code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ =logging.get_logger(__name__) lowercase__ ={ 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : List[str] = "informer" _SCREAMING_SNAKE_CASE : List[Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__(self : Tuple , snake_case_ : Optional[int] = None , snake_case_ : Optional[int] = None , snake_case_ : str = "student_t" , snake_case_ : str = "nll" , snake_case_ : int = 1 , snake_case_ : List[int] = None , snake_case_ : Optional[Union[str, bool]] = "mean" , snake_case_ : int = 0 , snake_case_ : int = 0 , snake_case_ : int = 0 , snake_case_ : int = 0 , snake_case_ : Optional[List[int]] = None , snake_case_ : Optional[List[int]] = None , snake_case_ : int = 6_4 , snake_case_ : int = 3_2 , snake_case_ : int = 3_2 , snake_case_ : int = 2 , snake_case_ : int = 2 , snake_case_ : int = 2 , snake_case_ : int = 2 , snake_case_ : bool = True , snake_case_ : str = "gelu" , snake_case_ : float = 0.05 , snake_case_ : float = 0.1 , snake_case_ : float = 0.1 , snake_case_ : float = 0.1 , snake_case_ : float = 0.1 , snake_case_ : int = 1_0_0 , snake_case_ : float = 0.02 , snake_case_ : Optional[int]=True , snake_case_ : str = "prob" , snake_case_ : int = 5 , snake_case_ : bool = True , **snake_case_ : Union[str, Any] , ): # time series specific configuration __a : Tuple = prediction_length __a : Union[str, Any] = context_length or prediction_length __a : List[str] = distribution_output __a : Any = loss __a : str = input_size __a : Union[str, Any] = num_time_features __a : Union[str, Any] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __a : Union[str, Any] = scaling __a : Optional[Any] = num_dynamic_real_features __a : Tuple = num_static_real_features __a : Tuple = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __a : Tuple = cardinality else: __a : Any = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __a : Dict = embedding_dimension else: __a : Optional[int] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] __a : Any = num_parallel_samples # Transformer architecture configuration __a : Optional[Any] = input_size * len(self.lags_sequence ) + self._number_of_features __a : int = d_model __a : List[str] = encoder_attention_heads __a : int = decoder_attention_heads __a : Any = encoder_ffn_dim __a : int = decoder_ffn_dim __a : str = encoder_layers __a : Any = decoder_layers __a : List[Any] = dropout __a : List[Any] = attention_dropout __a : Tuple = activation_dropout __a : Dict = encoder_layerdrop __a : Tuple = decoder_layerdrop __a : Any = activation_function __a : List[Any] = init_std __a : int = use_cache # Informer __a : Optional[Any] = attention_type __a : str = sampling_factor __a : Optional[int] = distil super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ ) @property def lowerCAmelCase (self : Union[str, Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
521
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __UpperCamelCase ( lowerCAmelCase__ : List[str] ): __a : Any = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class UpperCamelCase__ ( __lowercase ,__lowercase ,__lowercase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = StableDiffusionLatentUpscalePipeline _SCREAMING_SNAKE_CASE : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } _SCREAMING_SNAKE_CASE : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} _SCREAMING_SNAKE_CASE : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _SCREAMING_SNAKE_CASE : Union[str, Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _SCREAMING_SNAKE_CASE : Optional[int] = frozenset([] ) _SCREAMING_SNAKE_CASE : Optional[int] = True @property def lowerCAmelCase (self : Optional[int] ): __a : Union[str, Any] = 1 __a : Dict = 4 __a : int = (1_6, 1_6) __a : Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case_ ) return image def lowerCAmelCase (self : int ): torch.manual_seed(0 ) __a : Dict = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=snake_case_ , block_out_channels=[3_2, 3_2, 6_4, 6_4] , time_cond_proj_dim=1_6_0 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=3_2 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=snake_case_ , only_cross_attention=snake_case_ , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) __a : Optional[int] = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4, 6_4] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) __a : Dict = EulerDiscreteScheduler(prediction_type='''sample''' ) __a : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''quick_gelu''' , projection_dim=5_1_2 , ) __a : int = CLIPTextModel(snake_case_ ) __a : Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a : Tuple = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def lowerCAmelCase (self : List[str] , snake_case_ : Tuple , snake_case_ : List[Any]=0 ): if str(snake_case_ ).startswith('''mps''' ): __a : Any = torch.manual_seed(snake_case_ ) else: __a : Optional[Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) __a : Tuple = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase (self : Tuple ): __a : Optional[int] = '''cpu''' __a : Union[str, Any] = self.get_dummy_components() __a : Any = self.pipeline_class(**snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __a : int = self.get_dummy_inputs(snake_case_ ) __a : Dict = pipe(**snake_case_ ).images __a : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_5_6, 2_5_6, 3) ) __a : List[str] = np.array( [0.4722_2412, 0.4192_1633, 0.4471_7434, 0.4687_4192, 0.4258_8258, 0.4615_0726, 0.467_7534, 0.4558_3832, 0.4857_9055] ) __a : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case_ , 1E-3 ) def lowerCAmelCase (self : Tuple ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def lowerCAmelCase (self : Any ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def lowerCAmelCase (self : Optional[Any] ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCAmelCase (self : Optional[Any] ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def lowerCAmelCase (self : List[str] ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def lowerCAmelCase (self : Tuple ): super().test_save_load_local(expected_max_difference=3E-3 ) def lowerCAmelCase (self : Optional[int] ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowerCAmelCase (self : Union[str, Any] ): __a : List[Any] = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] __a : List[str] = self.get_dummy_components() __a : List[Any] = self.pipeline_class(**snake_case_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __a : Optional[Any] = self.get_dummy_inputs(snake_case_ ) __a : List[Any] = 2 __a : str = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __a : Union[str, Any] = getattr(snake_case_ , scheduler_enum.name ) __a : Any = scheduler_cls.from_config(pipe.scheduler.config ) __a : Any = pipe(**snake_case_ )[0] outputs.append(snake_case_ ) assert check_same_shape(snake_case_ ) @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase ): def lowerCAmelCase (self : Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase (self : Union[str, Any] ): __a : Union[str, Any] = torch.manual_seed(3_3 ) __a : List[Any] = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) __a : str = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) __a : int = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' __a : Dict = pipe(snake_case_ , generator=snake_case_ , output_type='''latent''' ).images __a : Any = upscaler( prompt=snake_case_ , image=snake_case_ , num_inference_steps=2_0 , guidance_scale=0 , generator=snake_case_ , output_type='''np''' , ).images[0] __a : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def lowerCAmelCase (self : List[Any] ): __a : int = torch.manual_seed(3_3 ) __a : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) __a : Optional[int] = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' __a : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) __a : Any = upscaler( prompt=snake_case_ , image=snake_case_ , num_inference_steps=2_0 , guidance_scale=0 , generator=snake_case_ , output_type='''np''' , ).images[0] __a : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-2
521
1
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowercase ( __UpperCAmelCase , unittest.TestCase ): lowercase_ = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _UpperCamelCase ( self , UpperCAmelCase_=0 ) -> int: lowerCamelCase : Tuple = floats_tensor((1, 3, 128, 128) , rng=random.Random(UpperCAmelCase_ ) ) lowerCamelCase : Any = np.random.RandomState(UpperCAmelCase_ ) lowerCamelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _UpperCamelCase ( self ) -> str: lowerCamelCase : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : List[str] = self.get_dummy_inputs() lowerCamelCase : Union[str, Any] = pipe(**UpperCAmelCase_ ).images lowerCamelCase : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) lowerCamelCase : Tuple = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def _UpperCamelCase ( self ) -> int: lowerCamelCase : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCamelCase : int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : int = self.get_dummy_inputs() lowerCamelCase : Dict = pipe(**UpperCAmelCase_ ).images lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase : Optional[Any] = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _UpperCamelCase ( self ) -> Tuple: lowerCamelCase : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCamelCase : Any = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) # warmup pass to apply optimizations lowerCamelCase : int = pipe(**self.get_dummy_inputs() ) lowerCamelCase : Tuple = self.get_dummy_inputs() lowerCamelCase : Tuple = pipe(**UpperCAmelCase_ ).images lowerCamelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase : int = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _UpperCamelCase ( self ) -> str: lowerCamelCase : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCamelCase : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : Dict = self.get_dummy_inputs() lowerCamelCase : Dict = pipe(**UpperCAmelCase_ ).images lowerCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase : str = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _UpperCamelCase ( self ) -> Any: lowerCamelCase : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCamelCase : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : List[Any] = self.get_dummy_inputs() lowerCamelCase : Tuple = pipe(**UpperCAmelCase_ ).images lowerCamelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase : Union[str, Any] = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCamelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : int = self.get_dummy_inputs() lowerCamelCase : Union[str, Any] = pipe(**UpperCAmelCase_ ).images lowerCamelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase : int = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowercase ( unittest.TestCase ): @property def _UpperCamelCase ( self ) -> Tuple: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _UpperCamelCase ( self ) -> Any: lowerCamelCase : int = ort.SessionOptions() lowerCamelCase : List[str] = False return options def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) lowerCamelCase : Dict = init_image.resize((768, 512) ) # using the PNDM scheduler by default lowerCamelCase : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : Optional[Any] = 'A fantasy landscape, trending on artstation' lowerCamelCase : str = np.random.RandomState(0 ) lowerCamelCase : Optional[Any] = pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCAmelCase_ , output_type='np' , ) lowerCamelCase : Optional[int] = output.images lowerCamelCase : List[str] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) lowerCamelCase : Union[str, Any] = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _UpperCamelCase ( self ) -> List[str]: lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) lowerCamelCase : Any = init_image.resize((768, 512) ) lowerCamelCase : List[str] = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) lowerCamelCase : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : str = 'A fantasy landscape, trending on artstation' lowerCamelCase : List[str] = np.random.RandomState(0 ) lowerCamelCase : Any = pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=UpperCAmelCase_ , output_type='np' , ) lowerCamelCase : Tuple = output.images lowerCamelCase : Optional[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) lowerCamelCase : int = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
708
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowercase ( unittest.TestCase ): def _UpperCamelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def _UpperCamelCase ( self ) -> List[str]: lowerCamelCase , lowerCamelCase : int = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=UpperCAmelCase_ , dtype=jnp.bfloataa ) lowerCamelCase , lowerCamelCase : Tuple = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=UpperCAmelCase_ , from_pt=UpperCAmelCase_ , dtype=jnp.bfloataa ) lowerCamelCase : Optional[Any] = controlnet_params lowerCamelCase : Dict = 'bird' lowerCamelCase : Optional[int] = jax.device_count() lowerCamelCase : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowerCamelCase : Union[str, Any] = pipe.prepare_image_inputs([canny_image] * num_samples ) lowerCamelCase : List[str] = jax.random.PRNGKey(0 ) lowerCamelCase : int = jax.random.split(UpperCAmelCase_ , jax.device_count() ) lowerCamelCase : Union[str, Any] = replicate(UpperCAmelCase_ ) lowerCamelCase : Tuple = shard(UpperCAmelCase_ ) lowerCamelCase : Tuple = shard(UpperCAmelCase_ ) lowerCamelCase : Tuple = pipe( prompt_ids=UpperCAmelCase_ , image=UpperCAmelCase_ , params=UpperCAmelCase_ , prng_seed=UpperCAmelCase_ , num_inference_steps=50 , jit=UpperCAmelCase_ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCamelCase : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase : Any = images[0, 253:256, 253:256, -1] lowerCamelCase : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase : List[Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase , lowerCamelCase : Dict = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=UpperCAmelCase_ , dtype=jnp.bfloataa ) lowerCamelCase , lowerCamelCase : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=UpperCAmelCase_ , from_pt=UpperCAmelCase_ , dtype=jnp.bfloataa ) lowerCamelCase : int = controlnet_params lowerCamelCase : Dict = 'Chef in the kitchen' lowerCamelCase : Dict = jax.device_count() lowerCamelCase : List[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowerCamelCase : int = pipe.prepare_image_inputs([pose_image] * num_samples ) lowerCamelCase : int = jax.random.PRNGKey(0 ) lowerCamelCase : str = jax.random.split(UpperCAmelCase_ , jax.device_count() ) lowerCamelCase : int = replicate(UpperCAmelCase_ ) lowerCamelCase : int = shard(UpperCAmelCase_ ) lowerCamelCase : Optional[int] = shard(UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = pipe( prompt_ids=UpperCAmelCase_ , image=UpperCAmelCase_ , params=UpperCAmelCase_ , prng_seed=UpperCAmelCase_ , num_inference_steps=50 , jit=UpperCAmelCase_ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCamelCase : Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase : Optional[Any] = images[0, 253:256, 253:256, -1] lowerCamelCase : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase : List[str] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
133
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _SCREAMING_SNAKE_CASE = 250_004 _SCREAMING_SNAKE_CASE = 250_020 @require_sentencepiece @require_tokenizers class a ( __lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase :Tuple = MBartaaTokenizer lowerCamelCase :Tuple = MBartaaTokenizerFast lowerCamelCase :Dict = True lowerCamelCase :Union[str, Any] = True def UpperCAmelCase ( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing _A = MBartaaTokenizer(lowerCAmelCase_ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self ) -> List[Any]: _A = """<s>""" _A = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Any: _A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(lowerCAmelCase_ ) , 10_54 ) def UpperCAmelCase ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def UpperCAmelCase ( self ) -> List[str]: _A = MBartaaTokenizer(lowerCAmelCase_ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=lowerCAmelCase_ ) _A = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _A = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) _A = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _A = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def UpperCAmelCase ( self ) -> Union[str, Any]: # fmt: off _A = {"""input_ids""": [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , ) def UpperCAmelCase ( self ) -> List[str]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _A = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _A = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _A = tempfile.mkdtemp() _A = tokenizer_r.save_pretrained(lowerCAmelCase_ ) _A = tokenizer_p.save_pretrained(lowerCAmelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) _A = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Checks everything loads correctly in the same way _A = tokenizer_r.from_pretrained(lowerCAmelCase_ ) _A = tokenizer_p.from_pretrained(lowerCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase_ ) # Save tokenizer rust, legacy_format=True _A = tempfile.mkdtemp() _A = tokenizer_r.save_pretrained(lowerCAmelCase_ , legacy_format=lowerCAmelCase_ ) _A = tokenizer_p.save_pretrained(lowerCAmelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Checks everything loads correctly in the same way _A = tokenizer_r.from_pretrained(lowerCAmelCase_ ) _A = tokenizer_p.from_pretrained(lowerCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) shutil.rmtree(lowerCAmelCase_ ) # Save tokenizer rust, legacy_format=False _A = tempfile.mkdtemp() _A = tokenizer_r.save_pretrained(lowerCAmelCase_ , legacy_format=lowerCAmelCase_ ) _A = tokenizer_p.save_pretrained(lowerCAmelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _A = tokenizer_r.from_pretrained(lowerCAmelCase_ ) _A = tokenizer_p.from_pretrained(lowerCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) shutil.rmtree(lowerCAmelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): """simple docstring""" lowerCamelCase :int = '''facebook/mbart-large-50-one-to-many-mmt''' lowerCamelCase :str = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] lowerCamelCase :List[str] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] lowerCamelCase :int = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] @classmethod def UpperCAmelCase ( cls ) -> List[str]: _A = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) _A = 1 return cls def UpperCAmelCase ( self ) -> str: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 25_00_38 ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Optional[Any]: self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids ) _A = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] _A = self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) _A = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[Any]: _A = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , lowerCAmelCase_ ) _A = 10 _A = self.tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ).input_ids[0] self.assertEqual(ids[0] , lowerCAmelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_00_53, 25_00_01] ) def UpperCAmelCase ( self ) -> List[str]: _A = tempfile.mkdtemp() _A = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase_ ) _A = MBartaaTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase_ ) @require_torch def UpperCAmelCase ( self ) -> int: _A = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors="""pt""" ) _A = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def UpperCAmelCase ( self ) -> Tuple: _A = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) _A = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _A = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def UpperCAmelCase ( self ) -> Dict: _A = self.tokenizer(self.src_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=3 , return_tensors="""pt""" ) _A = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10 , return_tensors="""pt""" ) _A = targets["""input_ids"""] _A = shift_tokens_right(lowerCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCAmelCase ( self ) -> Dict: _A = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , { # en_XX, A, test, EOS """input_ids""": [[25_00_04, 62, 30_34, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_00_01, } , )
401
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__lowerCAmelCase ) class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :str = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCamelCase :ClassVar[Features] = Features({'''text''': Value('''string''' )} ) lowerCamelCase :ClassVar[Features] = Features({'''labels''': ClassLabel} ) lowerCamelCase :str = "text" lowerCamelCase :str = "labels" def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCAmelCase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) _A = copy.deepcopy(self ) _A = self.label_schema.copy() _A = features[self.label_column] _A = label_schema return task_template @property def UpperCAmelCase ( self ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
401
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = "blip_2_vision_model" def __init__( self: List[str] , _lowerCamelCase: Optional[int]=14_08 , _lowerCamelCase: Any=61_44 , _lowerCamelCase: Optional[Any]=39 , _lowerCamelCase: str=16 , _lowerCamelCase: Union[str, Any]=2_24 , _lowerCamelCase: List[str]=14 , _lowerCamelCase: str="gelu" , _lowerCamelCase: Optional[Any]=0.0_00_01 , _lowerCamelCase: int=0.0 , _lowerCamelCase: Optional[int]=1E-10 , _lowerCamelCase: Any=True , **_lowerCamelCase: Tuple , ): super().__init__(**_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = qkv_bias @classmethod def _A ( cls: Dict , _lowerCamelCase: Union[str, os.PathLike] , **_lowerCamelCase: Tuple ): cls._set_token_in_kwargs(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(_lowerCamelCase , **_lowerCamelCase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": SCREAMING_SNAKE_CASE_ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCamelCase , **_lowerCamelCase ) class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = "blip_2_qformer" def __init__( self: Dict , _lowerCamelCase: Optional[int]=3_05_22 , _lowerCamelCase: Any=7_68 , _lowerCamelCase: List[str]=12 , _lowerCamelCase: str=12 , _lowerCamelCase: str=30_72 , _lowerCamelCase: List[str]="gelu" , _lowerCamelCase: Optional[int]=0.1 , _lowerCamelCase: Union[str, Any]=0.1 , _lowerCamelCase: List[Any]=5_12 , _lowerCamelCase: Union[str, Any]=0.02 , _lowerCamelCase: Union[str, Any]=1E-12 , _lowerCamelCase: Union[str, Any]=0 , _lowerCamelCase: str="absolute" , _lowerCamelCase: int=2 , _lowerCamelCase: List[str]=14_08 , **_lowerCamelCase: List[str] , ): super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = cross_attention_frequency SCREAMING_SNAKE_CASE_ = encoder_hidden_size @classmethod def _A ( cls: Optional[int] , _lowerCamelCase: Union[str, os.PathLike] , **_lowerCamelCase: Optional[Any] ): cls._set_token_in_kwargs(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(_lowerCamelCase , **_lowerCamelCase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": SCREAMING_SNAKE_CASE_ = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCamelCase , **_lowerCamelCase ) class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = "blip-2" SCREAMING_SNAKE_CASE__ : List[str] = True def __init__( self: List[str] , _lowerCamelCase: Dict=None , _lowerCamelCase: Any=None , _lowerCamelCase: Any=None , _lowerCamelCase: List[str]=32 , **_lowerCamelCase: Tuple ): super().__init__(**_lowerCamelCase ) if vision_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) SCREAMING_SNAKE_CASE_ = BlipaVisionConfig(**_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = BlipaQFormerConfig(**_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[text_model_type](**_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self.text_config.tie_word_embeddings SCREAMING_SNAKE_CASE_ = self.text_config.is_encoder_decoder SCREAMING_SNAKE_CASE_ = num_query_tokens SCREAMING_SNAKE_CASE_ = self.vision_config.hidden_size SCREAMING_SNAKE_CASE_ = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES SCREAMING_SNAKE_CASE_ = 1.0 SCREAMING_SNAKE_CASE_ = 0.02 @classmethod def _A ( cls: List[str] , _lowerCamelCase: BlipaVisionConfig , _lowerCamelCase: BlipaQFormerConfig , _lowerCamelCase: PretrainedConfig , **_lowerCamelCase: str , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_lowerCamelCase , ) def _A ( self: Optional[Any] ): SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ = self.qformer_config.to_dict() SCREAMING_SNAKE_CASE_ = self.text_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output
89
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __magic_name__ ( TensorFormatter[Mapping, "torch.Tensor", Mapping]): '''simple docstring''' def __init__( self: int , _lowerCamelCase: int=None , **_lowerCamelCase: List[Any] ): super().__init__(features=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = torch_tensor_kwargs import torch # noqa import torch at initialization def _A ( self: Union[str, Any] , _lowerCamelCase: Optional[Any] ): import torch if isinstance(_lowerCamelCase , _lowerCamelCase ) and column: if all( isinstance(_lowerCamelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(_lowerCamelCase ) return column def _A ( self: Tuple , _lowerCamelCase: List[str] ): import torch if isinstance(_lowerCamelCase , (str, bytes, type(_lowerCamelCase )) ): return value elif isinstance(_lowerCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE_ = {} if isinstance(_lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): SCREAMING_SNAKE_CASE_ = {'''dtype''': torch.intaa} elif isinstance(_lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE_ = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_lowerCamelCase , PIL.Image.Image ): SCREAMING_SNAKE_CASE_ = np.asarray(_lowerCamelCase ) return torch.tensor(_lowerCamelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def _A ( self: Union[str, Any] , _lowerCamelCase: Dict ): import torch # support for torch, tf, jax etc. if hasattr(_lowerCamelCase , '''__array__''' ) and not isinstance(_lowerCamelCase , torch.Tensor ): SCREAMING_SNAKE_CASE_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_lowerCamelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_lowerCamelCase ) for substruct in data_struct] ) elif isinstance(_lowerCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_lowerCamelCase ) for substruct in data_struct] ) return self._tensorize(_lowerCamelCase ) def _A ( self: str , _lowerCamelCase: dict ): return map_nested(self._recursive_tensorize , _lowerCamelCase , map_list=_lowerCamelCase ) def _A ( self: Optional[int] , _lowerCamelCase: pa.Table ): SCREAMING_SNAKE_CASE_ = self.numpy_arrow_extractor().extract_row(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self.python_features_decoder.decode_row(_lowerCamelCase ) return self.recursive_tensorize(_lowerCamelCase ) def _A ( self: Optional[Any] , _lowerCamelCase: pa.Table ): SCREAMING_SNAKE_CASE_ = self.numpy_arrow_extractor().extract_column(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self.python_features_decoder.decode_column(_lowerCamelCase , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE_ = self.recursive_tensorize(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self._consolidate(_lowerCamelCase ) return column def _A ( self: Optional[Any] , _lowerCamelCase: pa.Table ): SCREAMING_SNAKE_CASE_ = self.numpy_arrow_extractor().extract_batch(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self.python_features_decoder.decode_batch(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self.recursive_tensorize(_lowerCamelCase ) for column_name in batch: SCREAMING_SNAKE_CASE_ = self._consolidate(batch[column_name] ) return batch
89
1
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase_ = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } lowerCamelCase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def __lowerCamelCase ( a_ : Any , a_ : Union[str, Any]=False ) -> int: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Dict = create_model( '''HTSAT-tiny''' , '''roberta''' , a_ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=a_ , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def __lowerCamelCase ( a_ : Optional[int] ) -> int: __SCREAMING_SNAKE_CASE :Dict = {} __SCREAMING_SNAKE_CASE :Any = r'''.*sequential.(\d+).*''' __SCREAMING_SNAKE_CASE :Dict = r'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __SCREAMING_SNAKE_CASE :str = key.replace(a_ , a_ ) if re.match(a_ , a_ ): # replace sequential layers with list __SCREAMING_SNAKE_CASE :Tuple = re.match(a_ , a_ ).group(1 ) __SCREAMING_SNAKE_CASE :str = key.replace(f'''sequential.{sequential_layer}.''' , f'''layers.{int(a_ )//3}.linear.''' ) elif re.match(a_ , a_ ): __SCREAMING_SNAKE_CASE :Union[str, Any] = int(re.match(a_ , a_ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __SCREAMING_SNAKE_CASE :Union[str, Any] = 1 if projecton_layer == 0 else 2 __SCREAMING_SNAKE_CASE :Tuple = key.replace(f'''_projection.{projecton_layer}.''' , f'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value __SCREAMING_SNAKE_CASE :Union[str, Any] = value __SCREAMING_SNAKE_CASE :Optional[Any] = mixed_qkv.size(0 ) // 3 __SCREAMING_SNAKE_CASE :Optional[Any] = mixed_qkv[:qkv_dim] __SCREAMING_SNAKE_CASE :Optional[Any] = mixed_qkv[qkv_dim : qkv_dim * 2] __SCREAMING_SNAKE_CASE :str = mixed_qkv[qkv_dim * 2 :] __SCREAMING_SNAKE_CASE :Dict = query_layer __SCREAMING_SNAKE_CASE :Tuple = key_layer __SCREAMING_SNAKE_CASE :str = value_layer else: __SCREAMING_SNAKE_CASE :Optional[Any] = value return model_state_dict def __lowerCamelCase ( a_ : Optional[int] , a_ : Dict , a_ : Dict , a_ : List[Any]=False ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[int] = init_clap(a_ , enable_fusion=a_ ) clap_model.eval() __SCREAMING_SNAKE_CASE :Optional[Any] = clap_model.state_dict() __SCREAMING_SNAKE_CASE :Tuple = rename_state_dict(a_ ) __SCREAMING_SNAKE_CASE :Any = ClapConfig() __SCREAMING_SNAKE_CASE :Tuple = enable_fusion __SCREAMING_SNAKE_CASE :Dict = ClapModel(a_ ) # ignore the spectrogram embedding layer model.load_state_dict(a_ , strict=a_ ) model.save_pretrained(a_ ) transformers_config.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") lowerCamelCase_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
498
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=13 ,SCREAMING_SNAKE_CASE__=30 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__=37 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=10 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=2 ,) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = parent __SCREAMING_SNAKE_CASE :str = batch_size __SCREAMING_SNAKE_CASE :Optional[Any] = image_size __SCREAMING_SNAKE_CASE :List[Any] = patch_size __SCREAMING_SNAKE_CASE :Union[str, Any] = num_channels __SCREAMING_SNAKE_CASE :Union[str, Any] = is_training __SCREAMING_SNAKE_CASE :Any = use_labels __SCREAMING_SNAKE_CASE :List[Any] = hidden_size __SCREAMING_SNAKE_CASE :str = num_hidden_layers __SCREAMING_SNAKE_CASE :Tuple = num_attention_heads __SCREAMING_SNAKE_CASE :List[str] = intermediate_size __SCREAMING_SNAKE_CASE :Tuple = hidden_act __SCREAMING_SNAKE_CASE :Any = hidden_dropout_prob __SCREAMING_SNAKE_CASE :List[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :Optional[Any] = type_sequence_label_size __SCREAMING_SNAKE_CASE :Any = initializer_range __SCREAMING_SNAKE_CASE :int = scope __SCREAMING_SNAKE_CASE :List[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __SCREAMING_SNAKE_CASE :Optional[Any] = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE :Union[str, Any] = num_patches + 2 def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE :Tuple = None if self.use_labels: __SCREAMING_SNAKE_CASE :int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE :Union[str, Any] = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=SCREAMING_SNAKE_CASE__ ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = TFDeiTModel(config=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = TFDeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __SCREAMING_SNAKE_CASE :Any = 1 __SCREAMING_SNAKE_CASE :List[Any] = TFDeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE :int = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = self.type_sequence_label_size __SCREAMING_SNAKE_CASE :Optional[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = model(SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __SCREAMING_SNAKE_CASE :List[Any] = 1 __SCREAMING_SNAKE_CASE :Union[str, Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE :Any = model(SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Any = config_and_inputs __SCREAMING_SNAKE_CASE :Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE( A , A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[str] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ : Tuple = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : Tuple = False def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = TFDeiTModelTester(self ) __SCREAMING_SNAKE_CASE :str = ConfigTester(self ,config_class=SCREAMING_SNAKE_CASE__ ,has_text_modality=SCREAMING_SNAKE_CASE__ ,hidden_size=37 ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE :str = model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) __SCREAMING_SNAKE_CASE :List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ ,tf.keras.layers.Dense ) ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE :str = model_class(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE :List[Any] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE :Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=False ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :int = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _UpperCamelCase ( self ) -> Dict: """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE :str = TFDeiTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( ) -> Tuple: __SCREAMING_SNAKE_CASE :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _SCREAMING_SNAKE_CASE( unittest.TestCase ): @cached_property def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :str = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) __SCREAMING_SNAKE_CASE :int = self.default_image_processor __SCREAMING_SNAKE_CASE :str = prepare_img() __SCREAMING_SNAKE_CASE :int = image_processor(images=SCREAMING_SNAKE_CASE__ ,return_tensors='''tf''' ) # forward pass __SCREAMING_SNAKE_CASE :int = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits __SCREAMING_SNAKE_CASE :Any = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,SCREAMING_SNAKE_CASE__ ,atol=1E-4 ) )
498
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case_ : Dict =logging.get_logger(__name__) def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' __A = DPTConfig() if "large" in checkpoint_url: __A = 1024 __A = 4096 __A = 24 __A = 16 __A = [5, 11, 17, 23] __A = [256, 512, 1024, 1024] __A = (1, 384, 384) if "ade" in checkpoint_url: __A = True __A = 150 __A = """huggingface/label-files""" __A = """ade20k-id2label.json""" __A = json.load(open(cached_download(hf_hub_url(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) ) , "r" ) ) __A = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} __A = [1, 150, 480, 480] return config, expected_shape def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' __A = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __A = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: __A = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: __A = name.replace("patch_embed" , "patch_embeddings" ) if "pos_embed" in name: __A = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: __A = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: __A = name.replace("proj" , "projection" ) if "blocks" in name: __A = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: __A = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __A = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name: __A = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __A = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: __A = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: __A = name.replace("scratch" , "neck" ) if "layer1_rn" in name: __A = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: __A = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: __A = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: __A = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: __A = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __A = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: __A = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: __A = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: __A = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: __A = name.replace("conv1" , "convolution1" ) if "conv2" in name: __A = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __A = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: __A = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: __A = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: __A = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: __A = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: __A = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: __A = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: __A = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: __A = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: __A = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: __A = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: __A = name.replace("pretrained" , "dpt" ) if "bn" in name: __A = name.replace("bn" , "batch_norm" ) if "head" in name: __A = name.replace("head" , "head.head" ) if "encoder.norm" in name: __A = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: __A = name.replace("auxlayer" , "auxiliary_head.head" ) return name def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __A = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) __A = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __A = in_proj_weight[: config.hidden_size, :] __A = in_proj_bias[: config.hidden_size] __A = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __A = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __A = in_proj_weight[ -config.hidden_size :, : ] __A = in_proj_bias[-config.hidden_size :] def UpperCAmelCase ( ): '''simple docstring''' __A = """http://images.cocodataset.org/val2017/000000039769.jpg""" __A = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' __A = get_dpt_config(lowerCAmelCase__ ) # load original state_dict from URL __A = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="cpu" ) # remove certain keys remove_ignore_keys_(lowerCAmelCase__ ) # rename keys for key in state_dict.copy().keys(): __A = state_dict.pop(lowerCAmelCase__ ) __A = val # read in qkv matrices read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # load HuggingFace model __A = DPTForSemanticSegmentation(lowerCAmelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # Check outputs on an image __A = 480 if """ade""" in checkpoint_url else 384 __A = DPTImageProcessor(size=lowerCAmelCase__ ) __A = prepare_img() __A = image_processor(lowerCAmelCase__ , return_tensors="pt" ) # forward pass __A = model(**lowerCAmelCase__ ).logits if """ade""" in checkpoint_url else model(**lowerCAmelCase__ ).predicted_depth # Assert logits __A = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]] ) if "ade" in checkpoint_url: __A = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]] ) assert outputs.shape == torch.Size(lowerCAmelCase__ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCAmelCase__ ) ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("Pushing model to hub..." ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=lowerCAmelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=lowerCAmelCase__ , ) if __name__ == "__main__": snake_case_ : Any =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) snake_case_ : List[str] =parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
714
from __future__ import annotations def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' if not nums: return 0 __A = nums[0] __A = 0 for num in nums[1:]: __A , __A = ( max_excluding + num, max(lowerCAmelCase__ , lowerCAmelCase__ ), ) return max(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
205
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_xlm_roberta_xl''': [ '''XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaXLConfig''', '''XLMRobertaXLOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaXLForCausalLM''', '''XLMRobertaXLForMaskedLM''', '''XLMRobertaXLForMultipleChoice''', '''XLMRobertaXLForQuestionAnswering''', '''XLMRobertaXLForSequenceClassification''', '''XLMRobertaXLForTokenClassification''', '''XLMRobertaXLModel''', '''XLMRobertaXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
41
import torch from diffusers import DiffusionPipeline class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a ) -> List[str]: super().__init__() self.register_modules(unet=_a , scheduler=_a ) def __call__( self ) -> Tuple: _A : List[Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) _A : Tuple = 1 _A : List[str] = self.unet(_a , _a ).sample _A : List[Any] = self.scheduler.step(_a , _a , _a ).prev_sample _A : Union[str, Any] = scheduler_output - scheduler_output + torch.ones_like(_a ) return result
307
0
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowercase =logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase =["""input_features""", """is_longer"""] def __init__( self , snake_case=6_4 , snake_case=4_8_0_0_0 , snake_case=4_8_0 , snake_case=1_0 , snake_case=1_0_2_4 , snake_case=0.0 , snake_case=False , snake_case = 0 , snake_case = 1_4_0_0_0 , snake_case = None , snake_case = "fusion" , snake_case = "repeatpad" , **snake_case , ) -> List[Any]: '''simple docstring''' super().__init__( feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , return_attention_mask=snake_case , **snake_case , ) _UpperCAmelCase : Any =top_db _UpperCAmelCase : str =truncation _UpperCAmelCase : List[Any] =padding _UpperCAmelCase : List[Any] =fft_window_size _UpperCAmelCase : int =(fft_window_size >> 1) + 1 _UpperCAmelCase : Any =hop_length _UpperCAmelCase : Any =max_length_s _UpperCAmelCase : Union[str, Any] =max_length_s * sampling_rate _UpperCAmelCase : Optional[int] =sampling_rate _UpperCAmelCase : Dict =frequency_min _UpperCAmelCase : str =frequency_max _UpperCAmelCase : Optional[Any] =mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case , min_frequency=snake_case , max_frequency=snake_case , sampling_rate=snake_case , norm=snake_case , mel_scale='htk' , ) _UpperCAmelCase : List[Any] =mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case , min_frequency=snake_case , max_frequency=snake_case , sampling_rate=snake_case , norm='slaney' , mel_scale='slaney' , ) def lowerCAmelCase ( self) -> Dict[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] =copy.deepcopy(self.__dict__) _UpperCAmelCase : Optional[Any] =self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowerCAmelCase ( self , snake_case , snake_case = None) -> np.ndarray: '''simple docstring''' _UpperCAmelCase : Dict =spectrogram( snake_case , window_function(self.fft_window_size , 'hann') , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=snake_case , log_mel='dB' , ) return log_mel_spectrogram.T def lowerCAmelCase ( self , snake_case , snake_case , snake_case) -> Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =np.array_split(list(range(0 , total_frames - chunk_frames + 1)) , 3) if len(ranges[1]) == 0: # if the audio is too short, we just use the first chunk _UpperCAmelCase : int =[0] if len(ranges[2]) == 0: # if the audio is too short, we just use the first chunk _UpperCAmelCase : List[str] =[0] # randomly choose index for each part _UpperCAmelCase : Optional[int] =np.random.choice(ranges[0]) _UpperCAmelCase : Any =np.random.choice(ranges[1]) _UpperCAmelCase : Tuple =np.random.choice(ranges[2]) _UpperCAmelCase : List[str] =mel[idx_front : idx_front + chunk_frames, :] _UpperCAmelCase : List[Any] =mel[idx_middle : idx_middle + chunk_frames, :] _UpperCAmelCase : Optional[int] =mel[idx_back : idx_back + chunk_frames, :] _UpperCAmelCase : str =torch.tensor(mel[None, None, :]) _UpperCAmelCase : int =torch.nn.functional.interpolate( snake_case , size=[chunk_frames, 6_4] , mode='bilinear' , align_corners=snake_case) _UpperCAmelCase : Optional[Any] =mel_shrink[0][0].numpy() _UpperCAmelCase : Tuple =np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0) return mel_fusion def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": _UpperCAmelCase : int =True # random crop to max_length (for compatibility) -> this should be handled by self.pad _UpperCAmelCase : Dict =len(snake_case) - max_length _UpperCAmelCase : Union[str, Any] =np.random.randint(0 , overflow + 1) _UpperCAmelCase : List[str] =waveform[idx : idx + max_length] _UpperCAmelCase : int =self._np_extract_fbank_features(snake_case , self.mel_filters_slaney)[None, :] elif truncation == "fusion": _UpperCAmelCase : Union[str, Any] =self._np_extract_fbank_features(snake_case , self.mel_filters) _UpperCAmelCase : int =max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _UpperCAmelCase : List[Any] =mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _UpperCAmelCase : Optional[int] =np.stack([mel, mel, mel, mel] , axis=0) _UpperCAmelCase : Optional[int] =False else: _UpperCAmelCase : Union[str, Any] =self._random_mel_fusion(snake_case , snake_case , snake_case) _UpperCAmelCase : Union[str, Any] =True else: raise NotImplementedError(f"data_truncating {truncation} not implemented") else: _UpperCAmelCase : Tuple =False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _UpperCAmelCase : Dict =int(max_length / len(snake_case)) _UpperCAmelCase : Optional[Any] =np.stack(np.tile(snake_case , n_repeat + 1))[:max_length] if padding == "repeatpad": _UpperCAmelCase : Any =int(max_length / len(snake_case)) _UpperCAmelCase : Dict =np.stack(np.tile(snake_case , snake_case)) _UpperCAmelCase : Union[str, Any] =np.pad(snake_case , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0) if truncation == "fusion": _UpperCAmelCase : Any =self._np_extract_fbank_features(snake_case , self.mel_filters) _UpperCAmelCase : Dict =np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0) else: _UpperCAmelCase : int =self._np_extract_fbank_features(snake_case , self.mel_filters_slaney)[None, :] return input_mel, longer def __call__( self , snake_case , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , **snake_case , ) -> BatchFeature: '''simple docstring''' _UpperCAmelCase : Optional[Any] =truncation if truncation is not None else self.truncation _UpperCAmelCase : Any =padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') _UpperCAmelCase : Any =isinstance(snake_case , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") _UpperCAmelCase : Union[str, Any] =is_batched_numpy or ( isinstance(snake_case , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: _UpperCAmelCase : Tuple =[np.asarray(snake_case , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray): _UpperCAmelCase : Any =np.asarray(snake_case , dtype=np.floataa) elif isinstance(snake_case , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): _UpperCAmelCase : Optional[int] =raw_speech.astype(np.floataa) # always return batch if not is_batched: _UpperCAmelCase : Any =[np.asarray(snake_case)] # convert to mel spectrogram, truncate and pad if needed. _UpperCAmelCase : Optional[Any] =[ self._get_input_mel(snake_case , max_length if max_length else self.nb_max_samples , snake_case , snake_case) for waveform in raw_speech ] _UpperCAmelCase : Optional[int] =[] _UpperCAmelCase : List[Any] =[] for mel, longer in padded_inputs: input_mel.append(snake_case) is_longer.append(snake_case) if truncation == "fusion" and sum(snake_case) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _UpperCAmelCase : List[str] =np.random.randint(0 , len(snake_case)) _UpperCAmelCase : List[Any] =True if isinstance(input_mel[0] , snake_case): _UpperCAmelCase : int =[np.asarray(snake_case , dtype=np.floataa) for feature in input_mel] # is_longer is a list of bool _UpperCAmelCase : str =[[longer] for longer in is_longer] _UpperCAmelCase : int ={'input_features': input_mel, 'is_longer': is_longer} _UpperCAmelCase : Optional[int] =BatchFeature(snake_case) if return_tensors is not None: _UpperCAmelCase : List[str] =input_features.convert_to_tensors(snake_case) return input_features
721
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers lowercase =[int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : int =os.path.dirname(os.path.realpath(__lowerCamelCase ) ) _UpperCAmelCase : List[Any] =os.path.join(__lowerCamelCase , 'words.txt' ) _UpperCAmelCase : int ='' with open(__lowerCamelCase ) as f: _UpperCAmelCase : Tuple =f.readline() _UpperCAmelCase : List[str] =[word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase : Dict =[ word for word in [sum(ord(__lowerCamelCase ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__lowerCamelCase ) if __name__ == "__main__": print(solution())
331
0
'''simple docstring''' import torch from diffusers import DiffusionPipeline class lowerCAmelCase ( A ): def __init__( self : Any , __lowercase : List[str] , __lowercase : Tuple ): """simple docstring""" super().__init__() self.register_modules(unet=__lowercase , scheduler=__lowercase ) def __call__( self : Any ): """simple docstring""" __lowercase =torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) __lowercase =1 __lowercase =self.unet(__lowercase , __lowercase ).sample __lowercase =self.scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample __lowercase =scheduler_output - scheduler_output + torch.ones_like(__lowercase ) return result
119
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase = logging.get_logger(__name__) class lowerCAmelCase ( enum.Enum ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 @add_end_docstrings(A ) class lowerCAmelCase ( A ): lowerCAmelCase_ = "generated" def __init__( self : Tuple , *__lowercase : Tuple , **__lowercase : Optional[int] ): """simple docstring""" super().__init__(*__lowercase , **__lowercase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def snake_case ( self : Dict , __lowercase : Any=None , __lowercase : int=None , __lowercase : List[str]=None , __lowercase : int=None , __lowercase : str=None , __lowercase : List[Any]=None , **__lowercase : Union[str, Any] , ): """simple docstring""" __lowercase ={} if truncation is not None: __lowercase =truncation __lowercase =generate_kwargs __lowercase ={} if return_tensors is not None and return_type is None: __lowercase =ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: __lowercase =return_type if clean_up_tokenization_spaces is not None: __lowercase =clean_up_tokenization_spaces if stop_sequence is not None: __lowercase =self.tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) if len(__lowercase ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) __lowercase =stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def snake_case ( self : List[Any] , __lowercase : int , __lowercase : int , __lowercase : int ): """simple docstring""" return True def snake_case ( self : Optional[Any] , *__lowercase : Optional[int] , __lowercase : Union[str, Any] ): """simple docstring""" __lowercase =self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] , __lowercase ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) __lowercase =([prefix + arg for arg in args[0]],) __lowercase =True elif isinstance(args[0] , __lowercase ): __lowercase =(prefix + args[0],) __lowercase =False else: raise ValueError( f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) __lowercase =self.tokenizer(*__lowercase , padding=__lowercase , truncation=__lowercase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Any , *__lowercase : int , **__lowercase : Optional[Any] ): """simple docstring""" __lowercase =super().__call__(*__lowercase , **__lowercase ) if ( isinstance(args[0] , __lowercase ) and all(isinstance(__lowercase , __lowercase ) for el in args[0] ) and all(len(__lowercase ) == 1 for res in result ) ): return [res[0] for res in result] return result def snake_case ( self : List[str] , __lowercase : Tuple , __lowercase : List[Any]=TruncationStrategy.DO_NOT_TRUNCATE , **__lowercase : Dict ): """simple docstring""" __lowercase =self._parse_and_tokenize(__lowercase , truncation=__lowercase , **__lowercase ) return inputs def snake_case ( self : Optional[int] , __lowercase : Tuple , **__lowercase : Tuple ): """simple docstring""" if self.framework == "pt": __lowercase , __lowercase =model_inputs['input_ids'].shape elif self.framework == "tf": __lowercase , __lowercase =tf.shape(model_inputs['input_ids'] ).numpy() __lowercase =generate_kwargs.get('min_length' , self.model.config.min_length ) __lowercase =generate_kwargs.get('max_length' , self.model.config.max_length ) self.check_inputs(__lowercase , generate_kwargs['min_length'] , generate_kwargs['max_length'] ) __lowercase =self.model.generate(**__lowercase , **__lowercase ) __lowercase =output_ids.shape[0] if self.framework == "pt": __lowercase =output_ids.reshape(__lowercase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": __lowercase =tf.reshape(__lowercase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def snake_case ( self : str , __lowercase : Optional[Any] , __lowercase : Optional[int]=ReturnType.TEXT , __lowercase : Union[str, Any]=False ): """simple docstring""" __lowercase =[] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: __lowercase ={f'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: __lowercase ={ f'''{self.return_name}_text''': self.tokenizer.decode( __lowercase , skip_special_tokens=__lowercase , clean_up_tokenization_spaces=__lowercase , ) } records.append(__lowercase ) return records @add_end_docstrings(A ) class lowerCAmelCase ( A ): lowerCAmelCase_ = "summary" def __call__( self : Dict , *__lowercase : Dict , **__lowercase : Dict ): """simple docstring""" return super().__call__(*__lowercase , **__lowercase ) def snake_case ( self : str , __lowercase : int , __lowercase : int , __lowercase : int ): """simple docstring""" if max_length < min_length: logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' 'a summarization task, where outputs shorter than the input are typically wanted, you might ' f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(A ) class lowerCAmelCase ( A ): lowerCAmelCase_ = "translation" def snake_case ( self : int , __lowercase : int , __lowercase : int , __lowercase : int ): """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def snake_case ( self : int , *__lowercase : str , __lowercase : List[str]=TruncationStrategy.DO_NOT_TRUNCATE , __lowercase : List[Any]=None , __lowercase : Optional[int]=None ): """simple docstring""" if getattr(self.tokenizer , '_build_translation_inputs' , __lowercase ): return self.tokenizer._build_translation_inputs( *__lowercase , return_tensors=self.framework , truncation=__lowercase , src_lang=__lowercase , tgt_lang=__lowercase ) else: return super()._parse_and_tokenize(*__lowercase , truncation=__lowercase ) def snake_case ( self : Optional[int] , __lowercase : List[str]=None , __lowercase : Optional[Any]=None , **__lowercase : int ): """simple docstring""" __lowercase , __lowercase , __lowercase =super()._sanitize_parameters(**__lowercase ) if src_lang is not None: __lowercase =src_lang if tgt_lang is not None: __lowercase =tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. __lowercase =kwargs.get('task' , self.task ) __lowercase =task.split('_' ) if task and len(__lowercase ) == 4: # translation, XX, to YY __lowercase =items[1] __lowercase =items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[Any] , *__lowercase : Any , **__lowercase : List[Any] ): """simple docstring""" return super().__call__(*__lowercase , **__lowercase )
119
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase = DDIMPipeline __UpperCAmelCase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCAmelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } __UpperCAmelCase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __UpperCAmelCase = False def lowercase_ (self ): '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) _UpperCamelCase : Dict = DDIMScheduler() _UpperCamelCase : Union[str, Any] = {"unet": unet, "scheduler": scheduler} return components def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__=0 ): '''simple docstring''' if str(lowerCAmelCase__ ).startswith("mps" ): _UpperCamelCase : List[Any] = torch.manual_seed(lowerCAmelCase__ ) else: _UpperCamelCase : Any = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCamelCase : Union[str, Any] = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : int = "cpu" _UpperCamelCase : Optional[int] = self.get_dummy_components() _UpperCamelCase : Union[str, Any] = self.pipeline_class(**lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = pipe(**lowerCAmelCase__ ).images _UpperCamelCase : List[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) _UpperCamelCase : str = np.array( [1.0_00E00, 5.7_17E-01, 4.7_17E-01, 1.0_00E00, 0.0_00E00, 1.0_00E00, 3.0_00E-04, 0.0_00E00, 9.0_00E-04] ) _UpperCamelCase : Optional[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase__ , 1E-3 ) def lowercase_ (self ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowercase_ (self ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3E-3 ) def lowercase_ (self ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowercase_ (self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Dict = "google/ddpm-cifar10-32" _UpperCamelCase : List[Any] = UNetaDModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase : Tuple = DDIMScheduler() _UpperCamelCase : int = DDIMPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) ddim.to(lowerCAmelCase__ ) ddim.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : List[Any] = torch.manual_seed(0 ) _UpperCamelCase : Optional[Any] = ddim(generator=lowerCAmelCase__ , eta=0.0 , output_type="numpy" ).images _UpperCamelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase : int = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Dict = "google/ddpm-ema-bedroom-256" _UpperCamelCase : Tuple = UNetaDModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = DDIMScheduler.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase : Dict = DDIMPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) ddpm.to(lowerCAmelCase__ ) ddpm.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = torch.manual_seed(0 ) _UpperCamelCase : Tuple = ddpm(generator=lowerCAmelCase__ , output_type="numpy" ).images _UpperCamelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _UpperCamelCase : Dict = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
716
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=[10, 20, 30, 40] , lowerCAmelCase__=[2, 2, 3, 2] , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=10 , lowerCAmelCase__=0.02 , lowerCAmelCase__=["stage2", "stage3", "stage4"] , lowerCAmelCase__=[2, 3, 4] , lowerCAmelCase__=None , ): '''simple docstring''' _UpperCamelCase : str = parent _UpperCamelCase : Any = batch_size _UpperCamelCase : str = image_size _UpperCamelCase : Any = num_channels _UpperCamelCase : Union[str, Any] = num_stages _UpperCamelCase : Any = hidden_sizes _UpperCamelCase : Optional[Any] = depths _UpperCamelCase : Union[str, Any] = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : List[Any] = intermediate_size _UpperCamelCase : Optional[int] = hidden_act _UpperCamelCase : int = num_labels _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : Dict = out_features _UpperCamelCase : Any = out_indices _UpperCamelCase : Any = scope def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Optional[int] = None if self.use_labels: _UpperCamelCase : int = ids_tensor([self.batch_size] , self.num_labels ) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def lowercase_ (self ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : str = ConvNextVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : Optional[Any] = model(lowerCAmelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : int = ConvNextVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : Optional[int] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Tuple = ConvNextVaBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : str = model(lowerCAmelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCamelCase : int = None _UpperCamelCase : List[str] = ConvNextVaBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : Any = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : List[str] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[int] = config_and_inputs _UpperCamelCase : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = config_and_inputs _UpperCamelCase : Union[str, Any] = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __UpperCAmelCase = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : int = ConvNextVaModelTester(self ) _UpperCamelCase : List[str] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def lowercase_ (self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ (self ): '''simple docstring''' return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def lowercase_ (self ): '''simple docstring''' pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def lowercase_ (self ): '''simple docstring''' pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def lowercase_ (self ): '''simple docstring''' pass def lowercase_ (self ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_with_labels() _UpperCamelCase : Dict = True if model_class.__name__ in [ *get_values(lowerCAmelCase__ ), *get_values(lowerCAmelCase__ ), ]: continue _UpperCamelCase : Dict = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() _UpperCamelCase : List[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) _UpperCamelCase : str = model(**lowerCAmelCase__ ).loss loss.backward() def lowercase_ (self ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _UpperCamelCase , _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_with_labels() _UpperCamelCase : Tuple = False _UpperCamelCase : Union[str, Any] = True if ( model_class.__name__ in [*get_values(lowerCAmelCase__ ), *get_values(lowerCAmelCase__ )] or not model_class.supports_gradient_checkpointing ): continue _UpperCamelCase : Any = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.gradient_checkpointing_enable() model.train() _UpperCamelCase : List[str] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) _UpperCamelCase : Dict = model(**lowerCAmelCase__ ).loss loss.backward() def lowercase_ (self ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Optional[int] = model_class(lowerCAmelCase__ ) _UpperCamelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : List[Any] = [*signature.parameters.keys()] _UpperCamelCase : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def lowercase_ (self ): '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _UpperCamelCase : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCamelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : Any = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def lowercase_ (self ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Union[str, Any] = ConvNextVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __lowerCAmelCase ( ) -> List[str]: _UpperCamelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase_ (self ): '''simple docstring''' return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : List[str] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = self.default_image_processor _UpperCamelCase : Dict = prepare_img() _UpperCamelCase : str = preprocessor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase : Optional[int] = model(**lowerCAmelCase__ ) # verify the logits _UpperCamelCase : str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) _UpperCamelCase : Tuple = torch.tensor([0.9996, 0.1966, -0.4386] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
239
0
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor A_ : int = logging.get_logger(__name__) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
57
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : int = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[int] = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
241
0
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) lowerCAmelCase = """""" while len(SCREAMING_SNAKE_CASE ) % 3 != 0: lowerCAmelCase = """0""" + bin_string lowerCAmelCase = [ bin_string[index : index + 3] for index in range(len(SCREAMING_SNAKE_CASE ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowerCAmelCase = 0 for index, val in enumerate(SCREAMING_SNAKE_CASE ): oct_val += int(2 ** (2 - index) * int(SCREAMING_SNAKE_CASE ) ) oct_string += str(SCREAMING_SNAKE_CASE ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
703
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 1 @register_to_config def __init__( self , lowercase = 2_000 , lowercase = 0.15 , lowercase = 0.01 , lowercase = 1_348.0 , lowercase = 1e-5 , lowercase = 1 , ) -> List[Any]: # standard deviation of the initial noise distribution lowerCAmelCase = sigma_max # setable values lowerCAmelCase = None self.set_sigmas(lowercase , lowercase , lowercase , lowercase ) def _snake_case ( self , lowercase , lowercase = None ) -> torch.FloatTensor: return sample def _snake_case ( self , lowercase , lowercase = None , lowercase = None ) -> Union[str, Any]: lowerCAmelCase = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowerCAmelCase = torch.linspace(1 , lowercase , lowercase , device=lowercase ) def _snake_case ( self , lowercase , lowercase = None , lowercase = None , lowercase = None ) -> Dict: lowerCAmelCase = sigma_min if sigma_min is not None else self.config.sigma_min lowerCAmelCase = sigma_max if sigma_max is not None else self.config.sigma_max lowerCAmelCase = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowercase , lowercase ) lowerCAmelCase = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowerCAmelCase = torch.exp(torch.linspace(math.log(lowercase ) , math.log(lowercase ) , lowercase ) ) lowerCAmelCase = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _snake_case ( self , lowercase , lowercase ) -> Dict: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase = None , lowercase = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) lowerCAmelCase = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowerCAmelCase = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowerCAmelCase = timesteps.to(self.discrete_sigmas.device ) lowerCAmelCase = self.discrete_sigmas[timesteps].to(sample.device ) lowerCAmelCase = self.get_adjacent_sigma(lowercase , lowercase ).to(sample.device ) lowerCAmelCase = torch.zeros_like(lowercase ) lowerCAmelCase = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowerCAmelCase = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowerCAmelCase = diffusion.unsqueeze(-1 ) lowerCAmelCase = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowerCAmelCase = randn_tensor( sample.shape , layout=sample.layout , generator=lowercase , device=sample.device , dtype=sample.dtype ) lowerCAmelCase = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowerCAmelCase = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowercase , prev_sample_mean=lowercase ) def _snake_case ( self , lowercase , lowercase , lowercase = None , lowercase = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowerCAmelCase = randn_tensor(sample.shape , layout=sample.layout , generator=lowercase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowerCAmelCase = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() lowerCAmelCase = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() lowerCAmelCase = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowerCAmelCase = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowerCAmelCase = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowerCAmelCase = step_size.unsqueeze(-1 ) lowerCAmelCase = sample + step_size * model_output lowerCAmelCase = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowercase ) def _snake_case ( self , lowercase , lowercase , lowercase , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples lowerCAmelCase = timesteps.to(original_samples.device ) lowerCAmelCase = self.discrete_sigmas.to(original_samples.device )[timesteps] lowerCAmelCase = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowercase ) * sigmas[:, None, None, None] ) lowerCAmelCase = noise + original_samples return noisy_samples def __len__( self ) -> int: return self.config.num_train_timesteps
393
0
from math import sqrt def __magic_name__ ( lowercase_ ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowercase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __magic_name__ ( lowercase_ = 10001 ) -> int: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = 1 while count != nth and number < 3: number += 1 if is_prime(lowercase_ ): count += 1 while count != nth: number += 2 if is_prime(lowercase_ ): count += 1 return number if __name__ == "__main__": print(F'{solution() = }')
606
from argparse import ArgumentParser from .env import EnvironmentCommand def __magic_name__ ( ) -> List[str]: '''simple docstring''' UpperCamelCase = ArgumentParser("Diffusers CLI tool" , usage="diffusers-cli <command> [<args>]" ) UpperCamelCase = parser.add_subparsers(help="diffusers-cli command helpers" ) # Register commands EnvironmentCommand.register_subcommand(lowercase_ ) # Let's go UpperCamelCase = parser.parse_args() if not hasattr(lowercase_ , "func" ): parser.print_help() exit(1 ) # Run UpperCamelCase = args.func(lowercase_ ) service.run() if __name__ == "__main__": main()
606
1
import os from datetime import datetime as dt from github import Github snake_case = [ "good first issue", "feature request", "wip", ] def UpperCamelCase_ ( ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = Github(os.environ["GITHUB_TOKEN"] ) _lowerCAmelCase : str = g.get_repo("huggingface/accelerate" ) _lowerCAmelCase : Optional[int] = repo.get_issues(state="open" ) for issue in open_issues: _lowerCAmelCase : List[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCAmelCase__ : i.created_at , reverse=lowerCAmelCase__ ) _lowerCAmelCase : str = comments[0] if len(lowerCAmelCase__ ) > 0 else None _lowerCAmelCase : List[Any] = dt.utcnow() _lowerCAmelCase : int = (current_time - issue.updated_at).days _lowerCAmelCase : Union[str, Any] = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="closed" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
716
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar snake_case = TypeVar("T") class __A ( Generic[T] ): '''simple docstring''' def __init__( self , _snake_case = True ): _lowerCAmelCase : dict[T, list[T]] = {} # dictionary of lists _lowerCAmelCase : List[Any] = directed def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_snake_case ) self.adj_list[destination_vertex].append(_snake_case ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_snake_case ) _lowerCAmelCase : List[str] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(_snake_case ) _lowerCAmelCase : Optional[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: _lowerCAmelCase : List[str] = [destination_vertex] _lowerCAmelCase : Dict = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_snake_case ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_snake_case ) _lowerCAmelCase : Any = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: _lowerCAmelCase : List[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: _lowerCAmelCase : Dict = [destination_vertex] _lowerCAmelCase : List[str] = [] return self def __repr__( self ): return pformat(self.adj_list )
587
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase_ ) class a__ ( lowerCamelCase_ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _SCREAMING_SNAKE_CASE : str = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({'question': Value('string' ), 'context': Value('string' )} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features( { 'answers': Sequence( { 'text': Value('string' ), 'answer_start': Value('int32' ), } ) } ) _SCREAMING_SNAKE_CASE : str = "question" _SCREAMING_SNAKE_CASE : str = "context" _SCREAMING_SNAKE_CASE : str = "answers" @property def _lowerCamelCase ( self ): """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
245
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _A ( snake_case , snake_case , snake_case , snake_case , ) -> list[float]: _lowercase , _lowercase : Union[str, Any] = coefficient_matrix.shape _lowercase , _lowercase : Optional[Any] = constant_matrix.shape if rowsa != colsa: _lowercase : Any = F'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(snake_case ) if colsa != 1: _lowercase : Dict = F'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(snake_case ) if rowsa != rowsa: _lowercase : int = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " F'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(snake_case ) if len(snake_case ) != rowsa: _lowercase : Tuple = ( "Number of initial values must be equal to number of rows in coefficient " F'''matrix but received {len(snake_case )} and {rowsa}''' ) raise ValueError(snake_case ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) _lowercase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) _lowercase , _lowercase : Dict = table.shape strictly_diagonally_dominant(snake_case ) # Iterates the whole matrix for given number of times for _ in range(snake_case ): _lowercase : int = [] for row in range(snake_case ): _lowercase : Tuple = 0 for col in range(snake_case ): if col == row: _lowercase : str = table[row][col] elif col == cols - 1: _lowercase : List[str] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] _lowercase : List[str] = (temp + val) / denom new_val.append(snake_case ) _lowercase : str = new_val return [float(snake_case ) for i in new_val] def _A ( snake_case ) -> bool: _lowercase , _lowercase : Optional[int] = table.shape _lowercase : Optional[Any] = True for i in range(0 , snake_case ): _lowercase : Dict = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
245
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None class lowerCAmelCase ( snake_case ): def __init__( self , a__=1 , a__=0 , a__=2 , a__=5_12 , a__="cls" , a__=False , a__=True , **a__ , ): super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ ) _UpperCAmelCase = project_dim _UpperCAmelCase = pooler_fn _UpperCAmelCase = learn_encoder _UpperCAmelCase = use_attention_mask class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = [R"""pooler""", R"""logit_scale"""] lowerCAmelCase__ = [R"""position_ids""", R"""predictions.decoder.bias"""] lowerCAmelCase__ = """roberta""" lowerCAmelCase__ = RobertaSeriesConfig def __init__( self , a__ ): super().__init__(a__ ) _UpperCAmelCase = XLMRobertaModel(a__ ) _UpperCAmelCase = nn.Linear(config.hidden_size , config.project_dim ) _UpperCAmelCase = getattr(a__ , 'has_pre_transformation' , a__ ) if self.has_pre_transformation: _UpperCAmelCase = nn.Linear(config.hidden_size , config.project_dim ) _UpperCAmelCase = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def __A ( self , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , ): _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = self.base_model( input_ids=a__ , attention_mask=a__ , token_type_ids=a__ , position_ids=a__ , head_mask=a__ , inputs_embeds=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , output_attentions=a__ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=a__ , ) if self.has_pre_transformation: _UpperCAmelCase = outputs['hidden_states'][-2] _UpperCAmelCase = self.pre_LN(a__ ) _UpperCAmelCase = self.transformation_pre(a__ ) return TransformationModelOutput( projection_state=a__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: _UpperCAmelCase = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=a__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
494
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
494
1
from ....configuration_utils import PretrainedConfig from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) # TODO: upload to AWS snake_case__ : List[str] = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """retribert""" def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-12 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ) -> List[Any]: super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = share_encoders UpperCamelCase_ = projection_dim
23
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
332
0
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ : Dict = "xlm-prophetnet" lowerCAmelCase__ : str = ["past_key_values"] lowerCAmelCase__ : Optional[int] = { "num_attention_heads": "num_encoder_attention_heads", } def __init__( self : int , snake_case : Optional[float] = 0.1 , snake_case : Optional[Union[str, Callable]] = "gelu" , snake_case : Optional[int] = 30522 , snake_case : Optional[int] = 1024 , snake_case : Optional[int] = 4096 , snake_case : Optional[int] = 12 , snake_case : Optional[int] = 16 , snake_case : Optional[int] = 4096 , snake_case : Optional[int] = 12 , snake_case : Optional[int] = 16 , snake_case : Optional[float] = 0.1 , snake_case : Optional[float] = 0.1 , snake_case : Optional[int] = 512 , snake_case : Optional[float] = 0.02 , snake_case : Optional[bool] = True , snake_case : Optional[bool] = True , snake_case : Optional[int] = 0 , snake_case : Optional[int] = 2 , snake_case : Optional[int] = 32 , snake_case : Optional[int] = 128 , snake_case : Optional[bool] = False , snake_case : Optional[float] = 0.0 , snake_case : Optional[bool] = True , snake_case : Optional[int] = 0 , snake_case : Optional[int] = 1 , snake_case : Optional[int] = 2 , **snake_case : List[str] , ): __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = num_encoder_layers __UpperCamelCase = num_encoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = num_decoder_layers __UpperCamelCase = num_decoder_attention_heads __UpperCamelCase = max_position_embeddings __UpperCamelCase = init_std # Normal(0, this parameter) __UpperCamelCase = activation_function # parameters for xlmprophetnet __UpperCamelCase = ngram __UpperCamelCase = num_buckets __UpperCamelCase = relative_max_distance __UpperCamelCase = disable_ngram_loss __UpperCamelCase = eps # 3 Types of Dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = dropout __UpperCamelCase = use_cache super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , is_encoder_decoder=snake_case , add_cross_attention=snake_case , decoder_start_token_id=snake_case , **snake_case , ) @property def snake_case ( self : Any ): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def snake_case ( self : Tuple , snake_case : Dict ): raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
710
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCamelCase : """simple docstring""" def __init__( self : Any , snake_case : Optional[Any] , snake_case : Tuple=13 , snake_case : List[Any]=32 , snake_case : Optional[Any]=2 , snake_case : Dict=3 , snake_case : Union[str, Any]=16 , snake_case : Optional[int]=[32, 64, 128] , snake_case : int=[1, 2, 1] , snake_case : Any=[2, 2, 4] , snake_case : Optional[int]=2 , snake_case : List[str]=2.0 , snake_case : Any=True , snake_case : Optional[Any]=0.0 , snake_case : str=0.0 , snake_case : List[Any]=0.1 , snake_case : List[str]="gelu" , snake_case : Any=False , snake_case : Optional[int]=True , snake_case : List[str]=0.02 , snake_case : List[Any]=1E-5 , snake_case : str=True , snake_case : Any=None , snake_case : int=True , snake_case : Optional[Any]=10 , snake_case : List[str]=8 , snake_case : List[str]=["stage1", "stage2"] , snake_case : Optional[Any]=[1, 2] , ): __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = embed_dim __UpperCamelCase = hidden_sizes __UpperCamelCase = depths __UpperCamelCase = num_heads __UpperCamelCase = window_size __UpperCamelCase = mlp_ratio __UpperCamelCase = qkv_bias __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = drop_path_rate __UpperCamelCase = hidden_act __UpperCamelCase = use_absolute_embeddings __UpperCamelCase = patch_norm __UpperCamelCase = layer_norm_eps __UpperCamelCase = initializer_range __UpperCamelCase = is_training __UpperCamelCase = scope __UpperCamelCase = use_labels __UpperCamelCase = type_sequence_label_size __UpperCamelCase = encoder_stride __UpperCamelCase = out_features __UpperCamelCase = out_indices def snake_case ( self : Union[str, Any] ): __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = self.get_config() return config, pixel_values, labels def snake_case ( self : List[str] ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def snake_case ( self : int , snake_case : Optional[int] , snake_case : List[str] , snake_case : Optional[int] ): __UpperCamelCase = FocalNetModel(config=snake_case ) model.to(snake_case ) model.eval() __UpperCamelCase = model(snake_case ) __UpperCamelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCamelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def snake_case ( self : Optional[Any] , snake_case : Any , snake_case : Dict , snake_case : int ): __UpperCamelCase = FocalNetBackbone(config=snake_case ) model.to(snake_case ) model.eval() __UpperCamelCase = model(snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __UpperCamelCase = None __UpperCamelCase = FocalNetBackbone(config=snake_case ) model.to(snake_case ) model.eval() __UpperCamelCase = model(snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def snake_case ( self : Optional[int] , snake_case : Union[str, Any] , snake_case : int , snake_case : Any ): __UpperCamelCase = FocalNetForMaskedImageModeling(config=snake_case ) model.to(snake_case ) model.eval() __UpperCamelCase = model(snake_case ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = FocalNetForMaskedImageModeling(snake_case ) model.to(snake_case ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(snake_case ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def snake_case ( self : str , snake_case : Tuple , snake_case : List[str] , snake_case : Union[str, Any] ): __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = FocalNetForImageClassification(snake_case ) model.to(snake_case ) model.eval() __UpperCamelCase = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = FocalNetForImageClassification(snake_case ) model.to(snake_case ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case ( self : str ): __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : int = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ : Optional[Any] = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : Any = False lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : List[Any] = False lowerCAmelCase__ : Optional[Any] = False def snake_case ( self : Any ): __UpperCamelCase = FocalNetModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=snake_case , embed_dim=37 , has_text_modality=snake_case ) def snake_case ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self : List[Any] ): return def snake_case ( self : List[Any] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def snake_case ( self : List[Any] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*snake_case ) def snake_case ( self : Any ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case ) def snake_case ( self : Any ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @unittest.skip(reason='''FocalNet does not use inputs_embeds''' ) def snake_case ( self : Optional[Any] ): pass @unittest.skip(reason='''FocalNet does not use feedforward chunking''' ) def snake_case ( self : int ): pass def snake_case ( self : Tuple ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __UpperCamelCase = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def snake_case ( self : Dict ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __UpperCamelCase = model_class(snake_case ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case ) def snake_case ( self : Optional[int] , snake_case : Union[str, Any] , snake_case : int , snake_case : List[str] , snake_case : Optional[int] ): __UpperCamelCase = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): __UpperCamelCase = model(**self._prepare_for_class(snake_case , snake_case ) ) __UpperCamelCase = outputs.hidden_states __UpperCamelCase = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(snake_case ) , snake_case ) # FocalNet has a different seq_length __UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCamelCase = outputs.reshaped_hidden_states self.assertEqual(len(snake_case ) , snake_case ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = reshaped_hidden_states[0].shape __UpperCamelCase = ( reshaped_hidden_states[0].view(snake_case , snake_case , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def snake_case ( self : Union[str, Any] ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __UpperCamelCase = True self.check_hidden_states_output(snake_case , snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase = True self.check_hidden_states_output(snake_case , snake_case , snake_case , snake_case ) def snake_case ( self : Optional[Any] ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = 3 __UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCamelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCamelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __UpperCamelCase = True self.check_hidden_states_output(snake_case , snake_case , snake_case , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase = True self.check_hidden_states_output(snake_case , snake_case , snake_case , (padded_height, padded_width) ) @slow def snake_case ( self : Union[str, Any] ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = FocalNetModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def snake_case ( self : Optional[int] ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = _config_zero_init(snake_case ) for model_class in self.all_model_classes: __UpperCamelCase = model_class(config=snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self : str ): # TODO update organization return AutoImageProcessor.from_pretrained('''microsoft/focalnet-tiny''' ) if is_vision_available() else None @slow def snake_case ( self : List[str] ): __UpperCamelCase = FocalNetForImageClassification.from_pretrained('''microsoft/focalnet-tiny''' ).to(snake_case ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __UpperCamelCase = image_processor(images=snake_case , return_tensors='''pt''' ).to(snake_case ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**snake_case ) # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case ) __UpperCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class _lowerCamelCase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : str = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase__ : Dict = FocalNetConfig lowerCAmelCase__ : List[str] = False def snake_case ( self : Dict ): __UpperCamelCase = FocalNetModelTester(self )
375
0
"""simple docstring""" from collections.abc import Sequence from queue import Queue class __A : def __init__( self : Any , __snake_case : Dict , __snake_case : List[str] , __snake_case : Dict , __snake_case : Optional[int]=None , __snake_case : Optional[Any]=None ) -> Tuple: __magic_name__: List[str] = start __magic_name__: Tuple = end __magic_name__: List[str] = val __magic_name__: str = (start + end) // 2 __magic_name__: Any = left __magic_name__: Tuple = right def __repr__( self : List[Any] ) -> List[str]: return F'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class __A : def __init__( self : Any , __snake_case : Sequence , __snake_case : List[str] ) -> Tuple: __magic_name__: List[Any] = collection __magic_name__: Tuple = function if self.collection: __magic_name__: int = self._build_tree(0 , len(__snake_case ) - 1 ) def lowerCamelCase__ ( self : Tuple , __snake_case : Tuple , __snake_case : Tuple ) -> Union[str, Any]: self._update_tree(self.root , __snake_case , __snake_case ) def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Any , __snake_case : int ) -> Optional[Any]: return self._query_range(self.root , __snake_case , __snake_case ) def lowerCamelCase__ ( self : Dict , __snake_case : List[Any] , __snake_case : Dict ) -> Tuple: if start == end: return SegmentTreeNode(__snake_case , __snake_case , self.collection[start] ) __magic_name__: str = (start + end) // 2 __magic_name__: List[str] = self._build_tree(__snake_case , __snake_case ) __magic_name__: Any = self._build_tree(mid + 1 , __snake_case ) return SegmentTreeNode(__snake_case , __snake_case , self.fn(left.val , right.val ) , __snake_case , __snake_case ) def lowerCamelCase__ ( self : List[Any] , __snake_case : Any , __snake_case : str , __snake_case : Any ) -> Optional[int]: if node.start == i and node.end == i: __magic_name__: Optional[Any] = val return if i <= node.mid: self._update_tree(node.left , __snake_case , __snake_case ) else: self._update_tree(node.right , __snake_case , __snake_case ) __magic_name__: str = self.fn(node.left.val , node.right.val ) def lowerCamelCase__ ( self : str , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Tuple ) -> Any: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , __snake_case , __snake_case ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , __snake_case , node.mid ) , self._query_range(node.right , node.mid + 1 , __snake_case ) , ) else: # range in right child tree return self._query_range(node.right , __snake_case , __snake_case ) def lowerCamelCase__ ( self : Optional[Any] ) -> str: if self.root is not None: __magic_name__: Union[str, Any] = Queue() queue.put(self.root ) while not queue.empty(): __magic_name__: Any = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('*' * 50) __lowerCamelCase = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
96
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __A : List[Any] = logging.get_logger(__name__) __A : Optional[int] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } __A : List[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' UpperCAmelCase = {} with open(UpperCamelCase__ , '''r''' ) as file: for line_number, line in enumerate(UpperCamelCase__ ): UpperCAmelCase = line.strip() if line: UpperCAmelCase = line.split() UpperCAmelCase = line_number UpperCAmelCase = words[0] UpperCAmelCase = value return result def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): UpperCAmelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCamelCase__ ): UpperCAmelCase = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase = hf_pointer for attribute in hf_param_name.split('''.''' ): UpperCAmelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = shape_pointer.shape # let's reduce dimension UpperCAmelCase = value[0] else: UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase = value elif weight_type == "weight_g": UpperCAmelCase = value elif weight_type == "weight_v": UpperCAmelCase = value elif weight_type == "bias": UpperCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): UpperCAmelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = value else: UpperCAmelCase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCamelCase__ ): UpperCAmelCase = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase = '''.'''.join([key, hf_param_name] ) else: UpperCAmelCase = key UpperCAmelCase = value if '''lm_head''' in full_key else value[0] __A : str = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = False for key, mapped_key in MAPPING.items(): UpperCAmelCase = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase = True if "*" in mapped_key: UpperCAmelCase = name.split(UpperCamelCase__ )[0].split('''.''' )[-2] UpperCAmelCase = mapped_key.replace('''*''' , UpperCamelCase__ ) if "weight_g" in name: UpperCAmelCase = '''weight_g''' elif "weight_v" in name: UpperCAmelCase = '''weight_v''' elif "bias" in name: UpperCAmelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase = '''weight''' else: UpperCAmelCase = None if hf_dict is not None: rename_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return is_used return is_used def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = fairseq_model.state_dict() UpperCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase = True else: UpperCAmelCase = load_wavaveca_layer(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' UpperCAmelCase = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase = name.split('''.''' ) UpperCAmelCase = int(items[0] ) UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=False ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: UpperCAmelCase = WavaVecaConfig.from_pretrained(UpperCamelCase__ ) else: UpperCAmelCase = WavaVecaConfig() if is_seq_class: UpperCAmelCase = read_txt_into_dict(UpperCamelCase__ ) UpperCAmelCase = idalabel UpperCAmelCase = WavaVecaForSequenceClassification(UpperCamelCase__ ) UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) feature_extractor.save_pretrained(UpperCamelCase__ ) elif is_finetuned: if dict_path: UpperCAmelCase = Dictionary.load(UpperCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase = target_dict.pad_index UpperCAmelCase = target_dict.bos_index UpperCAmelCase = target_dict.eos_index UpperCAmelCase = len(target_dict.symbols ) UpperCAmelCase = os.path.join(UpperCamelCase__ , '''vocab.json''' ) if not os.path.isdir(UpperCamelCase__ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(UpperCamelCase__ ) ) return os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) UpperCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase = 0 UpperCAmelCase = 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = WavaVecaCTCTokenizer( UpperCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=UpperCamelCase__ , ) UpperCAmelCase = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) UpperCAmelCase = WavaVecaProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) UpperCAmelCase = WavaVecaForCTC(UpperCamelCase__ ) else: UpperCAmelCase = WavaVecaForPreTraining(UpperCamelCase__ ) if is_finetuned or is_seq_class: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase = argparse.Namespace(task='''audio_pretraining''' ) UpperCAmelCase = fairseq.tasks.setup_task(UpperCamelCase__ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCamelCase__ ) UpperCAmelCase = model[0].eval() recursively_load_weights(UpperCamelCase__ , UpperCamelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) __A : Dict = parser.parse_args() __A : Any = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
130
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class __snake_case ( lowercase__ ): lowerCAmelCase_ = "audio-spectrogram-transformer" def __init__( self : str , _lowercase : Dict=7_68 , _lowercase : List[str]=12 , _lowercase : List[str]=12 , _lowercase : Optional[int]=30_72 , _lowercase : Dict="gelu" , _lowercase : str=0.0 , _lowercase : int=0.0 , _lowercase : int=0.02 , _lowercase : Optional[int]=1E-12 , _lowercase : Optional[int]=16 , _lowercase : Tuple=True , _lowercase : List[str]=10 , _lowercase : int=10 , _lowercase : int=10_24 , _lowercase : Optional[Any]=1_28 , **_lowercase : List[str] , ): """simple docstring""" super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = qkv_bias SCREAMING_SNAKE_CASE__ = frequency_stride SCREAMING_SNAKE_CASE__ = time_stride SCREAMING_SNAKE_CASE__ = max_length SCREAMING_SNAKE_CASE__ = num_mel_bins
704
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers __lowerCamelCase : Tuple = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
379
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _A = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Union[str, Any] = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if metric == "rouge2": _A = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _A = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _A = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _A = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _A = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class lowerCamelCase( pl.Callback ): '''simple docstring''' def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) _A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _A = Path(pl_module.hparams.output_dir ) if type_path == "test": _A = od / 'test_results.txt' _A = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _A = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=snake_case_ ) generations_file.parent.mkdir(exist_ok=snake_case_ ) with open(snake_case_ , 'a+' ) as writer: for key in sorted(snake_case_ ): if key in ["log", "progress_bar", "preds"]: continue _A = metrics[key] if isinstance(snake_case_ , torch.Tensor ): _A = val.item() _A = F"{key}: {val:.6f}\n" writer.write(snake_case_ ) if not save_generations: return if "preds" in metrics: _A = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): try: _A = pl_module.model.model.num_parameters() except AttributeError: _A = pl_module.model.num_parameters() _A = count_trainable_parameters(snake_case_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case_ , snake_case_ , 'test' ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
27
def a_ ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: """simple docstring""" snake_case : Tuple = [False] * len(__magic_name__ ) snake_case : Optional[Any] = [] queue.append(__magic_name__ ) snake_case : Tuple = True while queue: snake_case : Any = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__magic_name__ ) snake_case : Dict = True snake_case : Dict = u return visited[t] def a_ ( __magic_name__ , __magic_name__ , __magic_name__ ) -> int: """simple docstring""" snake_case : Any = [-1] * (len(__magic_name__ )) snake_case : Union[str, Any] = 0 while bfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): snake_case : Tuple = float('''Inf''' ) snake_case : Any = sink while s != source: # Find the minimum value in select path snake_case : List[str] = min(__magic_name__ , graph[parent[s]][s] ) snake_case : str = parent[s] max_flow += path_flow snake_case : Optional[Any] = sink while v != source: snake_case : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow snake_case : int = parent[v] return max_flow _a : Union[str, Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _a , _a : Optional[int] = 0, 5 print(ford_fulkerson(graph, source, sink))
598
0
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class snake_case : def __init__( self ,UpperCAmelCase_=2 ,UpperCAmelCase_=3 ,UpperCAmelCase_=64 ,UpperCAmelCase_=None ) -> Optional[Any]: lowercase__ = np.random.default_rng(UpperCAmelCase_ ) lowercase__ = length lowercase__ = rng.normal(size=(length,) ).astype(np.floataa ) lowercase__ = a * self.x + b + rng.normal(scale=0.1 ,size=(length,) ).astype(np.floataa ) def __len__( self ) -> str: return self.length def __getitem__( self ,UpperCAmelCase_ ) -> List[str]: return {"x": self.x[i], "y": self.y[i]} class snake_case (torch.nn.Module ): def __init__( self ,UpperCAmelCase_=0 ,UpperCAmelCase_=0 ,UpperCAmelCase_=False ) -> Tuple: super().__init__() lowercase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowercase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowercase__ = True def _a ( self ,UpperCAmelCase_=None ) -> int: if self.first_batch: print(F'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) lowercase__ = False return x * self.a[0] + self.b[0] class snake_case (torch.nn.Module ): def __init__( self ,UpperCAmelCase_=0 ,UpperCAmelCase_=0 ,UpperCAmelCase_=False ) -> str: super().__init__() lowercase__ = torch.nn.Parameter(torch.tensor(UpperCAmelCase_ ).float() ) lowercase__ = torch.nn.Parameter(torch.tensor(UpperCAmelCase_ ).float() ) lowercase__ = True def _a ( self ,UpperCAmelCase_=None ) -> Any: if self.first_batch: print(F'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) lowercase__ = False return x * self.a + self.b def lowerCamelCase ( _snake_case : Optional[Any] ,_snake_case : Tuple = 16 ): '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer lowercase__ = AutoTokenizer.from_pretrained("bert-base-cased" ) lowercase__ = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} lowercase__ = load_dataset("csv" ,data_files=_snake_case ) lowercase__ = datasets["""train"""].unique("label" ) lowercase__ = {v: i for i, v in enumerate(_snake_case )} def tokenize_function(_snake_case : str ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer( examples["sentence1"] ,examples["sentence2"] ,truncation=_snake_case ,max_length=_snake_case ,padding="max_length" ) if "label" in examples: lowercase__ = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ = datasets.map( _snake_case ,batched=_snake_case ,remove_columns=["sentence1", "sentence2", "label"] ,) def collate_fn(_snake_case : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_snake_case ,padding="max_length" ,max_length=128 ,return_tensors="pt" ) return tokenizer.pad(_snake_case ,padding="longest" ,return_tensors="pt" ) # Instantiate dataloaders. lowercase__ = DataLoader(tokenized_datasets["train"] ,shuffle=_snake_case ,collate_fn=_snake_case ,batch_size=2 ) lowercase__ = DataLoader(tokenized_datasets["validation"] ,shuffle=_snake_case ,collate_fn=_snake_case ,batch_size=1 ) return train_dataloader, eval_dataloader
714
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class snake_case (UpperCamelCase ): def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) -> List[str]: super().__init__(*UpperCAmelCase_ ,**UpperCAmelCase_ ) lowercase__ = {} def _a ( self ,UpperCAmelCase_ ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) -> str: lowercase__ = super().add_tokens(UpperCAmelCase_ ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) if num_added_tokens == 0: raise ValueError( F'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' " `placeholder_token` that is not already in the tokenizer." ) def _a ( self ,UpperCAmelCase_ ,*UpperCAmelCase_ ,UpperCAmelCase_=1 ,**UpperCAmelCase_ ) -> List[Any]: lowercase__ = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCAmelCase_ ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) output.append(UpperCAmelCase_ ) else: lowercase__ = [] for i in range(UpperCAmelCase_ ): lowercase__ = placeholder_token + F'''_{i}''' self.try_adding_tokens(UpperCAmelCase_ ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) output.append(UpperCAmelCase_ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'''The tokenizer already has placeholder token {token} that can get confused with''' F''' {placeholder_token}keep placeholder tokens independent''' ) lowercase__ = output def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_=False ,UpperCAmelCase_=1.0 ) -> Optional[int]: if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): lowercase__ = [] for i in range(len(UpperCAmelCase_ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] ,vector_shuffle=UpperCAmelCase_ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: lowercase__ = self.token_map[placeholder_token] lowercase__ = tokens[: 1 + int(len(UpperCAmelCase_ ) * prop_tokens_to_load )] if vector_shuffle: lowercase__ = copy.copy(UpperCAmelCase_ ) random.shuffle(UpperCAmelCase_ ) lowercase__ = text.replace(UpperCAmelCase_ ," ".join(UpperCAmelCase_ ) ) return text def __call__( self ,UpperCAmelCase_ ,*UpperCAmelCase_ ,UpperCAmelCase_=False ,UpperCAmelCase_=1.0 ,**UpperCAmelCase_ ) -> int: return super().__call__( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ ,vector_shuffle=UpperCAmelCase_ ,prop_tokens_to_load=UpperCAmelCase_ ) ,*UpperCAmelCase_ ,**UpperCAmelCase_ ,) def _a ( self ,UpperCAmelCase_ ,*UpperCAmelCase_ ,UpperCAmelCase_=False ,UpperCAmelCase_=1.0 ,**UpperCAmelCase_ ) -> Optional[int]: return super().encode( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ ,vector_shuffle=UpperCAmelCase_ ,prop_tokens_to_load=UpperCAmelCase_ ) ,*UpperCAmelCase_ ,**UpperCAmelCase_ ,)
539
0
"""simple docstring""" import os def A__ ( A__ = "input.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(A__ ) , A__ ) ) as input_file: _UpperCAmelCase = [ [int(A__ ) for element in line.split("," )] for line in input_file.readlines() ] _UpperCAmelCase = len(A__ ) _UpperCAmelCase = len(matrix[0] ) _UpperCAmelCase = [[-1 for _ in range(A__ )] for _ in range(A__ )] for i in range(A__ ): _UpperCAmelCase = matrix[i][0] for j in range(1 , A__ ): for i in range(A__ ): _UpperCAmelCase = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , A__ ): _UpperCAmelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _UpperCAmelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
426
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A__ ( A__ , A__ ) -> Optional[int]: '''simple docstring''' assert isinstance(A__ , A__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def A__ ( A__ , A__ , A__ ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = JsonDatasetReader(A__ , cache_dir=A__ , keep_in_memory=A__ ).read() _check_json_dataset(A__ , A__ ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def A__ ( A__ , A__ , A__ ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader(A__ , features=A__ , cache_dir=A__ ).read() _check_json_dataset(A__ , A__ ) @pytest.mark.parametrize( "features" , [ None, {"col_3": "float64", "col_1": "string", "col_2": "int64"}, ] , ) def A__ ( A__ , A__ , A__ ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_3": "float64", "col_1": "string", "col_2": "int64"} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader(A__ , features=A__ , cache_dir=A__ ).read() assert isinstance(A__ , A__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def A__ ( A__ , A__ ) -> List[str]: '''simple docstring''' _UpperCAmelCase = {"col_2": "int64", "col_3": "float64", "col_1": "string"} _UpperCAmelCase = features.copy() _UpperCAmelCase = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = JsonDatasetReader(A__ , features=A__ , cache_dir=A__ ).read() assert isinstance(A__ , A__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def A__ ( A__ , A__ , A__ ) -> str: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = JsonDatasetReader(A__ , cache_dir=A__ , split=A__ ).read() _check_json_dataset(A__ , A__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def A__ ( A__ , A__ , A__ ) -> Dict: '''simple docstring''' if issubclass(A__ , A__ ): _UpperCAmelCase = jsonl_path elif issubclass(A__ , A__ ): _UpperCAmelCase = [jsonl_path] _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = JsonDatasetReader(A__ , cache_dir=A__ ).read() _check_json_dataset(A__ , A__ ) def A__ ( A__ , A__ , A__=("train",) ) -> List[str]: '''simple docstring''' assert isinstance(A__ , A__ ) for split in splits: _UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def A__ ( A__ , A__ , A__ ) -> Any: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = JsonDatasetReader({"train": jsonl_path} , cache_dir=A__ , keep_in_memory=A__ ).read() _check_json_datasetdict(A__ , A__ ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def A__ ( A__ , A__ , A__ ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader({"train": jsonl_path} , features=A__ , cache_dir=A__ ).read() _check_json_datasetdict(A__ , A__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def A__ ( A__ , A__ , A__ ) -> Optional[Any]: '''simple docstring''' if split: _UpperCAmelCase = {split: jsonl_path} else: _UpperCAmelCase = "train" _UpperCAmelCase = {"train": jsonl_path, "test": jsonl_path} _UpperCAmelCase = tmp_path / "cache" _UpperCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase = JsonDatasetReader(A__ , cache_dir=A__ ).read() _check_json_datasetdict(A__ , A__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A__ ( A__ ) -> List[Any]: '''simple docstring''' return json.load(A__ ) def A__ ( A__ ) -> int: '''simple docstring''' return [json.loads(A__ ) for line in buffer] class a : """simple docstring""" @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def __A ( self , snake_case_ , snake_case_ , snake_case_ ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(snake_case_ , snake_case_ , lines=snake_case_ ).write() buffer.seek(0 ) _UpperCAmelCase = load_json_function(snake_case_ ) assert isinstance(snake_case_ , snake_case_ ) assert isinstance(exported_content[0] , snake_case_ ) assert len(snake_case_ ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(snake_case_ , snake_case_ , lines=snake_case_ , orient=snake_case_ ).write() buffer.seek(0 ) _UpperCAmelCase = load_json(snake_case_ ) assert isinstance(snake_case_ , snake_case_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(snake_case_ , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(snake_case_ ) == 10 @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def __A ( self , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: with io.BytesIO() as buffer: JsonDatasetWriter(snake_case_ , snake_case_ , lines=snake_case_ , num_proc=2 ).write() buffer.seek(0 ) _UpperCAmelCase = load_json_function(snake_case_ ) assert isinstance(snake_case_ , snake_case_ ) assert isinstance(exported_content[0] , snake_case_ ) assert len(snake_case_ ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(snake_case_ , snake_case_ , lines=snake_case_ , orient=snake_case_ , num_proc=2 ).write() buffer.seek(0 ) _UpperCAmelCase = load_json(snake_case_ ) assert isinstance(snake_case_ , snake_case_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(snake_case_ , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(snake_case_ ) == 10 def __A ( self , snake_case_ ) -> Any: with pytest.raises(snake_case_ ): with io.BytesIO() as buffer: JsonDatasetWriter(snake_case_ , snake_case_ , num_proc=0 ) @pytest.mark.parametrize("compression, extension" , [("gzip", "gz"), ("bz2", "bz2"), ("xz", "xz")] ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: _UpperCAmelCase = tmp_path_factory.mktemp("data" ) / F"""test.json.{extension}""" _UpperCAmelCase = str(shared_datadir / F"""test_file.json.{extension}""" ) JsonDatasetWriter(snake_case_ , snake_case_ , compression=snake_case_ ).write() with fsspec.open(snake_case_ , "rb" , compression="infer" ) as f: _UpperCAmelCase = f.read() with fsspec.open(snake_case_ , "rb" , compression="infer" ) as f: _UpperCAmelCase = f.read() assert exported_content == original_content
426
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : Dict = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['MaskFormerFeatureExtractor'] __UpperCamelCase : int = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] __UpperCamelCase : Tuple = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
458
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : List[Any] = tempfile.mkdtemp() __lowerCamelCase : Union[str, Any] = SamImageProcessor() __lowerCamelCase : int = SamProcessor(_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : Tuple , **_lowerCamelCase : Any ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ).image_processor def _snake_case ( self : List[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase : Any = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __lowerCamelCase : Optional[int] = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowerCamelCase : Tuple = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase : Optional[int] = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) __lowerCamelCase : Optional[Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowerCamelCase : int = self.get_image_processor() __lowerCamelCase : Tuple = SamProcessor(image_processor=_lowerCamelCase ) __lowerCamelCase : Optional[Any] = self.prepare_image_inputs() __lowerCamelCase : List[str] = image_processor(_lowerCamelCase , return_tensors="""np""" ) __lowerCamelCase : List[Any] = processor(images=_lowerCamelCase , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowerCamelCase : Dict = self.get_image_processor() __lowerCamelCase : Union[str, Any] = SamProcessor(image_processor=_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = [torch.ones((1, 3, 5, 5) )] __lowerCamelCase : Any = [[1_7_6_4, 2_6_4_6]] __lowerCamelCase : Any = [[6_8_3, 1_0_2_4]] __lowerCamelCase : Tuple = processor.post_process_masks(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) __lowerCamelCase : Union[str, Any] = processor.post_process_masks( _lowerCamelCase , torch.tensor(_lowerCamelCase ) , torch.tensor(_lowerCamelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) # should also work with np __lowerCamelCase : Any = [np.ones((1, 3, 5, 5) )] __lowerCamelCase : int = processor.post_process_masks(_lowerCamelCase , np.array(_lowerCamelCase ) , np.array(_lowerCamelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) __lowerCamelCase : List[str] = [[1, 0], [0, 1]] with self.assertRaises(_lowerCamelCase ): __lowerCamelCase : Union[str, Any] = processor.post_process_masks(_lowerCamelCase , np.array(_lowerCamelCase ) , np.array(_lowerCamelCase ) ) @require_vision @require_tf class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase : Optional[Any] = tempfile.mkdtemp() __lowerCamelCase : int = SamImageProcessor() __lowerCamelCase : Dict = SamProcessor(_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : List[str] , **_lowerCamelCase : List[Any] ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ).image_processor def _snake_case ( self : str ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowerCamelCase : Any = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __lowerCamelCase : str = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowerCamelCase : int = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase : Dict = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) __lowerCamelCase : Tuple = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = self.get_image_processor() __lowerCamelCase : Tuple = SamProcessor(image_processor=_lowerCamelCase ) __lowerCamelCase : str = self.prepare_image_inputs() __lowerCamelCase : List[Any] = image_processor(_lowerCamelCase , return_tensors="""np""" ) __lowerCamelCase : Union[str, Any] = processor(images=_lowerCamelCase , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : List[Any] = self.get_image_processor() __lowerCamelCase : str = SamProcessor(image_processor=_lowerCamelCase ) __lowerCamelCase : Any = [tf.ones((1, 3, 5, 5) )] __lowerCamelCase : Optional[Any] = [[1_7_6_4, 2_6_4_6]] __lowerCamelCase : List[str] = [[6_8_3, 1_0_2_4]] __lowerCamelCase : Optional[int] = processor.post_process_masks(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) __lowerCamelCase : Optional[Any] = processor.post_process_masks( _lowerCamelCase , tf.convert_to_tensor(_lowerCamelCase ) , tf.convert_to_tensor(_lowerCamelCase ) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) # should also work with np __lowerCamelCase : Tuple = [np.ones((1, 3, 5, 5) )] __lowerCamelCase : str = processor.post_process_masks( _lowerCamelCase , np.array(_lowerCamelCase ) , np.array(_lowerCamelCase ) , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) __lowerCamelCase : Union[str, Any] = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __lowerCamelCase : Optional[Any] = processor.post_process_masks( _lowerCamelCase , np.array(_lowerCamelCase ) , np.array(_lowerCamelCase ) , return_tensors="""tf""" ) @require_vision @require_torchvision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Tuple ): '''simple docstring''' __lowerCamelCase : Optional[int] = tempfile.mkdtemp() __lowerCamelCase : Union[str, Any] = SamImageProcessor() __lowerCamelCase : Dict = SamProcessor(_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : Optional[int] , **_lowerCamelCase : Tuple ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ).image_processor def _snake_case ( self : List[str] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase : List[str] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __lowerCamelCase : str = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def _snake_case ( self : int ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = self.get_image_processor() __lowerCamelCase : Tuple = SamProcessor(image_processor=_lowerCamelCase ) __lowerCamelCase : str = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __lowerCamelCase : Tuple = [tf.convert_to_tensor(_lowerCamelCase )] __lowerCamelCase : List[str] = [torch.tensor(_lowerCamelCase )] __lowerCamelCase : Optional[int] = [[1_7_6_4, 2_6_4_6]] __lowerCamelCase : Tuple = [[6_8_3, 1_0_2_4]] __lowerCamelCase : int = processor.post_process_masks( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , return_tensors="""tf""" ) __lowerCamelCase : Any = processor.post_process_masks( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def _snake_case ( self : Dict ): '''simple docstring''' __lowerCamelCase : Optional[int] = self.get_image_processor() __lowerCamelCase : int = SamProcessor(image_processor=_lowerCamelCase ) __lowerCamelCase : Any = self.prepare_image_inputs() __lowerCamelCase : Any = image_processor(_lowerCamelCase , return_tensors="""pt""" )["""pixel_values"""].numpy() __lowerCamelCase : Any = processor(images=_lowerCamelCase , return_tensors="""pt""" )["""pixel_values"""].numpy() __lowerCamelCase : Dict = image_processor(_lowerCamelCase , return_tensors="""tf""" )["""pixel_values"""].numpy() __lowerCamelCase : int = processor(images=_lowerCamelCase , return_tensors="""tf""" )["""pixel_values"""].numpy() self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase ) ) self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase ) ) self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase ) )
458
1
def __snake_case ( __UpperCamelCase : int = 100 ): """simple docstring""" A_ = n * (n + 1) * (2 * n + 1) / 6 A_ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"{solution() = }")
86
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __magic_name__ : Any = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __magic_name__ : Optional[Any] = 12_8022 __magic_name__ : Dict = 12_8028 @require_sentencepiece class A__ ( __snake_case , unittest.TestCase ): '''simple docstring''' snake_case__ = MaMaaaTokenizer snake_case__ = False snake_case__ = False snake_case__ = True def _SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" super().setUp() UpperCamelCase = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] UpperCamelCase = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase = Path(self.tmpdirname ) save_json(_SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES['spm_file'] ) UpperCamelCase = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : str , **_SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" return ( "This is a test", "This is a test", ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" UpperCamelCase = '</s>' UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<s>' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('Skip this test while all models are still to be uploaded.' ) def _SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [2, 3, 4, 5, 6] , ) UpperCamelCase = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['▁This', '▁is', '▁a', '▁t', 'est'] ) UpperCamelCase = tokenizer.convert_tokens_to_string(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , 'This is a test' ) @slow def _SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" UpperCamelCase = {'input_ids': [[12_8022, 11_0108, 397, 11, 3_8272, 2247, 12_4811, 285, 1_8105, 1586, 207, 7, 3_9534, 4428, 397, 1019, 1_8105, 1586, 207, 7, 4_1337, 1_6786, 241, 7, 2_0214, 17, 12_5690, 1_0398, 7, 4_4378, 5_8069, 6_8342, 7798, 7343, 11, 299, 3_3310, 4, 158, 3_7350, 9_4077, 4569, 299, 3_3310, 90, 4, 5_2840, 290, 4, 3_1270, 112, 299, 682, 4, 5_2840, 3_9953, 1_4079, 193, 5_2519, 9_0894, 1_7894, 12_0697, 11, 4_0445, 551, 17, 1019, 5_2519, 9_0894, 1_7756, 963, 11, 4_0445, 480, 17, 9792, 1120, 5173, 1393, 6240, 1_6786, 241, 12_0996, 28, 1245, 1393, 11_8240, 1_1123, 1019, 9_3612, 2691, 1_0618, 9_8058, 12_0409, 1928, 279, 4, 4_0683, 367, 178, 207, 1019, 103, 10_3121, 506, 6_5296, 5, 2], [12_8022, 2_1217, 367, 117, 12_5450, 128, 719, 7, 7308, 40, 9_3612, 1_2669, 1116, 1_6704, 71, 1_7785, 3699, 1_5592, 35, 144, 9584, 241, 1_1943, 713, 950, 799, 2247, 8_8427, 150, 149, 11_8813, 12_0706, 1019, 10_6906, 8_1518, 28, 1224, 2_2799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_8022, 1658, 12_3311, 5155, 5578, 4722, 279, 1_4947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name='facebook/m2m100_418M' , revision='c168bae485c864188cf9aa0e4108b0b6934dc91e' , ) @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): '''simple docstring''' snake_case__ = """facebook/m2m100_418M""" snake_case__ = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] snake_case__ = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off snake_case__ = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ): """simple docstring""" UpperCamelCase = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en' , tgt_lang='fr' ) UpperCamelCase = 1 return cls def _SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('ar' ) , 12_8006 ) self.assertEqual(self.tokenizer.get_lang_id('en' ) , 12_8022 ) self.assertEqual(self.tokenizer.get_lang_id('ro' ) , 12_8076 ) self.assertEqual(self.tokenizer.get_lang_id('mr' ) , 12_8063 ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" UpperCamelCase = self.tokenizer.get_vocab() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['<unk>'] , 3 ) self.assertIn(self.tokenizer.get_lang_token('en' ) , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = 'en' UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertIn(_SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids ) # fmt: off UpperCamelCase = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 1_4028, 136, 3286, 9706, 6, 9_0797, 6, 14_4012, 162, 8_8128, 3_0061, 5, 2] # fmt: on UpperCamelCase = self.tokenizer.decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertNotIn(self.tokenizer.eos_token , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = MaMaaaTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(new_tok.lang_token_to_id , _SCREAMING_SNAKE_CASE ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = 'en' UpperCamelCase = 'fr' UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) UpperCamelCase = shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: UpperCamelCase = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" UpperCamelCase = 'mr' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) UpperCamelCase = 'zh' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" UpperCamelCase = 'mr' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) UpperCamelCase = 'zh' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" UpperCamelCase = self.tokenizer._build_translation_inputs('A test' , return_tensors='pt' , src_lang='en' , tgt_lang='ar' ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , { # en_XX, A, test, EOS 'input_ids': [[12_8022, 58, 4183, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 12_8006, } , )
280
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. A_ : List[str] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class _lowercase ( unittest.TestCase ): _UpperCAmelCase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _UpperCAmelCase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _UpperCAmelCase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _UpperCAmelCase = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def A ( self : str , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ) -> Any: """simple docstring""" a = ZeroShotClassificationPipeline( model=__lowerCAmelCase , tokenizer=__lowerCAmelCase , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def A ( self : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Any ) -> Tuple: """simple docstring""" a = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(__lowerCAmelCase , {"sequence": ANY(__lowerCAmelCase ), "labels": [ANY(__lowerCAmelCase )], "scores": [ANY(__lowerCAmelCase )]} ) # No kwarg a = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(__lowerCAmelCase , {"sequence": ANY(__lowerCAmelCase ), "labels": [ANY(__lowerCAmelCase )], "scores": [ANY(__lowerCAmelCase )]} ) a = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(__lowerCAmelCase , {"sequence": ANY(__lowerCAmelCase ), "labels": [ANY(__lowerCAmelCase )], "scores": [ANY(__lowerCAmelCase )]} ) a = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( __lowerCAmelCase , {"sequence": ANY(__lowerCAmelCase ), "labels": [ANY(__lowerCAmelCase ), ANY(__lowerCAmelCase )], "scores": [ANY(__lowerCAmelCase ), ANY(__lowerCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) a = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( __lowerCAmelCase , {"sequence": ANY(__lowerCAmelCase ), "labels": [ANY(__lowerCAmelCase ), ANY(__lowerCAmelCase )], "scores": [ANY(__lowerCAmelCase ), ANY(__lowerCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) a = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(__lowerCAmelCase , {"sequence": ANY(__lowerCAmelCase ), "labels": [ANY(__lowerCAmelCase )], "scores": [ANY(__lowerCAmelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 a = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( __lowerCAmelCase , [ {"sequence": ANY(__lowerCAmelCase ), "labels": [ANY(__lowerCAmelCase ), ANY(__lowerCAmelCase )], "scores": [ANY(__lowerCAmelCase ), ANY(__lowerCAmelCase )]} for i in range(1 ) ] , ) a = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( __lowerCAmelCase , [ {"sequence": ANY(__lowerCAmelCase ), "labels": [ANY(__lowerCAmelCase ), ANY(__lowerCAmelCase )], "scores": [ANY(__lowerCAmelCase ), ANY(__lowerCAmelCase )]} for i in range(2 ) ] , ) with self.assertRaises(__lowerCAmelCase ): classifier("" , candidate_labels="politics" ) with self.assertRaises(__lowerCAmelCase ): classifier(__lowerCAmelCase , candidate_labels="politics" ) with self.assertRaises(__lowerCAmelCase ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(__lowerCAmelCase ): classifier("Who are you voting for in 2020?" , candidate_labels=__lowerCAmelCase ) with self.assertRaises(__lowerCAmelCase ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(__lowerCAmelCase ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=__lowerCAmelCase , ) self.run_entailment_id(__lowerCAmelCase ) def A ( self : List[str] , __lowerCAmelCase : Pipeline ) -> Dict: """simple docstring""" a = zero_shot_classifier.model.config a = config.labelaid a = zero_shot_classifier.entailment_id a = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) a = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) a = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) a = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) a = original_labelaid self.assertEqual(__lowerCAmelCase , zero_shot_classifier.entailment_id ) @require_torch def A ( self : Tuple ) -> Optional[Any]: """simple docstring""" a = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] ) @require_torch def A ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" a = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) a = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def A ( self : int ) -> Union[str, Any]: """simple docstring""" a = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) a = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def A ( self : Optional[Any] ) -> Any: """simple docstring""" a = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) a = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) a = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=__lowerCAmelCase , ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def A ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" a = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) a = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) a = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=__lowerCAmelCase , ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
32
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _lowercase ( unittest.TestCase ): def A ( self : Union[str, Any] ) -> int: """simple docstring""" a = [[1, 2, 4], [1, 2, 3, 4]] a = DisjunctiveConstraint(__lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , __lowerCAmelCase ) ) with self.assertRaises(__lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def A ( self : Tuple ) -> Dict: """simple docstring""" a = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowerCAmelCase ): DisjunctiveConstraint(__lowerCAmelCase ) # fails here def A ( self : int ) -> Any: """simple docstring""" a = [[1, 2, 3], [1, 2, 4]] a = DisjunctiveConstraint(__lowerCAmelCase ) a , a , a = dc.update(1 ) a = stepped is True and completed is False and reset is False self.assertTrue(__lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) a , a , a = dc.update(2 ) a = stepped is True and completed is False and reset is False self.assertTrue(__lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) a , a , a = dc.update(3 ) a = stepped is True and completed is True and reset is False self.assertTrue(__lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def A ( self : List[Any] ) -> List[Any]: """simple docstring""" a = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] a = DisjunctiveConstraint(__lowerCAmelCase ) a , a , a = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) a , a , a = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) a , a , a = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) a , a , a = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() a , a , a = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) a , a , a = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) a , a , a = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
32
1
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _lowercase : Any = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _lowercase : str = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _lowercase : Union[str, Any] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) _lowercase : int = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) _lowercase : int = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions _lowercase : Tuple = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) _lowercase : str = tf.keras.preprocessing.image.img_to_array(test_image) _lowercase : Dict = np.expand_dims(test_image, axis=0) _lowercase : Tuple = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _lowercase : Dict = "Normal" if result[0][0] == 1: _lowercase : str = "Abnormality detected"
641
def _lowerCAmelCase ( UpperCamelCase__: str , UpperCamelCase__: int , UpperCamelCase__: Any=False ) -> str: """simple docstring""" if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and isinstance(UpperCamelCase__ , UpperCamelCase__ ): A = len(set_a.intersection(UpperCamelCase__ ) ) if alternative_union: A = len(UpperCamelCase__ ) + len(UpperCamelCase__ ) else: A = len(set_a.union(UpperCamelCase__ ) ) return intersection / union if isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(UpperCamelCase__ , (list, tuple) ): A = [element for element in set_a if element in set_b] if alternative_union: A = len(UpperCamelCase__ ) + len(UpperCamelCase__ ) return len(UpperCamelCase__ ) / union else: A = set_a + [element for element in set_b if element not in set_a] return len(UpperCamelCase__ ) / len(UpperCamelCase__ ) return len(UpperCamelCase__ ) / len(UpperCamelCase__ ) return None if __name__ == "__main__": _lowercase : List[Any] = {"a", "b", "c", "d", "e"} _lowercase : List[Any] = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
641
1
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase__ : def __init__( self : Dict , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any]=2 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Any=False , _lowerCamelCase : Optional[int]=10 , _lowerCamelCase : List[Any]=3 , _lowerCamelCase : str=32 * 8 , _lowerCamelCase : Optional[int]=32 * 8 , _lowerCamelCase : Optional[Any]=4 , _lowerCamelCase : Union[str, Any]=64 , ): _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = hidden_dim _snake_case = hidden_dim def lowercase ( self : Optional[int] ): _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCamelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCamelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCamelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCamelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase ( self : Union[str, Any] ): _snake_case = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _snake_case = self.num_queries _snake_case = self.num_labels _snake_case = [1, 1, 1, 1] _snake_case = self.num_channels _snake_case = 64 _snake_case = 128 _snake_case = self.hidden_dim _snake_case = self.hidden_dim _snake_case = self.hidden_dim return config def lowercase ( self : Union[str, Any] ): _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.prepare_config_and_inputs() _snake_case = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowercase ( self : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , config.decoder_layers ) def lowercase ( self : Any , _lowerCamelCase : int , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Any=False ): with torch.no_grad(): _snake_case = MaskaFormerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : str , _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : List[Any] ): _snake_case = MaskaFormerForUniversalSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() def comm_check_on_output(_lowerCamelCase : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) _snake_case = model( pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __a = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} __a = False __a = False __a = False __a = False def lowercase ( self : Any ): _snake_case = MaskaFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def lowercase ( self : Dict ): self.config_tester.run_common_tests() def lowercase ( self : List[str] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : int ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCamelCase ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def lowercase ( self : Union[str, Any] ): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def lowercase ( self : Optional[Any] ): pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def lowercase ( self : Optional[Any] ): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def lowercase ( self : Dict ): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase ( self : Tuple ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase ( self : Union[str, Any] ): pass def lowercase ( self : str ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @slow def lowercase ( self : Dict ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _snake_case = MaskaFormerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def lowercase ( self : Tuple ): _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { '''pixel_values''': torch.randn((2, 3, *size) , device=_lowerCamelCase ), '''mask_labels''': torch.randn((2, 10, *size) , device=_lowerCamelCase ), '''class_labels''': torch.zeros(2 , 10 , device=_lowerCamelCase ).long(), } _snake_case = self.model_tester.get_config() _snake_case = MaskaFormerForUniversalSegmentation(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None ) def lowercase ( self : List[str] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : Any ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase ( self : int ): if not self.model_tester.is_training: return _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ).loss loss.backward() def lowercase ( self : Dict ): _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase__ = 1e-4 def _UpperCAmelCase ( ) -> int: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase ( self : Tuple ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase ( self : Optional[Any] ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase ( self : Any ): _snake_case = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) _snake_case = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : List[Any] ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _snake_case = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] _snake_case = torch.tensor(_lowerCamelCase ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : List[str] ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) _snake_case = inputs['''pixel_values'''].to(_lowerCamelCase ) _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''mask_labels''']] _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None )
430
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : int ) -> bool: if num < 0: return False _snake_case = num _snake_case = 0 while num > 0: _snake_case = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
430
1
import math def lowerCamelCase ( a_ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase ( a_ = 10_001 ) -> int: try: lowerCAmelCase_ = int(a_ ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) lowerCAmelCase_ = [] lowerCAmelCase_ = 2 while len(a_ ) < nth: if is_prime(a_ ): primes.append(a_ ) num += 1 else: num += 1 return primes[len(a_ ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
318
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class a_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_input_mask lowerCAmelCase_ = use_token_type_ids lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = num_labels lowerCAmelCase_ = num_choices lowerCAmelCase_ = scope def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ = None if self.use_input_mask: lowerCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ = None if self.use_token_type_ids: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self ) -> List[str]: '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = OpenLlamaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ ) lowerCAmelCase_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = True lowerCAmelCase_ = OpenLlamaModel(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) lowerCAmelCase_ = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str: '''simple docstring''' lowerCAmelCase_ = OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() # first forward pass lowerCAmelCase_ = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) lowerCAmelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase_ = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] lowerCAmelCase_ = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice lowerCAmelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) = config_and_inputs lowerCAmelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Optional[Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __a: Dict = (OpenLlamaForCausalLM,) if is_torch_available() else () __a: List[str] = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __a: Optional[int] = False __a: Tuple = False def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = OpenLlamaModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7 ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase_ = type self.model_tester.create_and_check_model(*lowercase_ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = 3 lowerCAmelCase_ = input_dict['input_ids'] lowerCAmelCase_ = input_ids.ne(1 ).to(lowercase_ ) lowerCAmelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase_ = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = 3 lowerCAmelCase_ = 'single_label_classification' lowerCAmelCase_ = input_dict['input_ids'] lowerCAmelCase_ = input_ids.ne(1 ).to(lowercase_ ) lowerCAmelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase_ = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = 3 lowerCAmelCase_ = 'multi_label_classification' lowerCAmelCase_ = input_dict['input_ids'] lowerCAmelCase_ = input_ids.ne(1 ).to(lowercase_ ) lowerCAmelCase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase_ = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def _lowercase ( self ) -> int: '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def _lowercase ( self , lowercase_ ) -> int: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = ids_tensor([1, 1_0] , config.vocab_size ) lowerCAmelCase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase_ = OpenLlamaModel(lowercase_ ) original_model.to(lowercase_ ) original_model.eval() lowerCAmelCase_ = original_model(lowercase_ ).last_hidden_state lowerCAmelCase_ = original_model(lowercase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase_ = {'type': scaling_type, 'factor': 10.0} lowerCAmelCase_ = OpenLlamaModel(lowercase_ ) scaled_model.to(lowercase_ ) scaled_model.eval() lowerCAmelCase_ = scaled_model(lowercase_ ).last_hidden_state lowerCAmelCase_ = scaled_model(lowercase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5 ) )
318
1
from math import asin, atan, cos, radians, sin, sqrt, tan __lowerCamelCase : List[Any] = 6_37_81_37.0 __lowerCamelCase : Optional[Any] = 6_35_67_52.31_42_45 __lowerCamelCase : Optional[int] = 6_37_81_37 def A__ ( _a : float , _a : float , _a : float , _a : float ): '''simple docstring''' snake_case__ : int =(AXIS_A - AXIS_B) / AXIS_A snake_case__ : Optional[int] =atan((1 - flattening) * tan(radians(_a ) ) ) snake_case__ : Union[str, Any] =atan((1 - flattening) * tan(radians(_a ) ) ) snake_case__ : Optional[int] =radians(_a ) snake_case__ : Any =radians(_a ) # Equation snake_case__ : List[str] =sin((phi_a - phi_a) / 2 ) snake_case__ : List[str] =sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda snake_case__ : Union[str, Any] =sqrt(sin_sq_phi + (cos(_a ) * cos(_a ) * sin_sq_lambda) ) return 2 * RADIUS * asin(_a ) if __name__ == "__main__": import doctest doctest.testmod()
448
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __lowerCamelCase : Dict = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __lowerCamelCase : Optional[int] = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ __lowerCamelCase : List[str] = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): def lowercase__ ( self ): if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowercase__ ( self , a , a , a = CHRF.CHAR_ORDER , a = CHRF.WORD_ORDER , a = CHRF.BETA , a = False , a = False , a = False , ): snake_case__ : str =len(references[0] ) if any(len(a ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) snake_case__ : List[Any] =[[refs[i] for refs in references] for i in range(a )] snake_case__ : int =CHRF(a , a , a , a , a , a ) snake_case__ : int =sb_chrf.corpus_score(a , a ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
448
1
from __future__ import annotations def __snake_case ( __UpperCamelCase : str ): """simple docstring""" return [ord(__UpperCamelCase ) - 96 for elem in plain] def __snake_case ( __UpperCamelCase : list[int] ): """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def __snake_case ( ): """simple docstring""" A_ = encode(input("-> " ).strip().lower() ) print("Encoded: " ,__UpperCamelCase ) print("Decoded:" ,decode(__UpperCamelCase ) ) if __name__ == "__main__": main()
86
def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : Any = [0 for i in range(r + 1 )] # nc0 = 1 A_ : List[Any] = 1 for i in range(1 ,n + 1 ): # to compute current row from previous row. A_ : Tuple = min(_lowerCAmelCase ,_lowerCAmelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
569
0
def lowerCamelCase ( UpperCamelCase : int ) -> int: _lowerCamelCase = [1] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0, 0, 0 _lowerCamelCase = ugly_nums[ia] * 2 _lowerCamelCase = ugly_nums[ia] * 3 _lowerCamelCase = ugly_nums[ia] * 5 for _ in range(1 , UpperCamelCase ): _lowerCamelCase = min(UpperCamelCase , UpperCamelCase , UpperCamelCase ) ugly_nums.append(UpperCamelCase ) if next_num == next_a: ia += 1 _lowerCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 _lowerCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 _lowerCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F'''{ugly_numbers(2_0_0) = }''')
234
def lowerCamelCase ( UpperCamelCase : str ) -> list: _lowerCamelCase = [0] * len(UpperCamelCase ) for i in range(1 , len(UpperCamelCase ) ): # use last results for better performance - dynamic programming _lowerCamelCase = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _lowerCamelCase = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _lowerCamelCase = j return prefix_result def lowerCamelCase ( UpperCamelCase : str ) -> int: return max(prefix_function(UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
234
1
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __magic_name__ = logging.get_logger(__name__) __magic_name__ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) __magic_name__ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) __magic_name__ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) __magic_name__ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) __magic_name__ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) __magic_name__ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) __magic_name__ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) __magic_name__ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) __magic_name__ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) __magic_name__ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) __magic_name__ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) __magic_name__ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) __magic_name__ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) __magic_name__ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) __magic_name__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __magic_name__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __magic_name__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __magic_name__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __magic_name__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __magic_name__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __magic_name__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __magic_name__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __magic_name__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __magic_name__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __magic_name__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __magic_name__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __magic_name__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __magic_name__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _lowerCAmelCase ( _BaseAutoModelClass ): lowercase_ : Optional[int] = FLAX_MODEL_MAPPING __magic_name__ = auto_class_update(FlaxAutoModel) class _lowerCAmelCase ( _BaseAutoModelClass ): lowercase_ : Dict = FLAX_MODEL_FOR_PRETRAINING_MAPPING __magic_name__ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class _lowerCAmelCase ( _BaseAutoModelClass ): lowercase_ : Optional[int] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __magic_name__ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class _lowerCAmelCase ( _BaseAutoModelClass ): lowercase_ : int = FLAX_MODEL_FOR_MASKED_LM_MAPPING __magic_name__ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class _lowerCAmelCase ( _BaseAutoModelClass ): lowercase_ : str = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __magic_name__ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class _lowerCAmelCase ( _BaseAutoModelClass ): lowercase_ : List[Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __magic_name__ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class _lowerCAmelCase ( _BaseAutoModelClass ): lowercase_ : Union[str, Any] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __magic_name__ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class _lowerCAmelCase ( _BaseAutoModelClass ): lowercase_ : str = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __magic_name__ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class _lowerCAmelCase ( _BaseAutoModelClass ): lowercase_ : Any = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __magic_name__ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class _lowerCAmelCase ( _BaseAutoModelClass ): lowercase_ : Optional[Any] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __magic_name__ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class _lowerCAmelCase ( _BaseAutoModelClass ): lowercase_ : Optional[Any] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __magic_name__ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class _lowerCAmelCase ( _BaseAutoModelClass ): lowercase_ : str = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __magic_name__ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class _lowerCAmelCase ( _BaseAutoModelClass ): lowercase_ : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __magic_name__ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
657
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowercase__( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : int , _UpperCamelCase : Optional[int] )-> List[Any]: """simple docstring""" _UpperCamelCase = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _UpperCamelCase = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } _UpperCamelCase = f"{src_lang}-{tgt_lang}" _UpperCamelCase = f"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=_UpperCamelCase , exist_ok=_UpperCamelCase ) _UpperCamelCase = os.path.join(_UpperCamelCase , "README.md" ) print(f"Generating {path}" ) with open(_UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project snake_case_ : List[Any] = Path(__file__).resolve().parent.parent.parent snake_case_ : List[Any] = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: snake_case_ : str = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
138
0
import os def A ( __UpperCAmelCase = "matrix.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(__UpperCAmelCase ) , __UpperCAmelCase ) ) as in_file: UpperCAmelCase_ = in_file.read() UpperCAmelCase_ = [[int(__UpperCAmelCase ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] UpperCAmelCase_ = [[0 for cell in row] for row in grid] UpperCAmelCase_ = len(grid[0] ) UpperCAmelCase_ = [[0 for i in range(__UpperCAmelCase )] for j in range(__UpperCAmelCase )] UpperCAmelCase_ = grid[0][0] for i in range(1 , __UpperCAmelCase ): UpperCAmelCase_ = grid[0][i] + dp[0][i - 1] for i in range(1 , __UpperCAmelCase ): UpperCAmelCase_ = grid[i][0] + dp[i - 1][0] for i in range(1 , __UpperCAmelCase ): for j in range(1 , __UpperCAmelCase ): UpperCAmelCase_ = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f"{solution() = }")
561
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa UpperCamelCase_ = logging.getLogger(__name__) class a_ ( _snake_case ): UpperCamelCase__ : Optional[int] ="summarization" UpperCamelCase__ : Union[str, Any] =["loss"] UpperCamelCase__ : Tuple =ROUGE_KEYS UpperCamelCase__ : List[Any] ="rouge2" def __init__( self :int , _lowercase :List[Any] , **_lowercase :Tuple) -> Union[str, Any]: if hparams.sortish_sampler and hparams.gpus > 1: UpperCAmelCase_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''') if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''') super().__init__(_lowercase , num_labels=_lowercase , mode=self.mode , **_lowercase) use_task_specific_params(self.model , '''summarization''') save_git_info(self.hparams.output_dir) UpperCAmelCase_ = Path(self.output_dir) / '''metrics.json''' UpperCAmelCase_ = Path(self.output_dir) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path) UpperCAmelCase_ = 0 UpperCAmelCase_ = defaultdict(_lowercase) UpperCAmelCase_ = self.config.model_type UpperCAmelCase_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size UpperCAmelCase_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } UpperCAmelCase_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } UpperCAmelCase_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} UpperCAmelCase_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}" assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}" if self.hparams.freeze_embeds: freeze_embeds(self.model) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder()) assert_all_frozen(self.model.get_encoder()) UpperCAmelCase_ = get_git_info()['''repo_sha'''] UpperCAmelCase_ = hparams.num_workers UpperCAmelCase_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _lowercase): UpperCAmelCase_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] UpperCAmelCase_ = self.decoder_start_token_id UpperCAmelCase_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''') else LegacySeqaSeqDataset ) UpperCAmelCase_ = False UpperCAmelCase_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: UpperCAmelCase_ = self.hparams.eval_max_gen_length else: UpperCAmelCase_ = self.model.config.max_length UpperCAmelCase_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def __a ( self :List[Any] , _lowercase :Dict[str, torch.Tensor]) -> Dict[str, List[str]]: UpperCAmelCase_ = { k: self.tokenizer.batch_decode(v.tolist()) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_lowercase , Path(self.output_dir) / '''text_batch.json''') save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir) / '''tok_batch.json''') UpperCAmelCase_ = True return readable_batch def __a ( self :Dict , _lowercase :Optional[Any] , **_lowercase :List[Any]) -> str: return self.model(_lowercase , **_lowercase) def __a ( self :Tuple , _lowercase :List[int]) -> str: UpperCAmelCase_ = self.tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase) return lmap(str.strip , _lowercase) def __a ( self :List[str] , _lowercase :dict) -> Tuple: UpperCAmelCase_ = self.tokenizer.pad_token_id UpperCAmelCase_ , UpperCAmelCase_ = batch['''input_ids'''], batch['''attention_mask'''] UpperCAmelCase_ = batch['''labels'''] if isinstance(self.model , _lowercase): UpperCAmelCase_ = self.model._shift_right(_lowercase) else: UpperCAmelCase_ = shift_tokens_right(_lowercase , _lowercase) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero UpperCAmelCase_ = decoder_input_ids self.save_readable_batch(_lowercase) UpperCAmelCase_ = self(_lowercase , attention_mask=_lowercase , decoder_input_ids=_lowercase , use_cache=_lowercase) UpperCAmelCase_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id UpperCAmelCase_ = nn.CrossEntropyLoss(ignore_index=_lowercase) assert lm_logits.shape[-1] == self.vocab_size UpperCAmelCase_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1]) , tgt_ids.view(-1)) else: UpperCAmelCase_ = nn.functional.log_softmax(_lowercase , dim=-1) UpperCAmelCase_ , UpperCAmelCase_ = label_smoothed_nll_loss( _lowercase , _lowercase , self.hparams.label_smoothing , ignore_index=_lowercase) return (loss,) @property def __a ( self :List[Any]) -> int: return self.tokenizer.pad_token_id def __a ( self :Any , _lowercase :Tuple , _lowercase :Optional[int]) -> Dict: UpperCAmelCase_ = self._step(_lowercase) UpperCAmelCase_ = dict(zip(self.loss_names , _lowercase)) # tokens per batch UpperCAmelCase_ = batch['''input_ids'''].ne(self.pad).sum() + batch['''labels'''].ne(self.pad).sum() UpperCAmelCase_ = batch['''input_ids'''].shape[0] UpperCAmelCase_ = batch['''input_ids'''].eq(self.pad).sum() UpperCAmelCase_ = batch['''input_ids'''].eq(self.pad).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def __a ( self :Union[str, Any] , _lowercase :int , _lowercase :List[Any]) -> Dict: return self._generative_step(_lowercase) def __a ( self :int , _lowercase :List[str] , _lowercase :List[Any]="val") -> Dict: self.step_count += 1 UpperCAmelCase_ = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names} UpperCAmelCase_ = losses['''loss'''] UpperCAmelCase_ = { k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } UpperCAmelCase_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) UpperCAmelCase_ = torch.tensor(_lowercase).type_as(_lowercase) generative_metrics.update({k: v.item() for k, v in losses.items()}) losses.update(_lowercase) UpperCAmelCase_ = {f"{prefix}_avg_{k}": x for k, x in losses.items()} UpperCAmelCase_ = self.step_count self.metrics[prefix].append(_lowercase) # callback writes this to self.metrics_save_path UpperCAmelCase_ = flatten_list([x['''preds'''] for x in outputs]) return { "log": all_metrics, "preds": preds, f"{prefix}_loss": loss, f"{prefix}_{self.val_metric}": metric_tensor, } def __a ( self :int , _lowercase :Optional[int] , _lowercase :Dict) -> Dict: return calculate_rouge(_lowercase , _lowercase) def __a ( self :Optional[Any] , _lowercase :dict) -> dict: UpperCAmelCase_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') UpperCAmelCase_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_lowercase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) UpperCAmelCase_ = (time.time() - ta) / batch['''input_ids'''].shape[0] UpperCAmelCase_ = self.ids_to_clean_text(_lowercase) UpperCAmelCase_ = self.ids_to_clean_text(batch['''labels''']) UpperCAmelCase_ = self._step(_lowercase) UpperCAmelCase_ = dict(zip(self.loss_names , _lowercase)) UpperCAmelCase_ = self.calc_generative_metrics(_lowercase , _lowercase) UpperCAmelCase_ = np.mean(lmap(_lowercase , _lowercase)) base_metrics.update(gen_time=_lowercase , gen_len=_lowercase , preds=_lowercase , target=_lowercase , **_lowercase) return base_metrics def __a ( self :Optional[Any] , _lowercase :int , _lowercase :Optional[Any]) -> Optional[int]: return self._generative_step(_lowercase) def __a ( self :str , _lowercase :List[Any]) -> List[Any]: return self.validation_epoch_end(_lowercase , prefix='''test''') def __a ( self :Union[str, Any] , _lowercase :Optional[int]) -> SeqaSeqDataset: UpperCAmelCase_ = self.n_obs[type_path] UpperCAmelCase_ = self.target_lens[type_path] UpperCAmelCase_ = self.dataset_class( self.tokenizer , type_path=_lowercase , n_obs=_lowercase , max_target_length=_lowercase , **self.dataset_kwargs , ) return dataset def __a ( self :str , _lowercase :str , _lowercase :int , _lowercase :bool = False) -> DataLoader: UpperCAmelCase_ = self.get_dataset(_lowercase) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": UpperCAmelCase_ = dataset.make_sortish_sampler(_lowercase , distributed=self.hparams.gpus > 1) return DataLoader( _lowercase , batch_size=_lowercase , collate_fn=dataset.collate_fn , shuffle=_lowercase , num_workers=self.num_workers , sampler=_lowercase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": UpperCAmelCase_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1) return DataLoader( _lowercase , batch_sampler=_lowercase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _lowercase , batch_size=_lowercase , collate_fn=dataset.collate_fn , shuffle=_lowercase , num_workers=self.num_workers , sampler=_lowercase , ) def __a ( self :int) -> DataLoader: UpperCAmelCase_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_lowercase) return dataloader def __a ( self :int) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size) def __a ( self :List[str]) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size) @staticmethod def __a ( _lowercase :List[Any] , _lowercase :str) -> List[Any]: BaseTransformer.add_model_specific_args(_lowercase , _lowercase) add_generic_args(_lowercase , _lowercase) parser.add_argument( '''--max_source_length''' , default=1024 , type=_lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''') parser.add_argument('''--freeze_embeds''' , action='''store_true''') parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_lowercase) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_lowercase) parser.add_argument('''--max_tokens_per_batch''' , type=_lowercase , default=_lowercase) parser.add_argument('''--logger_name''' , type=_lowercase , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''') parser.add_argument('''--n_train''' , type=_lowercase , default=-1 , required=_lowercase , help='''# examples. -1 means use all.''') parser.add_argument('''--n_val''' , type=_lowercase , default=500 , required=_lowercase , help='''# examples. -1 means use all.''') parser.add_argument('''--n_test''' , type=_lowercase , default=-1 , required=_lowercase , help='''# examples. -1 means use all.''') parser.add_argument( '''--task''' , type=_lowercase , default='''summarization''' , required=_lowercase , help='''# examples. -1 means use all.''') parser.add_argument('''--label_smoothing''' , type=_lowercase , default=0.0 , required=_lowercase) parser.add_argument('''--src_lang''' , type=_lowercase , default='''''' , required=_lowercase) parser.add_argument('''--tgt_lang''' , type=_lowercase , default='''''' , required=_lowercase) parser.add_argument('''--eval_beams''' , type=_lowercase , default=_lowercase , required=_lowercase) parser.add_argument( '''--val_metric''' , type=_lowercase , default=_lowercase , required=_lowercase , choices=['''bleu''', '''rouge2''', '''loss''', None]) parser.add_argument('''--eval_max_gen_length''' , type=_lowercase , default=_lowercase , help='''never generate more than n tokens''') parser.add_argument('''--save_top_k''' , type=_lowercase , default=1 , required=_lowercase , help='''How many checkpoints to save''') parser.add_argument( '''--early_stopping_patience''' , type=_lowercase , default=-1 , required=_lowercase , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class a_ ( _snake_case ): UpperCamelCase__ : str ="translation" UpperCamelCase__ : str =["loss"] UpperCamelCase__ : Optional[int] =["bleu"] UpperCamelCase__ : List[str] ="bleu" def __init__( self :Optional[int] , _lowercase :Optional[Any] , **_lowercase :Union[str, Any]) -> int: super().__init__(_lowercase , **_lowercase) UpperCAmelCase_ = hparams.src_lang UpperCAmelCase_ = hparams.tgt_lang def __a ( self :Dict , _lowercase :str , _lowercase :List[Any]) -> dict: return calculate_bleu(_lowercase , _lowercase) def A ( __UpperCAmelCase , __UpperCAmelCase=None ) -> SummarizationModule: '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=__UpperCAmelCase ) check_output_dir(__UpperCAmelCase , expected_items=3 ) if model is None: if "summarization" in args.task: UpperCAmelCase_ = SummarizationModule(__UpperCAmelCase ) else: UpperCAmelCase_ = TranslationModule(__UpperCAmelCase ) UpperCAmelCase_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): UpperCAmelCase_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase_ = os.environ.get('''WANDB_PROJECT''' , __UpperCAmelCase ) UpperCAmelCase_ = WandbLogger(name=model.output_dir.name , project=__UpperCAmelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase_ = WandbLogger(name=model.output_dir.name , project=f"hf_{dataset}" ) if args.early_stopping_patience >= 0: UpperCAmelCase_ = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: UpperCAmelCase_ = False UpperCAmelCase_ = args.val_metric == '''loss''' UpperCAmelCase_ = generic_train( __UpperCAmelCase , __UpperCAmelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , __UpperCAmelCase ) , early_stopping_callback=__UpperCAmelCase , logger=__UpperCAmelCase , ) pickle_save(model.hparams , model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model UpperCAmelCase_ = '''''' UpperCAmelCase_ = sorted(glob.glob(os.path.join(args.output_dir , '''*.ckpt''' ) , recursive=__UpperCAmelCase ) ) if checkpoints: UpperCAmelCase_ = checkpoints[-1] UpperCAmelCase_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = pl.Trainer.add_argparse_args(parser) UpperCamelCase_ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) UpperCamelCase_ = parser.parse_args() main(args)
561
1
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = '''Speech2TextFeatureExtractor''' _lowercase : Any = '''Speech2TextTokenizer''' def __init__( self , _lowercase , _lowercase ): """simple docstring""" super().__init__(_lowercase , _lowercase ) _lowerCAmelCase = self.feature_extractor _lowerCAmelCase = False def __call__( self , *_lowercase , **_lowercase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) _lowerCAmelCase = kwargs.pop("""raw_speech""" ) else: _lowerCAmelCase = kwargs.pop("""audio""" , _lowercase ) _lowerCAmelCase = kwargs.pop("""sampling_rate""" , _lowercase ) _lowerCAmelCase = kwargs.pop("""text""" , _lowercase ) if len(_lowercase ) > 0: _lowerCAmelCase = args[0] _lowerCAmelCase = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: _lowerCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if text is not None: _lowerCAmelCase = self.tokenizer(_lowercase , **_lowercase ) if text is None: return inputs elif audio is None: return encodings else: _lowerCAmelCase = encodings["""input_ids"""] return inputs def _lowercase ( self , *_lowercase , **_lowercase ): """simple docstring""" return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def _lowercase ( self , *_lowercase , **_lowercase ): """simple docstring""" return self.tokenizer.decode(*_lowercase , **_lowercase ) @contextmanager def _lowercase ( self ): """simple docstring""" warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) _lowerCAmelCase = True _lowerCAmelCase = self.tokenizer yield _lowerCAmelCase = self.feature_extractor _lowerCAmelCase = False
5
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _UpperCAmelCase : str = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple[int, int]: def constraint_to_multiple_of(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0 , _UpperCAmelCase=None ): lowerCamelCase__ : List[str] = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCamelCase__ : Optional[Any] = math.floor(val / multiple ) * multiple if x < min_val: lowerCamelCase__ : List[Any] = math.ceil(val / multiple ) * multiple return x lowerCamelCase__ : Dict = (output_size, output_size) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else output_size lowerCamelCase__ , lowerCamelCase__ : str = get_image_size(_UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = output_size # determine new height and width lowerCamelCase__ : List[str] = output_height / input_height lowerCamelCase__ : str = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCamelCase__ : Optional[int] = scale_width else: # fit height lowerCamelCase__ : Tuple = scale_height lowerCamelCase__ : str = constraint_to_multiple_of(scale_height * input_height , multiple=_UpperCAmelCase ) lowerCamelCase__ : Any = constraint_to_multiple_of(scale_width * input_width , multiple=_UpperCAmelCase ) return (new_height, new_width) class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = ["""pixel_values"""] def __init__( self : Any , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = False , UpperCAmelCase : int = 1 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , **UpperCAmelCase : Optional[int] , ) -> None: super().__init__(**UpperCAmelCase ) lowerCamelCase__ : Optional[int] = size if size is not None else {'height': 384, 'width': 384} lowerCamelCase__ : Optional[Any] = get_size_dict(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = do_resize lowerCamelCase__ : List[str] = size lowerCamelCase__ : List[Any] = keep_aspect_ratio lowerCamelCase__ : Dict = ensure_multiple_of lowerCamelCase__ : str = resample lowerCamelCase__ : int = do_rescale lowerCamelCase__ : Any = rescale_factor lowerCamelCase__ : List[str] = do_normalize lowerCamelCase__ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase__ : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def A_ ( self : int , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : bool = False , UpperCAmelCase : int = 1 , UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: lowerCamelCase__ : Tuple = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowerCamelCase__ : List[Any] = get_resize_output_image_size( UpperCAmelCase , output_size=(size['height'], size['width']) , keep_aspect_ratio=UpperCAmelCase , multiple=UpperCAmelCase , ) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : int , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Dict , ) -> str: return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : List[Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Tuple , ) -> np.ndarray: return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Optional[Any] , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : int = None , UpperCAmelCase : bool = None , UpperCAmelCase : int = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : Union[str, Any] , ) -> PIL.Image.Image: lowerCamelCase__ : int = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : Optional[Any] = size if size is not None else self.size lowerCamelCase__ : List[str] = get_size_dict(UpperCAmelCase ) lowerCamelCase__ : int = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCamelCase__ : Dict = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCamelCase__ : List[str] = resample if resample is not None else self.resample lowerCamelCase__ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : Any = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ : List[Any] = image_mean if image_mean is not None else self.image_mean lowerCamelCase__ : int = image_std if image_std is not None else self.image_std lowerCamelCase__ : Any = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase__ : Dict = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: lowerCamelCase__ : Dict = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowerCamelCase__ : Tuple = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowerCamelCase__ : int = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowerCamelCase__ : Optional[Any] = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowerCamelCase__ : Any = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) def A_ ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Tuple] = None ) -> Dict: lowerCamelCase__ : Tuple = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(UpperCAmelCase ): lowerCamelCase__ : List[str] = target_sizes.numpy() lowerCamelCase__ : Tuple = [] for idx in range(len(UpperCAmelCase ) ): lowerCamelCase__ : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=UpperCAmelCase ) lowerCamelCase__ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase ) else: lowerCamelCase__ : Dict = logits.argmax(dim=1 ) lowerCamelCase__ : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
295
0
import os # Precomputes a list of the 100 first triangular numbers SCREAMING_SNAKE_CASE : str = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowercase_ :str = os.path.dirname(os.path.realpath(snake_case__ ) ) lowercase_ :Any = os.path.join(snake_case__ , '''words.txt''' ) lowercase_ :Any = """""" with open(snake_case__ ) as f: lowercase_ :Any = f.readline() lowercase_ :Union[str, Any] = [word.strip('''\"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] lowercase_ :int = [ word for word in [sum(ord(snake_case__ ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(snake_case__ ) if __name__ == "__main__": print(solution())
706
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE : str = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
441
0
def _A ( SCREAMING_SNAKE_CASE__ : str ): UpperCamelCase :Union[str, Any] = hex_num.strip() if not hex_num: raise ValueError('''No value was passed to the function''' ) UpperCamelCase :str = hex_num[0] == '''-''' if is_negative: UpperCamelCase :Union[str, Any] = hex_num[1:] try: UpperCamelCase :Optional[Any] = int(SCREAMING_SNAKE_CASE__ , 16 ) except ValueError: raise ValueError('''Invalid value was passed to the function''' ) UpperCamelCase :Dict = '''''' while int_num > 0: UpperCamelCase :Tuple = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('''-''' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
658
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _A ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): return image elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): UpperCamelCase :Dict = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCamelCase :Any = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] UpperCamelCase :int = np.concatenate(SCREAMING_SNAKE_CASE__ , axis=0 ) UpperCamelCase :Optional[Any] = np.array(SCREAMING_SNAKE_CASE__ ).astype(np.floataa ) / 2_55.0 UpperCamelCase :List[str] = image.transpose(0 , 3 , 1 , 2 ) UpperCamelCase :Tuple = 2.0 * image - 1.0 UpperCamelCase :Any = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) elif isinstance(image[0] , torch.Tensor ): UpperCamelCase :str = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) return image def _A ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int=0.99_95 ): if not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): UpperCamelCase :int = True UpperCamelCase :Dict = va.device UpperCamelCase :List[Any] = va.cpu().numpy() UpperCamelCase :str = va.cpu().numpy() UpperCamelCase :Dict = np.sum(va * va / (np.linalg.norm(SCREAMING_SNAKE_CASE__ ) * np.linalg.norm(SCREAMING_SNAKE_CASE__ )) ) if np.abs(SCREAMING_SNAKE_CASE__ ) > DOT_THRESHOLD: UpperCamelCase :Any = (1 - t) * va + t * va else: UpperCamelCase :Union[str, Any] = np.arccos(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[str] = np.sin(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Union[str, Any] = theta_a * t UpperCamelCase :str = np.sin(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Tuple = np.sin(theta_a - theta_t ) / sin_theta_a UpperCamelCase :List[Any] = sin_theta_t / sin_theta_a UpperCamelCase :Union[str, Any] = sa * va + sa * va if inputs_are_torch: UpperCamelCase :Dict = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) return va def _A ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple ): UpperCamelCase :int = F.normalize(SCREAMING_SNAKE_CASE__ , dim=-1 ) UpperCamelCase :int = F.normalize(SCREAMING_SNAKE_CASE__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any ): for param in model.parameters(): UpperCamelCase :Any = value class UpperCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , ) -> str: super().__init__() self.register_modules( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , clip_model=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , coca_model=SCREAMING_SNAKE_CASE_ , coca_tokenizer=SCREAMING_SNAKE_CASE_ , coca_transform=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase :Union[str, Any] = ( feature_extractor.size if isinstance(feature_extractor.size , SCREAMING_SNAKE_CASE_ ) else feature_extractor.size['''shortest_edge'''] ) UpperCamelCase :Any = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , SCREAMING_SNAKE_CASE_ ) set_requires_grad(self.clip_model , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ = "auto" ) -> Tuple: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase :Tuple = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> int: self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> str: set_requires_grad(self.vae , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: set_requires_grad(self.vae , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> int: set_requires_grad(self.unet , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> str: set_requires_grad(self.unet , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: # get the original timestep using init_timestep UpperCamelCase :Union[str, Any] = min(int(num_inference_steps * strength ) , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase :Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> int: if not isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(SCREAMING_SNAKE_CASE_ )}''' ) UpperCamelCase :Tuple = image.to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase :int = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(SCREAMING_SNAKE_CASE_ ) ] UpperCamelCase :List[str] = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) else: UpperCamelCase :Any = self.vae.encode(SCREAMING_SNAKE_CASE_ ).latent_dist.sample(SCREAMING_SNAKE_CASE_ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase :List[str] = 0.1_8215 * init_latents UpperCamelCase :Optional[Any] = init_latents.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) UpperCamelCase :List[Any] = randn_tensor(init_latents.shape , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) # get latents UpperCamelCase :Optional[Any] = self.scheduler.add_noise(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = init_latents return latents def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase :List[str] = self.coca_transform(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): UpperCamelCase :Any = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) UpperCamelCase :List[Any] = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase :str = self.feature_extractor.preprocess(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[str] = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() UpperCamelCase :int = self.clip_model.get_image_features(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Union[str, Any] = image_embeddings_clip.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) return image_embeddings_clip @torch.enable_grad() def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Optional[int]: UpperCamelCase :List[str] = latents.detach().requires_grad_() UpperCamelCase :List[str] = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual UpperCamelCase :List[Any] = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): UpperCamelCase :List[str] = self.scheduler.alphas_cumprod[timestep] UpperCamelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase :List[Any] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 UpperCamelCase :int = torch.sqrt(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Tuple = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , SCREAMING_SNAKE_CASE_ ): UpperCamelCase :str = self.scheduler.sigmas[index] UpperCamelCase :Union[str, Any] = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase :int = 1 / 0.1_8215 * sample UpperCamelCase :List[Any] = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase :str = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase :List[str] = transforms.Resize(self.feature_extractor_size )(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = self.normalize(SCREAMING_SNAKE_CASE_ ).to(latents.dtype ) UpperCamelCase :List[Any] = self.clip_model.get_image_features(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Union[str, Any] = spherical_dist_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).mean() * clip_guidance_scale UpperCamelCase :Union[str, Any] = -torch.autograd.grad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )[0] if isinstance(self.scheduler , SCREAMING_SNAKE_CASE_ ): UpperCamelCase :Dict = latents.detach() + grads * (sigma**2) UpperCamelCase :Optional[Any] = noise_pred_original else: UpperCamelCase :List[str] = noise_pred_original - torch.sqrt(SCREAMING_SNAKE_CASE_ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 0.6 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 100 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0.8 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , ) -> Dict: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(SCREAMING_SNAKE_CASE_ )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(SCREAMING_SNAKE_CASE_ , torch.Generator ) and batch_size > 1: UpperCamelCase :Optional[int] = [generator] + [None] * (batch_size - 1) UpperCamelCase :Tuple = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] UpperCamelCase :Union[str, Any] = [x[0] for x in coca_is_none if x[1]] UpperCamelCase :Dict = ''', '''.join(SCREAMING_SNAKE_CASE_ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) UpperCamelCase :Any = self.get_image_description(SCREAMING_SNAKE_CASE_ ) if style_prompt is None: if len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) UpperCamelCase :str = self.get_image_description(SCREAMING_SNAKE_CASE_ ) # get prompt text embeddings for content and style UpperCamelCase :List[Any] = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , ) UpperCamelCase :Dict = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] UpperCamelCase :List[Any] = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , ) UpperCamelCase :Tuple = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] UpperCamelCase :Dict = slerp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # duplicate text embeddings for each generation per prompt UpperCamelCase :Union[str, Any] = text_embeddings.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) # set timesteps UpperCamelCase :str = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) UpperCamelCase :List[str] = {} if accepts_offset: UpperCamelCase :Tuple = 1 self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) UpperCamelCase , UpperCamelCase :Tuple = self.get_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.device ) UpperCamelCase :Any = timesteps[:1].repeat(SCREAMING_SNAKE_CASE_ ) # Preprocess image UpperCamelCase :Union[str, Any] = preprocess(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = self.prepare_latents( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , text_embeddings.dtype , self.device , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = preprocess(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = self.prepare_latents( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , text_embeddings.dtype , self.device , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = slerp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if clip_guidance_scale > 0: UpperCamelCase :Dict = self.get_clip_image_embeddings(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = self.get_clip_image_embeddings(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = slerp( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase :Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase :Any = content_text_input.input_ids.shape[-1] UpperCamelCase :Any = self.tokenizer([''''''] , padding='''max_length''' , max_length=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) UpperCamelCase :Optional[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt UpperCamelCase :Optional[int] = uncond_embeddings.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase :str = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase :Any = (batch_size, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase :int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps UpperCamelCase :List[str] = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='''cpu''' , dtype=SCREAMING_SNAKE_CASE_ ).to( self.device ) else: UpperCamelCase :int = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCamelCase :str = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase :Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase :Optional[int] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase :Dict = {} if accepts_eta: UpperCamelCase :int = eta # check if the scheduler accepts generator UpperCamelCase :Optional[int] = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: UpperCamelCase :List[str] = generator with self.progress_bar(total=SCREAMING_SNAKE_CASE_ ): for i, t in enumerate(SCREAMING_SNAKE_CASE_ ): # expand the latents if we are doing classifier free guidance UpperCamelCase :Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase :List[Any] = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual UpperCamelCase :List[str] = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample # perform classifier free guidance if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase :Any = noise_pred.chunk(2 ) UpperCamelCase :Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: UpperCamelCase :int = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) UpperCamelCase , UpperCamelCase :str = self.cond_fn( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase :List[str] = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase :List[Any] = 1 / 0.1_8215 * latents UpperCamelCase :Optional[Any] = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase :str = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase :List[str] = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
658
1
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Any = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class snake_case ( _SCREAMING_SNAKE_CASE ): lowercase_ = "perceiver" def __init__( self : List[Any] , a_ : Tuple=256 , a_ : List[str]=1280 , a_ : List[Any]=768 , a_ : List[str]=1 , a_ : str=26 , a_ : Tuple=8 , a_ : Any=8 , a_ : str=None , a_ : Dict=None , a_ : int="kv" , a_ : int=1 , a_ : Dict=1 , a_ : str="gelu" , a_ : Any=0.1 , a_ : Any=0.02 , a_ : Optional[int]=1e-1_2 , a_ : List[str]=True , a_ : Dict=262 , a_ : Any=2048 , a_ : int=56 , a_ : List[str]=[368, 496] , a_ : List[Any]=16 , a_ : int=1920 , a_ : List[Any]=16 , a_ : Optional[int]=[1, 16, 224, 224] , **a_ : Union[str, Any] , )-> Any: """simple docstring""" super().__init__(**A_ ) SCREAMING_SNAKE_CASE__ : Tuple = num_latents SCREAMING_SNAKE_CASE__ : int = d_latents SCREAMING_SNAKE_CASE__ : List[str] = d_model SCREAMING_SNAKE_CASE__ : str = num_blocks SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_self_attends_per_block SCREAMING_SNAKE_CASE__ : Tuple = num_self_attention_heads SCREAMING_SNAKE_CASE__ : List[Any] = num_cross_attention_heads SCREAMING_SNAKE_CASE__ : int = qk_channels SCREAMING_SNAKE_CASE__ : str = v_channels SCREAMING_SNAKE_CASE__ : Tuple = cross_attention_shape_for_attention SCREAMING_SNAKE_CASE__ : Optional[int] = self_attention_widening_factor SCREAMING_SNAKE_CASE__ : List[Any] = cross_attention_widening_factor SCREAMING_SNAKE_CASE__ : List[Any] = hidden_act SCREAMING_SNAKE_CASE__ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE__ : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE__ : int = use_query_residual # masked language modeling attributes SCREAMING_SNAKE_CASE__ : Dict = vocab_size SCREAMING_SNAKE_CASE__ : int = max_position_embeddings # image classification attributes SCREAMING_SNAKE_CASE__ : Tuple = image_size # flow attributes SCREAMING_SNAKE_CASE__ : Optional[int] = train_size # multimodal autoencoding attributes SCREAMING_SNAKE_CASE__ : List[str] = num_frames SCREAMING_SNAKE_CASE__ : int = audio_samples_per_frame SCREAMING_SNAKE_CASE__ : str = samples_per_patch SCREAMING_SNAKE_CASE__ : Any = output_shape class snake_case ( _SCREAMING_SNAKE_CASE ): @property def __lowercase( self : List[str] )-> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ : int = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE__ : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def __lowercase( self : Dict )-> float: """simple docstring""" return 1e-4 def __lowercase( self : Tuple , a_ : List[Any] , a_ : List[Any] = -1 , a_ : Any = -1 , a_ : Dict = -1 , a_ : Optional[int] = False , a_ : Optional[Any] = None , a_ : Tuple = 3 , a_ : Optional[Any] = 40 , a_ : Any = 40 , )-> Mapping[str, Any]: """simple docstring""" # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(A_ , A_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : int = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : str = preprocessor.num_special_tokens_to_add(A_ ) SCREAMING_SNAKE_CASE__ : List[Any] = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE__ : Optional[int] = [' '.join(['a'] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE__ : Any = dict(preprocessor(A_ , return_tensors=A_ ) ) SCREAMING_SNAKE_CASE__ : List[Any] = inputs.pop('input_ids' ) return inputs elif isinstance(A_ , A_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : List[str] = compute_effective_axis_dimension(A_ , fixed_dimension=OnnxConfig.default_fixed_batch ) SCREAMING_SNAKE_CASE__ : Any = self._generate_dummy_images(A_ , A_ , A_ , A_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = dict(preprocessor(images=A_ , return_tensors=A_ ) ) SCREAMING_SNAKE_CASE__ : List[Any] = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
703
def _a ( lowercase__ : int , lowercase__ : int ): '''simple docstring''' return int((input_a, input_a).count(0 ) != 0 ) def _a ( ): '''simple docstring''' assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
636
0
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _snake_case ( A_ : List[str] ): """simple docstring""" a_ , a_ : Optional[int] = image.size a_ , a_ : Optional[Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 a_ : List[Any] = image.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) a_ : Tuple = np.array(A_ ).astype(np.floataa ) / 255.0 a_ : Tuple = image[None].transpose(0 , 3 , 1 , 2 ) a_ : Tuple = torch.from_numpy(A_ ) return 2.0 * image - 1.0 class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): '''simple docstring''' super().__init__() self.register_modules(vqvae=lowerCAmelCase_ , unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) @torch.no_grad() def __call__( self , lowerCAmelCase_ = None , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1_00 , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = None , lowerCAmelCase_ = "pil" , lowerCAmelCase_ = True , ): '''simple docstring''' if isinstance(lowerCAmelCase_ , PIL.Image.Image ): a_ : str = 1 elif isinstance(lowerCAmelCase_ , torch.Tensor ): a_ : Tuple = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCAmelCase_ )}''' ) if isinstance(lowerCAmelCase_ , PIL.Image.Image ): a_ : Any = preprocess(lowerCAmelCase_ ) a_ , a_ : Dict = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image a_ : Optional[int] = (batch_size, self.unet.config.in_channels // 2, height, width) a_ : str = next(self.unet.parameters() ).dtype a_ : Dict = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=lowerCAmelCase_ ) a_ : Optional[Any] = image.to(device=self.device , dtype=lowerCAmelCase_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCAmelCase_ , device=self.device ) a_ : Dict = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler a_ : Tuple = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a_ : Union[str, Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a_ : int = {} if accepts_eta: a_ : Union[str, Any] = eta for t in self.progress_bar(lowerCAmelCase_ ): # concat latents and low resolution image in the channel dimension. a_ : int = torch.cat([latents, image] , dim=1 ) a_ : Dict = self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) # predict the noise residual a_ : Optional[Any] = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 a_ : Tuple = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample # decode the image latents with the VQVAE a_ : List[str] = self.vqvae.decode(lowerCAmelCase_ ).sample a_ : Tuple = torch.clamp(lowerCAmelCase_ , -1.0 , 1.0 ) a_ : Optional[int] = image / 2 + 0.5 a_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a_ : str = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
577
'''simple docstring''' import os def _snake_case ( ): """simple docstring""" with open(os.path.dirname(A_ ) + """/grid.txt""" ) as f: a_ : Dict = [] # noqa: E741 for _ in range(20 ): l.append([int(A_ ) for x in f.readline().split()] ) a_ : Dict = 0 # right for i in range(20 ): for j in range(17 ): a_ : Optional[int] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: a_ : List[str] = temp # down for i in range(17 ): for j in range(20 ): a_ : str = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: a_ : Optional[int] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): a_ : Optional[int] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: a_ : str = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): a_ : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: a_ : List[Any] = temp return maximum if __name__ == "__main__": print(solution())
577
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase =logging.get_logger(__name__) # General docstring lowerCamelCase ="""RegNetConfig""" # Base docstring lowerCamelCase ="""facebook/regnet-y-040""" lowerCamelCase =[1, 1_0_8_8, 7, 7] # Image classification docstring lowerCamelCase ="""facebook/regnet-y-040""" lowerCamelCase ="""tabby, tabby cat""" lowerCamelCase =[ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class _lowerCamelCase ( tf.keras.layers.Layer ): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = "relu" , **__SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" super().__init__(**_lowerCAmelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb UpperCamelCase__ : Optional[int] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) UpperCamelCase__ : List[str] = tf.keras.layers.ConvaD( filters=_lowerCAmelCase , kernel_size=_lowerCAmelCase , strides=_lowerCAmelCase , padding='''VALID''' , groups=_lowerCAmelCase , use_bias=_lowerCAmelCase , name='''convolution''' , ) UpperCamelCase__ : List[str] = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' ) UpperCamelCase__ : List[Any] = ACTaFN[activation] if activation is not None else tf.identity def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.convolution(self.padding(_lowerCAmelCase ) ) UpperCamelCase__ : List[str] = self.normalization(_lowerCAmelCase ) UpperCamelCase__ : Union[str, Any] = self.activation(_lowerCAmelCase ) return hidden_state class _lowerCamelCase ( tf.keras.layers.Layer ): def __init__( self , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" super().__init__(**_lowerCAmelCase ) UpperCamelCase__ : List[Any] = config.num_channels UpperCamelCase__ : Union[str, Any] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : int = shape_list(_lowerCAmelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) UpperCamelCase__ : Optional[int] = tf.transpose(_lowerCAmelCase , perm=(0, 2, 3, 1) ) UpperCamelCase__ : List[Any] = self.embedder(_lowerCAmelCase ) return hidden_state class _lowerCamelCase ( tf.keras.layers.Layer ): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 2 , **__SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" super().__init__(**_lowerCAmelCase ) UpperCamelCase__ : List[str] = tf.keras.layers.ConvaD( filters=_lowerCAmelCase , kernel_size=1 , strides=_lowerCAmelCase , use_bias=_lowerCAmelCase , name='''convolution''' ) UpperCamelCase__ : str = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False ) -> tf.Tensor: """simple docstring""" return self.normalization(self.convolution(_lowerCAmelCase ) , training=_lowerCAmelCase ) class _lowerCamelCase ( tf.keras.layers.Layer ): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" super().__init__(**_lowerCAmelCase ) UpperCamelCase__ : int = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_lowerCAmelCase , name='''pooler''' ) UpperCamelCase__ : Optional[Any] = [ tf.keras.layers.ConvaD(filters=_lowerCAmelCase , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=_lowerCAmelCase , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = self.pooler(_lowerCAmelCase ) for layer_module in self.attention: UpperCamelCase__ : Any = layer_module(_lowerCAmelCase ) UpperCamelCase__ : List[str] = hidden_state * pooled return hidden_state class _lowerCamelCase ( tf.keras.layers.Layer ): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1 , **__SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" super().__init__(**_lowerCAmelCase ) UpperCamelCase__ : Optional[int] = in_channels != out_channels or stride != 1 UpperCamelCase__ : Optional[Any] = max(1 , out_channels // config.groups_width ) UpperCamelCase__ : Any = ( TFRegNetShortCut(_lowerCAmelCase , stride=_lowerCAmelCase , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. UpperCamelCase__ : int = [ TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( _lowerCAmelCase , stride=_lowerCAmelCase , groups=_lowerCAmelCase , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=_lowerCAmelCase , name='''layer.2''' ), ] UpperCamelCase__ : str = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ : Union[str, Any] = hidden_state for layer_module in self.layers: UpperCamelCase__ : Optional[Any] = layer_module(_lowerCAmelCase ) UpperCamelCase__ : Any = self.shortcut(_lowerCAmelCase ) hidden_state += residual UpperCamelCase__ : List[str] = self.activation(_lowerCAmelCase ) return hidden_state class _lowerCamelCase ( tf.keras.layers.Layer ): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1 , **__SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" super().__init__(**_lowerCAmelCase ) UpperCamelCase__ : Optional[int] = in_channels != out_channels or stride != 1 UpperCamelCase__ : Union[str, Any] = max(1 , out_channels // config.groups_width ) UpperCamelCase__ : int = ( TFRegNetShortCut(_lowerCAmelCase , stride=_lowerCAmelCase , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) UpperCamelCase__ : Optional[Any] = [ TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( _lowerCAmelCase , stride=_lowerCAmelCase , groups=_lowerCAmelCase , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(_lowerCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=_lowerCAmelCase , name='''layer.3''' ), ] UpperCamelCase__ : List[Any] = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ : Optional[int] = hidden_state for layer_module in self.layers: UpperCamelCase__ : List[Any] = layer_module(_lowerCAmelCase ) UpperCamelCase__ : Optional[int] = self.shortcut(_lowerCAmelCase ) hidden_state += residual UpperCamelCase__ : List[Any] = self.activation(_lowerCAmelCase ) return hidden_state class _lowerCamelCase ( tf.keras.layers.Layer ): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 2 , __SCREAMING_SNAKE_CASE = 2 , **__SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" super().__init__(**_lowerCAmelCase ) UpperCamelCase__ : Any = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer UpperCamelCase__ : Optional[Any] = [ # downsampling is done in the first layer with stride of 2 layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , stride=_lowerCAmelCase , name='''layers.0''' ), *[layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" for layer_module in self.layers: UpperCamelCase__ : str = layer_module(_lowerCAmelCase ) return hidden_state class _lowerCamelCase ( tf.keras.layers.Layer ): def __init__( self , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" super().__init__(**_lowerCAmelCase ) UpperCamelCase__ : List[Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) UpperCamelCase__ : List[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_lowerCAmelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , depth=_lowerCAmelCase , name=F'''stages.{i+1}''' ) ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = True ) -> TFBaseModelOutputWithNoAttention: """simple docstring""" UpperCamelCase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase__ : int = hidden_states + (hidden_state,) UpperCamelCase__ : List[Any] = stage_module(_lowerCAmelCase ) if output_hidden_states: UpperCamelCase__ : Union[str, Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_lowerCAmelCase , hidden_states=_lowerCAmelCase ) @keras_serializable class _lowerCamelCase ( tf.keras.layers.Layer ): SCREAMING_SNAKE_CASE_ = RegNetConfig def __init__( self , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" super().__init__(**_lowerCAmelCase ) UpperCamelCase__ : Union[str, Any] = config UpperCamelCase__ : str = TFRegNetEmbeddings(_lowerCAmelCase , name='''embedder''' ) UpperCamelCase__ : Any = TFRegNetEncoder(_lowerCAmelCase , name='''encoder''' ) UpperCamelCase__ : Dict = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_lowerCAmelCase , name='''pooler''' ) @unpack_inputs def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: """simple docstring""" UpperCamelCase__ : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ : str = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : Optional[Any] = self.embedder(_lowerCAmelCase , training=_lowerCAmelCase ) UpperCamelCase__ : Union[str, Any] = self.encoder( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCamelCase__ : Any = encoder_outputs[0] UpperCamelCase__ : Tuple = self.pooler(_lowerCAmelCase ) # Change to NCHW output format have uniformity in the modules UpperCamelCase__ : List[str] = tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) UpperCamelCase__ : str = tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: UpperCamelCase__ : str = tuple([tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCAmelCase , pooler_output=_lowerCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class _lowerCamelCase ( _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = RegNetConfig SCREAMING_SNAKE_CASE_ = 'regnet' SCREAMING_SNAKE_CASE_ = 'pixel_values' @property def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} lowerCamelCase =r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCamelCase =r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , _lowerCAmelCase , ) class _lowerCamelCase ( _lowerCAmelCase ): def __init__( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) UpperCamelCase__ : int = TFRegNetMainLayer(_lowerCAmelCase , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: """simple docstring""" UpperCamelCase__ : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ : List[str] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : Dict = self.regnet( pixel_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '''\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ''' , _lowerCAmelCase , ) class _lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): def __init__( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) UpperCamelCase__ : Any = config.num_labels UpperCamelCase__ : List[Any] = TFRegNetMainLayer(_lowerCAmelCase , name='''regnet''' ) # classification head UpperCamelCase__ : Any = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: """simple docstring""" UpperCamelCase__ : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : Tuple = self.regnet( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCamelCase__ : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase__ : Dict = self.classifier[0](_lowerCAmelCase ) UpperCamelCase__ : Optional[int] = self.classifier[1](_lowerCAmelCase ) UpperCamelCase__ : List[str] = None if labels is None else self.hf_compute_loss(labels=_lowerCAmelCase , logits=_lowerCAmelCase ) if not return_dict: UpperCamelCase__ : Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_lowerCAmelCase , logits=_lowerCAmelCase , hidden_states=outputs.hidden_states )
709
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4e_00 and cp <= 0x9f_ff) or (cp >= 0x34_00 and cp <= 0x4d_bf) # or (cp >= 0x2_00_00 and cp <= 0x2_a6_df) # or (cp >= 0x2_a7_00 and cp <= 0x2_b7_3f) # or (cp >= 0x2_b7_40 and cp <= 0x2_b8_1f) # or (cp >= 0x2_b8_20 and cp <= 0x2_ce_af) # or (cp >= 0xf9_00 and cp <= 0xfa_ff) or (cp >= 0x2_f8_00 and cp <= 0x2_fa_1f) # ): # return True return False def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): # word like '180' or '身高' or '神' for char in word: UpperCamelCase__ : Optional[Any] = ord(UpperCamelCase__ ) if not _is_chinese_char(UpperCamelCase__ ): return 0 return 1 def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): UpperCamelCase__ : Dict = set() for token in tokens: UpperCamelCase__ : Optional[int] = len(UpperCamelCase__ ) > 1 and is_chinese(UpperCamelCase__ ) if chinese_word: word_set.add(UpperCamelCase__ ) UpperCamelCase__ : List[Any] = list(UpperCamelCase__ ) return word_list def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): if not chinese_word_set: return bert_tokens UpperCamelCase__ : str = max([len(UpperCamelCase__ ) for w in chinese_word_set] ) UpperCamelCase__ : Optional[int] = bert_tokens UpperCamelCase__ ,UpperCamelCase__ : Tuple = 0, len(UpperCamelCase__ ) while start < end: UpperCamelCase__ : Any = True if is_chinese(bert_word[start] ): UpperCamelCase__ : Any = min(end - start , UpperCamelCase__ ) for i in range(UpperCamelCase__ , 1 , -1 ): UpperCamelCase__ : List[Any] = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase__ : Optional[Any] = '''##''' + bert_word[j] UpperCamelCase__ : Dict = start + i UpperCamelCase__ : List[str] = False break if single_word: start += 1 return bert_word def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : str = [] for i in range(0 , len(UpperCamelCase__ ) , 1_0_0 ): UpperCamelCase__ : Optional[Any] = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['''cws'''] ).cws UpperCamelCase__ : List[str] = [get_chinese_word(UpperCamelCase__ ) for r in res] ltp_res.extend(UpperCamelCase__ ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) UpperCamelCase__ : str = [] for i in range(0 , len(UpperCamelCase__ ) , 1_0_0 ): UpperCamelCase__ : Dict = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=5_1_2 ) bert_res.extend(res['''input_ids'''] ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) UpperCamelCase__ : Any = [] for input_ids, chinese_word in zip(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : Union[str, Any] = [] for id in input_ids: UpperCamelCase__ : List[str] = bert_tokenizer._convert_id_to_token(UpperCamelCase__ ) input_tokens.append(UpperCamelCase__ ) UpperCamelCase__ : Optional[Any] = add_sub_symbol(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase__ : Any = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase__ ): if token[:2] == "##": UpperCamelCase__ : Union[str, Any] = token[2:] # save chinese tokens' pos if len(UpperCamelCase__ ) == 1 and _is_chinese_char(ord(UpperCamelCase__ ) ): ref_id.append(UpperCamelCase__ ) ref_ids.append(UpperCamelCase__ ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) return ref_ids def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: UpperCamelCase__ : List[Any] = f.readlines() UpperCamelCase__ : Tuple = [line.strip() for line in data if len(UpperCamelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase__ : int = LTP(args.ltp ) # faster in GPU device UpperCamelCase__ : int = BertTokenizer.from_pretrained(args.bert ) UpperCamelCase__ : Dict = prepare_ref(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: UpperCamelCase__ : Tuple = [json.dumps(UpperCamelCase__ ) + '''\n''' for ref in ref_ids] f.writelines(UpperCamelCase__ ) if __name__ == "__main__": lowerCamelCase =argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) lowerCamelCase =parser.parse_args() main(args)
462
0
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase__ ) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Dict , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE__ ) requires_backends(self , "vision" ) requires_backends(self , "torch" ) if self.framework != "pt": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(SCREAMING_SNAKE_CASE__ ) def a ( self : List[Any] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[str]: lowerCAmelCase__ = {} lowerCAmelCase__ = {} lowerCAmelCase__ = {} # preprocess args if "points_per_batch" in kwargs: lowerCAmelCase__ = kwargs["points_per_batch"] if "points_per_crop" in kwargs: lowerCAmelCase__ = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: lowerCAmelCase__ = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: lowerCAmelCase__ = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: lowerCAmelCase__ = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: lowerCAmelCase__ = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: lowerCAmelCase__ = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: lowerCAmelCase__ = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: lowerCAmelCase__ = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: lowerCAmelCase__ = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: lowerCAmelCase__ = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: lowerCAmelCase__ = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Any , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : str ) -> Dict: return super().__call__(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , num_workers=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any]=64 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : float = 512 / 1_500 , SCREAMING_SNAKE_CASE__ : Optional[int] = 32 , SCREAMING_SNAKE_CASE__ : Optional[int] = 1 , ) -> Union[str, Any]: lowerCAmelCase__ = load_image(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.image_processor.size["longest_edge"] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor.generate_crop_boxes( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": lowerCAmelCase__ = self.get_inference_context() with inference_context(): lowerCAmelCase__ = self._ensure_tensor_on_device(SCREAMING_SNAKE_CASE__ , device=self.device ) lowerCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) lowerCAmelCase__ = image_embeddings lowerCAmelCase__ = grid_points.shape[1] lowerCAmelCase__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :] lowerCAmelCase__ = input_labels[:, i : i + points_per_batch] lowerCAmelCase__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=0.88 , SCREAMING_SNAKE_CASE__ : List[Any]=0.95 , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : str=1 , ) -> Tuple: lowerCAmelCase__ = model_inputs.pop("input_boxes" ) lowerCAmelCase__ = model_inputs.pop("is_last" ) lowerCAmelCase__ = model_inputs.pop("original_sizes" ).tolist() lowerCAmelCase__ = model_inputs.pop("reshaped_input_sizes" ).tolist() lowerCAmelCase__ = self.model(**SCREAMING_SNAKE_CASE__ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks lowerCAmelCase__ = model_outputs["pred_masks"] lowerCAmelCase__ = self.image_processor.post_process_masks( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , binarize=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model_outputs["iou_scores"] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : Any=0.7 , ) -> List[Any]: lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) lowerCAmelCase__ = torch.cat(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = torch.cat(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor.post_process_for_mask_generation( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = defaultdict(SCREAMING_SNAKE_CASE__ ) for output in model_outputs: for k, v in output.items(): extra[k].append(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = {} if output_rle_mask: lowerCAmelCase__ = rle_mask if output_bboxes_mask: lowerCAmelCase__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
61
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCAmelCase_ ( __A : Features ): '''simple docstring''' snake_case: Any = np.inf def set_batch_size(__A : FeatureType ) -> None: nonlocal batch_size if isinstance(__A , __A ): snake_case: str = min(__A , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__A , __A ): snake_case: Optional[int] = min(__A , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__A , __A ) and feature.dtype == "binary": snake_case: Union[str, Any] = min(__A , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__A , __A ) return None if batch_size is np.inf else batch_size class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ , streaming=SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: str = path_or_paths if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else {self.split: path_or_paths} snake_case: int = _PACKAGED_DATASETS_MODULES['parquet'][1] snake_case: Optional[Any] = Parquet( cache_dir=SCREAMING_SNAKE_CASE__ , data_files=SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , hash=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self ): '''simple docstring''' if self.streaming: snake_case: Union[str, Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: snake_case: Dict = None snake_case: List[Any] = None snake_case: Optional[int] = None snake_case: Any = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE__ , download_mode=SCREAMING_SNAKE_CASE__ , verification_mode=SCREAMING_SNAKE_CASE__ , base_path=SCREAMING_SNAKE_CASE__ , num_proc=self.num_proc , ) snake_case: List[Any] = self.builder.as_dataset( split=self.split , verification_mode=SCREAMING_SNAKE_CASE__ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Union[str, Any] = dataset snake_case: Any = path_or_buf snake_case: Dict = batch_size or get_writer_batch_size(dataset.features ) snake_case: Optional[Any] = parquet_writer_kwargs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: snake_case: Any = self._write(file_obj=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , **self.parquet_writer_kwargs ) else: snake_case: Optional[int] = self._write(file_obj=self.path_or_buf , batch_size=SCREAMING_SNAKE_CASE__ , **self.parquet_writer_kwargs ) return written def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[str] = 0 snake_case: List[Any] = parquet_writer_kwargs.pop('path_or_buf' , SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.dataset.features.arrow_schema snake_case: Optional[int] = pq.ParquetWriter(SCREAMING_SNAKE_CASE__ , schema=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , SCREAMING_SNAKE_CASE__ ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): snake_case: Any = query_table( table=self.dataset._data , key=slice(SCREAMING_SNAKE_CASE__ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(SCREAMING_SNAKE_CASE__ ) written += batch.nbytes writer.close() return written
329
0
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline _UpperCamelCase = """path-to-your-trained-model""" _UpperCamelCase = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") _UpperCamelCase = """A photo of sks dog in a bucket""" _UpperCamelCase = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
719
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=_A ): '''simple docstring''' A__ = ['''flax''', '''transformers'''] def __init__( self : List[str] , *__A : int , **__A : Optional[Any] ) -> List[Any]: '''simple docstring''' requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def lowercase__ ( cls : List[Any] , *__A : Dict , **__A : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def lowercase__ ( cls : Any , *__A : Any , **__A : List[str] ) -> Any: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) class lowerCamelCase__ ( metaclass=_A ): '''simple docstring''' A__ = ['''flax''', '''transformers'''] def __init__( self : int , *__A : Tuple , **__A : Optional[Any] ) -> Dict: '''simple docstring''' requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def lowercase__ ( cls : Optional[Any] , *__A : int , **__A : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def lowercase__ ( cls : int , *__A : List[Any] , **__A : List[str] ) -> int: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) class lowerCamelCase__ ( metaclass=_A ): '''simple docstring''' A__ = ['''flax''', '''transformers'''] def __init__( self : Dict , *__A : str , **__A : List[str] ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def lowercase__ ( cls : List[str] , *__A : str , **__A : Any ) -> Any: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def lowercase__ ( cls : Any , *__A : Any , **__A : Union[str, Any] ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) class lowerCamelCase__ ( metaclass=_A ): '''simple docstring''' A__ = ['''flax''', '''transformers'''] def __init__( self : Tuple , *__A : Any , **__A : Any ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def lowercase__ ( cls : str , *__A : str , **__A : str ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def lowercase__ ( cls : List[str] , *__A : Tuple , **__A : Optional[Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] )
211
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): A_ : Optional[int] = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } A_ : Any = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(lowercase ) , lowercase ) def _a (self ): A_ : Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(lowercase ) , x.transpose() ) ) A_ : List[Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(lowercase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _a (self ): A_ : Optional[int] = np.random.randn(3 , 4 ) A_ : str = torch.tensor(lowercase ) self.assertTrue(np.allclose(transpose(lowercase ) , transpose(lowercase ).numpy() ) ) A_ : Tuple = np.random.randn(3 , 4 , 5 ) A_ : int = torch.tensor(lowercase ) self.assertTrue(np.allclose(transpose(lowercase , axes=(1, 2, 0) ) , transpose(lowercase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _a (self ): A_ : str = np.random.randn(3 , 4 ) A_ : int = tf.constant(lowercase ) self.assertTrue(np.allclose(transpose(lowercase ) , transpose(lowercase ).numpy() ) ) A_ : Any = np.random.randn(3 , 4 , 5 ) A_ : List[str] = tf.constant(lowercase ) self.assertTrue(np.allclose(transpose(lowercase , axes=(1, 2, 0) ) , transpose(lowercase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _a (self ): A_ : Optional[int] = np.random.randn(3 , 4 ) A_ : Optional[Any] = jnp.array(lowercase ) self.assertTrue(np.allclose(transpose(lowercase ) , np.asarray(transpose(lowercase ) ) ) ) A_ : str = np.random.randn(3 , 4 , 5 ) A_ : str = jnp.array(lowercase ) self.assertTrue(np.allclose(transpose(lowercase , axes=(1, 2, 0) ) , np.asarray(transpose(lowercase , axes=(1, 2, 0) ) ) ) ) def _a (self ): A_ : str = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(lowercase , (4, 3) ) , np.reshape(lowercase , (4, 3) ) ) ) A_ : int = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(lowercase , (12, 5) ) , np.reshape(lowercase , (12, 5) ) ) ) @require_torch def _a (self ): A_ : Optional[Any] = np.random.randn(3 , 4 ) A_ : List[Any] = torch.tensor(lowercase ) self.assertTrue(np.allclose(reshape(lowercase , (4, 3) ) , reshape(lowercase , (4, 3) ).numpy() ) ) A_ : Optional[int] = np.random.randn(3 , 4 , 5 ) A_ : int = torch.tensor(lowercase ) self.assertTrue(np.allclose(reshape(lowercase , (12, 5) ) , reshape(lowercase , (12, 5) ).numpy() ) ) @require_tf def _a (self ): A_ : Optional[Any] = np.random.randn(3 , 4 ) A_ : List[Any] = tf.constant(lowercase ) self.assertTrue(np.allclose(reshape(lowercase , (4, 3) ) , reshape(lowercase , (4, 3) ).numpy() ) ) A_ : Optional[int] = np.random.randn(3 , 4 , 5 ) A_ : int = tf.constant(lowercase ) self.assertTrue(np.allclose(reshape(lowercase , (12, 5) ) , reshape(lowercase , (12, 5) ).numpy() ) ) @require_flax def _a (self ): A_ : Dict = np.random.randn(3 , 4 ) A_ : str = jnp.array(lowercase ) self.assertTrue(np.allclose(reshape(lowercase , (4, 3) ) , np.asarray(reshape(lowercase , (4, 3) ) ) ) ) A_ : Optional[int] = np.random.randn(3 , 4 , 5 ) A_ : List[Any] = jnp.array(lowercase ) self.assertTrue(np.allclose(reshape(lowercase , (12, 5) ) , np.asarray(reshape(lowercase , (12, 5) ) ) ) ) def _a (self ): A_ : List[str] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(lowercase ) , np.squeeze(lowercase ) ) ) A_ : List[str] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(lowercase , axis=2 ) , np.squeeze(lowercase , axis=2 ) ) ) @require_torch def _a (self ): A_ : List[str] = np.random.randn(1 , 3 , 4 ) A_ : Any = torch.tensor(lowercase ) self.assertTrue(np.allclose(squeeze(lowercase ) , squeeze(lowercase ).numpy() ) ) A_ : str = np.random.randn(1 , 4 , 1 , 5 ) A_ : Optional[int] = torch.tensor(lowercase ) self.assertTrue(np.allclose(squeeze(lowercase , axis=2 ) , squeeze(lowercase , axis=2 ).numpy() ) ) @require_tf def _a (self ): A_ : Tuple = np.random.randn(1 , 3 , 4 ) A_ : List[Any] = tf.constant(lowercase ) self.assertTrue(np.allclose(squeeze(lowercase ) , squeeze(lowercase ).numpy() ) ) A_ : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) A_ : Dict = tf.constant(lowercase ) self.assertTrue(np.allclose(squeeze(lowercase , axis=2 ) , squeeze(lowercase , axis=2 ).numpy() ) ) @require_flax def _a (self ): A_ : Tuple = np.random.randn(1 , 3 , 4 ) A_ : Dict = jnp.array(lowercase ) self.assertTrue(np.allclose(squeeze(lowercase ) , np.asarray(squeeze(lowercase ) ) ) ) A_ : str = np.random.randn(1 , 4 , 1 , 5 ) A_ : str = jnp.array(lowercase ) self.assertTrue(np.allclose(squeeze(lowercase , axis=2 ) , np.asarray(squeeze(lowercase , axis=2 ) ) ) ) def _a (self ): A_ : List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(lowercase , axis=1 ) , np.expand_dims(lowercase , axis=1 ) ) ) @require_torch def _a (self ): A_ : Tuple = np.random.randn(3 , 4 ) A_ : str = torch.tensor(lowercase ) self.assertTrue(np.allclose(expand_dims(lowercase , axis=1 ) , expand_dims(lowercase , axis=1 ).numpy() ) ) @require_tf def _a (self ): A_ : List[Any] = np.random.randn(3 , 4 ) A_ : List[Any] = tf.constant(lowercase ) self.assertTrue(np.allclose(expand_dims(lowercase , axis=1 ) , expand_dims(lowercase , axis=1 ).numpy() ) ) @require_flax def _a (self ): A_ : Any = np.random.randn(3 , 4 ) A_ : Any = jnp.array(lowercase ) self.assertTrue(np.allclose(expand_dims(lowercase , axis=1 ) , np.asarray(expand_dims(lowercase , axis=1 ) ) ) )
667
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase :Optional[Any] = logging.get_logger(__name__) lowerCamelCase :Tuple = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : List[Any] = 'mgp-str' def __init__(self , lowercase=[32, 128] , lowercase=4 , lowercase=3 , lowercase=27 , lowercase=38 , lowercase=50257 , lowercase=30522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=4.0 , lowercase=True , lowercase=False , lowercase=1E-5 , lowercase=0.0 , lowercase=0.0 , lowercase=0.0 , lowercase=False , lowercase=0.02 , **lowercase , ): super().__init__(**lowercase ) A_ : int = image_size A_ : List[str] = patch_size A_ : Tuple = num_channels A_ : List[str] = max_token_length A_ : int = num_character_labels A_ : str = num_bpe_labels A_ : Tuple = num_wordpiece_labels A_ : Optional[int] = hidden_size A_ : List[Any] = num_hidden_layers A_ : int = num_attention_heads A_ : Tuple = mlp_ratio A_ : str = distilled A_ : Union[str, Any] = layer_norm_eps A_ : str = drop_rate A_ : int = qkv_bias A_ : Dict = attn_drop_rate A_ : List[Any] = drop_path_rate A_ : Any = output_aa_attentions A_ : Union[str, Any] = initializer_range
667
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase__ ( _A , _A=0.9_99 , _A="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) a_ = [] for i in range(_A ): a_ = i / num_diffusion_timesteps a_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ) , _A ) ) return torch.tensor(_A , dtype=torch.floataa ) class __lowercase ( a__ , a__ ): _lowerCAmelCase = [e.name for e in KarrasDiffusionSchedulers] _lowerCAmelCase = 2 @register_to_config def __init__( self : int , lowercase__ : int = 1_0_0_0 , lowercase__ : float = 0.0_0085 , lowercase__ : float = 0.012 , lowercase__ : str = "linear" , lowercase__ : Optional[Union[np.ndarray, List[float]]] = None , lowercase__ : str = "epsilon" , lowercase__ : Optional[bool] = False , lowercase__ : Optional[bool] = False , lowercase__ : float = 1.0 , lowercase__ : str = "linspace" , lowercase__ : int = 0 , ): if trained_betas is not None: a_ = torch.tensor(lowercase__ , dtype=torch.floataa ) elif beta_schedule == "linear": a_ = torch.linspace(lowercase__ , lowercase__ , lowercase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a_ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowercase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a_ = betas_for_alpha_bar(lowercase__ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": a_ = betas_for_alpha_bar(lowercase__ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) a_ = 1.0 - self.betas a_ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowercase__ , lowercase__ , lowercase__ ) a_ = use_karras_sigmas def __magic_name__ ( self : List[str] , lowercase__ : Tuple , lowercase__ : str=None ): if schedule_timesteps is None: a_ = self.timesteps a_ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: a_ = 1 if len(lowercase__ ) > 1 else 0 else: a_ = timestep.cpu().item() if torch.is_tensor(lowercase__ ) else timestep a_ = self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__ ( self : Union[str, Any] ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__ ( self : Dict , lowercase__ : torch.FloatTensor , lowercase__ : Union[float, torch.FloatTensor] , ): a_ = self.index_for_timestep(lowercase__ ) a_ = self.sigmas[step_index] a_ = sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__ ( self : int , lowercase__ : int , lowercase__ : Union[str, torch.device] = None , lowercase__ : Optional[int] = None , ): a_ = num_inference_steps a_ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": a_ = np.linspace(0 , num_train_timesteps - 1 , lowercase__ , dtype=lowercase__ )[::-1].copy() elif self.config.timestep_spacing == "leading": a_ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a_ = (np.arange(0 , lowercase__ ) * step_ratio).round()[::-1].copy().astype(lowercase__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": a_ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a_ = (np.arange(lowercase__ , 0 , -step_ratio )).round().copy().astype(lowercase__ ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) a_ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) a_ = np.log(lowercase__ ) a_ = np.interp(lowercase__ , np.arange(0 , len(lowercase__ ) ) , lowercase__ ) if self.config.use_karras_sigmas: a_ = self._convert_to_karras(in_sigmas=lowercase__ , num_inference_steps=self.num_inference_steps ) a_ = np.array([self._sigma_to_t(lowercase__ , lowercase__ ) for sigma in sigmas] ) a_ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) a_ = torch.from_numpy(lowercase__ ).to(device=lowercase__ ) a_ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) a_ = torch.from_numpy(lowercase__ ) a_ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowercase__ ).startswith('''mps''' ): # mps does not support float64 a_ = timesteps.to(lowercase__ , dtype=torch.floataa ) else: a_ = timesteps.to(device=lowercase__ ) # empty dt and derivative a_ = None a_ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter a_ = defaultdict(lowercase__ ) def __magic_name__ ( self : Optional[int] , lowercase__ : List[Any] , lowercase__ : Optional[int] ): # get log sigma a_ = np.log(lowercase__ ) # get distribution a_ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range a_ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) a_ = low_idx + 1 a_ = log_sigmas[low_idx] a_ = log_sigmas[high_idx] # interpolate sigmas a_ = (low - log_sigma) / (low - high) a_ = np.clip(lowercase__ , 0 , 1 ) # transform interpolation to time range a_ = (1 - w) * low_idx + w * high_idx a_ = t.reshape(sigma.shape ) return t def __magic_name__ ( self : List[str] , lowercase__ : torch.FloatTensor , lowercase__ : Tuple ): a_ = in_sigmas[-1].item() a_ = in_sigmas[0].item() a_ = 7.0 # 7.0 is the value used in the paper a_ = np.linspace(0 , 1 , lowercase__ ) a_ = sigma_min ** (1 / rho) a_ = sigma_max ** (1 / rho) a_ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __magic_name__ ( self : Optional[int] ): return self.dt is None def __magic_name__ ( self : Union[str, Any] , lowercase__ : Union[torch.FloatTensor, np.ndarray] , lowercase__ : Union[float, torch.FloatTensor] , lowercase__ : Union[torch.FloatTensor, np.ndarray] , lowercase__ : bool = True , ): a_ = self.index_for_timestep(lowercase__ ) # advance index counter by 1 a_ = timestep.cpu().item() if torch.is_tensor(lowercase__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: a_ = self.sigmas[step_index] a_ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method a_ = self.sigmas[step_index - 1] a_ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API a_ = 0 a_ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": a_ = sigma_hat if self.state_in_first_order else sigma_next a_ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": a_ = sigma_hat if self.state_in_first_order else sigma_next a_ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": a_ = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.config.clip_sample: a_ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order a_ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep a_ = sigma_next - sigma_hat # store for 2nd order step a_ = derivative a_ = dt a_ = sample else: # 2. 2nd order / Heun's method a_ = (sample - pred_original_sample) / sigma_next a_ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample a_ = self.dt a_ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" a_ = None a_ = None a_ = None a_ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowercase__ ) def __magic_name__ ( self : Optional[Any] , lowercase__ : torch.FloatTensor , lowercase__ : torch.FloatTensor , lowercase__ : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples a_ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowercase__ ): # mps does not support float64 a_ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) a_ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: a_ = self.timesteps.to(original_samples.device ) a_ = timesteps.to(original_samples.device ) a_ = [self.index_for_timestep(lowercase__ , lowercase__ ) for t in timesteps] a_ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): a_ = sigma.unsqueeze(-1 ) a_ = original_samples + noise * sigma return noisy_samples def __len__( self : Optional[Any] ): return self.config.num_train_timesteps
143
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCamelCase__ = (3, 9, -11, 0, 7, 5, 1, -1) UpperCamelCase__ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __lowercase : _lowerCAmelCase = 42 _lowerCAmelCase = 42 class __lowercase : def __init__( self : int , lowercase__ : Iterable[int] ): a_ = None for i in sorted(lowercase__ , reverse=lowercase__ ): a_ = Node(lowercase__ , self.head ) def __iter__( self : str ): a_ = self.head while node: yield node.data a_ = node.next_node def __len__( self : Optional[int] ): return sum(1 for _ in self ) def __str__( self : Optional[Any] ): return " -> ".join([str(lowercase__ ) for node in self] ) def UpperCAmelCase__ ( _A , _A ): """simple docstring""" return SortedLinkedList(list(_A ) + list(_A ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
143
1
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( a__ , unittest.TestCase): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase): @property def UpperCAmelCase_ ( self ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Any = ort.SessionOptions() lowerCamelCase : str = False return options def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) lowerCamelCase : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) lowerCamelCase : List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting', revision='onnx', safety_checker=A, feature_extractor=A, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=A ) lowerCamelCase : Dict = 'A red cat sitting on a park bench' lowerCamelCase : str = np.random.RandomState(0 ) lowerCamelCase : Optional[Any] = pipe( prompt=A, image=A, mask_image=A, guidance_scale=7.5, num_inference_steps=10, generator=A, output_type='np', ) lowerCamelCase : Tuple = output.images lowerCamelCase : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowerCamelCase : Optional[Any] = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) lowerCamelCase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) lowerCamelCase : List[Any] = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting', subfolder='scheduler', revision='onnx' ) lowerCamelCase : Optional[int] = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting', revision='onnx', scheduler=A, safety_checker=A, feature_extractor=A, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=A ) lowerCamelCase : Any = 'A red cat sitting on a park bench' lowerCamelCase : Any = np.random.RandomState(0 ) lowerCamelCase : Any = pipe( prompt=A, image=A, mask_image=A, guidance_scale=7.5, num_inference_steps=20, generator=A, output_type='np', ) lowerCamelCase : int = output.images lowerCamelCase : List[Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowerCamelCase : Optional[Any] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
320
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case : def __init__( self, A, A=13, A=32, A=2, A=3, A=16, A=[1, 2, 1], A=[2, 2, 4], A=2, A=2.0, A=True, A=0.0, A=0.0, A=0.1, A="gelu", A=False, A=True, A=0.02, A=1e-5, A=True, A=None, A=True, A=10, A=8, ): """simple docstring""" lowerCamelCase : int = parent lowerCamelCase : Optional[Any] = batch_size lowerCamelCase : List[Any] = image_size lowerCamelCase : List[Any] = patch_size lowerCamelCase : List[Any] = num_channels lowerCamelCase : Tuple = embed_dim lowerCamelCase : Dict = depths lowerCamelCase : Optional[Any] = num_heads lowerCamelCase : Tuple = window_size lowerCamelCase : str = mlp_ratio lowerCamelCase : List[str] = qkv_bias lowerCamelCase : Optional[Any] = hidden_dropout_prob lowerCamelCase : Any = attention_probs_dropout_prob lowerCamelCase : Dict = drop_path_rate lowerCamelCase : Dict = hidden_act lowerCamelCase : Optional[int] = use_absolute_embeddings lowerCamelCase : Dict = patch_norm lowerCamelCase : Union[str, Any] = layer_norm_eps lowerCamelCase : Optional[int] = initializer_range lowerCamelCase : Tuple = is_training lowerCamelCase : Optional[int] = scope lowerCamelCase : Any = use_labels lowerCamelCase : List[str] = type_sequence_label_size lowerCamelCase : Optional[Any] = encoder_stride def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : Union[str, Any] = None if self.use_labels: lowerCamelCase : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ): """simple docstring""" return SwinvaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def UpperCAmelCase_ ( self, A, A, A ): """simple docstring""" lowerCamelCase : int = SwinvaModel(config=A ) model.to(A ) model.eval() lowerCamelCase : str = model(A ) lowerCamelCase : List[str] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase_ ( self, A, A, A ): """simple docstring""" lowerCamelCase : Tuple = SwinvaForMaskedImageModeling(config=A ) model.to(A ) model.eval() lowerCamelCase : Tuple = model(A ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase : int = 1 lowerCamelCase : List[str] = SwinvaForMaskedImageModeling(A ) model.to(A ) model.eval() lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase : List[Any] = model(A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self, A, A, A ): """simple docstring""" lowerCamelCase : List[str] = self.type_sequence_label_size lowerCamelCase : int = SwinvaForImageClassification(A ) model.to(A ) model.eval() lowerCamelCase : List[str] = model(A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : str = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[int] = config_and_inputs lowerCamelCase : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __snake_case ( a__ , a__ , unittest.TestCase): _lowerCAmelCase = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _lowerCAmelCase = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = SwinvaModelTester(self ) lowerCamelCase : Union[str, Any] = ConfigTester(self, config_class=A, embed_dim=37 ) def UpperCAmelCase_ ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def UpperCAmelCase_ ( self ): """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def UpperCAmelCase_ ( self ): """simple docstring""" pass def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Any = model_class(A ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowerCamelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A, nn.Linear ) ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : List[Any] = model_class(A ) lowerCamelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : Dict = [*signature.parameters.keys()] lowerCamelCase : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1], A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : int = True for model_class in self.all_model_classes: lowerCamelCase : Optional[int] = True lowerCamelCase : List[Any] = False lowerCamelCase : str = True lowerCamelCase : Union[str, Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): lowerCamelCase : Tuple = model(**self._prepare_for_class(A, A ) ) lowerCamelCase : Tuple = outputs.attentions lowerCamelCase : Union[str, Any] = len(self.model_tester.depths ) self.assertEqual(len(A ), A ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase : List[str] = True lowerCamelCase : int = config.window_size**2 lowerCamelCase : str = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): lowerCamelCase : Any = model(**self._prepare_for_class(A, A ) ) lowerCamelCase : str = outputs.attentions self.assertEqual(len(A ), A ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) lowerCamelCase : Optional[Any] = len(A ) # Check attention is always last and order is fine lowerCamelCase : List[str] = True lowerCamelCase : Any = True lowerCamelCase : Tuple = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): lowerCamelCase : Optional[Any] = model(**self._prepare_for_class(A, A ) ) if hasattr(self.model_tester, 'num_hidden_states_types' ): lowerCamelCase : Optional[int] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowerCamelCase : Tuple = 2 self.assertEqual(out_len + added_hidden_states, len(A ) ) lowerCamelCase : int = outputs.attentions self.assertEqual(len(A ), A ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) def UpperCAmelCase_ ( self, A, A, A, A ): """simple docstring""" lowerCamelCase : int = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): lowerCamelCase : Optional[int] = model(**self._prepare_for_class(A, A ) ) lowerCamelCase : Dict = outputs.hidden_states lowerCamelCase : List[Any] = getattr( self.model_tester, 'expected_num_hidden_layers', len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A ), A ) # Swinv2 has a different seq_length lowerCamelCase : Any = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) lowerCamelCase : List[Any] = outputs.reshaped_hidden_states self.assertEqual(len(A ), A ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Tuple = reshaped_hidden_states[0].shape lowerCamelCase : Union[str, Any] = ( reshaped_hidden_states[0].view(A, A, height * width ).permute(0, 2, 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCamelCase : str = True self.check_hidden_states_output(A, A, A, A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase : Dict = True self.check_hidden_states_output(A, A, A, A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : List[Any] = 3 lowerCamelCase : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase : str = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCamelCase : Tuple = True self.check_hidden_states_output(A, A, A, (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase : List[str] = True self.check_hidden_states_output(A, A, A, (padded_height, padded_width) ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCAmelCase_ ( self ): """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Any = SwinvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : Tuple = _config_zero_init(A ) for model_class in self.all_model_classes: lowerCamelCase : Any = model_class(config=A ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @require_vision @require_torch class __snake_case ( unittest.TestCase): @cached_property def UpperCAmelCase_ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Tuple = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( A ) lowerCamelCase : Union[str, Any] = self.default_image_processor lowerCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase : Any = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): lowerCamelCase : Any = model(**A ) # verify the logits lowerCamelCase : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, A ) lowerCamelCase : List[Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1e-4 ) )
320
1
"""simple docstring""" import os import sys import unittest lowerCAmelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCAmelCase_ = os.path.join(git_repo_path, '''src''', '''transformers''') lowerCAmelCase_ = "\n{0} = None\n" lowerCAmelCase_ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" lowerCAmelCase_ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class _snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[str]): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""") self.assertIsNone(A_) _SCREAMING_SNAKE_CASE : Optional[int] = find_backend(""" if not is_tokenizers_available():""") self.assertEqual(A_ , """tokenizers""") _SCREAMING_SNAKE_CASE : Optional[Any] = find_backend(""" if not is_tensorflow_text_available():""") self.assertEqual(A_ , """tensorflow_text""") _SCREAMING_SNAKE_CASE : Union[str, Any] = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""") self.assertEqual(A_ , """sentencepiece_and_tokenizers""") _SCREAMING_SNAKE_CASE : int = find_backend( """ if not (is_sentencepiece_available() and is_tensorflow_text_available()):""") self.assertEqual(A_ , """sentencepiece_and_tensorflow_text""") _SCREAMING_SNAKE_CASE : List[Any] = find_backend( """ if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""") self.assertEqual(A_ , """sentencepiece_and_tokenizers_and_vision""") def _lowerCAmelCase ( self : Tuple): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , A_) self.assertIn("""tensorflow_text""" , A_) self.assertIn("""sentencepiece_and_tokenizers""" , A_) # Likewise, we can't assert on the exact content of a key self.assertIn("""BertModel""" , objects["""torch"""]) self.assertIn("""TFBertModel""" , objects["""tf"""]) self.assertIn("""FlaxBertModel""" , objects["""flax"""]) self.assertIn("""BertModel""" , objects["""torch"""]) self.assertIn("""TFBertTokenizer""" , objects["""tensorflow_text"""]) self.assertIn("""convert_slow_tokenizer""" , objects["""sentencepiece_and_tokenizers"""]) def _lowerCAmelCase ( self : Union[str, Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : str = create_dummy_object("""CONSTANT""" , """\'torch\'""") self.assertEqual(A_ , """\nCONSTANT = None\n""") _SCREAMING_SNAKE_CASE : List[str] = create_dummy_object("""function""" , """\'torch\'""") self.assertEqual( A_ , """\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n""") _SCREAMING_SNAKE_CASE : Optional[int] = """ class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') """ _SCREAMING_SNAKE_CASE : Union[str, Any] = create_dummy_object("""FakeClass""" , """\'torch\'""") self.assertEqual(A_ , A_) def _lowerCAmelCase ( self : Any): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) """ _SCREAMING_SNAKE_CASE : Union[str, Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]}) self.assertEqual(dummy_files["""torch"""] , A_)
705
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Optional[int]: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Optional[int]: _SCREAMING_SNAKE_CASE : List[str] = tmp_path / """cache""" _SCREAMING_SNAKE_CASE : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _SCREAMING_SNAKE_CASE : List[Any] = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Tuple: _SCREAMING_SNAKE_CASE : int = tmp_path / """cache""" _SCREAMING_SNAKE_CASE : str = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE : List[Any] = features.copy() if features else default_expected_features _SCREAMING_SNAKE_CASE : List[Any] = ( Features({feature: Value(__SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) _SCREAMING_SNAKE_CASE : Optional[Any] = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Tuple: _SCREAMING_SNAKE_CASE : Tuple = tmp_path / """cache""" _SCREAMING_SNAKE_CASE : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE : Dict = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , split=__SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> str: if issubclass(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = parquet_path elif issubclass(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = [parquet_path] _SCREAMING_SNAKE_CASE : Optional[Any] = tmp_path / """cache""" _SCREAMING_SNAKE_CASE : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE : str = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=("train",) )-> Union[str, Any]: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for split in splits: _SCREAMING_SNAKE_CASE : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Optional[int]: _SCREAMING_SNAKE_CASE : Dict = tmp_path / """cache""" _SCREAMING_SNAKE_CASE : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _SCREAMING_SNAKE_CASE : Tuple = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Dict: _SCREAMING_SNAKE_CASE : Optional[int] = tmp_path / """cache""" _SCREAMING_SNAKE_CASE : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE : List[str] = features.copy() if features else default_expected_features _SCREAMING_SNAKE_CASE : str = ( Features({feature: Value(__SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) _SCREAMING_SNAKE_CASE : int = ParquetDatasetReader({"""train""": parquet_path} , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Dict: if split: _SCREAMING_SNAKE_CASE : Union[str, Any] = {split: parquet_path} else: _SCREAMING_SNAKE_CASE : Optional[int] = """train""" _SCREAMING_SNAKE_CASE : Any = {"""train""": parquet_path, """test""": parquet_path} _SCREAMING_SNAKE_CASE : List[str] = tmp_path / """cache""" _SCREAMING_SNAKE_CASE : List[str] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE : Union[str, Any] = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> List[Any]: _SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetWriter(__SCREAMING_SNAKE_CASE , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _SCREAMING_SNAKE_CASE : Tuple = pq.ParquetFile(tmp_path / """foo.parquet""" ) _SCREAMING_SNAKE_CASE : str = pf.read() assert dataset.data.table == output_table def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Union[str, Any]: _SCREAMING_SNAKE_CASE : Dict = str(shared_datadir / """test_image_rgb.jpg""" ) _SCREAMING_SNAKE_CASE : Optional[Any] = {"""image""": [image_path]} _SCREAMING_SNAKE_CASE : Optional[Any] = Features({"""image""": Image()} ) _SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_dict(__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Tuple = ParquetDatasetWriter(__SCREAMING_SNAKE_CASE , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _SCREAMING_SNAKE_CASE : List[str] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features _SCREAMING_SNAKE_CASE : List[Any] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=__SCREAMING_SNAKE_CASE ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> int: assert get_writer_batch_size(__SCREAMING_SNAKE_CASE ) == expected
635
0
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ : Dict = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : int = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Optional[int] = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys UpperCamelCase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
115
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder __lowerCAmelCase : List[str] = "__DUMMY_TRANSFORMERS_USER__" __lowerCAmelCase : Optional[int] = "Dummy User" __lowerCAmelCase : Union[str, Any] = "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" __lowerCAmelCase : Any = "https://hub-ci.huggingface.co" __lowerCAmelCase : str = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" __lowerCAmelCase : Optional[int] = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" __lowerCAmelCase : int = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def UpperCAmelCase_ ( __lowerCAmelCase ) -> Optional[int]: monkeypatch.setattr( '''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''' , UpperCamelCase__ ) @pytest.fixture def UpperCAmelCase_ ( __lowerCAmelCase ) -> str: monkeypatch.setattr('''datasets.config.HF_ENDPOINT''' , UpperCamelCase__ ) monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''' , UpperCamelCase__ ) @pytest.fixture def UpperCAmelCase_ ( __lowerCAmelCase ) -> Dict: monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''' , UpperCamelCase__ ) @pytest.fixture def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> int: HfFolder.save_token(UpperCamelCase__ ) yield HfFolder.delete_token() @pytest.fixture(scope='''session''' ) def UpperCAmelCase_ ( ) -> Optional[int]: return HfApi(endpoint=UpperCamelCase__ ) @pytest.fixture(scope='''session''' ) def UpperCAmelCase_ ( __lowerCAmelCase ) -> Union[str, Any]: __lowercase : Union[str, Any] = HfFolder.get_token() HfFolder.save_token(UpperCamelCase__ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCamelCase__ ) @pytest.fixture def UpperCAmelCase_ ( __lowerCAmelCase ) -> Tuple: def _cleanup_repo(__lowerCAmelCase ): hf_api.delete_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type='''dataset''' ) return _cleanup_repo @pytest.fixture def UpperCAmelCase_ ( __lowerCAmelCase ) -> int: @contextmanager def _temporary_repo(__lowerCAmelCase ): try: yield repo_id finally: cleanup_repo(UpperCamelCase__ ) return _temporary_repo @pytest.fixture(scope='''session''' ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: __lowercase : Any = F'repo_txt_data-{int(time.time() * 10E3 )}' __lowercase : Any = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type='''dataset''' , private=UpperCamelCase__ ) hf_api.upload_file( token=UpperCamelCase__ , path_or_fileobj=str(UpperCamelCase__ ) , path_in_repo='''data/text_data.txt''' , repo_id=UpperCamelCase__ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='''session''' ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: __lowercase : Union[str, Any] = F'repo_zipped_txt_data-{int(time.time() * 10E3 )}' __lowercase : Dict = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type='''dataset''' , private=UpperCamelCase__ ) hf_api.upload_file( token=UpperCamelCase__ , path_or_fileobj=str(UpperCamelCase__ ) , path_in_repo='''data.zip''' , repo_id=UpperCamelCase__ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='''session''' ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: __lowercase : Any = F'repo_zipped_img_data-{int(time.time() * 10E3 )}' __lowercase : List[Any] = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type='''dataset''' , private=UpperCamelCase__ ) hf_api.upload_file( token=UpperCamelCase__ , path_or_fileobj=str(UpperCamelCase__ ) , path_in_repo='''data.zip''' , repo_id=UpperCamelCase__ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: return hf_private_dataset_repo_zipped_img_data_
703
def UpperCAmelCase_ ( __lowerCAmelCase ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('''multiplicative_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''' ) __lowercase : Dict = 0 __lowercase : Optional[int] = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: __lowercase : str = [int(__lowerCAmelCase ) for i in num_string] __lowercase : Union[str, Any] = 1 for i in range(0 , len(__lowerCAmelCase ) ): total *= numbers[i] __lowercase : Any = str(__lowerCAmelCase ) steps += 1 return steps def UpperCAmelCase_ ( __lowerCAmelCase ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('''additive_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''additive_persistence() does not accept negative values''' ) __lowercase : Any = 0 __lowercase : Union[str, Any] = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: __lowercase : List[str] = [int(__lowerCAmelCase ) for i in num_string] __lowercase : Tuple = 0 for i in range(0 , len(__lowerCAmelCase ) ): total += numbers[i] __lowercase : List[str] = str(__lowerCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
284
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Dict = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "ibert" def __init__( self : Union[str, Any] ,A : Tuple=3_05_22 ,A : Optional[Any]=7_68 ,A : List[Any]=12 ,A : Optional[Any]=12 ,A : List[str]=30_72 ,A : Union[str, Any]="gelu" ,A : str=0.1 ,A : int=0.1 ,A : Dict=5_12 ,A : str=2 ,A : Any=0.02 ,A : str=1E-12 ,A : List[str]=1 ,A : str=0 ,A : Optional[Any]=2 ,A : Union[str, Any]="absolute" ,A : Optional[int]=False ,A : Any="none" ,**A : str ,): super().__init__(pad_token_id=A ,bos_token_id=A ,eos_token_id=A ,**A ) __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = hidden_act __A = intermediate_size __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = initializer_range __A = layer_norm_eps __A = position_embedding_type __A = quant_mode __A = force_dequant class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def UpperCamelCase_ ( self : Tuple ): if self.task == "multiple-choice": __A = {0: "batch", 1: "choice", 2: "sequence"} else: __A = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
55
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,): __A = size if size is not None else {"height": 20, "width": 20} __A = crop_size if crop_size is not None else {"height": 18, "width": 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_center_crop __A = crop_size __A = do_normalize __A = image_mean __A = image_std __A = do_reduce_labels def UpperCamelCase_ ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> int: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(dataset[0]["file"] ) __A = Image.open(dataset[1]["file"] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(ds[0]["file"] ) __A = Image.open(ds[1]["file"] ) __A = Image.open(ds[2]["file"] ) __A = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = BeitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : List[Any] ): __A = BeitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"do_center_crop" ) ) self.assertTrue(hasattr(A ,"center_crop" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : List[str] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels ,A ) __A = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels ,A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[str] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : str ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) __A = [] for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test not batched input (PIL images) __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched input (PIL images) __A , __A = prepare_semantic_batch_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 1_50 ) __A = True __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 )
55
1
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCamelCase__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' __lowercase = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowercase = dict(zip(A_ , range(len(A_ ) ) ) ) __lowercase = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowercase = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_6_0_0_0, """return_attention_mask""": False, """do_normalize""": True, } __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase = os.path.join(self.tmpdirname , A_ ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A_ ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A_ ) + """\n""" ) # load decoder from hub __lowercase = """hf-internal-testing/ngram-beam-search-decoder""" def SCREAMING_SNAKE_CASE_ ( self : Dict , **A_ : Union[str, Any] ): '''simple docstring''' __lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(A_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , **A_ : Optional[Any] ): '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , **A_ : Optional[Any] ): '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) processor.save_pretrained(self.tmpdirname ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' __lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(A_ , """include""" ): WavaVecaProcessorWithLM( tokenizer=A_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) __lowercase = floats_list((3, 1_0_0_0) ) __lowercase = feature_extractor(A_ , return_tensors="""np""" ) __lowercase = processor(A_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) __lowercase = """This is a test string""" __lowercase = processor(text=A_ ) __lowercase = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE_ ( self : Dict , A_ : int=(2, 1_0, 1_6) , A_ : Tuple=7_7 ): '''simple docstring''' np.random.seed(A_ ) return np.random.rand(*A_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) __lowercase = self._get_dummy_logits(shape=(1_0, 1_6) , seed=1_3 ) __lowercase = processor.decode(A_ ) __lowercase = decoder.decode_beams(A_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def SCREAMING_SNAKE_CASE_ ( self : Dict , A_ : Dict ): '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) __lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase = processor.batch_decode(A_ ) else: with get_context(A_ ).Pool() as pool: __lowercase = processor.batch_decode(A_ , A_ ) __lowercase = list(A_ ) with get_context("""fork""" ).Pool() as p: __lowercase = decoder.decode_beams_batch(A_ , A_ ) __lowercase , __lowercase , __lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A_ , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(A_ , decoded_processor.logit_score ) self.assertListEqual(A_ , decoded_processor.lm_score ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) __lowercase = self._get_dummy_logits() __lowercase = 1_5 __lowercase = -20.0 __lowercase = -4.0 __lowercase = processor.batch_decode( A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) __lowercase = decoded_processor_out.text __lowercase = list(A_ ) with get_context("""fork""" ).Pool() as pool: __lowercase = decoder.decode_beams_batch( A_ , A_ , beam_width=A_ , beam_prune_logp=A_ , token_min_logp=A_ , ) __lowercase = [d[0][0] for d in decoded_decoder_out] __lowercase = [d[0][2] for d in decoded_decoder_out] __lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , A_ ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.0_54, -18.4_47] , A_ , atol=1e-3 ) ) self.assertTrue(np.array_equal(A_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.5_54, -13.94_74] , A_ , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) __lowercase = self._get_dummy_logits() __lowercase = 2.0 __lowercase = 5.0 __lowercase = -20.0 __lowercase = True __lowercase = processor.batch_decode( A_ , alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) __lowercase = decoded_processor_out.text __lowercase = list(A_ ) decoder.reset_params( alpha=A_ , beta=A_ , unk_score_offset=A_ , lm_score_boundary=A_ , ) with get_context("""fork""" ).Pool() as pool: __lowercase = decoder.decode_beams_batch( A_ , A_ , ) __lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A_ , A_ ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , A_ ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase = os.listdir(A_ ) __lowercase = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' __lowercase = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(A_ ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase = os.listdir(A_ ) __lowercase = os.listdir(A_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase = floats_list((3, 1_0_0_0) ) __lowercase = processor_wavaveca(A_ , return_tensors="""np""" ) __lowercase = processor_auto(A_ , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __lowercase = self._get_dummy_logits() __lowercase = processor_wavaveca.batch_decode(A_ ) __lowercase = processor_auto.batch_decode(A_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=A_ , feature_extractor=A_ , decoder=A_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def SCREAMING_SNAKE_CASE_ ( A_ : Any , A_ : Optional[int] ): '''simple docstring''' __lowercase = [d[key] for d in offsets] return retrieved_list def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase = self._get_dummy_logits()[0] __lowercase = processor.decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase = self._get_dummy_logits() __lowercase = processor.batch_decode(A_ , output_word_offsets=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(A_ , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' import torch __lowercase = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=A_ ) __lowercase = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_6_0_0_0 ) ) __lowercase = iter(A_ ) __lowercase = next(A_ ) __lowercase = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowercase = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowercase = model(A_ ).logits.cpu().numpy() __lowercase = processor.decode(logits[0] , output_word_offsets=A_ ) __lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowercase = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(A_ , """word""" ) ) , A_ ) self.assertEqual(""" """.join(self.get_from_offsets(A_ , """word""" ) ) , output.text ) # output times __lowercase = torch.tensor(self.get_from_offsets(A_ , """start_time""" ) ) __lowercase = torch.tensor(self.get_from_offsets(A_ , """end_time""" ) ) # fmt: off __lowercase = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) __lowercase = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) ) self.assertTrue(torch.allclose(A_ , A_ , atol=0.01 ) )
442
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ ={ "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ =[ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] UpperCAmelCase__ =[ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] UpperCAmelCase__ =[ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): UpperCAmelCase__ =[ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
442
1
from sklearn.metrics import matthews_corrcoef import datasets a_ = """ Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] """ a_ = """ Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results['matthews_correlation'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results['matthews_correlation'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results['matthews_correlation'], 2)) -0.25 """ a_ = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def lowerCamelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__UpperCAmelCase , __UpperCAmelCase , sample_weight=__UpperCAmelCase ) ), }
175
a_ = { 0: """0""", 1: """1""", 2: """2""", 3: """3""", 4: """4""", 5: """5""", 6: """6""", 7: """7""", 8: """8""", 9: """9""", 10: """a""", 11: """b""", 12: """c""", 13: """d""", 14: """e""", 15: """f""", } def a__ ( _UpperCamelCase : float ): assert type(_UpperCamelCase ) in (int, float) and decimal == int(_UpperCamelCase ) __lowerCamelCase = int(_UpperCamelCase ) __lowerCamelCase = '''''' __lowerCamelCase = False if decimal < 0: __lowerCamelCase = True decimal *= -1 while decimal > 0: __lowerCamelCase ,__lowerCamelCase = divmod(_UpperCamelCase ,16 ) __lowerCamelCase = values[remainder] + hexadecimal __lowerCamelCase = '''0x''' + hexadecimal if negative: __lowerCamelCase = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
175
1
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("""0.8.3"""): raise Exception("""requires gluonnlp == 0.8.3""") if version.parse(mx.__version__) != version.parse("""1.5.0"""): raise Exception("""requires mxnet == 1.5.0""") logging.set_verbosity_info() __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ="""The Nymphenburg Palace is a beautiful palace in Munich!""" def __a ( A , A ) -> Any: '''simple docstring''' A__ = { "attention_cell": "multi_head", "num_layers": 4, "units": 1_024, "hidden_size": 768, "max_length": 512, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 1_024, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1E-5, "token_type_vocab_size": 2, } A__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py A__ = BERTEncoder( attention_cell=predefined_args["attention_cell"] , num_layers=predefined_args["num_layers"] , units=predefined_args["units"] , hidden_size=predefined_args["hidden_size"] , max_length=predefined_args["max_length"] , num_heads=predefined_args["num_heads"] , scaled=predefined_args["scaled"] , dropout=predefined_args["dropout"] , output_attention=A , output_all_encodings=A , use_residual=predefined_args["use_residual"] , activation=predefined_args.get("activation" , "gelu" ) , layer_norm_eps=predefined_args.get("layer_norm_eps" , A ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later A__ = "openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab A__ = os.path.join(get_home_dir() , "models" ) A__ = _load_vocab(A , A , A , cls=A ) A__ = nlp.model.BERTModel( A , len(A ) , units=predefined_args["units"] , embed_size=predefined_args["embed_size"] , embed_dropout=predefined_args["embed_dropout"] , word_embed=predefined_args["word_embed"] , use_pooler=A , use_token_type_embed=A , token_type_vocab_size=predefined_args["token_type_vocab_size"] , use_classifier=A , use_decoder=A , ) original_bort.load_parameters(A , cast_dtype=A , ignore_extra=A ) A__ = original_bort._collect_params_with_prefix() # Build our config 🤗 A__ = { "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.02, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(A ), } A__ = BertConfig.from_dict(A ) A__ = BertForMaskedLM(A ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(A ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(A , A ): A__ = hf_param.shape A__ = to_torch(params[gluon_param] ) A__ = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param A__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , "word_embed.0.weight" ) A__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , "encoder.position_weight" ) A__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , "encoder.layer_norm.beta" ) A__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , "encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) A__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): A__ = hf_bort_model.bert.encoder.layer[i] # self attention A__ = layer.attention.self A__ = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) A__ = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) A__ = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) A__ = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) A__ = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) A__ = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output A__ = layer.attention.output A__ = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) A__ = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) A__ = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) A__ = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate A__ = layer.intermediate A__ = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) A__ = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output A__ = layer.output A__ = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) A__ = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) A__ = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) A__ = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models A__ = RobertaTokenizer.from_pretrained("roberta-base" ) A__ = tokenizer.encode_plus(A )["input_ids"] # Get gluon output A__ = mx.nd.array([input_ids] ) A__ = original_bort(inputs=A , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(A ) A__ = BertModel.from_pretrained(A ) hf_bort_model.eval() A__ = tokenizer.encode_plus(A , return_tensors="pt" ) A__ = hf_bort_model(**A )[0] A__ = output_gluon[0].asnumpy() A__ = output_hf[0].detach().numpy() A__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() A__ = np.allclose(A , A , atol=1E-3 ) if success: print("✔️ Both model do output the same tensors" ) else: print("❌ Both model do **NOT** output the same tensors" ) print("Absolute difference is:" , A ) if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( """--bort_checkpoint_path""", default=None, type=str, required=True, help="""Path the official Bort params file.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCAmelCase =parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
721
"""simple docstring""" from typing import Dict, Optional import numpy as np import datasets __UpperCAmelCase =""" IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ __UpperCAmelCase =""" Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ __UpperCAmelCase ="""\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __a ( A , A , A , A , A = None , A = False , ) -> Optional[int]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): A__ = new_id # turn into Numpy arrays A__ = np.array(A ) A__ = np.array(A ) if reduce_labels: A__ = 255 A__ = label - 1 A__ = 255 A__ = label != ignore_index A__ = np.not_equal(A , A ) A__ = pred_label[mask] A__ = np.array(A )[mask] A__ = pred_label[pred_label == label] A__ = np.histogram(A , bins=A , range=(0, num_labels - 1) )[0] A__ = np.histogram(A , bins=A , range=(0, num_labels - 1) )[0] A__ = np.histogram(A , bins=A , range=(0, num_labels - 1) )[0] A__ = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __a ( A , A , A , A , A = None , A = False , ) -> Union[str, Any]: '''simple docstring''' A__ = np.zeros((num_labels,) , dtype=np.floataa ) A__ = np.zeros((num_labels,) , dtype=np.floataa ) A__ = np.zeros((num_labels,) , dtype=np.floataa ) A__ = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(A , A ): A__ , A__ , A__ , A__ = intersect_and_union( A , A , A , A , A , A ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __a ( A , A , A , A , A = None , A = None , A = False , ) -> int: '''simple docstring''' A__ , A__ , A__ , A__ = total_intersect_and_union( A , A , A , A , A , A ) # compute metrics A__ = {} A__ = total_area_intersect.sum() / total_area_label.sum() A__ = total_area_intersect / total_area_union A__ = total_area_intersect / total_area_label A__ = np.nanmean(A ) A__ = np.nanmean(A ) A__ = all_acc A__ = iou A__ = acc if nan_to_num is not None: A__ = {metric: np.nan_to_num(A , nan=A ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowercase_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), } ) , reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ] , ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , ): '''simple docstring''' A__ = mean_iou( results=UpperCamelCase__ , gt_seg_maps=UpperCamelCase__ , num_labels=UpperCamelCase__ , ignore_index=UpperCamelCase__ , nan_to_num=UpperCamelCase__ , label_map=UpperCamelCase__ , reduce_labels=UpperCamelCase__ , ) return iou_result
261
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A : Optional[int] = logging.get_logger(__name__) A : Union[str, Any] = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class a_ ( _a ): a : int = '''detr''' a : Dict = ['''past_key_values'''] a : Tuple = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=3 , __UpperCamelCase=100 , __UpperCamelCase=6 , __UpperCamelCase=2_048 , __UpperCamelCase=8 , __UpperCamelCase=6 , __UpperCamelCase=2_048 , __UpperCamelCase=8 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=True , __UpperCamelCase="relu" , __UpperCamelCase=256 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=1.0 , __UpperCamelCase=False , __UpperCamelCase="sine" , __UpperCamelCase="resnet50" , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=0.1 , **__UpperCamelCase , ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _lowercase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): _lowercase = backbone_config.get("""model_type""" ) _lowercase = CONFIG_MAPPING[backbone_model_type] _lowercase = config_class.from_dict(__UpperCamelCase ) # set timm attributes to None _lowercase , _lowercase , _lowercase = None, None, None _lowercase = use_timm_backbone _lowercase = backbone_config _lowercase = num_channels _lowercase = num_queries _lowercase = d_model _lowercase = encoder_ffn_dim _lowercase = encoder_layers _lowercase = encoder_attention_heads _lowercase = decoder_ffn_dim _lowercase = decoder_layers _lowercase = decoder_attention_heads _lowercase = dropout _lowercase = attention_dropout _lowercase = activation_dropout _lowercase = activation_function _lowercase = init_std _lowercase = init_xavier_std _lowercase = encoder_layerdrop _lowercase = decoder_layerdrop _lowercase = encoder_layers _lowercase = auxiliary_loss _lowercase = position_embedding_type _lowercase = backbone _lowercase = use_pretrained_backbone _lowercase = dilation # Hungarian matcher _lowercase = class_cost _lowercase = bbox_cost _lowercase = giou_cost # Loss coefficients _lowercase = mask_loss_coefficient _lowercase = dice_loss_coefficient _lowercase = bbox_loss_coefficient _lowercase = giou_loss_coefficient _lowercase = eos_coefficient super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase ) @property def UpperCamelCase_ ( self ): return self.encoder_attention_heads @property def UpperCamelCase_ ( self ): return self.d_model @classmethod def UpperCamelCase_ ( cls , __UpperCamelCase , **__UpperCamelCase ): return cls(backbone_config=__UpperCamelCase , **__UpperCamelCase ) def UpperCamelCase_ ( self ): _lowercase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _lowercase = self.backbone_config.to_dict() _lowercase = self.__class__.model_type return output class a_ ( _a ): a : Optional[Any] = version.parse('''1.11''' ) @property def UpperCamelCase_ ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def UpperCamelCase_ ( self ): return 1E-5 @property def UpperCamelCase_ ( self ): return 12
287
from __future__ import annotations def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ) -> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
287
1
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union UpperCAmelCase : int = TypeVar('T') UpperCAmelCase : Optional[int] = Union[List[T], Tuple[T, ...]] UpperCAmelCase : List[Any] = Union[T, List[T], Dict[str, T]] UpperCAmelCase : Dict = Union[str, bytes, os.PathLike]
721
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : Tuple = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') UpperCAmelCase : str = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : Optional[Any] = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Tuple = sorted(arg_to_scheduler.keys()) UpperCAmelCase : Optional[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCamelCase (pl.LightningModule ): def __init__( self , lowercase__ , lowercase__=None , lowercase__="base" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Optional[int]: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase__ ) _snake_case : Union[str, Any] = 0 _snake_case : int = Path(self.hparams.output_dir ) _snake_case : int = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _snake_case : Tuple = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase__ , **lowercase__ , ) else: _snake_case : PretrainedConfig = config _snake_case : Optional[Any] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase__ , lowercase__ ): assert hasattr(self.config , lowercase__ ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , lowercase__ , getattr(self.hparams , lowercase__ ) ) if tokenizer is None: _snake_case : Optional[int] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase__ , ) else: _snake_case : PreTrainedTokenizer = tokenizer _snake_case : Any = MODEL_MODES[mode] if model is None: _snake_case : List[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase__ , ) else: _snake_case : Optional[Any] = model def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Dict = self.model_type.from_pretrained(*lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler] _snake_case : Optional[int] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _snake_case : str = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = self.model _snake_case : List[Any] = ['''bias''', '''LayerNorm.weight'''] _snake_case : List[str] = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: _snake_case : Any = Adafactor( lowercase__ , lr=self.hparams.learning_rate , scale_parameter=lowercase__ , relative_step=lowercase__ ) else: _snake_case : List[str] = AdamW( lowercase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _snake_case : List[str] = optimizer _snake_case : Any = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" return self.validation_step(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple: """simple docstring""" return self.validation_end(lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _snake_case : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase_ ( self , lowercase__ ) -> Any: """simple docstring""" if stage == "test": _snake_case : Any = len(self.test_dataloader().dataset ) else: _snake_case : Dict = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase__ ) _snake_case : Optional[int] = len(self.train_dataloader().dataset ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = False ) -> str: """simple docstring""" raise NotImplementedError('''You must implement this for your task''' ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" return self.train_loader def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]: """simple docstring""" return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase__ , list(filter(lowercase__ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Dict = self.output_dir.joinpath('''best_tfmr''' ) _snake_case : Tuple = self.step_count self.model.save_pretrained(lowercase__ ) self.tokenizer.save_pretrained(lowercase__ ) @staticmethod def UpperCAmelCase_ ( lowercase__ , lowercase__ ) -> Tuple: """simple docstring""" parser.add_argument( '''--model_name_or_path''' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase__ , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase__ , type=lowercase__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase__ ).parent / '''test_run''' / '''cache''' ) , type=lowercase__ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase__ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase__ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase__ , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase__ , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase__ , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase__ , metavar=lowercase__ , type=lowercase__ , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase__ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase__ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase__ , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase__ ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> str: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase__ ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" _snake_case : Any = trainer.lr_schedulers[0]['''scheduler'''] _snake_case : Optional[int] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" rank_zero_info('''***** Validation results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log results for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Dict: """simple docstring""" rank_zero_info('''***** Test results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log and save results to file _snake_case : str = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase__ , '''w''' ) as writer: for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" parser.add_argument( '''--output_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''model_checkpoints''' ) , type=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=lowerCAmelCase_ , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=lowerCAmelCase_ ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=lowerCAmelCase_ , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=lowerCAmelCase_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''dummy-train-data''' ) , type=lowerCAmelCase_ , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=[] , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ): """simple docstring""" pl.seed_everything(args.seed ) # init model _snake_case : Union[str, Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase_ ) # add custom checkpoints if checkpoint_callback is None: _snake_case : Any = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase_ ) if logging_callback is None: _snake_case : str = LoggingCallback() _snake_case : Tuple = {} if args.fpaa: _snake_case : Union[str, Any] = 16 if args.gpus > 1: _snake_case : Optional[Any] = '''auto''' _snake_case : Tuple = '''ddp''' _snake_case : Optional[Any] = args.accumulate_grad_batches _snake_case : Tuple = None _snake_case : str = '''auto''' _snake_case : int = pl.Trainer.from_argparse_args( lowerCAmelCase_ , weights_summary=lowerCAmelCase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase_ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase_ , ) if args.do_train: trainer.fit(lowerCAmelCase_ ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
47
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __SCREAMING_SNAKE_CASE = {'configuration_vit': ['VIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTConfig', 'ViTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = ['ViTFeatureExtractor'] __SCREAMING_SNAKE_CASE = ['ViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'VIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTForImageClassification', 'ViTForMaskedImageModeling', 'ViTModel', 'ViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'TFViTForImageClassification', 'TFViTModel', 'TFViTPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'FlaxViTForImageClassification', 'FlaxViTModel', 'FlaxViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
357
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCamelCase ( _A ): '''simple docstring''' def lowercase__ ( self ): """simple docstring""" a__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_a , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(_a , 'num_attention_heads' ) ) class _UpperCamelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=32 , _a=2 , _a=3 , _a=640 , _a=4 , _a="silu" , _a=3 , _a=32 , _a=0.1 , _a=0.1 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , ): """simple docstring""" a__ = parent a__ = batch_size a__ = image_size a__ = patch_size a__ = num_channels a__ = last_hidden_size a__ = num_attention_heads a__ = hidden_act a__ = conv_kernel_size a__ = output_stride a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = classifier_dropout_prob a__ = use_labels a__ = is_training a__ = num_labels a__ = initializer_range a__ = scope def lowercase__ ( self ): """simple docstring""" a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.num_labels ) a__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a__ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self ): """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase__ ( self , _a , _a , _a , _a ): """simple docstring""" a__ = MobileViTModel(config=_a ) model.to(_a ) model.eval() a__ = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self , _a , _a , _a , _a ): """simple docstring""" a__ = self.num_labels a__ = MobileViTForImageClassification(_a ) model.to(_a ) model.eval() a__ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self , _a , _a , _a , _a ): """simple docstring""" a__ = self.num_labels a__ = MobileViTForSemanticSegmentation(_a ) model.to(_a ) model.eval() a__ = model(_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) a__ = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self ): """simple docstring""" a__ = self.prepare_config_and_inputs() a__ , a__ , a__ , a__ = config_and_inputs a__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( _A , _A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE:Optional[Any] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE:List[Any] = ( { 'feature-extraction': MobileViTModel, 'image-classification': MobileViTForImageClassification, 'image-segmentation': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE:List[Any] = False SCREAMING_SNAKE_CASE:Optional[Any] = False SCREAMING_SNAKE_CASE:Union[str, Any] = False SCREAMING_SNAKE_CASE:str = False def lowercase__ ( self ): """simple docstring""" a__ = MobileViTModelTester(self ) a__ = MobileViTConfigTester(self , config_class=_a , has_text_modality=_a ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason='MobileViT does not output attentions' ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(_a ) a__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(_a , _a , _a ): a__ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): a__ = model(**self._prepare_for_class(_a , _a ) ) a__ = outputs.hidden_states a__ = 5 self.assertEqual(len(_a ) , _a ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. a__ = 2 for i in range(len(_a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ = True check_hidden_states_output(_a , _a , _a ) def lowercase__ ( self ): """simple docstring""" a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def lowercase__ ( self ): """simple docstring""" a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = MobileViTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): a__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self ): """simple docstring""" return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def lowercase__ ( self ): """simple docstring""" a__ = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_a ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=_a , return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): a__ = model(**_a ) # verify the logits a__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) a__ = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @slow def lowercase__ ( self ): """simple docstring""" a__ = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) a__ = model.to(_a ) a__ = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) a__ = prepare_img() a__ = image_processor(images=_a , return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): a__ = model(**_a ) a__ = outputs.logits # verify the logits a__ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _a ) a__ = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1e-4 ) ) @slow def lowercase__ ( self ): """simple docstring""" a__ = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) a__ = model.to(_a ) a__ = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) a__ = prepare_img() a__ = image_processor(images=_a , return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): a__ = model(**_a ) a__ = outputs.logits.detach().cpu() a__ = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(50, 60)] ) a__ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _a ) a__ = image_processor.post_process_semantic_segmentation(outputs=_a ) a__ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _a )
394
0
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel a_ = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class UpperCAmelCase_ ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls ) -> Any: __lowercase : str = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def _lowerCamelCase ( cls ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def _lowerCamelCase ( self ) -> List[Any]: __lowercase : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __lowercase : List[str] = FlaxBertModel(lowerCamelCase_ ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __lowercase : Any = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __lowercase : Tuple = flatten_dict(unfreeze(model.params ) ) __lowercase : Dict = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __lowercase : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase_ , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase_ , repo_id='''test-model-flax''' , push_to_hub=lowerCamelCase_ , use_auth_token=self._token ) __lowercase : List[Any] = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __lowercase : Optional[int] = flatten_dict(unfreeze(model.params ) ) __lowercase : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __lowercase : Dict = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase_ , 1E-3 , msg=F"""{key} not identical""" ) def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : Optional[int] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __lowercase : Dict = FlaxBertModel(lowerCamelCase_ ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __lowercase : Any = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __lowercase : Tuple = flatten_dict(unfreeze(model.params ) ) __lowercase : Union[str, Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __lowercase : Tuple = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase_ , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowerCamelCase_ , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=lowerCamelCase_ , use_auth_token=self._token ) __lowercase : int = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __lowercase : Optional[int] = flatten_dict(unfreeze(model.params ) ) __lowercase : Dict = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __lowercase : Optional[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase_ , 1E-3 , msg=F"""{key} not identical""" ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): __lowercase : Dict = True __lowercase : Union[str, Any] = flatten_dict(modela.params ) __lowercase : int = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __lowercase : Optional[Any] = False return models_are_equal @require_flax class UpperCAmelCase_ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Tuple = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __lowercase : Optional[Any] = FlaxBertModel(lowerCamelCase_ ) __lowercase : Union[str, Any] = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) with self.assertRaises(lowerCamelCase_ ): __lowercase : Tuple = FlaxBertModel.from_pretrained(lowerCamelCase_ ) __lowercase : List[Any] = FlaxBertModel.from_pretrained(lowerCamelCase_ , subfolder=lowerCamelCase_ ) self.assertTrue(check_models_equal(lowerCamelCase_ , lowerCamelCase_ ) ) def _lowerCamelCase ( self ) -> List[Any]: __lowercase : Optional[int] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __lowercase : Optional[int] = FlaxBertModel(lowerCamelCase_ ) __lowercase : List[Any] = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , max_shard_size='''10KB''' ) with self.assertRaises(lowerCamelCase_ ): __lowercase : str = FlaxBertModel.from_pretrained(lowerCamelCase_ ) __lowercase : List[str] = FlaxBertModel.from_pretrained(lowerCamelCase_ , subfolder=lowerCamelCase_ ) self.assertTrue(check_models_equal(lowerCamelCase_ , lowerCamelCase_ ) ) def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Tuple = '''bert''' __lowercase : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(lowerCamelCase_ ): __lowercase : Union[str, Any] = FlaxBertModel.from_pretrained(lowerCamelCase_ ) __lowercase : Union[str, Any] = FlaxBertModel.from_pretrained(lowerCamelCase_ , subfolder=lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def _lowerCamelCase ( self ) -> List[Any]: __lowercase : Optional[Any] = '''bert''' __lowercase : Dict = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(lowerCamelCase_ ): __lowercase : Union[str, Any] = FlaxBertModel.from_pretrained(lowerCamelCase_ ) __lowercase : str = FlaxBertModel.from_pretrained(lowerCamelCase_ , subfolder=lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ )
710
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Tuple = len(__UpperCamelCase ) for _ in range(__UpperCamelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __lowercase ,__lowercase : str = arr[i + 1], arr[i] return arr if __name__ == "__main__": a_ = list(range(1_0, 0, -1)) print(F"Original: {arr}. Sorted: {odd_even_transposition(arr)}")
523
0
def _snake_case ( __snake_case = 10**12 ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = 1 _UpperCamelCase = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'{solution() = }')
10
from collections.abc import Callable import numpy as np def lowerCamelCase_ ( lowerCAmelCase__ : Callable , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> np.array: '''simple docstring''' A = int(np.ceil((x_end - xa) / step_size ) ) A = np.zeros((n + 1,) ) A = ya A = xa for k in range(lowerCAmelCase__ ): A = y[k] + step_size * ode_func(lowerCAmelCase__ , y[k] ) A = y[k] + ( (step_size / 2) * (ode_func(lowerCAmelCase__ , y[k] ) + ode_func(x + step_size , lowerCAmelCase__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
106
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case : Union[str, Any] = { """configuration_encodec""": [ """ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EncodecConfig""", ], """feature_extraction_encodec""": ["""EncodecFeatureExtractor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : str = [ """ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""", """EncodecModel""", """EncodecPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys snake_case : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
706
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase_ : Optional[int] = HUGGINGFACE_HUB_CACHE lowerCamelCase_ : List[str] = """config.json""" lowerCamelCase_ : Any = """diffusion_pytorch_model.bin""" lowerCamelCase_ : Union[str, Any] = """diffusion_flax_model.msgpack""" lowerCamelCase_ : Dict = """model.onnx""" lowerCamelCase_ : List[Any] = """diffusion_pytorch_model.safetensors""" lowerCamelCase_ : Optional[Any] = """weights.pb""" lowerCamelCase_ : Optional[Any] = """https://huggingface.co""" lowerCamelCase_ : Union[str, Any] = default_cache_path lowerCamelCase_ : Tuple = """diffusers_modules""" lowerCamelCase_ : Optional[Any] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCamelCase_ : str = ["""fp16""", """non-ema"""] lowerCamelCase_ : List[Any] = """.self_attn"""
670
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = OrderedDict( [ ('audio-spectrogram-transformer', 'ASTFeatureExtractor'), ('beit', 'BeitFeatureExtractor'), ('chinese_clip', 'ChineseCLIPFeatureExtractor'), ('clap', 'ClapFeatureExtractor'), ('clip', 'CLIPFeatureExtractor'), ('clipseg', 'ViTFeatureExtractor'), ('conditional_detr', 'ConditionalDetrFeatureExtractor'), ('convnext', 'ConvNextFeatureExtractor'), ('cvt', 'ConvNextFeatureExtractor'), ('data2vec-audio', 'Wav2Vec2FeatureExtractor'), ('data2vec-vision', 'BeitFeatureExtractor'), ('deformable_detr', 'DeformableDetrFeatureExtractor'), ('deit', 'DeiTFeatureExtractor'), ('detr', 'DetrFeatureExtractor'), ('dinat', 'ViTFeatureExtractor'), ('donut-swin', 'DonutFeatureExtractor'), ('dpt', 'DPTFeatureExtractor'), ('encodec', 'EncodecFeatureExtractor'), ('flava', 'FlavaFeatureExtractor'), ('glpn', 'GLPNFeatureExtractor'), ('groupvit', 'CLIPFeatureExtractor'), ('hubert', 'Wav2Vec2FeatureExtractor'), ('imagegpt', 'ImageGPTFeatureExtractor'), ('layoutlmv2', 'LayoutLMv2FeatureExtractor'), ('layoutlmv3', 'LayoutLMv3FeatureExtractor'), ('levit', 'LevitFeatureExtractor'), ('maskformer', 'MaskFormerFeatureExtractor'), ('mctct', 'MCTCTFeatureExtractor'), ('mobilenet_v1', 'MobileNetV1FeatureExtractor'), ('mobilenet_v2', 'MobileNetV2FeatureExtractor'), ('mobilevit', 'MobileViTFeatureExtractor'), ('nat', 'ViTFeatureExtractor'), ('owlvit', 'OwlViTFeatureExtractor'), ('perceiver', 'PerceiverFeatureExtractor'), ('poolformer', 'PoolFormerFeatureExtractor'), ('regnet', 'ConvNextFeatureExtractor'), ('resnet', 'ConvNextFeatureExtractor'), ('segformer', 'SegformerFeatureExtractor'), ('sew', 'Wav2Vec2FeatureExtractor'), ('sew-d', 'Wav2Vec2FeatureExtractor'), ('speech_to_text', 'Speech2TextFeatureExtractor'), ('speecht5', 'SpeechT5FeatureExtractor'), ('swiftformer', 'ViTFeatureExtractor'), ('swin', 'ViTFeatureExtractor'), ('swinv2', 'ViTFeatureExtractor'), ('table-transformer', 'DetrFeatureExtractor'), ('timesformer', 'VideoMAEFeatureExtractor'), ('tvlt', 'TvltFeatureExtractor'), ('unispeech', 'Wav2Vec2FeatureExtractor'), ('unispeech-sat', 'Wav2Vec2FeatureExtractor'), ('van', 'ConvNextFeatureExtractor'), ('videomae', 'VideoMAEFeatureExtractor'), ('vilt', 'ViltFeatureExtractor'), ('vit', 'ViTFeatureExtractor'), ('vit_mae', 'ViTFeatureExtractor'), ('vit_msn', 'ViTFeatureExtractor'), ('wav2vec2', 'Wav2Vec2FeatureExtractor'), ('wav2vec2-conformer', 'Wav2Vec2FeatureExtractor'), ('wavlm', 'Wav2Vec2FeatureExtractor'), ('whisper', 'WhisperFeatureExtractor'), ('xclip', 'CLIPFeatureExtractor'), ('yolos', 'YolosFeatureExtractor'), ] ) UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _A ( lowerCAmelCase_ : str ): """simple docstring""" for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCAmelCase__ = model_type_to_module_name(lowerCAmelCase_ ) lowerCAmelCase__ = importlib.import_module(F'.{module_name}' , "transformers.models" ) try: return getattr(lowerCAmelCase_ , lowerCAmelCase_ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(lowerCAmelCase_ , "__name__" , lowerCAmelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCAmelCase__ = importlib.import_module("transformers" ) if hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): return getattr(lowerCAmelCase_ , lowerCAmelCase_ ) return None def _A ( lowerCAmelCase_ : Union[str, os.PathLike] , lowerCAmelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[Dict[str, str]] = None , lowerCAmelCase_ : Optional[Union[bool, str]] = None , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : bool = False , **lowerCAmelCase_ : Any , ): """simple docstring""" lowerCAmelCase__ = get_file_from_repo( lowerCAmelCase_ , lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , revision=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , ) if resolved_config_file is None: logger.info( "Could not locate the feature extractor configuration file, will try to use the model config instead." ) return {} with open(lowerCAmelCase_ , encoding="utf-8" ) as reader: return json.load(lowerCAmelCase_ ) class __lowerCamelCase : """simple docstring""" def __init__( self : int ) -> int: raise EnvironmentError( "AutoFeatureExtractor is designed to be instantiated " "using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(SCREAMING_SNAKE_CASE__ ) def a ( cls : str , SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: lowerCAmelCase__ = kwargs.pop("config" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = kwargs.pop("trust_remote_code" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = True lowerCAmelCase__ , lowerCAmelCase__ = FeatureExtractionMixin.get_feature_extractor_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = config_dict.get("feature_extractor_type" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = None if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): lowerCAmelCase__ = config_dict["auto_map"]["AutoFeatureExtractor"] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # It could be in `config.feature_extractor_type`` lowerCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , "feature_extractor_type" , SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , "auto_map" ) and "AutoFeatureExtractor" in config.auto_map: lowerCAmelCase__ = config.auto_map["AutoFeatureExtractor"] if feature_extractor_class is not None: lowerCAmelCase__ = feature_extractor_class_from_name(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = feature_extractor_auto_map is not None lowerCAmelCase__ = feature_extractor_class is not None or type(SCREAMING_SNAKE_CASE__ ) in FEATURE_EXTRACTOR_MAPPING lowerCAmelCase__ = resolve_trust_remote_code( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if has_remote_code and trust_remote_code: lowerCAmelCase__ = get_class_from_dynamic_module( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = kwargs.pop("code_revision" , SCREAMING_SNAKE_CASE__ ) if os.path.isdir(SCREAMING_SNAKE_CASE__ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(SCREAMING_SNAKE_CASE__ ) in FEATURE_EXTRACTOR_MAPPING: lowerCAmelCase__ = FEATURE_EXTRACTOR_MAPPING[type(SCREAMING_SNAKE_CASE__ )] return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) raise ValueError( f'Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ' f'`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ' f'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}' ) @staticmethod def a ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ) -> Union[str, Any]: FEATURE_EXTRACTOR_MAPPING.register(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
61
from __future__ import annotations lowercase : Dict = tuple[int, int, int] lowercase : List[str] = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase lowercase : int = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- lowercase : Optional[int] = 'EGZWVONAHDCLFQMSIPJBYUKXTR' lowercase : Optional[Any] = 'FOBHMDKEXQNRAULPGSJVTYICZW' lowercase : str = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- lowercase : Tuple = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- lowercase : Optional[int] = 'RMDJXFUWGISLHVTCQNKYPBEZOA' lowercase : List[Any] = 'SGLCPQWZHKXAREONTFBVIYJUDM' lowercase : Dict = 'HVSICLTYKQUBXDWAJZOMFGPREN' lowercase : List[Any] = 'RZWQHFMVDBKICJLNTUXAGYPSOE' lowercase : Optional[Any] = 'LFKIJODBEGAMQPXVUHYSTCZRWN' lowercase : Tuple = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : RotorPositionT , _lowerCamelCase : RotorSelectionT , _lowerCamelCase : str) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: '''simple docstring''' if (unique_rotsel := len(set(_lowerCamelCase))) < 3: __UpperCamelCase : Tuple = F'Please use 3 unique rotors (not {unique_rotsel})' raise Exception(_lowerCamelCase) # Checks if rotor positions are valid __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : str = rotpos if not 0 < rotorposa <= len(_lowerCamelCase): __UpperCamelCase : Union[str, Any] = F'First rotor position is not within range of 1..26 ({rotorposa}' raise ValueError(_lowerCamelCase) if not 0 < rotorposa <= len(_lowerCamelCase): __UpperCamelCase : int = F'Second rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(_lowerCamelCase) if not 0 < rotorposa <= len(_lowerCamelCase): __UpperCamelCase : List[Any] = F'Third rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(_lowerCamelCase) # Validates string and returns dict __UpperCamelCase : str = _plugboard(_lowerCamelCase) return rotpos, rotsel, pbdict def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> dict[str, str]: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase): __UpperCamelCase : Union[str, Any] = F'Plugboard setting isn\'t type string ({type(_lowerCamelCase)})' raise TypeError(_lowerCamelCase) elif len(_lowerCamelCase) % 2 != 0: __UpperCamelCase : int = F'Odd number of symbols ({len(_lowerCamelCase)})' raise Exception(_lowerCamelCase) elif pbstring == "": return {} pbstring.replace(" " , "") # Checks if all characters are unique __UpperCamelCase : Optional[int] = set() for i in pbstring: if i not in abc: __UpperCamelCase : Tuple = F'\'{i}\' not in list of symbols' raise Exception(_lowerCamelCase) elif i in tmppbl: __UpperCamelCase : Tuple = F'Duplicate symbol ({i})' raise Exception(_lowerCamelCase) else: tmppbl.add(_lowerCamelCase) del tmppbl # Created the dictionary __UpperCamelCase : Union[str, Any] = {} for j in range(0 , len(_lowerCamelCase) - 1 , 2): __UpperCamelCase : Union[str, Any] = pbstring[j + 1] __UpperCamelCase : str = pbstring[j] return pb def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : RotorPositionT , _lowerCamelCase : RotorSelectionT = (rotora, rotora, rotora) , _lowerCamelCase : str = "" , ) -> str: '''simple docstring''' __UpperCamelCase : List[Any] = text.upper() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = _validator( _lowerCamelCase , _lowerCamelCase , plugb.upper()) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Tuple = rotor_position __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 __UpperCamelCase : List[str] = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: __UpperCamelCase : Dict = plugboard[symbol] # rotor ra -------------------------- __UpperCamelCase : Optional[int] = abc.index(_lowerCamelCase) + rotorposa __UpperCamelCase : List[Any] = rotora[index % len(_lowerCamelCase)] # rotor rb -------------------------- __UpperCamelCase : Dict = abc.index(_lowerCamelCase) + rotorposa __UpperCamelCase : Any = rotora[index % len(_lowerCamelCase)] # rotor rc -------------------------- __UpperCamelCase : str = abc.index(_lowerCamelCase) + rotorposa __UpperCamelCase : Union[str, Any] = rotora[index % len(_lowerCamelCase)] # reflector -------------------------- # this is the reason you don't need another machine to decipher __UpperCamelCase : Union[str, Any] = reflector[symbol] # 2nd rotors __UpperCamelCase : Optional[int] = abc[rotora.index(_lowerCamelCase) - rotorposa] __UpperCamelCase : Optional[Any] = abc[rotora.index(_lowerCamelCase) - rotorposa] __UpperCamelCase : str = abc[rotora.index(_lowerCamelCase) - rotorposa] # 2nd plugboard if symbol in plugboard: __UpperCamelCase : Optional[Any] = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_lowerCamelCase): __UpperCamelCase : Any = 0 rotorposa += 1 if rotorposa >= len(_lowerCamelCase): __UpperCamelCase : Tuple = 0 rotorposa += 1 if rotorposa >= len(_lowerCamelCase): __UpperCamelCase : List[str] = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_lowerCamelCase) return "".join(_lowerCamelCase) if __name__ == "__main__": lowercase : Optional[Any] = 'This is my Python script that emulates the Enigma machine from WWII.' lowercase : int = (1, 1, 1) lowercase : Optional[Any] = 'pictures' lowercase : Optional[Any] = (rotora, rotora, rotora) lowercase : Optional[Any] = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
557
0
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ =logging.get_logger(__name__) def _a ( UpperCAmelCase__ ) -> Tuple: __SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' ) if "model" in sd.keys(): __SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __SCREAMING_SNAKE_CASE = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __SCREAMING_SNAKE_CASE = sd.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __SCREAMING_SNAKE_CASE = sd[key] # We split QKV in separate Q,K,V __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __SCREAMING_SNAKE_CASE = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.split(UpperCAmelCase__ , depth // 3 , dim=0 ) __SCREAMING_SNAKE_CASE = q __SCREAMING_SNAKE_CASE = k __SCREAMING_SNAKE_CASE = v del sd[key] return sd @torch.no_grad() def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = load_checkpoint(UpperCAmelCase__ ) if config is not None: __SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = OPTConfig() __SCREAMING_SNAKE_CASE = OPTModel(UpperCAmelCase__ ).half().eval() model.load_state_dict(UpperCAmelCase__ ) # Check results Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") lowerCAmelCase__ =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
690
"""simple docstring""" def _a ( UpperCAmelCase__ ) -> str: __SCREAMING_SNAKE_CASE = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _a ( UpperCAmelCase__ ) -> dict[str, str]: __SCREAMING_SNAKE_CASE = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __SCREAMING_SNAKE_CASE = remove_duplicates(key.upper() ) __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) # First fill cipher with key characters __SCREAMING_SNAKE_CASE = {alphabet[i]: char for i, char in enumerate(UpperCAmelCase__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(UpperCAmelCase__ ) , 26 ): __SCREAMING_SNAKE_CASE = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __SCREAMING_SNAKE_CASE = alphabet[i - offset] __SCREAMING_SNAKE_CASE = char return cipher_alphabet def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str: return "".join(cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> str: __SCREAMING_SNAKE_CASE = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(UpperCAmelCase__ , UpperCAmelCase__ ) for ch in message.upper() ) def _a ( ) -> None: __SCREAMING_SNAKE_CASE = input('''Enter message to encode or decode: ''' ).strip() __SCREAMING_SNAKE_CASE = input('''Enter keyword: ''' ).strip() __SCREAMING_SNAKE_CASE = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: __SCREAMING_SNAKE_CASE = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) __SCREAMING_SNAKE_CASE = create_cipher_map(UpperCAmelCase__ ) print(func(UpperCAmelCase__ , UpperCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
690
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _a ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ): """simple docstring""" with open(__lowerCAmelCase ) as metadata_file: snake_case__ : Tuple = json.load(__lowerCAmelCase ) snake_case__ : Union[str, Any] = LukeConfig(use_entity_aware_attention=__lowerCAmelCase , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path snake_case__ : Any = torch.load(__lowerCAmelCase , map_location='''cpu''' )['''module'''] # Load the entity vocab file snake_case__ : int = load_original_entity_vocab(__lowerCAmelCase ) # add an entry for [MASK2] snake_case__ : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 snake_case__ : Tuple = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks snake_case__ : Optional[Any] = AddedToken('''<ent>''' , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) snake_case__ : int = AddedToken('''<ent2>''' , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , '''tokenizer_config.json''' ) , '''r''' ) as f: snake_case__ : Any = json.load(__lowerCAmelCase ) snake_case__ : Optional[int] = '''MLukeTokenizer''' with open(os.path.join(__lowerCAmelCase , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : List[str] = MLukeTokenizer.from_pretrained(__lowerCAmelCase ) # Initialize the embeddings of the special tokens snake_case__ : Tuple = tokenizer.convert_tokens_to_ids(['''@'''] )[0] snake_case__ : Tuple = tokenizer.convert_tokens_to_ids(['''#'''] )[0] snake_case__ : Optional[Any] = state_dict['''embeddings.word_embeddings.weight'''] snake_case__ : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 ) snake_case__ : List[Any] = word_emb[enta_init_index].unsqueeze(0 ) snake_case__ : Optional[int] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: snake_case__ : List[Any] = state_dict[bias_name] snake_case__ : Any = decoder_bias[ent_init_index].unsqueeze(0 ) snake_case__ : Tuple = decoder_bias[enta_init_index].unsqueeze(0 ) snake_case__ : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: snake_case__ : Dict = F"""encoder.layer.{layer_index}.attention.self.""" snake_case__ : Tuple = state_dict[prefix + matrix_name] snake_case__ : Union[str, Any] = state_dict[prefix + matrix_name] snake_case__ : str = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks snake_case__ : Any = state_dict['''entity_embeddings.entity_embeddings.weight'''] snake_case__ : int = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) snake_case__ : Tuple = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' snake_case__ : List[Any] = state_dict['''entity_predictions.bias'''] snake_case__ : Union[str, Any] = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) snake_case__ : Optional[int] = torch.cat([entity_prediction_bias, entity_mask_bias] ) snake_case__ : Optional[int] = LukeForMaskedLM(config=__lowerCAmelCase ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) snake_case__ : List[str] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): snake_case__ : Dict = state_dict[key] else: snake_case__ : Union[str, Any] = state_dict[key] snake_case__ , snake_case__ : Dict = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) if set(__lowerCAmelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__lowerCAmelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs snake_case__ : Optional[Any] = MLukeTokenizer.from_pretrained(__lowerCAmelCase , task='''entity_classification''' ) snake_case__ : Dict = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' snake_case__ : Dict = (0, 9) snake_case__ : Dict = tokenizer(__lowerCAmelCase , entity_spans=[span] , return_tensors='''pt''' ) snake_case__ : List[str] = model(**__lowerCAmelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base snake_case__ : Any = torch.Size((1, 33, 7_68) ) snake_case__ : Tuple = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __lowerCAmelCase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base snake_case__ : int = torch.Size((1, 1, 7_68) ) snake_case__ : Any = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __lowerCAmelCase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction snake_case__ : List[str] = MLukeTokenizer.from_pretrained(__lowerCAmelCase ) snake_case__ : Optional[int] = '''Tokyo is the capital of <mask>.''' snake_case__ : Optional[Any] = (24, 30) snake_case__ : List[str] = tokenizer(__lowerCAmelCase , entity_spans=[span] , return_tensors='''pt''' ) snake_case__ : int = model(**__lowerCAmelCase ) snake_case__ : Any = encoding['''input_ids'''][0].tolist() snake_case__ : List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) snake_case__ : str = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__lowerCAmelCase ) snake_case__ : List[Any] = outputs.entity_logits[0][0].argmax().item() snake_case__ : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__lowerCAmelCase ) ) model.save_pretrained(__lowerCAmelCase ) def _a ( __lowerCAmelCase : Union[str, Any] ): """simple docstring""" snake_case__ : List[Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] snake_case__ : str = [json.loads(__lowerCAmelCase ) for line in open(__lowerCAmelCase )] snake_case__ : Optional[Any] = {} for entry in data: snake_case__ : Dict = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: snake_case__ : List[str] = entity_id break snake_case__ : Optional[Any] = F"""{language}:{entity_name}""" snake_case__ : Tuple = entity_id return new_mapping if __name__ == "__main__": lowerCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) lowerCAmelCase__ : List[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
347
'''simple docstring''' from ..utils import DummyObject, requires_backends class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""transformers""", """torch""", """note_seq"""] def __init__( self : Dict , *snake_case_ : Any , **snake_case_ : List[Any] ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __magic_name__ ( cls : Optional[int] , *snake_case_ : Union[str, Any] , **snake_case_ : List[Any] ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __magic_name__ ( cls : List[Any] , *snake_case_ : Any , **snake_case_ : int ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
347
1
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging __lowercase : Optional[Any] = logging.get_logger(__name__) class _A ( _UpperCAmelCase ): """simple docstring""" def __init__( self : Dict , A_ : str=None , **A_ : Dict ) -> Dict: warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , A_ , ) super().__init__(args=A_ , **A_ )
93
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _A ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Tuple ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : int ) -> Tuple: __snake_case = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) __snake_case = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('''sample_euler''' ) __snake_case = '''A painting of a squirrel eating a burger''' __snake_case = torch.manual_seed(0 ) __snake_case = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase ( self : Optional[Any] ) -> Tuple: __snake_case = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __snake_case = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('''sample_euler''' ) __snake_case = '''A painting of a squirrel eating a burger''' __snake_case = torch.manual_seed(0 ) __snake_case = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def lowercase ( self : List[str] ) -> Optional[Any]: __snake_case = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __snake_case = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) __snake_case = '''A painting of a squirrel eating a burger''' __snake_case = torch.manual_seed(0 ) __snake_case = sd_pipe( [prompt] , generator=A_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=A_ , ) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array( [0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
93
1
'''simple docstring''' import csv import tweepy # Twitter API credentials UpperCamelCase_ = "" UpperCamelCase_ = "" UpperCamelCase_ = "" UpperCamelCase_ = "" def lowercase__( __UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tweepy.OAuthHandler(__UpperCamelCase ,__UpperCamelCase ) auth.set_access_token(__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = tweepy.API(__UpperCamelCase ) # initialize a list to hold all the tweepy Tweets SCREAMING_SNAKE_CASE : Optional[int] = [] # make initial request for most recent tweets (200 is the maximum allowed count) SCREAMING_SNAKE_CASE : str = api.user_timeline(screen_name=__UpperCamelCase ,count=2_00 ) # save most recent tweets alltweets.extend(__UpperCamelCase ) # save the id of the oldest tweet less one SCREAMING_SNAKE_CASE : Optional[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(__UpperCamelCase ) > 0: print(f"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates SCREAMING_SNAKE_CASE : str = api.user_timeline( screen_name=__UpperCamelCase ,count=2_00 ,max_id=__UpperCamelCase ) # save most recent tweets alltweets.extend(__UpperCamelCase ) # update the id of the oldest tweet less one SCREAMING_SNAKE_CASE : Optional[Any] = alltweets[-1].id - 1 print(f"...{len(__UpperCamelCase )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv SCREAMING_SNAKE_CASE : Tuple = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f"new_{screen_name}_tweets.csv" ,'w' ) as f: SCREAMING_SNAKE_CASE : Optional[int] = csv.writer(__UpperCamelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(__UpperCamelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("FirePing32")
28
import numpy as np def _lowerCamelCase ( lowerCamelCase_: np.array ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
256
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _UpperCAmelCase ( UpperCamelCase: Union[str, Any] , UpperCamelCase: Optional[Any] ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __lowerCAmelCase = flax_key_tuple[:-1] + ("weight",) __lowerCAmelCase = torch.permute(UpperCamelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(UpperCamelCase ): # linear layer __lowerCAmelCase = flax_key_tuple[:-1] + ("weight",) __lowerCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __lowerCAmelCase = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def _UpperCAmelCase ( UpperCamelCase: Tuple , UpperCamelCase: List[str] , UpperCamelCase: Dict ): """simple docstring""" if "metadata" in layer: __lowerCAmelCase = layer.split("metadata" ) __lowerCAmelCase = "".join(split_layer[0] )[:-1] __lowerCAmelCase = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: __lowerCAmelCase = layer.split("kvstore" ) __lowerCAmelCase = "".join(split_layer[0] )[:-1] __lowerCAmelCase = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: __lowerCAmelCase = layer.split("/" ) __lowerCAmelCase = "/".join(split_layer[:-1] ) __lowerCAmelCase = (split_layer[-1],) if "kvstore/path" in layer: __lowerCAmelCase = F"{switch_checkpoint_path}/{checkpoint_info[layer]}" elif "kvstore/driver" in layer: __lowerCAmelCase = "file" else: __lowerCAmelCase = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _UpperCAmelCase ( UpperCamelCase: Tuple , UpperCamelCase: Union[str, Any] ): """simple docstring""" __lowerCAmelCase = rename_keys(UpperCamelCase ) __lowerCAmelCase = {} for k, v in current_block.items(): __lowerCAmelCase = v __lowerCAmelCase = new_current_block torch.save(UpperCamelCase , UpperCamelCase ) def _UpperCAmelCase ( UpperCamelCase: Any , UpperCamelCase: Union[str, Any] , UpperCamelCase: int , UpperCamelCase: Any , UpperCamelCase: str = WEIGHTS_NAME ): """simple docstring""" __lowerCAmelCase = convert_file_size_to_int(UpperCamelCase ) __lowerCAmelCase = [] __lowerCAmelCase = {} __lowerCAmelCase = 0 __lowerCAmelCase = 0 os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: __lowerCAmelCase = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] __lowerCAmelCase = flatten_dict(UpperCamelCase , sep="/" ) __lowerCAmelCase = {} for layer in checkpoint_info.keys(): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_key_and_tensorstore_dict( UpperCamelCase , UpperCamelCase , UpperCamelCase ) if curr_real_layer_name in all_layers: __lowerCAmelCase = content else: __lowerCAmelCase = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __lowerCAmelCase = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __lowerCAmelCase = torch.tensor(UpperCamelCase ) __lowerCAmelCase = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __lowerCAmelCase , __lowerCAmelCase = rename_base_flax_keys(tuple(key.split("/" ) ) , UpperCamelCase ) __lowerCAmelCase = "/".join(UpperCamelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __lowerCAmelCase = os.path.join( UpperCamelCase , weights_name.replace(".bin" , F"-{len(UpperCamelCase )+1:05d}-of-???.bin" ) ) rename_and_save_block(UpperCamelCase , UpperCamelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block __lowerCAmelCase = {} __lowerCAmelCase = 0 __lowerCAmelCase = raw_weights.to(getattr(UpperCamelCase , UpperCamelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block __lowerCAmelCase = os.path.join(UpperCamelCase , weights_name.replace(".bin" , F"-{len(UpperCamelCase )+1:05d}-of-???.bin" ) ) rename_and_save_block(UpperCamelCase , UpperCamelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(UpperCamelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __lowerCAmelCase = {} __lowerCAmelCase = {} for idx, shard in enumerate(UpperCamelCase ): __lowerCAmelCase = weights_name.replace( ".bin" , F"-{idx+1:05d}-of-{len(UpperCamelCase ):05d}.bin" ) # len(sharded_state_dicts):05d} __lowerCAmelCase = os.path.join(UpperCamelCase , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) ) os.rename(UpperCamelCase , os.path.join(UpperCamelCase , UpperCamelCase ) ) __lowerCAmelCase = shard for key in shard: __lowerCAmelCase = shard_file # Add the metadata __lowerCAmelCase = {"total_size": total_size} __lowerCAmelCase = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(UpperCamelCase , UpperCamelCase ) , "w" , encoding="utf-8" ) as f: __lowerCAmelCase = json.dumps(UpperCamelCase , indent=2 , sort_keys=UpperCamelCase ) + "\n" f.write(UpperCamelCase ) return metadata, index if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) UpperCamelCase_ = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _UpperCAmelCase ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __lowerCAmelCase = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) __lowerCAmelCase = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) __lowerCAmelCase = TaTokenizer.from_pretrained("t5-small" ) __lowerCAmelCase = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." __lowerCAmelCase = tokenizer(UpperCamelCase , return_tensors="pt" ).input_ids __lowerCAmelCase = model.generate(UpperCamelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
376
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
376
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A_ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
391
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class __lowerCAmelCase ( UpperCAmelCase ): '''simple docstring''' __lowerCamelCase : List[Any] = "encodec" def __init__( self: List[str] , UpperCamelCase_: List[str]=[1.5, 3.0, 6.0, 12.0, 24.0] , UpperCamelCase_: Optional[Any]=2_4000 , UpperCamelCase_: Dict=1 , UpperCamelCase_: List[Any]=False , UpperCamelCase_: List[str]=None , UpperCamelCase_: int=None , UpperCamelCase_: Dict=128 , UpperCamelCase_: List[Any]=32 , UpperCamelCase_: int=1 , UpperCamelCase_: Union[str, Any]=[8, 5, 4, 2] , UpperCamelCase_: List[Any]="weight_norm" , UpperCamelCase_: int=7 , UpperCamelCase_: Optional[int]=7 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: List[Any]=True , UpperCamelCase_: Any="reflect" , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Dict=2 , UpperCamelCase_: Any=1.0 , UpperCamelCase_: Any=1024 , UpperCamelCase_: int=None , UpperCamelCase_: Any=True , **UpperCamelCase_: Optional[Any] , ): UpperCamelCase_ =target_bandwidths UpperCamelCase_ =sampling_rate UpperCamelCase_ =audio_channels UpperCamelCase_ =normalize UpperCamelCase_ =chunk_length_s UpperCamelCase_ =overlap UpperCamelCase_ =hidden_size UpperCamelCase_ =num_filters UpperCamelCase_ =num_residual_layers UpperCamelCase_ =upsampling_ratios UpperCamelCase_ =norm_type UpperCamelCase_ =kernel_size UpperCamelCase_ =last_kernel_size UpperCamelCase_ =residual_kernel_size UpperCamelCase_ =dilation_growth_rate UpperCamelCase_ =use_causal_conv UpperCamelCase_ =pad_mode UpperCamelCase_ =compress UpperCamelCase_ =num_lstm_layers UpperCamelCase_ =trim_right_ratio UpperCamelCase_ =codebook_size UpperCamelCase_ =codebook_dim if codebook_dim is not None else hidden_size UpperCamelCase_ =use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**UpperCamelCase_ ) @property def UpperCamelCase__ ( self: int ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def UpperCamelCase__ ( self: List[Any] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def UpperCamelCase__ ( self: List[str] ): UpperCamelCase_ =np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def UpperCamelCase__ ( self: Optional[Any] ): return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
391
1
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) lowercase : Optional[Any] = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class A ( __snake_case ): @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : int = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=SCREAMING_SNAKE_CASE , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE ) def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" A : str = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(F'Loading model {model_type}' ) A : Dict = model_type A : Union[str, Any] = tf_checkpoint A : Optional[Any] = pytorch_dump_output A : List[str] = config A : Tuple = finetuning_task_name def __lowerCAmelCase ( self ) -> Any: """simple docstring""" if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(SCREAMING_SNAKE_CASE ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE ) if "ckpt" in self._tf_checkpoint.lower(): A : List[Any] = self._tf_checkpoint A : List[Any] = '''''' else: A : List[str] = self._tf_checkpoint A : Optional[Any] = '''''' convert_transfo_xl_checkpoint_to_pytorch( SCREAMING_SNAKE_CASE , self._config , self._pytorch_dump_output , SCREAMING_SNAKE_CASE ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
343
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase : Tuple = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
343
1
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class A__ ( snake_case__ ): """simple docstring""" def a_ ( self ): snake_case = tempfile.mkdtemp() snake_case = 5 # Realm tok snake_case = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] snake_case = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(__snake_case , exist_ok=__snake_case ) snake_case = os.path.join(__snake_case , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) snake_case = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(__snake_case , exist_ok=__snake_case ) def a_ ( self ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def a_ ( self ): shutil.rmtree(self.tmpdirname ) def a_ ( self ): snake_case = RealmConfig(num_block_records=self.num_block_records ) return config def a_ ( self ): snake_case = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def a_ ( self ): snake_case = np.array( [ b'''This is the first record''', b'''This is the second record''', b'''This is the third record''', b'''This is the fourth record''', b'''This is the fifth record''', b'''This is a longer longer longer record''', ] , dtype=__snake_case , ) return block_records def a_ ( self ): snake_case = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def a_ ( self ): snake_case = self.get_config() snake_case = self.get_dummy_retriever() snake_case = retriever.tokenizer snake_case = np.array([0, 3] , dtype='''long''' ) snake_case = tokenizer(['''Test question'''] ).input_ids snake_case = tokenizer( ['''the fourth'''] , add_special_tokens=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , ).input_ids snake_case = config.reader_seq_len snake_case , snake_case , snake_case , snake_case = retriever( __snake_case , __snake_case , answer_ids=__snake_case , max_length=__snake_case , return_tensors='''np''' ) self.assertEqual(len(__snake_case ) , 2 ) self.assertEqual(len(__snake_case ) , 2 ) self.assertEqual(len(__snake_case ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def a_ ( self ): snake_case = self.get_config() snake_case = self.get_dummy_retriever() snake_case = retriever.tokenizer snake_case = np.array([0, 3, 5] , dtype='''long''' ) snake_case = tokenizer(['''Test question'''] ).input_ids snake_case = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , ).input_ids snake_case = config.reader_seq_len snake_case , snake_case , snake_case , snake_case = retriever( __snake_case , __snake_case , answer_ids=__snake_case , max_length=__snake_case , return_tensors='''np''' ) self.assertEqual([False, True, True] , __snake_case ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __snake_case ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __snake_case ) def a_ ( self ): snake_case = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path snake_case = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: snake_case = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) snake_case = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
550
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self , __snake_case , __snake_case=7 , __snake_case=3 , __snake_case=3_0 , __snake_case=4_0_0 , __snake_case=True , __snake_case=None , __snake_case=True , __snake_case=1 / 2_5_5 , __snake_case=True , __snake_case=[0.5, 0.5, 0.5] , __snake_case=[0.5, 0.5, 0.5] , __snake_case=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = do_rescale snake_case = rescale_factor snake_case = do_normalize snake_case = image_mean snake_case = image_std snake_case = do_pad def a_ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def a_ ( self , __snake_case , __snake_case=False ): if not batched: snake_case = image_inputs[0] if isinstance(__snake_case , Image.Image ): snake_case , snake_case = image.size else: snake_case , snake_case = image.shape[1], image.shape[2] if w < h: snake_case = int(self.size['''shortest_edge'''] * h / w ) snake_case = self.size['''shortest_edge'''] elif w > h: snake_case = self.size['''shortest_edge'''] snake_case = int(self.size['''shortest_edge'''] * w / h ) else: snake_case = self.size['''shortest_edge'''] snake_case = self.size['''shortest_edge'''] else: snake_case = [] for image in image_inputs: snake_case , snake_case = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case = max(__snake_case , key=lambda __snake_case : item[0] )[0] snake_case = max(__snake_case , key=lambda __snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A__ ( snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = DetrImageProcessor if is_vision_available() else None def a_ ( self ): snake_case = DetrImageProcessingTester(self ) @property def a_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def a_ ( self ): snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(__snake_case , '''image_std''' ) ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_rescale''' ) ) self.assertTrue(hasattr(__snake_case , '''rescale_factor''' ) ) self.assertTrue(hasattr(__snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) self.assertTrue(hasattr(__snake_case , '''do_pad''' ) ) def a_ ( self ): snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __snake_case ) snake_case = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__snake_case ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2, '''longest_edge''': 8_4} ) self.assertEqual(image_processor.do_pad , __snake_case ) def a_ ( self ): pass def a_ ( self ): # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case , snake_case = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) snake_case = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a_ ( self ): # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a_ ( self ): # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values snake_case , snake_case = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def a_ ( self ): # prepare image and target snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: snake_case = json.loads(f.read() ) snake_case = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them snake_case = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50''' ) snake_case = image_processing(images=__snake_case , annotations=__snake_case , return_tensors='''pt''' ) # verify pixel values snake_case = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , __snake_case ) snake_case = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __snake_case , atol=1E-4 ) ) # verify area snake_case = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __snake_case ) ) # verify boxes snake_case = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __snake_case ) snake_case = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __snake_case , atol=1E-3 ) ) # verify image_id snake_case = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __snake_case ) ) # verify is_crowd snake_case = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __snake_case ) ) # verify class_labels snake_case = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __snake_case ) ) # verify orig_size snake_case = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __snake_case ) ) # verify size snake_case = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __snake_case ) ) @slow def a_ ( self ): # prepare image, target and masks_path snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: snake_case = json.loads(f.read() ) snake_case = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} snake_case = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them snake_case = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50-panoptic''' ) snake_case = image_processing(images=__snake_case , annotations=__snake_case , masks_path=__snake_case , return_tensors='''pt''' ) # verify pixel values snake_case = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , __snake_case ) snake_case = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __snake_case , atol=1E-4 ) ) # verify area snake_case = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __snake_case ) ) # verify boxes snake_case = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __snake_case ) snake_case = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __snake_case , atol=1E-3 ) ) # verify image_id snake_case = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __snake_case ) ) # verify is_crowd snake_case = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __snake_case ) ) # verify class_labels snake_case = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __snake_case ) ) # verify masks snake_case = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __snake_case ) # verify orig_size snake_case = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __snake_case ) ) # verify size snake_case = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __snake_case ) )
550
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Optional[Any] = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : int = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Any = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
138
0
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin snake_case : Any = get_tests_dir("""fixtures/test_sentencepiece.model""") snake_case : Tuple = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") snake_case : Tuple = """pt""" if is_torch_available() else """tf""" @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( a_ , unittest.TestCase): """simple docstring""" __UpperCAmelCase = CamembertTokenizer __UpperCAmelCase = CamembertTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = True def a__ ( self : Union[str, Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __magic_name__ = CamembertTokenizer(UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self : Optional[int] ): '''simple docstring''' __magic_name__ = '<pad>' __magic_name__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def a__ ( self : Optional[int] ): '''simple docstring''' __magic_name__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>NOTUSED' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(UpperCamelCase_ ) , 1_0_0_4 ) def a__ ( self : Optional[int] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_5 ) def a__ ( self : List[str] ): '''simple docstring''' __magic_name__ = CamembertTokenizer(UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) __magic_name__ = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) __magic_name__ = 'I was born in 92000, and this is falsé.' __magic_name__ = tokenizer.encode(UpperCamelCase_ ) __magic_name__ = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) __magic_name__ = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) __magic_name__ = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) __magic_name__ = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def a__ ( self : Union[str, Any] ): '''simple docstring''' if not self.test_rust_tokenizer: return __magic_name__ = self.get_tokenizer() __magic_name__ = self.get_rust_tokenizer() __magic_name__ = 'I was born in 92000, and this is falsé.' __magic_name__ = tokenizer.tokenize(UpperCamelCase_ ) __magic_name__ = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) __magic_name__ = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = self.get_rust_tokenizer() __magic_name__ = tokenizer.encode(UpperCamelCase_ ) __magic_name__ = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) @slow def a__ ( self : Union[str, Any] ): '''simple docstring''' __magic_name__ = {'input_ids': [[5, 5_4, 7_1_9_6, 2_9_7, 3_0, 2_3, 7_7_6, 1_8, 1_1, 3_2_1_5, 3_7_0_5, 8_2_5_2, 2_2, 3_1_6_4, 1_1_8_1, 2_1_1_6, 2_9, 1_6, 8_1_3, 2_5, 7_9_1, 3_3_1_4, 2_0, 3_4_4_6, 3_8, 2_7_5_7_5, 1_2_0, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_6_8, 1_7, 1_1, 9_0_8_8, 2_0, 1_5_1_7, 8, 2_2_8_0_4, 1_8_8_1_8, 1_0, 3_8, 6_2_9, 6_0_7, 6_0_7, 1_4_2, 1_9, 7_1_9_6, 8_6_7, 5_6, 1_0_3_2_6, 2_4, 2_2_6_7, 2_0, 4_1_6, 5_0_7_2, 1_5_6_1_2, 2_3_3, 7_3_4, 7, 2_3_9_9, 2_7, 1_6, 3_0_1_5, 1_6_4_9, 7, 2_4, 2_0, 4_3_3_8, 2_3_9_9, 2_7, 1_3, 3_4_0_0, 1_4, 1_3, 6_1_8_9, 8, 9_3_0, 9, 6]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. __magic_name__ = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name='camembert-base' , revision='3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf' , sequences=UpperCamelCase_ , )
545
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=a_): """simple docstring""" __UpperCAmelCase = ["""flax""", """transformers"""] def __init__( self : List[Any] , *UpperCamelCase_ : str , **UpperCamelCase_ : Any ): '''simple docstring''' requires_backends(self , ['flax', 'transformers'] ) @classmethod def a__ ( cls : Optional[int] , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : List[Any] ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) @classmethod def a__ ( cls : str , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Dict ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) class UpperCamelCase__ ( metaclass=a_): """simple docstring""" __UpperCAmelCase = ["""flax""", """transformers"""] def __init__( self : List[Any] , *UpperCamelCase_ : str , **UpperCamelCase_ : str ): '''simple docstring''' requires_backends(self , ['flax', 'transformers'] ) @classmethod def a__ ( cls : Optional[int] , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : List[str] ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) @classmethod def a__ ( cls : Tuple , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) class UpperCamelCase__ ( metaclass=a_): """simple docstring""" __UpperCAmelCase = ["""flax""", """transformers"""] def __init__( self : Optional[int] , *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : List[str] ): '''simple docstring''' requires_backends(self , ['flax', 'transformers'] ) @classmethod def a__ ( cls : str , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Tuple ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) @classmethod def a__ ( cls : Tuple , *UpperCamelCase_ : Any , **UpperCamelCase_ : List[str] ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) class UpperCamelCase__ ( metaclass=a_): """simple docstring""" __UpperCAmelCase = ["""flax""", """transformers"""] def __init__( self : Optional[Any] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Dict ): '''simple docstring''' requires_backends(self , ['flax', 'transformers'] ) @classmethod def a__ ( cls : str , *UpperCamelCase_ : Dict , **UpperCamelCase_ : List[str] ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) @classmethod def a__ ( cls : str , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] )
545
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class _UpperCamelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :Union[str, Any] ) -> int: UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCAmelCase__ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], "image_std": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCAmelCase__ = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCAmelCase_ ( self :List[str] , **lowerCamelCase :Dict ) -> Dict: return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def UpperCAmelCase_ ( self :Optional[int] , **lowerCamelCase :Tuple ) -> str: return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def UpperCAmelCase_ ( self :Optional[int] , **lowerCamelCase :Tuple ) -> Dict: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def UpperCAmelCase_ ( self :int ) -> Dict: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self :List[str] ) -> List[str]: UpperCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase__ = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ ( self :Optional[Any] ) -> Optional[int]: UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) UpperCAmelCase__ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def UpperCAmelCase_ ( self :int ) -> int: UpperCAmelCase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase__ = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) UpperCAmelCase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def UpperCAmelCase_ ( self :Tuple ) -> List[str]: UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = image_processor(UpperCAmelCase_ , return_tensors="np" ) UpperCAmelCase__ = processor(images=UpperCAmelCase_ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase_ ( self :Any ) -> List[Any]: UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) UpperCAmelCase__ = "lower newer" UpperCAmelCase__ = processor(text=UpperCAmelCase_ ) UpperCAmelCase__ = tokenizer(UpperCAmelCase_ , padding="max_length" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase_ ( self :Dict ) -> Optional[Any]: UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) UpperCAmelCase__ = "lower newer" UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def UpperCAmelCase_ ( self :int ) -> int: UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) UpperCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase__ = processor.batch_decode(UpperCAmelCase_ ) UpperCAmelCase__ = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCAmelCase_ ( self :int ) -> Union[str, Any]: UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) UpperCAmelCase__ = "lower newer" UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
702
import argparse import os import torch from transformers.utils import WEIGHTS_NAME _lowerCAmelCase : List[Any] = ["small", "medium", "large"] _lowerCAmelCase : List[Any] = "lm_head.decoder.weight" _lowerCAmelCase : Optional[int] = "lm_head.weight" def lowerCAmelCase ( _lowerCAmelCase : str , _lowerCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = torch.load(_lowerCAmelCase ) UpperCAmelCase__ = d.pop(_lowerCAmelCase ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) _lowerCAmelCase : Union[str, Any] = parser.parse_args() for MODEL in DIALOGPT_MODELS: _lowerCAmelCase : Union[str, Any] = os.path.join(args.dialogpt_path, F'''{MODEL}_ft.pkl''') _lowerCAmelCase : List[str] = F'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
364
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case ( UpperCamelCase_ ): lowercase_ = 42 lowercase_ = 42 def __init__( self : str , a_ : UNetaDModel , a_ : ScoreSdeVeScheduler )-> List[Any]: """simple docstring""" super().__init__() self.register_modules(unet=a_ , scheduler=a_ ) @torch.no_grad() def __call__( self : Optional[int] , a_ : int = 1 , a_ : int = 2000 , a_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a_ : Optional[str] = "pil" , a_ : bool = True , **a_ : int , )-> Union[ImagePipelineOutput, Tuple]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.unet.config.sample_size SCREAMING_SNAKE_CASE__ : Tuple = (batch_size, 3, img_size, img_size) SCREAMING_SNAKE_CASE__ : Tuple = self.unet SCREAMING_SNAKE_CASE__ : Union[str, Any] = randn_tensor(a_ , generator=a_ ) * self.scheduler.init_noise_sigma SCREAMING_SNAKE_CASE__ : int = sample.to(self.device ) self.scheduler.set_timesteps(a_ ) self.scheduler.set_sigmas(a_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE__ : List[Any] = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.unet(a_ , a_ ).sample SCREAMING_SNAKE_CASE__ : List[str] = self.scheduler.step_correct(a_ , a_ , generator=a_ ).prev_sample # prediction step SCREAMING_SNAKE_CASE__ : Any = model(a_ , a_ ).sample SCREAMING_SNAKE_CASE__ : str = self.scheduler.step_pred(a_ , a_ , a_ , generator=a_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = output.prev_sample, output.prev_sample_mean SCREAMING_SNAKE_CASE__ : Dict = sample_mean.clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ : int = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ : str = self.numpy_to_pil(a_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=a_ )
85
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ : List[str] = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys SCREAMING_SNAKE_CASE__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
1
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: _a : str = None try: import msvcrt except ImportError: _a : List[str] = None try: import fcntl except ImportError: _a : int = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _a : int = OSError # Data # ------------------------------------------------ _a : Dict = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] _a : Union[str, Any] = '3.0.12' _a : Optional[int] = None def SCREAMING_SNAKE_CASE ( ) -> str: global _logger _lowerCAmelCase : Tuple = _logger or logging.getLogger(__name__ ) return _logger class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ ): _lowerCAmelCase : str = lock_file return None def __str__( self ): _lowerCAmelCase : List[str] = F"The file lock '{self.lock_file}' could not be acquired." return temp class __A : def __init__( self , a__ ): _lowerCAmelCase : List[str] = lock return None def __enter__( self ): return self.lock def __exit__( self , a__ , a__ , a__ ): self.lock.release() return None class __A : def __init__( self , a__ , a__=-1 , a__=None ): _lowerCAmelCase : Optional[Any] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long _lowerCAmelCase : Any = self.hash_filename_if_too_long(a__ , a__ ) # The path to the lock file. _lowerCAmelCase : Optional[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. _lowerCAmelCase : str = None # The default timeout value. _lowerCAmelCase : Tuple = timeout # We use this lock primarily for the lock counter. _lowerCAmelCase : List[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. _lowerCAmelCase : Any = 0 return None @property def __A ( self ): return self._lock_file @property def __A ( self ): return self._timeout @timeout.setter def __A ( self , a__ ): _lowerCAmelCase : Union[str, Any] = float(a__ ) return None def __A ( self ): raise NotImplementedError() def __A ( self ): raise NotImplementedError() @property def __A ( self ): return self._lock_file_fd is not None def __A ( self , a__=None , a__=0.0_5 ): # Use the default timeout, if no timeout is provided. if timeout is None: _lowerCAmelCase : Tuple = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 _lowerCAmelCase : int = id(self ) _lowerCAmelCase : Optional[Any] = self._lock_file _lowerCAmelCase : Dict = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(a__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: _lowerCAmelCase : str = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def __A ( self , a__=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: _lowerCAmelCase : List[str] = id(self ) _lowerCAmelCase : Dict = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() _lowerCAmelCase : Optional[int] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self ): self.acquire() return self def __exit__( self , a__ , a__ , a__ ): self.release() return None def __del__( self ): self.release(force=a__ ) return None def __A ( self , a__ , a__ ): _lowerCAmelCase : Optional[Any] = os.path.basename(a__ ) if len(a__ ) > max_length and max_length > 0: _lowerCAmelCase : Any = os.path.dirname(a__ ) _lowerCAmelCase : Dict = str(hash(a__ ) ) _lowerCAmelCase : Dict = filename[: max_length - len(a__ ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(a__ , a__ ) else: return path class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__=-1 , a__=None ): from .file_utils import relative_to_absolute_path super().__init__(a__ , timeout=a__ , max_filename_length=a__ ) _lowerCAmelCase : Union[str, Any] = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def __A ( self ): _lowerCAmelCase : Tuple = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: _lowerCAmelCase : Union[str, Any] = os.open(self._lock_file , a__ ) except OSError: pass else: try: msvcrt.locking(a__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(a__ ) else: _lowerCAmelCase : str = fd return None def __A ( self ): _lowerCAmelCase : Tuple = self._lock_file_fd _lowerCAmelCase : List[str] = None msvcrt.locking(a__ , msvcrt.LK_UNLCK , 1 ) os.close(a__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__=-1 , a__=None ): _lowerCAmelCase : Tuple = os.statvfs(os.path.dirname(a__ ) ).f_namemax super().__init__(a__ , timeout=a__ , max_filename_length=a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC _lowerCAmelCase : str = os.open(self._lock_file , a__ ) try: fcntl.flock(a__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(a__ ) else: _lowerCAmelCase : Any = fd return None def __A ( self ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition _lowerCAmelCase : Union[str, Any] = self._lock_file_fd _lowerCAmelCase : Dict = None fcntl.flock(a__ , fcntl.LOCK_UN ) os.close(a__ ) return None class __A ( SCREAMING_SNAKE_CASE_ ): def __A ( self ): _lowerCAmelCase : int = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: _lowerCAmelCase : Any = os.open(self._lock_file , a__ ) except OSError: pass else: _lowerCAmelCase : Any = fd return None def __A ( self ): os.close(self._lock_file_fd ) _lowerCAmelCase : List[str] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _a : Optional[int] = None if msvcrt: _a : List[str] = WindowsFileLock elif fcntl: _a : Dict = UnixFileLock else: _a : int = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
663
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
663
1
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) lowerCAmelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(snake_case__ ) lowerCAmelCase : Any = -1 lowerCAmelCase : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(snake_case__ ) lowerCAmelCase : Optional[int] = model.generate(snake_case__ , max_new_tokens=10 , do_sample=snake_case__ ) lowerCAmelCase : str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : Optional[int] = TextStreamer(snake_case__ ) model.generate(snake_case__ , max_new_tokens=10 , do_sample=snake_case__ , streamer=snake_case__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : Any = cs.out[:-1] self.assertEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) lowerCAmelCase : Dict = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(snake_case__ ) lowerCAmelCase : Tuple = -1 lowerCAmelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(snake_case__ ) lowerCAmelCase : Optional[Any] = model.generate(snake_case__ , max_new_tokens=10 , do_sample=snake_case__ ) lowerCAmelCase : Optional[int] = tokenizer.decode(greedy_ids[0] ) lowerCAmelCase : Optional[int] = TextIteratorStreamer(snake_case__ ) lowerCAmelCase : Dict = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} lowerCAmelCase : Optional[Any] = Thread(target=model.generate , kwargs=snake_case__ ) thread.start() lowerCAmelCase : Optional[int] = "" for new_text in streamer: streamer_text += new_text self.assertEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(snake_case__ ) lowerCAmelCase : Union[str, Any] = -1 lowerCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(snake_case__ ) lowerCAmelCase : str = model.generate(snake_case__ , max_new_tokens=10 , do_sample=snake_case__ ) lowerCAmelCase : List[Any] = greedy_ids[:, input_ids.shape[1] :] lowerCAmelCase : int = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : Optional[Any] = TextStreamer(snake_case__ , skip_prompt=snake_case__ ) model.generate(snake_case__ , max_new_tokens=10 , do_sample=snake_case__ , streamer=snake_case__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained("distilgpt2" ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(snake_case__ ) lowerCAmelCase : Tuple = -1 lowerCAmelCase : int = torch.ones((1, 5) , device=snake_case__ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCAmelCase : List[Any] = TextStreamer(snake_case__ , skip_special_tokens=snake_case__ ) model.generate(snake_case__ , max_new_tokens=1 , do_sample=snake_case__ , streamer=snake_case__ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCAmelCase : str = cs.out[:-1] # Remove the final "\n" lowerCAmelCase : List[Any] = tokenizer(snake_case__ , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) lowerCAmelCase : Dict = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(snake_case__ ) lowerCAmelCase : Tuple = -1 lowerCAmelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(snake_case__ ) lowerCAmelCase : Union[str, Any] = TextIteratorStreamer(snake_case__ , timeout=0.001 ) lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} lowerCAmelCase : Tuple = Thread(target=model.generate , kwargs=snake_case__ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(snake_case__ ): lowerCAmelCase : List[str] = "" for new_text in streamer: streamer_text += new_text
645
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = 1_0 lowerCAmelCase : Optional[int] = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) lowerCAmelCase : Dict = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [9_7], "text": ["1976"]}] * 1_0, "id": list(range(SCREAMING_SNAKE_CASE ) ), } , features=SCREAMING_SNAKE_CASE , ) return dataset @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=SCREAMING_SNAKE_CASE ) return filename # FILE_CONTENT + files lowerCAmelCase__ = '''\ Text data. Second line of data.''' @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt" lowerCAmelCase : Optional[Any] = FILE_CONTENT with open(SCREAMING_SNAKE_CASE , "w" ) as f: f.write(SCREAMING_SNAKE_CASE ) return filename @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' import bza lowerCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" lowerCAmelCase : Optional[int] = bytes(SCREAMING_SNAKE_CASE , "utf-8" ) with bza.open(SCREAMING_SNAKE_CASE , "wb" ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' import gzip lowerCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) lowerCAmelCase : List[Any] = bytes(SCREAMING_SNAKE_CASE , "utf-8" ) with gzip.open(SCREAMING_SNAKE_CASE , "wb" ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame lowerCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" lowerCAmelCase : List[str] = bytes(SCREAMING_SNAKE_CASE , "utf-8" ) with lza.frame.open(SCREAMING_SNAKE_CASE , "wb" ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr lowerCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(SCREAMING_SNAKE_CASE , "w" ) as archive: archive.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' import tarfile lowerCAmelCase : int = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(SCREAMING_SNAKE_CASE , "w" ) as f: f.add(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' import lzma lowerCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.xz" lowerCAmelCase : Dict = bytes(SCREAMING_SNAKE_CASE , "utf-8" ) with lzma.open(SCREAMING_SNAKE_CASE , "wb" ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' import zipfile lowerCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE , "w" ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" lowerCAmelCase : Any = bytes(SCREAMING_SNAKE_CASE , "utf-8" ) with zstd.open(SCREAMING_SNAKE_CASE , "wb" ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.xml" lowerCAmelCase : Optional[Any] = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(SCREAMING_SNAKE_CASE , "w" ) as f: f.write(SCREAMING_SNAKE_CASE ) return filename lowerCAmelCase__ = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] lowerCAmelCase__ = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] lowerCAmelCase__ = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } lowerCAmelCase__ = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] lowerCAmelCase__ = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="session" ) def a__ ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[int] = datasets.Dataset.from_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE ) ) as con: lowerCAmelCase : Any = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(SCREAMING_SNAKE_CASE , "w" , newline="" ) as f: lowerCAmelCase : Union[str, Any] = csv.DictWriter(SCREAMING_SNAKE_CASE , fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(SCREAMING_SNAKE_CASE , "w" , newline="" ) as f: lowerCAmelCase : List[Any] = csv.DictWriter(SCREAMING_SNAKE_CASE , fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' import bza lowerCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(SCREAMING_SNAKE_CASE , "rb" ) as f: lowerCAmelCase : Dict = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(SCREAMING_SNAKE_CASE , "wb" ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE , "w" ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE , "w" ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(csv_path.replace(".csv" , ".CSV" ) ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(csva_path.replace(".csv" , ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE , "w" ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join("main_dir" , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join("main_dir" , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) lowerCAmelCase : Union[str, Any] = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(SCREAMING_SNAKE_CASE , "wb" ) as f: lowerCAmelCase : Optional[int] = pq.ParquetWriter(SCREAMING_SNAKE_CASE , schema=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(SCREAMING_SNAKE_CASE ) )] for k in DATA[0]} , schema=SCREAMING_SNAKE_CASE ) writer.write_table(SCREAMING_SNAKE_CASE ) writer.close() return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) lowerCAmelCase : Optional[Any] = {"data": DATA} with open(SCREAMING_SNAKE_CASE , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) lowerCAmelCase : Optional[int] = {"data": DATA_DICT_OF_LISTS} with open(SCREAMING_SNAKE_CASE , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' lowerCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(SCREAMING_SNAKE_CASE , "w" ) as f: for item in DATA: f.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : List[str] = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(SCREAMING_SNAKE_CASE , "w" ) as f: for item in DATA: f.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(SCREAMING_SNAKE_CASE , "w" ) as f: for item in DATA_312: f.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(SCREAMING_SNAKE_CASE , "w" ) as f: for item in DATA_STR: f.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' import gzip lowerCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(SCREAMING_SNAKE_CASE , "rb" ) as orig_file: with gzip.open(SCREAMING_SNAKE_CASE , "wb" ) as zipped_file: zipped_file.writelines(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' import gzip lowerCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(SCREAMING_SNAKE_CASE , "rb" ) as orig_file: with gzip.open(SCREAMING_SNAKE_CASE , "wb" ) as zipped_file: zipped_file.writelines(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE , "w" ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE , "w" ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join("nested" , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE , "w" ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join("main_dir" , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join("main_dir" , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(SCREAMING_SNAKE_CASE , "w" ) as f: f.add(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) f.add(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(SCREAMING_SNAKE_CASE , "w" ) as f: f.add(SCREAMING_SNAKE_CASE , arcname=os.path.join("nested" , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ["0", "1", "2", "3"] lowerCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(SCREAMING_SNAKE_CASE , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : Optional[Any] = ["0", "1", "2", "3"] lowerCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(SCREAMING_SNAKE_CASE , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Optional[Any] = ["0", "1", "2", "3"] lowerCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(SCREAMING_SNAKE_CASE , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE , "w" ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE , "w" ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join("main_dir" , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join("main_dir" , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE , "w" ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename("unsupported.ext" ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Tuple = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) lowerCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( ): '''simple docstring''' return os.path.join("tests" , "features" , "data" , "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def a__ ( ): '''simple docstring''' return os.path.join("tests" , "features" , "data" , "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE , "w" ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ).replace(".jpg" , "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def a__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : Tuple = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt" , "w" ) as f: f.write("foo\n" * 1_0 ) with open(data_dir / "subdir" / "test.txt" , "w" ) as f: f.write("bar\n" * 1_0 ) # hidden file with open(data_dir / "subdir" / ".test.txt" , "w" ) as f: f.write("bar\n" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt" , "w" ) as f: f.write("foo\n" * 1_0 ) with open(data_dir / ".subdir" / "test.txt" , "w" ) as f: f.write("bar\n" * 1_0 ) return data_dir
645
1
"""simple docstring""" def __lowercase ( a : int = 1_000 ) -> int: __snake_case : Optional[int] =2**power __snake_case : Optional[Any] =0 while n: __snake_case , __snake_case : int =r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
497
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __lowercase ( a : Any , a : List[Any] ) -> Dict: __snake_case : Any =checkpoint __snake_case : Dict ={} __snake_case : List[Any] =vae_state_dict['''encoder.conv_in.weight'''] __snake_case : List[str] =vae_state_dict['''encoder.conv_in.bias'''] __snake_case : Union[str, Any] =vae_state_dict['''encoder.conv_out.weight'''] __snake_case : Union[str, Any] =vae_state_dict['''encoder.conv_out.bias'''] __snake_case : str =vae_state_dict['''encoder.norm_out.weight'''] __snake_case : str =vae_state_dict['''encoder.norm_out.bias'''] __snake_case : Tuple =vae_state_dict['''decoder.conv_in.weight'''] __snake_case : str =vae_state_dict['''decoder.conv_in.bias'''] __snake_case : List[str] =vae_state_dict['''decoder.conv_out.weight'''] __snake_case : Tuple =vae_state_dict['''decoder.conv_out.bias'''] __snake_case : Union[str, Any] =vae_state_dict['''decoder.norm_out.weight'''] __snake_case : List[str] =vae_state_dict['''decoder.norm_out.bias'''] __snake_case : Tuple =vae_state_dict['''quant_conv.weight'''] __snake_case : List[str] =vae_state_dict['''quant_conv.bias'''] __snake_case : Optional[int] =vae_state_dict['''post_quant_conv.weight'''] __snake_case : Tuple =vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only __snake_case : Union[str, Any] =len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) __snake_case : Union[str, Any] ={ layer_id: [key for key in vae_state_dict if f'''down.{layer_id}''' in key] for layer_id in range(a ) } # Retrieves the keys for the decoder up blocks only __snake_case : List[Any] =len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) __snake_case : List[Any] ={ layer_id: [key for key in vae_state_dict if f'''up.{layer_id}''' in key] for layer_id in range(a ) } for i in range(a ): __snake_case : Any =[key for key in down_blocks[i] if f'''down.{i}''' in key and f'''down.{i}.downsample''' not in key] if f'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict: __snake_case : Optional[Any] =vae_state_dict.pop( f'''encoder.down.{i}.downsample.conv.weight''' ) __snake_case : Optional[int] =vae_state_dict.pop( f'''encoder.down.{i}.downsample.conv.bias''' ) __snake_case : Optional[Any] =renew_vae_resnet_paths(a ) __snake_case : Union[str, Any] ={'''old''': f'''down.{i}.block''', '''new''': f'''down_blocks.{i}.resnets'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) __snake_case : Tuple =[key for key in vae_state_dict if '''encoder.mid.block''' in key] __snake_case : Any =2 for i in range(1 , num_mid_res_blocks + 1 ): __snake_case : Tuple =[key for key in mid_resnets if f'''encoder.mid.block_{i}''' in key] __snake_case : List[str] =renew_vae_resnet_paths(a ) __snake_case : List[str] ={'''old''': f'''mid.block_{i}''', '''new''': f'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) __snake_case : int =[key for key in vae_state_dict if '''encoder.mid.attn''' in key] __snake_case : List[Any] =renew_vae_attention_paths(a ) __snake_case : Union[str, Any] ={'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) for i in range(a ): __snake_case : List[Any] =num_up_blocks - 1 - i __snake_case : Dict =[ key for key in up_blocks[block_id] if f'''up.{block_id}''' in key and f'''up.{block_id}.upsample''' not in key ] if f'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict: __snake_case : int =vae_state_dict[ f'''decoder.up.{block_id}.upsample.conv.weight''' ] __snake_case : Optional[Any] =vae_state_dict[ f'''decoder.up.{block_id}.upsample.conv.bias''' ] __snake_case : List[str] =renew_vae_resnet_paths(a ) __snake_case : int ={'''old''': f'''up.{block_id}.block''', '''new''': f'''up_blocks.{i}.resnets'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) __snake_case : Any =[key for key in vae_state_dict if '''decoder.mid.block''' in key] __snake_case : Dict =2 for i in range(1 , num_mid_res_blocks + 1 ): __snake_case : Dict =[key for key in mid_resnets if f'''decoder.mid.block_{i}''' in key] __snake_case : Tuple =renew_vae_resnet_paths(a ) __snake_case : Tuple ={'''old''': f'''mid.block_{i}''', '''new''': f'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) __snake_case : Optional[Any] =[key for key in vae_state_dict if '''decoder.mid.attn''' in key] __snake_case : Dict =renew_vae_attention_paths(a ) __snake_case : List[str] ={'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) return new_checkpoint def __lowercase ( a : str , a : str , ) -> Optional[int]: # Only support V1 __snake_case : Union[str, Any] =requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) __snake_case : Union[str, Any] =io.BytesIO(r.content ) __snake_case : Any =OmegaConf.load(a ) __snake_case : Union[str, Any] =512 __snake_case : List[str] ='''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open __snake_case : Any ={} with safe_open(a , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): __snake_case : Optional[int] =f.get_tensor(a ) else: __snake_case : Optional[int] =torch.load(a , map_location=a )['''state_dict'''] # Convert the VAE model. __snake_case : Dict =create_vae_diffusers_config(a , image_size=a ) __snake_case : Union[str, Any] =custom_convert_ldm_vae_checkpoint(a , a ) __snake_case : str =AutoencoderKL(**a ) vae.load_state_dict(a ) vae.save_pretrained(a ) if __name__ == "__main__": UpperCamelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") UpperCamelCase_ : Optional[Any] = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
497
1
'''simple docstring''' __snake_case : List[Any] = "Input must be a string of 8 numbers plus letter" __snake_case : List[str] = "TRWAGMYFPDXBNJZSQVHLCKE" def __lowerCamelCase ( __snake_case : str ) -> Optional[Any]: """simple docstring""" if not isinstance(__snake_case, __snake_case ): A__ : Tuple =f"Expected string as input, found {type(__snake_case ).__name__}" raise TypeError(__snake_case ) A__ : int =spanish_id.replace("""-""", """""" ).upper() if len(__snake_case ) != 9: raise ValueError(__snake_case ) try: A__ : str =int(spanish_id_clean[0:8] ) A__ : Optional[Any] =spanish_id_clean[8] except ValueError as ex: raise ValueError(__snake_case ) from ex if letter.isdigit(): raise ValueError(__snake_case ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
215
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class snake_case__ : """simple docstring""" _SCREAMING_SNAKE_CASE = None def lowercase_ ( self : Optional[int] ) ->Optional[int]: snake_case__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) snake_case__ : str = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key], _snake_case ) def lowercase_ ( self : Optional[Any] ) ->Optional[int]: snake_case__ : int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Any = os.path.join(_snake_case, 'feat_extract.json' ) feat_extract_first.to_json_file(_snake_case ) snake_case__ : str = self.feature_extraction_class.from_json_file(_snake_case ) self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict() ) def lowercase_ ( self : str ) ->Union[str, Any]: snake_case__ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Union[str, Any] = feat_extract_first.save_pretrained(_snake_case )[0] check_json_file_has_correct_format(_snake_case ) snake_case__ : Optional[int] = self.feature_extraction_class.from_pretrained(_snake_case ) self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict() ) def lowercase_ ( self : Tuple ) ->Any: snake_case__ : str = self.feature_extraction_class() self.assertIsNotNone(_snake_case )
478
0
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __a : SCREAMING_SNAKE_CASE = XGLMConfig SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = "gelu" def __init__( self : Tuple , snake_case_ : Tuple , snake_case_ : Any=14 , snake_case_ : Tuple=7 , snake_case_ : Dict=True , snake_case_ : Union[str, Any]=True , snake_case_ : Optional[Any]=True , snake_case_ : Tuple=99 , snake_case_ : int=32 , snake_case_ : str=2 , snake_case_ : int=4 , snake_case_ : Dict=37 , snake_case_ : Tuple="gelu" , snake_case_ : Any=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : Optional[Any]=5_12 , snake_case_ : int=0.0_2 , )-> List[str]: __lowerCAmelCase =parent __lowerCAmelCase =batch_size __lowerCAmelCase =seq_length __lowerCAmelCase =is_training __lowerCAmelCase =use_input_mask __lowerCAmelCase =use_labels __lowerCAmelCase =vocab_size __lowerCAmelCase =d_model __lowerCAmelCase =num_hidden_layers __lowerCAmelCase =num_attention_heads __lowerCAmelCase =ffn_dim __lowerCAmelCase =activation_function __lowerCAmelCase =activation_dropout __lowerCAmelCase =attention_dropout __lowerCAmelCase =max_position_embeddings __lowerCAmelCase =initializer_range __lowerCAmelCase =None __lowerCAmelCase =0 __lowerCAmelCase =2 __lowerCAmelCase =1 def UpperCamelCase ( self : Any)-> List[Any]: return XGLMConfig.from_pretrained("""facebook/xglm-564M""") def UpperCamelCase ( self : Optional[Any])-> str: __lowerCAmelCase =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) , clip_value_min=0 , clip_value_max=3) __lowerCAmelCase =None if self.use_input_mask: __lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length]) __lowerCAmelCase =self.get_config() __lowerCAmelCase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2) return ( config, input_ids, input_mask, head_mask, ) def UpperCamelCase ( self : Tuple)-> int: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=snake_case_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=snake_case_ , ) def UpperCamelCase ( self : str)-> str: __lowerCAmelCase =self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) =config_and_inputs __lowerCAmelCase ={ """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () SCREAMING_SNAKE_CASE = (TFXGLMForCausalLM,) if is_tf_available() else () SCREAMING_SNAKE_CASE = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self : Union[str, Any])-> str: __lowerCAmelCase =TFXGLMModelTester(self) __lowerCAmelCase =ConfigTester(self , config_class=snake_case_ , n_embd=37) def UpperCamelCase ( self : Tuple)-> str: self.config_tester.run_common_tests() @slow def UpperCamelCase ( self : str)-> Tuple: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase =TFXGLMModel.from_pretrained(snake_case_) self.assertIsNotNone(snake_case_) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""") def UpperCamelCase ( self : List[str])-> Tuple: super().test_resize_token_embeddings() @require_tf class __a ( unittest.TestCase ): @slow def UpperCamelCase ( self : int , snake_case_ : Optional[int]=True)-> Tuple: __lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""") __lowerCAmelCase =tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowerCAmelCase =[2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on __lowerCAmelCase =model.generate(snake_case_ , do_sample=snake_case_ , num_beams=1) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , snake_case_) @slow def UpperCamelCase ( self : Union[str, Any])-> List[str]: __lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""") __lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""") tf.random.set_seed(0) __lowerCAmelCase =tokenizer("""Today is a nice day and""" , return_tensors="""tf""") __lowerCAmelCase =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0"""): __lowerCAmelCase =model.generate(snake_case_ , do_sample=snake_case_ , seed=[7, 0]) __lowerCAmelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case_) __lowerCAmelCase =( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(snake_case_ , snake_case_) @slow def UpperCamelCase ( self : Dict)-> str: __lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""") __lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""") __lowerCAmelCase ="""left""" # use different length sentences to test batching __lowerCAmelCase =[ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] __lowerCAmelCase =tokenizer(snake_case_ , return_tensors="""tf""" , padding=snake_case_) __lowerCAmelCase =inputs["""input_ids"""] __lowerCAmelCase =model.generate(input_ids=snake_case_ , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12) __lowerCAmelCase =tokenizer(sentences[0] , return_tensors="""tf""").input_ids __lowerCAmelCase =model.generate(input_ids=snake_case_ , max_new_tokens=12) __lowerCAmelCase =tokenizer(sentences[1] , return_tensors="""tf""").input_ids __lowerCAmelCase =model.generate(input_ids=snake_case_ , max_new_tokens=12) __lowerCAmelCase =tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_) __lowerCAmelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case_) __lowerCAmelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case_) __lowerCAmelCase =[ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(snake_case_ , snake_case_) self.assertListEqual(snake_case_ , [non_padded_sentence, padded_sentence])
706
def __lowerCAmelCase ( __lowerCamelCase : list , __lowerCamelCase : int , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 ) -> int: __lowerCAmelCase =right or len(__lowerCamelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__lowerCamelCase , __lowerCamelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
456
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : int = ["""image_processor""", """tokenizer"""] __lowerCamelCase : List[Any] = """AutoImageProcessor""" __lowerCamelCase : Tuple = """AutoTokenizer""" def __init__( self , a , a): super().__init__(a , a) lowercase__ : Dict = self.image_processor def __call__( self , a=None , a=None , a=None , **a): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: lowercase__ : List[str] = self.tokenizer(a , return_tensors=a , **a) if images is not None: lowercase__ : Union[str, Any] = self.image_processor(a , return_tensors=a , **a) if text is not None and images is not None: lowercase__ : Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a) , tensor_type=a) def snake_case_ ( self , *a , **a): return self.tokenizer.batch_decode(*a , **a) def snake_case_ ( self , *a , **a): return self.tokenizer.decode(*a , **a) @property def snake_case_ ( self): return ["input_ids", "attention_mask", "pixel_values"]
164
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder snake_case_ = datasets.utils.logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ (folder_based_builder.FolderBasedBuilderConfig ): __lowerCamelCase : bool = None __lowerCamelCase : bool = None class SCREAMING_SNAKE_CASE__ (folder_based_builder.FolderBasedBuilder ): __lowerCamelCase : Any = datasets.Audio() __lowerCamelCase : List[Any] = """audio""" __lowerCamelCase : List[Any] = AudioFolderConfig __lowerCamelCase : List[str] # definition at the bottom of the script __lowerCamelCase : List[str] = AudioClassification(audio_column="""audio""" , label_column="""label""" ) snake_case_ = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] snake_case_ = AUDIO_EXTENSIONS
164
1
from __future__ import annotations def a(lowercase__ , lowercase__ ): '''simple docstring''' # Checks if the entire collection has been sorted if len(lowercase__ ) <= 1 or n <= 1: return insert_next(lowercase__ , n - 1 ) rec_insertion_sort(lowercase__ , n - 1 ) def a(lowercase__ , lowercase__ ): '''simple docstring''' # Checks order between adjacent elements if index >= len(lowercase__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order snake_case_ , snake_case_ = ( collection[index], collection[index - 1], ) insert_next(lowercase__ , index + 1 ) if __name__ == "__main__": A = input('Enter integers separated by spaces: ') A = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
46
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.dummy_uncond_unet snake_case_ = DDIMScheduler() snake_case_ = self.dummy_vq_model snake_case_ = LDMPipeline(unet=__UpperCamelCase , vqvae=__UpperCamelCase , scheduler=__UpperCamelCase ) ldm.to(__UpperCamelCase ) ldm.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = torch.manual_seed(0 ) snake_case_ = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type='numpy' ).images snake_case_ = torch.manual_seed(0 ) snake_case_ = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type='numpy' , return_dict=__UpperCamelCase )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) snake_case_ = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(__UpperCamelCase ) ldm.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = torch.manual_seed(0 ) snake_case_ = ldm(generator=__UpperCamelCase , num_inference_steps=5 , output_type='numpy' ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) snake_case_ = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) snake_case_ = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
46
1
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def a__ ( A__=None, A__=None ): return field(default_factory=lambda: default, metadata=A__ ) @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase = field( metadata={"""help""": """The csv file to plot."""} , ) _UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""} , ) _UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""} , ) _UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Disable logarithmic scale when plotting"""} , ) _UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": """Whether the csv file has training results or inference results. Defaults to inference results.""" } , ) _UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""} , ) _UpperCAmelCase = list_field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""} ) def a__ ( A__ ): try: int(A__ ) return True except ValueError: return False def a__ ( A__ ): try: float(A__ ) return True except ValueError: return False class __lowercase : """simple docstring""" def __init__( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = args SCREAMING_SNAKE_CASE_ : int = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: SCREAMING_SNAKE_CASE_ : Optional[Any] = csv.DictReader(lowerCAmelCase__ ) for row in reader: SCREAMING_SNAKE_CASE_ : Optional[int] = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None SCREAMING_SNAKE_CASE_ : int = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None SCREAMING_SNAKE_CASE_ : int = float(row['result'] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = plt.subplots() SCREAMING_SNAKE_CASE_ : List[Any] = 'Time usage' if self.args.is_time else 'Memory usage' SCREAMING_SNAKE_CASE_ : Dict = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): SCREAMING_SNAKE_CASE_ : List[Any] = sorted(set(self.result_dict[model_name]['bsz'] ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = sorted(set(self.result_dict[model_name]['seq_len'] ) ) SCREAMING_SNAKE_CASE_ : List[Any] = self.result_dict[model_name]['result'] ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Optional[Any] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) SCREAMING_SNAKE_CASE_ : Dict = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: SCREAMING_SNAKE_CASE_ : Any = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_ : int = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Tuple = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) SCREAMING_SNAKE_CASE_ : str = np.asarray(lowerCAmelCase__ , lowerCAmelCase__ )[: len(lowerCAmelCase__ )] plt.scatter( lowerCAmelCase__ , lowerCAmelCase__ , label=F'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(lowerCAmelCase__ , lowerCAmelCase__ , '--' ) title_str += F''' {label_model_name} vs.''' SCREAMING_SNAKE_CASE_ : Any = title_str[:-4] SCREAMING_SNAKE_CASE_ : List[str] = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(lowerCAmelCase__ ) plt.xlabel(lowerCAmelCase__ ) plt.ylabel(lowerCAmelCase__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def a__ ( ): SCREAMING_SNAKE_CASE_ : Any = HfArgumentParser(A__ ) SCREAMING_SNAKE_CASE_ : List[Any] = parser.parse_args_into_dataclasses()[0] SCREAMING_SNAKE_CASE_ : Optional[int] = Plot(args=A__ ) plot.plot() if __name__ == "__main__": main()
101
A_ : Optional[int] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' A_ : int = [{'type': 'code', 'content': INSTALL_CONTENT}] A_ : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
303
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = {"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["GLPNFeatureExtractor"] lowerCAmelCase__ = ["GLPNImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST", "GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
700
'''simple docstring''' import qiskit def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ) -> qiskit.result.counts.Counts: UpperCAmelCase_ : Tuple = qiskit.Aer.get_backend('aer_simulator' ) UpperCAmelCase_ : List[str] = qiskit.QuantumCircuit(4 ,2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 ,2 ) qc_ha.cx(1 ,2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 ,1 ,3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 ,0 ) # extract XOR value qc_ha.measure(3 ,1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase_ : List[str] = qiskit.execute(UpperCamelCase ,UpperCamelCase ,shots=1_0_0_0 ) # Return the histogram data of the results of the experiment return job.result().get_counts(UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase__ = half_adder(1, 1) print(F'Half Adder Output Qubit Counts: {counts}')
471
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowerCAmelCase_ = logging.get_logger(__name__) @dataclass class snake_case_ : '''simple docstring''' def __init__( self : Any , _UpperCamelCase : Any=False , _UpperCamelCase : Union[str, Any]=False , _UpperCamelCase : Optional[int]=6.0 , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : int=None , _UpperCamelCase : Union[str, Any]="fp4" , _UpperCamelCase : List[str]=False , **_UpperCamelCase : int , ) ->Optional[Any]: snake_case_ = load_in_abit snake_case_ = load_in_abit snake_case_ = llm_inta_threshold snake_case_ = llm_inta_skip_modules snake_case_ = llm_inta_enable_fpaa_cpu_offload snake_case_ = llm_inta_has_fpaa_weight snake_case_ = bnb_abit_quant_type snake_case_ = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: snake_case_ = torch.floataa elif isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = getattr(_UpperCamelCase , _UpperCamelCase ) elif isinstance(_UpperCamelCase , torch.dtype ): snake_case_ = bnb_abit_compute_dtype else: raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''' ) self.post_init() def snake_case__( self : Tuple ) ->List[Any]: if not isinstance(self.llm_inta_threshold , _UpperCamelCase ): raise ValueError('''llm_int8_threshold must be a float''' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , _UpperCamelCase ): raise ValueError('''llm_int8_skip_modules must be a list of strings''' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , _UpperCamelCase ): raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''' ) if not isinstance(self.llm_inta_has_fpaa_weight , _UpperCamelCase ): raise ValueError('''llm_int8_has_fp16_weight must be a boolean''' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''' ) if not isinstance(self.bnb_abit_quant_type , _UpperCamelCase ): raise ValueError('''bnb_4bit_quant_type must be a string''' ) if not isinstance(self.bnb_abit_use_double_quant , _UpperCamelCase ): raise ValueError('''bnb_4bit_use_double_quant must be a boolean''' ) if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''' ) ) >= version.parse( '''0.39.0''' ): raise ValueError( '''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''' ) def snake_case__( self : Union[str, Any] ) ->Dict: return self.load_in_abit or self.load_in_abit def snake_case__( self : Optional[int] ) ->Union[str, Any]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def snake_case__( cls : Any , _UpperCamelCase : Any , _UpperCamelCase : List[Any] , **_UpperCamelCase : Union[str, Any] ) ->Optional[Any]: snake_case_ = cls(**_UpperCamelCase ) snake_case_ = [] for key, value in kwargs.items(): if hasattr(_UpperCamelCase , _UpperCamelCase ): setattr(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) to_remove.append(_UpperCamelCase ) for key in to_remove: kwargs.pop(_UpperCamelCase , _UpperCamelCase ) if return_unused_kwargs: return config, kwargs else: return config def snake_case__( self : List[str] , _UpperCamelCase : Union[str, os.PathLike] ) ->Optional[int]: with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as writer: snake_case_ = self.to_dict() snake_case_ = json.dumps(_UpperCamelCase , indent=2 , sort_keys=_UpperCamelCase ) + '''\n''' writer.write(_UpperCamelCase ) def snake_case__( self : Any ) ->Dict[str, Any]: snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = str(output['''bnb_4bit_compute_dtype'''] ).split('''.''' )[1] return output def __repr__( self : Optional[Any] ) ->List[str]: return f'''{self.__class__.__name__} {self.to_json_string()}''' def snake_case__( self : Any , _UpperCamelCase : bool = True ) ->str: if use_diff is True: snake_case_ = self.to_diff_dict() else: snake_case_ = self.to_dict() return json.dumps(_UpperCamelCase , indent=2 , sort_keys=_UpperCamelCase ) + "\n" def snake_case__( self : List[str] ) ->Dict[str, Any]: snake_case_ = self.to_dict() # get the default config dict snake_case_ = BitsAndBytesConfig().to_dict() snake_case_ = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: snake_case_ = value return serializable_config_dict
39
"""simple docstring""" def UpperCamelCase ( _A , _A ) -> None: lowercase : List[Any] = len(_A ) print("""The following activities are selected:""" ) # The first activity is always selected lowercase : Optional[int] = 0 print(_A , end=""",""" ) # Consider rest of the activities for j in range(_A ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(_A , end=""",""" ) lowercase : str = j if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = [1, 3, 0, 5, 8, 5] _lowerCAmelCase = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
264
0
'''simple docstring''' import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _lowerCAmelCase : int = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _lowerCAmelCase : List[Any] = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Any = WATERMARK_BITS lowerCAmelCase : Union[str, Any] = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def lowercase ( self , snake_case__ ): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images lowerCAmelCase : Optional[Any] = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase : List[str] = [self.encoder.encode(snake_case__ , 'dwtDct' ) for image in images] lowerCAmelCase : Union[str, Any] = torch.from_numpy(np.array(snake_case__ ) ).permute(0 , 3 , 1 , 2 ) lowerCAmelCase : Optional[int] = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
646
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Tuple = GPTSwaTokenizer _lowerCamelCase : str = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = False def lowercase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Tuple = GPTSwaTokenizer(snake_case__ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , snake_case__ ): lowerCAmelCase : List[Any] = 'This is a test' lowerCAmelCase : List[Any] = 'This is a test' return input_text, output_text def lowercase ( self ): lowerCAmelCase : Tuple = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase ( self ): lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 2000 ) def lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def lowercase ( self ): lowerCAmelCase : List[Any] = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase ( self ): lowerCAmelCase : str = GPTSwaTokenizer(snake_case__ ) lowerCAmelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def lowercase ( self ): lowerCAmelCase : str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase : Tuple = {'input_ids': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case__ , )
646
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int]): """simple docstring""" _SCREAMING_SNAKE_CASE : int = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0]) _SCREAMING_SNAKE_CASE : int = get_activation("""gelu""") self.assertTrue(torch.allclose(gelu_python(_A) , torch_builtin(_A))) self.assertFalse(torch.allclose(gelu_python(_A) , gelu_new(_A))) def _lowerCAmelCase ( self : Optional[int]): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0]) _SCREAMING_SNAKE_CASE : Union[str, Any] = get_activation("""gelu""") _SCREAMING_SNAKE_CASE : List[str] = get_activation("""gelu_10""") _SCREAMING_SNAKE_CASE : Tuple = torch_builtin(_A) _SCREAMING_SNAKE_CASE : List[Any] = geluaa(_A) _SCREAMING_SNAKE_CASE : Dict = torch.where(y_gelu_aa < 10.0 , 1 , 0) self.assertTrue(torch.max(_A).item() == 10.0) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask)) def _lowerCAmelCase ( self : Tuple): """simple docstring""" get_activation("""gelu""") get_activation("""gelu_10""") get_activation("""gelu_fast""") get_activation("""gelu_new""") get_activation("""gelu_python""") get_activation("""gelu_pytorch_tanh""") get_activation("""linear""") get_activation("""mish""") get_activation("""quick_gelu""") get_activation("""relu""") get_activation("""sigmoid""") get_activation("""silu""") get_activation("""swish""") get_activation("""tanh""") with self.assertRaises(_A): get_activation("""bogus""") with self.assertRaises(_A): get_activation(_A) def _lowerCAmelCase ( self : str): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = get_activation("""gelu""") _SCREAMING_SNAKE_CASE : Optional[int] = 1 _SCREAMING_SNAKE_CASE : List[Any] = get_activation("""gelu""") self.assertEqual(acta.a , 1) with self.assertRaises(_A): _SCREAMING_SNAKE_CASE : Any = acta.a
338
"""simple docstring""" import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser( description=( '''Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''roberta''', choices=['''roberta''', '''gpt2''']) parser.add_argument('''--model_name''', default='''roberta-large''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_roberta_048131723.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') lowerCAmelCase_ = parser.parse_args() if args.model_type == "roberta": lowerCAmelCase_ = RobertaForMaskedLM.from_pretrained(args.model_name) lowerCAmelCase_ = '''roberta''' elif args.model_type == "gpt2": lowerCAmelCase_ = GPTaLMHeadModel.from_pretrained(args.model_name) lowerCAmelCase_ = '''transformer''' lowerCAmelCase_ = model.state_dict() lowerCAmelCase_ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: lowerCAmelCase_ = state_dict[F"{prefix}.{param_name}"] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: lowerCAmelCase_ = F"{prefix}.embeddings.{w}.weight" lowerCAmelCase_ = state_dict[param_name] for w in ["weight", "bias"]: lowerCAmelCase_ = F"{prefix}.embeddings.LayerNorm.{w}" lowerCAmelCase_ = state_dict[param_name] # Transformer Blocks # lowerCAmelCase_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: lowerCAmelCase_ = state_dict[ F"{prefix}.h.{teacher_idx}.{layer}.{w}" ] lowerCAmelCase_ = state_dict[F"{prefix}.h.{teacher_idx}.attn.bias"] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: lowerCAmelCase_ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: lowerCAmelCase_ = state_dict[F"{layer}"] if args.vocab_transform: for w in ["weight", "bias"]: lowerCAmelCase_ = state_dict[F"lm_head.dense.{w}"] lowerCAmelCase_ = state_dict[F"lm_head.layer_norm.{w}"] elif args.model_type == "gpt2": for w in ["weight", "bias"]: lowerCAmelCase_ = state_dict[F"{prefix}.ln_f.{w}"] lowerCAmelCase_ = state_dict['''lm_head.weight'''] print(F"N layers selected for distillation: {std_idx}") print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(F"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
338
1
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('''socket.socket''' ) @patch('''builtins.open''' ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __lowerCamelCase : Union[str, Any] =Mock() __lowerCamelCase : int =conn, Mock() __lowerCamelCase : int =iter([1, None] ) __lowerCamelCase : Optional[int] =lambda SCREAMING_SNAKE_CASE : next(SCREAMING_SNAKE_CASE ) # ===== invoke ===== send_file(filename='''mytext.txt''' , testing=SCREAMING_SNAKE_CASE ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
363
"""simple docstring""" def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __lowerCamelCase : Optional[Any] =len(SCREAMING_SNAKE_CASE ) __lowerCamelCase : Union[str, Any] =[[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): __lowerCamelCase : Union[str, Any] =y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCamelCase : List[Any] =( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
363
1
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @dataclass class lowerCAmelCase_ : __lowerCamelCase : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) __lowerCamelCase : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) __lowerCamelCase : int = field( default=128 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) __lowerCamelCase : bool = field( default=__magic_name__ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.task_name.lower() class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[Any] = "train" __lowerCamelCase : Tuple = "dev" __lowerCamelCase : int = "test" class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : GlueDataTrainingArguments __lowerCamelCase : str __lowerCamelCase : List[InputFeatures] def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = Split.train , _lowerCAmelCase = None , ) -> Union[str, Any]: warnings.warn( "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" , _lowerCAmelCase , ) _lowerCAmelCase = args _lowerCAmelCase = glue_processors[args.task_name]() _lowerCAmelCase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) # Load data features from cache or dataset file _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) _lowerCAmelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _lowerCAmelCase , _lowerCAmelCase = label_list[2], label_list[1] _lowerCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + ".lock" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowerCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: _lowerCAmelCase = self.processor.get_test_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: _lowerCAmelCase = examples[:limit_length] _lowerCAmelCase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) _lowerCAmelCase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> List[str]: return len(self.features ) def __getitem__( self , _lowerCAmelCase ) -> InputFeatures: return self.features[i] def _snake_case ( self ) -> Optional[Any]: return self.label_list
18
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _SCREAMING_SNAKE_CASE = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" _SCREAMING_SNAKE_CASE = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" _SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def _snake_case ( self ) -> Tuple: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="uniform_average" , _lowerCAmelCase=True ) -> Union[str, Any]: _lowerCAmelCase = mean_squared_error( _lowerCAmelCase , _lowerCAmelCase , sample_weight=_lowerCAmelCase , multioutput=_lowerCAmelCase , squared=_lowerCAmelCase ) return {"mse": mse}
18
1
import os import numpy import onnx def lowerCamelCase__ ( a : List[Any] , a : List[Any] ) -> str: """simple docstring""" a__ :Tuple = a.name a__ :Optional[int] = b.name a__ :Any = "" a__ :Union[str, Any] = "" a__ :Union[str, Any] = a == b a__ :Union[str, Any] = name_a a__ :Union[str, Any] = name_b return res def lowerCamelCase__ ( a : List[str] , a : int , a : Dict ) -> Union[str, Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(a , a ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , a , a ) _graph_replace_input_with(node_proto.attribute[1].g , a , a ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , a , a ) def lowerCamelCase__ ( a : Optional[int] , a : str , a : str ) -> Union[str, Any]: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(a , a , a ) def lowerCamelCase__ ( a : int , a : Optional[int] , a : int ) -> str: """simple docstring""" a__ :str = list(model.graph.initializer ) a__ :str = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i a__ :str = inits[i].name a__ :List[Any] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , a , a ) def lowerCamelCase__ ( a : List[Any] ) -> List[str]: """simple docstring""" a__ :Union[str, Any] = os.path.dirname(a ) a__ :int = os.path.basename(a ) a__ :str = onnx.load(os.path.join(a , a ) ) a__ :Union[str, Any] = list(model.graph.initializer ) a__ :Optional[Any] = set() a__ :int = {} a__ :Optional[Any] = [] a__ :Tuple = 0 for i in range(len(a ) ): if i in dup_set: continue for j in range(i + 1 , len(a ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(a ) dup_set.add(a ) a__ :Any = inits[j].data_type a__ :List[Any] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , a ) total_reduced_size += mem_size a__ :int = inits[i].name a__ :List[str] = inits[j].name if name_i in dup_map: dup_map[name_i].append(a ) else: a__ :List[Any] = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 1_024 / 1_024 / 1_024 , "GB" ) a__ :Any = sorted(a ) _remove_dup_initializers_from_model(a , a , a ) a__ :str = "optimized_" + model_file_name a__ :Optional[int] = os.path.join(a , a ) onnx.save(a , a ) return new_model
373
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class lowerCAmelCase_ ( _a): lowerCamelCase_ = 'pegasus' lowerCamelCase_ = ['past_key_values'] lowerCamelCase_ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Any , __A : Dict=50265 , __A : List[Any]=1024 , __A : int=12 , __A : Optional[Any]=4096 , __A : Optional[int]=16 , __A : Dict=12 , __A : List[Any]=4096 , __A : List[str]=16 , __A : Optional[int]=0.0 , __A : List[Any]=0.0 , __A : List[str]=True , __A : Optional[int]=True , __A : str="gelu" , __A : Tuple=1024 , __A : Any=0.1 , __A : List[Any]=0.0 , __A : List[str]=0.0 , __A : Tuple=0.02 , __A : Union[str, Any]=0 , __A : Union[str, Any]=False , __A : Optional[Any]=0 , __A : Tuple=1 , __A : str=1 , **__A : Any , ) ->Union[str, Any]: """simple docstring""" a__ :Any = vocab_size a__ :List[str] = max_position_embeddings a__ :int = d_model a__ :Union[str, Any] = encoder_ffn_dim a__ :List[Any] = encoder_layers a__ :Union[str, Any] = encoder_attention_heads a__ :Tuple = decoder_ffn_dim a__ :List[Any] = decoder_layers a__ :Tuple = decoder_attention_heads a__ :Optional[int] = dropout a__ :str = attention_dropout a__ :Optional[int] = activation_dropout a__ :str = activation_function a__ :Dict = init_std a__ :Any = encoder_layerdrop a__ :int = decoder_layerdrop a__ :Union[str, Any] = use_cache a__ :List[Any] = encoder_layers a__ :Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__A , eos_token_id=__A , is_encoder_decoder=__A , decoder_start_token_id=__A , forced_eos_token_id=__A , **__A , ) @property def _snake_case ( self : Optional[Any] ) ->int: """simple docstring""" return self.encoder_attention_heads @property def _snake_case ( self : Union[str, Any] ) ->int: """simple docstring""" return self.d_model
373
1
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __UpperCamelCase : """simple docstring""" def __init__( self : Optional[Any] , _A : Optional[Any] , _A : str=13 , _A : Optional[int]=7 , _A : Any=True , _A : Tuple=True , _A : Any=False , _A : Optional[Any]=True , _A : Optional[int]=99 , _A : Dict=32 , _A : Any=5 , _A : int=4 , _A : Tuple=37 , _A : Optional[Any]="gelu" , _A : Tuple=0.1 , _A : str=0.1 , _A : str=512 , _A : Tuple=16 , _A : Any=2 , _A : Dict=0.02 , _A : Union[str, Any]=3 , _A : Optional[Any]=4 , _A : str=None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = parent __SCREAMING_SNAKE_CASE : str = batch_size __SCREAMING_SNAKE_CASE : str = seq_length __SCREAMING_SNAKE_CASE : str = is_training __SCREAMING_SNAKE_CASE : Tuple = use_input_mask __SCREAMING_SNAKE_CASE : List[str] = use_token_type_ids __SCREAMING_SNAKE_CASE : List[Any] = use_labels __SCREAMING_SNAKE_CASE : List[Any] = vocab_size __SCREAMING_SNAKE_CASE : Any = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size __SCREAMING_SNAKE_CASE : str = hidden_act __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : str = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[int] = type_vocab_size __SCREAMING_SNAKE_CASE : int = type_sequence_label_size __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : List[str] = num_labels __SCREAMING_SNAKE_CASE : Tuple = num_choices __SCREAMING_SNAKE_CASE : str = scope def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : List[Any] = None if self.use_input_mask: __SCREAMING_SNAKE_CASE : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE : str = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : str ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , use_stable_embedding=_A , ) def UpperCAmelCase__ ( self : str , _A : str , _A : Optional[int] , _A : Dict , _A : Optional[int] , _A : Dict , _A : List[Any] , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = OpenLlamaModel(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Optional[int] = model(_A , attention_mask=_A ) __SCREAMING_SNAKE_CASE : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : List[str] , _A : Optional[Any] , _A : Any , _A : Dict , _A : Union[str, Any] , _A : Dict , _A : str , _A : List[str] , _A : Optional[Any] , _A : int , ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = True __SCREAMING_SNAKE_CASE : Optional[Any] = OpenLlamaModel(_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Tuple = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , ) __SCREAMING_SNAKE_CASE : Tuple = model( _A , attention_mask=_A , encoder_hidden_states=_A , ) __SCREAMING_SNAKE_CASE : Tuple = model(_A , attention_mask=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , _A : Dict , _A : Any , _A : Optional[int] , _A : Optional[Any] , _A : str , _A : List[str] , _A : int , _A : Union[str, Any] , _A : Tuple , ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = OpenLlamaForCausalLM(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : List[str] , _A : List[Any] , _A : Tuple , _A : Tuple , _A : Optional[Any] , _A : List[str] , _A : Dict , _A : List[str] , _A : Tuple , _A : Any , ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = True __SCREAMING_SNAKE_CASE : List[str] = True __SCREAMING_SNAKE_CASE : Optional[int] = OpenLlamaForCausalLM(config=_A ) model.to(_A ) model.eval() # first forward pass __SCREAMING_SNAKE_CASE : Optional[Any] = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , use_cache=_A , ) __SCREAMING_SNAKE_CASE : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __SCREAMING_SNAKE_CASE : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __SCREAMING_SNAKE_CASE : int = torch.cat([input_ids, next_tokens] , dim=-1 ) __SCREAMING_SNAKE_CASE : Any = torch.cat([input_mask, next_mask] , dim=-1 ) __SCREAMING_SNAKE_CASE : List[str] = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , output_hidden_states=_A , )['''hidden_states'''][0] __SCREAMING_SNAKE_CASE : str = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , past_key_values=_A , output_hidden_states=_A , )['''hidden_states'''][0] # select random slice __SCREAMING_SNAKE_CASE : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE : Any = output_from_no_past[:, -3:, random_slice_idx].detach() __SCREAMING_SNAKE_CASE : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A , _A , atol=1e-3 ) ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ) : int = config_and_inputs __SCREAMING_SNAKE_CASE : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowerCAmelCase_ = (OpenLlamaForCausalLM,) if is_torch_available() else () lowerCAmelCase_ = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = OpenLlamaModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE : Optional[int] = type self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : List[Any] = 3 __SCREAMING_SNAKE_CASE : Optional[Any] = input_dict['''input_ids'''] __SCREAMING_SNAKE_CASE : Dict = input_ids.ne(1 ).to(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : int = OpenLlamaForSequenceClassification(_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Any = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : List[Any] = 3 __SCREAMING_SNAKE_CASE : int = '''single_label_classification''' __SCREAMING_SNAKE_CASE : List[Any] = input_dict['''input_ids'''] __SCREAMING_SNAKE_CASE : Tuple = input_ids.ne(1 ).to(_A ) __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : int = OpenLlamaForSequenceClassification(_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : List[str] = 3 __SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification''' __SCREAMING_SNAKE_CASE : Union[str, Any] = input_dict['''input_ids'''] __SCREAMING_SNAKE_CASE : Any = input_ids.ne(1 ).to(_A ) __SCREAMING_SNAKE_CASE : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __SCREAMING_SNAKE_CASE : Optional[Any] = OpenLlamaForSequenceClassification(_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Union[str, Any] = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def UpperCAmelCase__ ( self : int , _A : int ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : str = ids_tensor([1, 10] , config.vocab_size ) __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __SCREAMING_SNAKE_CASE : Any = OpenLlamaModel(_A ) original_model.to(_A ) original_model.eval() __SCREAMING_SNAKE_CASE : int = original_model(_A ).last_hidden_state __SCREAMING_SNAKE_CASE : Dict = original_model(_A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __SCREAMING_SNAKE_CASE : List[Any] = {'''type''': scaling_type, '''factor''': 10.0} __SCREAMING_SNAKE_CASE : Any = OpenLlamaModel(_A ) scaled_model.to(_A ) scaled_model.eval() __SCREAMING_SNAKE_CASE : Any = scaled_model(_A ).last_hidden_state __SCREAMING_SNAKE_CASE : Optional[Any] = scaled_model(_A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_A , _A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_A , _A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_A , _A , atol=1e-5 ) )
74
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def __snake_case ( lowercase : Dict ): snake_case_ = {} snake_case_ = job["started_at"] snake_case_ = job["completed_at"] snake_case_ = date_parser.parse(lowercase ) snake_case_ = date_parser.parse(lowercase ) snake_case_ = round((end_datetime - start_datetime).total_seconds() / 60.0 ) snake_case_ = start snake_case_ = end snake_case_ = duration_in_min return job_info def __snake_case ( lowercase : Tuple , lowercase : Dict=None ): snake_case_ = None if token is not None: snake_case_ = {"Accept": "application/vnd.github+json", "Authorization": f'''Bearer {token}'''} snake_case_ = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' snake_case_ = requests.get(lowercase , headers=lowercase ).json() snake_case_ = {} try: job_time.update({job["name"]: extract_time_from_single_job(lowercase ) for job in result["jobs"]} ) snake_case_ = math.ceil((result["total_count"] - 100) / 100 ) for i in range(lowercase ): snake_case_ = requests.get(url + f'''&page={i + 2}''' , headers=lowercase ).json() job_time.update({job["name"]: extract_time_from_single_job(lowercase ) for job in result["jobs"]} ) return job_time except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') lowercase__ = parser.parse_args() lowercase__ = get_job_time(args.workflow_run_id) lowercase__ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v['duration']}""")
508
0
"""simple docstring""" import math import sys def UpperCAmelCase__ ( A__ ) -> str: """simple docstring""" lowerCamelCase__ = "" try: with open(A__ , "rb" ) as binary_file: lowerCamelCase__ = binary_file.read() for dat in data: lowerCamelCase__ = f'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def UpperCAmelCase__ ( A__ ) -> str: """simple docstring""" lowerCamelCase__ = {"0": "0", "1": "1"} lowerCamelCase__ , lowerCamelCase__ = "", "" lowerCamelCase__ = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowerCamelCase__ = lexicon[curr_string] result += last_match_id lowerCamelCase__ = last_match_id + "0" if math.loga(A__ ).is_integer(): lowerCamelCase__ = {} for curr_key in list(A__ ): lowerCamelCase__ = lexicon.pop(A__ ) lowerCamelCase__ = new_lex lowerCamelCase__ = last_match_id + "1" index += 1 lowerCamelCase__ = "" return result def UpperCAmelCase__ ( A__ , A__ ) -> None: """simple docstring""" lowerCamelCase__ = 8 try: with open(A__ , "wb" ) as opened_file: lowerCamelCase__ = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def UpperCAmelCase__ ( A__ ) -> str: """simple docstring""" lowerCamelCase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowerCamelCase__ = data_bits[counter:] lowerCamelCase__ = data_bits[counter + 1 :] return data_bits def UpperCAmelCase__ ( A__ , A__ ) -> None: """simple docstring""" lowerCamelCase__ = read_file_binary(A__ ) lowerCamelCase__ = remove_prefix(A__ ) lowerCamelCase__ = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
274
"""simple docstring""" from __future__ import annotations import bisect def UpperCAmelCase__ ( A__ , A__ , A__ = 0 , A__ = -1 ) -> int: """simple docstring""" if hi < 0: lowerCamelCase__ = len(A__ ) while lo < hi: lowerCamelCase__ = lo + (hi - lo) // 2 if sorted_collection[mid] < item: lowerCamelCase__ = mid + 1 else: lowerCamelCase__ = mid return lo def UpperCAmelCase__ ( A__ , A__ , A__ = 0 , A__ = -1 ) -> int: """simple docstring""" if hi < 0: lowerCamelCase__ = len(A__ ) while lo < hi: lowerCamelCase__ = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: lowerCamelCase__ = mid + 1 else: lowerCamelCase__ = mid return lo def UpperCAmelCase__ ( A__ , A__ , A__ = 0 , A__ = -1 ) -> None: """simple docstring""" sorted_collection.insert(bisect_left(A__ , A__ , A__ , A__ ) , A__ ) def UpperCAmelCase__ ( A__ , A__ , A__ = 0 , A__ = -1 ) -> None: """simple docstring""" sorted_collection.insert(bisect_right(A__ , A__ , A__ , A__ ) , A__ ) def UpperCAmelCase__ ( A__ , A__ ) -> int | None: """simple docstring""" lowerCamelCase__ = 0 lowerCamelCase__ = len(A__ ) - 1 while left <= right: lowerCamelCase__ = left + (right - left) // 2 lowerCamelCase__ = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: lowerCamelCase__ = midpoint - 1 else: lowerCamelCase__ = midpoint + 1 return None def UpperCAmelCase__ ( A__ , A__ ) -> int | None: """simple docstring""" lowerCamelCase__ = bisect.bisect_left(A__ , A__ ) if index != len(A__ ) and sorted_collection[index] == item: return index return None def UpperCAmelCase__ ( A__ , A__ , A__ , A__ ) -> int | None: """simple docstring""" if right < left: return None lowerCamelCase__ = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(A__ , A__ , A__ , midpoint - 1 ) else: return binary_search_by_recursion(A__ , A__ , midpoint + 1 , A__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip() SCREAMING_SNAKE_CASE_ : int = sorted(int(item) for item in user_input.split(''',''')) SCREAMING_SNAKE_CASE_ : Optional[Any] = int(input('''Enter a single number to be found in the list:\n''')) SCREAMING_SNAKE_CASE_ : Dict = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
274
1
from __future__ import annotations import math class lowerCamelCase__ : def __init__( self : Optional[Any] , __a : int ): '''simple docstring''' lowerCamelCase__: List[Any] = size # approximate the overall size of segment tree with given value lowerCamelCase__: List[Any] = [0 for i in range(0 , 4 * size )] # create array to store lazy update lowerCamelCase__: int = [0 for i in range(0 , 4 * size )] lowerCamelCase__: Union[str, Any] = [0 for i in range(0 , 4 * size )] # flag for lazy update def lowerCamelCase_ ( self : List[str] , __a : int ): '''simple docstring''' return idx * 2 def lowerCamelCase_ ( self : Optional[Any] , __a : int ): '''simple docstring''' return idx * 2 + 1 def lowerCamelCase_ ( self : List[str] , __a : int , __a : int , __a : int , __a : list[int] ): '''simple docstring''' if left_element == right_element: lowerCamelCase__: Tuple = a[left_element - 1] else: lowerCamelCase__: Optional[Any] = (left_element + right_element) // 2 self.build(self.left(__a ) , __a , __a , __a ) self.build(self.right(__a ) , mid + 1 , __a , __a ) lowerCamelCase__: List[str] = max( self.segment_tree[self.left(__a )] , self.segment_tree[self.right(__a )] ) def lowerCamelCase_ ( self : List[str] , __a : int , __a : int , __a : int , __a : int , __a : int , __a : int ): '''simple docstring''' if self.flag[idx] is True: lowerCamelCase__: Dict = self.lazy[idx] lowerCamelCase__: Union[str, Any] = False if left_element != right_element: lowerCamelCase__: Tuple = self.lazy[idx] lowerCamelCase__: Dict = self.lazy[idx] lowerCamelCase__: Dict = True lowerCamelCase__: Any = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: lowerCamelCase__: List[Any] = val if left_element != right_element: lowerCamelCase__: Dict = val lowerCamelCase__: int = val lowerCamelCase__: Any = True lowerCamelCase__: Tuple = True return True lowerCamelCase__: Tuple = (left_element + right_element) // 2 self.update(self.left(__a ) , __a , __a , __a , __a , __a ) self.update(self.right(__a ) , mid + 1 , __a , __a , __a , __a ) lowerCamelCase__: List[str] = max( self.segment_tree[self.left(__a )] , self.segment_tree[self.right(__a )] ) return True def lowerCamelCase_ ( self : Optional[int] , __a : int , __a : int , __a : int , __a : int , __a : int ): '''simple docstring''' if self.flag[idx] is True: lowerCamelCase__: int = self.lazy[idx] lowerCamelCase__: Dict = False if left_element != right_element: lowerCamelCase__: int = self.lazy[idx] lowerCamelCase__: str = self.lazy[idx] lowerCamelCase__: str = True lowerCamelCase__: Dict = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] lowerCamelCase__: Tuple = (left_element + right_element) // 2 lowerCamelCase__: Dict = self.query(self.left(__a ) , __a , __a , __a , __a ) lowerCamelCase__: Optional[Any] = self.query(self.right(__a ) , mid + 1 , __a , __a , __a ) return max(__a , __a ) def __str__( self : Any ): '''simple docstring''' return str([self.query(1 , 1 , self.size , __a , __a ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _lowercase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] _lowercase = 15 _lowercase = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
306
from __future__ import annotations _lowercase = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _lowercase = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __lowerCAmelCase ( _UpperCamelCase ) -> list[float]: '''simple docstring''' lowerCamelCase__: str = [] lowerCamelCase__: List[str] = len(_UpperCamelCase ) for i in range(_UpperCamelCase ): lowerCamelCase__: float = -1 for j in range(i + 1 , _UpperCamelCase ): if arr[i] < arr[j]: lowerCamelCase__: Dict = arr[j] break result.append(_UpperCamelCase ) return result def __lowerCAmelCase ( _UpperCamelCase ) -> list[float]: '''simple docstring''' lowerCamelCase__: Tuple = [] for i, outer in enumerate(_UpperCamelCase ): lowerCamelCase__: float = -1 for inner in arr[i + 1 :]: if outer < inner: lowerCamelCase__: Dict = inner break result.append(_UpperCamelCase ) return result def __lowerCAmelCase ( _UpperCamelCase ) -> list[float]: '''simple docstring''' lowerCamelCase__: Optional[Any] = len(_UpperCamelCase ) lowerCamelCase__: list[float] = [] lowerCamelCase__: list[float] = [-1] * arr_size for index in reversed(range(_UpperCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowerCamelCase__: Dict = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _lowercase = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
306
1
"""simple docstring""" import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _a = TransfoXLTokenizer _a = False _a = False def snake_case ( self : Tuple )-> Tuple: super().setUp() lowerCamelCase__ : Tuple =[ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] lowerCamelCase__ : Any =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def snake_case ( self : List[str], **lowerCamelCase : Any )-> List[str]: lowerCamelCase__ : Tuple =True return TransfoXLTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def snake_case ( self : List[str], lowerCamelCase : Tuple )-> Optional[int]: lowerCamelCase__ : Optional[int] ='''<unk> UNwanted , running''' lowerCamelCase__ : Dict ='''<unk> unwanted, running''' return input_text, output_text def snake_case ( self : str )-> Optional[int]: lowerCamelCase__ : Optional[Any] =TransfoXLTokenizer(vocab_file=self.vocab_file, lower_case=lowerCamelCase ) lowerCamelCase__ : Any =tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(lowerCamelCase, ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ), [0, 4, 8, 7] ) def snake_case ( self : List[str] )-> List[str]: lowerCamelCase__ : Dict =TransfoXLTokenizer(lower_case=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ), ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def snake_case ( self : Dict )-> Optional[int]: lowerCamelCase__ : Optional[Any] =TransfoXLTokenizer(lower_case=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ), ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def snake_case ( self : Any )-> List[Any]: lowerCamelCase__ : Optional[Any] =TransfoXLTokenizer(lower_case=lowerCamelCase ) lowerCamelCase__ : Dict ='''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' lowerCamelCase__ : Dict =[ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(lowerCamelCase ), lowerCamelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(lowerCamelCase ), lowerCamelCase ) def snake_case ( self : Tuple )-> int: lowerCamelCase__ : List[Any] =self.get_tokenizer() lowerCamelCase__ : Optional[int] =len(lowerCamelCase ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''', 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowerCamelCase ), original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ), [1] ) self.assertEqual(tokenizer.decode([1] ), '''new1''' )
707
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str, lowerCamelCase : int )-> None: lowerCamelCase__ : str =value lowerCamelCase__ : Node | None =None lowerCamelCase__ : Node | None =None class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int, lowerCamelCase : Node )-> None: lowerCamelCase__ : Any =tree def snake_case ( self : str, lowerCamelCase : Node | None )-> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict )-> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
625
0
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( _a , unittest.TestCase ): """simple docstring""" _snake_case : int = LEDTokenizer _snake_case : Any = LEDTokenizerFast _snake_case : Any = True def A ( self : int )-> List[Any]: super().setUp() __UpperCamelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] __UpperCamelCase = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) __UpperCamelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] __UpperCamelCase = {"unk_token": "<unk>"} __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase_ ) ) def A ( self : Union[str, Any] , **A_ : int )-> Optional[int]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def A ( self : Optional[Any] , **A_ : Any )-> int: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def A ( self : Optional[Any] , A_ : Dict )-> List[str]: return "lower newer", "lower newer" @cached_property def A ( self : Dict )-> int: return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def A ( self : List[str] )-> Union[str, Any]: return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def A ( self : int )-> Tuple: __UpperCamelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] __UpperCamelCase = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def A ( self : Tuple )-> List[Any]: __UpperCamelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors="pt" ) self.assertIn("input_ids" , lowerCAmelCase_ ) self.assertIn("attention_mask" , lowerCAmelCase_ ) self.assertNotIn("labels" , lowerCAmelCase_ ) self.assertNotIn("decoder_attention_mask" , lowerCAmelCase_ ) @require_torch def A ( self : List[str] )-> str: __UpperCamelCase = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def A ( self : Any )-> Union[str, Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase = tokenizer( ["I am a small frog" * 10_24, "I am a small frog"] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 51_22) ) @require_torch def A ( self : Optional[Any] )-> Union[str, Any]: __UpperCamelCase = ["A long paragraph for summarization."] __UpperCamelCase = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase = tokenizer(lowerCAmelCase_ , return_tensors="pt" ) __UpperCamelCase = tokenizer(text_target=lowerCAmelCase_ , return_tensors="pt" ) __UpperCamelCase = inputs["input_ids"] __UpperCamelCase = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def A ( self : Any )-> Union[str, Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase = ["Summary of the text.", "Another summary."] __UpperCamelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __UpperCamelCase = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) __UpperCamelCase = [[0] * len(lowerCAmelCase_ ) for x in encoded_output["input_ids"]] __UpperCamelCase = tokenizer.pad(lowerCAmelCase_ ) self.assertSequenceEqual(outputs["global_attention_mask"] , lowerCAmelCase_ ) def A ( self : Any )-> Dict: pass def A ( self : Any )-> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) __UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) __UpperCamelCase = "A, <mask> AllenNLP sentence." __UpperCamelCase = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) __UpperCamelCase = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) __UpperCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) __UpperCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowerCAmelCase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
505
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def snake_case_ (UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : int , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' _a = {} if train_file is not None: _a = [train_file] if eval_file is not None: _a = [eval_file] if test_file is not None: _a = [test_file] _a = datasets.load_dataset('''csv''' , data_files=UpperCamelCase ) _a = list(ds[list(files.keys() )[0]].features.keys() ) _a = features_name.pop(UpperCamelCase ) _a = list(set(ds[list(files.keys() )[0]][label_name] ) ) _a = {label: i for i, label in enumerate(UpperCamelCase )} _a = tokenizer.model_input_names _a = {} if len(UpperCamelCase ) == 1: for k in files.keys(): _a = ds[k].map( lambda UpperCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' ) , batched=UpperCamelCase , ) elif len(UpperCamelCase ) == 2: for k in files.keys(): _a = ds[k].map( lambda UpperCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' , ) , batched=UpperCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _a = {k: v for k, v in ex.items() if k in input_names} _a = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _a = {k: v for k, v in ex.items() if k in input_names} _a = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _a = {k: v for k, v in ex.items() if k in input_names} _a = labelaid[ex[label_name]] yield (d, label) _a = ( tf.data.Dataset.from_generator( UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _a = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) _a = ( tf.data.Dataset.from_generator( UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _a = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) _a = ( tf.data.Dataset.from_generator( UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _a = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _snake_case : str = logging.getLogger(__name__) @dataclass class A : lowercase_ = field(metadata={'help': 'Which column contains the label'} ) lowercase_ = field(default=_a ,metadata={'help': 'The path of the training file'} ) lowercase_ = field(default=_a ,metadata={'help': 'The path of the development file'} ) lowercase_ = field(default=_a ,metadata={'help': 'The path of the test file'} ) lowercase_ = field( default=128 ,metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } ,) lowercase_ = field( default=_a ,metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class A : lowercase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase_ = field( default=_a ,metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase_ = field( default=_a ,metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowercase_ = field(default=_a ,metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowercase_ = field( default=_a ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} ,) def snake_case_ (): '''simple docstring''' _a = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) _a , _a , _a = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' f'16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _a , _a , _a , _a = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) _a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase ) , labelaid=UpperCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): _a = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCamelCase : EvalPrediction ) -> Dict: _a = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _a = TFTrainer( model=UpperCamelCase , args=UpperCamelCase , train_dataset=UpperCamelCase , eval_dataset=UpperCamelCase , compute_metrics=UpperCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _a = trainer.evaluate() _a = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) results.update(UpperCamelCase ) return results if __name__ == "__main__": main()
22
0
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ : List[Any] = '''▁''' SCREAMING_SNAKE_CASE_ : int = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class _A ( __a , unittest.TestCase ): __a = BertGenerationTokenizer __a = False __a = True def _lowerCamelCase ( self ) -> int: super().setUp() lowerCamelCase__ = BertGenerationTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ) -> List[str]: lowerCamelCase__ = "<s>" lowerCamelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _lowerCamelCase ( self ) -> str: lowerCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 1002 ) def _lowerCamelCase ( self ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ) -> int: lowerCamelCase__ = BertGenerationTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [285, 46, 10, 170, 382] , ) lowerCamelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCamelCase__ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _lowerCamelCase ( self ) -> List[Any]: return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def _lowerCamelCase ( self ) -> List[str]: lowerCamelCase__ = "Hello World!" lowerCamelCase__ = [18536, 2260, 101] self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @slow def _lowerCamelCase ( self ) -> str: lowerCamelCase__ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) lowerCamelCase__ = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @require_torch @slow def _lowerCamelCase ( self ) -> str: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase__ = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase__ = " ".join(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.big_tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , return_tensors="pt" , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = BertGenerationConfig() lowerCamelCase__ = BertGenerationEncoder(SCREAMING_SNAKE_CASE__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**SCREAMING_SNAKE_CASE__ ) model(**SCREAMING_SNAKE_CASE__ ) @slow def _lowerCamelCase ( self ) -> List[str]: # fmt: off lowerCamelCase__ = {"input_ids": [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
718
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _A ( __a , unittest.TestCase ): __a = PhobertTokenizer __a = False def _lowerCamelCase ( self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__ = ["T@@", "i", "I", "R@@", "r", "e@@"] lowerCamelCase__ = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) lowerCamelCase__ = ["#version: 0.2", "l à</w>"] lowerCamelCase__ = {"unk_token": "<unk>"} lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE__ ) ) def _lowerCamelCase ( self , **SCREAMING_SNAKE_CASE__ ) -> Tuple: kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ) -> Tuple: lowerCamelCase__ = "Tôi là VinAI Research" lowerCamelCase__ = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def _lowerCamelCase ( self ) -> Tuple: lowerCamelCase__ = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase__ = "Tôi là VinAI Research" lowerCamelCase__ = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() lowerCamelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokens + [tokenizer.unk_token] lowerCamelCase__ = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
274
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __lowerCamelCase :str = logging.get_logger(__name__) __lowerCamelCase :Tuple = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCamelCase :Union[str, Any] = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } __lowerCamelCase :Dict = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } __lowerCamelCase :Optional[Any] = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class A__ ( __UpperCamelCase): """simple docstring""" snake_case__ : str =VOCAB_FILES_NAMES snake_case__ : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP snake_case__ : List[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : str =PRETRAINED_INIT_CONFIGURATION snake_case__ : int =['''input_ids''', '''attention_mask'''] snake_case__ : int =DistilBertTokenizer def __init__( self: Tuple , __a: Optional[int]=None , __a: List[str]=None , __a: Optional[Any]=True , __a: int="[UNK]" , __a: Optional[int]="[SEP]" , __a: int="[PAD]" , __a: Optional[Any]="[CLS]" , __a: Tuple="[MASK]" , __a: Tuple=True , __a: Optional[int]=None , **__a: str , )-> int: super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , tokenize_chinese_chars=__a , strip_accents=__a , **__a , ) lowerCamelCase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __a ) != do_lower_case or normalizer_state.get("""strip_accents""" , __a ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __a ) != tokenize_chinese_chars ): lowerCamelCase : Union[str, Any] = getattr(__a , normalizer_state.pop("""type""" ) ) lowerCamelCase : List[Any] = do_lower_case lowerCamelCase : Union[str, Any] = strip_accents lowerCamelCase : Dict = tokenize_chinese_chars lowerCamelCase : str = normalizer_class(**__a ) lowerCamelCase : Union[str, Any] = do_lower_case def a__ ( self: Optional[Any] , __a: Union[str, Any] , __a: Union[str, Any]=None )-> int: lowerCamelCase : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__ ( self: List[Any] , __a: List[Any] , __a: Optional[Any] = None )-> List[int]: lowerCamelCase : Any = [self.sep_token_id] lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self: Union[str, Any] , __a: Optional[int] , __a: List[Any] = None )-> Tuple[str]: lowerCamelCase : int = self._tokenizer.model.save(__a , name=__a ) return tuple(__a )
222
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowerCamelCase__ ( __UpperCamelCase , unittest.TestCase ): __UpperCAmelCase = MvpTokenizer __UpperCAmelCase = MvpTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = filter_roberta_detectors def _UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" super().setUp() lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowercase : Optional[Any] = dict(zip(snake_case , range(len(snake_case ) ) ) ) lowercase : Dict = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowercase : int = {"""unk_token""": """<unk>"""} lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(snake_case ) ) def _UpperCAmelCase ( self , **snake_case ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def _UpperCAmelCase ( self , **snake_case ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def _UpperCAmelCase ( self , snake_case ) -> Optional[int]: """simple docstring""" return "lower newer", "lower newer" @cached_property def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" lowercase : str = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowercase : Dict = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : Union[str, Any] = tokenizer(snake_case , max_length=len(snake_case ) , padding=snake_case , return_tensors="""pt""" ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowercase : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) # Test that special tokens are reset @require_torch def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" lowercase : List[str] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : Any = tokenizer(snake_case , padding=snake_case , return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" , snake_case ) self.assertIn("""attention_mask""" , snake_case ) self.assertNotIn("""labels""" , snake_case ) self.assertNotIn("""decoder_attention_mask""" , snake_case ) @require_torch def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" lowercase : Optional[int] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : int = tokenizer(text_target=snake_case , max_length=3_2 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(3_2 , targets["""input_ids"""].shape[1] ) @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : str = tokenizer( ["""I am a small frog""" * 1_0_2_4, """I am a small frog"""] , padding=snake_case , truncation=snake_case , return_tensors="""pt""" ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual(batch.input_ids.shape , (2, 1_0_2_4) ) @require_torch def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" lowercase : List[Any] = ["""A long paragraph for summarization."""] lowercase : List[str] = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : List[str] = tokenizer(snake_case , text_target=snake_case , return_tensors="""pt""" ) lowercase : Union[str, Any] = inputs["""input_ids"""] lowercase : Optional[Any] = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def _UpperCAmelCase ( self ) -> int: """simple docstring""" pass def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case ) lowercase : Optional[Any] = self.tokenizer_class.from_pretrained(snake_case , **snake_case ) lowercase : str = """A, <mask> AllenNLP sentence.""" lowercase : int = tokenizer_r.encode_plus(snake_case , add_special_tokens=snake_case , return_token_type_ids=snake_case ) lowercase : str = tokenizer_p.encode_plus(snake_case , add_special_tokens=snake_case , return_token_type_ids=snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) lowercase : Tuple = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) lowercase : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( snake_case , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( snake_case , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
607
0
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def _UpperCamelCase (a__ :bool = True , *a__ :Optional[int] , **a__ :List[Any] ): """simple docstring""" if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) UpperCamelCase__ = False if main_process_only: UpperCamelCase__ = PartialState().local_process_index == 0 return _tqdm(*a__ , **a__ , disable=a__ )
548
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def _UpperCamelCase (a__ :Any , a__ :Union[str, Any] ): """simple docstring""" UpperCamelCase__ = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) UpperCamelCase__ = DatasetInfosDict.from_directory(a__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ), ] , ) def _UpperCamelCase (a__ :Optional[int] , a__ :DatasetInfo ): """simple docstring""" UpperCamelCase__ = str(a__ ) dataset_info.write_to_directory(a__ ) UpperCamelCase__ = DatasetInfo.from_directory(a__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a__ , """dataset_info.json""" ) ) def _UpperCamelCase (): """simple docstring""" UpperCamelCase__ = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) UpperCamelCase__ = dataset_info._to_yaml_dict() assert sorted(a__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) UpperCamelCase__ = yaml.safe_dump(a__ ) UpperCamelCase__ = yaml.safe_load(a__ ) assert dataset_info_yaml_dict == reloaded def _UpperCamelCase (): """simple docstring""" UpperCamelCase__ = DatasetInfo() UpperCamelCase__ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=42 ), """v2""": DatasetInfo(dataset_size=1337 ), } ), ] , ) def _UpperCamelCase (a__ :int , a__ :DatasetInfosDict ): """simple docstring""" UpperCamelCase__ = str(a__ ) dataset_infos_dict.write_to_directory(a__ ) UpperCamelCase__ = DatasetInfosDict.from_directory(a__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): UpperCamelCase__ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml UpperCamelCase__ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a__ , """README.md""" ) )
548
1
def lowerCamelCase__ ( __lowerCamelCase : int = 1000 ): __UpperCAmelCase : str = 2**power __UpperCAmelCase : List[Any] = 0 while n: __UpperCAmelCase , __UpperCAmelCase : List[str] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
63
def lowerCAmelCase ( ) ->Dict: """simple docstring""" __magic_name__ : Optional[int] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] __magic_name__ : Optional[Any] = 6 __magic_name__ : Dict = 1 __magic_name__ : Union[str, Any] = 1901 __magic_name__ : List[str] = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 __magic_name__ : int = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 __magic_name__ : Optional[int] = day - 29 else: if day > days_per_month[month - 1]: month += 1 __magic_name__ : Any = day - days_per_month[month - 2] if month > 12: year += 1 __magic_name__ : int = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
154
0
'''simple docstring''' def __lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : list[str] ): '''simple docstring''' UpperCAmelCase_ = '''''' for word_or_phrase in separated: if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(_UpperCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
43
'''simple docstring''' from __future__ import annotations from typing import TypedDict class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __lowerCamelCase ( _UpperCamelCase : str ): '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('''The parameter s type must be str.''' ) return [s[i:] + s[:i] for i in range(len(_UpperCamelCase ) )] def __lowerCamelCase ( _UpperCamelCase : str ): '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('''The parameter s type must be str.''' ) if not s: raise ValueError('''The parameter s must not be empty.''' ) UpperCAmelCase_ = all_rotations(_UpperCamelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation UpperCAmelCase_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(_UpperCamelCase ), } return response def __lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : int ): '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('''The parameter bwt_string type must be str.''' ) if not bwt_string: raise ValueError('''The parameter bwt_string must not be empty.''' ) try: UpperCAmelCase_ = int(_UpperCamelCase ) except ValueError: raise TypeError( '''The parameter idx_original_string type must be int or passive''' ''' of cast to int.''' ) if idx_original_string < 0: raise ValueError('''The parameter idx_original_string must not be lower than 0.''' ) if idx_original_string >= len(_UpperCamelCase ): raise ValueError( '''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''' ) UpperCAmelCase_ = [''''''] * len(_UpperCamelCase ) for _ in range(len(_UpperCamelCase ) ): for i in range(len(_UpperCamelCase ) ): UpperCAmelCase_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowercase__ : Optional[int] = "Provide a string that I will generate its BWT transform: " lowercase__ : List[Any] = input(entry_msg).strip() lowercase__ : Any = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) lowercase__ : Dict = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
43
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase ( lowerCamelCase_ :List[Any] ): '''simple docstring''' snake_case_ : int = 0.00 snake_case_ : List[str] = 0 for resistor in resistors: if resistor <= 0: snake_case_ : Optional[Any] = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(lowercase__ ) first_sum += 1 / float(lowercase__ ) index += 1 return 1 / first_sum def UpperCAmelCase ( lowerCamelCase_ :Dict ): '''simple docstring''' snake_case_ : str = 0.00 snake_case_ : List[str] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: snake_case_ : Optional[Any] = F'''Resistor at index {index} has a negative value!''' raise ValueError(lowercase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
334
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __A = { "configuration_layoutlmv3": [ "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv3Config", "LayoutLMv3OnnxConfig", ], "processing_layoutlmv3": ["LayoutLMv3Processor"], "tokenization_layoutlmv3": ["LayoutLMv3Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["LayoutLMv3TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv3ForQuestionAnswering", "LayoutLMv3ForSequenceClassification", "LayoutLMv3ForTokenClassification", "LayoutLMv3Model", "LayoutLMv3PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLayoutLMv3ForQuestionAnswering", "TFLayoutLMv3ForSequenceClassification", "TFLayoutLMv3ForTokenClassification", "TFLayoutLMv3Model", "TFLayoutLMv3PreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["LayoutLMv3FeatureExtractor"] __A = ["LayoutLMv3ImageProcessor"] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
325
0
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": a_ : Optional[int] = pd.read_csv('''sample_data.csv''', header=None) a_ : Tuple = df.shape[:1][0] # If you're using some other dataset input the target column a_ : Any = df.iloc[:, 1:2] a_ : List[Any] = actual_data.values.reshape(len_data, 1) a_ : int = MinMaxScaler().fit_transform(actual_data) a_ : Optional[Any] = 10 a_ : Tuple = 5 a_ : List[str] = 20 a_ : Union[str, Any] = len_data - periods * look_back a_ : Optional[int] = actual_data[:division] a_ : int = actual_data[division - look_back :] a_ , a_ : List[Any] = [], [] a_ , a_ : int = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) a_ : Dict = np.array(train_x) a_ : Optional[Any] = np.array(test_x) a_ : List[str] = np.array([list(i.ravel()) for i in train_y]) a_ : Any = np.array([list(i.ravel()) for i in test_y]) a_ : Union[str, Any] = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') a_ : Any = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) a_ : Union[str, Any] = model.predict(x_test)
263
"""simple docstring""" def UpperCAmelCase ( A__: int , A__: list[int] , A__: int ) -> int: def count_of_possible_combinations(A__: int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(A__ ) def UpperCAmelCase ( A__: int , A__: list[int] , A__: int ) -> int: def count_of_possible_combinations_with_dp_array( A__: int , A__: list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __lowerCamelCase : Dict = sum( count_of_possible_combinations_with_dp_array(target - item , A__ ) for item in array ) __lowerCamelCase : str = answer return answer __lowerCamelCase : Union[str, Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(A__ , A__ ) def UpperCAmelCase ( A__: int , A__: list[int] , A__: int ) -> int: __lowerCamelCase : int = [0] * (target + 1) __lowerCamelCase : str = 1 for i in range(1 , target + 1 ): for j in range(A__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() a_ : Any = 3 a_ : str = 5 a_ : List[Any] = [1, 2, 5] print(combination_sum_iv(n, array, target))
263
1
"""simple docstring""" from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a__ ( ): UpperCAmelCase_ , UpperCAmelCase_ = 9, 14 # noqa: F841 UpperCAmelCase_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCAmelCase_ = defaultdict(lowerCAmelCase__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) UpperCAmelCase_ = mst(lowerCAmelCase__ ) UpperCAmelCase_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: UpperCAmelCase_ = tuple(answer[:2] ) UpperCAmelCase_ = tuple(edge[::-1] ) assert edge in result or reverse in result
82
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
84
0
"""simple docstring""" import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json _A : str = """sshleifer/mar_enro_6_3_student""" class a__ ( a_ ): def __magic_name__ ( self ): super().setUp() lowercase : int = cached_path( "https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz" , extract_compressed_file=_a , ) lowercase : Any = f"""{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k""" @slow @require_torch_gpu def __magic_name__ ( self ): MarianMTModel.from_pretrained(_a ) @slow @require_torch_gpu def __magic_name__ ( self ): lowercase : Tuple = { "$MAX_LEN": 64, "$BS": 64, "$GAS": 1, "$ENRO_DIR": self.data_dir, "facebook/mbart-large-cc25": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", "--learning_rate=3e-5": "--learning_rate 3e-4", "--num_train_epochs 6": "--num_train_epochs 1", } # Clean up bash script lowercase : Tuple = (self.test_file_dir / "train_mbart_cc25_enro.sh").open().read().split("finetune.py" )[1].strip() lowercase : Union[str, Any] = bash_script.replace("\\\n" , "" ).strip().replace("\"$@\"" , "" ) for k, v in env_vars_to_replace.items(): lowercase : Optional[Any] = bash_script.replace(_a , str(_a ) ) lowercase : Any = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowercase : List[Any] = f""" --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 """.split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowercase : Union[str, Any] = ["finetune.py"] + bash_script.split() + args with patch.object(_a , "argv" , _a ): lowercase : Dict = argparse.ArgumentParser() lowercase : Optional[Any] = pl.Trainer.add_argparse_args(_a ) lowercase : List[str] = SummarizationModule.add_model_specific_args(_a , os.getcwd() ) lowercase : Tuple = parser.parse_args() lowercase : Optional[Any] = main(_a ) # Check metrics lowercase : int = load_json(model.metrics_save_path ) lowercase : Union[str, Any] = metrics["val"][0] lowercase : Tuple = metrics["val"][-1] self.assertEqual(len(metrics["val"] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , _a ) self.assertGreater(last_step_stats["val_avg_gen_time"] , 0.0_1 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["val_avg_gen_time"] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["val_avg_bleu"] - first_step_stats["val_avg_bleu"] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["val_avg_bleu"] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["val"][-1]["val_avg_bleu"] - metrics["test"][-1]["test_avg_bleu"] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict lowercase : List[str] = os.listdir(_a ) lowercase : Optional[Any] = [x for x in contents if x.endswith(".ckpt" )][0] lowercase : str = os.path.join(args.output_dir , _a ) lowercase : int = torch.load(_a , map_location="cpu" ) lowercase : int = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowercase : str = {os.path.basename(_a ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["test"] ) == 1 class a__ ( a_ ): @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __magic_name__ ( self ): lowercase : List[Any] = f"""{self.test_file_dir_str}/test_data/wmt_en_ro""" lowercase : Union[str, Any] = { "--fp16_opt_level=O1": "", "$MAX_LEN": 128, "$BS": 16, "$GAS": 1, "$ENRO_DIR": data_dir, "$m": "sshleifer/student_marian_en_ro_6_1", "val_check_interval=0.25": "val_check_interval=1.0", } # Clean up bash script lowercase : Optional[int] = ( (self.test_file_dir / "distil_marian_no_teacher.sh").open().read().split("distillation.py" )[1].strip() ) lowercase : Tuple = bash_script.replace("\\\n" , "" ).strip().replace("\"$@\"" , "" ) lowercase : Optional[int] = bash_script.replace("--fp16 " , " " ) for k, v in env_vars_to_replace.items(): lowercase : Union[str, Any] = bash_script.replace(_a , str(_a ) ) lowercase : Any = self.get_auto_remove_tmp_dir() lowercase : str = bash_script.replace("--fp16" , "" ) lowercase : Any = 6 lowercase : Optional[int] = ( ["distillation.py"] + bash_script.split() + [ f"""--output_dir={output_dir}""", "--gpus=1", "--learning_rate=1e-3", f"""--num_train_epochs={epochs}""", "--warmup_steps=10", "--val_check_interval=1.0", "--do_predict", ] ) with patch.object(_a , "argv" , _a ): lowercase : Optional[int] = argparse.ArgumentParser() lowercase : List[str] = pl.Trainer.add_argparse_args(_a ) lowercase : Any = SummarizationDistiller.add_model_specific_args(_a , os.getcwd() ) lowercase : str = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowercase : Dict = distill_main(_a ) # Check metrics lowercase : Tuple = load_json(model.metrics_save_path ) lowercase : int = metrics["val"][0] lowercase : Tuple = metrics["val"][-1] assert len(metrics["val"] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.0_1 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , _a ) # check lightning ckpt can be loaded and has a reasonable statedict lowercase : int = os.listdir(_a ) lowercase : Dict = [x for x in contents if x.endswith(".ckpt" )][0] lowercase : List[str] = os.path.join(args.output_dir , _a ) lowercase : Any = torch.load(_a , map_location="cpu" ) lowercase : int = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowercase : str = {os.path.basename(_a ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["test"] ) == 1
701
"""simple docstring""" _A : List[str] = 8.3_1_4_4_5_9_8 def __magic_name__ ( __snake_case : float , __snake_case : float ) -> float: if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _A : Union[str, Any] = 3_00 _A : int = 28 _A : Optional[Any] = rms_speed_of_molecule(temperature, molar_mass) print(F"Vrms of Nitrogen gas at 300 K is {vrms} m/s")
518
0