__UpperCamelCase , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) _UpperCAmelCase = self.model.generate(**__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = output_ids.shape[0] if self.framework == "pt": _UpperCAmelCase = output_ids.reshape(__UpperCamelCase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": _UpperCAmelCase = tf.reshape(__UpperCamelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def _snake_case ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any]=ReturnType.TEXT , __UpperCamelCase : int=False ) ->Any: '''simple docstring''' _UpperCAmelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: _UpperCAmelCase = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: _UpperCAmelCase = { f"""{self.return_name}_text""": self.tokenizer.decode( __UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase , ) } records.append(__UpperCamelCase ) return records @add_end_docstrings(_UpperCAmelCase ) class a_ ( _UpperCAmelCase ): a : List[Any] = 'summary' def __call__( self : Optional[Any] , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Optional[int] ) ->Any: '''simple docstring''' return super().__call__(*__UpperCamelCase , **__UpperCamelCase ) def _snake_case ( self : str , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->bool: '''simple docstring''' if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(_UpperCAmelCase ) class a_ ( _UpperCAmelCase ): a : Optional[int] = 'translation' def _snake_case ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->Any: '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def _snake_case ( self : Tuple , *__UpperCamelCase : List[str] , __UpperCamelCase : Tuple=TruncationStrategy.DO_NOT_TRUNCATE , __UpperCamelCase : Tuple=None , __UpperCamelCase : Union[str, Any]=None ) ->Tuple: '''simple docstring''' if getattr(self.tokenizer , """_build_translation_inputs""" , __UpperCamelCase ): return self.tokenizer._build_translation_inputs( *__UpperCamelCase , return_tensors=self.framework , truncation=__UpperCamelCase , src_lang=__UpperCamelCase , tgt_lang=__UpperCamelCase ) else: return super()._parse_and_tokenize(*__UpperCamelCase , truncation=__UpperCamelCase ) def _snake_case ( self : List[str] , __UpperCamelCase : int=None , __UpperCamelCase : int=None , **__UpperCamelCase : Any ) ->int: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = super()._sanitize_parameters(**__UpperCamelCase ) if src_lang is not None: _UpperCAmelCase = src_lang if tgt_lang is not None: _UpperCAmelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. _UpperCAmelCase = kwargs.get("""task""" , self.task ) _UpperCAmelCase = task.split("""_""" ) if task and len(__UpperCamelCase ) == 4: # translation, XX, to YY _UpperCAmelCase = items[1] _UpperCAmelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : List[str] , *__UpperCamelCase : str , **__UpperCamelCase : Optional[Any] ) ->int: '''simple docstring''' return super().__call__(*__UpperCamelCase , **__UpperCamelCase )
719
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class a_ ( _UpperCAmelCase ): a : List[Any] = '' a : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self : Tuple , __UpperCamelCase : Optional[DatasetInfo] = None , __UpperCamelCase : Optional[str] = None , **__UpperCamelCase : Any , ) ->Any: '''simple docstring''' super().__init__(self , **__UpperCamelCase ) _UpperCAmelCase = repo_info _UpperCAmelCase = token _UpperCAmelCase = None def _snake_case ( self : List[str] ) ->List[str]: '''simple docstring''' if self.dir_cache is None: _UpperCAmelCase = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _UpperCAmelCase = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(__UpperCamelCase ): {"""name""": str(__UpperCamelCase ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def _snake_case ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : str = "rb" , **__UpperCamelCase : Any , ) ->List[str]: '''simple docstring''' if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) _UpperCAmelCase = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def _snake_case ( self : int , __UpperCamelCase : int , **__UpperCamelCase : Dict ) ->Tuple: '''simple docstring''' self._get_dirs() _UpperCAmelCase = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def _snake_case ( self : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple=False , **__UpperCamelCase : List[str] ) ->Optional[Any]: '''simple docstring''' self._get_dirs() _UpperCAmelCase = PurePosixPath(path.strip("""/""" ) ) _UpperCAmelCase = {} for p, f in self.dir_cache.items(): _UpperCAmelCase = PurePosixPath(p.strip("""/""" ) ) _UpperCAmelCase = p.parent if root == path: _UpperCAmelCase = f _UpperCAmelCase = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
19
0
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __UpperCamelCase : def __init__( self : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Any=13 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Any=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : int=99 , _lowerCAmelCase : str=32 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : Union[str, Any]=4 , _lowerCAmelCase : Any=37 , _lowerCAmelCase : Union[str, Any]="gelu" , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : str=512 , _lowerCAmelCase : Optional[int]=16 , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Optional[Any]=0.02 , _lowerCAmelCase : str=3 , _lowerCAmelCase : Tuple=4 , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : str=1000 , ) -> Dict: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = range_bbox def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment __lowercase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowercase = bbox[i, j, 3] __lowercase = bbox[i, j, 1] __lowercase = t if bbox[i, j, 2] < bbox[i, j, 0]: __lowercase = bbox[i, j, 2] __lowercase = bbox[i, j, 0] __lowercase = t __lowercase = tf.convert_to_tensor(_lowerCAmelCase ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ) -> Tuple: """simple docstring""" __lowercase = TFLayoutLMModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = TFLayoutLMForMaskedLM(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : int ) -> Optional[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Dict ) -> Dict: """simple docstring""" __lowercase = self.num_labels __lowercase = TFLayoutLMForTokenClassification(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self : str , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :List[Any] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __snake_case :Union[str, Any] = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __snake_case :str = False __snake_case :Dict = True __snake_case :Tuple = 1_0 def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = TFLayoutLMModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : List[Any] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def _a ( self : Any ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def _a ( self : Any ) -> Any: """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFLayoutLMModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip("""Onnx compliancy broke with TF 2.10""" ) def _a ( self : str ) -> Any: """simple docstring""" pass def snake_case ( ): '''simple docstring''' __lowercase = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 __lowercase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 __lowercase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 __lowercase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) __lowercase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : str ) -> str: """simple docstring""" __lowercase = TFLayoutLMModel.from_pretrained("""microsoft/layoutlm-base-uncased""" ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = prepare_layoutlm_batch_inputs() # forward pass __lowercase = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the sequence output on [0, :3, :3] __lowercase = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1e-3 ) ) # test the pooled output on [1, :3] __lowercase = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1e-3 ) ) @slow def _a ( self : int ) -> Any: """simple docstring""" __lowercase = TFLayoutLMForSequenceClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=2 ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = prepare_layoutlm_batch_inputs() # forward pass __lowercase = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar __lowercase = outputs.loss __lowercase = (2,) self.assertEqual(loss.shape , _lowerCAmelCase ) # test the shape of the logits __lowercase = outputs.logits __lowercase = (2, 2) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase = TFLayoutLMForTokenClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=13 ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = prepare_layoutlm_batch_inputs() # forward pass __lowercase = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) # test the shape of the logits __lowercase = outputs.logits __lowercase = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = TFLayoutLMForQuestionAnswering.from_pretrained("""microsoft/layoutlm-base-uncased""" ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = prepare_layoutlm_batch_inputs() # forward pass __lowercase = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the shape of the logits __lowercase = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase ) self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
80
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
129
0
from collections import deque def __lowercase ( _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = len(__lowerCAmelCase ) SCREAMING_SNAKE_CASE = deque() SCREAMING_SNAKE_CASE = [False for _ in range(__lowerCAmelCase )] SCREAMING_SNAKE_CASE = [-1 for _ in range(__lowerCAmelCase )] SCREAMING_SNAKE_CASE = index_of[:] def strong_connect(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = index # the number when this node is seen SCREAMING_SNAKE_CASE = index # lowest rank node reachable from here index += 1 stack.append(__lowerCAmelCase ) SCREAMING_SNAKE_CASE = True for w in g[v]: if index_of[w] == -1: SCREAMING_SNAKE_CASE = strong_connect(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: SCREAMING_SNAKE_CASE = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = stack.pop() SCREAMING_SNAKE_CASE = False component.append(__lowerCAmelCase ) while w != v: SCREAMING_SNAKE_CASE = stack.pop() SCREAMING_SNAKE_CASE = False component.append(__lowerCAmelCase ) components.append(__lowerCAmelCase ) return index SCREAMING_SNAKE_CASE = [] for v in range(__lowerCAmelCase ): if index_of[v] == -1: strong_connect(__lowerCAmelCase , 0 , __lowerCAmelCase ) return components def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = [[] for _ in range(__lowerCAmelCase )] for u, v in edges: g[u].append(__lowerCAmelCase ) return g if __name__ == "__main__": # Test SCREAMING_SNAKE_CASE_ = 7 SCREAMING_SNAKE_CASE_ = [0, 0, 1, 2, 3, 3, 4, 4, 6] SCREAMING_SNAKE_CASE_ = [1, 3, 2, 0, 1, 4, 5, 6, 5] SCREAMING_SNAKE_CASE_ = [(u, v) for u, v in zip(source, target)] SCREAMING_SNAKE_CASE_ = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
709
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : int ,*lowerCamelCase__ : int ,**lowerCamelCase__ : List[Any] ) -> None: '''simple docstring''' warnings.warn( """The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use DeformableDetrImageProcessor instead.""" ,lowerCamelCase__ ,) super().__init__(*lowerCamelCase__ ,**lowerCamelCase__ )
116
0
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } _SCREAMING_SNAKE_CASE = { "b0": { "hidden_dim": 12_80, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 2_24, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 12_80, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 2_40, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 14_08, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 2_60, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 15_36, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 3_00, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 17_92, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 3_80, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 20_48, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 4_56, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 23_04, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 5_28, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 25_60, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 6_00, "dropout_rate": 0.5, "dw_padding": [18], }, } def __a(SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' _lowerCAmelCase = EfficientNetConfig() _lowerCAmelCase = CONFIG_MAP[model_name]["hidden_dim"] _lowerCAmelCase = CONFIG_MAP[model_name]["width_coef"] _lowerCAmelCase = CONFIG_MAP[model_name]["depth_coef"] _lowerCAmelCase = CONFIG_MAP[model_name]["image_size"] _lowerCAmelCase = CONFIG_MAP[model_name]["dropout_rate"] _lowerCAmelCase = CONFIG_MAP[model_name]["dw_padding"] _lowerCAmelCase = "huggingface/label-files" _lowerCAmelCase = "imagenet-1k-id2label.json" _lowerCAmelCase = 1000 _lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def __a(): '''simple docstring''' _lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = CONFIG_MAP[model_name]["image_size"] _lowerCAmelCase = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=SCREAMING_SNAKE_CASE_ , ) return preprocessor def __a(SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' _lowerCAmelCase = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] _lowerCAmelCase = sorted(set(SCREAMING_SNAKE_CASE_ ) ) _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = {b: str(SCREAMING_SNAKE_CASE_ ) for b, i in zip(SCREAMING_SNAKE_CASE_ , range(SCREAMING_SNAKE_CASE_ ) )} _lowerCAmelCase = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: _lowerCAmelCase = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) _lowerCAmelCase = {} for item in rename_keys: if item[0] in original_param_names: _lowerCAmelCase = "efficientnet." + item[1] _lowerCAmelCase = "classifier.weight" _lowerCAmelCase = "classifier.bias" return key_mapping def __a(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue _lowerCAmelCase = key_mapping[key] if "_conv" in key and "kernel" in key: _lowerCAmelCase = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: _lowerCAmelCase = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: _lowerCAmelCase = torch.from_numpy(np.transpose(SCREAMING_SNAKE_CASE_ ) ) else: _lowerCAmelCase = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __a(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase = model_classes[model_name]( include_top=SCREAMING_SNAKE_CASE_ , weights="imagenet" , input_tensor=SCREAMING_SNAKE_CASE_ , input_shape=SCREAMING_SNAKE_CASE_ , pooling=SCREAMING_SNAKE_CASE_ , classes=1000 , classifier_activation="softmax" , ) _lowerCAmelCase = original_model.trainable_variables _lowerCAmelCase = original_model.non_trainable_variables _lowerCAmelCase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _lowerCAmelCase = param.numpy() _lowerCAmelCase = list(tf_params.keys() ) # Load HuggingFace model _lowerCAmelCase = get_efficientnet_config(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = EfficientNetForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() _lowerCAmelCase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) _lowerCAmelCase = rename_keys(SCREAMING_SNAKE_CASE_ ) replace_params(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Initialize preprocessor and preprocess input image _lowerCAmelCase = convert_image_processor(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): _lowerCAmelCase = hf_model(**SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = outputs.logits.detach().numpy() # Original model inference _lowerCAmelCase = False _lowerCAmelCase = CONFIG_MAP[model_name]["image_size"] _lowerCAmelCase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) _lowerCAmelCase = image.img_to_array(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = np.expand_dims(SCREAMING_SNAKE_CASE_ , axis=0 ) _lowerCAmelCase = original_model.predict(SCREAMING_SNAKE_CASE_ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): os.mkdir(SCREAMING_SNAKE_CASE_ ) # Save converted model and image processor hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) preprocessor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) _lowerCAmelCase = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(SCREAMING_SNAKE_CASE_ ) hf_model.push_to_hub(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") _SCREAMING_SNAKE_CASE = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
18
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class a__ ( lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = ReformerTokenizer _SCREAMING_SNAKE_CASE : str = ReformerTokenizerFast _SCREAMING_SNAKE_CASE : List[Any] = True _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Optional[Any] = True def _lowerCamelCase ( self ): """simple docstring""" super().setUp() _lowercase : int = ReformerTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = "<s>" _lowercase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCamelCase ) , 1000 ) def _lowerCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _lowercase : str = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer() _lowercase : Any = "I was born in 92000, and this is falsé." _lowercase : Dict = tokenizer.tokenize(_UpperCamelCase ) _lowercase : List[Any] = rust_tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _lowercase : Union[str, Any] = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) _lowercase : int = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _lowercase : Tuple = self.get_rust_tokenizer() _lowercase : Optional[Any] = tokenizer.encode(_UpperCamelCase ) _lowercase : Any = rust_tokenizer.encode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowercase : int = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) # Simple input _lowercase : int = "This is a simple input" _lowercase : Tuple = ["This is a simple input 1", "This is a simple input 2"] _lowercase : str = ("This is a simple input", "This is a pair") _lowercase : int = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises( _UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) # Pair input self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises( _UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = ReformerTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) _lowercase : List[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [285, 46, 10, 170, 382] , ) _lowercase : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _lowercase : Dict = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowercase : List[Any] = tokenizer.convert_ids_to_tokens(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _lowerCamelCase ( self ): """simple docstring""" return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = "Hello World!" _lowercase : Optional[Any] = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) _lowercase : Optional[Any] = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @require_torch @slow def _lowerCamelCase ( self ): """simple docstring""" import torch from transformers import ReformerConfig, ReformerModel # Build sequence _lowercase : int = list(self.big_tokenizer.get_vocab().keys() )[:10] _lowercase : Tuple = " ".join(_UpperCamelCase ) _lowercase : Tuple = self.big_tokenizer.encode_plus(_UpperCamelCase , return_tensors="pt" ) _lowercase : int = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) _lowercase : int = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) _lowercase : Optional[int] = encoded_sequence["input_ids"].shape _lowercase : List[Any] = ReformerModel(_UpperCamelCase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCamelCase ) model(**_UpperCamelCase ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 _lowercase : Dict = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=_UpperCamelCase , sequences=_UpperCamelCase , )
245
0
"""simple docstring""" import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowercase (SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=10_24 ) -> Optional[int]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], [] SCREAMING_SNAKE_CASE = list(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sorted_examples[0] def is_too_big(SCREAMING_SNAKE_CASE_ : Optional[int] ): return tok(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): SCREAMING_SNAKE_CASE = new_src + ' ' + src SCREAMING_SNAKE_CASE = new_tgt + ' ' + tgt if is_too_big(SCREAMING_SNAKE_CASE_ ) or is_too_big(SCREAMING_SNAKE_CASE_ ): # cant fit, finalize example finished_src.append(SCREAMING_SNAKE_CASE_ ) finished_tgt.append(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = src, tgt else: # can fit, keep adding SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(SCREAMING_SNAKE_CASE_ ) finished_tgt.append(SCREAMING_SNAKE_CASE_ ) return finished_src, finished_tgt def lowercase (SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Path , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]: SCREAMING_SNAKE_CASE = Path(SCREAMING_SNAKE_CASE_ ) save_path.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) for split in ["train"]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = data_dir / F'{split}.source', data_dir / F'{split}.target' SCREAMING_SNAKE_CASE = [x.rstrip() for x in Path(SCREAMING_SNAKE_CASE_ ).open().readlines()] SCREAMING_SNAKE_CASE = [x.rstrip() for x in Path(SCREAMING_SNAKE_CASE_ ).open().readlines()] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = pack_examples(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(F'packed {split} split from {len(SCREAMING_SNAKE_CASE_ )} examples -> {len(SCREAMING_SNAKE_CASE_ )}.' ) Path(save_path / F'{split}.source' ).open('w' ).write('\n'.join(SCREAMING_SNAKE_CASE_ ) ) Path(save_path / F'{split}.target' ).open('w' ).write('\n'.join(SCREAMING_SNAKE_CASE_ ) ) for split in ["val", "test"]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = data_dir / F'{split}.source', data_dir / F'{split}.target' shutil.copyfile(SCREAMING_SNAKE_CASE_ , save_path / F'{split}.source' ) shutil.copyfile(SCREAMING_SNAKE_CASE_ , save_path / F'{split}.target' ) def lowercase () -> int: SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--tok_name' , type=SCREAMING_SNAKE_CASE_ , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=SCREAMING_SNAKE_CASE_ , default=1_28 ) parser.add_argument('--data_dir' , type=SCREAMING_SNAKE_CASE_ ) parser.add_argument('--save_path' , type=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = parser.parse_args() SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(SCREAMING_SNAKE_CASE_ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
327
"""simple docstring""" from collections import defaultdict from math import gcd def lowercase (SCREAMING_SNAKE_CASE_ : int = 1_50_00_00 ) -> int: SCREAMING_SNAKE_CASE = defaultdict(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , SCREAMING_SNAKE_CASE_ , 2 ): if gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) > 1: continue SCREAMING_SNAKE_CASE = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(SCREAMING_SNAKE_CASE_ , limit + 1 , SCREAMING_SNAKE_CASE_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
327
1
from collections import defaultdict from math import gcd def _A ( __snake_case :int = 150_0000 ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = defaultdict(__snake_case ) __SCREAMING_SNAKE_CASE = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __snake_case , 2 ): if gcd(__snake_case , __snake_case ) > 1: continue __SCREAMING_SNAKE_CASE = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__snake_case , limit + 1 , __snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
693
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : @staticmethod def __lowerCAmelCase ( *_a, **_a ) -> Union[str, Any]: pass @is_pipeline_test @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @require_torch def __lowerCAmelCase ( self ) -> Tuple: __SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", ) __SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __SCREAMING_SNAKE_CASE = image_classifier(_a, candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(_a ), [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ], ) __SCREAMING_SNAKE_CASE = image_classifier([image] * 5, candidate_labels=["A", "B", "C"], batch_size=2 ) self.assertEqual( nested_simplify(_a ), [ [ {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, ], [ {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, ], [ {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, ], [ {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, ], [ {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, ], ], ) @require_tf def __lowerCAmelCase ( self ) -> Any: __SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", framework="tf" ) __SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __SCREAMING_SNAKE_CASE = image_classifier(_a, candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(_a ), [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], ) __SCREAMING_SNAKE_CASE = image_classifier([image] * 5, candidate_labels=["A", "B", "C"], batch_size=2 ) self.assertEqual( nested_simplify(_a ), [ [ {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, ], [ {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, ], [ {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, ], [ {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, ], [ {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, ], ], ) @slow @require_torch def __lowerCAmelCase ( self ) -> Tuple: __SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification", model="openai/clip-vit-base-patch32", ) # This is an image of 2 cats with remotes and no planes __SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __SCREAMING_SNAKE_CASE = image_classifier(_a, candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(_a ), [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ) __SCREAMING_SNAKE_CASE = image_classifier([image] * 5, candidate_labels=["cat", "plane", "remote"], batch_size=2 ) self.assertEqual( nested_simplify(_a ), [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5, ) @slow @require_tf def __lowerCAmelCase ( self ) -> List[str]: __SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification", model="openai/clip-vit-base-patch32", framework="tf" ) # This is an image of 2 cats with remotes and no planes __SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __SCREAMING_SNAKE_CASE = image_classifier(_a, candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(_a ), [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ) __SCREAMING_SNAKE_CASE = image_classifier([image] * 5, candidate_labels=["cat", "plane", "remote"], batch_size=2 ) self.assertEqual( nested_simplify(_a ), [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5, )
693
1
'''simple docstring''' import argparse import os import re _lowercase : List[Any] = "src/transformers" # Pattern that looks at the indentation in a line. _lowercase : str = re.compile(r"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. _lowercase : str = re.compile(r"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowercase : List[Any] = re.compile(r"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. _lowercase : Tuple = re.compile(r"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowercase : str = re.compile(r"\[([^\]]+)\]") def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> Optional[Any]: lowercase_ : Union[str, Any] = _re_indent.search(UpperCAmelCase__ ) return "" if search is None else search.groups()[0] def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any]="" , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Any=None ) -> int: lowercase_ : Dict = 0 lowercase_ : List[str] = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(UpperCAmelCase__ ): index += 1 lowercase_ : str = ["""\n""".join(lines[:index] )] else: lowercase_ : str = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase_ : Optional[Any] = [lines[index]] index += 1 while index < len(UpperCAmelCase__ ) and (end_prompt is None or not lines[index].startswith(UpperCAmelCase__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(UpperCAmelCase__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(UpperCAmelCase__ ) ) if index < len(UpperCAmelCase__ ) - 1: lowercase_ : str = [lines[index + 1]] index += 1 else: lowercase_ : int = [] else: blocks.append("""\n""".join(UpperCAmelCase__ ) ) lowercase_ : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(UpperCAmelCase__ ) > 0: blocks.append("""\n""".join(UpperCAmelCase__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(UpperCAmelCase__ ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any: def _inner(UpperCAmelCase__ : List[str] ): return key(UpperCAmelCase__ ).lower().replace("""_""" , """""" ) return _inner def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str=None ) -> int: # If no key is provided, we use a noop. def noop(UpperCAmelCase__ : List[Any] ): return x if key is None: lowercase_ : int = noop # Constants are all uppercase, they go first. lowercase_ : Any = [obj for obj in objects if key(UpperCAmelCase__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase_ : Union[str, Any] = [obj for obj in objects if key(UpperCAmelCase__ )[0].isupper() and not key(UpperCAmelCase__ ).isupper()] # Functions begin with a lowercase, they go last. lowercase_ : str = [obj for obj in objects if not key(UpperCAmelCase__ )[0].isupper()] lowercase_ : Dict = ignore_underscore(UpperCAmelCase__ ) return sorted(UpperCAmelCase__ , key=UpperCAmelCase__ ) + sorted(UpperCAmelCase__ , key=UpperCAmelCase__ ) + sorted(UpperCAmelCase__ , key=UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Dict ) -> Optional[int]: # This inner function sort imports between [ ]. def _replace(UpperCAmelCase__ : Dict ): lowercase_ : str = match.groups()[0] if "," not in imports: return F'''[{imports}]''' lowercase_ : Optional[int] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase_ : int = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(UpperCAmelCase__ )] ) + "]" lowercase_ : Union[str, Any] = import_statement.split("""\n""" ) if len(UpperCAmelCase__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase_ : Optional[int] = 2 if lines[1].strip() == """[""" else 1 lowercase_ : Tuple = [(i, _re_strip_line.search(UpperCAmelCase__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase_ : Dict = sort_objects(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : x[1] ) lowercase_ : int = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(UpperCAmelCase__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase_ : Optional[Any] = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase_ : Optional[Any] = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase_ : List[str] = keys[:-1] lowercase_ : Optional[Any] = get_indent(lines[1] ) + """, """.join([F'''"{k}"''' for k in sort_objects(UpperCAmelCase__ )] ) return "\n".join(UpperCAmelCase__ ) else: # Finally we have to deal with imports fitting on one line lowercase_ : List[Any] = _re_bracket_content.sub(_replace , UpperCAmelCase__ ) return import_statement def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=True ) -> Any: with open(UpperCAmelCase__ , encoding="""utf-8""" ) as f: lowercase_ : str = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase_ : Union[str, Any] = split_code_in_indented_blocks( UpperCAmelCase__ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(UpperCAmelCase__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase_ : List[str] = main_blocks[block_idx] lowercase_ : Union[str, Any] = block.split("""\n""" ) # Get to the start of the imports. lowercase_ : Union[str, Any] = 0 while line_idx < len(UpperCAmelCase__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase_ : int = len(UpperCAmelCase__ ) else: line_idx += 1 if line_idx >= len(UpperCAmelCase__ ): continue # Ignore beginning and last line: they don't contain anything. lowercase_ : Dict = """\n""".join(block_lines[line_idx:-1] ) lowercase_ : Optional[int] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase_ : List[str] = split_code_in_indented_blocks(UpperCAmelCase__ , indent_level=UpperCAmelCase__ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase_ : str = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase_ : str = [(pattern.search(UpperCAmelCase__ ).groups()[0] if pattern.search(UpperCAmelCase__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase_ : List[Any] = [(i, key) for i, key in enumerate(UpperCAmelCase__ ) if key is not None] lowercase_ : List[str] = [x[0] for x in sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase_ : Any = 0 lowercase_ : str = [] for i in range(len(UpperCAmelCase__ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowercase_ : Optional[int] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(UpperCAmelCase__ ) count += 1 # And we put our main block back together with its first and last line. lowercase_ : List[Any] = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(UpperCAmelCase__ ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(UpperCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(UpperCAmelCase__ ) ) def lowerCamelCase ( UpperCAmelCase__ : List[Any]=True ) -> Dict: lowercase_ : List[Any] = [] for root, _, files in os.walk(UpperCAmelCase__ ): if "__init__.py" in files: lowercase_ : Optional[Any] = sort_imports(os.path.join(UpperCAmelCase__ , """__init__.py""" ) , check_only=UpperCAmelCase__ ) if result: lowercase_ : Dict = [os.path.join(UpperCAmelCase__ , """__init__.py""" )] if len(UpperCAmelCase__ ) > 0: raise ValueError(F'''Would overwrite {len(UpperCAmelCase__ )} files, run `make style`.''' ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") _lowercase : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
30
'''simple docstring''' import unittest import numpy as np def lowerCamelCase ( UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : np.ndarray | None = None , ) -> np.ndarray: lowercase_ : List[Any] = np.shape(UpperCAmelCase__ ) lowercase_ : Dict = np.shape(UpperCAmelCase__ ) lowercase_ : int = np.shape(UpperCAmelCase__ ) if shape_a[0] != shape_b[0]: lowercase_ : Optional[int] = ( """Expected the same number of rows for A and B. """ F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(UpperCAmelCase__ ) if shape_b[1] != shape_c[1]: lowercase_ : Optional[Any] = ( """Expected the same number of columns for B and C. """ F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(UpperCAmelCase__ ) lowercase_ : Any = pseudo_inv if a_inv is None: try: lowercase_ : List[str] = np.linalg.inv(UpperCAmelCase__ ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Tuple = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ : int = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ : Dict = np.array([[2, 1], [6, 3]] ) lowercase_ : Union[str, Any] = schur_complement(lowercase_ , lowercase_ , lowercase_ ) lowercase_ : List[Any] = np.block([[a, b], [b.T, c]] ) lowercase_ : Optional[int] = np.linalg.det(lowercase_ ) lowercase_ : int = np.linalg.det(lowercase_ ) lowercase_ : int = np.linalg.det(lowercase_ ) self.assertAlmostEqual(lowercase_ , det_a * det_s ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ : Optional[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ : Union[str, Any] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowercase_ ): schur_complement(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ : List[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ : str = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowercase_ ): schur_complement(lowercase_ , lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
30
1
import math __lowerCamelCase = 10 __lowerCamelCase = 7 __lowerCamelCase = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( __lowerCamelCase : List[Any] = 20 ): snake_case : Any = math.comb(__a , __a ) snake_case : Optional[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __a ) snake_case : Any = NUM_COLOURS * (1 - missing_colour / total) return f"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
204
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( __lowercase , unittest.TestCase ): UpperCAmelCase__ = None UpperCAmelCase__ = BloomTokenizerFast UpperCAmelCase__ = BloomTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = '''tokenizer_file''' UpperCAmelCase__ = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def _lowercase (self ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE_ = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase (self , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] SCREAMING_SNAKE_CASE_ = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] SCREAMING_SNAKE_CASE_ = tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE_ )['''input_ids'''] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_=6 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input SCREAMING_SNAKE_CASE_ = '''This is a simple input''' SCREAMING_SNAKE_CASE_ = ['''This is a simple input 1''', '''This is a simple input 2'''] SCREAMING_SNAKE_CASE_ = ('''This is a simple input''', '''This is a pair''') SCREAMING_SNAKE_CASE_ = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) tokenizer_r.batch_encode_plus(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) tokenizer_r.batch_encode_plus(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) SCREAMING_SNAKE_CASE_ = None # Hotfixing padding = None self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' , ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = next(iter(SCREAMING_SNAKE_CASE_ ) )['''premise'''] # pick up one data SCREAMING_SNAKE_CASE_ = list(sample_data.values() ) SCREAMING_SNAKE_CASE_ = list(map(tokenizer.encode , SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) for x in output_tokens] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
626
0
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() __magic_name__ : str = logging.get_logger(__name__) __magic_name__ : Optional[int] = '''Hello world! cécé herlolip''' def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) -> Any: """simple docstring""" UpperCamelCase = FairseqRobertaModel.from_pretrained(lowerCAmelCase__) roberta.eval() # disable dropout UpperCamelCase = roberta.model.encoder.sentence_encoder UpperCamelCase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: UpperCamelCase = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:' , lowerCAmelCase__) UpperCamelCase = XLMRobertaXLForSequenceClassification(lowerCAmelCase__) if classification_head else XLMRobertaXLForMaskedLM(lowerCAmelCase__) model.eval() # Now let's copy all the weights. # Embeddings UpperCamelCase = roberta_sent_encoder.embed_tokens.weight UpperCamelCase = roberta_sent_encoder.embed_positions.weight UpperCamelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c RoBERTa doesn't use them. UpperCamelCase = roberta_sent_encoder.layer_norm.weight UpperCamelCase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers): # Encoder: start of layer UpperCamelCase = model.roberta.encoder.layer[i] UpperCamelCase = roberta_sent_encoder.layers[i] UpperCamelCase = layer.attention UpperCamelCase = roberta_layer.self_attn_layer_norm.weight UpperCamelCase = roberta_layer.self_attn_layer_norm.bias # self attention UpperCamelCase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ) UpperCamelCase = roberta_layer.self_attn.q_proj.weight UpperCamelCase = roberta_layer.self_attn.q_proj.bias UpperCamelCase = roberta_layer.self_attn.k_proj.weight UpperCamelCase = roberta_layer.self_attn.k_proj.bias UpperCamelCase = roberta_layer.self_attn.v_proj.weight UpperCamelCase = roberta_layer.self_attn.v_proj.bias # self-attention output UpperCamelCase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape UpperCamelCase = roberta_layer.self_attn.out_proj.weight UpperCamelCase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm UpperCamelCase = roberta_layer.final_layer_norm.weight UpperCamelCase = roberta_layer.final_layer_norm.bias # intermediate UpperCamelCase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape UpperCamelCase = roberta_layer.fca.weight UpperCamelCase = roberta_layer.fca.bias # output UpperCamelCase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape UpperCamelCase = roberta_layer.fca.weight UpperCamelCase = roberta_layer.fca.bias # end of layer if classification_head: UpperCamelCase = roberta.model.classification_heads['mnli'].dense.weight UpperCamelCase = roberta.model.classification_heads['mnli'].dense.bias UpperCamelCase = roberta.model.classification_heads['mnli'].out_proj.weight UpperCamelCase = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head UpperCamelCase = roberta.model.encoder.lm_head.dense.weight UpperCamelCase = roberta.model.encoder.lm_head.dense.bias UpperCamelCase = roberta.model.encoder.lm_head.layer_norm.weight UpperCamelCase = roberta.model.encoder.lm_head.layer_norm.bias UpperCamelCase = roberta.model.encoder.lm_head.weight UpperCamelCase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCamelCase = roberta.encode(lowerCAmelCase__).unsqueeze(0) # batch of size 1 UpperCamelCase = model(lowerCAmelCase__)[0] if classification_head: UpperCamelCase = roberta.model.classification_heads['mnli'](roberta.extract_features(lowerCAmelCase__)) else: UpperCamelCase = roberta.model(lowerCAmelCase__)[0] print(our_output.shape , their_output.shape) UpperCamelCase = torch.max(torch.abs(our_output - their_output)).item() print(F'max_absolute_diff = {max_absolute_diff}') # ~ 1e-7 UpperCamelCase = torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3) print('Do both models output the same tensors?' , '🔥' if success else '💩') if not success: raise Exception('Something went wRoNg') pathlib.Path(lowerCAmelCase__).mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__) print(F'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCAmelCase__) if __name__ == "__main__": __magic_name__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __magic_name__ : Any = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
709
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __magic_name__ : Union[str, Any] = get_logger() __magic_name__ : Optional[dict] = None class A__ ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): '''simple docstring''' def __init__( self : Dict , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : Optional[Any]=None , **_SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" super().__init__(features=_SCREAMING_SNAKE_CASE ) import jax from jaxlib.xla_client import Device if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError( f'Expected {device} to be a `str` not {type(_SCREAMING_SNAKE_CASE )}, as `jaxlib.xla_extension.Device` ' 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) UpperCamelCase = device if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'Device with string identifier {self.device} not listed among the available ' f'devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ' f'device: {str(jax.devices()[0] )}.' ) UpperCamelCase = str(jax.devices()[0] ) UpperCamelCase = jnp_array_kwargs @staticmethod def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" import jax return {str(_SCREAMING_SNAKE_CASE ): device for device in jax.devices()} def _SCREAMING_SNAKE_CASE ( self : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and column: if all( isinstance(_SCREAMING_SNAKE_CASE , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_SCREAMING_SNAKE_CASE , axis=0 ) return column def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(_SCREAMING_SNAKE_CASE , (str, bytes, type(_SCREAMING_SNAKE_CASE )) ): return value elif isinstance(_SCREAMING_SNAKE_CASE , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCamelCase = {} if isinstance(_SCREAMING_SNAKE_CASE , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCamelCase = {'dtype': jnp.intaa} else: UpperCamelCase = {'dtype': jnp.intaa} elif isinstance(_SCREAMING_SNAKE_CASE , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCamelCase = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): UpperCamelCase = np.asarray(_SCREAMING_SNAKE_CASE ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_SCREAMING_SNAKE_CASE , **{**default_dtype, **self.jnp_array_kwargs} ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_SCREAMING_SNAKE_CASE , '__array__' ) and not isinstance(_SCREAMING_SNAKE_CASE , jax.Array ): UpperCamelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) for substruct in data_struct] ) elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) for substruct in data_struct] ) return self._tensorize(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _SCREAMING_SNAKE_CASE : dict ): """simple docstring""" return map_nested(self._recursive_tensorize , _SCREAMING_SNAKE_CASE , map_list=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Dict , _SCREAMING_SNAKE_CASE : pa.Table ): """simple docstring""" UpperCamelCase = self.numpy_arrow_extractor().extract_row(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.python_features_decoder.decode_row(_SCREAMING_SNAKE_CASE ) return self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : str , _SCREAMING_SNAKE_CASE : pa.Table ): """simple docstring""" UpperCamelCase = self.numpy_arrow_extractor().extract_column(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.python_features_decoder.decode_column(_SCREAMING_SNAKE_CASE , pa_table.column_names[0] ) UpperCamelCase = self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self._consolidate(_SCREAMING_SNAKE_CASE ) return column def _SCREAMING_SNAKE_CASE ( self : List[str] , _SCREAMING_SNAKE_CASE : pa.Table ): """simple docstring""" UpperCamelCase = self.numpy_arrow_extractor().extract_batch(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.python_features_decoder.decode_batch(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) for column_name in batch: UpperCamelCase = self._consolidate(batch[column_name] ) return batch
410
0
import numpy as np import qiskit def snake_case( __magic_name__ = 8 , __magic_name__ = None ) -> str: '''simple docstring''' lowercase : Union[str, Any] = np.random.default_rng(seed=__magic_name__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. lowercase : List[str] = 6 * key_len # Measurement basis for Alice's qubits. lowercase : str = rng.integers(2 , size=__magic_name__ ) # The set of states Alice will prepare. lowercase : Dict = rng.integers(2 , size=__magic_name__ ) # Measurement basis for Bob's qubits. lowercase : int = rng.integers(2 , size=__magic_name__ ) # Quantum Circuit to simulate BB84 lowercase : Optional[int] = qiskit.QuantumCircuit(__magic_name__ , name='''BB84''' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(__magic_name__ ): if alice_state[index] == 1: bbaa_circ.x(__magic_name__ ) if alice_basis[index] == 1: bbaa_circ.h(__magic_name__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(__magic_name__ ): if bob_basis[index] == 1: bbaa_circ.h(__magic_name__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. lowercase : Union[str, Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. lowercase : int = qiskit.execute(__magic_name__ , __magic_name__ , shots=1 , seed_simulator=__magic_name__ ) # Returns the result of measurement. lowercase : str = job.result().get_counts(__magic_name__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. lowercase : Union[str, Any] = ''''''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( __magic_name__ , __magic_name__ , __magic_name__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. lowercase : str = gen_key[:key_len] if len(__magic_name__ ) >= key_len else gen_key.ljust(__magic_name__ , '''0''' ) return key if __name__ == "__main__": print(f'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
217
from __future__ import annotations def snake_case( __magic_name__ , __magic_name__ ) -> list[list[int]]: '''simple docstring''' lowercase : list[list[int]] = [] lowercase : list[int] = [] lowercase : List[str] = 0 lowercase : Any = sum(__magic_name__ ) create_state_space_tree(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) return result def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> None: '''simple docstring''' if sum(__magic_name__ ) > max_sum or (remaining_nums_sum + sum(__magic_name__ )) < max_sum: return if sum(__magic_name__ ) == max_sum: result.append(__magic_name__ ) return for index in range(__magic_name__ , len(__magic_name__ ) ): create_state_space_tree( __magic_name__ , __magic_name__ , index + 1 , [*path, nums[index]] , __magic_name__ , remaining_nums_sum - nums[index] , ) lowerCAmelCase_ = [3, 34, 4, 12, 5, 2] lowerCAmelCase_ = 9 lowerCAmelCase_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
217
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: A = None A = logging.get_logger(__name__) A = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} A = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } A = { 'moussaKam/mbarthez': 1_0_2_4, 'moussaKam/barthez': 1_0_2_4, 'moussaKam/barthez-orangesum-title': 1_0_2_4, } A = '▁' class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = BarthezTokenizer def __init__( self : int , snake_case__ : Dict=None , snake_case__ : List[str]=None , snake_case__ : Tuple="<s>" , snake_case__ : str="</s>" , snake_case__ : int="</s>" , snake_case__ : List[Any]="<s>" , snake_case__ : Tuple="<unk>" , snake_case__ : Any="<pad>" , snake_case__ : Optional[Any]="<mask>" , **snake_case__ : Dict , ) -> int: # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) _lowerCamelCase = vocab_file _lowerCamelCase = False if not self.vocab_file else True def _snake_case ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] _lowerCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : List[str] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCamelCase = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
702
from itertools import product def lowerCamelCase ( UpperCamelCase : int , UpperCamelCase : int ) -> list[int]: _lowerCamelCase = sides_number _lowerCamelCase = max_face_number * dice_number _lowerCamelCase = [0] * (max_total + 1) _lowerCamelCase = 1 _lowerCamelCase = range(UpperCamelCase , max_face_number + 1 ) for dice_numbers in product(UpperCamelCase , repeat=UpperCamelCase ): _lowerCamelCase = sum(UpperCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def lowerCamelCase ( ) -> float: _lowerCamelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCamelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCamelCase = 0 _lowerCamelCase = 9 _lowerCamelCase = 4 * 9 _lowerCamelCase = 6 for peter_total in range(UpperCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCamelCase = (4**9) * (6**6) _lowerCamelCase = peter_wins_count / total_games_number _lowerCamelCase = round(UpperCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
234
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = """instructblip_vision_model""" def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=1E-6 , __A=0.0 , __A=1E-10 , __A=True , **__A , ): super().__init__(**__A ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act __a = qkv_bias @classmethod def snake_case_ ( cls , __A , **__A ): cls._set_token_in_kwargs(__A ) __a , __a = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": __a = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = """instructblip_qformer""" def __init__( self , __A=30522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ): super().__init__(pad_token_id=__A , **__A ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = cross_attention_frequency __a = encoder_hidden_size @classmethod def snake_case_ ( cls , __A , **__A ): cls._set_token_in_kwargs(__A ) __a , __a = cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": __a = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = """instructblip""" _lowerCamelCase = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ): super().__init__(**__A ) if vision_config is None: __a = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: __a = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: __a = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) __a = InstructBlipVisionConfig(**__A ) __a = InstructBlipQFormerConfig(**__A ) __a = text_config["""model_type"""] if """model_type""" in text_config else """opt""" __a = CONFIG_MAPPING[text_model_type](**__A ) __a = self.text_config.tie_word_embeddings __a = self.text_config.is_encoder_decoder __a = num_query_tokens __a = self.vision_config.hidden_size __a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a = 1.0 __a = 0.02 @classmethod def snake_case_ ( cls , __A , __A , __A , **__A , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def snake_case_ ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.qformer_config.to_dict() __a = self.text_config.to_dict() __a = self.__class__.model_type return output
99
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 16 lowercase_ = 32 def lowerCAmelCase ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" return int(x / 2**20 ) class A__ : def __enter__( self ) -> int: """simple docstring""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __magic_name__ : List[Any] = torch.cuda.memory_allocated() return self def __exit__( self , *lowerCamelCase ) -> int: """simple docstring""" gc.collect() torch.cuda.empty_cache() __magic_name__ : Optional[Any] = torch.cuda.memory_allocated() __magic_name__ : str = torch.cuda.max_memory_allocated() __magic_name__ : List[Any] = bamb(self.end - self.begin ) __magic_name__ : int = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase = 16, UpperCAmelCase = "bert-base-cased", UpperCAmelCase = 320, UpperCAmelCase = 160, ) ->Optional[Any]: """simple docstring""" __magic_name__ : List[Any] = AutoTokenizer.from_pretrained(UpperCAmelCase ) __magic_name__ : Optional[int] = load_dataset( '''glue''', '''mrpc''', split={'''train''': F'''train[:{n_train}]''', '''validation''': F'''validation[:{n_val}]'''} ) def tokenize_function(UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) __magic_name__ : List[Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=UpperCAmelCase, max_length=UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __magic_name__ : Optional[int] = datasets.map( UpperCAmelCase, batched=UpperCAmelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], load_from_cache_file=UpperCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __magic_name__ : str = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase, padding='''max_length''', max_length=128, return_tensors='''pt''' ) return tokenizer.pad(UpperCAmelCase, padding='''longest''', return_tensors='''pt''' ) # Instantiate dataloaders. __magic_name__ : List[Any] = DataLoader( tokenized_datasets['''train'''], shuffle=UpperCAmelCase, collate_fn=UpperCAmelCase, batch_size=UpperCAmelCase ) __magic_name__ : int = DataLoader( tokenized_datasets['''validation'''], shuffle=UpperCAmelCase, collate_fn=UpperCAmelCase, batch_size=UpperCAmelCase ) return train_dataloader, eval_dataloader def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase ) ->Optional[Any]: """simple docstring""" __magic_name__ : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __magic_name__ : int = config['''lr'''] __magic_name__ : Union[str, Any] = int(config['''num_epochs'''] ) __magic_name__ : Optional[Any] = int(config['''seed'''] ) __magic_name__ : List[Any] = int(config['''batch_size'''] ) __magic_name__ : int = args.model_name_or_path set_seed(UpperCAmelCase ) __magic_name__ , __magic_name__ : int = get_dataloaders(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, args.n_train, args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __magic_name__ : Dict = AutoModelForSequenceClassification.from_pretrained(UpperCAmelCase, return_dict=UpperCAmelCase ) # Instantiate optimizer __magic_name__ : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __magic_name__ : Tuple = optimizer_cls(params=model.parameters(), lr=UpperCAmelCase ) if accelerator.state.deepspeed_plugin is not None: __magic_name__ : Optional[int] = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __magic_name__ : Optional[Any] = 1 __magic_name__ : str = (len(UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __magic_name__ : List[str] = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase, num_warmup_steps=0, num_training_steps=UpperCAmelCase, ) else: __magic_name__ : Optional[Any] = DummyScheduler(UpperCAmelCase, total_num_steps=UpperCAmelCase, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = accelerator.prepare( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over __magic_name__ : int = 0 # We also need to keep track of the stating epoch so files are named properly __magic_name__ : Union[str, Any] = 0 # Now we train the model __magic_name__ : Tuple = {} for epoch in range(UpperCAmelCase, UpperCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(UpperCAmelCase ): __magic_name__ : Optional[Any] = model(**UpperCAmelCase ) __magic_name__ : Any = outputs.loss __magic_name__ : List[Any] = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __magic_name__ : int = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F'''epoch-{epoch}'''] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, '''peak_memory_utilization.json''' ), '''w''' ) as f: json.dump(UpperCAmelCase, UpperCAmelCase ) def lowerCAmelCase ( ) ->Tuple: """simple docstring""" __magic_name__ : Any = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''', type=UpperCAmelCase, default='''bert-base-cased''', help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=UpperCAmelCase, ) parser.add_argument( '''--output_dir''', type=UpperCAmelCase, default='''.''', help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''', ) parser.add_argument( '''--peak_memory_upper_bound''', type=UpperCAmelCase, default=UpperCAmelCase, help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''', ) parser.add_argument( '''--n_train''', type=UpperCAmelCase, default=320, help='''Number of training examples to use.''', ) parser.add_argument( '''--n_val''', type=UpperCAmelCase, default=160, help='''Number of validation examples to use.''', ) parser.add_argument( '''--num_epochs''', type=UpperCAmelCase, default=1, help='''Number of train epochs.''', ) __magic_name__ : str = parser.parse_args() __magic_name__ : List[str] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(UpperCAmelCase, UpperCAmelCase ) if __name__ == "__main__": main()
154
0
"""simple docstring""" import math def lowerCamelCase_ ( _lowerCamelCase : int ): lowerCamelCase_ = [] lowerCamelCase_ = 2 lowerCamelCase_ = int(math.sqrt(_lowerCamelCase ) ) # Size of every segment lowerCamelCase_ = [True] * (end + 1) lowerCamelCase_ = [] while start <= end: if temp[start] is True: in_prime.append(_lowerCamelCase ) for i in range(start * start , end + 1 , _lowerCamelCase ): lowerCamelCase_ = False start += 1 prime += in_prime lowerCamelCase_ = end + 1 lowerCamelCase_ = min(2 * end , _lowerCamelCase ) while low <= n: lowerCamelCase_ = [True] * (high - low + 1) for each in in_prime: lowerCamelCase_ = math.floor(low / each ) * each if t < low: t += each for j in range(_lowerCamelCase , high + 1 , _lowerCamelCase ): lowerCamelCase_ = False for j in range(len(_lowerCamelCase ) ): if temp[j] is True: prime.append(j + low ) lowerCamelCase_ = high + 1 lowerCamelCase_ = min(high + end , _lowerCamelCase ) return prime print(sieve(1_0**6))
66
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __lowercase : List[str] = logging.get_logger(__name__) class lowerCAmelCase ( a ): """simple docstring""" def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
66
1
'''simple docstring''' from math import ceil, sqrt def snake_case_ ( SCREAMING_SNAKE_CASE__ = 1_00_00_00 ): '''simple docstring''' _snake_case = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: _snake_case = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: _snake_case = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'{solution() = }')
672
'''simple docstring''' import math def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return math.pow(SCREAMING_SNAKE_CASE__ , 2 ) - a def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return 2 * x def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = 2.0 while start <= a: _snake_case = math.pow(SCREAMING_SNAKE_CASE__ , 2 ) return start def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 99_99 , SCREAMING_SNAKE_CASE__ = 0.00000000000001 ): '''simple docstring''' if a < 0: raise ValueError("math domain error" ) _snake_case = get_initial_point(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): _snake_case = value _snake_case = value - fx(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / fx_derivative(SCREAMING_SNAKE_CASE__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
672
1
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets _lowerCAmelCase = """ @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ _lowerCAmelCase = """\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. """ _lowerCAmelCase = """ Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=[\"About 95 species are currently accepted .\"] >>> predictions=[\"About 95 you now get in .\"] >>> references=[[\"About 95 species are currently known .\"]] >>> wiki_split = datasets.load_metric(\"wiki_split\") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0} """ def lowercase ( _a ) -> Optional[Any]: def remove_articles(_a ): UpperCAmelCase_: int = re.compile(r"\b(a|an|the)\b" ,re.UNICODE ) return re.sub(_a ," " ,_a ) def white_space_fix(_a ): return " ".join(text.split() ) def remove_punc(_a ): UpperCAmelCase_: Optional[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_a ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_a ) ) ) ) def lowercase ( _a ,_a ) -> List[Any]: return int(normalize_answer(_a ) == normalize_answer(_a ) ) def lowercase ( _a ,_a ) -> int: UpperCAmelCase_: Optional[int] = [any(compute_exact(_a ,_a ) for ref in refs ) for pred, refs in zip(_a ,_a )] return (sum(_a ) / len(_a )) * 100 def lowercase ( _a ,_a ,_a ,_a ) -> Optional[Any]: UpperCAmelCase_: Optional[Any] = [rgram for rgrams in rgramslist for rgram in rgrams] UpperCAmelCase_: Optional[int] = Counter(_a ) UpperCAmelCase_: Dict = Counter(_a ) UpperCAmelCase_: Optional[Any] = Counter() for sgram, scount in sgramcounter.items(): UpperCAmelCase_: Optional[Any] = scount * numref UpperCAmelCase_: Dict = Counter(_a ) UpperCAmelCase_: Union[str, Any] = Counter() for cgram, ccount in cgramcounter.items(): UpperCAmelCase_: str = ccount * numref # KEEP UpperCAmelCase_: List[str] = sgramcounter_rep & cgramcounter_rep UpperCAmelCase_: str = keepgramcounter_rep & rgramcounter UpperCAmelCase_: int = sgramcounter_rep & rgramcounter UpperCAmelCase_: str = 0 UpperCAmelCase_: Optional[Any] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_: Tuple = 1 UpperCAmelCase_: Any = 1 if len(_a ) > 0: UpperCAmelCase_: List[Any] = keeptmpscorea / len(_a ) if len(_a ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) UpperCAmelCase_: Optional[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) UpperCAmelCase_: List[str] = 0 if keepscore_precision > 0 or keepscore_recall > 0: UpperCAmelCase_: List[str] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION UpperCAmelCase_: List[str] = sgramcounter_rep - cgramcounter_rep UpperCAmelCase_: Union[str, Any] = delgramcounter_rep - rgramcounter UpperCAmelCase_: List[str] = sgramcounter_rep - rgramcounter UpperCAmelCase_: Union[str, Any] = 0 UpperCAmelCase_: List[Any] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_: Tuple = 1 if len(_a ) > 0: UpperCAmelCase_: Optional[Any] = deltmpscorea / len(_a ) # ADDITION UpperCAmelCase_: List[str] = set(_a ) - set(_a ) UpperCAmelCase_: Optional[Any] = set(_a ) & set(_a ) UpperCAmelCase_: Dict = set(_a ) - set(_a ) UpperCAmelCase_: Optional[int] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_: str = 1 UpperCAmelCase_: Optional[Any] = 1 if len(_a ) > 0: UpperCAmelCase_: str = addtmpscore / len(_a ) if len(_a ) > 0: UpperCAmelCase_: Optional[Any] = addtmpscore / len(_a ) UpperCAmelCase_: Tuple = 0 if addscore_precision > 0 or addscore_recall > 0: UpperCAmelCase_: Tuple = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowercase ( _a ,_a ,_a ) -> List[Any]: UpperCAmelCase_: Dict = len(_a ) UpperCAmelCase_: int = ssent.split(" " ) UpperCAmelCase_: Union[str, Any] = csent.split(" " ) UpperCAmelCase_: Optional[Any] = [] UpperCAmelCase_: Any = [] UpperCAmelCase_: str = [] UpperCAmelCase_: Optional[int] = [] UpperCAmelCase_: Optional[int] = [] UpperCAmelCase_: Optional[int] = [] UpperCAmelCase_: Any = [] UpperCAmelCase_: List[str] = [] UpperCAmelCase_: List[Any] = [] UpperCAmelCase_: Union[str, Any] = [] for rsent in rsents: UpperCAmelCase_: Union[str, Any] = rsent.split(" " ) UpperCAmelCase_: Any = [] UpperCAmelCase_: List[Any] = [] UpperCAmelCase_: Any = [] ragramslist.append(_a ) for i in range(0 ,len(_a ) - 1 ): if i < len(_a ) - 1: UpperCAmelCase_: Dict = ragrams[i] + " " + ragrams[i + 1] ragrams.append(_a ) if i < len(_a ) - 2: UpperCAmelCase_: Tuple = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] ragrams.append(_a ) if i < len(_a ) - 3: UpperCAmelCase_: str = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3] ragrams.append(_a ) ragramslist.append(_a ) ragramslist.append(_a ) ragramslist.append(_a ) for i in range(0 ,len(_a ) - 1 ): if i < len(_a ) - 1: UpperCAmelCase_: Optional[Any] = sagrams[i] + " " + sagrams[i + 1] sagrams.append(_a ) if i < len(_a ) - 2: UpperCAmelCase_: str = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] sagrams.append(_a ) if i < len(_a ) - 3: UpperCAmelCase_: List[Any] = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3] sagrams.append(_a ) for i in range(0 ,len(_a ) - 1 ): if i < len(_a ) - 1: UpperCAmelCase_: List[Any] = cagrams[i] + " " + cagrams[i + 1] cagrams.append(_a ) if i < len(_a ) - 2: UpperCAmelCase_: Dict = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] cagrams.append(_a ) if i < len(_a ) - 3: UpperCAmelCase_: Optional[int] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3] cagrams.append(_a ) (UpperCAmelCase_): Union[str, Any] = SARIngram(_a ,_a ,_a ,_a ) (UpperCAmelCase_): Optional[Any] = SARIngram(_a ,_a ,_a ,_a ) (UpperCAmelCase_): Union[str, Any] = SARIngram(_a ,_a ,_a ,_a ) (UpperCAmelCase_): int = SARIngram(_a ,_a ,_a ,_a ) UpperCAmelCase_: Tuple = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 UpperCAmelCase_: str = sum([delascore, delascore, delascore, delascore] ) / 4 UpperCAmelCase_: Any = sum([addascore, addascore, addascore, addascore] ) / 4 UpperCAmelCase_: Dict = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowercase ( _a ,_a = True ,_a = "13a" ,_a = True ) -> Optional[int]: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: UpperCAmelCase_: Dict = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: UpperCAmelCase_: List[str] = sacrebleu.metrics.bleu._get_tokenizer(_a )()(_a ) else: UpperCAmelCase_: Any = sacrebleu.TOKENIZERS[tokenizer]()(_a ) elif tokenizer == "moses": UpperCAmelCase_: Optional[Any] = sacremoses.MosesTokenizer().tokenize(_a ,return_str=_a ,escape=_a ) elif tokenizer == "penn": UpperCAmelCase_: List[str] = sacremoses.MosesTokenizer().penn_tokenize(_a ,return_str=_a ) else: UpperCAmelCase_: Dict = sentence if not return_str: UpperCAmelCase_: Optional[int] = normalized_sent.split() return normalized_sent def lowercase ( _a ,_a ,_a ) -> Optional[Any]: if not (len(_a ) == len(_a ) == len(_a )): raise ValueError("Sources length must match predictions and references lengths." ) UpperCAmelCase_: Optional[int] = 0 for src, pred, refs in zip(_a ,_a ,_a ): sari_score += SARIsent(normalize(_a ) ,normalize(_a ) ,[normalize(_a ) for sent in refs] ) UpperCAmelCase_: Dict = sari_score / len(_a ) return 100 * sari_score def lowercase ( _a ,_a ,_a="exp" ,_a=None ,_a=False ,_a=False ,_a=False ,) -> Optional[Any]: UpperCAmelCase_: str = len(references[0] ) if any(len(_a ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) UpperCAmelCase_: Union[str, Any] = [[refs[i] for refs in references] for i in range(_a )] UpperCAmelCase_: List[Any] = sacrebleu.corpus_bleu( _a ,_a ,smooth_method=_a ,smooth_value=_a ,force=_a ,lowercase=_a ,use_effective_order=_a ,) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): def snake_case_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ] , reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def snake_case_ ( self , A__ , A__ , A__ ): """simple docstring""" UpperCAmelCase_: Optional[int] = {} result.update({"sari": compute_sari(sources=A__ , predictions=A__ , references=A__ )} ) result.update({"sacrebleu": compute_sacrebleu(predictions=A__ , references=A__ )} ) result.update({"exact": compute_em(predictions=A__ , references=A__ )} ) return result
716
def lowercase ( _a ) -> bool: if not isinstance(_a ,_a ): UpperCAmelCase_: Dict = f"Input value of [number={number}] must be an integer" raise TypeError(_a ) if number < 0: return False UpperCAmelCase_: Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
306
0
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCamelCase_ (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict=1 ): if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowerCamelCase_ (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str]=0 ): _UpperCAmelCase : Any = [] for old_item in old_list: _UpperCAmelCase : Any = old_item.replace('''in_layers.0''' , '''norm1''' ) _UpperCAmelCase : Optional[Any] = new_item.replace('''in_layers.2''' , '''conv1''' ) _UpperCAmelCase : Optional[int] = new_item.replace('''out_layers.0''' , '''norm2''' ) _UpperCAmelCase : Optional[int] = new_item.replace('''out_layers.3''' , '''conv2''' ) _UpperCAmelCase : Optional[Any] = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) _UpperCAmelCase : Dict = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) _UpperCAmelCase : Optional[Any] = shave_segments(UpperCamelCase__ , n_shave_prefix_segments=UpperCamelCase__ ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase_ (UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any]=0 ): _UpperCAmelCase : Optional[int] = [] for old_item in old_list: _UpperCAmelCase : Tuple = old_item _UpperCAmelCase : int = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) _UpperCAmelCase : str = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) _UpperCAmelCase : Dict = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) _UpperCAmelCase : Optional[Any] = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) _UpperCAmelCase : int = shave_segments(UpperCamelCase__ , n_shave_prefix_segments=UpperCamelCase__ ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase_ (UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Dict=None ): assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _UpperCAmelCase : Optional[int] = old_checkpoint[path] _UpperCAmelCase : List[str] = old_tensor.shape[0] // 3 _UpperCAmelCase : Optional[Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) _UpperCAmelCase : Dict = old_tensor.shape[0] // config['''num_head_channels'''] // 3 _UpperCAmelCase : Union[str, Any] = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = old_tensor.split(channels // num_heads , dim=1 ) _UpperCAmelCase : str = query.reshape(UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = key.reshape(UpperCamelCase__ ) _UpperCAmelCase : int = value.reshape(UpperCamelCase__ ) for path in paths: _UpperCAmelCase : Optional[int] = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _UpperCAmelCase : Optional[Any] = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) _UpperCAmelCase : Dict = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) _UpperCAmelCase : Optional[Any] = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: _UpperCAmelCase : Optional[int] = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _UpperCAmelCase : Optional[int] = old_checkpoint[path['''old''']][:, :, 0] else: _UpperCAmelCase : Dict = old_checkpoint[path['''old''']] def lowerCamelCase_ (UpperCamelCase__ : str , UpperCamelCase__ : Any ): _UpperCAmelCase : Dict = {} _UpperCAmelCase : Tuple = checkpoint['''time_embed.0.weight'''] _UpperCAmelCase : Optional[Any] = checkpoint['''time_embed.0.bias'''] _UpperCAmelCase : int = checkpoint['''time_embed.2.weight'''] _UpperCAmelCase : Tuple = checkpoint['''time_embed.2.bias'''] _UpperCAmelCase : Union[str, Any] = checkpoint['''input_blocks.0.0.weight'''] _UpperCAmelCase : Any = checkpoint['''input_blocks.0.0.bias'''] _UpperCAmelCase : int = checkpoint['''out.0.weight'''] _UpperCAmelCase : str = checkpoint['''out.0.bias'''] _UpperCAmelCase : Dict = checkpoint['''out.2.weight'''] _UpperCAmelCase : Optional[int] = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only _UpperCAmelCase : Optional[int] = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) _UpperCAmelCase : Optional[Any] = { layer_id: [key for key in checkpoint if F'input_blocks.{layer_id}' in key] for layer_id in range(UpperCamelCase__ ) } # Retrieves the keys for the middle blocks only _UpperCAmelCase : Dict = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) _UpperCAmelCase : Union[str, Any] = { layer_id: [key for key in checkpoint if F'middle_block.{layer_id}' in key] for layer_id in range(UpperCamelCase__ ) } # Retrieves the keys for the output blocks only _UpperCAmelCase : int = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) _UpperCAmelCase : Tuple = { layer_id: [key for key in checkpoint if F'output_blocks.{layer_id}' in key] for layer_id in range(UpperCamelCase__ ) } for i in range(1 , UpperCamelCase__ ): _UpperCAmelCase : Dict = (i - 1) // (config['''num_res_blocks'''] + 1) _UpperCAmelCase : Tuple = (i - 1) % (config['''num_res_blocks'''] + 1) _UpperCAmelCase : List[Any] = [key for key in input_blocks[i] if F'input_blocks.{i}.0' in key] _UpperCAmelCase : Any = [key for key in input_blocks[i] if F'input_blocks.{i}.1' in key] if F'input_blocks.{i}.0.op.weight' in checkpoint: _UpperCAmelCase : int = checkpoint[ F'input_blocks.{i}.0.op.weight' ] _UpperCAmelCase : Optional[int] = checkpoint[ F'input_blocks.{i}.0.op.bias' ] continue _UpperCAmelCase : List[Any] = renew_resnet_paths(UpperCamelCase__ ) _UpperCAmelCase : int = {'''old''': F'input_blocks.{i}.0', '''new''': F'down_blocks.{block_id}.resnets.{layer_in_block_id}'} _UpperCAmelCase : Optional[Any] = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path, resnet_op] , config=UpperCamelCase__ ) if len(UpperCamelCase__ ): _UpperCAmelCase : Optional[Any] = renew_attention_paths(UpperCamelCase__ ) _UpperCAmelCase : List[str] = { '''old''': F'input_blocks.{i}.1', '''new''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}', } _UpperCAmelCase : Union[str, Any] = { F'input_blocks.{i}.1.qkv.bias': { '''key''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', '''query''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', '''value''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, F'input_blocks.{i}.1.qkv.weight': { '''key''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', '''query''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', '''value''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , attention_paths_to_split=UpperCamelCase__ , config=UpperCamelCase__ , ) _UpperCAmelCase : Optional[int] = middle_blocks[0] _UpperCAmelCase : Optional[Any] = middle_blocks[1] _UpperCAmelCase : str = middle_blocks[2] _UpperCAmelCase : Union[str, Any] = renew_resnet_paths(UpperCamelCase__ ) assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , config=UpperCamelCase__ ) _UpperCAmelCase : Optional[int] = renew_resnet_paths(UpperCamelCase__ ) assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , config=UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = renew_attention_paths(UpperCamelCase__ ) _UpperCAmelCase : List[Any] = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , attention_paths_to_split=UpperCamelCase__ , config=UpperCamelCase__ ) for i in range(UpperCamelCase__ ): _UpperCAmelCase : Tuple = i // (config['''num_res_blocks'''] + 1) _UpperCAmelCase : Any = i % (config['''num_res_blocks'''] + 1) _UpperCAmelCase : List[Any] = [shave_segments(UpperCamelCase__ , 2 ) for name in output_blocks[i]] _UpperCAmelCase : Optional[Any] = {} for layer in output_block_layers: _UpperCAmelCase , _UpperCAmelCase : int = layer.split('''.''' )[0], shave_segments(UpperCamelCase__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(UpperCamelCase__ ) else: _UpperCAmelCase : List[str] = [layer_name] if len(UpperCamelCase__ ) > 1: _UpperCAmelCase : int = [key for key in output_blocks[i] if F'output_blocks.{i}.0' in key] _UpperCAmelCase : Dict = [key for key in output_blocks[i] if F'output_blocks.{i}.1' in key] _UpperCAmelCase : Optional[Any] = renew_resnet_paths(UpperCamelCase__ ) _UpperCAmelCase : List[str] = renew_resnet_paths(UpperCamelCase__ ) _UpperCAmelCase : int = {'''old''': F'output_blocks.{i}.0', '''new''': F'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _UpperCAmelCase : int = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) _UpperCAmelCase : Union[str, Any] = checkpoint[ F'output_blocks.{i}.{index}.conv.weight' ] _UpperCAmelCase : Any = checkpoint[ F'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(UpperCamelCase__ ) == 2: _UpperCAmelCase : Any = [] if len(UpperCamelCase__ ): _UpperCAmelCase : List[str] = renew_attention_paths(UpperCamelCase__ ) _UpperCAmelCase : List[str] = { '''old''': F'output_blocks.{i}.1', '''new''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}', } _UpperCAmelCase : str = { F'output_blocks.{i}.1.qkv.bias': { '''key''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', '''query''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', '''value''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, F'output_blocks.{i}.1.qkv.weight': { '''key''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', '''query''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', '''value''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=UpperCamelCase__ , ) else: _UpperCAmelCase : Union[str, Any] = renew_resnet_paths(UpperCamelCase__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _UpperCAmelCase : Optional[Any] = '''.'''.join(['''output_blocks''', str(UpperCamelCase__ ), path['''old''']] ) _UpperCAmelCase : int = '''.'''.join(['''up_blocks''', str(UpperCamelCase__ ), '''resnets''', str(UpperCamelCase__ ), path['''new''']] ) _UpperCAmelCase : List[Any] = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowerCAmelCase :List[Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') _lowerCAmelCase :Optional[Any] = parser.parse_args() _lowerCAmelCase :Any = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowerCAmelCase :Optional[int] = json.loads(f.read()) _lowerCAmelCase :str = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowerCAmelCase :Tuple = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowerCAmelCase :Tuple = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) _lowerCAmelCase :int = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) _lowerCAmelCase :Optional[int] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
506
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _lowerCAmelCase :Tuple = logging.get_logger(__name__) _lowerCAmelCase :Union[str, Any] = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''dpt''' def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1E-12 , A=3_8_4 , A=1_6 , A=3 , A=False , A=True , A=[2, 5, 8, 1_1] , A="project" , A=[4, 2, 1, 0.5] , A=[9_6, 1_9_2, 3_8_4, 7_6_8] , A=2_5_6 , A=-1 , A=False , A=True , A=0.4 , A=2_5_5 , A=0.1 , A=[1, 1_0_2_4, 2_4, 2_4] , A=[0, 1] , A=None , **A , ) -> int: super().__init__(**A ) _UpperCAmelCase : Union[str, Any] = hidden_size _UpperCAmelCase : Union[str, Any] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) _UpperCAmelCase : List[Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } _UpperCAmelCase : int = BitConfig(**A ) elif isinstance(A , A ): logger.info('''Initializing the config with a `BiT` backbone.''' ) _UpperCAmelCase : Union[str, Any] = BitConfig(**A ) elif isinstance(A , A ): _UpperCAmelCase : Tuple = backbone_config else: raise ValueError( f'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) _UpperCAmelCase : int = backbone_featmap_shape _UpperCAmelCase : Dict = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: _UpperCAmelCase : Tuple = None _UpperCAmelCase : Any = None _UpperCAmelCase : Any = [] _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Any = num_attention_heads _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : int = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : int = patch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Tuple = qkv_bias _UpperCAmelCase : str = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) _UpperCAmelCase : List[Any] = readout_type _UpperCAmelCase : int = reassemble_factors _UpperCAmelCase : int = neck_hidden_sizes _UpperCAmelCase : Tuple = fusion_hidden_size _UpperCAmelCase : Any = head_in_index _UpperCAmelCase : Optional[int] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _UpperCAmelCase : List[str] = use_auxiliary_head _UpperCAmelCase : int = auxiliary_loss_weight _UpperCAmelCase : Any = semantic_loss_ignore_index _UpperCAmelCase : List[Any] = semantic_classifier_dropout def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : Optional[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _UpperCAmelCase : Any = self.backbone_config.to_dict() _UpperCAmelCase : List[str] = self.__class__.model_type return output
506
1
from numpy import exp, pi, sqrt def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ = 0.0 , snake_case__ = 1.0 ) -> int: return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
142
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ ) -> Optional[int]: assert isinstance(snake_case__ , snake_case__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ ) -> str: __UpperCAmelCase =tmp_path / '''cache''' __UpperCAmelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase =JsonDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_json_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: __UpperCAmelCase =tmp_path / '''cache''' __UpperCAmelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase =features.copy() if features else default_expected_features __UpperCAmelCase =( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase =JsonDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read() _check_json_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: __UpperCAmelCase =tmp_path / '''cache''' __UpperCAmelCase ={'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __UpperCAmelCase =features.copy() if features else default_expected_features __UpperCAmelCase =( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase =JsonDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read() assert isinstance(snake_case__ , snake_case__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ ) -> Optional[Any]: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} __UpperCAmelCase ={'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __UpperCAmelCase =features.copy() __UpperCAmelCase =( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase =tmp_path / '''cache''' __UpperCAmelCase =JsonDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read() assert isinstance(snake_case__ , snake_case__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ ) -> Dict: __UpperCAmelCase =tmp_path / '''cache''' __UpperCAmelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase =JsonDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read() _check_json_dataset(snake_case__ , snake_case__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]: if issubclass(snake_case__ , snake_case__ ): __UpperCAmelCase =jsonl_path elif issubclass(snake_case__ , snake_case__ ): __UpperCAmelCase =[jsonl_path] __UpperCAmelCase =tmp_path / '''cache''' __UpperCAmelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase =JsonDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_json_dataset(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__=("train",) ) -> Dict: assert isinstance(snake_case__ , snake_case__ ) for split in splits: __UpperCAmelCase =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ ) -> Any: __UpperCAmelCase =tmp_path / '''cache''' __UpperCAmelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase =JsonDatasetReader({'''train''': jsonl_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_json_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]: __UpperCAmelCase =tmp_path / '''cache''' __UpperCAmelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase =features.copy() if features else default_expected_features __UpperCAmelCase =( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase =JsonDatasetReader({'''train''': jsonl_path} , features=snake_case__ , cache_dir=snake_case__ ).read() _check_json_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]: if split: __UpperCAmelCase ={split: jsonl_path} else: __UpperCAmelCase ='''train''' __UpperCAmelCase ={'''train''': jsonl_path, '''test''': jsonl_path} __UpperCAmelCase =tmp_path / '''cache''' __UpperCAmelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase =JsonDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_json_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def SCREAMING_SNAKE_CASE ( snake_case__ ) -> int: return json.load(snake_case__ ) def SCREAMING_SNAKE_CASE ( snake_case__ ) -> Union[str, Any]: return [json.loads(snake_case__ ) for line in buffer] class _SCREAMING_SNAKE_CASE : @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)]) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCAmelCase , UpperCAmelCase , lines=UpperCAmelCase).write() buffer.seek(0) __UpperCAmelCase =load_json_function(UpperCAmelCase) assert isinstance(UpperCAmelCase , UpperCAmelCase) assert isinstance(exported_content[0] , UpperCAmelCase) assert len(UpperCAmelCase) == 1_0 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789'''), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCAmelCase , UpperCAmelCase , lines=UpperCAmelCase , orient=UpperCAmelCase).write() buffer.seek(0) __UpperCAmelCase =load_json(UpperCAmelCase) assert isinstance(UpperCAmelCase , UpperCAmelCase) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCAmelCase , '''keys''') and not hasattr(exported_content[0] , '''keys''') if len_at: assert len(exported_content[len_at]) == 1_0 else: assert len(UpperCAmelCase) == 1_0 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)]) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCAmelCase , UpperCAmelCase , lines=UpperCAmelCase , num_proc=2).write() buffer.seek(0) __UpperCAmelCase =load_json_function(UpperCAmelCase) assert isinstance(UpperCAmelCase , UpperCAmelCase) assert isinstance(exported_content[0] , UpperCAmelCase) assert len(UpperCAmelCase) == 1_0 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789'''), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCAmelCase , UpperCAmelCase , lines=UpperCAmelCase , orient=UpperCAmelCase , num_proc=2).write() buffer.seek(0) __UpperCAmelCase =load_json(UpperCAmelCase) assert isinstance(UpperCAmelCase , UpperCAmelCase) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCAmelCase , '''keys''') and not hasattr(exported_content[0] , '''keys''') if len_at: assert len(exported_content[len_at]) == 1_0 else: assert len(UpperCAmelCase) == 1_0 def A__ (self , UpperCAmelCase): '''simple docstring''' with pytest.raises(UpperCAmelCase): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCAmelCase , UpperCAmelCase , num_proc=0) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')]) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =tmp_path_factory.mktemp('''data''') / f"""test.json.{extension}""" __UpperCAmelCase =str(shared_datadir / f"""test_file.json.{extension}""") JsonDatasetWriter(UpperCAmelCase , UpperCAmelCase , compression=UpperCAmelCase).write() with fsspec.open(UpperCAmelCase , '''rb''' , compression='''infer''') as f: __UpperCAmelCase =f.read() with fsspec.open(UpperCAmelCase , '''rb''' , compression='''infer''') as f: __UpperCAmelCase =f.read() assert exported_content == original_content
142
1
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase_ ( _UpperCAmelCase :Union[str, Any] , _UpperCAmelCase :Dict , _UpperCAmelCase :Any , _UpperCAmelCase :Dict , _UpperCAmelCase :int ) -> List[str]: '''simple docstring''' with open(_lowercase ) as metadata_file: A_ = json.load(_lowercase ) A_ = LukeConfig(use_entity_aware_attention=_lowercase , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path A_ = torch.load(_lowercase , map_location='''cpu''' ) # Load the entity vocab file A_ = load_entity_vocab(_lowercase ) A_ = RobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken('''<ent>''' , lstrip=_lowercase , rstrip=_lowercase ) A_ = AddedToken('''<ent2>''' , lstrip=_lowercase , rstrip=_lowercase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_lowercase ) with open(os.path.join(_lowercase , LukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_lowercase , _lowercase ) A_ = LukeTokenizer.from_pretrained(_lowercase ) # Initialize the embeddings of the special tokens A_ = state_dict['embeddings.word_embeddings.weight'] A_ = word_emb[tokenizer.convert_tokens_to_ids(['''@'''] )[0]].unsqueeze(0 ) A_ = word_emb[tokenizer.convert_tokens_to_ids(['''#'''] )[0]].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = f'encoder.layer.{layer_index}.attention.self.' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict['entity_embeddings.entity_embeddings.weight'] A_ = entity_emb[entity_vocab['[MASK]']] A_ = LukeModel(config=_lowercase ).eval() A_ = model.load_state_dict(_lowercase , strict=_lowercase ) if not (len(_lowercase ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f'Missing keys {", ".join(_lowercase )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith('''entity_predictions''' ) or key.startswith('''lm_head''' ) for key in unexpected_keys )): raise ValueError( '''Unexpected keys''' f' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs A_ = LukeTokenizer.from_pretrained(_lowercase , task='''entity_classification''' ) A_ = ( 'Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the' ' new world number one avoid a humiliating second- round exit at Wimbledon .' ) A_ = (39, 42) A_ = tokenizer(_lowercase , entity_spans=[span] , add_prefix_space=_lowercase , return_tensors='''pt''' ) A_ = model(**_lowercase ) # Verify word hidden states if model_size == "large": A_ = torch.Size((1, 42, 1024) ) A_ = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base A_ = torch.Size((1, 42, 768) ) A_ = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowercase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": A_ = torch.Size((1, 1, 1024) ) A_ = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base A_ = torch.Size((1, 1, 768) ) A_ = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _lowercase , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_lowercase ) ) model.save_pretrained(_lowercase ) def UpperCAmelCase_ ( _UpperCAmelCase :Union[str, Any] ) -> List[str]: '''simple docstring''' A_ = {} with open(_lowercase , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(_lowercase ): A_ = line.rstrip().split('''\t''' ) A_ = index return entity_vocab if __name__ == "__main__": a__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) a__ : Optional[int] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
188
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( _lowercase : list[float] , _lowercase : Tuple ) -> int: '''simple docstring''' print(f"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(_lowercase ): print(f"""{i}\t\t{d}""" ) def SCREAMING_SNAKE_CASE__ ( _lowercase : list[dict[str, int]] , _lowercase : list[float] , _lowercase : int ) -> Any: '''simple docstring''' for j in range(_lowercase ): lowercase__ , lowercase__ , lowercase__ : Dict = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: return True return False def SCREAMING_SNAKE_CASE__ ( _lowercase : list[dict[str, int]] , _lowercase : int , _lowercase : int , _lowercase : int ) -> list[float]: '''simple docstring''' lowercase__ : Dict = [float('inf' )] * vertex_count lowercase__ : Dict = 0.0 for _ in range(vertex_count - 1 ): for j in range(_lowercase ): lowercase__ , lowercase__ , lowercase__ : int = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: lowercase__ : str = distance[u] + w lowercase__ : str = check_negative_cycle(_lowercase , _lowercase , _lowercase ) if negative_cycle_exists: raise Exception('Negative cycle found' ) return distance if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase: Optional[int] = int(input("""Enter number of vertices: """).strip()) __UpperCamelCase: Union[str, Any] = int(input("""Enter number of edges: """).strip()) __UpperCamelCase: list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print("""Edge """, i + 1) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase: List[str] = ( int(x) for x in input("""Enter source, destination, weight: """).strip().split(""" """) ) __UpperCamelCase: List[Any] = {"""src""": src, """dst""": dest, """weight""": weight} __UpperCamelCase: Optional[int] = int(input("""\nEnter shortest path source:""").strip()) __UpperCamelCase: Dict = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
266
0
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
52
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase ) -> YolosConfig: A__ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: A__ = 192 A__ = 768 A__ = 12 A__ = 3 A__ = [800, 1_333] A__ = False elif yolos_name == "yolos_s_dWr": A__ = 330 A__ = 14 A__ = 6 A__ = 1_320 elif "yolos_s" in yolos_name: A__ = 384 A__ = 1_536 A__ = 12 A__ = 6 elif "yolos_b" in yolos_name: A__ = [800, 1_344] A__ = 91 A__ = 'huggingface/label-files' A__ = 'coco-detection-id2label.json' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} return config def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = False ) -> str: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) A__ = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[: config.hidden_size, :] A__ = in_proj_bias[: config.hidden_size] A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ = in_proj_weight[-config.hidden_size :, :] A__ = in_proj_bias[-config.hidden_size :] def A ( __UpperCamelCase ) -> str: if "backbone" in name: A__ = name.replace('backbone' , 'vit' ) if "cls_token" in name: A__ = name.replace('cls_token' , 'embeddings.cls_token' ) if "det_token" in name: A__ = name.replace('det_token' , 'embeddings.detection_tokens' ) if "mid_pos_embed" in name: A__ = name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' ) if "pos_embed" in name: A__ = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: A__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "blocks" in name: A__ = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: A__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: A__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A__ = name.replace('mlp.fc2' , 'output.dense' ) if "class_embed" in name: A__ = name.replace('class_embed' , 'class_labels_classifier' ) if "bbox_embed" in name: A__ = name.replace('bbox_embed' , 'bbox_predictor' ) if "vit.norm" in name: A__ = name.replace('vit.norm' , 'vit.layernorm' ) return name def A ( __UpperCamelCase , __UpperCamelCase ) -> dict: for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(__UpperCamelCase ) if "qkv" in key: A__ = key.split('.' ) A__ = int(key_split[2] ) A__ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: A__ = val[:dim, :] A__ = val[ dim : dim * 2, : ] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = val return orig_state_dict def A ( ) -> torch.Tensor: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = False ) -> List[str]: A__ = get_yolos_config(__UpperCamelCase ) # load original state_dict A__ = torch.load(__UpperCamelCase , map_location='cpu' )['model'] # load 🤗 model A__ = YolosForObjectDetection(__UpperCamelCase ) model.eval() A__ = convert_state_dict(__UpperCamelCase , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by YolosImageProcessor A__ = 800 if yolos_name != 'yolos_ti' else 512 A__ = YolosImageProcessor(format='coco_detection' , size=__UpperCamelCase ) A__ = image_processor(images=prepare_img() , return_tensors='pt' ) A__ = model(**__UpperCamelCase ) A__ , A__ = outputs.logits, outputs.pred_boxes A__ , A__ = None, None if yolos_name == "yolos_ti": A__ = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) A__ = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": A__ = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) A__ = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": A__ = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) A__ = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": A__ = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) A__ = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": A__ = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) A__ = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , __UpperCamelCase , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __UpperCamelCase , atol=1E-4 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: A__ = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('Pushing to the hub...' ) A__ = model_mapping[yolos_name] image_processor.push_to_hub(__UpperCamelCase , organization='hustvl' ) model.push_to_hub(__UpperCamelCase , organization='hustvl' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
52
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def lowercase__ ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase =ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=A_ ) __UpperCAmelCase =parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=A_ ) env_command_parser(subparsers=A_ ) launch_command_parser(subparsers=A_ ) tpu_command_parser(subparsers=A_ ) test_command_parser(subparsers=A_ ) # Let's go __UpperCAmelCase =parser.parse_args() if not hasattr(A_ , """func""" ): parser.print_help() exit(1 ) # Run args.func(A_ ) if __name__ == "__main__": main()
68
import random def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ) -> dict: _lowercase : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE ) return graph def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> dict: return { i: [j for j in range(SCREAMING_SNAKE_CASE ) if i != j] for i in range(SCREAMING_SNAKE_CASE ) } if __name__ == "__main__": import doctest doctest.testmod()
66
0
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _UpperCAmelCase : Tuple = TypeVar("T") class lowercase ( Generic[T] ): def __init__( self , A_ ) -> Any: """simple docstring""" UpperCamelCase = data UpperCamelCase = None def __str__( self ) -> str: """simple docstring""" return F'''{self.data}''' class lowercase ( Generic[T] ): def __init__( self ) -> None: """simple docstring""" UpperCamelCase = None def __iter__( self ) -> Iterator[T]: """simple docstring""" UpperCamelCase = self.top while node: yield node.data UpperCamelCase = node.next def __str__( self ) -> str: """simple docstring""" return "->".join([str(_a ) for item in self] ) def __len__( self ) -> int: """simple docstring""" return len(tuple(iter(self ) ) ) def __UpperCamelCase ( self ) -> bool: """simple docstring""" return self.top is None def __UpperCamelCase ( self , A_ ) -> None: """simple docstring""" UpperCamelCase = Node(_a ) if not self.is_empty(): UpperCamelCase = self.top UpperCamelCase = node def __UpperCamelCase ( self ) -> T: """simple docstring""" if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _a ) UpperCamelCase = self.top UpperCamelCase = self.top.next return pop_node.data def __UpperCamelCase ( self ) -> T: """simple docstring""" if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def __UpperCamelCase ( self ) -> None: """simple docstring""" UpperCamelCase = None if __name__ == "__main__": from doctest import testmod testmod()
709
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def A ( lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def A ( lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = features.copy() if features else default_expected_features UpperCamelCase = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def A ( lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if issubclass(lowercase , lowercase ): UpperCamelCase = parquet_path elif issubclass(lowercase , lowercase ): UpperCamelCase = [parquet_path] UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) def A ( lowercase , lowercase , lowercase=("train",) ) -> Tuple: '''simple docstring''' assert isinstance(lowercase , lowercase ) for split in splits: UpperCamelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def A ( lowercase , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase = ParquetDatasetReader( {'train': parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def A ( lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = features.copy() if features else default_expected_features UpperCamelCase = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase = ParquetDatasetReader({'train': parquet_path} , features=lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if split: UpperCamelCase = {split: parquet_path} else: UpperCamelCase = 'train' UpperCamelCase = {'train': parquet_path, 'test': parquet_path} UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A ( lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' ) assert writer.write() > 0 UpperCamelCase = pq.ParquetFile(tmp_path / 'foo.parquet' ) UpperCamelCase = pf.read() assert dataset.data.table == output_table def A ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = str(shared_datadir / 'test_image_rgb.jpg' ) UpperCamelCase = {'image': [image_path]} UpperCamelCase = Features({'image': Image()} ) UpperCamelCase = Dataset.from_dict(lowercase , features=lowercase ) UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' ) assert writer.write() > 0 UpperCamelCase = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) ) assert dataset.features == reloaded_dataset.features UpperCamelCase = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( 'feature, expected' , [ (Features({'foo': Value('int32' )} ), None), (Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def A ( lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' assert get_writer_batch_size(lowercase ) == expected
3
0
import torch def A__( ): if torch.cuda.is_available(): _snake_case : int = torch.cuda.device_count() else: _snake_case : Optional[int] = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
304
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ : List[str] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Union[str, Any] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowercase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
304
1
"""simple docstring""" import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Dict: _lowerCamelCase : Any = int(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = t // 3600, (t // 60) % 60, t % 60 return F'''{h}:{m:02d}:{s:02d}''' if h != 0 else F'''{m:02d}:{s:02d}''' def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=300 ) ->Any: # docstyle-ignore return F''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Dict: _lowerCamelCase : str = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: _lowerCamelCase : List[Any] = F'''{elt:.6f}''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else str(SCREAMING_SNAKE_CASE_ ) html_code += F''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _UpperCAmelCase : """simple docstring""" __snake_case = 5 __snake_case = 0.2 def __init__( self , _lowercase , _lowercase = None , _lowercase = True , _lowercase = None , _lowercase = 300 , ) -> List[str]: _lowerCamelCase : Union[str, Any] = total _lowerCamelCase : List[str] = '''''' if prefix is None else prefix _lowerCamelCase : Optional[int] = leave _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Optional[Any] = width _lowerCamelCase : Any = None _lowerCamelCase : List[Any] = None _lowerCamelCase : int = None def a__ ( self , _lowercase , _lowercase = False , _lowercase = None ) -> List[str]: _lowerCamelCase : List[Any] = value if comment is not None: _lowerCamelCase : Dict = comment if self.last_value is None: _lowerCamelCase : List[str] = time.time() _lowerCamelCase : Union[str, Any] = value _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Optional[int] = self.warmup _lowerCamelCase : Dict = 1 self.update_bar(_lowercase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 _lowerCamelCase : List[str] = time.time() _lowerCamelCase : Union[str, Any] = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: _lowerCamelCase : int = self.elapsed_time / (value - self.start_value) else: _lowerCamelCase : Optional[Any] = None if value >= self.total: _lowerCamelCase : int = self.total _lowerCamelCase : Tuple = None if not self.leave: self.close() elif self.average_time_per_item is not None: _lowerCamelCase : str = self.average_time_per_item * (self.total - value) self.update_bar(_lowercase ) _lowerCamelCase : List[str] = value _lowerCamelCase : Union[str, Any] = current_time if self.average_time_per_item is None: _lowerCamelCase : List[str] = 1 else: _lowerCamelCase : List[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def a__ ( self , _lowercase , _lowercase=None ) -> Optional[int]: _lowerCamelCase : Optional[Any] = ''' ''' * (len(str(self.total ) ) - len(str(_lowercase ) )) + str(_lowercase ) if self.elapsed_time is None: _lowerCamelCase : Optional[Any] = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: _lowerCamelCase : Union[str, Any] = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: _lowerCamelCase : str = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def a__ ( self ) -> Dict: _lowerCamelCase : List[Any] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: _lowerCamelCase : List[str] = disp.display(disp.HTML(self.html_code ) , display_id=_lowercase ) else: self.output.update(disp.HTML(self.html_code ) ) def a__ ( self ) -> Union[str, Any]: if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class _UpperCAmelCase ( a_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase=None ) -> str: super().__init__(_lowercase ) _lowerCamelCase : List[Any] = None if column_names is None else [column_names] _lowerCamelCase : int = None def a__ ( self ) -> List[Any]: _lowerCamelCase : Dict = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: _lowerCamelCase : List[Any] = disp.display(disp.HTML(self.html_code ) , display_id=_lowercase ) else: self.output.update(disp.HTML(self.html_code ) ) def a__ ( self , _lowercase ) -> str: if self.inner_table is None: _lowerCamelCase : List[Any] = [list(values.keys() ), list(values.values() )] else: _lowerCamelCase : Union[str, Any] = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(_lowercase ) _lowerCamelCase : List[str] = columns self.inner_table.append([values[c] for c in columns] ) def a__ ( self , _lowercase , _lowercase=None , _lowercase=300 ) -> Optional[int]: _lowerCamelCase : Tuple = NotebookProgressBar(_lowercase , prefix=_lowercase , parent=self , width=_lowercase ) return self.child_bar def a__ ( self ) -> Optional[int]: _lowerCamelCase : Union[str, Any] = None self.display() class _UpperCAmelCase ( a_ ): """simple docstring""" def __init__( self ) -> Optional[int]: _lowerCamelCase : Any = None _lowerCamelCase : List[Any] = None _lowerCamelCase : List[Any] = False def a__ ( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> List[str]: _lowerCamelCase : List[Any] = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' _lowerCamelCase : Any = 0 _lowerCamelCase : str = 0 _lowerCamelCase : Any = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) _lowerCamelCase : str = NotebookTrainingTracker(state.max_steps , _lowercase ) def a__ ( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> List[str]: _lowerCamelCase : Optional[int] = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) _lowerCamelCase : int = False def a__ ( self , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ) -> List[str]: if not has_length(_lowercase ): return if self.prediction_bar is None: if self.training_tracker is not None: _lowerCamelCase : Dict = self.training_tracker.add_child(len(_lowercase ) ) else: _lowerCamelCase : Union[str, Any] = NotebookProgressBar(len(_lowercase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def a__ ( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> str: if self.prediction_bar is not None: self.prediction_bar.close() _lowerCamelCase : List[str] = None def a__ ( self , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ) -> List[str]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: _lowerCamelCase : int = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy _lowerCamelCase : Optional[Any] = state.global_step self.training_tracker.write_line(_lowercase ) def a__ ( self , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ) -> Any: if self.training_tracker is not None: _lowerCamelCase : Tuple = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: _lowerCamelCase : List[str] = log['''loss'''] break if self.first_column == "Epoch": _lowerCamelCase : Optional[int] = int(state.epoch ) else: _lowerCamelCase : Dict = state.global_step _lowerCamelCase : Tuple = '''eval''' for k in metrics: if k.endswith('''_loss''' ): _lowerCamelCase : List[Any] = re.sub(R'''\_loss$''' , '''''' , _lowercase ) _lowerCamelCase : str = metrics.pop('''total_flos''' , _lowercase ) _lowerCamelCase : Tuple = metrics.pop('''epoch''' , _lowercase ) _lowerCamelCase : List[str] = metrics.pop(F'''{metric_key_prefix}_runtime''' , _lowercase ) _lowerCamelCase : Dict = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , _lowercase ) _lowerCamelCase : Dict = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , _lowercase ) _lowerCamelCase : Tuple = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , _lowercase ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': _lowerCamelCase : Optional[Any] = v else: _lowerCamelCase : List[Any] = k.split('''_''' ) _lowerCamelCase : Any = ''' '''.join([part.capitalize() for part in splits[1:]] ) _lowerCamelCase : Tuple = v self.training_tracker.write_line(_lowercase ) self.training_tracker.remove_child() _lowerCamelCase : Union[str, Any] = None # Evaluation takes a long time so we should force the next update. _lowerCamelCase : List[str] = True def a__ ( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> Dict: self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=_lowercase ) _lowerCamelCase : List[Any] = None
558
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( a_ , unittest.TestCase ): """simple docstring""" __snake_case = CLIPTokenizer __snake_case = CLIPTokenizerFast __snake_case = True __snake_case = {} __snake_case = False def a__ ( self ) -> Tuple: super().setUp() # fmt: off _lowerCamelCase : List[str] = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on _lowerCamelCase : Any = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) _lowerCamelCase : Union[str, Any] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] _lowerCamelCase : List[Any] = {'''unk_token''': '''<unk>'''} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowercase ) ) def a__ ( self , **_lowercase ) -> List[str]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def a__ ( self , **_lowercase ) -> Dict: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def a__ ( self , _lowercase ) -> Any: _lowerCamelCase : Any = '''lower newer''' _lowerCamelCase : Any = '''lower newer''' return input_text, output_text def a__ ( self ) -> Tuple: _lowerCamelCase : Dict = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : Union[str, Any] = '''lower newer''' _lowerCamelCase : Optional[int] = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] _lowerCamelCase : str = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) _lowerCamelCase : Any = tokens + [tokenizer.unk_token] _lowerCamelCase : Union[str, Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) @require_ftfy def a__ ( self ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : List[Any] = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) _lowerCamelCase : Any = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' _lowerCamelCase : Tuple = tokenizer_s.tokenize(_lowercase ) _lowerCamelCase : Union[str, Any] = tokenizer_r.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _lowerCamelCase : Any = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' _lowerCamelCase : Tuple = tokenizer_s.tokenize(_lowercase ) _lowerCamelCase : Optional[Any] = tokenizer_r.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) # Test that the tokenization is identical on unicode of space type _lowerCamelCase : Optional[int] = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _lowerCamelCase : Optional[int] = tokenizer_s.tokenize(_lowercase ) _lowerCamelCase : Any = tokenizer_r.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) # Test that the tokenization is identical on unicode of line break type _lowerCamelCase : Union[str, Any] = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _lowerCamelCase : Dict = tokenizer_s.tokenize(_lowercase ) _lowerCamelCase : str = tokenizer_r.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def a__ ( self ) -> str: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : int = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` _lowerCamelCase : List[Any] = F'''{text_of_1_token} {text_of_1_token}''' _lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , ) _lowerCamelCase : List[str] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowercase ) + 1, len(_lowercase ) + 1 + len(_lowercase )) , ) _lowerCamelCase : str = F''' {text}''' _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , ) _lowerCamelCase : List[Any] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowercase ) + 1, 1 + len(_lowercase ) + 1 + len(_lowercase )) , ) def a__ ( self ) -> Optional[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_lowercase ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def a__ ( self ) -> Tuple: super().test_tokenization_python_rust_equals() def a__ ( self ) -> Tuple: # CLIP always lower cases letters pass
558
1
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor UpperCamelCase__ = logging.get_logger(__name__) class UpperCAmelCase__ ( A_ ): '''simple docstring''' def __init__( self : int , *UpperCamelCase : Optional[Any] , **UpperCamelCase : int ): """simple docstring""" warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
322
import os UpperCamelCase__ = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1_000} def UpperCamelCase__ ( UpperCAmelCase_ ) -> int: '''simple docstring''' _lowercase : Optional[int] = 0 _lowercase : Dict = 0 while index < len(UpperCAmelCase_ ) - 1: _lowercase : Any = SYMBOLS[numerals[index]] _lowercase : List[Any] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCamelCase__ ( UpperCAmelCase_ ) -> str: '''simple docstring''' _lowercase : List[str] = '''''' _lowercase : Union[str, Any] = num // 1000 numerals += m_count * "M" num %= 1000 _lowercase : Tuple = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _lowercase : int = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCamelCase__ ( UpperCAmelCase_ = "/p089_roman.txt" ) -> int: '''simple docstring''' _lowercase : List[str] = 0 with open(os.path.dirname(UpperCAmelCase_ ) + roman_numerals_filename ) as filea: _lowercase : Optional[Any] = filea.readlines() for line in lines: _lowercase : int = line.strip() _lowercase : Dict = parse_roman_numerals(UpperCAmelCase_ ) _lowercase : Optional[Any] = generate_roman_numerals(UpperCAmelCase_ ) savings += len(UpperCAmelCase_ ) - len(UpperCAmelCase_ ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
322
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : int = logging.get_logger(__name__) a_ : str = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _lowerCamelCase ( UpperCamelCase_ ): __a = "mgp-str" def __init__( self , lowerCAmelCase=[32, 128] , lowerCAmelCase=4 , lowerCAmelCase=3 , lowerCAmelCase=27 , lowerCAmelCase=38 , lowerCAmelCase=50257 , lowerCAmelCase=30522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=4.0 , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=1e-5 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=False , lowerCAmelCase=0.02 , **lowerCAmelCase , ) -> List[Any]: super().__init__(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= image_size SCREAMING_SNAKE_CASE__: str= patch_size SCREAMING_SNAKE_CASE__: str= num_channels SCREAMING_SNAKE_CASE__: Any= max_token_length SCREAMING_SNAKE_CASE__: List[str]= num_character_labels SCREAMING_SNAKE_CASE__: str= num_bpe_labels SCREAMING_SNAKE_CASE__: List[Any]= num_wordpiece_labels SCREAMING_SNAKE_CASE__: int= hidden_size SCREAMING_SNAKE_CASE__: Union[str, Any]= num_hidden_layers SCREAMING_SNAKE_CASE__: Dict= num_attention_heads SCREAMING_SNAKE_CASE__: Optional[Any]= mlp_ratio SCREAMING_SNAKE_CASE__: Any= distilled SCREAMING_SNAKE_CASE__: Optional[Any]= layer_norm_eps SCREAMING_SNAKE_CASE__: Tuple= drop_rate SCREAMING_SNAKE_CASE__: Optional[Any]= qkv_bias SCREAMING_SNAKE_CASE__: List[Any]= attn_drop_rate SCREAMING_SNAKE_CASE__: Dict= drop_path_rate SCREAMING_SNAKE_CASE__: Tuple= output_aa_attentions SCREAMING_SNAKE_CASE__: Union[str, Any]= initializer_range
704
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowercase_ : Any = random.Random() def A__ ( snake_case_ : int , snake_case_ : Tuple=1.0 , snake_case_ : Optional[Any]=None , snake_case_ : List[Any]=None ): if rng is None: SCREAMING_SNAKE_CASE__: Tuple= global_rng SCREAMING_SNAKE_CASE__: List[str]= [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _lowerCamelCase ( unittest.TestCase ): def __init__( self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=400 , lowerCAmelCase=2000 , lowerCAmelCase=10 , lowerCAmelCase=160 , lowerCAmelCase=8 , lowerCAmelCase=0.0 , lowerCAmelCase=4000 , lowerCAmelCase=False , lowerCAmelCase=True , ) -> Tuple: SCREAMING_SNAKE_CASE__: Any= parent SCREAMING_SNAKE_CASE__: Dict= batch_size SCREAMING_SNAKE_CASE__: List[Any]= min_seq_length SCREAMING_SNAKE_CASE__: Tuple= max_seq_length SCREAMING_SNAKE_CASE__: Optional[int]= (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE__: str= padding_value SCREAMING_SNAKE_CASE__: Union[str, Any]= sampling_rate SCREAMING_SNAKE_CASE__: List[str]= return_attention_mask SCREAMING_SNAKE_CASE__: Union[str, Any]= do_normalize SCREAMING_SNAKE_CASE__: Optional[int]= feature_size SCREAMING_SNAKE_CASE__: Union[str, Any]= chunk_length SCREAMING_SNAKE_CASE__: List[Any]= hop_length def UpperCamelCase_ ( self ) -> str: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase_ ( self , lowerCAmelCase=False , lowerCAmelCase=False ) -> Optional[Any]: def _flatten(lowerCAmelCase ): return list(itertools.chain(*lowerCAmelCase ) ) if equal_length: SCREAMING_SNAKE_CASE__: Dict= [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE__: Union[str, Any]= [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE__: str= [np.asarray(lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowerCamelCase ( UpperCamelCase_ , unittest.TestCase ): __a = WhisperFeatureExtractor if is_speech_available() else None def UpperCamelCase_ ( self ) -> Dict: SCREAMING_SNAKE_CASE__: Any= WhisperFeatureExtractionTester(self ) def UpperCamelCase_ ( self ) -> int: SCREAMING_SNAKE_CASE__: List[str]= self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__: List[str]= feat_extract_first.save_pretrained(lowerCAmelCase )[0] check_json_file_has_correct_format(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= self.feature_extraction_class.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= feat_extract_first.to_dict() SCREAMING_SNAKE_CASE__: Union[str, Any]= feat_extract_second.to_dict() SCREAMING_SNAKE_CASE__: int= feat_extract_first.mel_filters SCREAMING_SNAKE_CASE__: Any= feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: List[Any]= self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__: List[str]= os.path.join(lowerCAmelCase , '''feat_extract.json''' ) feat_extract_first.to_json_file(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= self.feature_extraction_class.from_json_file(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= feat_extract_first.to_dict() SCREAMING_SNAKE_CASE__: Union[str, Any]= feat_extract_second.to_dict() SCREAMING_SNAKE_CASE__: List[str]= feat_extract_first.mel_filters SCREAMING_SNAKE_CASE__: Optional[int]= feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def UpperCamelCase_ ( self ) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE__: Union[str, Any]= self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE__: str= [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE__: Tuple= [np.asarray(lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE__: Optional[Any]= feature_extractor(lowerCAmelCase , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input SCREAMING_SNAKE_CASE__: List[str]= feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features SCREAMING_SNAKE_CASE__: Union[str, Any]= feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-3 ) ) # Test batched SCREAMING_SNAKE_CASE__: Optional[int]= feature_extractor(lowerCAmelCase , return_tensors='''np''' ).input_features SCREAMING_SNAKE_CASE__: List[Any]= feature_extractor(lowerCAmelCase , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase , lowerCAmelCase ): self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE__: Optional[int]= [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE__: Any= np.asarray(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[str]= feature_extractor(lowerCAmelCase , return_tensors='''np''' ).input_features SCREAMING_SNAKE_CASE__: List[Any]= feature_extractor(lowerCAmelCase , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase , lowerCAmelCase ): self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-3 ) ) # Test truncation required SCREAMING_SNAKE_CASE__: str= [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] SCREAMING_SNAKE_CASE__: str= [np.asarray(lowerCAmelCase ) for speech_input in speech_inputs] SCREAMING_SNAKE_CASE__: str= [x[: feature_extractor.n_samples] for x in speech_inputs] SCREAMING_SNAKE_CASE__: int= [np.asarray(lowerCAmelCase ) for speech_input in speech_inputs_truncated] SCREAMING_SNAKE_CASE__: Dict= feature_extractor(lowerCAmelCase , return_tensors='''np''' ).input_features SCREAMING_SNAKE_CASE__: List[str]= feature_extractor(lowerCAmelCase , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase , lowerCAmelCase ): self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-3 ) ) def UpperCamelCase_ ( self ) -> Dict: import torch SCREAMING_SNAKE_CASE__: List[Any]= self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__: Dict= np.random.rand(100 , 32 ).astype(np.floataa ) SCREAMING_SNAKE_CASE__: Union[str, Any]= np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE__: Tuple= feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) SCREAMING_SNAKE_CASE__: Any= feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__: Union[str, Any]= load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE__: List[str]= ds.sort('''id''' ).select(range(lowerCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCamelCase_ ( self ) -> int: # fmt: off SCREAMING_SNAKE_CASE__: Dict= torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on SCREAMING_SNAKE_CASE__: str= self._load_datasamples(1 ) SCREAMING_SNAKE_CASE__: Dict= WhisperFeatureExtractor() SCREAMING_SNAKE_CASE__: Optional[int]= feature_extractor(lowerCAmelCase , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , lowerCAmelCase , atol=1e-4 ) ) def UpperCamelCase_ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: List[str]= self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__: Dict= self._load_datasamples(1 )[0] SCREAMING_SNAKE_CASE__: str= ((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue SCREAMING_SNAKE_CASE__: Optional[int]= feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowerCAmelCase )[0] self.assertTrue(np.all(np.mean(lowerCAmelCase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCAmelCase ) - 1 ) < 1e-3 ) )
107
0
import math def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = 0 _A = 0 while num > 0: _A = num % 8 _A = octal + (remainder * math.floor(math.pow(10 , _SCREAMING_SNAKE_CASE ) )) counter += 1 _A = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F"0o{int(_SCREAMING_SNAKE_CASE )}" def __lowerCAmelCase( ) -> None: """simple docstring""" print('\n2 in octal is:' ) print(decimal_to_octal(2 ) ) # = 2 print('\n8 in octal is:' ) print(decimal_to_octal(8 ) ) # = 10 print('\n65 in octal is:' ) print(decimal_to_octal(65 ) ) # = 101 print('\n216 in octal is:' ) print(decimal_to_octal(216 ) ) # = 330 print('\n512 in octal is:' ) print(decimal_to_octal(512 ) ) # = 1000 print('\n' ) if __name__ == "__main__": main()
27
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A : List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
27
1
import re from filelock import FileLock try: import nltk lowercase_ = True except (ImportError, ModuleNotFoundError): lowercase_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def lowerCAmelCase ( UpperCAmelCase ) ->str: """simple docstring""" re.sub('''<n>''', '''''', UpperCAmelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCAmelCase__ ) )
708
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase_ = 16 lowercase_ = 32 def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase = 16 ) ->Any: """simple docstring""" __magic_name__ : List[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __magic_name__ : Tuple = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) __magic_name__ : Any = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=UpperCAmelCase, max_length=UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __magic_name__ : Tuple = datasets.map( UpperCAmelCase, batched=UpperCAmelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __magic_name__ : str = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. __magic_name__ : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __magic_name__ : Any = 16 elif accelerator.mixed_precision != "no": __magic_name__ : Union[str, Any] = 8 else: __magic_name__ : Optional[Any] = None return tokenizer.pad( UpperCAmelCase, padding='''longest''', max_length=UpperCAmelCase, pad_to_multiple_of=UpperCAmelCase, return_tensors='''pt''', ) # Instantiate dataloaders. __magic_name__ : List[Any] = DataLoader( tokenized_datasets['''train'''], shuffle=UpperCAmelCase, collate_fn=UpperCAmelCase, batch_size=UpperCAmelCase, drop_last=UpperCAmelCase ) __magic_name__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''], shuffle=UpperCAmelCase, collate_fn=UpperCAmelCase, batch_size=UpperCAmelCase, drop_last=(accelerator.mixed_precision == '''fp8'''), ) return train_dataloader, eval_dataloader def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase ) ->Optional[Any]: """simple docstring""" __magic_name__ : Union[str, Any] = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __magic_name__ : int = config['''lr'''] __magic_name__ : Any = int(config['''num_epochs'''] ) __magic_name__ : List[str] = int(config['''seed'''] ) __magic_name__ : Optional[int] = int(config['''batch_size'''] ) __magic_name__ : Optional[Any] = evaluate.load('''glue''', '''mrpc''' ) # If the batch size is too big we use gradient accumulation __magic_name__ : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __magic_name__ : List[str] = batch_size // MAX_GPU_BATCH_SIZE __magic_name__ : str = MAX_GPU_BATCH_SIZE set_seed(UpperCAmelCase ) __magic_name__ , __magic_name__ : int = get_dataloaders(UpperCAmelCase, UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __magic_name__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __magic_name__ : Any = model.to(accelerator.device ) # Instantiate optimizer __magic_name__ : int = AdamW(params=model.parameters(), lr=UpperCAmelCase ) # Instantiate scheduler __magic_name__ : Tuple = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase, num_warmup_steps=100, num_training_steps=(len(UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] = accelerator.prepare( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) # Now we train the model for epoch in range(UpperCAmelCase ): model.train() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __magic_name__ : Dict = model(**UpperCAmelCase ) __magic_name__ : Tuple = outputs.loss __magic_name__ : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ : Dict = model(**UpperCAmelCase ) __magic_name__ : List[str] = outputs.logits.argmax(dim=-1 ) __magic_name__ , __magic_name__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=UpperCAmelCase, references=UpperCAmelCase, ) __magic_name__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''', UpperCAmelCase ) def lowerCAmelCase ( ) ->Optional[Any]: """simple docstring""" __magic_name__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=UpperCAmelCase, default=UpperCAmelCase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) __magic_name__ : Dict = parser.parse_args() __magic_name__ : int = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(UpperCAmelCase, UpperCAmelCase ) if __name__ == "__main__": main()
336
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> str: a_ : Optional[Any] = jnp.ones((batch_size, length) ) / length return scores def SCREAMING_SNAKE_CASE ( self : int ) -> int: a_ : List[str] = None a_ : Optional[Any] = 2_0 a_ : Dict = self._get_uniform_logits(batch_size=2 , length=SCREAMING_SNAKE_CASE__ ) # tweak scores to not be uniform anymore a_ : str = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch a_ : Any = scores.at[1, 1_0].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax a_ : Any = jax.nn.softmax(SCREAMING_SNAKE_CASE__ , axis=-1 ) a_ : int = FlaxTemperatureLogitsWarper(temperature=0.5 ) a_ : int = FlaxTemperatureLogitsWarper(temperature=1.3 ) a_ : Any = jax.nn.softmax(temp_dist_warper_sharper(SCREAMING_SNAKE_CASE__ , scores.copy() , cur_len=SCREAMING_SNAKE_CASE__ ) , axis=-1 ) a_ : Optional[int] = jax.nn.softmax(temp_dist_warper_smoother(SCREAMING_SNAKE_CASE__ , scores.copy() , cur_len=SCREAMING_SNAKE_CASE__ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : List[str] = None a_ : Optional[int] = 1_0 a_ : Optional[int] = 2 # create ramp distribution a_ : Dict = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE__ )[None, :] , (batch_size, vocab_size) ).copy() a_ : Union[str, Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size a_ : List[Any] = FlaxTopKLogitsWarper(3 ) a_ : Optional[Any] = top_k_warp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case a_ : Optional[Any] = 5 a_ : List[Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) a_ : str = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE__ )[None, :] , (batch_size, length) ).copy() a_ : List[Any] = top_k_warp_safety_check(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: a_ : List[str] = None a_ : Optional[Any] = 1_0 a_ : Any = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) a_ : Optional[int] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) a_ : Optional[Any] = FlaxTopPLogitsWarper(0.8 ) a_ : List[str] = np.exp(top_p_warp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 a_ : List[Any] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) ) # check edge cases with negative and extreme logits a_ : List[str] = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE__ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme a_ : str = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept a_ : Optional[Any] = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) a_ : int = top_p_warp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: a_ : Tuple = 2_0 a_ : Union[str, Any] = 4 a_ : Tuple = 0 a_ : Tuple = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=SCREAMING_SNAKE_CASE__ ) # check that min length is applied at length 5 a_ : Union[str, Any] = ids_tensor((batch_size, 2_0) , vocab_size=2_0 ) a_ : str = 5 a_ : int = self._get_uniform_logits(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = min_dist_processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 a_ : Tuple = self._get_uniform_logits(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : List[str] = 1_5 a_ : Dict = min_dist_processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE__ ).any() ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : List[str] = 2_0 a_ : Dict = 4 a_ : List[Any] = 0 a_ : Tuple = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE__ ) # check that all scores are -inf except the bos_token_id score a_ : Optional[Any] = ids_tensor((batch_size, 1) , vocab_size=2_0 ) a_ : str = 1 a_ : Optional[int] = self._get_uniform_logits(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : List[str] = logits_processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 a_ : str = 3 a_ : Any = self._get_uniform_logits(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : str = logits_processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE__ ).any() ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: a_ : Optional[Any] = 2_0 a_ : Tuple = 4 a_ : Any = 0 a_ : Any = 5 a_ : Any = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) # check that all scores are -inf except the eos_token_id when max_length is reached a_ : Optional[int] = ids_tensor((batch_size, 4) , vocab_size=2_0 ) a_ : Union[str, Any] = 4 a_ : str = self._get_uniform_logits(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = logits_processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached a_ : Union[str, Any] = 3 a_ : List[str] = self._get_uniform_logits(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : str = logits_processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE__ ).any() ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: a_ : Any = 4 a_ : int = 1_0 a_ : Any = 1_5 a_ : int = 2 a_ : List[str] = 1 a_ : Union[str, Any] = 1_5 # dummy input_ids and scores a_ : Optional[int] = ids_tensor((batch_size, sequence_length) , SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = input_ids.copy() a_ : str = self._get_uniform_logits(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = scores.copy() # instantiate all dist processors a_ : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) a_ : str = FlaxTopKLogitsWarper(3 ) a_ : Dict = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors a_ : Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=SCREAMING_SNAKE_CASE__ ) a_ : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = 1_0 # no processor list a_ : List[Any] = temp_dist_warp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = top_k_warp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = top_p_warp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = min_dist_proc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = bos_dist_proc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = eos_dist_proc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) # with processor list a_ : Any = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) a_ : Any = processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) # scores should be equal self.assertTrue(jnp.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : Dict = 4 a_ : Any = 1_0 a_ : Optional[Any] = 1_5 a_ : List[Any] = 2 a_ : Optional[int] = 1 a_ : List[Any] = 1_5 # dummy input_ids and scores a_ : List[Any] = ids_tensor((batch_size, sequence_length) , SCREAMING_SNAKE_CASE__ ) a_ : Dict = input_ids.copy() a_ : Union[str, Any] = self._get_uniform_logits(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : Any = scores.copy() # instantiate all dist processors a_ : Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5 ) a_ : Optional[Any] = FlaxTopKLogitsWarper(3 ) a_ : List[Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors a_ : Union[str, Any] = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = 1_0 # no processor list def run_no_processor_list(SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): a_ : Optional[int] = temp_dist_warp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) a_ : int = top_k_warp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = top_p_warp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = min_dist_proc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = bos_dist_proc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) a_ : int = eos_dist_proc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) return scores # with processor list def run_processor_list(SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] ): a_ : str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) a_ : List[Any] = processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cur_len=SCREAMING_SNAKE_CASE__ ) return scores a_ : Any = jax.jit(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = jax.jit(SCREAMING_SNAKE_CASE__ ) a_ : int = jitted_run_no_processor_list(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : int = jitted_run_processor_list(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # scores should be equal self.assertTrue(jnp.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
570
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = '▁' UpperCAmelCase_ : Optional[Any] = {'vocab_file': 'spiece.model'} UpperCAmelCase_ : Tuple = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } UpperCAmelCase_ : Tuple = { 'google/reformer-crime-and-punishment': 52_4288, } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : int = VOCAB_FILES_NAMES snake_case__ : str = PRETRAINED_VOCAB_FILES_MAP snake_case__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple="</s>" , SCREAMING_SNAKE_CASE__ : Tuple="<unk>" , SCREAMING_SNAKE_CASE__ : List[str]=[] , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : str , ) -> None: a_ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) a_ : Dict = vocab_file a_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict[str, int]: a_ : Union[str, Any] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> Optional[Any]: a_ : List[str] = self.__dict__.copy() a_ : Any = None return state def __setstate__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: a_ : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): a_ : List[Any] = {} a_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: if index < self.sp_model.get_piece_size(): a_ : List[str] = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) return token def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Dict: a_ : Dict = [] a_ : List[Any] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token a_ : int = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__ ) out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a_ : str = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: a_ : List[str] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
570
1
def _UpperCAmelCase (UpperCamelCase_ : list[int] ): '''simple docstring''' _lowerCAmelCase : Any = [] if len(UpperCamelCase_ ) == 1: return [nums.copy()] for _ in range(len(UpperCamelCase_ ) ): _lowerCAmelCase : Any = nums.pop(0 ) _lowerCAmelCase : Dict = permute(UpperCamelCase_ ) for perm in permutations: perm.append(UpperCamelCase_ ) result.extend(UpperCamelCase_ ) nums.append(UpperCamelCase_ ) return result def _UpperCAmelCase (UpperCamelCase_ : Tuple ): '''simple docstring''' def backtrack(UpperCamelCase_ : Union[str, Any] ): if start == len(UpperCamelCase_ ) - 1: output.append(nums[:] ) else: for i in range(UpperCamelCase_ , len(UpperCamelCase_ ) ): _lowerCAmelCase , _lowerCAmelCase : Dict = nums[i], nums[start] backtrack(start + 1 ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = nums[i], nums[start] # backtrack _lowerCAmelCase : Tuple = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function _lowerCamelCase : str = permutea([1, 2, 3]) print(res) doctest.testmod()
196
import comet # From: unbabel-comet import torch import datasets _lowerCamelCase : List[Any] = datasets.logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" _lowerCamelCase : Union[str, Any] = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" _lowerCamelCase : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case (datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://unbabel.github.io/COMET/html/index.html""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """sources""": datasets.Value("""string""" , id="""sequence""" ), """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/Unbabel/COMET"""] , reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] , ) def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' if self.config_name == "default": _lowerCAmelCase : Union[str, Any] = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""" ) ) else: _lowerCAmelCase : Dict = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=False ) -> int: '''simple docstring''' if gpus is None: _lowerCAmelCase : Tuple = 1 if torch.cuda.is_available() else 0 _lowerCAmelCase : Optional[int] = {"""src""": sources, """mt""": predictions, """ref""": references} _lowerCAmelCase : List[Any] = [dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) for t in zip(*data.values() )] _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.scorer.predict(_UpperCAmelCase , gpus=_UpperCAmelCase , progress_bar=_UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
196
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
179
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' __lowerCamelCase : Tuple =torch.exp(SCREAMING_SNAKE_CASE ) __lowerCamelCase : Dict =torch.sum(SCREAMING_SNAKE_CASE , dim=1 ) # sum of exp(x_i) __lowerCamelCase : Optional[int] =torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(SCREAMING_SNAKE_CASE ) - B / A class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" def __init__( self :List[str] , __lowercase :int ): super().__init__() __lowerCamelCase : str =config.output_attentions __lowerCamelCase : List[Any] =config.output_hidden_states __lowerCamelCase : Dict =nn.ModuleList([BertLayer(__lowercase ) for _ in range(config.num_hidden_layers )] ) __lowerCamelCase : str =nn.ModuleList([BertHighway(__lowercase ) for _ in range(config.num_hidden_layers )] ) __lowerCamelCase : Optional[Any] =[-1 for _ in range(config.num_hidden_layers )] def __lowercase ( self :Union[str, Any] , __lowercase :Union[str, Any] ): if (type(__lowercase ) is float) or (type(__lowercase ) is int): for i in range(len(self.early_exit_entropy ) ): __lowerCamelCase : Tuple =x else: __lowerCamelCase : Any =x def __lowercase ( self :Union[str, Any] , __lowercase :Tuple ): __lowerCamelCase : Union[str, Any] =pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __lowercase ( self :Tuple , __lowercase :Optional[int] , __lowercase :Dict=None , __lowercase :Union[str, Any]=None , __lowercase :List[str]=None , __lowercase :str=None , ): __lowerCamelCase : Any =() __lowerCamelCase : List[str] =() __lowerCamelCase : Optional[int] =() for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __lowerCamelCase : int =all_hidden_states + (hidden_states,) __lowerCamelCase : List[Any] =layer_module( __lowercase , __lowercase , head_mask[i] , __lowercase , __lowercase ) __lowerCamelCase : Optional[int] =layer_outputs[0] if self.output_attentions: __lowerCamelCase : Optional[Any] =all_attentions + (layer_outputs[1],) __lowerCamelCase : Any =(hidden_states,) if self.output_hidden_states: __lowerCamelCase : Optional[Any] =current_outputs + (all_hidden_states,) if self.output_attentions: __lowerCamelCase : Dict =current_outputs + (all_attentions,) __lowerCamelCase : str =self.highway[i](__lowercase ) # logits, pooled_output if not self.training: __lowerCamelCase : Tuple =highway_exit[0] __lowerCamelCase : Tuple =entropy(__lowercase ) __lowerCamelCase : Tuple =highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __lowerCamelCase : Optional[int] =all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __lowerCamelCase : Dict =(highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(__lowercase , i + 1 ) else: __lowerCamelCase : Union[str, Any] =all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __lowerCamelCase : Optional[Any] =all_hidden_states + (hidden_states,) __lowerCamelCase : List[Any] =(hidden_states,) if self.output_hidden_states: __lowerCamelCase : Tuple =outputs + (all_hidden_states,) if self.output_attentions: __lowerCamelCase : Optional[int] =outputs + (all_attentions,) __lowerCamelCase : int =outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , snake_case__ , ) class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" def __init__( self :Union[str, Any] , __lowercase :str ): super().__init__(__lowercase ) __lowerCamelCase : Union[str, Any] =config __lowerCamelCase : List[str] =BertEmbeddings(__lowercase ) __lowerCamelCase : Dict =DeeBertEncoder(__lowercase ) __lowerCamelCase : List[Any] =BertPooler(__lowercase ) self.init_weights() def __lowercase ( self :Tuple ): self.encoder.init_highway_pooler(self.pooler ) def __lowercase ( self :Dict ): return self.embeddings.word_embeddings def __lowercase ( self :List[str] , __lowercase :int ): __lowerCamelCase : Union[str, Any] =value def __lowercase ( self :List[Any] , __lowercase :Dict ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(__lowercase ) @add_start_docstrings_to_model_forward(__lowercase ) def __lowercase ( self :Optional[Any] , __lowercase :List[str]=None , __lowercase :List[Any]=None , __lowercase :Any=None , __lowercase :Tuple=None , __lowercase :Union[str, Any]=None , __lowercase :Optional[Any]=None , __lowercase :Union[str, Any]=None , __lowercase :Tuple=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: __lowerCamelCase : List[str] =input_ids.size() elif inputs_embeds is not None: __lowerCamelCase : str =inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) __lowerCamelCase : Optional[int] =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __lowerCamelCase : str =torch.ones(__lowercase , device=__lowercase ) if encoder_attention_mask is None: __lowerCamelCase : Tuple =torch.ones(__lowercase , device=__lowercase ) if token_type_ids is None: __lowerCamelCase : List[Any] =torch.zeros(__lowercase , dtype=torch.long , device=__lowercase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __lowerCamelCase : torch.Tensor =self.get_extended_attention_mask(__lowercase , __lowercase , __lowercase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __lowerCamelCase : List[str] =encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __lowerCamelCase : Any =encoder_attention_mask[:, None, None, :] __lowerCamelCase : Optional[Any] =encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __lowerCamelCase : List[str] =(1.0 - encoder_extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __lowerCamelCase : Union[str, Any] =self.get_head_mask(__lowercase , self.config.num_hidden_layers ) __lowerCamelCase : str =self.embeddings( input_ids=__lowercase , position_ids=__lowercase , token_type_ids=__lowercase , inputs_embeds=__lowercase ) __lowerCamelCase : Dict =self.encoder( __lowercase , attention_mask=__lowercase , head_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , ) __lowerCamelCase : int =encoder_outputs[0] __lowerCamelCase : Tuple =self.pooler(__lowercase ) __lowerCamelCase : int =( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" def __init__( self :List[Any] , __lowercase :Optional[Any] , __lowercase :Dict ): __lowerCamelCase : List[Any] =message __lowerCamelCase : int =exit_layer # start from 1! class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" def __init__( self :Any , __lowercase :str ): super().__init__() __lowerCamelCase : str =BertPooler(__lowercase ) __lowerCamelCase : Union[str, Any] =nn.Dropout(config.hidden_dropout_prob ) __lowerCamelCase : List[str] =nn.Linear(config.hidden_size , config.num_labels ) def __lowercase ( self :Union[str, Any] , __lowercase :List[str] ): # Pooler __lowerCamelCase : Optional[Any] =encoder_outputs[0] __lowerCamelCase : Any =self.pooler(__lowercase ) # "return" pooler_output # BertModel __lowerCamelCase : List[str] =(pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __lowerCamelCase : List[Any] =bmodel_output[1] __lowerCamelCase : Optional[Any] =self.dropout(__lowercase ) __lowerCamelCase : int =self.classifier(__lowercase ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , snake_case__ , ) class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" def __init__( self :Union[str, Any] , __lowercase :Dict ): super().__init__(__lowercase ) __lowerCamelCase : Any =config.num_labels __lowerCamelCase : int =config.num_hidden_layers __lowerCamelCase : Tuple =DeeBertModel(__lowercase ) __lowerCamelCase : Optional[int] =nn.Dropout(config.hidden_dropout_prob ) __lowerCamelCase : Optional[int] =nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(__lowercase ) def __lowercase ( self :List[str] , __lowercase :List[str]=None , __lowercase :str=None , __lowercase :Optional[Any]=None , __lowercase :List[Any]=None , __lowercase :Union[str, Any]=None , __lowercase :Dict=None , __lowercase :int=None , __lowercase :int=-1 , __lowercase :List[str]=False , ): __lowerCamelCase : Union[str, Any] =self.num_layers try: __lowerCamelCase : Union[str, Any] =self.bert( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , position_ids=__lowercase , head_mask=__lowercase , inputs_embeds=__lowercase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __lowerCamelCase : List[Any] =outputs[1] __lowerCamelCase : Optional[Any] =self.dropout(__lowercase ) __lowerCamelCase : Tuple =self.classifier(__lowercase ) __lowerCamelCase : int =(logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __lowerCamelCase : Union[str, Any] =e.message __lowerCamelCase : Optional[Any] =e.exit_layer __lowerCamelCase : Any =outputs[0] if not self.training: __lowerCamelCase : List[Any] =entropy(__lowercase ) __lowerCamelCase : Union[str, Any] =[] __lowerCamelCase : int =[] if labels is not None: if self.num_labels == 1: # We are doing regression __lowerCamelCase : Union[str, Any] =MSELoss() __lowerCamelCase : List[Any] =loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __lowerCamelCase : Dict =CrossEntropyLoss() __lowerCamelCase : List[Any] =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __lowerCamelCase : str =[] for highway_exit in outputs[-1]: __lowerCamelCase : List[str] =highway_exit[0] if not self.training: highway_logits_all.append(__lowercase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __lowerCamelCase : Optional[int] =MSELoss() __lowerCamelCase : Optional[Any] =loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __lowerCamelCase : int =CrossEntropyLoss() __lowerCamelCase : int =loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__lowercase ) if train_highway: __lowerCamelCase : Dict =(sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __lowerCamelCase : List[str] =(loss,) + outputs if not self.training: __lowerCamelCase : List[Any] =outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __lowerCamelCase : Dict =( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
179
1
def a__ ( a ) -> List[Any]: A_ : List[Any] = 1 A_ : Tuple = 2 while i * i <= n: A_ : Tuple = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def a__ ( ) -> Optional[int]: A_ : Optional[int] = 1 A_ : int = 1 while True: i += 1 t_num += i if count_divisors(a ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
236
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _lowerCAmelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class __UpperCAmelCase( A__ ): """simple docstring""" __magic_name__ = ["""pixel_values"""] def __init__( self , __magic_name__ = True , __magic_name__ = None , __magic_name__ = PILImageResampling.BICUBIC , __magic_name__ = True , __magic_name__ = None , __magic_name__ = True , __magic_name__ = 1 / 255 , __magic_name__ = True , __magic_name__ = None , __magic_name__ = None , __magic_name__ = True , **__magic_name__ , ): """simple docstring""" super().__init__(**__magic_name__ ) A_ : Tuple = size if size is not None else {'''shortest_edge''': 224} A_ : List[str] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) A_ : Optional[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} A_ : Optional[int] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ , param_name='''crop_size''' ) A_ : Any = do_resize A_ : Any = size A_ : str = resample A_ : str = do_center_crop A_ : Dict = crop_size A_ : Optional[int] = do_rescale A_ : Tuple = rescale_factor A_ : Tuple = do_normalize A_ : Optional[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A_ : str = image_std if image_std is not None else OPENAI_CLIP_STD A_ : Optional[Any] = do_convert_rgb def UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ = PILImageResampling.BICUBIC , __magic_name__ = None , **__magic_name__ , ): """simple docstring""" A_ : Tuple = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) A_ : List[Any] = get_resize_output_image_size(__magic_name__ , size=size['''shortest_edge'''] , default_to_square=__magic_name__ ) return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ = None , **__magic_name__ , ): """simple docstring""" A_ : Tuple = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__magic_name__ , size=(size['''height'''], size['''width''']) , data_format=__magic_name__ , **__magic_name__ ) def UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ = None , **__magic_name__ , ): """simple docstring""" return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , **__magic_name__ , ): """simple docstring""" return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = ChannelDimension.FIRST , **__magic_name__ , ): """simple docstring""" A_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize A_ : Tuple = size if size is not None else self.size A_ : int = get_size_dict(__magic_name__ , param_name='''size''' , default_to_square=__magic_name__ ) A_ : List[str] = resample if resample is not None else self.resample A_ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop A_ : List[str] = crop_size if crop_size is not None else self.crop_size A_ : str = get_size_dict(__magic_name__ , param_name='''crop_size''' , default_to_square=__magic_name__ ) A_ : int = do_rescale if do_rescale is not None else self.do_rescale A_ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor A_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize A_ : Any = image_mean if image_mean is not None else self.image_mean A_ : List[str] = image_std if image_std is not None else self.image_std A_ : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A_ : Optional[int] = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A_ : List[str] = [convert_to_rgb(__magic_name__ ) for image in images] # All transformations expect numpy arrays. A_ : int = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: A_ : Tuple = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images] if do_center_crop: A_ : Any = [self.center_crop(image=__magic_name__ , size=__magic_name__ ) for image in images] if do_rescale: A_ : List[Any] = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: A_ : Union[str, Any] = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] A_ : Dict = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] A_ : str = {'''pixel_values''': images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
236
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
52
'''simple docstring''' from __future__ import annotations def __a ( A__ ) -> int: if not nums: return 0 lowerCAmelCase = nums[0] lowerCAmelCase = 0 for num in nums[1:]: lowerCAmelCase , lowerCAmelCase = ( max_excluding + num, max(A__ , A__ ), ) return max(A__ , A__ ) if __name__ == "__main__": import doctest doctest.testmod()
649
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=18 , __UpperCamelCase=30 , __UpperCamelCase=400 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , ): A_ = size if size is not None else {"height": 18, "width": 18} A_ = parent A_ = batch_size A_ = num_channels A_ = image_size A_ = min_resolution A_ = max_resolution A_ = do_resize A_ = size A_ = apply_ocr def lowercase_ ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCamelCase ( __snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowercase_ ( self ): A_ = LayoutLMvaImageProcessingTester(self ) @property def lowercase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self ): A_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__UpperCamelCase , "size" ) ) self.assertTrue(hasattr(__UpperCamelCase , "apply_ocr" ) ) def lowercase_ ( self ): A_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def lowercase_ ( self ): pass def lowercase_ ( self ): # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , __UpperCamelCase ) self.assertIsInstance(encoding.boxes , __UpperCamelCase ) # Test batched A_ = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowercase_ ( self ): # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A_ = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowercase_ ( self ): # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A_ = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowercase_ ( self ): # with apply_OCR = True A_ = LayoutLMvaImageProcessor() from datasets import load_dataset A_ = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) A_ = Image.open(ds[0]["file"] ).convert("RGB" ) A_ = image_processing(__UpperCamelCase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 A_ = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 A_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __UpperCamelCase ) self.assertListEqual(encoding.boxes , __UpperCamelCase ) # with apply_OCR = False A_ = LayoutLMvaImageProcessor(apply_ocr=__UpperCamelCase ) A_ = image_processing(__UpperCamelCase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
608
from __future__ import annotations from collections.abc import Iterator class lowerCamelCase : """simple docstring""" def __init__( self , __UpperCamelCase ): A_ = value A_ = None A_ = None class lowerCamelCase : """simple docstring""" def __init__( self , __UpperCamelCase ): A_ = tree def lowercase_ ( self , __UpperCamelCase ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
608
1
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING SCREAMING_SNAKE_CASE: str = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class lowercase_ (SCREAMING_SNAKE_CASE__ ): def __init__( self : Tuple , *snake_case__ : Union[str, Any] , **snake_case__ : Any ): """simple docstring""" super().__init__(*snake_case__ , **snake_case__ ) requires_backends(self , 'vision' ) self.check_model_type(snake_case__ ) def __call__( self : List[str] , snake_case__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **snake_case__ : Any ): """simple docstring""" return super().__call__(snake_case__ , **snake_case__ ) def __a ( self : Dict , **snake_case__ : Dict ): """simple docstring""" return {}, {}, {} def __a ( self : List[Any] , snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = load_image(snake_case__ ) SCREAMING_SNAKE_CASE_ = image.size SCREAMING_SNAKE_CASE_ = self.image_processor(images=snake_case__ , return_tensors=self.framework ) return model_inputs def __a ( self : Any , snake_case__ : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model(**snake_case__ ) return model_outputs def __a ( self : List[Any] , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = model_outputs.predicted_depth SCREAMING_SNAKE_CASE_ = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='bicubic' , align_corners=snake_case__ ) SCREAMING_SNAKE_CASE_ = prediction.squeeze().cpu().numpy() SCREAMING_SNAKE_CASE_ = (output * 2_55 / np.max(snake_case__ )).astype('uint8' ) SCREAMING_SNAKE_CASE_ = Image.fromarray(snake_case__ ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = predicted_depth SCREAMING_SNAKE_CASE_ = depth return output_dict
360
SCREAMING_SNAKE_CASE: Optional[int] = {str(digit): digit**5 for digit in range(1_0)} def _a ( lowerCAmelCase )-> int: return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCAmelCase ) ) def _a ( )-> int: return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(lowerCAmelCase ) ) if __name__ == "__main__": print(solution())
360
1
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def __magic_name__ ( __a : bool = True , *__a : Any , **__a : List[Any] ): '''simple docstring''' if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) UpperCamelCase__ = False if main_process_only: UpperCamelCase__ = PartialState().local_process_index == 0 return _tqdm(*__a , **__a , disable=__a )
718
from ..utils import DummyObject, requires_backends class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch""", """torchsde"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch""", """torchsde"""] )
86
0
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def __A(lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'encoder.deit.blocks.{i}.norm1.weight', F'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm1.bias', F'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.weight', F'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.bias', F'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.norm2.weight', F'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm2.bias', F'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.weight', F'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.bias', F'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc2.weight', F'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.mlp.fc2.bias', F'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def __A(lowerCAmelCase , lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _UpperCamelCase = state_dict.pop(F'encoder.deit.blocks.{i}.attn.qkv.weight' ) _UpperCamelCase = in_proj_weight[ : encoder_config.hidden_size, : ] _UpperCamelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _UpperCamelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: """simple docstring""" _UpperCamelCase = dct.pop(lowerCAmelCase ) _UpperCamelCase = val def __A(lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" if "handwritten" in checkpoint_url: _UpperCamelCase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _UpperCamelCase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" _UpperCamelCase = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ).convert("""RGB""" ) return im @torch.no_grad() def __A(lowerCAmelCase , lowerCAmelCase ) -> int: """simple docstring""" _UpperCamelCase = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase ) _UpperCamelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _UpperCamelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder _UpperCamelCase = 1_0_2_4 _UpperCamelCase = 4_0_9_6 _UpperCamelCase = 2_4 _UpperCamelCase = 1_6 _UpperCamelCase = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _UpperCamelCase = False _UpperCamelCase = """relu""" _UpperCamelCase = 1_0_2_4 _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = False # load HuggingFace model _UpperCamelCase = ViTModel(lowerCAmelCase , add_pooling_layer=lowerCAmelCase ) _UpperCamelCase = TrOCRForCausalLM(lowerCAmelCase ) _UpperCamelCase = VisionEncoderDecoderModel(encoder=lowerCAmelCase , decoder=lowerCAmelCase ) model.eval() # load state_dict of original model, rename some keys _UpperCamelCase = torch.hub.load_state_dict_from_url(lowerCAmelCase , map_location="""cpu""" , check_hash=lowerCAmelCase )["""model"""] _UpperCamelCase = create_rename_keys(lowerCAmelCase , lowerCAmelCase ) for src, dest in rename_keys: rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) read_in_q_k_v(lowerCAmelCase , lowerCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _UpperCamelCase = state_dict.pop(lowerCAmelCase ) if key.startswith("""decoder""" ) and "output_projection" not in key: _UpperCamelCase = val else: _UpperCamelCase = val # load state dict model.load_state_dict(lowerCAmelCase ) # Check outputs on an image _UpperCamelCase = ViTImageProcessor(size=encoder_config.image_size ) _UpperCamelCase = RobertaTokenizer.from_pretrained("""roberta-large""" ) _UpperCamelCase = TrOCRProcessor(lowerCAmelCase , lowerCAmelCase ) _UpperCamelCase = processor(images=prepare_img(lowerCAmelCase ) , return_tensors="""pt""" ).pixel_values # verify logits _UpperCamelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _UpperCamelCase = model(pixel_values=lowerCAmelCase , decoder_input_ids=lowerCAmelCase ) _UpperCamelCase = outputs.logits _UpperCamelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: _UpperCamelCase = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: _UpperCamelCase = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: _UpperCamelCase = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: _UpperCamelCase = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase , atol=1e-3 ), "First elements of logits not as expected" Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) lowerCamelCase__ = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
612
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowercase ): UpperCamelCase_ : Dict = ["pixel_values"] def __init__( self , a = True , a = None , a = None , a = PILImageResampling.BILINEAR , a = True , a = 1 / 2_55 , a = True , a = None , a = None , **a , ) -> None: '''simple docstring''' super().__init__(**a ) _UpperCamelCase = size if size is not None else {"""shortest_edge""": 3_84} _UpperCamelCase = get_size_dict(a , default_to_square=a ) _UpperCamelCase = do_resize _UpperCamelCase = size # Default value set here for backwards compatibility where the value in config is None _UpperCamelCase = crop_pct if crop_pct is not None else 2_24 / 2_56 _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def A_ ( self , a , a , a , a = PILImageResampling.BICUBIC , a = None , **a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) _UpperCamelCase = size["""shortest_edge"""] if shortest_edge < 3_84: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _UpperCamelCase = int(shortest_edge / crop_pct ) _UpperCamelCase = get_resize_output_image_size(a , size=a , default_to_square=a ) _UpperCamelCase = resize(image=a , size=a , resample=a , data_format=a , **a ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=a , size=(shortest_edge, shortest_edge) , data_format=a , **a ) else: # warping (no cropping) when evaluated at 384 or larger return resize( a , size=(shortest_edge, shortest_edge) , resample=a , data_format=a , **a ) def A_ ( self , a , a , a = None , **a , ) -> Optional[int]: '''simple docstring''' return rescale(a , scale=a , data_format=a , **a ) def A_ ( self , a , a , a , a = None , **a , ) -> np.ndarray: '''simple docstring''' return normalize(a , mean=a , std=a , data_format=a , **a ) def A_ ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> PIL.Image.Image: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(a , default_to_square=a ) _UpperCamelCase = make_list_of_images(a ) if not valid_images(a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(a ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=a , size=a , crop_pct=a , resample=a ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=a , mean=a , std=a ) for image in images] _UpperCamelCase = [to_channel_dimension_format(a , a ) for image in images] _UpperCamelCase = {"""pixel_values""": images} return BatchFeature(data=a , tensor_type=a )
612
1
import argparse import copy def _a ( lowerCamelCase__ ) -> Tuple: lowerCamelCase_ : Optional[Any] = {} with open(lowerCamelCase__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: lowerCamelCase_ : Dict = [] _list.append([line.split()[1], line.split()[2]] ) lowerCamelCase_ : Tuple = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: lowerCamelCase_ : str = [] _list.append([line.split()[0], line.split()[2]] ) lowerCamelCase_ : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def _a ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: with open(lowerCamelCase__ ) as f: lowerCamelCase_ : List[Any] = f.read(1 ) lowerCamelCase_ : List[Any] = start_node lowerCamelCase_ : Any = [] lowerCamelCase_ : Optional[Any] = start_node lowerCamelCase_ : List[str] = 0 while visiting not in first_solution: lowerCamelCase_ : Optional[Any] = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCamelCase__ ) and k[0] not in first_solution: lowerCamelCase_ : Optional[int] = k[1] lowerCamelCase_ : Tuple = k[0] first_solution.append(lowerCamelCase__ ) lowerCamelCase_ : List[Any] = distance_of_first_solution + int(lowerCamelCase__ ) lowerCamelCase_ : int = best_node first_solution.append(lowerCamelCase__ ) lowerCamelCase_ : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 lowerCamelCase_ : Optional[Any] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def _a ( lowerCamelCase__ , lowerCamelCase__ ) -> str: lowerCamelCase_ : List[Any] = [] for n in solution[1:-1]: lowerCamelCase_ : Union[str, Any] = solution.index(lowerCamelCase__ ) for kn in solution[1:-1]: lowerCamelCase_ : Optional[int] = solution.index(lowerCamelCase__ ) if n == kn: continue lowerCamelCase_ : List[str] = copy.deepcopy(lowerCamelCase__ ) lowerCamelCase_ : Tuple = kn lowerCamelCase_ : List[str] = n lowerCamelCase_ : Tuple = 0 for k in _tmp[:-1]: lowerCamelCase_ : Tuple = _tmp[_tmp.index(lowerCamelCase__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: lowerCamelCase_ : Dict = distance + int(i[1] ) _tmp.append(lowerCamelCase__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) lowerCamelCase_ : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCamelCase__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: lowerCamelCase_ : Optional[Any] = 1 lowerCamelCase_ : str = first_solution lowerCamelCase_ : int = [] lowerCamelCase_ : Tuple = distance_of_first_solution lowerCamelCase_ : Any = solution while count <= iters: lowerCamelCase_ : int = find_neighborhood(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : Optional[int] = 0 lowerCamelCase_ : Tuple = neighborhood[index_of_best_solution] lowerCamelCase_ : Any = len(lowerCamelCase__ ) - 1 lowerCamelCase_ : List[Any] = False while not found: lowerCamelCase_ : str = 0 while i < len(lowerCamelCase__ ): if best_solution[i] != solution[i]: lowerCamelCase_ : Optional[Any] = best_solution[i] lowerCamelCase_ : int = solution[i] break lowerCamelCase_ : Optional[int] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) lowerCamelCase_ : str = True lowerCamelCase_ : Any = best_solution[:-1] lowerCamelCase_ : Dict = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: lowerCamelCase_ : Optional[int] = cost lowerCamelCase_ : Any = solution else: lowerCamelCase_ : Any = index_of_best_solution + 1 lowerCamelCase_ : Tuple = neighborhood[index_of_best_solution] if len(lowerCamelCase__ ) >= size: tabu_list.pop(0 ) lowerCamelCase_ : Any = count + 1 return best_solution_ever, best_cost def _a ( lowerCamelCase__=None ) -> str: lowerCamelCase_ : Tuple = generate_neighbours(args.File ) lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = generate_first_solution( args.File , lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ : str = tabu_search( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , args.Iterations , args.Size , ) print(F'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
144
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class lowerCamelCase__ ( UpperCAmelCase ): lowerCamelCase_ : List[str] = 'gpt_neox' def __init__(self : int , _snake_case : List[str]=5_0432 , _snake_case : List[Any]=6144 , _snake_case : Optional[Any]=44 , _snake_case : Dict=64 , _snake_case : Optional[Any]=2_4576 , _snake_case : str="gelu" , _snake_case : Optional[Any]=0.25 , _snake_case : int=1_0000 , _snake_case : int=0.0 , _snake_case : Any=0.0 , _snake_case : List[str]=0.1 , _snake_case : str=2048 , _snake_case : str=0.02 , _snake_case : Dict=1e-5 , _snake_case : int=True , _snake_case : str=0 , _snake_case : Tuple=2 , _snake_case : Tuple=False , _snake_case : int=True , _snake_case : List[str]=None , **_snake_case : List[str] , ) -> Tuple: """simple docstring""" super().__init__(bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) lowerCamelCase_ : Optional[int] = vocab_size lowerCamelCase_ : Tuple = max_position_embeddings lowerCamelCase_ : List[str] = hidden_size lowerCamelCase_ : Optional[Any] = num_hidden_layers lowerCamelCase_ : Union[str, Any] = num_attention_heads lowerCamelCase_ : Union[str, Any] = intermediate_size lowerCamelCase_ : Any = hidden_act lowerCamelCase_ : Optional[Any] = rotary_pct lowerCamelCase_ : Tuple = rotary_emb_base lowerCamelCase_ : List[Any] = attention_dropout lowerCamelCase_ : int = hidden_dropout lowerCamelCase_ : List[Any] = classifier_dropout lowerCamelCase_ : int = initializer_range lowerCamelCase_ : Dict = layer_norm_eps lowerCamelCase_ : List[str] = use_cache lowerCamelCase_ : Dict = tie_word_embeddings lowerCamelCase_ : int = use_parallel_residual lowerCamelCase_ : Dict = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!' ) def UpperCAmelCase_ (self : Any ) -> Optional[int]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _snake_case ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'got {self.rope_scaling}' ) lowerCamelCase_ : List[str] = self.rope_scaling.get('type' , _snake_case ) lowerCamelCase_ : Any = self.rope_scaling.get('factor' , _snake_case ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(_snake_case , _snake_case ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
144
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor a : Dict = logging.get_logger(__name__) class __UpperCAmelCase( snake_case__ ): """simple docstring""" def __init__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
218
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : List[Any] = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
516
0
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = ["""model.decoder.embed_positions.weights"""] def lowerCamelCase__ ( UpperCAmelCase_ )-> Any: """simple docstring""" if "emb" in name: UpperCamelCase = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: UpperCamelCase = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: UpperCamelCase = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: UpperCamelCase = name.replace("linear1" , "fc1" ) if "linear2" in name: UpperCamelCase = name.replace("linear2" , "fc2" ) if "norm1" in name: UpperCamelCase = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: UpperCamelCase = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: UpperCamelCase = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: UpperCamelCase = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: UpperCamelCase = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: UpperCamelCase = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ )-> Tuple[Dict, Dict]: """simple docstring""" UpperCamelCase = list(state_dict.keys() ) UpperCamelCase = {} for key in keys: UpperCamelCase = state_dict.pop(UpperCAmelCase_ ) UpperCamelCase = rename_keys(UpperCAmelCase_ ) if "in_proj_weight" in key: # split fused qkv proj UpperCamelCase = val[:hidden_size, :] UpperCamelCase = val[hidden_size : 2 * hidden_size, :] UpperCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCamelCase = val else: UpperCamelCase = val return state_dict, enc_dec_proj_state_dict def lowerCamelCase__ ( UpperCAmelCase_ )-> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values UpperCamelCase = 10_24 UpperCamelCase = 24 UpperCamelCase = 16 elif checkpoint == "medium": UpperCamelCase = 15_36 UpperCamelCase = 48 UpperCamelCase = 24 elif checkpoint == "large": UpperCamelCase = 20_48 UpperCamelCase = 48 UpperCamelCase = 32 else: raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) UpperCamelCase = MusicgenDecoderConfig( hidden_size=UpperCAmelCase_ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCAmelCase_ , num_attention_heads=UpperCAmelCase_ , ) return config @torch.no_grad() def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_="cpu" )-> int: """simple docstring""" UpperCamelCase = MusicGen.get_pretrained(UpperCAmelCase_ , device=UpperCAmelCase_ ) UpperCamelCase = decoder_config_from_checkpoint(UpperCAmelCase_ ) UpperCamelCase = fairseq_model.lm.state_dict() UpperCamelCase , UpperCamelCase = rename_state_dict( UpperCAmelCase_ , hidden_size=decoder_config.hidden_size ) UpperCamelCase = TaEncoderModel.from_pretrained("t5-base" ) UpperCamelCase = EncodecModel.from_pretrained("facebook/encodec_32khz" ) UpperCamelCase = MusicgenForCausalLM(UpperCAmelCase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCamelCase , UpperCamelCase = decoder.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" ) if len(UpperCAmelCase_ ) > 0: raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model UpperCamelCase = MusicgenForConditionalGeneration(text_encoder=UpperCAmelCase_ , audio_encoder=UpperCAmelCase_ , decoder=UpperCAmelCase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCAmelCase_ ) # check we can do a forward pass UpperCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) UpperCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): UpperCamelCase = model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_ ).logits if logits.shape != (8, 1, 20_48): raise ValueError("Incorrect shape for logits" ) # now construct the processor UpperCamelCase = AutoTokenizer.from_pretrained("t5-base" ) UpperCamelCase = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) UpperCamelCase = MusicgenProcessor(feature_extractor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) # set the appropriate bos/pad token ids UpperCamelCase = 20_48 UpperCamelCase = 20_48 # set other default generation config params UpperCamelCase = int(30 * audio_encoder.config.frame_rate ) UpperCamelCase = True UpperCamelCase = 3.0 if pytorch_dump_folder is not None: Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) if repo_id: logger.info(F"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(UpperCAmelCase_ ) processor.push_to_hub(UpperCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
556
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = 3 class __a ( _lowerCAmelCase ): pass def lowerCamelCase__ ( UpperCAmelCase_ )-> List[str]: """simple docstring""" for shard in shards: for i in range(UpperCAmelCase_ ): yield {"i": i, "shard": shard} def lowerCamelCase__ ( )-> Union[str, Any]: """simple docstring""" UpperCamelCase = int(os.environ["RANK"] ) UpperCamelCase = int(os.environ["WORLD_SIZE"] ) UpperCamelCase = ArgumentParser() parser.add_argument("--streaming" , type=UpperCAmelCase_ ) parser.add_argument("--local_rank" , type=UpperCAmelCase_ ) parser.add_argument("--num_workers" , type=UpperCAmelCase_ , default=0 ) UpperCamelCase = parser.parse_args() UpperCamelCase = args.streaming UpperCamelCase = args.num_workers UpperCamelCase = {"shards": [F"shard_{shard_idx}" for shard_idx in range(UpperCAmelCase_ )]} UpperCamelCase = IterableDataset.from_generator(UpperCAmelCase_ , gen_kwargs=UpperCAmelCase_ ) if not streaming: UpperCamelCase = Dataset.from_list(list(UpperCAmelCase_ ) ) UpperCamelCase = split_dataset_by_node(UpperCAmelCase_ , rank=UpperCAmelCase_ , world_size=UpperCAmelCase_ ) UpperCamelCase = torch.utils.data.DataLoader(UpperCAmelCase_ , num_workers=UpperCAmelCase_ ) UpperCamelCase = NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCamelCase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) UpperCamelCase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F"local_size {local_size} != expected_local_size {expected_local_size}" ) if __name__ == "__main__": main()
556
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt'} a_ = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } a_ = { 'YituTech/conv-bert-base': 5_1_2, 'YituTech/conv-bert-medium-small': 5_1_2, 'YituTech/conv-bert-small': 5_1_2, } a_ = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class UpperCAmelCase_ ( snake_case ): UpperCamelCase =VOCAB_FILES_NAMES UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase =PRETRAINED_INIT_CONFIGURATION UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase =ConvBertTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_="[UNK]" , UpperCamelCase_="[SEP]" , UpperCamelCase_="[PAD]" , UpperCamelCase_="[CLS]" , UpperCamelCase_="[MASK]" , UpperCamelCase_=True , UpperCamelCase_=None , **UpperCamelCase_ , ) -> List[Any]: super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) __lowercase : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): __lowercase : Dict = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) __lowercase : List[str] = do_lower_case __lowercase : List[str] = strip_accents __lowercase : Tuple = tokenize_chinese_chars __lowercase : Optional[int] = normalizer_class(**UpperCamelCase_ ) __lowercase : Union[str, Any] = do_lower_case def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=None ) -> List[str]: __lowercase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> List[int]: __lowercase : List[Any] = [self.sep_token_id] __lowercase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> Tuple[str]: __lowercase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
76
'''simple docstring''' # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class A ( a ): __UpperCAmelCase : torch.FloatTensor __UpperCAmelCase : Optional[torch.FloatTensor] = None def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : str=0.9_99, lowerCamelCase__ : List[Any]="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase__ : Union[str, Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase__ : List[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _a = [] for i in range(lowerCamelCase__ ): _a = i / num_diffusion_timesteps _a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ), lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__, dtype=torch.floataa ) class A ( a , a ): __UpperCAmelCase : Union[str, Any] = 1 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = 0.0_001 , snake_case_ = 0.02 , snake_case_ = "linear" , snake_case_ = None , snake_case_ = True , snake_case_ = True , snake_case_ = 0 , snake_case_ = "epsilon" , snake_case_ = 1.0 , **snake_case_ , ) -> Optional[Any]: if kwargs.get("set_alpha_to_one" , snake_case_ ) is not None: _a = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , snake_case_ , standard_warn=snake_case_ ) _a = kwargs["set_alpha_to_one"] if trained_betas is not None: _a = torch.tensor(snake_case_ , dtype=torch.floataa ) elif beta_schedule == "linear": _a = torch.linspace(snake_case_ , snake_case_ , snake_case_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a = betas_for_alpha_bar(snake_case_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _a = 1.0 - self.betas _a = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _a = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _a = 1.0 # setable values _a = None _a = torch.from_numpy(np.arange(0 , snake_case_ ).copy().astype(np.intaa ) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> torch.FloatTensor: return sample def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Optional[Any]: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) _a = num_inference_steps _a = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(0 , snake_case_ ) * step_ratio).round().copy().astype(np.intaa ) _a = torch.from_numpy(snake_case_ ).to(snake_case_ ) self.timesteps += self.config.steps_offset def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = 0.0 , snake_case_ = False , snake_case_ = None , snake_case_ = True , ) -> Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _a = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _a = self.alphas_cumprod[timestep] _a = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _a = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _a = model_output elif self.config.prediction_type == "sample": _a = model_output _a = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _a = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _a = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _a = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=snake_case_ , pred_original_sample=snake_case_ ) def __len__( self ) -> str: return self.config.num_train_timesteps
131
0
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def _lowerCAmelCase ( A__ , A__=1 ): if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def _lowerCAmelCase ( A__ , A__=0 ): lowercase__ = [] for old_item in old_list: lowercase__ = old_item.replace('in_layers.0' , 'norm1' ) lowercase__ = new_item.replace('in_layers.2' , 'conv1' ) lowercase__ = new_item.replace('out_layers.0' , 'norm2' ) lowercase__ = new_item.replace('out_layers.3' , 'conv2' ) lowercase__ = new_item.replace('emb_layers.1' , 'time_emb_proj' ) lowercase__ = new_item.replace('skip_connection' , 'conv_shortcut' ) lowercase__ = shave_segments(A__ , n_shave_prefix_segments=A__ ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def _lowerCAmelCase ( A__ , A__=0 ): lowercase__ = [] for old_item in old_list: lowercase__ = old_item lowercase__ = new_item.replace('norm.weight' , 'group_norm.weight' ) lowercase__ = new_item.replace('norm.bias' , 'group_norm.bias' ) lowercase__ = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) lowercase__ = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) lowercase__ = shave_segments(A__ , n_shave_prefix_segments=A__ ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def _lowerCAmelCase ( A__ , A__ , A__ , A__=None , A__=None , A__=None ): assert isinstance(A__ , A__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): lowercase__ = old_checkpoint[path] lowercase__ = old_tensor.shape[0] // 3 lowercase__ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) lowercase__ = old_tensor.shape[0] // config['num_head_channels'] // 3 lowercase__ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) lowercase__, lowercase__, lowercase__ = old_tensor.split(channels // num_heads , dim=1 ) lowercase__ = query.reshape(A__ ) lowercase__ = key.reshape(A__ ) lowercase__ = value.reshape(A__ ) for path in paths: lowercase__ = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here lowercase__ = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) lowercase__ = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) lowercase__ = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: lowercase__ = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: lowercase__ = old_checkpoint[path['old']][:, :, 0] else: lowercase__ = old_checkpoint[path['old']] def _lowerCAmelCase ( A__ , A__ ): lowercase__ = {} lowercase__ = checkpoint['time_embed.0.weight'] lowercase__ = checkpoint['time_embed.0.bias'] lowercase__ = checkpoint['time_embed.2.weight'] lowercase__ = checkpoint['time_embed.2.bias'] lowercase__ = checkpoint['input_blocks.0.0.weight'] lowercase__ = checkpoint['input_blocks.0.0.bias'] lowercase__ = checkpoint['out.0.weight'] lowercase__ = checkpoint['out.0.bias'] lowercase__ = checkpoint['out.2.weight'] lowercase__ = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only lowercase__ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) lowercase__ = { layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key] for layer_id in range(A__ ) } # Retrieves the keys for the middle blocks only lowercase__ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) lowercase__ = { layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key] for layer_id in range(A__ ) } # Retrieves the keys for the output blocks only lowercase__ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) lowercase__ = { layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key] for layer_id in range(A__ ) } for i in range(1 , A__ ): lowercase__ = (i - 1) // (config['num_res_blocks'] + 1) lowercase__ = (i - 1) % (config['num_res_blocks'] + 1) lowercase__ = [key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key] lowercase__ = [key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key] if F'''input_blocks.{i}.0.op.weight''' in checkpoint: lowercase__ = checkpoint[ F'''input_blocks.{i}.0.op.weight''' ] lowercase__ = checkpoint[ F'''input_blocks.{i}.0.op.bias''' ] continue lowercase__ = renew_resnet_paths(A__ ) lowercase__ = {'old': F'''input_blocks.{i}.0''', 'new': F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} lowercase__ = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( A__ , A__ , A__ , additional_replacements=[meta_path, resnet_op] , config=A__ ) if len(A__ ): lowercase__ = renew_attention_paths(A__ ) lowercase__ = { 'old': F'''input_blocks.{i}.1''', 'new': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } lowercase__ = { F'''input_blocks.{i}.1.qkv.bias''': { 'key': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', 'query': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', 'value': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''input_blocks.{i}.1.qkv.weight''': { 'key': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', 'query': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', 'value': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( A__ , A__ , A__ , additional_replacements=[meta_path] , attention_paths_to_split=A__ , config=A__ , ) lowercase__ = middle_blocks[0] lowercase__ = middle_blocks[1] lowercase__ = middle_blocks[2] lowercase__ = renew_resnet_paths(A__ ) assign_to_checkpoint(A__ , A__ , A__ , config=A__ ) lowercase__ = renew_resnet_paths(A__ ) assign_to_checkpoint(A__ , A__ , A__ , config=A__ ) lowercase__ = renew_attention_paths(A__ ) lowercase__ = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( A__ , A__ , A__ , attention_paths_to_split=A__ , config=A__ ) for i in range(A__ ): lowercase__ = i // (config['num_res_blocks'] + 1) lowercase__ = i % (config['num_res_blocks'] + 1) lowercase__ = [shave_segments(A__ , 2 ) for name in output_blocks[i]] lowercase__ = {} for layer in output_block_layers: lowercase__, lowercase__ = layer.split('.' )[0], shave_segments(A__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A__ ) else: lowercase__ = [layer_name] if len(A__ ) > 1: lowercase__ = [key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key] lowercase__ = [key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key] lowercase__ = renew_resnet_paths(A__ ) lowercase__ = renew_resnet_paths(A__ ) lowercase__ = {'old': F'''output_blocks.{i}.0''', 'new': F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): lowercase__ = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) lowercase__ = checkpoint[ F'''output_blocks.{i}.{index}.conv.weight''' ] lowercase__ = checkpoint[ F'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(A__ ) == 2: lowercase__ = [] if len(A__ ): lowercase__ = renew_attention_paths(A__ ) lowercase__ = { 'old': F'''output_blocks.{i}.1''', 'new': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } lowercase__ = { F'''output_blocks.{i}.1.qkv.bias''': { 'key': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', 'query': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', 'value': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''output_blocks.{i}.1.qkv.weight''': { 'key': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', 'query': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', 'value': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( A__ , A__ , A__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=A__ , ) else: lowercase__ = renew_resnet_paths(A__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: lowercase__ = '.'.join(['output_blocks', str(A__ ), path['old']] ) lowercase__ = '.'.join(['up_blocks', str(A__ ), 'resnets', str(A__ ), path['new']] ) lowercase__ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": a__ : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") a__ : List[str] = parser.parse_args() a__ : Union[str, Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: a__ : Optional[Any] = json.loads(f.read()) a__ : List[str] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] a__ : Union[str, Any] = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: a__ : Any = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1])) a__ : Optional[int] = VQModel.from_pretrained("/".join(args.checkpoint_path.split("/")[:-1])) a__ : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
642
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Any = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : str = XGLMTokenizer A : List[Any] = XGLMTokenizerFast A : int = True A : Optional[Any] = True def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = '<pad>' lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase) , lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase) , lowerCAmelCase) def UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(len(lowerCAmelCase) , 10_08) def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_08) def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) lowercase__ = tokenizer.tokenize('This is a test') self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return XGLMTokenizer.from_pretrained('facebook/xglm-564M') def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase , f.name) lowercase__ = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase) lowercase__ = pickle.dumps(lowerCAmelCase) pickle.loads(lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = 'I was born in 92000, and this is falsé.' lowercase__ = tokenizer.tokenize(lowerCAmelCase) lowercase__ = rust_tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) @slow def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" lowercase__ = 'Hello World!' lowercase__ = [2, 3_12_27, 44_47, 35] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowercase__ = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = { 'input_ids': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name='facebook/xglm-564M' , padding=lowerCAmelCase , )
642
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel a__ = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } a__ = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def __UpperCAmelCase ( __a : Any ,__a : List[str]=False ) -> List[Any]: """simple docstring""" _a , _a : List[Any] = create_model( '''HTSAT-tiny''' ,'''roberta''' ,__a ,precision='''fp32''' ,device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' ,enable_fusion=__a ,fusion_type='''aff_2d''' if enable_fusion else None ,) return model, model_cfg def __UpperCAmelCase ( __a : str ) -> Union[str, Any]: """simple docstring""" _a : Any = {} _a : int = R'''.*sequential.(\d+).*''' _a : List[Any] = R'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _a : List[Any] = key.replace(__a ,__a ) if re.match(__a ,__a ): # replace sequential layers with list _a : int = re.match(__a ,__a ).group(1 ) _a : List[str] = key.replace(F"""sequential.{sequential_layer}.""" ,F"""layers.{int(__a )//3}.linear.""" ) elif re.match(__a ,__a ): _a : Optional[Any] = int(re.match(__a ,__a ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... _a : Optional[int] = 1 if projecton_layer == 0 else 2 _a : List[str] = key.replace(F"""_projection.{projecton_layer}.""" ,F"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value _a : List[str] = value _a : Union[str, Any] = mixed_qkv.size(0 ) // 3 _a : Tuple = mixed_qkv[:qkv_dim] _a : Dict = mixed_qkv[qkv_dim : qkv_dim * 2] _a : Dict = mixed_qkv[qkv_dim * 2 :] _a : Optional[int] = query_layer _a : Tuple = key_layer _a : Tuple = value_layer else: _a : Tuple = value return model_state_dict def __UpperCAmelCase ( __a : Tuple ,__a : Optional[int] ,__a : Dict ,__a : Dict=False ) -> Any: """simple docstring""" _a , _a : Optional[Any] = init_clap(__a ,enable_fusion=__a ) clap_model.eval() _a : Tuple = clap_model.state_dict() _a : Union[str, Any] = rename_state_dict(__a ) _a : Union[str, Any] = ClapConfig() _a : Dict = enable_fusion _a : Dict = ClapModel(__a ) # ignore the spectrogram embedding layer model.load_state_dict(__a ,strict=__a ) model.save_pretrained(__a ) transformers_config.save_pretrained(__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') a__ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
14
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __lowercase : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( __A : Optional[Any] , __A : Optional[Any] ) -> str: '''simple docstring''' inspect_dataset(__A , __A ) snake_case : List[str] = path + """.py""" assert script_name in os.listdir(__A ) assert "__pycache__" not in os.listdir(__A ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( __A : Optional[int] , __A : Any ) -> Optional[Any]: '''simple docstring''' inspect_metric(__A , __A ) snake_case : Any = path + """.py""" assert script_name in os.listdir(__A ) assert "__pycache__" not in os.listdir(__A ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( __A : Tuple , __A : Dict , __A : Any ) -> Optional[int]: '''simple docstring''' snake_case : List[str] = get_dataset_config_info(__A , config_name=__A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( __A : Tuple , __A : Any , __A : List[str] ) -> Optional[int]: '''simple docstring''' with pytest.raises(__A ): get_dataset_config_info(__A , config_name=__A ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( __A : Any , __A : Dict ) -> Dict: '''simple docstring''' snake_case : int = get_dataset_config_names(__A ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( __A : Optional[Any] , __A : Dict , __A : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case : List[Any] = get_dataset_infos(__A ) assert list(infos.keys() ) == expected_configs snake_case : Any = expected_configs[0] assert expected_config in infos snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( __A : Optional[int] , __A : Tuple , __A : Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case : Dict = get_dataset_infos(__A ) assert expected_config in infos snake_case : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( __A : Optional[int] , __A : Any , __A : Dict ) -> int: '''simple docstring''' with pytest.raises(__A ): get_dataset_split_names(__A , config_name=__A )
36
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class __lowercase ( a__ ): _lowerCAmelCase = "swin2sr" _lowerCAmelCase = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : int , lowercase__ : Optional[Any]=6_4 , lowercase__ : Tuple=1 , lowercase__ : Any=3 , lowercase__ : str=1_8_0 , lowercase__ : Optional[Any]=[6, 6, 6, 6, 6, 6] , lowercase__ : Optional[int]=[6, 6, 6, 6, 6, 6] , lowercase__ : Any=8 , lowercase__ : List[str]=2.0 , lowercase__ : List[Any]=True , lowercase__ : str=0.0 , lowercase__ : Any=0.0 , lowercase__ : List[str]=0.1 , lowercase__ : int="gelu" , lowercase__ : List[str]=False , lowercase__ : Dict=0.02 , lowercase__ : Union[str, Any]=1e-5 , lowercase__ : Optional[int]=2 , lowercase__ : List[Any]=1.0 , lowercase__ : Union[str, Any]="1conv" , lowercase__ : int="pixelshuffle" , **lowercase__ : Tuple , ): super().__init__(**lowercase__ ) a_ = image_size a_ = patch_size a_ = num_channels a_ = embed_dim a_ = depths a_ = len(lowercase__ ) a_ = num_heads a_ = window_size a_ = mlp_ratio a_ = qkv_bias a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = drop_path_rate a_ = hidden_act a_ = use_absolute_embeddings a_ = layer_norm_eps a_ = initializer_range a_ = upscale a_ = img_range a_ = resi_connection a_ = upsampler
143
import qiskit def UpperCAmelCase__ ( _A , _A ): """simple docstring""" a_ = qiskit.Aer.get_backend('''aer_simulator''' ) a_ = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator a_ = qiskit.execute(_A , _A , shots=1_000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_A ) if __name__ == "__main__": UpperCamelCase__ = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
143
1
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) snake_case__ = logging.getLogger(__name__) def lowerCamelCase__ ( a : str ) -> List[str]: """simple docstring""" a__ :Optional[Any] = git.Repo(search_parent_directories=__lowercase ) a__ :List[str] = { "repo_id": str(__lowercase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(__lowercase , "git_log.json" ) , "w" ) as f: json.dump(__lowercase , __lowercase , indent=4 ) def lowerCamelCase__ ( a : str ) -> List[Any]: """simple docstring""" if params.n_gpu <= 0: a__ :Tuple = 0 a__ :Union[str, Any] = -1 a__ :Optional[Any] = True a__ :Optional[int] = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 a__ :List[Any] = int(os.environ["WORLD_SIZE"] ) a__ :List[Any] = int(os.environ["N_GPU_NODE"] ) a__ :Dict = int(os.environ["RANK"] ) # number of nodes / node ID a__ :List[Any] = params.world_size // params.n_gpu_per_node a__ :List[Any] = params.global_rank // params.n_gpu_per_node a__ :Union[str, Any] = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 a__ :Optional[Any] = 1 a__ :Optional[int] = 0 a__ :List[Any] = 0 a__ :Union[str, Any] = 0 a__ :Tuple = 1 a__ :Union[str, Any] = 1 a__ :str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode a__ :int = params.node_id == 0 and params.local_rank == 0 a__ :Optional[Any] = params.n_nodes > 1 # summary a__ :int = F'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def lowerCamelCase__ ( a : str ) -> int: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
395
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a : Optional[int] = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Tuple = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[str] = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Any = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Dict = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __a : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
637
0
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets _lowerCamelCase = datasets.logging.get_logger(__name__) _lowerCamelCase = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' _lowerCamelCase = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' _lowerCamelCase = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def _lowerCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Tuple=False , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Any="dummy_doc" ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = {doc: key_lines} __SCREAMING_SNAKE_CASE : Dict = {doc: sys_lines} __SCREAMING_SNAKE_CASE : Tuple = {} __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : List[Any] = 0 __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : List[str] = 0 __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Optional[int] = reader.get_doc_mentions(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase ) key_singletons_num += singletons_num if NP_only or min_span: __SCREAMING_SNAKE_CASE : Optional[Any] = reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = reader.get_doc_mentions(__UpperCamelCase , sys_doc_lines[doc] , __UpperCamelCase ) sys_singletons_num += singletons_num if NP_only or min_span: __SCREAMING_SNAKE_CASE : List[str] = reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase ) if remove_nested: __SCREAMING_SNAKE_CASE : Tuple = reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters __SCREAMING_SNAKE_CASE : Dict = reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters __SCREAMING_SNAKE_CASE : List[str] = reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase ) __SCREAMING_SNAKE_CASE : Dict = reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( "Number of resulting singleton clusters in the key " F"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( F"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ "files, respectively" ) return doc_coref_infos def _lowerCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = get_coref_infos(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {} __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : List[str] = 0 for name, metric in metrics: __SCREAMING_SNAKE_CASE : Union[str, Any] = evaluator.evaluate_documents(__UpperCamelCase , __UpperCamelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"""{name}/recall""": recall, F"""{name}/precision""": precision, F"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , F"""Recall: {recall * 100:.2f}""" , F""" Precision: {precision * 100:.2f}""" , F""" F1: {fa * 100:.2f}""" , ) if conll_subparts_num == 3: __SCREAMING_SNAKE_CASE : str = (conll / 3) * 100 logger.info(F"""CoNLL score: {conll:.2f}""" ) output_scores.update({"conll_score": conll} ) return output_scores def _lowerCAmelCase ( __lowerCamelCase : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: __SCREAMING_SNAKE_CASE : List[Any] = line.split()[5] if not parse_col == "-": __SCREAMING_SNAKE_CASE : Tuple = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE (datasets.Metric ): def __snake_case ( self : Tuple )->List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def __snake_case ( self : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : Optional[int]=True , UpperCamelCase : Optional[int]=False , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Dict=False )->List[str]: __SCREAMING_SNAKE_CASE : int = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: __SCREAMING_SNAKE_CASE : Any = util.check_gold_parse_annotation(_lowercase ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" __SCREAMING_SNAKE_CASE : Optional[int] = evaluate( key_lines=_lowercase , sys_lines=_lowercase , metrics=_lowercase , NP_only=_lowercase , remove_nested=_lowercase , keep_singletons=_lowercase , min_span=_lowercase , ) return score
721
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate _lowerCamelCase = trt.Logger(trt.Logger.WARNING) _lowerCamelCase = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) _lowerCamelCase = logging.getLogger(__name__) _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--onnx_model_path""", default=None, type=str, required=True, help="""Path to ONNX model: """, ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""The output directory where the model checkpoints and predictions will be written.""", ) # Other parameters parser.add_argument( """--tokenizer_name""", default="""""", type=str, required=True, help="""Pretrained tokenizer name or path if not the same as model_name""", ) parser.add_argument( """--version_2_with_negative""", action="""store_true""", help="""If true, the SQuAD examples contain some that do not have an answer.""", ) parser.add_argument( """--null_score_diff_threshold""", type=float, default=0.0, help="""If null_score - best_non_null is greater than the threshold predict null.""", ) parser.add_argument( """--max_seq_length""", default=384, type=int, help=( """The maximum total input sequence length after WordPiece tokenization. Sequences """ """longer than this will be truncated, and sequences shorter than this will be padded.""" ), ) parser.add_argument( """--doc_stride""", default=128, type=int, help="""When splitting up a long document into chunks, how much stride to take between chunks.""", ) parser.add_argument("""--per_device_eval_batch_size""", default=8, type=int, help="""Batch size per GPU/CPU for evaluation.""") parser.add_argument( """--n_best_size""", default=20, type=int, help="""The total number of n-best predictions to generate in the nbest_predictions.json output file.""", ) parser.add_argument( """--max_answer_length""", default=30, type=int, help=( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ), ) parser.add_argument("""--seed""", type=int, default=42, help="""random seed for initialization""") parser.add_argument( """--dataset_name""", type=str, default=None, required=True, help="""The name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--dataset_config_name""", type=str, default=None, help="""The configuration name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--preprocessing_num_workers""", type=int, default=4, help="""A csv or a json file containing the training data.""" ) parser.add_argument("""--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""") parser.add_argument( """--fp16""", action="""store_true""", help="""Whether to use 16-bit (mixed) precision instead of 32-bit""", ) parser.add_argument( """--int8""", action="""store_true""", help="""Whether to use INT8""", ) _lowerCamelCase = parser.parse_args() if args.tokenizer_name: _lowerCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) logger.info("""Training/evaluation parameters %s""", args) _lowerCamelCase = args.per_device_eval_batch_size _lowerCamelCase = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties _lowerCamelCase = True _lowerCamelCase = """temp_engine/bert-fp32.engine""" if args.fpaa: _lowerCamelCase = """temp_engine/bert-fp16.engine""" if args.inta: _lowerCamelCase = """temp_engine/bert-int8.engine""" # import ONNX file if not os.path.exists("""temp_engine"""): os.makedirs("""temp_engine""") _lowerCamelCase = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, """rb""") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network _lowerCamelCase = [network.get_input(i) for i in range(network.num_inputs)] _lowerCamelCase = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: _lowerCamelCase = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) _lowerCamelCase = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) _lowerCamelCase = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, """wb""") as f: f.write(engine.serialize()) def _lowerCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = np.asarray(inputs["input_ids"] , dtype=np.intaa ) __SCREAMING_SNAKE_CASE : Any = np.asarray(inputs["attention_mask"] , dtype=np.intaa ) __SCREAMING_SNAKE_CASE : str = np.asarray(inputs["token_type_ids"] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , __lowerCamelCase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , __lowerCamelCase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , __lowerCamelCase ) # start time __SCREAMING_SNAKE_CASE : str = time.time() # Run inference context.execute_async( bindings=[int(__lowerCamelCase ) for d_inp in d_inputs] + [int(__lowerCamelCase ), int(__lowerCamelCase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) cuda.memcpy_dtoh_async(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Synchronize the stream and take time stream.synchronize() # end time __SCREAMING_SNAKE_CASE : List[Any] = time.time() __SCREAMING_SNAKE_CASE : List[Any] = end_time - start_time __SCREAMING_SNAKE_CASE : Tuple = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. _lowerCamelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. _lowerCamelCase = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("""Evaluation requires a dataset name""") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. _lowerCamelCase = raw_datasets["""validation"""].column_names _lowerCamelCase = """question""" if """question""" in column_names else column_names[0] _lowerCamelCase = """context""" if """context""" in column_names else column_names[1] _lowerCamelCase = """answers""" if """answers""" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). _lowerCamelCase = tokenizer.padding_side == """right""" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) _lowerCamelCase = min(args.max_seq_length, tokenizer.model_max_length) def _lowerCAmelCase ( __lowerCamelCase : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __SCREAMING_SNAKE_CASE : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="only_second" if pad_on_right else "only_first" , max_length=__lowerCamelCase , stride=args.doc_stride , return_overflowing_tokens=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , padding="max_length" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenized_examples.pop("overflow_to_sample_mapping" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __SCREAMING_SNAKE_CASE : List[str] = [] for i in range(len(tokenized_examples["input_ids"] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __SCREAMING_SNAKE_CASE : Optional[Any] = tokenized_examples.sequence_ids(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __SCREAMING_SNAKE_CASE : str = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __SCREAMING_SNAKE_CASE : Optional[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i] ) ] return tokenized_examples _lowerCamelCase = raw_datasets["""validation"""] # Validation Feature Creation _lowerCamelCase = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="""Running tokenizer on validation dataset""", ) _lowerCamelCase = default_data_collator _lowerCamelCase = eval_dataset.remove_columns(["""example_id""", """offset_mapping"""]) _lowerCamelCase = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _lowerCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : int="eval" ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = postprocess_qa_predictions( examples=__lowerCamelCase , features=__lowerCamelCase , predictions=__lowerCamelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=__lowerCamelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __SCREAMING_SNAKE_CASE : Optional[int] = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: __SCREAMING_SNAKE_CASE : Union[str, Any] = [{"id": k, "prediction_text": v} for k, v in predictions.items()] __SCREAMING_SNAKE_CASE : Optional[Any] = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=__lowerCamelCase , label_ids=__lowerCamelCase ) _lowerCamelCase = load_metric("""squad_v2""" if args.version_2_with_negative else """squad""") # Evaluation! logger.info("""Loading ONNX model %s for evaluation""", args.onnx_model_path) with open(engine_name, """rb""") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _lowerCAmelCase ( __lowerCamelCase : Optional[int] ): """simple docstring""" return trt.volume(engine.get_binding_shape(__lowerCamelCase ) ) * engine.get_binding_dtype(__lowerCamelCase ).itemsize # Allocate device memory for inputs and outputs. _lowerCamelCase = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer _lowerCamelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) _lowerCamelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) _lowerCamelCase = cuda.mem_alloc(h_outputa.nbytes) _lowerCamelCase = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. _lowerCamelCase = cuda.Stream() # Evaluation logger.info("""***** Running Evaluation *****""") logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') _lowerCamelCase = 0.0 _lowerCamelCase = 0 _lowerCamelCase = timeit.default_timer() _lowerCamelCase = None for step, batch in enumerate(eval_dataloader): _lowerCamelCase , _lowerCamelCase = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 _lowerCamelCase , _lowerCamelCase = outputs _lowerCamelCase = torch.tensor(start_logits) _lowerCamelCase = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered _lowerCamelCase = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) _lowerCamelCase = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) _lowerCamelCase = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) _lowerCamelCase = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: _lowerCamelCase = nested_truncate(all_preds, len(eval_dataset)) _lowerCamelCase = timeit.default_timer() - start_time logger.info(""" Evaluation done in total %f secs (%f sec per example)""", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("""Average Inference Time = {:.3f} ms""".format(total_time * 1000 / niter)) logger.info("""Total Inference Time = {:.3f} ms""".format(total_time * 1000)) logger.info("""Total Number of Inference = %d""", niter) _lowerCamelCase = post_processing_function(eval_examples, eval_dataset, all_preds) _lowerCamelCase = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
447
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ) -> Dict: UpperCAmelCase__ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCAmelCase__ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> str: for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase__ : str = '''''' else: UpperCAmelCase__ : Union[str, Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase__ : Optional[int] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase__ : Optional[int] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase__ : Optional[int] = in_proj_bias[: config.hidden_size] UpperCAmelCase__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase__ : Dict = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase__ : Optional[int] = in_proj_bias[-config.hidden_size :] def a__ ( lowerCAmelCase__ ) -> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Any: # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. UpperCAmelCase__ : List[str] = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: UpperCAmelCase__ : List[Any] = dct.pop(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = val def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: UpperCAmelCase__ : str = ViTMSNConfig() UpperCAmelCase__ : Optional[int] = 10_00 UpperCAmelCase__ : List[Any] = '''datasets/huggingface/label-files''' UpperCAmelCase__ : str = '''imagenet-1k-id2label.json''' UpperCAmelCase__ : List[str] = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ ) , '''r''' ) ) UpperCAmelCase__ : Union[str, Any] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase__ : List[str] = idalabel UpperCAmelCase__ : Optional[int] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: UpperCAmelCase__ : List[str] = 3_84 UpperCAmelCase__ : Dict = 15_36 UpperCAmelCase__ : Tuple = 6 elif "l16" in checkpoint_url: UpperCAmelCase__ : List[str] = 10_24 UpperCAmelCase__ : str = 40_96 UpperCAmelCase__ : Tuple = 24 UpperCAmelCase__ : Optional[int] = 16 UpperCAmelCase__ : Optional[int] = 0.1 elif "b4" in checkpoint_url: UpperCAmelCase__ : List[str] = 4 elif "l7" in checkpoint_url: UpperCAmelCase__ : int = 7 UpperCAmelCase__ : int = 10_24 UpperCAmelCase__ : Dict = 40_96 UpperCAmelCase__ : Any = 24 UpperCAmelCase__ : str = 16 UpperCAmelCase__ : Any = 0.1 UpperCAmelCase__ : str = ViTMSNModel(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' )['''target_encoder'''] UpperCAmelCase__ : Union[str, Any] = ViTImageProcessor(size=config.image_size ) remove_projection_head(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = create_rename_keys(lowerCAmelCase__ , base_model=lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ , base_model=lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() UpperCAmelCase__ : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase__ : Tuple = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) UpperCAmelCase__ : Tuple = ViTImageProcessor( size=config.image_size , image_mean=lowerCAmelCase__ , image_std=lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCAmelCase__ : Optional[Any] = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: UpperCAmelCase__ : Any = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: UpperCAmelCase__ : Optional[int] = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: UpperCAmelCase__ : int = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: UpperCAmelCase__ : str = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: UpperCAmelCase__ : Tuple = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase__ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
75
"""simple docstring""" from __future__ import annotations import math def lowercase (snake_case__ : int ) -> list[int]: '''simple docstring''' if num <= 0: lowerCAmelCase = f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(snake_case__ ) lowerCAmelCase = [True] * (num + 1) lowerCAmelCase = [] lowerCAmelCase = 2 lowerCAmelCase = int(math.sqrt(snake_case__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(snake_case__ ) # Set multiples of start be False for i in range(start * start , num + 1 , snake_case__ ): if sieve[i] is True: lowerCAmelCase = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(snake_case__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
169
0
"""simple docstring""" import numpy class _A : """simple docstring""" def __init__( self : List[str] , __UpperCAmelCase : numpy.ndarray , __UpperCAmelCase : numpy.ndarray): a : Optional[Any] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. a : Union[str, Any] = numpy.random.rand( self.input_array.shape[1] , 4) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. a : Tuple = numpy.random.rand( 4 , 3) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. a : Dict = numpy.random.rand(3 , 1) # Real output values provided. a : Optional[Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. a : int = numpy.zeros(output_array.shape) def __snake_case ( self : List[str]): a : Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights)) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. a : Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , )) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. a : Any = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , )) return self.layer_between_second_hidden_layer_and_output def __snake_case ( self : int): a : Tuple = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , ) a : Tuple = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer) , ) a : Optional[Any] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __snake_case ( self : int , __UpperCAmelCase : numpy.ndarray , __UpperCAmelCase : int , __UpperCAmelCase : bool): for iteration in range(1 , iterations + 1): a : List[str] = self.feedforward() self.back_propagation() if give_loss: a : List[str] = numpy.mean(numpy.square(output - self.feedforward())) print(f'''Iteration {iteration} Loss: {loss}''') def __snake_case ( self : int , __UpperCAmelCase : numpy.ndarray): a : Optional[Any] = input_arr a : str = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights)) a : Tuple = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , )) a : str = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , )) return int(self.layer_between_second_hidden_layer_and_output > 0.6) def lowercase ( A_ )-> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowercase ( A_ )-> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def lowercase ( )-> int: '''simple docstring''' a : Union[str, Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. a : str = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. a : int = TwoHiddenLayerNeuralNetwork( input_array=A_ , output_array=A_ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=A_ , iterations=10 , give_loss=A_ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
135
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( A_ , A_ , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' with open(A_ ) as metadata_file: a : int = json.load(A_ ) a : int = LukeConfig(use_entity_aware_attention=A_ , **metadata["model_config"] ) # Load in the weights from the checkpoint_path a : Union[str, Any] = torch.load(A_ , map_location="cpu" ) # Load the entity vocab file a : Optional[int] = load_entity_vocab(A_ ) a : Optional[int] = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks a : str = AddedToken("<ent>" , lstrip=A_ , rstrip=A_ ) a : Optional[int] = AddedToken("<ent2>" , lstrip=A_ , rstrip=A_ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(A_ ) with open(os.path.join(A_ , LukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(A_ , A_ ) a : int = LukeTokenizer.from_pretrained(A_ ) # Initialize the embeddings of the special tokens a : int = state_dict["embeddings.word_embeddings.weight"] a : str = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) a : Dict = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) a : int = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: a : Any = F'''encoder.layer.{layer_index}.attention.self.''' a : Dict = state_dict[prefix + matrix_name] a : Optional[int] = state_dict[prefix + matrix_name] a : Tuple = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks a : Optional[Any] = state_dict["entity_embeddings.entity_embeddings.weight"] a : Dict = entity_emb[entity_vocab["[MASK]"]] a : Union[str, Any] = LukeModel(config=A_ ).eval() a , a : int = model.load_state_dict(A_ , strict=A_ ) if not (len(A_ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'''Missing keys {", ".join(A_ )}. Expected only missing embeddings.position_ids''' ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" F''' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}''' ) # Check outputs a : List[Any] = LukeTokenizer.from_pretrained(A_ , task="entity_classification" ) a : Union[str, Any] = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) a : int = (39, 42) a : List[str] = tokenizer(A_ , entity_spans=[span] , add_prefix_space=A_ , return_tensors="pt" ) a : Tuple = model(**A_ ) # Verify word hidden states if model_size == "large": a : List[Any] = torch.Size((1, 42, 1_024) ) a : Tuple = torch.tensor( [[0.0_1_3_3, 0.0_8_6_5, 0.0_0_9_5], [0.3_0_9_3, -0.2_5_7_6, -0.7_4_1_8], [-0.1_7_2_0, -0.2_1_1_7, -0.2_8_6_9]] ) else: # base a : Union[str, Any] = torch.Size((1, 42, 768) ) a : List[str] = torch.tensor([[0.0_0_3_7, 0.1_3_6_8, -0.0_0_9_1], [0.1_0_9_9, 0.3_3_2_9, -0.1_0_9_5], [0.0_7_6_5, 0.5_3_3_5, 0.1_1_7_9]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , A_ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": a : Tuple = torch.Size((1, 1, 1_024) ) a : Optional[int] = torch.tensor([[0.0_4_6_6, -0.0_1_0_6, -0.0_1_7_9]] ) else: # base a : Any = torch.Size((1, 1, 768) ) a : List[Any] = torch.tensor([[0.1_4_5_7, 0.1_0_4_4, 0.0_1_7_4]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , A_ , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(A_ ) ) model.save_pretrained(A_ ) def lowercase ( A_ )-> int: '''simple docstring''' a : List[str] = {} with open(A_ , "r" , encoding="utf-8" ) as f: for index, line in enumerate(A_ ): a , a : int = line.rstrip().split("\t" ) a : Any = index return entity_vocab if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) __lowercase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
135
1
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def lowerCamelCase__ ( UpperCAmelCase_ )-> Optional[Any]: """simple docstring""" def decorator(UpperCAmelCase_ ): UpperCamelCase = getattr(UpperCAmelCase_ , "handle_key" , [] ) handle += [key] setattr(UpperCAmelCase_ , "handle_key" , UpperCAmelCase_ ) return func return decorator def lowerCamelCase__ ( *UpperCAmelCase_ )-> Any: """simple docstring""" def decorator(UpperCAmelCase_ ): UpperCamelCase = getattr(UpperCAmelCase_ , "handle_key" , [] ) handle += keys setattr(UpperCAmelCase_ , "handle_key" , UpperCAmelCase_ ) return func return decorator class __a ( _lowerCAmelCase ): def __new__( cls : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] )-> Dict: """simple docstring""" UpperCamelCase = super().__new__(cls , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if not hasattr(UpperCAmelCase_ , "key_handler" ): setattr(UpperCAmelCase_ , "key_handler" , {} ) setattr(UpperCAmelCase_ , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): UpperCamelCase = getattr(UpperCAmelCase_ , "handle_key" , [] ) for key in handled_keys: UpperCamelCase = value return new_cls @staticmethod def _SCREAMING_SNAKE_CASE ( cls : str )-> str: """simple docstring""" UpperCamelCase = get_character() if char != KEYMAP["undefined"]: UpperCamelCase = ord(UpperCAmelCase_ ) UpperCamelCase = cls.key_handler.get(UpperCAmelCase_ ) if handler: UpperCamelCase = char return handler(cls ) else: return None def lowerCamelCase__ ( cls )-> List[str]: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
554
"""simple docstring""" class __a : def __init__( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCamelCase = name UpperCamelCase = value UpperCamelCase = weight def __repr__( self : int )-> Any: """simple docstring""" return f"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def _SCREAMING_SNAKE_CASE ( self : int )-> Union[str, Any]: """simple docstring""" return self.value def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> int: """simple docstring""" return self.name def _SCREAMING_SNAKE_CASE ( self : Tuple )-> List[Any]: """simple docstring""" return self.weight def _SCREAMING_SNAKE_CASE ( self : Any )-> Union[str, Any]: """simple docstring""" return self.value / self.weight def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Union[str, Any]: """simple docstring""" UpperCamelCase = [] for i in range(len(UpperCAmelCase_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Dict: """simple docstring""" UpperCamelCase = sorted(UpperCAmelCase_ , key=UpperCAmelCase_ , reverse=UpperCAmelCase_ ) UpperCamelCase = [] UpperCamelCase , UpperCamelCase = 0.0, 0.0 for i in range(len(UpperCAmelCase_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def lowerCamelCase__ ( )-> Dict: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
554
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a= logging.get_logger(__name__) a= { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __lowercase ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''vit_msn''' def __init__( self , _lowerCamelCase=7_6_8 , _lowerCamelCase=1_2 , _lowerCamelCase=1_2 , _lowerCamelCase=3_0_7_2 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1E-0_6 , _lowerCamelCase=2_2_4 , _lowerCamelCase=1_6 , _lowerCamelCase=3 , _lowerCamelCase=True , **_lowerCamelCase , ): super().__init__(**_UpperCAmelCase ) __UpperCamelCase : List[str] = hidden_size __UpperCamelCase : Any = num_hidden_layers __UpperCamelCase : List[str] = num_attention_heads __UpperCamelCase : Optional[Any] = intermediate_size __UpperCamelCase : Optional[Any] = hidden_act __UpperCamelCase : int = hidden_dropout_prob __UpperCamelCase : int = attention_probs_dropout_prob __UpperCamelCase : Optional[Any] = initializer_range __UpperCamelCase : int = layer_norm_eps __UpperCamelCase : int = image_size __UpperCamelCase : List[str] = patch_size __UpperCamelCase : int = num_channels __UpperCamelCase : Any = qkv_bias
714
'''simple docstring''' class __lowercase : """simple docstring""" def __init__( self ): __UpperCamelCase : Any = 0 __UpperCamelCase : Any = 0 __UpperCamelCase : Any = {} def lowerCAmelCase ( self , _lowerCamelCase ): if vertex not in self.adjacency: __UpperCamelCase : Tuple = {} self.num_vertices += 1 def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): self.add_vertex(_lowerCamelCase ) self.add_vertex(_lowerCamelCase ) if head == tail: return __UpperCamelCase : List[Any] = weight __UpperCamelCase : Optional[int] = weight def lowerCAmelCase ( self ): __UpperCamelCase : List[str] = self.get_edges() for edge in edges: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = edge edges.remove((tail, head, weight) ) for i in range(len(_lowerCamelCase ) ): __UpperCamelCase : Union[str, Any] = list(edges[i] ) edges.sort(key=lambda _lowerCamelCase : e[2] ) for i in range(len(_lowerCamelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __UpperCamelCase : Optional[int] = edges[i][2] + 1 for edge in edges: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = edge __UpperCamelCase : Tuple = weight __UpperCamelCase : Optional[Any] = weight def __str__( self ): __UpperCamelCase : Optional[Any] = '' for tail in self.adjacency: for head in self.adjacency[tail]: __UpperCamelCase : Tuple = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def lowerCAmelCase ( self ): __UpperCamelCase : Any = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCAmelCase ( self ): return self.adjacency.keys() @staticmethod def lowerCAmelCase ( _lowerCamelCase=None , _lowerCamelCase=None ): __UpperCamelCase : Tuple = Graph() if vertices is None: __UpperCamelCase : List[Any] = [] if edges is None: __UpperCamelCase : Optional[int] = [] for vertex in vertices: g.add_vertex(_lowerCamelCase ) for edge in edges: g.add_edge(*_lowerCamelCase ) return g class __lowercase : """simple docstring""" def __init__( self ): __UpperCamelCase : Union[str, Any] = {} __UpperCamelCase : int = {} def __len__( self ): return len(self.parent ) def lowerCAmelCase ( self , _lowerCamelCase ): if item in self.parent: return self.find(_lowerCamelCase ) __UpperCamelCase : Optional[Any] = item __UpperCamelCase : List[str] = 0 return item def lowerCAmelCase ( self , _lowerCamelCase ): if item not in self.parent: return self.make_set(_lowerCamelCase ) if item != self.parent[item]: __UpperCamelCase : int = self.find(self.parent[item] ) return self.parent[item] def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ): __UpperCamelCase : Tuple = self.find(_lowerCamelCase ) __UpperCamelCase : Any = self.find(_lowerCamelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __UpperCamelCase : Dict = roota return roota if self.rank[roota] < self.rank[roota]: __UpperCamelCase : Optional[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __UpperCamelCase : Dict = roota return roota return None @staticmethod def lowerCAmelCase ( _lowerCamelCase ): __UpperCamelCase : int = graph.num_vertices __UpperCamelCase : str = Graph.UnionFind() __UpperCamelCase : Tuple = [] while num_components > 1: __UpperCamelCase : Dict = {} for vertex in graph.get_vertices(): __UpperCamelCase : str = -1 __UpperCamelCase : int = graph.get_edges() for edge in edges: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[str] = edge edges.remove((tail, head, weight) ) for edge in edges: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Dict = edge __UpperCamelCase : List[Any] = union_find.find(_lowerCamelCase ) __UpperCamelCase : str = union_find.find(_lowerCamelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __UpperCamelCase : str = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __UpperCamelCase : str = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[str] = cheap_edge[vertex] if union_find.find(_lowerCamelCase ) != union_find.find(_lowerCamelCase ): union_find.union(_lowerCamelCase , _lowerCamelCase ) mst_edges.append(cheap_edge[vertex] ) __UpperCamelCase : int = num_components - 1 __UpperCamelCase : Union[str, Any] = Graph.build(edges=_lowerCamelCase ) return mst
287
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = "vivit" def __init__( self : str , __snake_case : Tuple=2_2_4 , __snake_case : Union[str, Any]=3_2 , __snake_case : Optional[int]=[2, 1_6, 1_6] , __snake_case : Union[str, Any]=3 , __snake_case : Union[str, Any]=7_6_8 , __snake_case : List[str]=1_2 , __snake_case : int=1_2 , __snake_case : Optional[int]=3_0_7_2 , __snake_case : Tuple="gelu_fast" , __snake_case : Union[str, Any]=0.0 , __snake_case : Tuple=0.0 , __snake_case : Optional[Any]=0.02 , __snake_case : str=1E-06 , __snake_case : Union[str, Any]=True , **__snake_case : Optional[int] , ) -> List[str]: __magic_name__: Optional[Any] = hidden_size __magic_name__: int = num_hidden_layers __magic_name__: Optional[Any] = num_attention_heads __magic_name__: Optional[int] = intermediate_size __magic_name__: Dict = hidden_act __magic_name__: Optional[Any] = hidden_dropout_prob __magic_name__: int = attention_probs_dropout_prob __magic_name__: Dict = initializer_range __magic_name__: Optional[Any] = layer_norm_eps __magic_name__: Tuple = image_size __magic_name__: List[Any] = num_frames __magic_name__: Any = tubelet_size __magic_name__: List[str] = num_channels __magic_name__: Union[str, Any] = qkv_bias super().__init__(**__snake_case )
96
"""simple docstring""" def a ( __UpperCAmelCase : int = 1_0_0 ) -> int: __magic_name__: str = 0 __magic_name__: Any = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
96
1
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=0.1 , snake_case_=0.1 , snake_case_=2_2_4 , snake_case_=1_0_0_0 , snake_case_=[3, 3, 6, 4] , snake_case_=[4_8, 5_6, 1_1_2, 2_2_0] , ): """simple docstring""" A_ : Any = parent A_ : str = batch_size A_ : Any = num_channels A_ : int = is_training A_ : int = use_labels A_ : Any = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : str = num_labels A_ : int = image_size A_ : Optional[int] = layer_depths A_ : Union[str, Any] = embed_dims def lowerCamelCase_ ( self ): """simple docstring""" A_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Union[str, Any] = None if self.use_labels: A_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) A_ : List[str] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self ): """simple docstring""" return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=snake_case_ , layer_scale_init_value=1E-5 , ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : str = SwiftFormerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() A_ : Any = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : str = self.num_labels A_ : Tuple = SwiftFormerForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() A_ : Optional[Any] = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) A_ : Tuple = SwiftFormerForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() A_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Union[str, Any] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ): """simple docstring""" (A_) : Tuple = self.prepare_config_and_inputs() A_ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowercase_ : Any = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowercase_ : Optional[Any] = ( {"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification} if is_torch_available() else {} ) lowercase_ : Tuple = False lowercase_ : List[str] = False lowercase_ : Optional[Any] = False lowercase_ : List[str] = False lowercase_ : str = False def lowerCamelCase_ ( self ): """simple docstring""" A_ : Dict = SwiftFormerModelTester(self ) A_ : int = ConfigTester( self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , ) def lowerCamelCase_ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds' ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Dict = model_class(snake_case_ ) A_ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[str] = model_class(snake_case_ ) A_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : str = [*signature.parameters.keys()] A_ : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = SwiftFormerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip(reason='SwiftFormer does not output attentions' ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" def check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ): A_ : List[Any] = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): A_ : str = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) A_ : List[str] = outputs.hidden_states A_ : List[Any] = 8 self.assertEqual(len(snake_case_ ) , snake_case_ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(snake_case_ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[Any] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : Dict = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" def _config_zero_init(snake_case_ ): A_ : Optional[Any] = copy.deepcopy(snake_case_ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(snake_case_ , snake_case_ , 1E-10 ) if isinstance(getattr(snake_case_ , snake_case_ , snake_case_ ) , snake_case_ ): A_ : int = _config_zero_init(getattr(snake_case_ , snake_case_ ) ) setattr(snake_case_ , snake_case_ , snake_case_ ) return configs_no_init A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[Any] = _config_zero_init(snake_case_ ) for model_class in self.all_model_classes: A_ : List[Any] = model_class(config=snake_case_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase_ ( self ): """simple docstring""" pass def UpperCAmelCase__ ( ): """simple docstring""" A_ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase_ ( self ): """simple docstring""" return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self ): """simple docstring""" A_ : int = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(snake_case_ ) A_ : Any = self.default_image_processor A_ : int = prepare_img() A_ : List[str] = image_processor(images=snake_case_ , return_tensors='pt' ).to(snake_case_ ) # forward pass with torch.no_grad(): A_ : Optional[Any] = model(**snake_case_ ) # verify the logits A_ : str = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) A_ : Union[str, Any] = torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) )
708
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase=0.999 , _UpperCAmelCase="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCAmelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) A_ : str = [] for i in range(_UpperCAmelCase ): A_ : Optional[Any] = i / num_diffusion_timesteps A_ : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_UpperCAmelCase ) / alpha_bar_fn(_UpperCAmelCase ) , _UpperCAmelCase ) ) return torch.tensor(_UpperCAmelCase , dtype=torch.floataa ) class _UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' lowercase_ : List[Any] = [e.name for e in KarrasDiffusionSchedulers] lowercase_ : List[Any] = 2 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = 0.0_00_85 , snake_case_ = 0.0_12 , snake_case_ = "linear" , snake_case_ = None , snake_case_ = "epsilon" , snake_case_ = False , snake_case_ = False , snake_case_ = 1.0 , snake_case_ = "linspace" , snake_case_ = 0 , ): """simple docstring""" if trained_betas is not None: A_ : Optional[int] = torch.tensor(snake_case_ , dtype=torch.floataa ) elif beta_schedule == "linear": A_ : List[Any] = torch.linspace(snake_case_ , snake_case_ , snake_case_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A_ : List[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A_ : List[str] = betas_for_alpha_bar(snake_case_ , alpha_transform_type='cosine' ) elif beta_schedule == "exp": A_ : Union[str, Any] = betas_for_alpha_bar(snake_case_ , alpha_transform_type='exp' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) A_ : Dict = 1.0 - self.betas A_ : Any = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case_ , snake_case_ , snake_case_ ) A_ : List[Any] = use_karras_sigmas def lowerCamelCase_ ( self , snake_case_ , snake_case_=None ): """simple docstring""" if schedule_timesteps is None: A_ : List[str] = self.timesteps A_ : Any = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: A_ : Tuple = 1 if len(snake_case_ ) > 1 else 0 else: A_ : Optional[int] = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep A_ : Tuple = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCamelCase_ ( self ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCamelCase_ ( self , snake_case_ , snake_case_ , ): """simple docstring""" A_ : Optional[int] = self.index_for_timestep(snake_case_ ) A_ : Union[str, Any] = self.sigmas[step_index] A_ : List[str] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCamelCase_ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , ): """simple docstring""" A_ : Tuple = num_inference_steps A_ : Any = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": A_ : Dict = np.linspace(0 , num_train_timesteps - 1 , snake_case_ , dtype=snake_case_ )[::-1].copy() elif self.config.timestep_spacing == "leading": A_ : int = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A_ : str = (np.arange(0 , snake_case_ ) * step_ratio).round()[::-1].copy().astype(snake_case_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": A_ : Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A_ : Optional[Any] = (np.arange(snake_case_ , 0 , -step_ratio )).round().copy().astype(snake_case_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) A_ : List[Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) A_ : int = np.log(snake_case_ ) A_ : str = np.interp(snake_case_ , np.arange(0 , len(snake_case_ ) ) , snake_case_ ) if self.config.use_karras_sigmas: A_ : Union[str, Any] = self._convert_to_karras(in_sigmas=snake_case_ , num_inference_steps=self.num_inference_steps ) A_ : Dict = np.array([self._sigma_to_t(snake_case_ , snake_case_ ) for sigma in sigmas] ) A_ : Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) A_ : List[Any] = torch.from_numpy(snake_case_ ).to(device=snake_case_ ) A_ : str = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) A_ : int = torch.from_numpy(snake_case_ ) A_ : Dict = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(snake_case_ ).startswith('mps' ): # mps does not support float64 A_ : int = timesteps.to(snake_case_ , dtype=torch.floataa ) else: A_ : Tuple = timesteps.to(device=snake_case_ ) # empty dt and derivative A_ : Optional[int] = None A_ : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter A_ : Any = defaultdict(snake_case_ ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ ): """simple docstring""" A_ : List[str] = np.log(snake_case_ ) # get distribution A_ : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range A_ : Optional[Any] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) A_ : Tuple = low_idx + 1 A_ : Dict = log_sigmas[low_idx] A_ : Optional[Any] = log_sigmas[high_idx] # interpolate sigmas A_ : Any = (low - log_sigma) / (low - high) A_ : Optional[int] = np.clip(snake_case_ , 0 , 1 ) # transform interpolation to time range A_ : str = (1 - w) * low_idx + w * high_idx A_ : Optional[int] = t.reshape(sigma.shape ) return t def lowerCamelCase_ ( self , snake_case_ , snake_case_ ): """simple docstring""" A_ : float = in_sigmas[-1].item() A_ : float = in_sigmas[0].item() A_ : str = 7.0 # 7.0 is the value used in the paper A_ : str = np.linspace(0 , 1 , snake_case_ ) A_ : List[str] = sigma_min ** (1 / rho) A_ : int = sigma_max ** (1 / rho) A_ : str = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowerCamelCase_ ( self ): """simple docstring""" return self.dt is None def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ): """simple docstring""" A_ : Dict = self.index_for_timestep(snake_case_ ) # advance index counter by 1 A_ : Tuple = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: A_ : Tuple = self.sigmas[step_index] A_ : List[str] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method A_ : str = self.sigmas[step_index - 1] A_ : Optional[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API A_ : Tuple = 0 A_ : Union[str, Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": A_ : str = sigma_hat if self.state_in_first_order else sigma_next A_ : Tuple = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": A_ : Tuple = sigma_hat if self.state_in_first_order else sigma_next A_ : Optional[int] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": A_ : Optional[int] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: A_ : Union[str, Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order A_ : str = (sample - pred_original_sample) / sigma_hat # 3. delta timestep A_ : str = sigma_next - sigma_hat # store for 2nd order step A_ : Optional[Any] = derivative A_ : Union[str, Any] = dt A_ : Optional[Any] = sample else: # 2. 2nd order / Heun's method A_ : List[Any] = (sample - pred_original_sample) / sigma_next A_ : Optional[Any] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample A_ : List[Any] = self.dt A_ : Optional[Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" A_ : List[str] = None A_ : Tuple = None A_ : str = None A_ : Optional[int] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , ): """simple docstring""" A_ : Optional[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case_ ): # mps does not support float64 A_ : str = self.timesteps.to(original_samples.device , dtype=torch.floataa ) A_ : List[str] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: A_ : List[str] = self.timesteps.to(original_samples.device ) A_ : int = timesteps.to(original_samples.device ) A_ : Union[str, Any] = [self.index_for_timestep(snake_case_ , snake_case_ ) for t in timesteps] A_ : int = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): A_ : List[Any] = sigma.unsqueeze(-1 ) A_ : List[Any] = original_samples + noise * sigma return noisy_samples def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
302
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCAmelCase ( a__ ): """simple docstring""" A__ : List[Any] = ["image_processor", "tokenizer"] A__ : Optional[int] = "CLIPImageProcessor" A__ : Any = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self : Tuple , _snake_case : Any=None , _snake_case : Tuple=None , **_snake_case : List[str] ): """simple docstring""" A__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , SCREAMING_SNAKE_CASE_ , ) A__ = kwargs.pop('feature_extractor' ) A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __call__( self : Optional[int] , _snake_case : List[Any]=None , _snake_case : Optional[int]=None , _snake_case : Dict=None , **_snake_case : Optional[Any] ): """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: A__ = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if images is not None: A__ = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if text is not None and images is not None: A__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_ ) , tensor_type=SCREAMING_SNAKE_CASE_ ) def _a ( self : Union[str, Any] , *_snake_case : str , **_snake_case : Any ): """simple docstring""" return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _a ( self : Union[str, Any] , *_snake_case : Dict , **_snake_case : List[str] ): """simple docstring""" return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def _a ( self : Optional[Any] ): """simple docstring""" A__ = self.tokenizer.model_input_names A__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
9
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __UpperCAmelCase = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __UpperCAmelCase = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __UpperCAmelCase = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __UpperCAmelCase = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __UpperCAmelCase = tf.keras.preprocessing.image.img_to_array(test_image) __UpperCAmelCase = np.expand_dims(test_image, axis=0) __UpperCAmelCase = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __UpperCAmelCase = '''Normal''' if result[0][0] == 1: __UpperCAmelCase = '''Abnormality detected'''
40
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): # Initialise PyTorch model _UpperCamelCase = FunnelConfig.from_json_file(lowerCAmelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) _UpperCamelCase = FunnelBaseModel(lowerCAmelCase ) if base_model else FunnelModel(lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowerCAmelCase ) if __name__ == "__main__": lowercase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not.""" ) lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
105
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class __A( __UpperCAmelCase ): def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = SMALL_MODEL_IDENTIFIER _UpperCamelCase = '''pt''' _UpperCamelCase = '''tf''' def _UpperCamelCase ( self, A ): """simple docstring""" _UpperCamelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(A ) def _UpperCamelCase ( self, A ): """simple docstring""" _UpperCamelCase = TFAutoModel.from_pretrained(self.test_model, from_pt=A ) model_tf.save_pretrained(A ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = '''mock_framework''' # Framework provided - return whatever the user provides _UpperCamelCase = FeaturesManager.determine_framework(self.test_model, A ) self.assertEqual(A, A ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(A ) _UpperCamelCase = FeaturesManager.determine_framework(A, A ) self.assertEqual(A, A ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(A ) _UpperCamelCase = FeaturesManager.determine_framework(A, A ) self.assertEqual(A, A ) def _UpperCamelCase ( self ): """simple docstring""" with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(A ) _UpperCamelCase = FeaturesManager.determine_framework(A ) self.assertEqual(A, self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(A ) _UpperCamelCase = FeaturesManager.determine_framework(A ) self.assertEqual(A, self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(A ): _UpperCamelCase = FeaturesManager.determine_framework(A ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = MagicMock(return_value=A ) with patch('''transformers.onnx.features.is_tf_available''', A ): _UpperCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(A, self.framework_pt ) # PyTorch not in environment -> use TensorFlow _UpperCamelCase = MagicMock(return_value=A ) with patch('''transformers.onnx.features.is_torch_available''', A ): _UpperCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(A, self.framework_tf ) # Both in environment -> use PyTorch _UpperCamelCase = MagicMock(return_value=A ) _UpperCamelCase = MagicMock(return_value=A ) with patch('''transformers.onnx.features.is_tf_available''', A ), patch( '''transformers.onnx.features.is_torch_available''', A ): _UpperCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(A, self.framework_pt ) # Both not in environment -> raise error _UpperCamelCase = MagicMock(return_value=A ) _UpperCamelCase = MagicMock(return_value=A ) with patch('''transformers.onnx.features.is_tf_available''', A ), patch( '''transformers.onnx.features.is_torch_available''', A ): with self.assertRaises(A ): _UpperCamelCase = FeaturesManager.determine_framework(self.test_model )
105
1
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( a_ ): """simple docstring""" UpperCAmelCase__ = (DDPMScheduler,) def snake_case ( self : List[str] , **__A : Tuple ): """simple docstring""" _lowercase = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**__UpperCamelCase ) return config def snake_case ( self : Tuple ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def snake_case ( self : Optional[int] ): """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=__UpperCamelCase , beta_end=__UpperCamelCase ) def snake_case ( self : str ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__UpperCamelCase ) def snake_case ( self : Optional[int] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__UpperCamelCase ) def snake_case ( self : Union[str, Any] ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__UpperCamelCase ) def snake_case ( self : Optional[int] ): """simple docstring""" self.check_over_configs(thresholding=__UpperCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__UpperCamelCase , prediction_type=__UpperCamelCase , sample_max_value=__UpperCamelCase , ) def snake_case ( self : Dict ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def snake_case ( self : List[Any] ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=__UpperCamelCase ) def snake_case ( self : Tuple ): """simple docstring""" _lowercase = self.scheduler_classes[0] _lowercase = self.get_scheduler_config() _lowercase = scheduler_class(**__UpperCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.0_2 ) ) < 1e-5 def snake_case ( self : Any ): """simple docstring""" _lowercase = self.scheduler_classes[0] _lowercase = self.get_scheduler_config() _lowercase = scheduler_class(**__UpperCamelCase ) _lowercase = len(__UpperCamelCase ) _lowercase = self.dummy_model() _lowercase = self.dummy_sample_deter _lowercase = torch.manual_seed(0 ) for t in reversed(range(__UpperCamelCase ) ): # 1. predict noise residual _lowercase = model(__UpperCamelCase , __UpperCamelCase ) # 2. predict previous mean of sample x_t-1 _lowercase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowercase = pred_prev_sample _lowercase = torch.sum(torch.abs(__UpperCamelCase ) ) _lowercase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def snake_case ( self : Dict ): """simple docstring""" _lowercase = self.scheduler_classes[0] _lowercase = self.get_scheduler_config(prediction_type="v_prediction" ) _lowercase = scheduler_class(**__UpperCamelCase ) _lowercase = len(__UpperCamelCase ) _lowercase = self.dummy_model() _lowercase = self.dummy_sample_deter _lowercase = torch.manual_seed(0 ) for t in reversed(range(__UpperCamelCase ) ): # 1. predict noise residual _lowercase = model(__UpperCamelCase , __UpperCamelCase ) # 2. predict previous mean of sample x_t-1 _lowercase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowercase = pred_prev_sample _lowercase = torch.sum(torch.abs(__UpperCamelCase ) ) _lowercase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def snake_case ( self : str ): """simple docstring""" _lowercase = self.scheduler_classes[0] _lowercase = self.get_scheduler_config() _lowercase = scheduler_class(**__UpperCamelCase ) _lowercase = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=__UpperCamelCase ) _lowercase = scheduler.timesteps for i, timestep in enumerate(__UpperCamelCase ): if i == len(__UpperCamelCase ) - 1: _lowercase = -1 else: _lowercase = timesteps[i + 1] _lowercase = scheduler.previous_timestep(__UpperCamelCase ) _lowercase = prev_t.item() self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def snake_case ( self : int ): """simple docstring""" _lowercase = self.scheduler_classes[0] _lowercase = self.get_scheduler_config() _lowercase = scheduler_class(**__UpperCamelCase ) _lowercase = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(__UpperCamelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__UpperCamelCase ) def snake_case ( self : List[str] ): """simple docstring""" _lowercase = self.scheduler_classes[0] _lowercase = self.get_scheduler_config() _lowercase = scheduler_class(**__UpperCamelCase ) _lowercase = [1_0_0, 8_7, 5_0, 1, 0] _lowercase = len(__UpperCamelCase ) with self.assertRaises(__UpperCamelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=__UpperCamelCase , timesteps=__UpperCamelCase ) def snake_case ( self : Union[str, Any] ): """simple docstring""" _lowercase = self.scheduler_classes[0] _lowercase = self.get_scheduler_config() _lowercase = scheduler_class(**__UpperCamelCase ) _lowercase = [scheduler.config.num_train_timesteps] with self.assertRaises( __UpperCamelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__UpperCamelCase )
497
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase : List[Any] = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = ['''OwlViTFeatureExtractor'''] lowerCamelCase : str = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
0
'''simple docstring''' from __future__ import annotations from dataclasses import dataclass @dataclass class a__ : """simple docstring""" __UpperCamelCase : float __UpperCamelCase : TreeNode | None = None __UpperCamelCase : TreeNode | None = None def __magic_name__( lowerCamelCase): # Validation def is_valid_tree(lowerCamelCase) -> bool: if node is None: return True if not isinstance(lowerCamelCase, lowerCamelCase): return False try: float(node.data) except (TypeError, ValueError): return False return is_valid_tree(node.left) and is_valid_tree(node.right) if not is_valid_tree(lowerCamelCase): raise ValueError( '''Each node should be type of TreeNode and data should be float.''') def is_binary_search_tree_recursive_check( lowerCamelCase, lowerCamelCase, lowerCamelCase) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left, lowerCamelCase, node.data) and is_binary_search_tree_recursive_check( node.right, node.data, lowerCamelCase) ) return is_binary_search_tree_recursive_check(lowerCamelCase, -float('''inf'''), float('''inf''')) if __name__ == "__main__": import doctest doctest.testmod()
474
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _UpperCAmelCase : str = ["""gpt2"""] _UpperCAmelCase : Optional[int] = """gpt2""" if is_tf_available(): class a__ ( tf.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = tokenizer __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) __lowerCAmelCase = TFGPTaLMHeadModel.from_config(__lowercase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def _snake_case (self , __lowercase ): __lowerCAmelCase = self.tokenizer(__lowercase ) __lowerCAmelCase = tokenized['''input_ids'''].to_tensor() __lowerCAmelCase = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __lowerCAmelCase = self.model(input_ids=__lowercase , attention_mask=__lowercase )['''logits'''] return outputs @require_tf @require_keras_nlp class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().setUp() __lowerCAmelCase = [GPTaTokenizer.from_pretrained(__lowercase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __lowerCAmelCase = [TFGPTaTokenizer.from_pretrained(__lowercase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __lowerCAmelCase = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] __lowerCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _snake_case (self ): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __lowerCAmelCase = tokenizer([test_inputs] , return_tensors='''tf''' ) __lowerCAmelCase = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __lowerCAmelCase = python_outputs[key].numpy() __lowerCAmelCase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__lowercase , tf.intaa ) == tf_outputs_values ) ) @slow def _snake_case (self ): for tf_tokenizer in self.tf_tokenizers: __lowerCAmelCase = tf.function(__lowercase ) for test_inputs in self.test_sentences: __lowerCAmelCase = tf.constant(__lowercase ) __lowerCAmelCase = compiled_tokenizer(__lowercase ) __lowerCAmelCase = tf_tokenizer(__lowercase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _snake_case (self ): for tf_tokenizer in self.tf_tokenizers: __lowerCAmelCase = ModelToSave(tokenizer=__lowercase ) __lowerCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCAmelCase = model.serving(__lowercase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __lowerCAmelCase = Path(__lowercase ) / '''saved.model''' tf.saved_model.save(__lowercase , __lowercase , signatures={'''serving_default''': model.serving} ) __lowerCAmelCase = tf.saved_model.load(__lowercase ) __lowerCAmelCase = loaded_model.signatures['''serving_default'''](__lowercase )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _snake_case (self ): for tf_tokenizer in self.tf_tokenizers: __lowerCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCAmelCase = tf_tokenizer(__lowercase ) # Build model with some sample inputs __lowerCAmelCase = tf_tokenizer.get_config() __lowerCAmelCase = TFGPTaTokenizer.from_config(__lowercase ) __lowerCAmelCase = model_from_config(__lowercase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _snake_case (self ): for tf_tokenizer in self.tf_tokenizers: # for the test to run __lowerCAmelCase = 12_31_23 for max_length in [3, 5, 10_24]: __lowerCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCAmelCase = tf_tokenizer(__lowercase , max_length=__lowercase ) __lowerCAmelCase = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
474
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
604
def __UpperCAmelCase ( UpperCAmelCase = 50 )-> int: """simple docstring""" lowercase = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2, 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"{solution() = }")
604
1
from __future__ import annotations from cmath import sqrt def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) SCREAMING_SNAKE_CASE__ : str = b * b - 4 * a * c SCREAMING_SNAKE_CASE__ : int = (-b + sqrt(_lowerCamelCase )) / (2 * a) SCREAMING_SNAKE_CASE__ : Dict = (-b - sqrt(_lowerCamelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : int = quadratic_roots(a=5 , b=6 , c=1 ) print(f"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
26
def UpperCAmelCase ( _lowerCamelCase : int = 1_000 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = -1 SCREAMING_SNAKE_CASE__ : str = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c SCREAMING_SNAKE_CASE__ : Tuple = (n * n - 2 * a * n) // (2 * n - 2 * a) SCREAMING_SNAKE_CASE__ : Dict = n - a - b if c * c == (a * a + b * b): SCREAMING_SNAKE_CASE__ : str = a * b * c if candidate >= product: SCREAMING_SNAKE_CASE__ : List[str] = candidate return product if __name__ == "__main__": print(f"{solution() = }")
26
1
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": __SCREAMING_SNAKE_CASE = input('Enter image url: ').strip() print(F"""Downloading image from {url} ...""") __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image __SCREAMING_SNAKE_CASE = soup.find('meta', {'property': 'og:image'})["content"] __SCREAMING_SNAKE_CASE = requests.get(image_url).content __SCREAMING_SNAKE_CASE = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, 'wb') as fp: fp.write(image_data) print(F"""Done. Image saved to disk as {file_name}.""")
357
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
63
0
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) a : List[str] = logging.getLogger(__name__) if __name__ == "__main__": a : Dict = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=3_0522, type=int) a : Optional[int] = parser.parse_args() logger.info(f'''Loading data from {args.data_file}''') with open(args.data_file, 'rb') as fp: a : Optional[Any] = pickle.load(fp) logger.info('Counting occurrences for MLM.') a : Optional[Any] = Counter() for tk_ids in data: counter.update(tk_ids) a : List[Any] = [0] * args.vocab_size for k, v in counter.items(): a : Tuple = v logger.info(f'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
712
'''simple docstring''' from collections import defaultdict def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' snake_case_ = 1 snake_case_ = True for v in tree[start]: if v not in visited: ret += dfs(__UpperCAmelCase ) if ret % 2 == 0: cuts.append(__UpperCAmelCase ) return ret def __magic_name__ ( ) -> List[Any]: '''simple docstring''' dfs(1 ) if __name__ == "__main__": a ,a : int = 10, 9 a : Any = defaultdict(list) a : dict[int, bool] = {} a : list[int] = [] a : List[Any] = 0 a : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
593
0
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) UpperCAmelCase = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) UpperCAmelCase = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) UpperCAmelCase = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) UpperCAmelCase = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) UpperCAmelCase = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) UpperCAmelCase = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) UpperCAmelCase = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) UpperCAmelCase = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) UpperCAmelCase = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) UpperCAmelCase = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) UpperCAmelCase = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) UpperCAmelCase = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) UpperCAmelCase = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) UpperCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_MAPPING UpperCAmelCase = auto_class_update(FlaxAutoModel) class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
88
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) UpperCAmelCase = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) UpperCAmelCase = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) UpperCAmelCase = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) UpperCAmelCase = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) UpperCAmelCase = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) UpperCAmelCase = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) UpperCAmelCase = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) UpperCAmelCase = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) UpperCAmelCase = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) UpperCAmelCase = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) UpperCAmelCase = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) UpperCAmelCase = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) UpperCAmelCase = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) UpperCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_MAPPING UpperCAmelCase = auto_class_update(FlaxAutoModel) class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class lowercase__ ( _BaseAutoModelClass ): __UpperCAmelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
88
1
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : int = "▁" _lowerCAmelCase : Tuple = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __snake_case ( SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = BigBirdTokenizer SCREAMING_SNAKE_CASE__ = BigBirdTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" super().setUp() lowerCAmelCase__ = self.tokenizer_class(a_ ,keep_accents=a_ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = '<s>' lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) ,a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<unk>' ) self.assertEqual(vocab_keys[1] ,'<s>' ) self.assertEqual(vocab_keys[-1] ,'[MASK]' ) self.assertEqual(len(a_ ) ,1004 ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size ,1000 ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = 'I was born in 92000, and this is falsé.' lowerCAmelCase__ = tokenizer.tokenize(a_ ) lowerCAmelCase__ = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ ,a_ ) lowerCAmelCase__ = tokenizer.encode(a_ ,add_special_tokens=a_ ) lowerCAmelCase__ = rust_tokenizer.encode(a_ ,add_special_tokens=a_ ) self.assertListEqual(a_ ,a_ ) lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = tokenizer.encode(a_ ) lowerCAmelCase__ = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = BigBirdTokenizer(a_ ,keep_accents=a_ ) lowerCAmelCase__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(a_ ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ) ,[285, 46, 10, 170, 382] ,) lowerCAmelCase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( a_ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] ,) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual( a_ ,[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ,) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] ,) @cached_property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = 'Hello World!' lowerCAmelCase__ = [65, 1_8536, 2260, 101, 66] self.assertListEqual(a_ ,self.big_tokenizer.encode(a_ ) ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) # fmt: off lowerCAmelCase__ = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(a_ ,self.big_tokenizer.encode(a_ ) ) @require_torch @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence lowerCAmelCase__ = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCAmelCase__ = ' '.join(a_ ) lowerCAmelCase__ = self.big_tokenizer.encode_plus(a_ ,return_tensors='pt' ,return_token_type_ids=a_ ) lowerCAmelCase__ = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] ,return_tensors='pt' ,return_token_type_ids=a_ ) lowerCAmelCase__ = BigBirdConfig(attention_type='original_full' ) lowerCAmelCase__ = BigBirdModel(a_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**a_ ) model(**a_ ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) lowerCAmelCase__ = tokenizer.decode(tokenizer('Paris is the [MASK].' ).input_ids ) self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]' ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # fmt: off lowerCAmelCase__ = {'input_ids': [[65, 3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114, 66], [65, 448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_ ,model_name='google/bigbird-roberta-base' ,revision='215c99f1600e06f83acce68422f2035b2b5c3510' ,)
604
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class __snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] ,dtype=tf.floataa ,) lowerCAmelCase__ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] ,dtype=tf.intaa ,) # expected non filtered idx as noted above lowerCAmelCase__ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] ,dtype=tf.floataa ,) # expected non filtered values as noted above lowerCAmelCase__ = tf_top_k_top_p_filtering(a_ ,top_k=10 ,top_p=0.6 ,min_tokens_to_keep=4 ) lowerCAmelCase__ = output[output != -float('inf' )] lowerCAmelCase__ = tf.cast( tf.where(tf.not_equal(a_ ,tf.constant(-float('inf' ) ,dtype=tf.floataa ) ) ) ,dtype=tf.intaa ,) tf.debugging.assert_near(a_ ,a_ ,rtol=1e-1_2 ) tf.debugging.assert_equal(a_ ,a_ ) @require_tf class __snake_case ( unittest.TestCase , SCREAMING_SNAKE_CASE ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): SCREAMING_SNAKE_CASE__ = { 'AutoModelForCausalLM': TFAutoModelForCausalLM, 'AutoModelForSpeechSeq2Seq': TFAutoModelForSpeechSeqaSeq, 'AutoModelForSeq2SeqLM': TFAutoModelForSeqaSeqLM, 'AutoModelForVision2Seq': TFAutoModelForVisionaSeq, 'LogitsProcessorList': TFLogitsProcessorList, 'MinLengthLogitsProcessor': TFMinLengthLogitsProcessor, 'create_tensor_fn': tf.convert_to_tensor, 'floats_tensor': floats_tensor, 'return_tensors': 'tf', } @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # TF-only test: tf.saved_model export lowerCAmelCase__ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase__ = 2 lowerCAmelCase__ = 2 class __snake_case ( tf.Module ): def __init__( self ,a_ ): """simple docstring""" super(a_ ,self ).__init__() lowerCAmelCase__ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) ,tf.intaa ,name='input_ids' ), tf.TensorSpec((None, input_length) ,tf.intaa ,name='attention_mask' ), ) ,jit_compile=a_ ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = self.model.generate( input_ids=a_ ,attention_mask=a_ ,max_new_tokens=a_ ,return_dict_in_generate=a_ ,) return {"sequences": outputs["sequences"]} lowerCAmelCase__ = [[2, 0], [102, 103]] lowerCAmelCase__ = [[1, 0], [1, 1]] lowerCAmelCase__ = DummyModel(model=a_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a_ ,a_ ,signatures={'serving_default': dummy_model.serving} ) lowerCAmelCase__ = tf.saved_model.load(a_ ).signatures['serving_default'] for batch_size in range(1 ,len(a_ ) + 1 ): lowerCAmelCase__ = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } lowerCAmelCase__ = serving_func(**a_ )['sequences'] lowerCAmelCase__ = test_model.generate(**a_ ,max_new_tokens=a_ ) tf.debugging.assert_equal(a_ ,a_ ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # TF-only test: tf.saved_model export lowerCAmelCase__ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 class __snake_case ( tf.Module ): def __init__( self ,a_ ): """simple docstring""" super(a_ ,self ).__init__() lowerCAmelCase__ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) ,tf.intaa ,name='input_ids' ), tf.TensorSpec((batch_size, None) ,tf.intaa ,name='attention_mask' ), ) ,jit_compile=a_ ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = self.model.generate( input_ids=a_ ,attention_mask=a_ ,max_new_tokens=a_ ,return_dict_in_generate=a_ ,) return {"sequences": outputs["sequences"]} lowerCAmelCase__ = [[2], [102, 103]] lowerCAmelCase__ = [[1], [1, 1]] lowerCAmelCase__ = DummyModel(model=a_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a_ ,a_ ,signatures={'serving_default': dummy_model.serving} ) lowerCAmelCase__ = tf.saved_model.load(a_ ).signatures['serving_default'] for input_row in range(len(a_ ) ): lowerCAmelCase__ = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } lowerCAmelCase__ = serving_func(**a_ )['sequences'] lowerCAmelCase__ = test_model.generate(**a_ ,max_new_tokens=a_ ) tf.debugging.assert_equal(a_ ,a_ ) @slow @require_tensorflow_text def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' ,filename='spiece.model' ,local_dir=a_ ) class __snake_case ( tf.keras.layers.Layer ): def __init__( self ): """simple docstring""" super().__init__() lowerCAmelCase__ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(a_ ,'spiece.model' ) ,'rb' ).read() ) lowerCAmelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,*a_ ,**a_ ): """simple docstring""" lowerCAmelCase__ = self.tokenizer.tokenize(a_ ) lowerCAmelCase__ , lowerCAmelCase__ = text.pad_model_inputs( a_ ,max_seq_length=64 ,pad_value=self.model.config.pad_token_id ) lowerCAmelCase__ = self.model.generate(input_ids=a_ ,attention_mask=a_ ) return self.tokenizer.detokenize(a_ ) lowerCAmelCase__ = CompleteSentenceTransformer() lowerCAmelCase__ = tf.keras.layers.Input(shape=(1,) ,dtype=tf.string ,name='inputs' ) lowerCAmelCase__ = complete_model(a_ ) lowerCAmelCase__ = tf.keras.Model(a_ ,a_ ) keras_model.save(a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # Has PT equivalent: this test relies on random sampling lowerCAmelCase__ = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } lowerCAmelCase__ = 14 lowerCAmelCase__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase__ = 'Hello, my dog is cute and' lowerCAmelCase__ = tokenizer(a_ ,return_tensors='tf' ) lowerCAmelCase__ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase__ = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) lowerCAmelCase__ = model.generate(**a_ ,eos_token_id=a_ ,**a_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) lowerCAmelCase__ = [638, 198] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) lowerCAmelCase__ = model.generate(**a_ ,eos_token_id=a_ ,**a_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # Has PT equivalent: ample use of framework-specific code lowerCAmelCase__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase__ = 'Hugging Face is a technology company based in New York and Paris.' lowerCAmelCase__ = bart_tokenizer(a_ ,return_tensors='tf' ).input_ids lowerCAmelCase__ = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase__ = bart_model.generate(a_ ).numpy() class __snake_case ( SCREAMING_SNAKE_CASE ): def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_=None ,**a_ ): """simple docstring""" return super().call(a_ ,**a_ ) lowerCAmelCase__ = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase__ = bart_model.generate(a_ ,foo='bar' ).numpy() self.assertTrue(np.array_equal(a_ ,a_ ) ) class __snake_case ( bart_model.model.encoder.__class__ ): def SCREAMING_SNAKE_CASE_ ( self ,a_ ,**a_ ): """simple docstring""" return super().call(a_ ,**a_ ) lowerCAmelCase__ = FakeEncoder(bart_model.config ,bart_model.model.shared ) lowerCAmelCase__ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowerCAmelCase__ = bart_model.generate(a_ ).numpy() with self.assertRaises(a_ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(a_ ,foo='bar' )
604
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A ) -> list: """simple docstring""" if len(A ) <= 1: return [tuple(A )] lowercase__ = [] def generate(A , A ): lowercase__ = [0] * n res.append(tuple(A ) ) lowercase__ = 0 while i < n: if c[i] < i: if i % 2 == 0: lowercase__ ,lowercase__ = arr[i], arr[0] else: lowercase__ ,lowercase__ = arr[i], arr[c[i]] res.append(tuple(A ) ) c[i] += 1 lowercase__ = 0 else: lowercase__ = 0 i += 1 generate(len(A ) , A ) return res if __name__ == "__main__": lowerCamelCase : List[Any] = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Dict = [int(item) for item in user_input.split(',')] print(heaps(arr))
460
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _SCREAMING_SNAKE_CASE (A , A , A=1E-12 ) -> str: """simple docstring""" lowercase__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A , axis=1 ) , a_min=A ) ).T lowercase__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A , axis=1 ) , a_min=A ) ).T return jnp.matmul(A , norm_emb_a.T ) class __lowerCAmelCase (nn.Module ): '''simple docstring''' lowerCAmelCase__ : CLIPConfig lowerCAmelCase__ : jnp.dtype = jnp.floataa def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = FlaxCLIPVisionModule(self.config.vision_config ) lowercase__ = nn.Dense(self.config.projection_dim , use_bias=UpperCamelCase , dtype=self.dtype ) lowercase__ = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) lowercase__ = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) lowercase__ = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) lowercase__ = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__(self : Union[str, Any] , UpperCamelCase : Tuple ): '''simple docstring''' lowercase__ = self.vision_model(UpperCamelCase )[1] lowercase__ = self.visual_projection(UpperCamelCase ) lowercase__ = jax_cosine_distance(UpperCamelCase , self.special_care_embeds ) lowercase__ = jax_cosine_distance(UpperCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowercase__ = 0.0 lowercase__ = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowercase__ = jnp.round(UpperCamelCase , 3 ) lowercase__ = jnp.any(special_scores > 0 , axis=1 , keepdims=UpperCamelCase ) # Use a lower threshold if an image has any special care concept lowercase__ = is_special_care * 0.01 lowercase__ = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowercase__ = jnp.round(UpperCamelCase , 3 ) lowercase__ = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = CLIPConfig lowerCAmelCase__ : Optional[int] = """clip_input""" lowerCAmelCase__ : Any = FlaxStableDiffusionSafetyCheckerModule def __init__(self : Optional[int] , UpperCamelCase : CLIPConfig , UpperCamelCase : Optional[Tuple] = None , UpperCamelCase : int = 0 , UpperCamelCase : jnp.dtype = jnp.floataa , UpperCamelCase : bool = True , **UpperCamelCase : List[Any] , ): '''simple docstring''' if input_shape is None: lowercase__ = (1, 224, 224, 3) lowercase__ = self.module_class(config=UpperCamelCase , dtype=UpperCamelCase , **UpperCamelCase ) super().__init__(UpperCamelCase , UpperCamelCase , input_shape=UpperCamelCase , seed=UpperCamelCase , dtype=UpperCamelCase , _do_init=_do_init ) def UpperCamelCase__ (self : Any , UpperCamelCase : jax.random.KeyArray , UpperCamelCase : Tuple , UpperCamelCase : FrozenDict = None ): '''simple docstring''' lowercase__ = jax.random.normal(UpperCamelCase , UpperCamelCase ) lowercase__ ,lowercase__ = jax.random.split(UpperCamelCase ) lowercase__ = {'''params''': params_rng, '''dropout''': dropout_rng} lowercase__ = self.module.init(UpperCamelCase , UpperCamelCase )['''params'''] return random_params def __call__(self : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : dict = None , ): '''simple docstring''' lowercase__ = jnp.transpose(UpperCamelCase , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(UpperCamelCase , dtype=jnp.floataa ) , rngs={} , )
460
1
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a = logging.get_logger(__name__) a = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } a = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } a = {"facebook/blenderbot_small-90M": 512} def __magic_name__ ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = set() __SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE = char __SCREAMING_SNAKE_CASE = set(__UpperCAmelCase ) return pairs class __a ( _snake_case ): __UpperCamelCase : List[Any] = VOCAB_FILES_NAMES __UpperCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : List[str] ,lowerCamelCase : Tuple="__start__" ,lowerCamelCase : Tuple="__end__" ,lowerCamelCase : Dict="__unk__" ,lowerCamelCase : str="__null__" ,**lowerCamelCase : List[Any] ,): '''simple docstring''' super().__init__(unk_token=lowerCamelCase ,bos_token=lowerCamelCase ,eos_token=lowerCamelCase ,pad_token=lowerCamelCase ,**lowerCamelCase ) with open(lowerCamelCase ,encoding="""utf-8""" ) as vocab_handle: __SCREAMING_SNAKE_CASE = json.load(lowerCamelCase ) __SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase ,encoding="""utf-8""" ) as merges_handle: __SCREAMING_SNAKE_CASE = merges_handle.read().split("""\n""" )[1:-1] __SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in merges] __SCREAMING_SNAKE_CASE = dict(zip(lowerCamelCase ,range(len(lowerCamelCase ) ) ) ) __SCREAMING_SNAKE_CASE = {} @property def UpperCAmelCase__ ( self : int ): '''simple docstring''' return len(self.encoder ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase__ ( self : Any ,lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE = re.sub("""([.,!?()])""" ,r""" \1""" ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = re.sub("""(')""" ,r""" \1 """ ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = re.sub(r"""\s{2,}""" ,""" """ ,lowerCamelCase ) if "\n" in token: __SCREAMING_SNAKE_CASE = token.replace("""\n""" ,""" __newln__""" ) __SCREAMING_SNAKE_CASE = token.split(""" """ ) __SCREAMING_SNAKE_CASE = [] for token in tokens: if not len(lowerCamelCase ): continue __SCREAMING_SNAKE_CASE = token.lower() __SCREAMING_SNAKE_CASE = tuple(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) __SCREAMING_SNAKE_CASE = get_pairs(lowerCamelCase ) if not pairs: words.append(lowerCamelCase ) continue while True: __SCREAMING_SNAKE_CASE = min(lowerCamelCase ,key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = bigram __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 while i < len(lowerCamelCase ): try: __SCREAMING_SNAKE_CASE = word.index(lowerCamelCase ,lowerCamelCase ) new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE = tuple(lowerCamelCase ) __SCREAMING_SNAKE_CASE = new_word if len(lowerCamelCase ) == 1: break else: __SCREAMING_SNAKE_CASE = get_pairs(lowerCamelCase ) __SCREAMING_SNAKE_CASE = """@@ """.join(lowerCamelCase ) __SCREAMING_SNAKE_CASE = word[:-4] __SCREAMING_SNAKE_CASE = word words.append(lowerCamelCase ) return " ".join(lowerCamelCase ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = re.findall(r"""\S+\n?""" ,lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase ).split(""" """ ) ) ) return split_tokens def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = token.lower() return self.encoder.get(lowerCamelCase ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : int ): '''simple docstring''' return self.decoder.get(lowerCamelCase ,self.unk_token ) def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """ """.join(lowerCamelCase ).replace("""@@ """ ,"""""" ).strip() return out_string def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : str ,lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( lowerCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __SCREAMING_SNAKE_CASE = os.path.join( lowerCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCamelCase ,ensure_ascii=lowerCamelCase ) + """\n""" ) __SCREAMING_SNAKE_CASE = 0 with open(lowerCamelCase ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) __SCREAMING_SNAKE_CASE = token_index writer.write(""" """.join(lowerCamelCase ) + """\n""" ) index += 1 return vocab_file, merge_file
13
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> bool: '''simple docstring''' if num < 0: return False __SCREAMING_SNAKE_CASE = num __SCREAMING_SNAKE_CASE = 0 while num > 0: __SCREAMING_SNAKE_CASE = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
13
1
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _lowerCAmelCase ( A__: int ): '''simple docstring''' random.seed(_lowerCamelCase ) np.random.seed(_lowerCamelCase ) torch.manual_seed(_lowerCamelCase ) torch.cuda.manual_seed_all(_lowerCamelCase ) # ^^ safe to call this function even if cuda is not available class lowercase : '''simple docstring''' def __init__( self , _snake_case , _snake_case = 0.9999 , _snake_case = 0.0 , _snake_case = 0 , _snake_case = False , _snake_case = 1.0 , _snake_case = 2 / 3 , _snake_case = None , _snake_case = None , **_snake_case , ) -> Optional[Any]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , torch.nn.Module ): UpperCAmelCase = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , SCREAMING_SNAKE_CASE_ , standard_warn=SCREAMING_SNAKE_CASE_ , ) UpperCAmelCase = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility UpperCAmelCase = True if kwargs.get('''max_value''' , SCREAMING_SNAKE_CASE_ ) is not None: UpperCAmelCase = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , SCREAMING_SNAKE_CASE_ , standard_warn=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = kwargs['''max_value'''] if kwargs.get('''min_value''' , SCREAMING_SNAKE_CASE_ ) is not None: UpperCAmelCase = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , SCREAMING_SNAKE_CASE_ , standard_warn=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = kwargs['''min_value'''] UpperCAmelCase = list(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , SCREAMING_SNAKE_CASE_ ) is not None: UpperCAmelCase = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , SCREAMING_SNAKE_CASE_ , standard_warn=SCREAMING_SNAKE_CASE_ ) self.to(device=kwargs['''device'''] ) UpperCAmelCase = None UpperCAmelCase = decay UpperCAmelCase = min_decay UpperCAmelCase = update_after_step UpperCAmelCase = use_ema_warmup UpperCAmelCase = inv_gamma UpperCAmelCase = power UpperCAmelCase = 0 UpperCAmelCase = None # set in `step()` UpperCAmelCase = model_cls UpperCAmelCase = model_config @classmethod def snake_case_ ( cls , _snake_case , _snake_case ) -> "EMAModel": """simple docstring""" UpperCAmelCase , UpperCAmelCase = model_cls.load_config(SCREAMING_SNAKE_CASE_ , return_unused_kwargs=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = model_cls.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = cls(model.parameters() , model_cls=SCREAMING_SNAKE_CASE_ , model_config=model.config ) ema_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) return ema_model def snake_case_ ( self , _snake_case ) -> List[Any]: """simple docstring""" if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) UpperCAmelCase = self.model_cls.from_config(self.model_config ) UpperCAmelCase = self.state_dict() state_dict.pop('''shadow_params''' , SCREAMING_SNAKE_CASE_ ) model.register_to_config(**SCREAMING_SNAKE_CASE_ ) self.copy_to(model.parameters() ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self , _snake_case ) -> float: """simple docstring""" UpperCAmelCase = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: UpperCAmelCase = 1 - (1 + step / self.inv_gamma) ** -self.power else: UpperCAmelCase = (1 + step) / (10 + step) UpperCAmelCase = min(SCREAMING_SNAKE_CASE_ , self.decay ) # make sure decay is not smaller than min_decay UpperCAmelCase = max(SCREAMING_SNAKE_CASE_ , self.min_decay ) return cur_decay_value @torch.no_grad() def snake_case_ ( self , _snake_case ) -> Tuple: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , torch.nn.Module ): UpperCAmelCase = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , SCREAMING_SNAKE_CASE_ , standard_warn=SCREAMING_SNAKE_CASE_ , ) UpperCAmelCase = parameters.parameters() UpperCAmelCase = list(SCREAMING_SNAKE_CASE_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. UpperCAmelCase = self.get_decay(self.optimization_step ) UpperCAmelCase = decay UpperCAmelCase = 1 - decay UpperCAmelCase = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , SCREAMING_SNAKE_CASE_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): UpperCAmelCase = deepspeed.zero.GatheredParameters(SCREAMING_SNAKE_CASE_ , modifier_rank=SCREAMING_SNAKE_CASE_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self , _snake_case ) -> None: """simple docstring""" UpperCAmelCase = list(SCREAMING_SNAKE_CASE_ ) for s_param, param in zip(self.shadow_params , SCREAMING_SNAKE_CASE_ ): param.data.copy_(s_param.to(param.device ).data ) def snake_case_ ( self , _snake_case=None , _snake_case=None ) -> None: """simple docstring""" UpperCAmelCase = [ p.to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) if p.is_floating_point() else p.to(device=SCREAMING_SNAKE_CASE_ ) for p in self.shadow_params ] def snake_case_ ( self ) -> dict: """simple docstring""" return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def snake_case_ ( self , _snake_case ) -> None: """simple docstring""" UpperCAmelCase = [param.detach().cpu().clone() for param in parameters] def snake_case_ ( self , _snake_case ) -> None: """simple docstring""" if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , SCREAMING_SNAKE_CASE_ ): param.data.copy_(c_param.data ) # Better memory-wise. UpperCAmelCase = None def snake_case_ ( self , _snake_case ) -> None: """simple docstring""" UpperCAmelCase = copy.deepcopy(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) UpperCAmelCase = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , SCREAMING_SNAKE_CASE_ ): raise ValueError('''Invalid min_decay''' ) UpperCAmelCase = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , SCREAMING_SNAKE_CASE_ ): raise ValueError('''Invalid optimization_step''' ) UpperCAmelCase = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , SCREAMING_SNAKE_CASE_ ): raise ValueError('''Invalid update_after_step''' ) UpperCAmelCase = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , SCREAMING_SNAKE_CASE_ ): raise ValueError('''Invalid use_ema_warmup''' ) UpperCAmelCase = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) UpperCAmelCase = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) UpperCAmelCase = state_dict.get('''shadow_params''' , SCREAMING_SNAKE_CASE_ ) if shadow_params is not None: UpperCAmelCase = shadow_params if not isinstance(self.shadow_params , SCREAMING_SNAKE_CASE_ ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
254
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class lowercase ( lowercase__ ): lowercase = '''openai-gpt''' lowercase = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__(self : List[Any] ,SCREAMING_SNAKE_CASE_ : str=40_478 ,SCREAMING_SNAKE_CASE_ : Optional[int]=512 ,SCREAMING_SNAKE_CASE_ : Union[str, Any]=768 ,SCREAMING_SNAKE_CASE_ : Dict=12 ,SCREAMING_SNAKE_CASE_ : Dict=12 ,SCREAMING_SNAKE_CASE_ : int="gelu" ,SCREAMING_SNAKE_CASE_ : Dict=0.1 ,SCREAMING_SNAKE_CASE_ : List[Any]=0.1 ,SCREAMING_SNAKE_CASE_ : Dict=0.1 ,SCREAMING_SNAKE_CASE_ : Optional[Any]=1e-5 ,SCREAMING_SNAKE_CASE_ : List[str]=0.02 ,SCREAMING_SNAKE_CASE_ : Union[str, Any]="cls_index" ,SCREAMING_SNAKE_CASE_ : str=True ,SCREAMING_SNAKE_CASE_ : Any=None ,SCREAMING_SNAKE_CASE_ : List[Any]=True ,SCREAMING_SNAKE_CASE_ : List[str]=0.1 ,**SCREAMING_SNAKE_CASE_ : int ,) -> int: """simple docstring""" lowerCAmelCase = vocab_size lowerCAmelCase = n_positions lowerCAmelCase = n_embd lowerCAmelCase = n_layer lowerCAmelCase = n_head lowerCAmelCase = afn lowerCAmelCase = resid_pdrop lowerCAmelCase = embd_pdrop lowerCAmelCase = attn_pdrop lowerCAmelCase = layer_norm_epsilon lowerCAmelCase = initializer_range lowerCAmelCase = summary_type lowerCAmelCase = summary_use_proj lowerCAmelCase = summary_activation lowerCAmelCase = summary_first_dropout lowerCAmelCase = summary_proj_to_labels super().__init__(**SCREAMING_SNAKE_CASE_ )
535
0
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowercase =sys.version_info >= (3, 10) def lowerCamelCase__ ( __lowerCamelCase : Tuple=None , __lowerCamelCase : List[str]=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=__A ) @dataclass class __magic_name__ : UpperCAmelCase =4_2 UpperCAmelCase =4_2 UpperCAmelCase =4_2 UpperCAmelCase =4_2 @dataclass class __magic_name__ : UpperCAmelCase =4_2 UpperCAmelCase =field(default="toto" ,metadata={"help": "help message"} ) @dataclass class __magic_name__ : UpperCAmelCase =False UpperCAmelCase =True UpperCAmelCase =None class __magic_name__ ( __A ): UpperCAmelCase ="titi" UpperCAmelCase ="toto" class __magic_name__ ( __A ): UpperCAmelCase ="titi" UpperCAmelCase ="toto" UpperCAmelCase =4_2 @dataclass class __magic_name__ : UpperCAmelCase ="toto" def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] =BasicEnum(self.foo) @dataclass class __magic_name__ : UpperCAmelCase ="toto" def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] =MixedTypeEnum(self.foo) @dataclass class __magic_name__ : UpperCAmelCase =None UpperCAmelCase =field(default=__A ,metadata={"help": "help message"} ) UpperCAmelCase =None UpperCAmelCase =list_field(default=[] ) UpperCAmelCase =list_field(default=[] ) @dataclass class __magic_name__ : UpperCAmelCase =list_field(default=[] ) UpperCAmelCase =list_field(default=[1, 2, 3] ) UpperCAmelCase =list_field(default=["Hallo", "Bonjour", "Hello"] ) UpperCAmelCase =list_field(default=[0.1, 0.2, 0.3] ) @dataclass class __magic_name__ : UpperCAmelCase =field() UpperCAmelCase =field() UpperCAmelCase =field() def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCAmelCase : List[Any] =BasicEnum(self.required_enum) @dataclass class __magic_name__ : UpperCAmelCase =4_2 UpperCAmelCase =field() UpperCAmelCase =None UpperCAmelCase =field(default="toto" ,metadata={"help": "help message"} ) UpperCAmelCase =list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class __magic_name__ : UpperCAmelCase =False UpperCAmelCase =True UpperCAmelCase =None @dataclass class __magic_name__ : UpperCAmelCase =None UpperCAmelCase =field(default=__A ,metadata={"help": "help message"} ) UpperCAmelCase =None UpperCAmelCase =list_field(default=[] ) UpperCAmelCase =list_field(default=[] ) class __magic_name__ ( unittest.TestCase ): def lowerCAmelCase ( self , snake_case , snake_case) -> Any: '''simple docstring''' self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): _UpperCAmelCase : Optional[Any] ={k: v for k, v in vars(snake_case).items() if k != '''container'''} _UpperCAmelCase : Union[str, Any] ={k: v for k, v in vars(snake_case).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , snake_case) and yy.get('choices' , snake_case): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](snake_case) , yy['type'](snake_case)) del xx["type"], yy["type"] self.assertEqual(snake_case , snake_case) def lowerCAmelCase ( self) -> Any: '''simple docstring''' _UpperCAmelCase : List[str] =HfArgumentParser(snake_case) _UpperCAmelCase : Any =argparse.ArgumentParser() expected.add_argument('--foo' , type=snake_case , required=snake_case) expected.add_argument('--bar' , type=snake_case , required=snake_case) expected.add_argument('--baz' , type=snake_case , required=snake_case) expected.add_argument('--flag' , type=snake_case , default=snake_case , const=snake_case , nargs='?') self.argparsersEqual(snake_case , snake_case) _UpperCAmelCase : Optional[Any] =['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] (_UpperCAmelCase ) : str =parser.parse_args_into_dataclasses(snake_case , look_for_args_file=snake_case) self.assertFalse(example.flag) def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =HfArgumentParser(snake_case) _UpperCAmelCase : str =argparse.ArgumentParser() expected.add_argument('--foo' , default=4_2 , type=snake_case) expected.add_argument('--baz' , default='toto' , type=snake_case , help='help message') self.argparsersEqual(snake_case , snake_case) def lowerCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCAmelCase : Dict =argparse.ArgumentParser() expected.add_argument('--foo' , type=snake_case , default=snake_case , const=snake_case , nargs='?') expected.add_argument('--baz' , type=snake_case , default=snake_case , const=snake_case , nargs='?') # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=snake_case , dest='baz') expected.add_argument('--opt' , type=snake_case , default=snake_case) _UpperCAmelCase : Optional[int] =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(snake_case) for dataclass_type in dataclass_types: _UpperCAmelCase : Any =HfArgumentParser(snake_case) self.argparsersEqual(snake_case , snake_case) _UpperCAmelCase : Any =parser.parse_args([]) self.assertEqual(snake_case , Namespace(foo=snake_case , baz=snake_case , opt=snake_case)) _UpperCAmelCase : Optional[Any] =parser.parse_args(['--foo', '--no_baz']) self.assertEqual(snake_case , Namespace(foo=snake_case , baz=snake_case , opt=snake_case)) _UpperCAmelCase : Optional[Any] =parser.parse_args(['--foo', '--baz']) self.assertEqual(snake_case , Namespace(foo=snake_case , baz=snake_case , opt=snake_case)) _UpperCAmelCase : int =parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True']) self.assertEqual(snake_case , Namespace(foo=snake_case , baz=snake_case , opt=snake_case)) _UpperCAmelCase : Optional[int] =parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False']) self.assertEqual(snake_case , Namespace(foo=snake_case , baz=snake_case , opt=snake_case)) def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] =HfArgumentParser(snake_case) _UpperCAmelCase : Optional[Any] =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 4_2] , type=make_choice_type_function(['titi', 'toto', 4_2]) , ) self.argparsersEqual(snake_case , snake_case) _UpperCAmelCase : Union[str, Any] =parser.parse_args([]) self.assertEqual(args.foo , 'toto') _UpperCAmelCase : Dict =parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) _UpperCAmelCase : Union[str, Any] =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') _UpperCAmelCase : Union[str, Any] =parser.parse_args_into_dataclasses(['--foo', 'titi'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) _UpperCAmelCase : int =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 4_2) _UpperCAmelCase : List[Any] =parser.parse_args_into_dataclasses(['--foo', '42'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def lowerCAmelCase ( self) -> int: '''simple docstring''' @dataclass class __magic_name__ : UpperCAmelCase ="toto" _UpperCAmelCase : int =HfArgumentParser(snake_case) _UpperCAmelCase : Optional[Any] =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 4_2) , type=make_choice_type_function(['titi', 'toto', 4_2]) , ) self.argparsersEqual(snake_case , snake_case) _UpperCAmelCase : str =parser.parse_args([]) self.assertEqual(args.foo , 'toto') _UpperCAmelCase : Tuple =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') _UpperCAmelCase : str =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 4_2) def lowerCAmelCase ( self) -> Any: '''simple docstring''' _UpperCAmelCase : str =HfArgumentParser(snake_case) _UpperCAmelCase : List[str] =argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=snake_case) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=snake_case) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=snake_case) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=snake_case) self.argparsersEqual(snake_case , snake_case) _UpperCAmelCase : Optional[Any] =parser.parse_args([]) self.assertEqual( snake_case , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3]) , ) _UpperCAmelCase : List[str] =parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split()) self.assertEqual(snake_case , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7])) def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCAmelCase : List[Any] =argparse.ArgumentParser() expected.add_argument('--foo' , default=snake_case , type=snake_case) expected.add_argument('--bar' , default=snake_case , type=snake_case , help='help message') expected.add_argument('--baz' , default=snake_case , type=snake_case) expected.add_argument('--ces' , nargs='+' , default=[] , type=snake_case) expected.add_argument('--des' , nargs='+' , default=[] , type=snake_case) _UpperCAmelCase : int =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(snake_case) for dataclass_type in dataclass_types: _UpperCAmelCase : Union[str, Any] =HfArgumentParser(snake_case) self.argparsersEqual(snake_case , snake_case) _UpperCAmelCase : Any =parser.parse_args([]) self.assertEqual(snake_case , Namespace(foo=snake_case , bar=snake_case , baz=snake_case , ces=[] , des=[])) _UpperCAmelCase : Tuple =parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split()) self.assertEqual(snake_case , Namespace(foo=1_2 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3])) def lowerCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCAmelCase : str =HfArgumentParser(snake_case) _UpperCAmelCase : Dict =argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=snake_case , required=snake_case) expected.add_argument('--required_str' , type=snake_case , required=snake_case) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=snake_case , ) self.argparsersEqual(snake_case , snake_case) def lowerCAmelCase ( self) -> int: '''simple docstring''' _UpperCAmelCase : Optional[int] =HfArgumentParser(snake_case) _UpperCAmelCase : Union[str, Any] =argparse.ArgumentParser() expected.add_argument('--foo' , type=snake_case , required=snake_case) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=snake_case , ) expected.add_argument('--opt' , type=snake_case , default=snake_case) expected.add_argument('--baz' , default='toto' , type=snake_case , help='help message') expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=snake_case) self.argparsersEqual(snake_case , snake_case) def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCAmelCase : int =HfArgumentParser(snake_case) _UpperCAmelCase : List[Any] ={ '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } _UpperCAmelCase : Tuple =parser.parse_dict(snake_case)[0] _UpperCAmelCase : Optional[Any] =BasicExample(**snake_case) self.assertEqual(snake_case , snake_case) def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] =HfArgumentParser(snake_case) _UpperCAmelCase : Tuple ={ '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(snake_case , parser.parse_dict , snake_case , allow_extra_keys=snake_case) def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] =HfArgumentParser(snake_case) _UpperCAmelCase : Tuple ={ '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : int =os.path.join(snake_case , 'temp_json') os.mkdir(snake_case) with open(temp_local_path + '.json' , 'w+') as f: json.dump(snake_case , snake_case) _UpperCAmelCase : Union[str, Any] =parser.parse_yaml_file(Path(temp_local_path + '.json'))[0] _UpperCAmelCase : str =BasicExample(**snake_case) self.assertEqual(snake_case , snake_case) def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : str =HfArgumentParser(snake_case) _UpperCAmelCase : Dict ={ '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : Union[str, Any] =os.path.join(snake_case , 'temp_yaml') os.mkdir(snake_case) with open(temp_local_path + '.yaml' , 'w+') as f: yaml.dump(snake_case , snake_case) _UpperCAmelCase : Union[str, Any] =parser.parse_yaml_file(Path(temp_local_path + '.yaml'))[0] _UpperCAmelCase : str =BasicExample(**snake_case) self.assertEqual(snake_case , snake_case) def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCAmelCase : Optional[int] =HfArgumentParser(snake_case) self.assertIsNotNone(snake_case)
708
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : bool , __lowerCamelCase : list[int] , __lowerCamelCase : float ): '''simple docstring''' if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , ) ) def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : Optional[int] =[9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] _UpperCAmelCase : Optional[Any] =math.log(len(__lowerCamelCase ) , 2 ) print(f"Optimal value : {minimax(0 , 0 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
331
0
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = jnp.ones((batch_size, length) ) / length return scores def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 20 lowerCamelCase__ = self._get_uniform_logits(batch_size=2 ,length=_lowerCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase__ = jax.nn.softmax(_lowerCAmelCase ,axis=-1 ) lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 ) lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 10 lowerCamelCase__ = 2 # create ramp distribution lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() lowerCamelCase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase__ = 5 lowerCamelCase__ = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, length) ).copy() lowerCamelCase__ = top_k_warp_safety_check(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 10 lowerCamelCase__ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase__ = np.exp(top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase__ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCamelCase__ = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) # check that min length is applied at length 5 lowerCamelCase__ = ids_tensor((batch_size, 20) ,vocab_size=20 ) lowerCamelCase__ = 5 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = 15 lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase__ = ids_tensor((batch_size, 1) ,vocab_size=20 ) lowerCamelCase__ = 1 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase__ = 3 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = 5 lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase__ = ids_tensor((batch_size, 4) ,vocab_size=20 ) lowerCamelCase__ = 4 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase__ = 3 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 4 lowerCamelCase__ = 10 lowerCamelCase__ = 15 lowerCamelCase__ = 2 lowerCamelCase__ = 1 lowerCamelCase__ = 15 # dummy input_ids and scores lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase ) lowerCamelCase__ = input_ids.copy() lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = scores.copy() # instantiate all dist processors lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = 10 # no processor list lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # with processor list lowerCamelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 4 lowerCamelCase__ = 10 lowerCamelCase__ = 15 lowerCamelCase__ = 2 lowerCamelCase__ = 1 lowerCamelCase__ = 15 # dummy input_ids and scores lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase ) lowerCamelCase__ = input_ids.copy() lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = scores.copy() # instantiate all dist processors lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = 10 # no processor list def run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) return scores # with processor list def run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) return scores lowerCamelCase__ = jax.jit(_lowerCAmelCase ) lowerCamelCase__ = jax.jit(_lowerCAmelCase ) lowerCamelCase__ = jitted_run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = jitted_run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
50
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : int ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ :list[list[str]] = [[] for _ in range(UpperCAmelCase__ )] SCREAMING_SNAKE_CASE__ :Any = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(UpperCAmelCase__ ) <= key: return input_string for position, character in enumerate(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ :Dict = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE__ :Tuple = min(UpperCAmelCase__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :int = [''.join(UpperCAmelCase__ ) for row in temp_grid] SCREAMING_SNAKE_CASE__ :str = ''.join(UpperCAmelCase__ ) return output_string def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : int ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = [] SCREAMING_SNAKE_CASE__ :str = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string SCREAMING_SNAKE_CASE__ :list[list[str]] = [[] for _ in range(UpperCAmelCase__ )] # generates template for position in range(len(UpperCAmelCase__ ) ): SCREAMING_SNAKE_CASE__ :Optional[int] = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE__ :Dict = min(UpperCAmelCase__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) SCREAMING_SNAKE_CASE__ :Any = 0 for row in temp_grid: # fills in the characters SCREAMING_SNAKE_CASE__ :int = input_string[counter : counter + len(UpperCAmelCase__ )] grid.append(list(UpperCAmelCase__ ) ) counter += len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Tuple = '' # reads as zigzag for position in range(len(UpperCAmelCase__ ) ): SCREAMING_SNAKE_CASE__ :Union[str, Any] = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE__ :Any = min(UpperCAmelCase__ , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def lowerCamelCase ( UpperCAmelCase__ : str ) -> dict[int, str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = {} for key_guess in range(1 , len(UpperCAmelCase__ ) ): # tries every key SCREAMING_SNAKE_CASE__ :List[str] = decrypt(UpperCAmelCase__ , UpperCAmelCase__ ) return results if __name__ == "__main__": import doctest doctest.testmod()
209
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) def UpperCamelCase ( lowercase_ ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(lowercase_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase_ ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : List[Any] = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) lowercase__ : Dict = size if size is not None else {"""shortest_edge""": 2_24} lowercase__ : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} lowercase__ : int = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name="""crop_size""") lowercase__ : Optional[Any] = do_resize lowercase__ : Dict = size lowercase__ : List[Any] = do_center_crop lowercase__ : Any = crop_size lowercase__ : Optional[int] = resample lowercase__ : Union[str, Any] = do_rescale lowercase__ : Optional[int] = rescale_factor lowercase__ : str = do_normalize lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : str = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_) if "shortest_edge" in size: lowercase__ : List[Any] = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size["""shortest_edge"""] , default_to_square=SCREAMING_SNAKE_CASE_) elif "height" in size and "width" in size: lowercase__ : Any = (size["""height"""], size["""width"""]) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}') return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}') return center_crop(SCREAMING_SNAKE_CASE_ , size=(size["""height"""], size["""width"""]) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , ): '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""") if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""") # All transformations expect numpy arrays. lowercase__ : Optional[Any] = to_numpy_array(SCREAMING_SNAKE_CASE_) if do_resize: lowercase__ : Tuple = self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_) if do_center_crop: lowercase__ : Tuple = self.center_crop(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) if do_rescale: lowercase__ : Tuple = self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) if do_normalize: lowercase__ : List[Any] = self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return image def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : List[str] = do_resize if do_resize is not None else self.do_resize lowercase__ : Union[str, Any] = resample if resample is not None else self.resample lowercase__ : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Any = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Dict = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Dict = image_mean if image_mean is not None else self.image_mean lowercase__ : List[Any] = image_std if image_std is not None else self.image_std lowercase__ : List[Any] = size if size is not None else self.size lowercase__ : List[str] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : Any = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name="""crop_size""") if not valid_images(SCREAMING_SNAKE_CASE_): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") lowercase__ : Optional[Any] = make_batched(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = [ [ self._preprocess_image( image=SCREAMING_SNAKE_CASE_ , do_resize=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , do_center_crop=SCREAMING_SNAKE_CASE_ , crop_size=SCREAMING_SNAKE_CASE_ , do_rescale=SCREAMING_SNAKE_CASE_ , rescale_factor=SCREAMING_SNAKE_CASE_ , do_normalize=SCREAMING_SNAKE_CASE_ , image_mean=SCREAMING_SNAKE_CASE_ , image_std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , ) for img in video ] for video in videos ] lowercase__ : str = {"""pixel_values""": videos} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
495
lowerCamelCase__ : Any = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
495
1
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer __lowerCAmelCase =logging.get_logger(__name__) class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "AutoTokenizer" _UpperCamelCase = ["tokenizer"] _UpperCamelCase = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=None ) -> Optional[int]: super().__init__(UpperCAmelCase__ ) a_ = speaker_embeddings @classmethod def __SCREAMING_SNAKE_CASE ( cls , UpperCAmelCase__ , UpperCAmelCase__="speaker_embeddings_path.json" , **UpperCAmelCase__ ) -> List[Any]: if speaker_embeddings_dict_path is not None: a_ = get_file_from_repo( UpperCAmelCase__ , UpperCAmelCase__ , subfolder=kwargs.pop('subfolder' , UpperCAmelCase__ ) , cache_dir=kwargs.pop('cache_dir' , UpperCAmelCase__ ) , force_download=kwargs.pop('force_download' , UpperCAmelCase__ ) , proxies=kwargs.pop('proxies' , UpperCAmelCase__ ) , resume_download=kwargs.pop('resume_download' , UpperCAmelCase__ ) , local_files_only=kwargs.pop('local_files_only' , UpperCAmelCase__ ) , use_auth_token=kwargs.pop('use_auth_token' , UpperCAmelCase__ ) , revision=kwargs.pop('revision' , UpperCAmelCase__ ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) a_ = None else: with open(UpperCAmelCase__ ) as speaker_embeddings_json: a_ = json.load(UpperCAmelCase__ ) else: a_ = None a_ = AutoTokenizer.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) return cls(tokenizer=UpperCAmelCase__ , speaker_embeddings=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__="speaker_embeddings_path.json" , UpperCAmelCase__="speaker_embeddings" , UpperCAmelCase__ = False , **UpperCAmelCase__ , ) -> Dict: if self.speaker_embeddings is not None: os.makedirs(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ , 'v2' ) , exist_ok=UpperCAmelCase__ ) a_ = {} a_ = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": a_ = self._load_voice_preset(UpperCAmelCase__ ) a_ = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , UpperCAmelCase__ , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=UpperCAmelCase__ , ) a_ = os.path.join(UpperCAmelCase__ , F'''{prompt_key}_{key}.npy''' ) a_ = tmp_dict with open(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , 'w' ) as fp: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) super().save_pretrained(UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ = None , **UpperCAmelCase__ ) -> Tuple: a_ = self.speaker_embeddings[voice_preset] a_ = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) a_ = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , UpperCAmelCase__ ) , cache_dir=kwargs.pop('cache_dir' , UpperCAmelCase__ ) , force_download=kwargs.pop('force_download' , UpperCAmelCase__ ) , proxies=kwargs.pop('proxies' , UpperCAmelCase__ ) , resume_download=kwargs.pop('resume_download' , UpperCAmelCase__ ) , local_files_only=kwargs.pop('local_files_only' , UpperCAmelCase__ ) , use_auth_token=kwargs.pop('use_auth_token' , UpperCAmelCase__ ) , revision=kwargs.pop('revision' , UpperCAmelCase__ ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) a_ = np.load(UpperCAmelCase__ ) return voice_preset_dict def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ = None ) -> Union[str, Any]: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__="pt" , UpperCAmelCase__=256 , UpperCAmelCase__=False , UpperCAmelCase__=True , UpperCAmelCase__=False , **UpperCAmelCase__ , ) -> str: if voice_preset is not None and not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): if ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): a_ = self._load_voice_preset(UpperCAmelCase__ ) else: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and not voice_preset.endswith('.npz' ): a_ = voice_preset + '.npz' a_ = np.load(UpperCAmelCase__ ) if voice_preset is not None: self._validate_voice_preset_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) a_ = BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) a_ = self.tokenizer( UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , padding='max_length' , max_length=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) if voice_preset is not None: a_ = voice_preset return encoded_text
697
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "vit" def __init__( self , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=224 , UpperCAmelCase__=16 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=16 , **UpperCAmelCase__ , ) -> Dict: super().__init__(**UpperCAmelCase__ ) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = image_size a_ = patch_size a_ = num_channels a_ = qkv_bias a_ = encoder_stride class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __SCREAMING_SNAKE_CASE ( self ) -> float: return 1e-4
697
1
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) a__ : Optional[int] = logging.getLogger(__name__) if __name__ == "__main__": a__ : Tuple = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=30_522, type=int) a__ : Dict = parser.parse_args() logger.info(F"""Loading data from {args.data_file}""") with open(args.data_file, 'rb') as fp: a__ : List[Any] = pickle.load(fp) logger.info('Counting occurrences for MLM.') a__ : Any = Counter() for tk_ids in data: counter.update(tk_ids) a__ : int = [0] * args.vocab_size for k, v in counter.items(): a__ : str = v logger.info(F"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
570
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =StableDiffusionInpaintPipeline _lowerCamelCase =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS _lowerCamelCase =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _lowerCamelCase =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowerCamelCase =frozenset([] ) def __snake_case ( self : List[str] ): torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a__ , ) UpperCAmelCase = PNDMScheduler(skip_prk_steps=a__ ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) UpperCAmelCase = CLIPTextModel(a__ ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __snake_case ( self : Dict , a__ : List[Any] , a__ : Tuple=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(a__ ) ).convert('''RGB''' ).resize((64, 64) ) UpperCAmelCase = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(a__ ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(a__ ) else: UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ ) UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __snake_case ( self : int ): UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = StableDiffusionInpaintPipeline(**a__ ) UpperCAmelCase = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) UpperCAmelCase = self.get_dummy_inputs(a__ ) UpperCAmelCase = sd_pipe(**a__ ).images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __snake_case ( self : List[Any] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Any ): UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) UpperCAmelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCAmelCase = StableDiffusionInpaintPipeline.from_pretrained(a__ , safety_checker=a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() UpperCAmelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , output_type='''np''' , ) UpperCAmelCase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def __snake_case ( self : int ): UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) UpperCAmelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCAmelCase = StableDiffusionInpaintPipeline.from_pretrained( a__ , torch_dtype=torch.floataa , safety_checker=a__ , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() UpperCAmelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , output_type='''np''' , ) UpperCAmelCase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __snake_case ( self : List[str] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) UpperCAmelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCAmelCase = PNDMScheduler.from_pretrained(a__ , subfolder='''scheduler''' ) UpperCAmelCase = StableDiffusionInpaintPipeline.from_pretrained( a__ , safety_checker=a__ , scheduler=a__ , torch_dtype=torch.floataa , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
570
1
'''simple docstring''' UpperCamelCase__ : Optional[Any] = [0, 2, 4, 6, 8] UpperCamelCase__ : List[str] = [1, 3, 5, 7, 9] def __UpperCamelCase( _A : int , _A : int , _A : list[int] , _A : int ): '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 UpperCAmelCase__ : Tuple = 0 for digit in range(10 ): UpperCAmelCase__ : int = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , _A , _A ) return result UpperCAmelCase__ : List[str] = 0 for digita in range(10 ): UpperCAmelCase__ : List[str] = digita if (remainder + digita) % 2 == 0: UpperCAmelCase__ : Optional[int] = ODD_DIGITS else: UpperCAmelCase__ : Optional[int] = EVEN_DIGITS for digita in other_parity_digits: UpperCAmelCase__ : Dict = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , _A , _A , ) return result def __UpperCamelCase( _A : int = 9 ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(_A , 0 , [0] * length , _A ) return result if __name__ == "__main__": print(f"""{solution() = }""")
614
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCamelCase__ : Dict = logging.getLogger(__name__) def __UpperCamelCase( ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=_A , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=_A , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=_A , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=_A , default='''data/dump''' , help='''The dump file prefix.''' ) UpperCAmelCase__ : Optional[int] = parser.parse_args() logger.info(F'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": UpperCAmelCase__ : List[str] = BertTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ : Optional[Any] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` UpperCAmelCase__ : Union[str, Any] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCAmelCase__ : Union[str, Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ : List[Any] = tokenizer.special_tokens_map['''cls_token'''] # `<s>` UpperCAmelCase__ : Dict = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": UpperCAmelCase__ : List[str] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ : List[Any] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` UpperCAmelCase__ : Optional[Any] = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(F'''Loading text from {args.file_path}''' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: UpperCAmelCase__ : List[Any] = fp.readlines() logger.info('''Start encoding''' ) logger.info(F'''{len(_A )} examples to process.''' ) UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : Optional[int] = 1_00_00 UpperCAmelCase__ : Tuple = time.time() for text in data: UpperCAmelCase__ : Any = F'''{bos} {text.strip()} {sep}''' UpperCAmelCase__ : int = tokenizer.encode(_A , add_special_tokens=_A ) rslt.append(_A ) iter += 1 if iter % interval == 0: UpperCAmelCase__ : int = time.time() logger.info(F'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) UpperCAmelCase__ : Optional[Any] = time.time() logger.info('''Finished binarization''' ) logger.info(F'''{len(_A )} examples processed.''' ) UpperCAmelCase__ : Dict = F'''{args.dump_file}.{args.tokenizer_name}.pickle''' UpperCAmelCase__ : Dict = tokenizer.vocab_size if vocab_size < (1 << 16): UpperCAmelCase__ : Any = [np.uintaa(_A ) for d in rslt] else: UpperCAmelCase__ : str = [np.intaa(_A ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'''Dump to {dp_file}''' ) with open(_A , '''wb''' ) as handle: pickle.dump(rslt_ , _A , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
614
1
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants UpperCamelCase = Mapping[str, np.ndarray] UpperCamelCase = Mapping[str, Any] # Is a nested dict. UpperCamelCase = 0.01 @dataclasses.dataclass(frozen=lowerCAmelCase__ ) class _a : '''simple docstring''' lowerCamelCase_ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCamelCase_ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCamelCase_ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCamelCase_ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCamelCase_ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCamelCase_ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCamelCase_ : Optional[str] = None # Templates used to generate this protein (prediction-only) lowerCamelCase_ : Optional[Sequence[str]] = None # Chain corresponding to each parent lowerCamelCase_ : Optional[Sequence[int]] = None def lowerCamelCase_ ( _lowercase ) -> Protein: __A : Optional[int] = r"(\[[A-Z]+\]\n)" __A : List[str] = [tag.strip() for tag in re.split(_lowercase , _lowercase ) if len(_lowercase ) > 0] __A : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) __A : List[str] = ["N", "CA", "C"] __A : Any = None __A : int = None __A : Tuple = None for g in groups: if "[PRIMARY]" == g[0]: __A : List[str] = g[1][0].strip() for i in range(len(_lowercase ) ): if seq[i] not in residue_constants.restypes: __A : Optional[int] = "X" # FIXME: strings are immutable __A : str = np.array( [residue_constants.restype_order.get(_lowercase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: __A : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(_lowercase , g[1][axis].split() ) ) ) __A : str = np.array(_lowercase ) __A : Tuple = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_lowercase ): __A : str = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: __A : Dict = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) __A : List[str] = np.zeros( ( len(_lowercase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_lowercase ): __A : int = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_lowercase , atom_mask=_lowercase , aatype=_lowercase , residue_index=np.arange(len(_lowercase ) ) , b_factors=_lowercase , ) def lowerCamelCase_ ( _lowercase , _lowercase = 0 ) -> List[str]: __A : List[str] = [] __A : Any = prot.remark if remark is not None: pdb_headers.append(F"REMARK {remark}" ) __A : Dict = prot.parents __A : List[str] = prot.parents_chain_index if parents is not None and parents_chain_index is not None: __A : Optional[int] = [p for i, p in zip(_lowercase , _lowercase ) if i == chain_id] if parents is None or len(_lowercase ) == 0: __A : List[Any] = ["N/A"] pdb_headers.append(F"PARENT {' '.join(_lowercase )}" ) return pdb_headers def lowerCamelCase_ ( _lowercase , _lowercase ) -> str: __A : List[str] = [] __A : Optional[int] = pdb_str.split("\n" ) __A : Union[str, Any] = prot.remark if remark is not None: out_pdb_lines.append(F"REMARK {remark}" ) __A : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: __A : List[Any] = [] if prot.parents_chain_index is not None: __A : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(_lowercase ) , [] ) parent_dict[str(_lowercase )].append(_lowercase ) __A : Tuple = max([int(_lowercase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): __A : List[Any] = parent_dict.get(str(_lowercase ) , ["N/A"] ) parents_per_chain.append(_lowercase ) else: parents_per_chain.append(list(prot.parents ) ) else: __A : Union[str, Any] = [["N/A"]] def make_parent_line(_lowercase ) -> str: return F"PARENT {' '.join(_lowercase )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) __A : List[str] = 0 for i, l in enumerate(_lowercase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_lowercase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_lowercase ): __A : Any = parents_per_chain[chain_counter] else: __A : Any = ["N/A"] out_pdb_lines.append(make_parent_line(_lowercase ) ) return "\n".join(_lowercase ) def lowerCamelCase_ ( _lowercase ) -> str: __A : int = residue_constants.restypes + ["X"] def res_atoa(_lowercase ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) __A : Dict = residue_constants.atom_types __A : List[str] = [] __A : Any = prot.atom_mask __A : Dict = prot.aatype __A : str = prot.atom_positions __A : Any = prot.residue_index.astype(np.intaa ) __A : Optional[Any] = prot.b_factors __A : Any = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) __A : Tuple = get_pdb_headers(_lowercase ) if len(_lowercase ) > 0: pdb_lines.extend(_lowercase ) __A : Any = aatype.shape[0] __A : int = 1 __A : Union[str, Any] = 0 __A : Union[str, Any] = string.ascii_uppercase __A : Dict = None # Add all atom sites. for i in range(_lowercase ): __A : Tuple = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_lowercase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue __A : Optional[Any] = "ATOM" __A : List[str] = atom_name if len(_lowercase ) == 4 else F" {atom_name}" __A : Dict = "" __A : Optional[Any] = "" __A : List[str] = 1.00 __A : str = atom_name[0] # Protein supports only C, N, O, S, this works. __A : Union[str, Any] = "" __A : str = "A" if chain_index is not None: __A : Any = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! __A : str = ( F"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" F"{res_name_a:>3} {chain_tag:>1}" F"{residue_index[i]:>4}{insertion_code:>1} " F"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" F"{occupancy:>6.2f}{b_factor:>6.2f} " F"{element:>2}{charge:>2}" ) pdb_lines.append(_lowercase ) atom_index += 1 __A : Optional[Any] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: __A : List[Any] = True __A : int = chain_index[i + 1] if should_terminate: # Close the chain. __A : Any = "TER" __A : str = ( F"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(_lowercase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_lowercase , _lowercase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(_lowercase ) def lowerCamelCase_ ( _lowercase ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , ) -> Protein: return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=_lowercase , remark=_lowercase , parents=_lowercase , parents_chain_index=_lowercase , )
387
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel UpperCamelCase = HfApi() UpperCamelCase = {} # fmt: off UpperCamelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) UpperCamelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) UpperCamelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) UpperCamelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) UpperCamelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) UpperCamelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) UpperCamelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) UpperCamelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) UpperCamelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) UpperCamelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) UpperCamelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) UpperCamelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) UpperCamelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) UpperCamelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) UpperCamelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on UpperCamelCase = api.list_models(filter='diffusers') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": UpperCamelCase = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith('CompVis'): UpperCamelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet') else: UpperCamelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) UpperCamelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) UpperCamelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): UpperCamelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
387
1
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
670
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowercase_ ( __snake_case , unittest.TestCase ): _lowerCamelCase = ReformerTokenizer _lowerCamelCase = ReformerTokenizerFast _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = True def UpperCamelCase ( self ): super().setUp() _snake_case : Union[str, Any] = ReformerTokenizer(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self ): _snake_case : int = "<s>" _snake_case : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def UpperCamelCase ( self ): _snake_case : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowercase_ ) , 1_000 ) def UpperCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def UpperCamelCase ( self ): if not self.test_rust_tokenizer: return _snake_case : Tuple = self.get_tokenizer() _snake_case : List[str] = self.get_rust_tokenizer() _snake_case : int = "I was born in 92000, and this is falsé." _snake_case : Tuple = tokenizer.tokenize(lowercase_ ) _snake_case : List[Any] = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _snake_case : str = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) _snake_case : Tuple = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _snake_case : Dict = self.get_rust_tokenizer() _snake_case : List[Any] = tokenizer.encode(lowercase_ ) _snake_case : str = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def UpperCamelCase ( self , lowercase_=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) # Simple input _snake_case : List[str] = "This is a simple input" _snake_case : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _snake_case : Union[str, Any] = ("This is a simple input", "This is a pair") _snake_case : int = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Simple input self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Simple input self.assertRaises( lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" , ) # Pair input self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Pair input self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Pair input self.assertRaises( lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" , ) def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): _snake_case : Dict = ReformerTokenizer(lowercase_ , keep_accents=lowercase_ ) _snake_case : Tuple = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [285, 46, 10, 170, 382] , ) _snake_case : str = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _snake_case : Any = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _snake_case : List[Any] = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def UpperCamelCase ( self ): return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def UpperCamelCase ( self ): _snake_case : int = "Hello World!" _snake_case : Dict = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def UpperCamelCase ( self ): _snake_case : Optional[int] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) _snake_case : Dict = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @require_torch @slow def UpperCamelCase ( self ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence _snake_case : str = list(self.big_tokenizer.get_vocab().keys() )[:10] _snake_case : str = " ".join(lowercase_ ) _snake_case : Tuple = self.big_tokenizer.encode_plus(lowercase_ , return_tensors="pt" ) _snake_case : Tuple = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) _snake_case : int = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) _snake_case : Union[str, Any] = encoded_sequence["input_ids"].shape _snake_case : List[str] = ReformerModel(lowercase_ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowercase_ ) model(**lowercase_ ) @slow def UpperCamelCase ( self ): # fmt: off _snake_case : Union[str, Any] = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 _snake_case : Tuple = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=lowercase_ , sequences=lowercase_ , )
670
1
def _snake_case (_snake_case : list[int] , _snake_case : int) -> bool: _lowercase =len(_snake_case) _lowercase =[[False] * (required_sum + 1) for _ in range(arr_len + 1)] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1): _lowercase =True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1): _lowercase =False for i in range(1 , arr_len + 1): for j in range(1 , required_sum + 1): if arr[i - 1] > j: _lowercase =subset[i - 1][j] if arr[i - 1] <= j: _lowercase =subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
557
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _SCREAMING_SNAKE_CASE = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def _snake_case (_snake_case : Dict , _snake_case : List[str] , _snake_case : Any , _snake_case : Tuple , _snake_case : int) -> Dict: for attribute in key.split('.'): _lowercase =getattr(_snake_case , _snake_case) if weight_type is not None: _lowercase =getattr(_snake_case , _snake_case).shape else: _lowercase =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''') if weight_type == "weight": _lowercase =value elif weight_type == "weight_g": _lowercase =value elif weight_type == "weight_v": _lowercase =value elif weight_type == "bias": _lowercase =value else: _lowercase =value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''') def _snake_case (_snake_case : List[str] , _snake_case : Union[str, Any]) -> List[Any]: _lowercase =[] _lowercase =fairseq_model.state_dict() _lowercase =hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): _lowercase =False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == 'group' , ) _lowercase =True else: for key, mapped_key in MAPPING.items(): _lowercase ='unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.')[:-1]) != key): # special case since naming is very similar continue _lowercase =True if "*" in mapped_key: _lowercase =name.split(_snake_case)[0].split('.')[-2] _lowercase =mapped_key.replace('*' , _snake_case) if "weight_g" in name: _lowercase ='weight_g' elif "weight_v" in name: _lowercase ='weight_v' elif "bias" in name: _lowercase ='bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowercase ='weight' else: _lowercase =None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case) continue if not is_used: unused_weights.append(_snake_case) logger.warning(f'''Unused weights: {unused_weights}''') def _snake_case (_snake_case : Any , _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Any , _snake_case : int) -> Optional[Any]: _lowercase =full_name.split('conv_layers.')[-1] _lowercase =name.split('.') _lowercase =int(items[0]) _lowercase =int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''') _lowercase =value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''') _lowercase =value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''') _lowercase =value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''') _lowercase =value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(_snake_case) @torch.no_grad() def _snake_case (_snake_case : Optional[int] , _snake_case : List[str] , _snake_case : Union[str, Any]=None , _snake_case : str=None , _snake_case : Union[str, Any]=True) -> Dict: if config_path is not None: _lowercase =UniSpeechSatConfig.from_pretrained(_snake_case) else: _lowercase =UniSpeechSatConfig() _lowercase ='' if is_finetuned: _lowercase =UniSpeechSatForCTC(_snake_case) else: _lowercase =UniSpeechSatForPreTraining(_snake_case) _lowercase , _lowercase , _lowercase =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1])}) _lowercase =model[0].eval() recursively_load_weights(_snake_case , _snake_case) hf_wavavec.save_pretrained(_snake_case) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
557
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _UpperCamelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ ) -> Dict: lowerCAmelCase__ : List[str] = state_dict.pop(lowercase__ ) lowerCAmelCase__ : int = val def SCREAMING_SNAKE_CASE ( lowercase__ ) -> Optional[Any]: lowerCAmelCase__ : str = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowerCAmelCase__ : List[Any] = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) lowerCAmelCase__ : List[Any] = value else: lowerCAmelCase__ : Optional[int] = value return new_state_dict def SCREAMING_SNAKE_CASE ( lowercase__ ) -> Optional[Any]: lowerCAmelCase__ : str = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCAmelCase__ : Optional[int] = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) lowerCAmelCase__ : Tuple = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : Tuple = in_proj_weight[:2_5_6, :] lowerCAmelCase__ : Optional[int] = in_proj_bias[:2_5_6] lowerCAmelCase__ : Dict = in_proj_weight[2_5_6:5_1_2, :] lowerCAmelCase__ : Dict = in_proj_bias[2_5_6:5_1_2] lowerCAmelCase__ : Tuple = in_proj_weight[-2_5_6:, :] lowerCAmelCase__ : Any = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowerCAmelCase__ : Optional[Any] = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) lowerCAmelCase__ : List[str] = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : Dict = in_proj_weight[:2_5_6, :] lowerCAmelCase__ : Any = in_proj_bias[:2_5_6] lowerCAmelCase__ : int = in_proj_weight[2_5_6:5_1_2, :] lowerCAmelCase__ : Any = in_proj_bias[2_5_6:5_1_2] lowerCAmelCase__ : Tuple = in_proj_weight[-2_5_6:, :] lowerCAmelCase__ : List[Any] = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention lowerCAmelCase__ : Optional[Any] = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) lowerCAmelCase__ : List[Any] = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowerCAmelCase__ : Union[str, Any] = in_proj_weight_cross_attn[:2_5_6, :] lowerCAmelCase__ : Optional[Any] = in_proj_bias_cross_attn[:2_5_6] lowerCAmelCase__ : Dict = in_proj_weight_cross_attn[2_5_6:5_1_2, :] lowerCAmelCase__ : Optional[Any] = in_proj_bias_cross_attn[2_5_6:5_1_2] lowerCAmelCase__ : List[Any] = in_proj_weight_cross_attn[-2_5_6:, :] lowerCAmelCase__ : Tuple = in_proj_bias_cross_attn[-2_5_6:] def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ) -> Optional[Any]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = image.size lowerCAmelCase__ : Optional[Any] = max(lowercase__ , lowercase__ ) lowerCAmelCase__ : List[str] = 8_0_0 if "detection" in checkpoint_url else 1_0_0_0 lowerCAmelCase__ : List[str] = target_max_size / current_max_size lowerCAmelCase__ : str = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def SCREAMING_SNAKE_CASE ( lowercase__ ) -> Optional[int]: lowerCAmelCase__ : Union[str, Any] = F.to_tensor(lowercase__ ) lowerCAmelCase__ : Optional[Any] = F.normalize(lowercase__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: logger.info("Converting model..." ) # load original state dict lowerCAmelCase__ : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase__ , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) lowerCAmelCase__ : Dict = rename_backbone_keys(lowercase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowercase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCAmelCase__ : Optional[int] = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): lowerCAmelCase__ : Dict = state_dict.pop(lowercase__ ) lowerCAmelCase__ : Union[str, Any] = val # create HuggingFace model and load state dict lowerCAmelCase__ : str = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: lowerCAmelCase__ : Any = 1_5 lowerCAmelCase__ : Optional[int] = 2 lowerCAmelCase__ : Union[str, Any] = {0: "table", 1: "table rotated"} lowerCAmelCase__ : Any = idalabel lowerCAmelCase__ : Tuple = {v: k for k, v in idalabel.items()} else: lowerCAmelCase__ : str = 1_2_5 lowerCAmelCase__ : Any = 6 lowerCAmelCase__ : Optional[int] = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } lowerCAmelCase__ : str = idalabel lowerCAmelCase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : Optional[int] = DetrImageProcessor( format="coco_detection" , max_size=8_0_0 if "detection" in checkpoint_url else 1_0_0_0 ) lowerCAmelCase__ : Optional[int] = TableTransformerForObjectDetection(lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() # verify our conversion lowerCAmelCase__ : int = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" lowerCAmelCase__ : Optional[int] = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=lowercase__ ) lowerCAmelCase__ : Union[str, Any] = Image.open(lowercase__ ).convert("RGB" ) lowerCAmelCase__ : Dict = normalize(resize(lowercase__ , lowercase__ ) ).unsqueeze(0 ) lowerCAmelCase__ : Any = model(lowercase__ ) if "detection" in checkpoint_url: lowerCAmelCase__ : Union[str, Any] = (1, 1_5, 3) lowerCAmelCase__ : Optional[int] = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) lowerCAmelCase__ : Optional[int] = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: lowerCAmelCase__ : int = (1, 1_2_5, 7) lowerCAmelCase__ : List[str] = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) lowerCAmelCase__ : str = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowercase__ , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowercase__ , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) lowerCAmelCase__ : Optional[Any] = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(lowercase__ ) image_processor.push_to_hub(lowercase__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _UpperCamelCase = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
453
"""simple docstring""" def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ) -> list: lowerCAmelCase__ : List[str] = len(lowercase__ ) lowerCAmelCase__ : Dict = [] for i in range(len(lowercase__ ) - pat_len + 1 ): lowerCAmelCase__ : Union[str, Any] = True for j in range(lowercase__ ): if s[i + j] != pattern[j]: lowerCAmelCase__ : int = False break if match_found: position.append(lowercase__ ) return position if __name__ == "__main__": assert naive_pattern_search("""ABCDEFG""", """DE""") == [3] print(naive_pattern_search("""ABAAABCDBBABCDDEBCABC""", """ABC"""))
453
1
'''simple docstring''' __A : int = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def __UpperCamelCase ( ) ->None: """simple docstring""" lowerCamelCase_ =input("""Enter message: """ ) lowerCamelCase_ =input("""Enter key [alphanumeric]: """ ) lowerCamelCase_ =input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): lowerCamelCase_ ="""encrypt""" lowerCamelCase_ =encrypt_message(UpperCAmelCase__ , UpperCAmelCase__ ) elif mode.lower().startswith("""d""" ): lowerCamelCase_ ="""decrypt""" lowerCamelCase_ =decrypt_message(UpperCAmelCase__ , UpperCAmelCase__ ) print(f'\n{mode.title()}ed message:' ) print(UpperCAmelCase__ ) def __UpperCamelCase ( _A : str , _A : str ) ->str: """simple docstring""" return translate_message(UpperCAmelCase__ , UpperCAmelCase__ , """encrypt""" ) def __UpperCamelCase ( _A : str , _A : str ) ->str: """simple docstring""" return translate_message(UpperCAmelCase__ , UpperCAmelCase__ , """decrypt""" ) def __UpperCamelCase ( _A : str , _A : str , _A : str ) ->str: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =0 lowerCamelCase_ =key.upper() for symbol in message: lowerCamelCase_ =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(UpperCAmelCase__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(UpperCAmelCase__ ): lowerCamelCase_ =0 else: translated.append(UpperCAmelCase__ ) return "".join(UpperCAmelCase__ ) if __name__ == "__main__": main()
708
def __UpperCamelCase ( _A : str , _A : int ) ->str: """simple docstring""" lowerCamelCase_ =[[] for _ in range(_A )] lowerCamelCase_ =key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1 or len(_A ) <= key: return input_string for position, character in enumerate(_A ): lowerCamelCase_ =position % (lowest * 2) # puts it in bounds lowerCamelCase_ =min(_A , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(_A ) lowerCamelCase_ =["""""".join(_A ) for row in temp_grid] lowerCamelCase_ ="""""".join(_A ) return output_string def __UpperCamelCase ( _A : str , _A : int ) ->str: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1: return input_string lowerCamelCase_ =[[] for _ in range(_A )] # generates template for position in range(len(_A ) ): lowerCamelCase_ =position % (lowest * 2) # puts it in bounds lowerCamelCase_ =min(_A , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("""*""" ) lowerCamelCase_ =0 for row in temp_grid: # fills in the characters lowerCamelCase_ =input_string[counter : counter + len(_A )] grid.append(list(_A ) ) counter += len(_A ) lowerCamelCase_ ="""""" # reads as zigzag for position in range(len(_A ) ): lowerCamelCase_ =position % (lowest * 2) # puts it in bounds lowerCamelCase_ =min(_A , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __UpperCamelCase ( _A : str ) ->dict[int, str]: """simple docstring""" lowerCamelCase_ ={} for key_guess in range(1 , len(_A ) ): # tries every key lowerCamelCase_ =decrypt(_A , _A ) return results if __name__ == "__main__": import doctest doctest.testmod()
75
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Optional[Any] = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _UpperCAmelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
107
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : Union[str, Any] = ['''image_processor'''] snake_case__ : int = '''SamImageProcessor''' def __init__( self , a__ ): super().__init__(a__ ) __SCREAMING_SNAKE_CASE : List[Any] = self.image_processor __SCREAMING_SNAKE_CASE : Optional[int] = -10 __SCREAMING_SNAKE_CASE : Any = self.image_processor.size["longest_edge"] def __call__( self , a__=None , a__=None , a__=None , a__=None , a__ = None , **a__ , ): __SCREAMING_SNAKE_CASE : List[Any] = self.image_processor( a__ , return_tensors=a__ , **a__ , ) # pop arguments that are not used in the foward but used nevertheless __SCREAMING_SNAKE_CASE : Any = encoding_image_processor["original_sizes"] if hasattr(a__ , "numpy" ): # Checks if Torch or TF tensor __SCREAMING_SNAKE_CASE : Optional[Any] = original_sizes.numpy() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = self._check_and_preprocess_points( input_points=a__ , input_labels=a__ , input_boxes=a__ , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self._normalize_and_convert( a__ , a__ , input_points=a__ , input_labels=a__ , input_boxes=a__ , return_tensors=a__ , ) return encoding_image_processor def a_ ( self , a__ , a__ , a__=None , a__=None , a__=None , a__="pt" , ): if input_points is not None: if len(a__ ) != len(a__ ): __SCREAMING_SNAKE_CASE : List[Any] = [ self._normalize_coordinates(self.target_size , a__ , original_sizes[0] ) for point in input_points ] else: __SCREAMING_SNAKE_CASE : Dict = [ self._normalize_coordinates(self.target_size , a__ , a__ ) for point, original_size in zip(a__ , a__ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = self._pad_points_and_labels(a__ , a__ ) __SCREAMING_SNAKE_CASE : str = np.array(a__ ) if input_labels is not None: __SCREAMING_SNAKE_CASE : Optional[int] = np.array(a__ ) if input_boxes is not None: if len(a__ ) != len(a__ ): __SCREAMING_SNAKE_CASE : Any = [ self._normalize_coordinates(self.target_size , a__ , original_sizes[0] , is_bounding_box=a__ ) for box in input_boxes ] else: __SCREAMING_SNAKE_CASE : Any = [ self._normalize_coordinates(self.target_size , a__ , a__ , is_bounding_box=a__ ) for box, original_size in zip(a__ , a__ ) ] __SCREAMING_SNAKE_CASE : Tuple = np.array(a__ ) if input_boxes is not None: if return_tensors == "pt": __SCREAMING_SNAKE_CASE : Optional[int] = torch.from_numpy(a__ ) # boxes batch size of 1 by default __SCREAMING_SNAKE_CASE : Any = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __SCREAMING_SNAKE_CASE : int = tf.convert_to_tensor(a__ ) # boxes batch size of 1 by default __SCREAMING_SNAKE_CASE : Any = tf.expand_dims(a__ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": __SCREAMING_SNAKE_CASE : int = torch.from_numpy(a__ ) # point batch size of 1 by default __SCREAMING_SNAKE_CASE : Dict = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __SCREAMING_SNAKE_CASE : Tuple = tf.convert_to_tensor(a__ ) # point batch size of 1 by default __SCREAMING_SNAKE_CASE : Optional[int] = tf.expand_dims(a__ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": __SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(a__ ) # point batch size of 1 by default __SCREAMING_SNAKE_CASE : int = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __SCREAMING_SNAKE_CASE : str = tf.convert_to_tensor(a__ ) # point batch size of 1 by default __SCREAMING_SNAKE_CASE : Optional[int] = tf.expand_dims(a__ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def a_ ( self , a__ , a__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = max([point.shape[0] for point in input_points] ) __SCREAMING_SNAKE_CASE : Optional[Any] = [] for i, point in enumerate(a__ ): if point.shape[0] != expected_nb_points: __SCREAMING_SNAKE_CASE : List[str] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(a__ ) __SCREAMING_SNAKE_CASE : str = processed_input_points return input_points, input_labels def a_ ( self , a__ , a__ , a__ , a__=False ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = original_size __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = self.image_processor._get_preprocess_shape(a__ , longest_edge=a__ ) __SCREAMING_SNAKE_CASE : str = deepcopy(a__ ).astype(a__ ) if is_bounding_box: __SCREAMING_SNAKE_CASE : str = coords.reshape(-1 , 2 , 2 ) __SCREAMING_SNAKE_CASE : int = coords[..., 0] * (new_w / old_w) __SCREAMING_SNAKE_CASE : Optional[Any] = coords[..., 1] * (new_h / old_h) if is_bounding_box: __SCREAMING_SNAKE_CASE : Union[str, Any] = coords.reshape(-1 , 4 ) return coords def a_ ( self , a__=None , a__=None , a__=None , ): if input_points is not None: if hasattr(a__ , "numpy" ): # Checks for TF or Torch tensor __SCREAMING_SNAKE_CASE : Optional[int] = input_points.numpy().tolist() if not isinstance(a__ , a__ ) or not isinstance(input_points[0] , a__ ): raise ValueError("Input points must be a list of list of floating points." ) __SCREAMING_SNAKE_CASE : str = [np.array(a__ ) for input_point in input_points] else: __SCREAMING_SNAKE_CASE : Tuple = None if input_labels is not None: if hasattr(a__ , "numpy" ): __SCREAMING_SNAKE_CASE : Dict = input_labels.numpy().tolist() if not isinstance(a__ , a__ ) or not isinstance(input_labels[0] , a__ ): raise ValueError("Input labels must be a list of list integers." ) __SCREAMING_SNAKE_CASE : Tuple = [np.array(a__ ) for label in input_labels] else: __SCREAMING_SNAKE_CASE : Any = None if input_boxes is not None: if hasattr(a__ , "numpy" ): __SCREAMING_SNAKE_CASE : List[str] = input_boxes.numpy().tolist() if ( not isinstance(a__ , a__ ) or not isinstance(input_boxes[0] , a__ ) or not isinstance(input_boxes[0][0] , a__ ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) __SCREAMING_SNAKE_CASE : Any = [np.array(a__ ).astype(np.floataa ) for box in input_boxes] else: __SCREAMING_SNAKE_CASE : Dict = None return input_points, input_labels, input_boxes @property def a_ ( self ): __SCREAMING_SNAKE_CASE : str = self.image_processor.model_input_names return list(dict.fromkeys(a__ ) ) def a_ ( self , *a__ , **a__ ): return self.image_processor.post_process_masks(*a__ , **a__ )
211
0
def lowerCamelCase ( )-> Any: """simple docstring""" a =0 for i in range(1 , 1001 ): total += i**i return str(UpperCAmelCase_ )[-10:] if __name__ == "__main__": print(solution())
715
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(UpperCAmelCase_ , i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int )-> int: """simple docstring""" a =_distribute_shards(**UpperCAmelCase_ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any )-> Any: """simple docstring""" a =_split_gen_kwargs(UpperCAmelCase_ , UpperCAmelCase_ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] )-> int: """simple docstring""" if expected is RuntimeError: with pytest.raises(UpperCAmelCase_ ): _number_of_shards_in_gen_kwargs(UpperCAmelCase_ ) else: a =_number_of_shards_in_gen_kwargs(UpperCAmelCase_ ) assert out == expected
321
0
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict = "cpu" , __UpperCAmelCase : List[str] = None ) -> None: __magic_name__: Optional[Any] = torch.load(A__ , map_location=A__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(A__ , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) __magic_name__: Union[str, Any] = v.half() if save_path is None: # overwrite src_path __magic_name__: Any = src_path torch.save(A__ , A__ ) if __name__ == "__main__": fire.Fire(convert)
96
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A_ ( A__ ) -> Dict: a__ : Dict = 384 if "tiny" in model_name: a__ : Any = [3, 3, 9, 3] a__ : List[str] = [96, 192, 384, 768] if "small" in model_name: a__ : List[Any] = [3, 3, 27, 3] a__ : Tuple = [96, 192, 384, 768] if "base" in model_name: a__ : Union[str, Any] = [3, 3, 27, 3] a__ : List[Any] = [128, 256, 512, 1024] a__ : int = 512 if "large" in model_name: a__ : Dict = [3, 3, 27, 3] a__ : Tuple = [192, 384, 768, 1536] a__ : Any = 768 if "xlarge" in model_name: a__ : Union[str, Any] = [3, 3, 27, 3] a__ : Dict = [256, 512, 1024, 2048] a__ : Optional[int] = 1024 # set label information a__ : Optional[int] = 150 a__ : Optional[Any] = 'huggingface/label-files' a__ : Union[str, Any] = 'ade20k-id2label.json' a__ : Dict = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) a__ : str = {int(A__ ): v for k, v in idalabel.items()} a__ : int = {v: k for k, v in idalabel.items()} a__ : Tuple = ConvNextConfig( depths=A__ , hidden_sizes=A__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) a__ : Dict = UperNetConfig( backbone_config=A__ , auxiliary_in_channels=A__ , num_labels=A__ , idalabel=A__ , labelaid=A__ , ) return config def A_ ( A__ ) -> Union[str, Any]: a__ : int = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.stages.{i}.{j}.gamma', F'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.weight', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.bias', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.weight', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.bias', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((F'backbone.downsample_layers.{i}.0.weight', F'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.0.bias', F'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.weight', F'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.bias', F'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def A_ ( A__ , A__ , A__ ) -> Optional[Any]: a__ : Union[str, Any] = dct.pop(A__ ) a__ : Tuple = val def A_ ( A__ , A__ , A__ ) -> List[Any]: a__ : Dict = { 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } a__ : Union[str, Any] = model_name_to_url[model_name] a__ : Optional[int] = torch.hub.load_state_dict_from_url(A__ , map_location='cpu' )['state_dict'] a__ : Dict = get_upernet_config(A__ ) a__ : Dict = UperNetForSemanticSegmentation(A__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): a__ : List[Any] = state_dict.pop(A__ ) if "bn" in key: a__ : Optional[int] = key.replace('bn' , 'batch_norm' ) a__ : Any = val # rename keys a__ : List[Any] = create_rename_keys(A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) model.load_state_dict(A__ ) # verify on image a__ : List[Any] = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' a__ : int = Image.open(requests.get(A__ , stream=A__ ).raw ).convert('RGB' ) a__ : str = SegformerImageProcessor() a__ : List[str] = processor(A__ , return_tensors='pt' ).pixel_values with torch.no_grad(): a__ : List[Any] = model(A__ ) if model_name == "upernet-convnext-tiny": a__ : int = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ) elif model_name == "upernet-convnext-small": a__ : int = torch.tensor( [[-8.82_36, -8.82_36, -8.67_71], [-8.82_36, -8.82_36, -8.67_71], [-8.76_38, -8.76_38, -8.62_40]] ) elif model_name == "upernet-convnext-base": a__ : Tuple = torch.tensor( [[-8.85_58, -8.85_58, -8.69_05], [-8.85_58, -8.85_58, -8.69_05], [-8.76_69, -8.76_69, -8.60_21]] ) elif model_name == "upernet-convnext-large": a__ : str = torch.tensor( [[-8.66_60, -8.66_60, -8.62_10], [-8.66_60, -8.66_60, -8.62_10], [-8.63_10, -8.63_10, -8.59_64]] ) elif model_name == "upernet-convnext-xlarge": a__ : Union[str, Any] = torch.tensor( [[-8.49_80, -8.49_80, -8.39_77], [-8.49_80, -8.49_80, -8.39_77], [-8.43_79, -8.43_79, -8.34_12]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , A__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(A__ ) if push_to_hub: print(F'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(F'openmmlab/{model_name}' ) processor.push_to_hub(F'openmmlab/{model_name}' ) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowercase : Dict = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
0
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class _a : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=True , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): __A : Dict = parent __A : List[str] = batch_size __A : str = seq_length __A : List[str] = is_training __A : str = use_input_mask __A : Union[str, Any] = use_token_type_ids __A : Optional[Any] = use_labels __A : Dict = vocab_size __A : List[str] = hidden_size __A : Dict = num_hidden_layers __A : Tuple = num_attention_heads __A : int = intermediate_multiple_size __A : Optional[int] = hidden_act __A : Any = hidden_dropout __A : Tuple = attention_dropout __A : Dict = weight_tying __A : Optional[int] = max_position_embeddings __A : Optional[int] = type_vocab_size __A : str = type_sequence_label_size __A : Optional[Any] = initializer_range __A : Optional[int] = num_labels __A : Tuple = num_choices __A : Optional[Any] = scope def __UpperCAmelCase( self ): __A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : int = None if self.use_input_mask: __A : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __A : Union[str, Any] = None if self.use_labels: __A : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A : str = self.get_config() return config, input_ids, input_mask, token_labels def __UpperCAmelCase( self ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __UpperCAmelCase( self ): __A , __A , __A , __A : Optional[Any] = self.prepare_config_and_inputs() __A : Optional[int] = True return config, input_ids, input_mask, token_labels def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : Union[str, Any] = GPTNeoXJapaneseModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __A : Optional[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __A : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : Any = True __A : List[str] = GPTNeoXJapaneseModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __A : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : Dict = GPTNeoXJapaneseForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __A : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : Optional[Any] = True __A : List[str] = GPTNeoXJapaneseForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass __A : Optional[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) __A : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __A : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) __A : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __A : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) __A : Any = torch.cat([input_mask, next_mask] , dim=-1 ) __A : Any = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase ) __A : Union[str, Any] = output_from_no_past["hidden_states"][0] __A : str = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] # select random slice __A : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __A : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __A : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def __UpperCAmelCase( self ): __A : Union[str, Any] = self.prepare_config_and_inputs() __A , __A , __A , __A : List[str] = config_and_inputs __A : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _a ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : List[str] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCamelCase_ : Dict = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCamelCase_ : int = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCamelCase_ : Tuple = False lowerCamelCase_ : Any = False lowerCamelCase_ : List[str] = False lowerCamelCase_ : Union[str, Any] = False def __UpperCAmelCase( self ): __A : Any = GPTNeoXJapaneseModelTester(self ) __A : int = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __UpperCAmelCase( self ): self.config_tester.run_common_tests() def __UpperCAmelCase( self ): __A , __A , __A , __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __UpperCAmelCase( self ): __A , __A , __A , __A : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __UpperCAmelCase( self ): # This regression test was failing with PyTorch < 1.3 __A , __A , __A , __A : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() __A : List[Any] = None self.model_tester.create_and_check_model_as_decoder(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __UpperCAmelCase( self ): __A , __A , __A , __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __UpperCAmelCase( self ): __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase ) @slow def __UpperCAmelCase( self ): __A : Tuple = "abeja/gpt-neox-japanese-2.7b" __A : Optional[Any] = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] __A : Any = [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] __A : Optional[Any] = GPTNeoXJapaneseTokenizer.from_pretrained(__UpperCAmelCase ) __A : str = GPTNeoXJapaneseForCausalLM.from_pretrained(__UpperCAmelCase ) __A : Dict = [] for prompt in prompts: __A : List[str] = tokenizer(__UpperCAmelCase , return_tensors="pt" ).input_ids __A : Optional[Any] = model.generate(__UpperCAmelCase , max_length=50 ) __A : int = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
387
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowerCamelCase_ ( _lowercase ) -> Dict: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowerCamelCase_ ( _lowercase ) -> Dict: __A : Dict = create_tensor(_lowercase ) __A : int = gather(_lowercase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowerCamelCase_ ( _lowercase ) -> str: __A : Tuple = [state.process_index] __A : Optional[int] = gather_object(_lowercase ) assert len(_lowercase ) == state.num_processes, F"{gathered_obj}, {len(_lowercase )} != {state.num_processes}" assert gathered_obj == list(range(state.num_processes ) ), F"{gathered_obj} != {list(range(state.num_processes ) )}" def lowerCamelCase_ ( _lowercase ) -> str: __A : List[str] = create_tensor(_lowercase ) __A : Any = broadcast(_lowercase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowerCamelCase_ ( _lowercase ) -> str: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: __A : str = torch.arange(state.num_processes + 1 ).to(state.device ) else: __A : Dict = torch.arange(state.num_processes ).to(state.device ) __A : Optional[Any] = pad_across_processes(_lowercase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowerCamelCase_ ( _lowercase ) -> str: # For now runs on only two processes if state.num_processes != 2: return __A : Dict = create_tensor(_lowercase ) __A : int = reduce(_lowercase , "sum" ) __A : str = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(_lowercase , _lowercase ), F"{reduced_tensor} != {truth_tensor}" def lowerCamelCase_ ( _lowercase ) -> List[str]: # For now runs on only two processes if state.num_processes != 2: return __A : Tuple = create_tensor(_lowercase ) __A : List[str] = reduce(_lowercase , "mean" ) __A : Union[str, Any] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(_lowercase , _lowercase ), F"{reduced_tensor} != {truth_tensor}" def lowerCamelCase_ ( _lowercase ) -> Optional[int]: # For xla_spawn (TPUs) main() def lowerCamelCase_ ( ) -> List[str]: __A : Optional[int] = PartialState() state.print(F"State: {state}" ) state.print("testing gather" ) test_gather(_lowercase ) state.print("testing gather_object" ) test_gather_object(_lowercase ) state.print("testing broadcast" ) test_broadcast(_lowercase ) state.print("testing pad_across_processes" ) test_pad_across_processes(_lowercase ) state.print("testing reduce_sum" ) test_reduce_sum(_lowercase ) state.print("testing reduce_mean" ) test_reduce_mean(_lowercase ) if __name__ == "__main__": main()
387
1
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger("transformers.models.speecht5") UpperCamelCase_ = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } UpperCamelCase_ = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } UpperCamelCase_ = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } UpperCamelCase_ = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } UpperCamelCase_ = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } UpperCamelCase_ = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } UpperCamelCase_ = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } UpperCamelCase_ = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } UpperCamelCase_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } UpperCamelCase_ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase_ = [] UpperCamelCase_ = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] UpperCamelCase_ = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] UpperCamelCase_ = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] UpperCamelCase_ = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: List[str] ,__UpperCamelCase: Tuple ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Tuple ): """simple docstring""" for attribute in key.split('.' ): SCREAMING_SNAKE_CASE : List[str] = getattr(__UpperCamelCase ,__UpperCamelCase ) if weight_type is not None: SCREAMING_SNAKE_CASE : List[str] = getattr(__UpperCamelCase ,__UpperCamelCase ).shape else: SCREAMING_SNAKE_CASE : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": SCREAMING_SNAKE_CASE : int = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : Dict = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : List[str] = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : str = value elif weight_type == "running_mean": SCREAMING_SNAKE_CASE : Union[str, Any] = value elif weight_type == "running_var": SCREAMING_SNAKE_CASE : Union[str, Any] = value elif weight_type == "num_batches_tracked": SCREAMING_SNAKE_CASE : Optional[Any] = value else: SCREAMING_SNAKE_CASE : Any = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: str ): """simple docstring""" for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Any ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [] if task == "s2t": SCREAMING_SNAKE_CASE : int = hf_model.speechta.encoder.prenet.feature_encoder SCREAMING_SNAKE_CASE : str = MAPPING_S2T SCREAMING_SNAKE_CASE : List[str] = IGNORE_KEYS_S2T elif task == "t2s": SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Tuple = MAPPING_T2S SCREAMING_SNAKE_CASE : str = IGNORE_KEYS_T2S elif task == "s2s": SCREAMING_SNAKE_CASE : List[Any] = hf_model.speechta.encoder.prenet.feature_encoder SCREAMING_SNAKE_CASE : List[str] = MAPPING_S2S SCREAMING_SNAKE_CASE : Optional[Any] = IGNORE_KEYS_S2S else: raise ValueError(f"Unsupported task: {task}" ) for name, value in fairseq_dict.items(): if should_ignore(__UpperCamelCase ,__UpperCamelCase ): logger.info(f"{name} was ignored" ) continue SCREAMING_SNAKE_CASE : str = False if "conv_layers" in name: load_conv_layer( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,hf_model.config.feat_extract_norm == 'group' ,) SCREAMING_SNAKE_CASE : Optional[int] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = key.split('.*.' ) if prefix in name and suffix in name: SCREAMING_SNAKE_CASE : Optional[int] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: SCREAMING_SNAKE_CASE : int = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Union[str, Any] = name.split(__UpperCamelCase )[0].split('.' )[-2] SCREAMING_SNAKE_CASE : Tuple = mapped_key.replace('*' ,__UpperCamelCase ) if "weight_g" in name: SCREAMING_SNAKE_CASE : str = 'weight_g' elif "weight_v" in name: SCREAMING_SNAKE_CASE : Any = 'weight_v' elif "bias" in name: SCREAMING_SNAKE_CASE : Any = 'bias' elif "weight" in name: SCREAMING_SNAKE_CASE : Any = 'weight' elif "running_mean" in name: SCREAMING_SNAKE_CASE : Tuple = 'running_mean' elif "running_var" in name: SCREAMING_SNAKE_CASE : Optional[Any] = 'running_var' elif "num_batches_tracked" in name: SCREAMING_SNAKE_CASE : Dict = 'num_batches_tracked' else: SCREAMING_SNAKE_CASE : Tuple = None set_recursively(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Dict ,__UpperCamelCase: List[Any] ,__UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE : str = full_name.split('conv_layers.' )[-1] SCREAMING_SNAKE_CASE : int = name.split('.' ) SCREAMING_SNAKE_CASE : Any = int(items[0] ) SCREAMING_SNAKE_CASE : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE : str = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : List[Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__UpperCamelCase ) @torch.no_grad() def lowercase__( __UpperCamelCase: Optional[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: int=None ,__UpperCamelCase: Optional[Any]=None ,__UpperCamelCase: int=None ,): """simple docstring""" if config_path is not None: SCREAMING_SNAKE_CASE : Any = SpeechTaConfig.from_pretrained(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaConfig() if task == "s2t": SCREAMING_SNAKE_CASE : Optional[Any] = config.max_text_positions SCREAMING_SNAKE_CASE : List[Any] = SpeechTaForSpeechToText(__UpperCamelCase ) elif task == "t2s": SCREAMING_SNAKE_CASE : Optional[Any] = 18_76 SCREAMING_SNAKE_CASE : Optional[int] = 6_00 SCREAMING_SNAKE_CASE : List[Any] = config.max_speech_positions SCREAMING_SNAKE_CASE : List[str] = SpeechTaForTextToSpeech(__UpperCamelCase ) elif task == "s2s": SCREAMING_SNAKE_CASE : Optional[int] = 18_76 SCREAMING_SNAKE_CASE : int = config.max_speech_positions SCREAMING_SNAKE_CASE : Any = SpeechTaForSpeechToSpeech(__UpperCamelCase ) else: raise ValueError(f"Unknown task name: {task}" ) if vocab_path: SCREAMING_SNAKE_CASE : Any = SpeechTaTokenizer(__UpperCamelCase ,model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : str = AddedToken('<mask>' ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE : Dict = SpeechTaProcessor(tokenizer=__UpperCamelCase ,feature_extractor=__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = torch.load(__UpperCamelCase ) recursively_load_weights(fairseq_checkpoint['model'] ,__UpperCamelCase ,__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) processor.push_to_hub(__UpperCamelCase ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCamelCase_ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
28
'''simple docstring''' def lowercase__( __UpperCamelCase: int = 1_00_00_00 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,__UpperCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
28
1
"""simple docstring""" import math def _UpperCamelCase ( _A ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCamelCase ( _A = 1_0_0_0_1 ) -> int: """simple docstring""" try: _UpperCAmelCase = int(_A ) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""" ) from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""" ) _UpperCAmelCase = [] _UpperCAmelCase = 2 while len(_A ) < nth: if is_prime(_A ): primes.append(_A ) num += 1 else: num += 1 return primes[len(_A ) - 1] if __name__ == "__main__": print(F"{solution() = }")
19
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( _UpperCAmelCase ): a : Any = ['image_processor', 'tokenizer'] a : Optional[int] = 'AutoImageProcessor' a : Any = 'AutoTokenizer' def __init__( self : List[str] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=None , **__UpperCamelCase : List[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __UpperCamelCase , ) _UpperCAmelCase = kwargs.pop("""feature_extractor""" ) _UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.image_processor _UpperCAmelCase = False def __call__( self : Union[str, Any] , *__UpperCamelCase : str , **__UpperCamelCase : Optional[Any] ) ->List[str]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = kwargs.pop("""images""" , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop("""text""" , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: _UpperCAmelCase = self.image_processor(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) if text is not None: _UpperCAmelCase = self.tokenizer(__UpperCamelCase , **__UpperCamelCase ) if text is None: return inputs elif images is None: return encodings else: _UpperCAmelCase = encodings["""input_ids"""] return inputs def _snake_case ( self : Union[str, Any] , *__UpperCamelCase : int , **__UpperCamelCase : Tuple ) ->Tuple: '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def _snake_case ( self : Tuple , *__UpperCamelCase : int , **__UpperCamelCase : Union[str, Any] ) ->int: '''simple docstring''' return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @contextmanager def _snake_case ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) _UpperCAmelCase = True _UpperCAmelCase = self.tokenizer yield _UpperCAmelCase = self.image_processor _UpperCAmelCase = False def _snake_case ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : Union[str, Any]=None ) ->List[str]: '''simple docstring''' if added_vocab is None: _UpperCAmelCase = self.tokenizer.get_added_vocab() _UpperCAmelCase = {} while tokens: _UpperCAmelCase = re.search(r"""<s_(.*?)>""" , __UpperCamelCase , re.IGNORECASE ) if start_token is None: break _UpperCAmelCase = start_token.group(1 ) _UpperCAmelCase = re.search(rf"""</s_{key}>""" , __UpperCamelCase , re.IGNORECASE ) _UpperCAmelCase = start_token.group() if end_token is None: _UpperCAmelCase = tokens.replace(__UpperCamelCase , """""" ) else: _UpperCAmelCase = end_token.group() _UpperCAmelCase = re.escape(__UpperCamelCase ) _UpperCAmelCase = re.escape(__UpperCamelCase ) _UpperCAmelCase = re.search(f"""{start_token_escaped}(.*?){end_token_escaped}""" , __UpperCamelCase , re.IGNORECASE ) if content is not None: _UpperCAmelCase = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node _UpperCAmelCase = self.tokenajson(__UpperCamelCase , is_inner_value=__UpperCamelCase , added_vocab=__UpperCamelCase ) if value: if len(__UpperCamelCase ) == 1: _UpperCAmelCase = value[0] _UpperCAmelCase = value else: # leaf nodes _UpperCAmelCase = [] for leaf in content.split(r"""<sep/>""" ): _UpperCAmelCase = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": _UpperCAmelCase = leaf[1:-2] # for categorical special tokens output[key].append(__UpperCamelCase ) if len(output[key] ) == 1: _UpperCAmelCase = output[key][0] _UpperCAmelCase = tokens[tokens.find(__UpperCamelCase ) + len(__UpperCamelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=__UpperCamelCase , added_vocab=__UpperCamelCase ) if len(__UpperCamelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def _snake_case ( self : Tuple ) ->Optional[int]: '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __UpperCamelCase , ) return self.image_processor_class @property def _snake_case ( self : List[str] ) ->Dict: '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __UpperCamelCase , ) return self.image_processor
19
1
import torch from diffusers import StableDiffusionPipeline _lowerCAmelCase : List[Any] = '''path-to-your-trained-model''' _lowerCAmelCase : Any = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') _lowerCAmelCase : Tuple = '''A photo of sks dog in a bucket''' _lowerCAmelCase : List[str] = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
454
def __snake_case ( _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 1000 ) -> int: A_ : Optional[int] = 1 A_ : int = 0 for divide_by_number in range(_lowerCAmelCase , digit + 1 ): A_ : list[int] = [] A_ : Union[str, Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_lowerCAmelCase ): A_ : Optional[Any] = len(_lowerCAmelCase ) A_ : Union[str, Any] = divide_by_number else: has_been_divided.append(_lowerCAmelCase ) A_ : Dict = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
454
1
def _SCREAMING_SNAKE_CASE ( a ) -> list: __A : Optional[int] = [0] * len(a ) for i in range(1 , len(a ) ): # use last results for better performance - dynamic programming __A : Optional[int] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: __A : Union[str, Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 __A : Optional[int] = j return prefix_result def _SCREAMING_SNAKE_CASE ( a ) -> int: return max(prefix_function(a ) ) if __name__ == "__main__": import doctest doctest.testmod()
703
import glob import os import random from string import ascii_lowercase, digits import cva UpperCAmelCase : Dict = '''''' UpperCAmelCase : Union[str, Any] = '''''' UpperCAmelCase : Optional[int] = '''''' UpperCAmelCase : Union[str, Any] = 1 # (0 is vertical, 1 is horizontal) def _SCREAMING_SNAKE_CASE ( ) -> None: __A , __A : List[Any] = get_dataset(a , a ) print('Processing...' ) __A , __A , __A : Optional[Any] = update_image_and_anno(a , a , a ) for index, image in enumerate(a ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __A : Optional[int] = random_chars(32 ) __A : Dict = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] __A : Dict = F"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(F"""/{file_root}.jpg""" , a , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Success {index+1}/{len(a )} with {file_name}""" ) __A : int = [] for anno in new_annos[index]: __A : Any = F"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(a ) with open(F"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def _SCREAMING_SNAKE_CASE ( a , a ) -> tuple[list, list]: __A : int = [] __A : List[Any] = [] for label_file in glob.glob(os.path.join(a , '*.txt' ) ): __A : List[str] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(a ) as in_file: __A : Tuple = in_file.readlines() __A : Dict = os.path.join(a , F"""{label_name}.jpg""" ) __A : Dict = [] for obj_list in obj_lists: __A : int = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(a ) labels.append(a ) return img_paths, labels def _SCREAMING_SNAKE_CASE ( a , a , a = 1 ) -> tuple[list, list, list]: __A : int = [] __A : Optional[Any] = [] __A : Dict = [] for idx in range(len(a ) ): __A : Dict = [] __A : Optional[Any] = img_list[idx] path_list.append(a ) __A : Union[str, Any] = anno_list[idx] __A : Optional[Any] = cva.imread(a ) if flip_type == 1: __A : Any = cva.flip(a , a ) for bbox in img_annos: __A : Dict = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __A : Union[str, Any] = cva.flip(a , a ) for bbox in img_annos: __A : Optional[Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(a ) new_imgs_list.append(a ) return new_imgs_list, new_annos_lists, path_list def _SCREAMING_SNAKE_CASE ( a = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" __A : List[Any] = ascii_lowercase + digits return "".join(random.choice(a ) for _ in range(a ) ) if __name__ == "__main__": main() print('''DONE ✅''')
77
0
def A_ ( A__ ) -> list: if len(UpperCamelCase__ ) <= 1: return [tuple(UpperCamelCase__ )] a__ : List[Any] = [] def generate(A__ , A__ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , UpperCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even a__ , a__ : str = arr[k - 1], arr[i] else: # k is odd a__ , a__ : Optional[int] = arr[k - 1], arr[0] generate(k - 1 , UpperCamelCase__ ) generate(len(UpperCamelCase__ ) , UpperCamelCase__ ) return res if __name__ == "__main__": lowercase : int = input("""Enter numbers separated by a comma:\n""").strip() lowercase : str = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
302
import math from datetime import datetime, timedelta def _A( UpperCamelCase__ : int ) -> datetime: '''simple docstring''' __lowercase = year % 19 __lowercase = year % 4 __lowercase = year % 7 __lowercase = math.floor(year / 100 ) __lowercase = math.floor((13 + 8 * leap_day_inhibits) / 25 ) __lowercase = leap_day_inhibits / 4 __lowercase = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 __lowercase = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __lowercase = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon __lowercase = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase__ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase__ , 4 , 18 ) else: return datetime(UpperCamelCase__ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): UpperCAmelCase__ = "will be" if year > datetime.now().year else "was" print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
332
0
'''simple docstring''' def _UpperCAmelCase ( __A : int ): if not isinstance(__A , __A ): raise TypeError('''Input value must be an \'int\' type''' ) a_ : Tuple = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _UpperCAmelCase ( __A : List[str] , __A : List[Any] ): a_ : Any = [] for part_id in partition_order: a_ : str = df.where(f'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(__A ): expected_row_ids_and_row_dicts.append((f'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : Union[str, Any] = spark.range(1_00 ).repartition(1 ) a_ : Any = Spark(__A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : int = spark.range(10 ).repartition(2 ) a_ : Tuple = [1, 0] a_ : List[str] = _generate_iterable_examples(__A , __A ) # Reverse the partitions. a_ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , __A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a_ , a_ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(10 ).repartition(1 ) a_ : Tuple = SparkExamplesIterable(__A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__A ): assert row_id == f'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: a_ : Union[str, Any] = lambda __A : x.reverse() a_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [2, 1, 0] ) a_ : str = SparkExamplesIterable(__A ).shuffle_data_sources(__A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[str] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a_ : Dict = SparkExamplesIterable(__A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [0, 2] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a_ : List[Any] = SparkExamplesIterable(__A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 a_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__A , [1, 3] ) for i, (row_id, row_dict) in enumerate(__A ): a_ , a_ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCAmelCase ( ): a_ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() a_ : List[Any] = spark.range(1_00 ).repartition(1 ) a_ : Optional[Any] = Spark(__A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
666
0