code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = ['''torch''', '''torchsde'''] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(self , ["torch", "torchsde"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ["torch", "torchsde"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["torch", "torchsde"] )
62
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = 'speech_to_text_2' lowerCamelCase_ = ['past_key_values'] lowerCamelCase_ = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : int , UpperCAmelCase__ : Dict=10000 , UpperCAmelCase__ : Optional[int]=6 , UpperCAmelCase__ : str=2048 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Optional[Any]="relu" , UpperCAmelCase__ : List[str]=256 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : Optional[Any]=0.0 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str=1 , UpperCAmelCase__ : Optional[Any]=0 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : List[Any]=1024 , **UpperCAmelCase__ : Dict , ): '''simple docstring''' lowercase : List[str] =vocab_size lowercase : Optional[int] =d_model lowercase : Optional[Any] =decoder_ffn_dim lowercase : Any =decoder_layers lowercase : Dict =decoder_attention_heads lowercase : List[Any] =dropout lowercase : List[Any] =attention_dropout lowercase : Any =activation_dropout lowercase : Optional[Any] =activation_function lowercase : Optional[int] =init_std lowercase : Dict =decoder_layerdrop lowercase : Optional[int] =use_cache lowercase : Optional[Any] =decoder_layers lowercase : List[str] =scale_embedding # scale factor will be sqrt(d_model) if True lowercase : str =max_target_positions super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
92
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def A__ ( A : List[str]): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def A__ ( A : str): '''simple docstring''' for char in word: UpperCamelCase : Optional[int] = ord(A) if not _is_chinese_char(A): return 0 return 1 def A__ ( A : List[str]): '''simple docstring''' UpperCamelCase : Union[str, Any] = set() for token in tokens: UpperCamelCase : Dict = len(A) > 1 and is_chinese(A) if chinese_word: word_set.add(A) UpperCamelCase : int = list(A) return word_list def A__ ( A : List[str] , A : set()): '''simple docstring''' if not chinese_word_set: return bert_tokens UpperCamelCase : str = max([len(A) for w in chinese_word_set]) UpperCamelCase : str = bert_tokens UpperCamelCase : Optional[int] = 0, len(A) while start < end: UpperCamelCase : List[str] = True if is_chinese(bert_word[start]): UpperCamelCase : Tuple = min(end - start , A) for i in range(A , 1 , -1): UpperCamelCase : str = "".join(bert_word[start : start + i]) if whole_word in chinese_word_set: for j in range(start + 1 , start + i): UpperCamelCase : Optional[int] = "##" + bert_word[j] UpperCamelCase : List[str] = start + i UpperCamelCase : Optional[Any] = False break if single_word: start += 1 return bert_word def A__ ( A : List[str] , A : LTP , A : BertTokenizer): '''simple docstring''' UpperCamelCase : List[Any] = [] for i in range(0 , len(A) , 1_00): UpperCamelCase : Any = ltp_tokenizer.seg(lines[i : i + 1_00])[0] UpperCamelCase : Dict = [get_chinese_word(A) for r in res] ltp_res.extend(A) assert len(A) == len(A) UpperCamelCase : Dict = [] for i in range(0 , len(A) , 1_00): UpperCamelCase : Optional[int] = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=A , truncation=A , max_length=5_12) bert_res.extend(res["input_ids"]) assert len(A) == len(A) UpperCamelCase : int = [] for input_ids, chinese_word in zip(A , A): UpperCamelCase : int = [] for id in input_ids: UpperCamelCase : Tuple = bert_tokenizer._convert_id_to_token(A) input_tokens.append(A) UpperCamelCase : Tuple = add_sub_symbol(A , A) UpperCamelCase : Optional[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(A): if token[:2] == "##": UpperCamelCase : Dict = token[2:] # save chinese tokens' pos if len(A) == 1 and _is_chinese_char(ord(A)): ref_id.append(A) ref_ids.append(A) assert len(A) == len(A) return ref_ids def A__ ( A : int): '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8") as f: UpperCamelCase : int = f.readlines() UpperCamelCase : int = [line.strip() for line in data if len(A) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase : List[Any] = LTP(args.ltp) # faster in GPU device UpperCamelCase : int = BertTokenizer.from_pretrained(args.bert) UpperCamelCase : Tuple = prepare_ref(A , A , A) with open(args.save_path , "w" , encoding="utf-8") as f: UpperCamelCase : Any = [json.dumps(A) + "\n" for ref in ref_ids] f.writelines(A) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') lowerCAmelCase_ = parser.parse_args() main(args)
710
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def A__ ( A : List[str]): '''simple docstring''' UpperCamelCase : List[Any] = botoa.client("iam") UpperCamelCase : Optional[int] = { "Version": "2012-10-17", "Statement": [ {"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=A , AssumeRolePolicyDocument=json.dumps(A , indent=2)) UpperCamelCase : Dict = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sagemaker:*", "ecr:GetDownloadUrlForLayer", "ecr:BatchGetImage", "ecr:BatchCheckLayerAvailability", "ecr:GetAuthorizationToken", "cloudwatch:PutMetricData", "cloudwatch:GetMetricData", "cloudwatch:GetMetricStatistics", "cloudwatch:ListMetrics", "logs:CreateLogGroup", "logs:CreateLogStream", "logs:DescribeLogStreams", "logs:PutLogEvents", "logs:GetLogEvents", "s3:CreateBucket", "s3:ListBucket", "s3:GetBucketLocation", "s3:GetObject", "s3:PutObject", ], "Resource": "*", } ], } # attach policy to role iam_client.put_role_policy( RoleName=A , PolicyName=F'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(A , indent=2) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F'''role {role_name} already exists. Using existing one''') def A__ ( A : Tuple): '''simple docstring''' UpperCamelCase : Dict = botoa.client("iam") return iam_client.get_role(RoleName=A)["Role"]["Arn"] def A__ ( ): '''simple docstring''' UpperCamelCase : Optional[Any] = _ask_options( "How do you want to authorize?" , ["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "] , A , ) UpperCamelCase : List[str] = None if credentials_configuration == 0: UpperCamelCase : int = _ask_field("Enter your AWS Profile name: [default] " , default="default") UpperCamelCase : int = aws_profile else: print( "Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with," "`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`") UpperCamelCase : Any = _ask_field("AWS Access Key ID: ") UpperCamelCase : Any = aws_access_key_id UpperCamelCase : Dict = _ask_field("AWS Secret Access Key: ") UpperCamelCase : int = aws_secret_access_key UpperCamelCase : int = _ask_field("Enter your AWS Region: [us-east-1]" , default="us-east-1") UpperCamelCase : Optional[Any] = aws_region UpperCamelCase : Optional[Any] = _ask_options( "Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?" , ["Provide IAM Role name", "Create new IAM role using credentials"] , A , ) if role_management == 0: UpperCamelCase : Tuple = _ask_field("Enter your IAM role name: ") else: UpperCamelCase : Optional[int] = "accelerate_sagemaker_execution_role" print(F'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''') _create_iam_role_for_sagemaker(A) UpperCamelCase : Union[str, Any] = _ask_field( "Do you want to use custom Docker image? [yes/NO]: " , _convert_yes_no_to_bool , default=A , error_message="Please enter yes or no." , ) UpperCamelCase : Union[str, Any] = None if is_custom_docker_image: UpperCamelCase : Union[str, Any] = _ask_field("Enter your Docker image: " , lambda A: str(A).lower()) UpperCamelCase : Optional[int] = _ask_field( "Do you want to provide SageMaker input channels with data locations? [yes/NO]: " , _convert_yes_no_to_bool , default=A , error_message="Please enter yes or no." , ) UpperCamelCase : List[Any] = None if is_sagemaker_inputs_enabled: UpperCamelCase : Union[str, Any] = _ask_field( "Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): " , lambda A: str(A).lower() , ) UpperCamelCase : str = _ask_field( "Do you want to enable SageMaker metrics? [yes/NO]: " , _convert_yes_no_to_bool , default=A , error_message="Please enter yes or no." , ) UpperCamelCase : Optional[Any] = None if is_sagemaker_metrics_enabled: UpperCamelCase : Any = _ask_field( "Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): " , lambda A: str(A).lower() , ) UpperCamelCase : int = _ask_options( "What is the distributed mode?" , ["No distributed training", "Data parallelism"] , _convert_sagemaker_distributed_mode , ) UpperCamelCase : int = {} UpperCamelCase : List[Any] = _ask_field( "Do you wish to optimize your script with torch dynamo?[yes/NO]:" , _convert_yes_no_to_bool , default=A , error_message="Please enter yes or no." , ) if use_dynamo: UpperCamelCase : Optional[Any] = "dynamo_" UpperCamelCase : Tuple = _ask_options( "Which dynamo backend would you like to use?" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) UpperCamelCase : Optional[Any] = _ask_field( "Do you want to customize the defaults sent to torch.compile? [yes/NO]: " , _convert_yes_no_to_bool , default=A , error_message="Please enter yes or no." , ) if use_custom_options: UpperCamelCase : Any = _ask_options( "Which mode do you want to use?" , A , lambda A: TORCH_DYNAMO_MODES[int(A)] , default="default" , ) UpperCamelCase : Dict = _ask_field( "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: " , _convert_yes_no_to_bool , default=A , error_message="Please enter yes or no." , ) UpperCamelCase : List[str] = _ask_field( "Do you want to enable dynamic shape tracing? [yes/NO]: " , _convert_yes_no_to_bool , default=A , error_message="Please enter yes or no." , ) UpperCamelCase : List[str] = "Which EC2 instance type you want to use for your training?" if distributed_type != SageMakerDistributedType.NO: UpperCamelCase : Union[str, Any] = _ask_options( A , A , lambda A: SAGEMAKER_PARALLEL_EC2_INSTANCES[int(A)]) else: eca_instance_query += "? [ml.p3.2xlarge]:" UpperCamelCase : Tuple = _ask_field(A , lambda A: str(A).lower() , default="ml.p3.2xlarge") UpperCamelCase : Optional[Any] = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): UpperCamelCase : Any = _ask_field( "How many machines do you want use? [1]: " , A , default=1 , ) UpperCamelCase : List[str] = _ask_options( "Do you wish to use FP16 or BF16 (mixed precision)?" , ["no", "fp16", "bf16", "fp8"] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.") return SageMakerConfig( image_uri=A , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=A , use_cpu=A , dynamo_config=A , eca_instance_type=A , profile=A , region=A , iam_role_name=A , mixed_precision=A , num_machines=A , sagemaker_inputs_file=A , sagemaker_metrics_file=A , )
435
0
"""simple docstring""" from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __magic_name__ = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class _lowerCAmelCase ( lowerCamelCase ): lowercase_ : Union[str, Any] = '''ernie_m''' lowercase_ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , a_ = 250002 , a_ = 768 , a_ = 12 , a_ = 12 , a_ = 3072 , a_ = "gelu" , a_ = 0.1 , a_ = 0.1 , a_ = 514 , a_ = 0.02 , a_ = 1 , a_ = 1e-05 , a_=None , a_=False , a_=0.0 , **a_ , ) -> Optional[int]: super().__init__(pad_token_id=a_ , **a_ ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = classifier_dropout _UpperCAmelCase = is_decoder _UpperCAmelCase = act_dropout
657
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _lowerCAmelCase ( lowerCamelCase ): lowercase_ : Union[str, Any] = '''convbert''' def __init__( self , a_=30522 , a_=768 , a_=12 , a_=12 , a_=3072 , a_="gelu" , a_=0.1 , a_=0.1 , a_=512 , a_=2 , a_=0.02 , a_=1e-12 , a_=1 , a_=0 , a_=2 , a_=768 , a_=2 , a_=9 , a_=1 , a_=None , **a_ , ) -> Tuple: super().__init__( pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ , ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = embedding_size _UpperCAmelCase = head_ratio _UpperCAmelCase = conv_kernel_size _UpperCAmelCase = num_groups _UpperCAmelCase = classifier_dropout class _lowerCAmelCase ( lowerCamelCase ): @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
657
1
"""simple docstring""" from typing import Any class snake_case : def __init__( self : Optional[int] , a__ : Any ) -> str: '''simple docstring''' _A = data _A = None class snake_case : def __init__( self : Optional[int] ) -> str: '''simple docstring''' _A = None def a_ ( self : List[Any] ) -> Any: '''simple docstring''' _A = self.head while temp is not None: print(temp.data , end=" " ) _A = temp.next print() def a_ ( self : Optional[Any] , a__ : Any ) -> Dict: '''simple docstring''' _A = Node(a__ ) _A = self.head _A = new_node def a_ ( self : List[str] , a__ : Optional[Any] , a__ : List[Any] ) -> Tuple: '''simple docstring''' if node_data_a == node_data_a: return else: _A = self.head while node_a is not None and node_a.data != node_data_a: _A = node_a.next _A = self.head while node_a is not None and node_a.data != node_data_a: _A = node_a.next if node_a is None or node_a is None: return _A , _A = node_a.data, node_a.data if __name__ == "__main__": a_ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
621
"""simple docstring""" import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": a_ = argparse.ArgumentParser( description=( "Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="roberta", choices=["roberta", "gpt2"]) parser.add_argument("--model_name", default="roberta-large", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_roberta_048131723.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") a_ = parser.parse_args() if args.model_type == "roberta": a_ = RobertaForMaskedLM.from_pretrained(args.model_name) a_ = "roberta" elif args.model_type == "gpt2": a_ = GPTaLMHeadModel.from_pretrained(args.model_name) a_ = "transformer" a_ = model.state_dict() a_ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: a_ = state_dict[f'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: a_ = f'''{prefix}.embeddings.{w}.weight''' a_ = state_dict[param_name] for w in ["weight", "bias"]: a_ = f'''{prefix}.embeddings.LayerNorm.{w}''' a_ = state_dict[param_name] # Transformer Blocks # a_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: a_ = state_dict[ f'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] a_ = state_dict[f'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: a_ = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: a_ = state_dict[f'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: a_ = state_dict[f'''lm_head.dense.{w}'''] a_ = state_dict[f'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: a_ = state_dict[f'''{prefix}.ln_f.{w}'''] a_ = state_dict["lm_head.weight"] print(f'''N layers selected for distillation: {std_idx}''') print(f'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(f'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
621
1
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class _snake_case ( unittest.TestCase ): _lowercase : Optional[int] = inspect.getfile(accelerate.test_utils ) _lowercase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) _lowercase : int = ['''accelerate''', '''launch'''] _lowercase : int = Path.home() / '''.cache/huggingface/accelerate''' _lowercase : int = '''default_config.yaml''' _lowercase : List[Any] = config_folder / config_file _lowercase : str = config_folder / '''_default_config.yaml''' _lowercase : str = Path('''tests/test_configs''' ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls) -> List[str]: if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path) @classmethod def SCREAMING_SNAKE_CASE__ ( cls) -> str: if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy()) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: for config in sorted(self.test_config_path.glob('**/*.yaml')): with self.subTest(config_file=a): execute_subprocess_async( self.base_cmd + ['--config_file', str(a), self.test_file_path] , env=os.environ.copy()) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy()) class _snake_case ( unittest.TestCase ): _lowercase : Optional[Any] = '''test-tpu''' _lowercase : Optional[Any] = '''us-central1-a''' _lowercase : List[str] = '''ls''' _lowercase : Union[str, Any] = ['''accelerate''', '''tpu-config'''] _lowercase : Tuple = '''cd /usr/share''' _lowercase : Optional[Any] = '''tests/test_samples/test_command_file.sh''' _lowercase : List[Any] = '''Running gcloud compute tpus tpu-vm ssh''' def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , a , ) def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , a , ) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=a) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , a , ) def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , a , ) def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , a , ) def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , a , ) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , a , ) def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , a , ) def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , a , )
73
"""simple docstring""" import os import sys UpperCamelCase__ :Union[str, Any] = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase__ :List[Any] = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> int: return AutoConfig.from_pretrained(*snake_case__ , **snake_case__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> int: return AutoTokenizer.from_pretrained(*snake_case__ , **snake_case__ ) @add_start_docstrings(AutoModel.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> Dict: return AutoModel.from_pretrained(*snake_case__ , **snake_case__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> Dict: return AutoModelForCausalLM.from_pretrained(*snake_case__ , **snake_case__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> Dict: return AutoModelForMaskedLM.from_pretrained(*snake_case__ , **snake_case__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> Dict: return AutoModelForSequenceClassification.from_pretrained(*snake_case__ , **snake_case__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> Union[str, Any]: return AutoModelForQuestionAnswering.from_pretrained(*snake_case__ , **snake_case__ )
355
0
from __future__ import annotations lowercase = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class __A: def __init__( self : List[Any] , __UpperCamelCase : dict[str, list[str]] , __UpperCamelCase : str ): lowerCamelCase_ = graph # mapping node to its parent in resulting breadth first tree lowerCamelCase_ = {} lowerCamelCase_ = source_vertex def lowercase__ ( self : Tuple ): lowerCamelCase_ = {self.source_vertex} lowerCamelCase_ = None lowerCamelCase_ = [self.source_vertex] # first in first out queue while queue: lowerCamelCase_ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_snake_case ) lowerCamelCase_ = vertex queue.append(_snake_case ) def lowercase__ ( self : str , __UpperCamelCase : str ): if target_vertex == self.source_vertex: return self.source_vertex lowerCamelCase_ = self.parent.get(_snake_case ) if target_vertex_parent is None: lowerCamelCase_ = ( F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(_snake_case ) return self.shortest_path(_snake_case ) + F'''->{target_vertex}''' if __name__ == "__main__": lowercase = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
708
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
103
0
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": A = pd.read_csv("""sample_data.csv""", header=None) A = df.shape[:1][0] # If you're using some other dataset input the target column A = df.iloc[:, 1:2] A = actual_data.values.reshape(len_data, 1) A = MinMaxScaler().fit_transform(actual_data) A = 10 A = 5 A = 20 A = len_data - periods * look_back A = actual_data[:division] A = actual_data[division - look_back :] A , A = [], [] A , A = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) A = np.array(train_x) A = np.array(test_x) A = np.array([list(i.ravel()) for i in train_y]) A = np.array([list(i.ravel()) for i in test_y]) A = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") A = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) A = model.predict(x_test)
77
"""simple docstring""" import math def _UpperCamelCase ( UpperCamelCase , UpperCamelCase = 0 , UpperCamelCase = 0 ) -> list: """simple docstring""" __UpperCAmelCase : Union[str, Any] = end or len(UpperCamelCase ) for i in range(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : List[Any] = i __UpperCAmelCase : Any = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __UpperCAmelCase : Dict = array[temp_index - 1] temp_index -= 1 __UpperCAmelCase : str = temp_index_value return array def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> None: # Max Heap """simple docstring""" __UpperCAmelCase : Optional[Any] = index __UpperCAmelCase : List[str] = 2 * index + 1 # Left Node __UpperCAmelCase : Union[str, Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __UpperCAmelCase : Tuple = left_index if right_index < heap_size and array[largest] < array[right_index]: __UpperCAmelCase : int = right_index if largest != index: __UpperCAmelCase , __UpperCAmelCase : List[str] = array[largest], array[index] heapify(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def _UpperCamelCase ( UpperCamelCase ) -> list: """simple docstring""" __UpperCAmelCase : List[Any] = len(UpperCamelCase ) for i in range(n // 2 , -1 , -1 ): heapify(UpperCamelCase , UpperCamelCase , UpperCamelCase ) for i in range(n - 1 , 0 , -1 ): __UpperCAmelCase , __UpperCAmelCase : int = array[0], array[i] heapify(UpperCamelCase , 0 , UpperCamelCase ) return array def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = low __UpperCAmelCase : List[str] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __UpperCAmelCase , __UpperCAmelCase : Optional[int] = array[j], array[i] i += 1 def _UpperCamelCase ( UpperCamelCase ) -> list: """simple docstring""" if len(UpperCamelCase ) == 0: return array __UpperCAmelCase : Optional[int] = 2 * math.ceil(math.loga(len(UpperCamelCase ) ) ) __UpperCAmelCase : List[Any] = 16 return intro_sort(UpperCamelCase , 0 , len(UpperCamelCase ) , UpperCamelCase , UpperCamelCase ) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(UpperCamelCase ) max_depth -= 1 __UpperCAmelCase : List[Any] = median_of_a(UpperCamelCase , UpperCamelCase , start + ((end - start) // 2) + 1 , end - 1 ) __UpperCAmelCase : Union[str, Any] = partition(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) intro_sort(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Optional[Any] = p return insertion_sort(UpperCamelCase , UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() A = input("""Enter numbers separated by a comma : """).strip() A = [float(item) for item in user_input.split(""",""")] print(sort(unsorted))
77
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase_ = { "gpt-neox-20b": 2_048, } class __A ( UpperCamelCase__ ): '''simple docstring''' __lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Dict = ['input_ids', 'attention_mask'] def __init__(self , A=None , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , **A , ) -> Tuple: """simple docstring""" super().__init__( __A , __A , tokenizer_file=__A , unk_token=__A , bos_token=__A , eos_token=__A , add_prefix_space=__A , **__A , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __A ) != add_prefix_space: _a = getattr(__A , pre_tok_state.pop('''type''' ) ) _a = add_prefix_space _a = pre_tok_class(**__A ) _a = add_prefix_space def a__ (self , A , A = None ) -> Tuple[str]: """simple docstring""" _a = self._tokenizer.model.save(__A , name=__A ) return tuple(__A ) def a__ (self , A ) -> List[int]: """simple docstring""" _a = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__A , add_special_tokens=__A ) + [self.eos_token_id] ) if len(__A ) > self.model_max_length: _a = input_ids[-self.model_max_length :] return input_ids
715
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" _a = set() # To detect a back edge, keep track of vertices currently in the recursion stack _a = set() return any( node not in visited and depth_first_search(__A , __A , __A , __A) for node in graph) def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" visited.add(__A) rec_stk.add(__A) for node in graph[vertex]: if node not in visited: if depth_first_search(__A , __A , __A , __A): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__A) return False if __name__ == "__main__": from doctest import testmod testmod()
352
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = [[0 for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(m + 1 )] for i in range(m + 1 ): _UpperCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , _SCREAMING_SNAKE_CASE ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __A : Dict = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: __A : List[Any] = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
602
"""simple docstring""" from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run __A : Any = True except (ImportError, AttributeError): __A : str = object def lowercase ( *_SCREAMING_SNAKE_CASE : int , **_SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' pass __A : Any = False __A : Optional[int] = logging.get_logger("transformers-cli/serving") def lowercase ( _SCREAMING_SNAKE_CASE : Namespace ): '''simple docstring''' _UpperCAmelCase = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(_SCREAMING_SNAKE_CASE , args.host , args.port , args.workers ) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = 42 class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 class _a ( lowerCAmelCase): """simple docstring""" @staticmethod def lowercase__ ( __UpperCamelCase : ArgumentParser )->List[str]: _UpperCAmelCase = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=__UpperCamelCase , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=__UpperCamelCase , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=__UpperCamelCase , default=8_8_8_8 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=__UpperCamelCase , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=__UpperCamelCase , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=__UpperCamelCase , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=__UpperCamelCase , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=__UpperCamelCase , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=__UpperCamelCase ) def __init__( self : int , __UpperCamelCase : Pipeline , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : int )->Any: _UpperCAmelCase = pipeline _UpperCAmelCase = host _UpperCAmelCase = port _UpperCAmelCase = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F'Serving model over {host}:{port}' ) _UpperCAmelCase = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=__UpperCamelCase , response_class=__UpperCamelCase , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=__UpperCamelCase , response_class=__UpperCamelCase , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=__UpperCamelCase , response_class=__UpperCamelCase , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=__UpperCamelCase , response_class=__UpperCamelCase , methods=['''POST'''] , ), ] , timeout=6_0_0 , ) def lowercase__ ( self : Optional[int] )->Union[str, Any]: run(self._app , host=self.host , port=self.port , workers=self.workers ) def lowercase__ ( self : int )->int: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : str = Body(__UpperCamelCase , embed=__UpperCamelCase ) , __UpperCamelCase : bool = Body(__UpperCamelCase , embed=__UpperCamelCase ) )->Any: try: _UpperCAmelCase = self._pipeline.tokenizer.tokenize(__UpperCamelCase ) if return_ids: _UpperCAmelCase = self._pipeline.tokenizer.convert_tokens_to_ids(__UpperCamelCase ) return ServeTokenizeResult(tokens=__UpperCamelCase , tokens_ids=__UpperCamelCase ) else: return ServeTokenizeResult(tokens=__UpperCamelCase ) except Exception as e: raise HTTPException(status_code=5_0_0 , detail={'''model''': '''''', '''error''': str(__UpperCamelCase )} ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : List[int] = Body(__UpperCamelCase , embed=__UpperCamelCase ) , __UpperCamelCase : bool = Body(__UpperCamelCase , embed=__UpperCamelCase ) , __UpperCamelCase : bool = Body(__UpperCamelCase , embed=__UpperCamelCase ) , )->List[str]: try: _UpperCAmelCase = self._pipeline.tokenizer.decode(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return ServeDeTokenizeResult(model='''''' , text=__UpperCamelCase ) except Exception as e: raise HTTPException(status_code=5_0_0 , detail={'''model''': '''''', '''error''': str(__UpperCamelCase )} ) async def lowercase__ ( self : int , __UpperCamelCase : List[Any]=Body(__UpperCamelCase , embed=__UpperCamelCase ) )->Tuple: # Check we don't have empty string if len(__UpperCamelCase ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model _UpperCAmelCase = self._pipeline(__UpperCamelCase ) return ServeForwardResult(output=__UpperCamelCase ) except Exception as e: raise HTTPException(5_0_0 , {'''error''': str(__UpperCamelCase )} )
602
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "spiece.model"} SCREAMING_SNAKE_CASE = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } SCREAMING_SNAKE_CASE = {"bert_for_seq_generation": 512} class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Any = VOCAB_FILES_NAMES lowerCAmelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : List[int] = [] lowerCAmelCase_ : List[str] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase , lowerCAmelCase="<s>" , lowerCAmelCase="</s>" , lowerCAmelCase="<unk>" , lowerCAmelCase="<pad>" , lowerCAmelCase="<::::>" , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , sep_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase ) @property def A__ ( self ): return self.sp_model.get_piece_size() def A__ ( self ): UpperCAmelCase_ = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self , lowerCAmelCase ): UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , lowerCAmelCase ): return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): return self.sp_model.piece_to_id(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = self.sp_model.IdToPiece(lowerCAmelCase ) return token def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = [] UpperCAmelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase_ = [] else: current_sub_tokens.append(lowerCAmelCase ) out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): if not os.path.isdir(lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ = os.path.join( lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , "wb" ) as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,)
713
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : torch.FloatTensor class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 32 , lowerCAmelCase = 64 , lowerCAmelCase = 20 , lowerCAmelCase = 768 , lowerCAmelCase=77 , lowerCAmelCase=4 , lowerCAmelCase = 0.0 , lowerCAmelCase = "silu" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "linear" , lowerCAmelCase = "prd" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ): super().__init__() UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = attention_head_dim UpperCAmelCase_ = num_attention_heads * attention_head_dim UpperCAmelCase_ = additional_embeddings UpperCAmelCase_ = time_embed_dim or inner_dim UpperCAmelCase_ = embedding_proj_dim or embedding_dim UpperCAmelCase_ = clip_embed_dim or embedding_dim UpperCAmelCase_ = Timesteps(lowerCAmelCase , lowerCAmelCase , 0 ) UpperCAmelCase_ = TimestepEmbedding(lowerCAmelCase , lowerCAmelCase , out_dim=lowerCAmelCase , act_fn=lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if embedding_proj_norm_type is None: UpperCAmelCase_ = None elif embedding_proj_norm_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if encoder_hid_proj_type is None: UpperCAmelCase_ = None elif encoder_hid_proj_type == "linear": UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCAmelCase ) ) if added_emb_type == "prd": UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , 1 , lowerCAmelCase ) ) elif added_emb_type is None: UpperCAmelCase_ = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase_ = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , dropout=lowerCAmelCase , activation_fn="gelu" , attention_bias=lowerCAmelCase , ) for d in range(lowerCAmelCase ) ] ) if norm_in_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) elif norm_in_type is None: UpperCAmelCase_ = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase_ = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , lowerCAmelCase , persistent=lowerCAmelCase ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A__ ( self ): UpperCAmelCase_ = {} def fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): UpperCAmelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return processors def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): module.set_processor(lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): self.set_attn_processor(AttnProcessor() ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = True , ): UpperCAmelCase_ = hidden_states.shape[0] UpperCAmelCase_ = timestep if not torch.is_tensor(lowerCAmelCase ): UpperCAmelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCAmelCase ) and len(timesteps.shape ) == 0: UpperCAmelCase_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ = timesteps * torch.ones(lowerCAmelCase , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase_ = self.time_proj(lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase_ = timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase_ = self.time_embedding(lowerCAmelCase ) if self.embedding_proj_norm is not None: UpperCAmelCase_ = self.embedding_proj_norm(lowerCAmelCase ) UpperCAmelCase_ = self.embedding_proj(lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase_ = self.encoder_hidden_states_proj(lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) UpperCAmelCase_ = self.proj_in(lowerCAmelCase ) UpperCAmelCase_ = self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase_ = [] UpperCAmelCase_ = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase_ = hidden_states[:, None, :] UpperCAmelCase_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCAmelCase , -1 , -1 ) additional_embeds.append(lowerCAmelCase ) UpperCAmelCase_ = torch.cat( lowerCAmelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase_ = F.pad( lowerCAmelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCAmelCase_ = hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 UpperCAmelCase_ = F.pad(lowerCAmelCase , (0, self.additional_embeddings) , value=0.0 ) UpperCAmelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCAmelCase_ = self.norm_in(lowerCAmelCase ) for block in self.transformer_blocks: UpperCAmelCase_ = block(lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase_ = self.norm_out(lowerCAmelCase ) if self.prd_embedding is not None: UpperCAmelCase_ = hidden_states[:, -1] else: UpperCAmelCase_ = hidden_states[:, additional_embeddings_len:] UpperCAmelCase_ = self.proj_to_clip_embeddings(lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
23
0
import math import tensorflow as tf from packaging import version def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> Any: SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = tf.cast(math.pi , x.dtype ) SCREAMING_SNAKE_CASE_ = tf.cast(0.0_4_4_7_1_5 , x.dtype ) SCREAMING_SNAKE_CASE_ = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> str: SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = tf.cast(0.0_4_4_7_1_5 , x.dtype ) SCREAMING_SNAKE_CASE_ = tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> str: SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> int: return tf.clip_by_value(_gelu(__UpperCamelCase ) , -10 , 10 ) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : List[str]=-1 ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('2.4'): def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> Dict: return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) lowerCamelCase__ : List[Any] = tf.keras.activations.gelu lowerCamelCase__ : Tuple = approximate_gelu_wrap else: lowerCamelCase__ : Optional[Any] = _gelu lowerCamelCase__ : Optional[Any] = _gelu_new lowerCamelCase__ : Optional[int] = { 'gelu': gelu, 'gelu_10': gelu_aa, 'gelu_fast': gelu_fast, 'gelu_new': gelu_new, 'glu': glu, 'mish': mish, 'quick_gelu': quick_gelu, 'relu': tf.keras.activations.relu, 'sigmoid': tf.keras.activations.sigmoid, 'silu': tf.keras.activations.swish, 'swish': tf.keras.activations.swish, 'tanh': tf.keras.activations.tanh, } def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> Tuple: if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
31
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = GPTSanJapaneseTokenizer SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = {'do_clean_text': False, 'add_prefix_space': False} def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' super().setUp() # fmt: off lowerCamelCase_ = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on lowerCamelCase_ = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 lowerCamelCase_ = {'unk_token': '<unk>'} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = 'こんにちは、世界。 \nこんばんは、㔺界。😀' lowerCamelCase_ = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.get_input_output_texts(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) return text, ids def UpperCamelCase( self ) -> Tuple: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。 こんばんは、㔺界。' lowerCamelCase_ = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] lowerCamelCase_ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids without special tokens lowerCamelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids with special tokens lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() # Testing tokenization lowerCamelCase_ = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' lowerCamelCase_ = 'こんにちは、、、、世界。こんばんは、、、、世界。' lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。' lowerCamelCase_ = 'こんばんは、㔺界。😀' lowerCamelCase_ = 'こんにちは、世界。こんばんは、世界。😀' lowerCamelCase_ = tokenizer.encode(prefix_text + input_text ) lowerCamelCase_ = tokenizer.encode('' , prefix_text=prefix_text + input_text ) lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。' lowerCamelCase_ = 'こんばんは、㔺界。😀' lowerCamelCase_ = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 lowerCamelCase_ = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 lowerCamelCase_ = [1] + [0] * (len_prefix + len_text + 1) lowerCamelCase_ = [1] * (len_prefix + len_text + 1) + [0] lowerCamelCase_ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowerCamelCase_ = tokenizer(prefix_text + input_text ).token_type_ids lowerCamelCase_ = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ).token_type_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) lowerCamelCase_ = tokenizer.encode('あンいワ' ) lowerCamelCase_ = tokenizer.encode('' , prefix_text='あンいワ' ) lowerCamelCase_ = tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) lowerCamelCase_ = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) # fmt: off lowerCamelCase_ = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] lowerCamelCase_ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowerCamelCase_ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.attention_mask , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.attention_mask , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Any: '''simple docstring''' pass def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass
42
0
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False ) -> list[float]: if radian_mode: return [magnitude * cos(_UpperCAmelCase ), magnitude * sin(_UpperCAmelCase )] return [magnitude * cos(radians(_UpperCAmelCase ) ), magnitude * sin(radians(_UpperCAmelCase ) )] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 10**-1 ) -> bool: lowerCamelCase__ : NDArray[floataa] = cross(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : float = sum(_UpperCAmelCase ) return abs(_UpperCAmelCase ) < eps if __name__ == "__main__": # Test to check if it works _UpperCAmelCase : Any = array( [ polar_force(718.4, 1_80 - 30), polar_force(879.54, 45), polar_force(1_00, -90), ] ) _UpperCAmelCase : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg _UpperCAmelCase : List[Any] = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) _UpperCAmelCase : Any = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg _UpperCAmelCase : Optional[Any] = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) _UpperCAmelCase : Optional[Any] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
188
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants _UpperCAmelCase : int = Mapping[str, np.ndarray] _UpperCAmelCase : List[Any] = Mapping[str, Any] # Is a nested dict. _UpperCAmelCase : Dict = 0.01 @dataclasses.dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. UpperCAmelCase__ = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. UpperCAmelCase__ = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. UpperCAmelCase__ = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. UpperCAmelCase__ = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions UpperCAmelCase__ = None # Optional remark about the protein. Included as a comment in output PDB # files UpperCAmelCase__ = None # Templates used to generate this protein (prediction-only) UpperCAmelCase__ = None # Chain corresponding to each parent UpperCAmelCase__ = None def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Protein: lowerCamelCase__ : Optional[int] = r'(\[[A-Z]+\]\n)' lowerCamelCase__ : List[str] = [tag.strip() for tag in re.split(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0] lowerCamelCase__ : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] ) lowerCamelCase__ : List[str] = ["N", "CA", "C"] lowerCamelCase__ : Dict = None lowerCamelCase__ : str = None lowerCamelCase__ : int = None for g in groups: if "[PRIMARY]" == g[0]: lowerCamelCase__ : int = g[1][0].strip() for i in range(len(_UpperCAmelCase ) ): if seq[i] not in residue_constants.restypes: lowerCamelCase__ : Union[str, Any] = 'X' # FIXME: strings are immutable lowerCamelCase__ : Union[str, Any] = np.array( [residue_constants.restype_order.get(_UpperCAmelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowerCamelCase__ : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(_UpperCAmelCase , g[1][axis].split() ) ) ) lowerCamelCase__ : int = np.array(_UpperCAmelCase ) lowerCamelCase__ : Tuple = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_UpperCAmelCase ): lowerCamelCase__ : int = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowerCamelCase__ : int = np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) ) lowerCamelCase__ : List[Any] = np.zeros( ( len(_UpperCAmelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_UpperCAmelCase , atom_mask=_UpperCAmelCase , aatype=_UpperCAmelCase , residue_index=np.arange(len(_UpperCAmelCase ) ) , b_factors=_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase = 0 ) -> List[str]: lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Dict = prot.remark if remark is not None: pdb_headers.append(F"""REMARK {remark}""" ) lowerCamelCase__ : str = prot.parents lowerCamelCase__ : Union[str, Any] = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowerCamelCase__ : Any = [p for i, p in zip(_UpperCAmelCase , _UpperCAmelCase ) if i == chain_id] if parents is None or len(_UpperCAmelCase ) == 0: lowerCamelCase__ : List[Any] = ['N/A'] pdb_headers.append(F"""PARENT {" ".join(_UpperCAmelCase )}""" ) return pdb_headers def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> str: lowerCamelCase__ : List[str] = [] lowerCamelCase__ : str = pdb_str.split('\n' ) lowerCamelCase__ : int = prot.remark if remark is not None: out_pdb_lines.append(F"""REMARK {remark}""" ) lowerCamelCase__ : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: lowerCamelCase__ : List[Any] = [] if prot.parents_chain_index is not None: lowerCamelCase__ : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(_UpperCAmelCase ) , [] ) parent_dict[str(_UpperCAmelCase )].append(_UpperCAmelCase ) lowerCamelCase__ : str = max([int(_UpperCAmelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowerCamelCase__ : Optional[Any] = parent_dict.get(str(_UpperCAmelCase ) , ['N/A'] ) parents_per_chain.append(_UpperCAmelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: lowerCamelCase__ : Union[str, Any] = [['N/A']] def make_parent_line(_UpperCAmelCase ) -> str: return F"""PARENT {" ".join(_UpperCAmelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowerCamelCase__ : List[Any] = 0 for i, l in enumerate(_UpperCAmelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_UpperCAmelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = parents_per_chain[chain_counter] else: lowerCamelCase__ : Optional[Any] = ['N/A'] out_pdb_lines.append(make_parent_line(_UpperCAmelCase ) ) return "\n".join(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Tuple = residue_constants.restypes + ['X'] def res_atoa(_UpperCAmelCase ) -> str: return residue_constants.restype_atoa.get(restypes[r] , 'UNK' ) lowerCamelCase__ : int = residue_constants.atom_types lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Union[str, Any] = prot.atom_mask lowerCamelCase__ : Union[str, Any] = prot.aatype lowerCamelCase__ : int = prot.atom_positions lowerCamelCase__ : List[Any] = prot.residue_index.astype(np.intaa ) lowerCamelCase__ : Optional[int] = prot.b_factors lowerCamelCase__ : Any = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) lowerCamelCase__ : List[Any] = get_pdb_headers(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: pdb_lines.extend(_UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = aatype.shape[0] lowerCamelCase__ : Optional[Any] = 1 lowerCamelCase__ : str = 0 lowerCamelCase__ : Tuple = string.ascii_uppercase lowerCamelCase__ : str = None # Add all atom sites. for i in range(_UpperCAmelCase ): lowerCamelCase__ : List[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_UpperCAmelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowerCamelCase__ : Union[str, Any] = 'ATOM' lowerCamelCase__ : Optional[int] = atom_name if len(_UpperCAmelCase ) == 4 else F""" {atom_name}""" lowerCamelCase__ : Any = '' lowerCamelCase__ : Optional[Any] = '' lowerCamelCase__ : str = 1.00 lowerCamelCase__ : str = atom_name[0] # Protein supports only C, N, O, S, this works. lowerCamelCase__ : List[str] = '' lowerCamelCase__ : str = 'A' if chain_index is not None: lowerCamelCase__ : List[Any] = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowerCamelCase__ : Union[str, Any] = ( F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" F"""{res_name_a:>3} {chain_tag:>1}""" F"""{residue_index[i]:>4}{insertion_code:>1} """ F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" F"""{occupancy:>6.2f}{b_factor:>6.2f} """ F"""{element:>2}{charge:>2}""" ) pdb_lines.append(_UpperCAmelCase ) atom_index += 1 lowerCamelCase__ : Dict = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowerCamelCase__ : List[Any] = True lowerCamelCase__ : List[str] = chain_index[i + 1] if should_terminate: # Close the chain. lowerCamelCase__ : int = 'TER' lowerCamelCase__ : Any = ( F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(_UpperCAmelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_UpperCAmelCase , _UpperCAmelCase ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ) -> Protein: return Protein( aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=_UpperCAmelCase , remark=_UpperCAmelCase , parents=_UpperCAmelCase , parents_chain_index=_UpperCAmelCase , )
188
1
# Imports import numpy as np class _UpperCamelCase : def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None )-> List[Any]: self.set_matricies(red=__UpperCamelCase , green=__UpperCamelCase , blue=__UpperCamelCase , red_edge=__UpperCamelCase , nir=__UpperCamelCase ) def __UpperCAmelCase ( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None )-> Any: if red is not None: __lowerCAmelCase = red if green is not None: __lowerCAmelCase = green if blue is not None: __lowerCAmelCase = blue if red_edge is not None: __lowerCAmelCase = red_edge if nir is not None: __lowerCAmelCase = nir return True def __UpperCAmelCase ( self , __UpperCamelCase="" , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None )-> Union[str, Any]: self.set_matricies(red=__UpperCamelCase , green=__UpperCamelCase , blue=__UpperCamelCase , red_edge=__UpperCamelCase , nir=__UpperCamelCase ) __lowerCAmelCase = { "ARVI2": self.arvaa, "CCCI": self.ccci, "CVI": self.cvi, "GLI": self.gli, "NDVI": self.ndvi, "BNDVI": self.bndvi, "redEdgeNDVI": self.red_edge_ndvi, "GNDVI": self.gndvi, "GBNDVI": self.gbndvi, "GRNDVI": self.grndvi, "RBNDVI": self.rbndvi, "PNDVI": self.pndvi, "ATSAVI": self.atsavi, "BWDRVI": self.bwdrvi, "CIgreen": self.ci_green, "CIrededge": self.ci_rededge, "CI": self.ci, "CTVI": self.ctvi, "GDVI": self.gdvi, "EVI": self.evi, "GEMI": self.gemi, "GOSAVI": self.gosavi, "GSAVI": self.gsavi, "Hue": self.hue, "IVI": self.ivi, "IPVI": self.ipvi, "I": self.i, "RVI": self.rvi, "MRVI": self.mrvi, "MSAVI": self.m_savi, "NormG": self.norm_g, "NormNIR": self.norm_nir, "NormR": self.norm_r, "NGRDI": self.ngrdi, "RI": self.ri, "S": self.s, "IF": self._if, "DVI": self.dvi, "TVI": self.tvi, "NDRE": self.ndre, } try: return funcs[index]() except KeyError: print("Index not in the list!" ) return False def __UpperCAmelCase ( self )-> Any: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def __UpperCAmelCase ( self )-> int: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def __UpperCAmelCase ( self )-> Optional[int]: return self.nir * (self.red / (self.green**2)) def __UpperCAmelCase ( self )-> Any: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def __UpperCAmelCase ( self )-> Optional[Any]: return (self.nir - self.red) / (self.nir + self.red) def __UpperCAmelCase ( self )-> Optional[int]: return (self.nir - self.blue) / (self.nir + self.blue) def __UpperCAmelCase ( self )-> int: return (self.redEdge - self.red) / (self.redEdge + self.red) def __UpperCAmelCase ( self )-> Dict: return (self.nir - self.green) / (self.nir + self.green) def __UpperCAmelCase ( self )-> str: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def __UpperCAmelCase ( self )-> Optional[int]: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def __UpperCAmelCase ( self )-> List[str]: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def __UpperCAmelCase ( self )-> List[Any]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def __UpperCAmelCase ( self , __UpperCamelCase=0.0_8 , __UpperCamelCase=1.2_2 , __UpperCamelCase=0.0_3 )-> List[str]: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def __UpperCAmelCase ( self )-> Tuple: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def __UpperCAmelCase ( self )-> Optional[Any]: return (self.nir / self.green) - 1 def __UpperCAmelCase ( self )-> Any: return (self.nir / self.redEdge) - 1 def __UpperCAmelCase ( self )-> int: return (self.red - self.blue) / self.red def __UpperCAmelCase ( self )-> Optional[int]: __lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def __UpperCAmelCase ( self )-> Tuple: return self.nir - self.green def __UpperCAmelCase ( self )-> Optional[int]: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def __UpperCAmelCase ( self )-> Tuple: __lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def __UpperCAmelCase ( self , __UpperCamelCase=0.1_6 )-> Optional[int]: return (self.nir - self.green) / (self.nir + self.green + y) def __UpperCAmelCase ( self , __UpperCamelCase=0.5 )-> Optional[Any]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def __UpperCAmelCase ( self )-> str: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def __UpperCAmelCase ( self , __UpperCamelCase=None , __UpperCamelCase=None )-> Optional[int]: return (self.nir - b) / (a * self.red) def __UpperCAmelCase ( self )-> List[Any]: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def __UpperCAmelCase ( self )-> Any: return (self.red + self.green + self.blue) / 3_0.5 def __UpperCAmelCase ( self )-> Any: return self.nir / self.red def __UpperCAmelCase ( self )-> int: return (self.rvi() - 1) / (self.rvi() + 1) def __UpperCAmelCase ( self )-> List[str]: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def __UpperCAmelCase ( self )-> str: return self.green / (self.nir + self.red + self.green) def __UpperCAmelCase ( self )-> Any: return self.nir / (self.nir + self.red + self.green) def __UpperCAmelCase ( self )-> int: return self.red / (self.nir + self.red + self.green) def __UpperCAmelCase ( self )-> Optional[int]: return (self.green - self.red) / (self.green + self.red) def __UpperCAmelCase ( self )-> Optional[int]: return (self.red - self.green) / (self.red + self.green) def __UpperCAmelCase ( self )-> Dict: __lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def __UpperCAmelCase ( self )-> List[Any]: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def __UpperCAmelCase ( self )-> Optional[int]: return self.nir / self.red def __UpperCAmelCase ( self )-> Any: return (self.ndvi() + 0.5) ** (1 / 2) def __UpperCAmelCase ( self )-> Any: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
367
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Any = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) lowerCamelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def __lowerCAmelCase ( __snake_case ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: __lowerCAmelCase = model_type_to_module_name(__snake_case ) __lowerCAmelCase = importlib.import_module(F""".{module_name}""" , "transformers.models" ) try: return getattr(__snake_case , __snake_case ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(__snake_case , "__name__" , __snake_case ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __lowerCAmelCase = importlib.import_module("transformers" ) if hasattr(__snake_case , __snake_case ): return getattr(__snake_case , __snake_case ) return None def __lowerCAmelCase ( __snake_case , __snake_case = None , __snake_case = False , __snake_case = False , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = False , **__snake_case , ): __lowerCAmelCase = get_file_from_repo( __snake_case , __snake_case , cache_dir=__snake_case , force_download=__snake_case , resume_download=__snake_case , proxies=__snake_case , use_auth_token=__snake_case , revision=__snake_case , local_files_only=__snake_case , ) if resolved_config_file is None: logger.info( "Could not locate the feature extractor configuration file, will try to use the model config instead." ) return {} with open(__snake_case , encoding="utf-8" ) as reader: return json.load(__snake_case ) class _UpperCamelCase : def __init__( self )-> Union[str, Any]: raise EnvironmentError( "AutoFeatureExtractor is designed to be instantiated " "using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(__UpperCamelCase ) def __UpperCAmelCase ( cls , __UpperCamelCase , **__UpperCamelCase )-> Optional[int]: __lowerCAmelCase = kwargs.pop("config" , __UpperCamelCase ) __lowerCAmelCase = kwargs.pop("trust_remote_code" , __UpperCamelCase ) __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCamelCase , **__UpperCamelCase ) __lowerCAmelCase = config_dict.get("feature_extractor_type" , __UpperCamelCase ) __lowerCAmelCase = None if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): __lowerCAmelCase = config_dict["auto_map"]["AutoFeatureExtractor"] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCamelCase , __UpperCamelCase ): __lowerCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) # It could be in `config.feature_extractor_type`` __lowerCAmelCase = getattr(__UpperCamelCase , "feature_extractor_type" , __UpperCamelCase ) if hasattr(__UpperCamelCase , "auto_map" ) and "AutoFeatureExtractor" in config.auto_map: __lowerCAmelCase = config.auto_map["AutoFeatureExtractor"] if feature_extractor_class is not None: __lowerCAmelCase = feature_extractor_class_from_name(__UpperCamelCase ) __lowerCAmelCase = feature_extractor_auto_map is not None __lowerCAmelCase = feature_extractor_class is not None or type(__UpperCamelCase ) in FEATURE_EXTRACTOR_MAPPING __lowerCAmelCase = resolve_trust_remote_code( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if has_remote_code and trust_remote_code: __lowerCAmelCase = get_class_from_dynamic_module( __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) __lowerCAmelCase = kwargs.pop("code_revision" , __UpperCamelCase ) if os.path.isdir(__UpperCamelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCamelCase , **__UpperCamelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCamelCase , **__UpperCamelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCamelCase ) in FEATURE_EXTRACTOR_MAPPING: __lowerCAmelCase = FEATURE_EXTRACTOR_MAPPING[type(__UpperCamelCase )] return feature_extractor_class.from_dict(__UpperCamelCase , **__UpperCamelCase ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase )-> Optional[int]: FEATURE_EXTRACTOR_MAPPING.register(__UpperCamelCase , __UpperCamelCase )
367
1
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> List[str]: '''simple docstring''' lowercase = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() lowercase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) lowercase = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } lowercase = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_6000, """return_attention_mask""": False, """do_normalize""": True, } lowercase = tempfile.mkdtemp() lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) # load decoder from hub lowercase = """hf-internal-testing/ngram-beam-search-decoder""" def _a ( self , **_lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _a ( self , **_lowerCAmelCase ) -> Any: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _a ( self , **_lowerCAmelCase ) -> List[str]: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase ) def _a ( self ) -> int: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.get_tokenizer() lowercase = self.get_feature_extractor() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _lowerCAmelCase ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(_lowerCAmelCase , """include""" ): WavaVecaProcessorWithLM( tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = floats_list((3, 1000) ) lowercase = feature_extractor(_lowerCAmelCase , return_tensors="""np""" ) lowercase = processor(_lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> int: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = """This is a test string""" lowercase = processor(text=_lowerCAmelCase ) lowercase = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self , _lowerCAmelCase=(2, 10, 16) , _lowerCAmelCase=77 ) -> List[Any]: '''simple docstring''' np.random.seed(_lowerCAmelCase ) return np.random.rand(*_lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) lowercase = processor.decode(_lowerCAmelCase ) lowercase = decoder.decode_beams(_lowerCAmelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: lowercase = processor.batch_decode(_lowerCAmelCase ) else: with get_context(_lowerCAmelCase ).Pool() as pool: lowercase = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase ) lowercase = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as p: lowercase = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase ) lowercase , lowercase , lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCAmelCase , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score ) self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score ) def _a ( self ) -> int: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = self._get_dummy_logits() lowercase = 15 lowercase = -20.0 lowercase = -4.0 lowercase = processor.batch_decode( _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) lowercase = decoded_processor_out.text lowercase = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as pool: lowercase = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) lowercase = [d[0][0] for d in decoded_decoder_out] lowercase = [d[0][2] for d in decoded_decoder_out] lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1E-3 ) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = self._get_dummy_logits() lowercase = 2.0 lowercase = 5.0 lowercase = -20.0 lowercase = True lowercase = processor.batch_decode( _lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) lowercase = decoded_processor_out.text lowercase = list(_lowerCAmelCase ) decoder.reset_params( alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) with get_context("""fork""" ).Pool() as pool: lowercase = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , ) lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase ) lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowercase = processor.decoder.model_container[processor.decoder._model_key] lowercase = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() lowercase = os.listdir(_lowerCAmelCase ) lowercase = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = snapshot_download("""hf-internal-testing/processor_with_lm""" ) lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase ) lowercase = processor.decoder.model_container[processor.decoder._model_key] lowercase = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() lowercase = os.listdir(_lowerCAmelCase ) lowercase = os.listdir(_lowerCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Any: '''simple docstring''' lowercase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowercase = floats_list((3, 1000) ) lowercase = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" ) lowercase = processor_auto(_lowerCAmelCase , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) lowercase = self._get_dummy_logits() lowercase = processor_wavaveca.batch_decode(_lowerCAmelCase ) lowercase = processor_auto.batch_decode(_lowerCAmelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def _a ( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase = [d[key] for d in offsets] return retrieved_list def _a ( self ) -> str: '''simple docstring''' lowercase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowercase = self._get_dummy_logits()[0] lowercase = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowercase = self._get_dummy_logits() lowercase = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def _a ( self ) -> Optional[int]: '''simple docstring''' import torch lowercase = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase ) lowercase = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_6000 ) ) lowercase = iter(_lowerCAmelCase ) lowercase = next(_lowerCAmelCase ) lowercase = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) lowercase = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train lowercase = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): lowercase = model(_lowerCAmelCase ).logits.cpu().numpy() lowercase = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase ) lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate lowercase = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] lowercase = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase ) self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text ) # output times lowercase = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) ) lowercase = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) ) # fmt: off lowercase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) lowercase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
653
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase = [144, 192, 240] lowercase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowercase = [96, 120, 144] lowercase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowercase = [64, 80, 96] lowercase = [16, 16, 24, 48, 64, 80, 320] lowercase = 0.05 lowercase = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = 512 lowercase = 16 lowercase = 21 lowercase = """pascal-voc-id2label.json""" else: lowercase = 1000 lowercase = """imagenet-1k-id2label.json""" lowercase = """huggingface/label-files""" lowercase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase = {int(lowercase_ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Any=False ): for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowercase = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowercase = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: lowercase = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: lowercase = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: lowercase = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: lowercase = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: lowercase = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: lowercase = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: lowercase = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: lowercase = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowercase = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: lowercase = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: lowercase = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowercase = name.replace(F""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if F""".global_rep.{i}.bias""" in name: lowercase = name.replace(F""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: lowercase = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: lowercase = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: lowercase = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: lowercase = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: lowercase = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: lowercase = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: lowercase = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: lowercase = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: lowercase = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: lowercase = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: lowercase = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: lowercase = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): lowercase = """mobilevit.""" + name return name def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str=False ): if base_model: lowercase = """""" else: lowercase = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowercase_ ) if key[:8] == "encoder.": lowercase = key[8:] if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[0][6:] ) - 1 lowercase = int(key_split[3] ) lowercase = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowercase = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( ): lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str]=False ): lowercase = get_mobilevit_config(lowercase_ ) # load original state_dict lowercase = torch.load(lowercase_ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = MobileViTForSemanticSegmentation(lowercase_ ).eval() else: lowercase = MobileViTForImageClassification(lowercase_ ).eval() lowercase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase = model(**lowercase_ ) lowercase = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowercase = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowercase = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowercase = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: lowercase = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) lowercase = model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase_ , organization="""apple""" ) model.push_to_hub(lowercase_ , organization="""apple""" ) if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ : List[str] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
653
1
'''simple docstring''' def _A ( A__ ): """simple docstring""" assert isinstance(snake_case_ , snake_case_ ), F"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: __lowercase = F"The input value of [n={number}] has to be > 0" raise ValueError(snake_case_ ) else: __lowercase = sylvester(number - 1 ) __lowercase = num - 1 __lowercase = num return lower * upper + 1 if __name__ == "__main__": print(f'The 8th number in Sylvester\'s sequence: {sylvester(8)}')
41
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=4 , ) -> Optional[int]: _A : List[Any] = parent _A : List[Any] = batch_size _A : Dict = seq_length _A : Optional[Any] = is_training _A : int = use_attention_mask _A : int = use_token_type_ids _A : List[Any] = use_labels _A : List[str] = vocab_size _A : List[Any] = hidden_size _A : str = num_hidden_layers _A : Optional[Any] = num_attention_heads _A : List[Any] = intermediate_size _A : Any = hidden_act _A : int = hidden_dropout_prob _A : int = attention_probs_dropout_prob _A : List[str] = max_position_embeddings _A : Optional[int] = type_vocab_size _A : List[str] = type_sequence_label_size _A : Dict = initializer_range _A : List[Any] = num_choices def a__ ( self ) -> int: _A : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A : Optional[Any] = None if self.use_attention_mask: _A : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _A : Optional[int] = None if self.use_token_type_ids: _A : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A : Optional[int] = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ ( self ) -> List[str]: _A : Tuple = self.prepare_config_and_inputs() _A , _A , _A , _A : str = config_and_inputs _A : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def a__ ( self ) -> int: _A : Any = self.prepare_config_and_inputs() _A , _A , _A , _A : int = config_and_inputs _A : int = True _A : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = True _a = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def a__ ( self ) -> List[Any]: _A : Optional[Any] = FlaxRobertaModelTester(self ) @slow def a__ ( self ) -> Optional[int]: for model_class_name in self.all_model_classes: _A : Optional[int] = model_class_name.from_pretrained("""roberta-base""" , from_pt=_a ) _A : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a )
307
0
"""simple docstring""" import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' __lowerCamelCase : str =TaConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(F'Building PyTorch model from configuration: {config}' ) __lowerCamelCase : Any =TaForConditionalGeneration(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_ta(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
363
"""simple docstring""" def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __lowerCamelCase : Optional[Any] =len(SCREAMING_SNAKE_CASE ) __lowerCamelCase : Union[str, Any] =[[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): __lowerCamelCase : Union[str, Any] =y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCamelCase : List[Any] =( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
363
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): a = VideoToVideoSDPipeline a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'''video'''} ) - {'''image''', '''width''', '''height'''} a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''video'''} ) - {'''image'''} a = PipelineTesterMixin.required_optional_params - {'''latents'''} a = False # No `output_type`. a = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def _lowerCamelCase ( self ): torch.manual_seed(0 ) A_ : Any = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) A_ : Optional[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) A_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) A_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) A_ : Tuple = CLIPTextModel(_UpperCAmelCase ) A_ : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A_ : Optional[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def _lowerCamelCase ( self , a__ , a__=0 ): A_ : int = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): A_ : Optional[Any] = torch.manual_seed(_UpperCAmelCase ) else: A_ : List[str] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) A_ : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def _lowerCamelCase ( self ): A_ : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Any = self.get_dummy_components() A_ : List[str] = VideoToVideoSDPipeline(**_UpperCAmelCase ) A_ : Union[str, Any] = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) A_ : List[str] = self.get_dummy_inputs(_UpperCAmelCase ) A_ : Union[str, Any] = """np""" A_ : List[str] = sd_pipe(**_UpperCAmelCase ).frames A_ : Any = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) A_ : Optional[int] = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowerCamelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_UpperCAmelCase , expected_max_diff=5E-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def _lowerCamelCase ( self ): pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def _lowerCamelCase ( self ): pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self ): A_ : int = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames A_ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) A_ : Tuple = torch.randn((1, 10, 3, 1024, 576) , generator=_UpperCAmelCase ) A_ : Optional[int] = video.to("""cuda""" ) A_ : Dict = """Spiderman is surfing""" A_ : Optional[int] = pipe(_UpperCAmelCase , video=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=3 , output_type="""pt""" ).frames A_ : Dict = np.array([-1.045_8984, -1.127_9297, -0.966_3086, -0.9150_3906, -0.7509_7656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
569
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowerCamelCase = 50_000 lowerCamelCase = 5_000 lowerCamelCase , lowerCamelCase = os.path.split(__file__) lowerCamelCase = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): UpperCAmelCase_ = dataset[i] @get_duration def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): UpperCAmelCase_ = dataset[i : i + batch_size] @get_duration def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): UpperCAmelCase_ = dataset[i] @get_duration def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = dataset[i : i + batch_size] def a__ ( ): UpperCAmelCase_ = {"num examples": SPEED_TEST_N_EXAMPLES} UpperCAmelCase_ = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] UpperCAmelCase_ = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) UpperCAmelCase_ = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) UpperCAmelCase_ = generate_example_dataset( os.path.join(lowerCAmelCase__ , "dataset.arrow" ) , lowerCAmelCase__ , num_examples=lowerCAmelCase__ , seq_shapes={"list": (100,)} , ) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ , str(lowerCAmelCase__ ) ) UpperCAmelCase_ = func(lowerCAmelCase__ , **lowerCAmelCase__ ) print("shuffling dataset" ) UpperCAmelCase_ = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " , func.__name__ , str(lowerCAmelCase__ ) ) UpperCAmelCase_ = func( lowerCAmelCase__ , **lowerCAmelCase__ ) with open(lowerCAmelCase__ , "wb" ) as f: f.write(json.dumps(lowerCAmelCase__ ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
82
0
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
711
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a ( _UpperCAmelCase ): UpperCAmelCase__ : Dict = "Speech2TextFeatureExtractor" UpperCAmelCase__ : str = "Speech2TextTokenizer" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] ): super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Any = self.feature_extractor __lowerCamelCase: List[Any] = False def __call__( self : List[str] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) __lowerCamelCase: Dict = kwargs.pop("""raw_speech""" ) else: __lowerCamelCase: int = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Dict = kwargs.pop("""sampling_rate""" , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: int = kwargs.pop("""text""" , SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: __lowerCamelCase: Dict = args[0] __lowerCamelCase: Optional[Any] = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: __lowerCamelCase: List[str] = self.feature_extractor(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if text is not None: __lowerCamelCase: Any = self.tokenizer(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if text is None: return inputs elif audio is None: return encodings else: __lowerCamelCase: List[Any] = encodings["""input_ids"""] return inputs def SCREAMING_SNAKE_CASE__ ( self : List[str] , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : str ): return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : List[Any] ): return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self : Any ): warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) __lowerCamelCase: Any = True __lowerCamelCase: Any = self.tokenizer yield __lowerCamelCase: Any = self.feature_extractor __lowerCamelCase: Optional[Any] = False
189
0
'''simple docstring''' from __future__ import annotations def __snake_case ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ) -> float: """simple docstring""" if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def __snake_case ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ) -> float: """simple docstring""" if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def __snake_case ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ) -> float: """simple docstring""" if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( SCREAMING_SNAKE_CASE_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
51
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask UpperCamelCase__ : Union[str, Any] = logging.getLogger(__name__) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase__ : Dict=-1 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = label_idx def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[Split, str] ): """simple docstring""" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Any = mode.value __SCREAMING_SNAKE_CASE : List[Any] = os.path.join(lowerCAmelCase__ , F"{mode}.txt" ) __SCREAMING_SNAKE_CASE : List[str] = 1 __SCREAMING_SNAKE_CASE : int = [] with open(lowerCAmelCase__ , encoding="""utf-8""" ) as f: __SCREAMING_SNAKE_CASE : List[str] = [] __SCREAMING_SNAKE_CASE : str = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=lowerCAmelCase__ , labels=lowerCAmelCase__ ) ) guid_index += 1 __SCREAMING_SNAKE_CASE : Dict = [] __SCREAMING_SNAKE_CASE : List[Any] = [] else: __SCREAMING_SNAKE_CASE : Union[str, Any] = line.split(""" """ ) words.append(splits[0] ) if len(lowerCAmelCase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=lowerCAmelCase__ , labels=lowerCAmelCase__ ) ) return examples def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : TextIO , lowerCAmelCase__ : TextIO , lowerCAmelCase__ : List ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(lowerCAmelCase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: __SCREAMING_SNAKE_CASE : List[str] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(lowerCAmelCase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def UpperCamelCase__ ( self : Union[str, Any] , lowerCAmelCase__ : str ): """simple docstring""" if path: with open(lowerCAmelCase__ , """r""" ) as f: __SCREAMING_SNAKE_CASE : Any = f.read().splitlines() if "O" not in labels: __SCREAMING_SNAKE_CASE : Union[str, Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : List[str] ): """simple docstring""" super().__init__(label_idx=-2 ) def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : str ): """simple docstring""" if path: with open(lowerCAmelCase__ , """r""" ) as f: __SCREAMING_SNAKE_CASE : Optional[Any] = f.read().splitlines() if "O" not in labels: __SCREAMING_SNAKE_CASE : Tuple = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[Split, str] ): """simple docstring""" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : List[str] = mode.value __SCREAMING_SNAKE_CASE : Dict = os.path.join(lowerCAmelCase__ , F"{mode}.txt" ) __SCREAMING_SNAKE_CASE : Dict = 1 __SCREAMING_SNAKE_CASE : Optional[Any] = [] with open(lowerCAmelCase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : Optional[int] = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=lowerCAmelCase__ , labels=lowerCAmelCase__ ) ) guid_index += 1 return examples def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : TextIO , lowerCAmelCase__ : TextIO , lowerCAmelCase__ : List ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = 0 for sentence in parse_incr(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = preds_list[example_id] __SCREAMING_SNAKE_CASE : Union[str, Any] = """""" for token in sentence: out += F"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(lowerCAmelCase__ ) example_id += 1 def UpperCamelCase__ ( self : str , lowerCAmelCase__ : str ): """simple docstring""" if path: with open(lowerCAmelCase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
578
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Optional[int] = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' __magic_name__ : str = """timesformer""" def __init__( self : int , UpperCamelCase__ : Optional[int]=224 , UpperCamelCase__ : Dict=16 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : Optional[Any]=8 , UpperCamelCase__ : str=768 , UpperCamelCase__ : int=12 , UpperCamelCase__ : Dict=12 , UpperCamelCase__ : Union[str, Any]=3072 , UpperCamelCase__ : str="gelu" , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : List[Any]=1E-6 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Optional[Any]="divided_space_time" , UpperCamelCase__ : Optional[int]=0 , **UpperCamelCase__ : int , ): super().__init__(**UpperCamelCase__ ) A__ : Any =image_size A__ : Union[str, Any] =patch_size A__ : Tuple =num_channels A__ : Dict =num_frames A__ : Optional[Any] =hidden_size A__ : Optional[int] =num_hidden_layers A__ : List[str] =num_attention_heads A__ : Dict =intermediate_size A__ : str =hidden_act A__ : List[Any] =hidden_dropout_prob A__ : int =attention_probs_dropout_prob A__ : List[str] =initializer_range A__ : Optional[Any] =layer_norm_eps A__ : Dict =qkv_bias A__ : int =attention_type A__ : Union[str, Any] =drop_path_rate
595
"""simple docstring""" __A : int = [ (1_000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def lowercase ( UpperCamelCase : str ): """simple docstring""" A__ : Union[str, Any] ={"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} A__ : Tuple =0 A__ : List[str] =0 while place < len(UpperCamelCase ): if (place + 1 < len(UpperCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowercase ( UpperCamelCase : int ): """simple docstring""" A__ : Dict =[] for arabic, roman in ROMAN: ((A__) , (A__)) : Union[str, Any] =divmod(UpperCamelCase , UpperCamelCase ) result.append(roman * factor ) if number == 0: break return "".join(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
595
1
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
350
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class a_ : pass
350
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str=0.9_99 , UpperCamelCase__ : Dict="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase__ : Union[str, Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase__ : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __UpperCAmelCase = [] for i in range(UpperCamelCase__ ): __UpperCAmelCase = i / num_diffusion_timesteps __UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase__ ) / alpha_bar_fn(UpperCamelCase__ ) , UpperCamelCase__ ) ) return torch.tensor(UpperCamelCase__ , dtype=torch.floataa ) class A ( UpperCAmelCase , UpperCAmelCase ): a_ = [e.name for e in KarrasDiffusionSchedulers] a_ = 2 @register_to_config def __init__( self : Tuple , __a : int = 1_0_0_0 , __a : float = 0.0_0_0_8_5 , __a : float = 0.0_1_2 , __a : str = "linear" , __a : Optional[Union[np.ndarray, List[float]]] = None , __a : str = "epsilon" , __a : Optional[bool] = False , __a : Optional[bool] = False , __a : float = 1.0 , __a : str = "linspace" , __a : int = 0 , ) -> str: if trained_betas is not None: __UpperCAmelCase = torch.tensor(__a , dtype=torch.floataa ) elif beta_schedule == "linear": __UpperCAmelCase = torch.linspace(__a , __a , __a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __UpperCAmelCase = betas_for_alpha_bar(__a , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": __UpperCAmelCase = betas_for_alpha_bar(__a , alpha_transform_type='''exp''' ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) __UpperCAmelCase = 1.0 - self.betas __UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__a , __a , __a ) __UpperCAmelCase = use_karras_sigmas def snake_case__ ( self : Optional[int] , __a : int , __a : List[Any]=None ) -> Any: if schedule_timesteps is None: __UpperCAmelCase = self.timesteps __UpperCAmelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __UpperCAmelCase = 1 if len(__a ) > 1 else 0 else: __UpperCAmelCase = timestep.cpu().item() if torch.is_tensor(__a ) else timestep __UpperCAmelCase = self._index_counter[timestep_int] return indices[pos].item() @property def snake_case__ ( self : List[str] ) -> Tuple: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def snake_case__ ( self : int , __a : torch.FloatTensor , __a : Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: __UpperCAmelCase = self.index_for_timestep(__a ) __UpperCAmelCase = self.sigmas[step_index] __UpperCAmelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def snake_case__ ( self : str , __a : int , __a : Union[str, torch.device] = None , __a : Optional[int] = None , ) -> Union[str, Any]: __UpperCAmelCase = num_inference_steps __UpperCAmelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __UpperCAmelCase = np.linspace(0 , num_train_timesteps - 1 , __a , dtype=__a )[::-1].copy() elif self.config.timestep_spacing == "leading": __UpperCAmelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCAmelCase = (np.arange(0 , __a ) * step_ratio).round()[::-1].copy().astype(__a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __UpperCAmelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCAmelCase = (np.arange(__a , 0 , -step_ratio )).round().copy().astype(__a ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) __UpperCAmelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __UpperCAmelCase = np.log(__a ) __UpperCAmelCase = np.interp(__a , np.arange(0 , len(__a ) ) , __a ) if self.config.use_karras_sigmas: __UpperCAmelCase = self._convert_to_karras(in_sigmas=__a , num_inference_steps=self.num_inference_steps ) __UpperCAmelCase = np.array([self._sigma_to_t(__a , __a ) for sigma in sigmas] ) __UpperCAmelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __UpperCAmelCase = torch.from_numpy(__a ).to(device=__a ) __UpperCAmelCase = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __UpperCAmelCase = torch.from_numpy(__a ) __UpperCAmelCase = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(__a ).startswith('''mps''' ): # mps does not support float64 __UpperCAmelCase = timesteps.to(__a , dtype=torch.floataa ) else: __UpperCAmelCase = timesteps.to(device=__a ) # empty dt and derivative __UpperCAmelCase = None __UpperCAmelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __UpperCAmelCase = defaultdict(__a ) def snake_case__ ( self : Tuple , __a : Optional[int] , __a : Optional[Any] ) -> List[str]: # get log sigma __UpperCAmelCase = np.log(__a ) # get distribution __UpperCAmelCase = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __UpperCAmelCase = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __UpperCAmelCase = low_idx + 1 __UpperCAmelCase = log_sigmas[low_idx] __UpperCAmelCase = log_sigmas[high_idx] # interpolate sigmas __UpperCAmelCase = (low - log_sigma) / (low - high) __UpperCAmelCase = np.clip(__a , 0 , 1 ) # transform interpolation to time range __UpperCAmelCase = (1 - w) * low_idx + w * high_idx __UpperCAmelCase = t.reshape(sigma.shape ) return t def snake_case__ ( self : List[str] , __a : torch.FloatTensor , __a : int ) -> torch.FloatTensor: __UpperCAmelCase = in_sigmas[-1].item() __UpperCAmelCase = in_sigmas[0].item() __UpperCAmelCase = 7.0 # 7.0 is the value used in the paper __UpperCAmelCase = np.linspace(0 , 1 , __a ) __UpperCAmelCase = sigma_min ** (1 / rho) __UpperCAmelCase = sigma_max ** (1 / rho) __UpperCAmelCase = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def snake_case__ ( self : List[Any] ) -> List[Any]: return self.dt is None def snake_case__ ( self : str , __a : Union[torch.FloatTensor, np.ndarray] , __a : Union[float, torch.FloatTensor] , __a : Union[torch.FloatTensor, np.ndarray] , __a : bool = True , ) -> Union[SchedulerOutput, Tuple]: __UpperCAmelCase = self.index_for_timestep(__a ) # advance index counter by 1 __UpperCAmelCase = timestep.cpu().item() if torch.is_tensor(__a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __UpperCAmelCase = self.sigmas[step_index] __UpperCAmelCase = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __UpperCAmelCase = self.sigmas[step_index - 1] __UpperCAmelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __UpperCAmelCase = 0 __UpperCAmelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __UpperCAmelCase = sigma_hat if self.state_in_first_order else sigma_next __UpperCAmelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __UpperCAmelCase = sigma_hat if self.state_in_first_order else sigma_next __UpperCAmelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __UpperCAmelCase = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: __UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __UpperCAmelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __UpperCAmelCase = sigma_next - sigma_hat # store for 2nd order step __UpperCAmelCase = derivative __UpperCAmelCase = dt __UpperCAmelCase = sample else: # 2. 2nd order / Heun's method __UpperCAmelCase = (sample - pred_original_sample) / sigma_next __UpperCAmelCase = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __UpperCAmelCase = self.dt __UpperCAmelCase = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a ) def snake_case__ ( self : Optional[int] , __a : torch.FloatTensor , __a : torch.FloatTensor , __a : torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __UpperCAmelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__a ): # mps does not support float64 __UpperCAmelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __UpperCAmelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __UpperCAmelCase = self.timesteps.to(original_samples.device ) __UpperCAmelCase = timesteps.to(original_samples.device ) __UpperCAmelCase = [self.index_for_timestep(__a , __a ) for t in timesteps] __UpperCAmelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __UpperCAmelCase = sigma.unsqueeze(-1 ) __UpperCAmelCase = original_samples + noise * sigma return noisy_samples def __len__( self : Union[str, Any] ) -> Tuple: return self.config.num_train_timesteps
708
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
654
0
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : int = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class a__ ( _UpperCamelCase , unittest.TestCase ): a : int = AlbertTokenizer a : List[Any] = AlbertTokenizerFast a : int = True a : Dict = True a : int = True def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing a = AlbertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self , A ) -> Union[str, Any]: '''simple docstring''' a = "this is a test" a = "this is a test" return input_text, output_text def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' a = "<pad>" a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) , a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) , a_ ) def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(a_ ) , 30000 ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer() a = "I was born in 92000, and this is falsé." a = tokenizer.tokenize(a_ ) a = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) a = tokenizer.encode(a_ , add_special_tokens=a_ ) a = rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) a = self.get_rust_tokenizer() a = tokenizer.encode(a_ ) a = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' a = AlbertTokenizer(a_ , keep_accents=a_ ) a = tokenizer.tokenize("This is a test" ) self.assertListEqual(a_ , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , [48, 25, 21, 1289] ) a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a_ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) a = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual(a_ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) a = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' a = AlbertTokenizer(a_ ) a = tokenizer.encode("sequence builders" ) a = tokenizer.encode("multi-sequence build" ) a = tokenizer.build_inputs_with_special_tokens(a_ ) a = tokenizer.build_inputs_with_special_tokens(a_ , a_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' a = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_ , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
515
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 __snake_case , __snake_case = 1, 1 for _ in range(number_of_steps - 1 ): __snake_case , __snake_case = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
69
0
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ) ->Any: """simple docstring""" a__ :Optional[Any] = [] def _snake_case ( self : Optional[Any] , __A : List[Any] ) ->List[str]: """simple docstring""" return self.node_position[vertex] def _snake_case ( self : Optional[Any] , __A : str , __A : Any ) ->Dict: """simple docstring""" a__ :Dict = pos def _snake_case ( self : str , __A : Union[str, Any] , __A : Union[str, Any] , __A : Optional[Any] , __A : Optional[int] ) ->List[Any]: """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: a__ :str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: a__ :Optional[int] = 2 * start + 1 else: a__ :List[Any] = 2 * start + 2 if heap[smallest_child] < heap[start]: a__ , a__ :Optional[Any] = heap[smallest_child], positions[smallest_child] a__ , a__ :int = ( heap[start], positions[start], ) a__ , a__ :List[Any] = temp, tempa a__ :Any = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __A ) self.top_to_bottom(__A , __A , __A , __A ) def _snake_case ( self : List[str] , __A : Any , __A : List[str] , __A : Any , __A : str ) ->Optional[Any]: """simple docstring""" a__ :Optional[Any] = position[index] while index != 0: a__ :str = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: a__ :int = heap[parent] a__ :Optional[Any] = position[parent] self.set_position(position[parent] , __A ) else: a__ :List[Any] = val a__ :List[Any] = temp self.set_position(__A , __A ) break a__ :Union[str, Any] = parent else: a__ :int = val a__ :Dict = temp self.set_position(__A , 0 ) def _snake_case ( self : Tuple , __A : int , __A : int ) ->Union[str, Any]: """simple docstring""" a__ :Tuple = len(__A ) // 2 - 1 for i in range(__A , -1 , -1 ): self.top_to_bottom(__A , __A , len(__A ) , __A ) def _snake_case ( self : List[Any] , __A : List[Any] , __A : int ) ->Optional[Any]: """simple docstring""" a__ :Any = positions[0] a__ :str = sys.maxsize self.top_to_bottom(__A , 0 , len(__A ) , __A ) return temp def lowerCamelCase__ ( a : Any ) -> Union[str, Any]: """simple docstring""" a__ :Tuple = Heap() a__ :List[Any] = [0] * len(a ) a__ :str = [-1] * len(a ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph a__ :Any = [] # Heap of Distance of vertices from their neighboring vertex a__ :int = [] for vertex in range(len(a ) ): distance_tv.append(sys.maxsize ) positions.append(a ) heap.node_position.append(a ) a__ :Tuple = [] a__ :Any = 1 a__ :int = sys.maxsize for neighbor, distance in adjacency_list[0]: a__ :int = 0 a__ :List[str] = distance heap.heapify(a , a ) for _ in range(1 , len(a ) ): a__ :Dict = heap.delete_minimum(a , a ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) a__ :Optional[int] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(a )] ): a__ :List[str] = distance heap.bottom_to_top( a , heap.get_position(a ) , a , a ) a__ :str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > snake_case__ = int(input('''Enter number of edges: ''').strip()) snake_case__ = defaultdict(list) for _ in range(edges_number): snake_case__ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
373
def lowerCamelCase__ ( a : int , a : int ) -> Any: """simple docstring""" # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) a__ :Optional[int] = (boundary[1] - boundary[0]) / steps a__ :str = boundary[0] a__ :Optional[int] = boundary[1] a__ :str = make_points(a , a , a ) a__ :Any = 0.0 y += (h / 2.0) * f(a ) for i in x_i: # print(i) y += h * f(a ) y += (h / 2.0) * f(a ) return y def lowerCamelCase__ ( a : Any , a : str , a : Dict ) -> int: """simple docstring""" a__ :Union[str, Any] = a + h while x < (b - h): yield x a__ :str = x + h def lowerCamelCase__ ( a : Optional[int] ) -> List[Any]: # enter your function here """simple docstring""" a__ :Tuple = (x - 0) * (x - 0) return y def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" a__ :Optional[Any] = 0.0 # Lower bound of integration a__ :Optional[Any] = 1.0 # Upper bound of integration a__ :List[str] = 1_0.0 # define number of steps or resolution a__ :int = [a, b] # define boundary of integration a__ :str = method_a(a , a ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
373
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( ) -> str: SCREAMING_SNAKE_CASE__ = 0 for i in range(1 , 1_001 ): total += i**i return str(_UpperCAmelCase )[-10:] if __name__ == "__main__": print(solution())
159
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class a__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _A = TextToVideoSDPipeline _A = TEXT_TO_IMAGE_PARAMS _A = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. _A = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_: int = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) lowerCamelCase_: Dict = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) lowerCamelCase_: Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) lowerCamelCase_: str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) lowerCamelCase_: Dict = CLIPTextModel(A_ ) lowerCamelCase_: Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase_: Optional[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCAmelCase ( self : Optional[int] , A_ : Union[str, Any] , A_ : Dict=0 ) -> List[Any]: """simple docstring""" if str(A_ ).startswith("""mps""" ): lowerCamelCase_: Dict = torch.manual_seed(A_ ) else: lowerCamelCase_: Tuple = torch.Generator(device=A_ ).manual_seed(A_ ) lowerCamelCase_: Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_: List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_: Optional[int] = self.get_dummy_components() lowerCamelCase_: Any = TextToVideoSDPipeline(**A_ ) lowerCamelCase_: int = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_: Tuple = self.get_dummy_inputs(A_ ) lowerCamelCase_: str = """np""" lowerCamelCase_: int = sd_pipe(**A_ ).frames lowerCamelCase_: Optional[int] = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) lowerCamelCase_: Dict = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=A_ , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_ , expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" pass def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" return super().test_progress_bar() @slow @skip_mps class a__ ( unittest.TestCase ): def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_: int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) lowerCamelCase_: str = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) lowerCamelCase_: Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowerCamelCase_: List[Any] = pipe.to("""cuda""" ) lowerCamelCase_: Optional[Any] = """Spiderman is surfing""" lowerCamelCase_: int = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCamelCase_: List[Any] = pipe(A_ , generator=A_ , num_inference_steps=25 , output_type="""pt""" ).frames lowerCamelCase_: Optional[Any] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_: List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) lowerCamelCase_: int = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) lowerCamelCase_: Optional[Any] = pipe.to("""cuda""" ) lowerCamelCase_: Union[str, Any] = """Spiderman is surfing""" lowerCamelCase_: Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCamelCase_: Any = pipe(A_ , generator=A_ , num_inference_steps=2 , output_type="""pt""" ).frames lowerCamelCase_: int = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
423
0
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @property def lowerCamelCase_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowerCamelCase_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : int = DDIMScheduler() SCREAMING_SNAKE_CASE : List[Any] = self.dummy_vq_model SCREAMING_SNAKE_CASE : Dict = LDMPipeline(unet=lowerCamelCase_ , vqvae=lowerCamelCase_ , scheduler=lowerCamelCase_ ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = ldm(generator=lowerCamelCase_ , num_inference_steps=2 , output_type="""numpy""" ).images SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = ldm(generator=lowerCamelCase_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.8_512, 0.818, 0.6_411, 0.6_808, 0.4_465, 0.5_618, 0.46, 0.6_231, 0.5_172] ) SCREAMING_SNAKE_CASE : Dict = 1e-2 if torch_device != '''mps''' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = ldm(generator=lowerCamelCase_ , num_inference_steps=5 , output_type="""numpy""" ).images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) SCREAMING_SNAKE_CASE : str = np.array([0.4_399, 0.44_975, 0.46_825, 0.474, 0.4_359, 0.4_581, 0.45_095, 0.4_341, 0.4_447] ) SCREAMING_SNAKE_CASE : str = 1e-2 if torch_device != '''mps''' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
718
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=8 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase_ : UNetaDConditionModel , lowerCamelCase_ : DDPMScheduler , lowerCamelCase_ : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , movq=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : str = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase_ ( self : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple , lowerCamelCase_ : int ): '''simple docstring''' if latents is None: SCREAMING_SNAKE_CASE : Tuple = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ , device=lowerCamelCase_ , dtype=lowerCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) SCREAMING_SNAKE_CASE : Dict = latents.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Dict=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) SCREAMING_SNAKE_CASE : List[Any] = torch.device(f'''cuda:{gpu_id}''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Tuple=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) SCREAMING_SNAKE_CASE : Any = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowerCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE : Union[str, Any] = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = cpu_offload_with_hook(lowerCamelCase_ , lowerCamelCase_ , prev_module_hook=lowerCamelCase_ ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE : str = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase_ ( self : str ): '''simple docstring''' if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase_ ) def __call__( self : Optional[Any] , lowerCamelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 1_00 , lowerCamelCase_ : float = 4.0 , lowerCamelCase_ : int = 1 , lowerCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ : Optional[torch.FloatTensor] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self._execution_device SCREAMING_SNAKE_CASE : Optional[int] = guidance_scale > 1.0 if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = torch.cat(lowerCamelCase_ , dim=0 ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Dict = torch.cat(lowerCamelCase_ , dim=0 ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : Any = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: SCREAMING_SNAKE_CASE : List[Any] = image_embeds.repeat_interleave(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : Optional[int] = negative_image_embeds.repeat_interleave(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : Dict = hint.repeat_interleave(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCamelCase_ ) self.scheduler.set_timesteps(lowerCamelCase_ , device=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.timesteps SCREAMING_SNAKE_CASE : Any = self.movq.config.latent_channels SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = downscale_height_and_width(lowerCamelCase_ , lowerCamelCase_ , self.movq_scale_factor ) # create initial latent SCREAMING_SNAKE_CASE : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCamelCase_ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE : Union[str, Any] = {"""image_embeds""": image_embeds, """hint""": hint} SCREAMING_SNAKE_CASE : Dict = self.unet( sample=lowerCamelCase_ , timestep=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , added_cond_kwargs=lowerCamelCase_ , return_dict=lowerCamelCase_ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE : str = self.scheduler.step( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ , )[0] # post-processing SCREAMING_SNAKE_CASE : List[str] = self.movq.decode(lowerCamelCase_ , force_not_quantize=lowerCamelCase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE : Optional[int] = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE : List[Any] = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : Any = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ )
79
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib SCREAMING_SNAKE_CASE : int = get_logger() SCREAMING_SNAKE_CASE : Optional[dict] = None class UpperCamelCase ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): '''simple docstring''' def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) import jax from jaxlib.xla_client import Device if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( f"Expected {device} to be a `str` not {type(UpperCamelCase_ )}, as `jaxlib.xla_extension.Device` " '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) lowercase_ :Optional[Any] = device if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowercase_ :Union[str, Any] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"Device with string identifier {self.device} not listed among the available " f"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " f"device: {str(jax.devices()[0] )}." ) lowercase_ :Tuple = str(jax.devices()[0] ) lowercase_ :List[Any] = jnp_array_kwargs @staticmethod def UpperCamelCase ( ): import jax return {str(UpperCamelCase_ ): device for device in jax.devices()} def UpperCamelCase ( self , UpperCamelCase_ ): import jax import jax.numpy as jnp if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(UpperCamelCase_ , axis=0 ) return column def UpperCamelCase ( self , UpperCamelCase_ ): import jax import jax.numpy as jnp if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowercase_ :Optional[int] = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowercase_ :Optional[Any] = {'''dtype''': jnp.intaa} else: lowercase_ :List[Any] = {'''dtype''': jnp.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowercase_ :Union[str, Any] = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): lowercase_ :List[Any] = np.asarray(UpperCamelCase_ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowercase_ :List[str] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCamelCase_ , **{**default_dtype, **self.jnp_array_kwargs} ) def UpperCamelCase ( self , UpperCamelCase_ ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCamelCase_ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(UpperCamelCase_ , '''__array__''' ) and not isinstance(UpperCamelCase_ , jax.Array ): lowercase_ :Any = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) lowercase_ :Optional[Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :int = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) lowercase_ :Any = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) lowercase_ :Optional[Any] = self.recursive_tensorize(UpperCamelCase_ ) lowercase_ :Dict = self._consolidate(UpperCamelCase_ ) return column def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :Dict = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) lowercase_ :Optional[int] = self.python_features_decoder.decode_batch(UpperCamelCase_ ) lowercase_ :List[Any] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: lowercase_ :Any = self._consolidate(batch[column_name] ) return batch
257
from __future__ import annotations from typing import Any class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 0 ): lowercase_ , lowercase_ :Optional[Any] = row, column lowercase_ :Dict = [[default_value for c in range(UpperCamelCase_ )] for r in range(UpperCamelCase_ )] def __str__( self ): lowercase_ :Union[str, Any] = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier lowercase_ :List[str] = 0 for row_vector in self.array: for obj in row_vector: lowercase_ :int = max(UpperCamelCase_ , len(str(UpperCamelCase_ ) ) ) lowercase_ :int = f"%{max_element_length}s" # Make string and return def single_line(UpperCamelCase_ ) -> str: nonlocal string_format_identifier lowercase_ :Union[str, Any] = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCamelCase_ ) for row_vector in self.array ) return s def __repr__( self ): return str(self ) def UpperCamelCase ( self , UpperCamelCase_ ): if not (isinstance(UpperCamelCase_ , (list, tuple) ) and len(UpperCamelCase_ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , UpperCamelCase_ ): assert self.validate_indicies(UpperCamelCase_ ) return self.array[loc[0]][loc[1]] def __setitem__( self , UpperCamelCase_ , UpperCamelCase_ ): assert self.validate_indicies(UpperCamelCase_ ) lowercase_ :Union[str, Any] = value def __add__( self , UpperCamelCase_ ): assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert self.row == another.row and self.column == another.column # Add lowercase_ :Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowercase_ :str = self[r, c] + another[r, c] return result def __neg__( self ): lowercase_ :str = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowercase_ :str = -self[r, c] return result def __sub__( self , UpperCamelCase_ ): return self + (-another) def __mul__( self , UpperCamelCase_ ): if isinstance(UpperCamelCase_ , (int, float) ): # Scalar multiplication lowercase_ :Any = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowercase_ :Optional[int] = self[r, c] * another return result elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): # Matrix multiplication assert self.column == another.row lowercase_ :Any = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowercase_ :int = f"Unsupported type given for another ({type(UpperCamelCase_ )})" raise TypeError(UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :str = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowercase_ :Optional[int] = self[r, c] return result def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowercase_ :Tuple = v.transpose() lowercase_ :List[str] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def UpperCamelCase ( ) -> None: '''simple docstring''' lowercase_ :Any = Matrix(3 , 3 , 0 ) for i in range(3 ): lowercase_ :List[str] = 1 print(f"a^(-1) is {ainv}" ) # u, v lowercase_ :Tuple = Matrix(3 , 1 , 0 ) lowercase_ , lowercase_ , lowercase_ :List[Any] = 1, 2, -3 lowercase_ :int = Matrix(3 , 1 , 0 ) lowercase_ , lowercase_ , lowercase_ :Dict = 4, -2, 5 print(f"u is {u}" ) print(f"v is {v}" ) print(f"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(f"(a + uv^T)^(-1) is {ainv.sherman_morrison(_a , _a )}" ) def UpperCamelCase ( ) -> None: '''simple docstring''' import doctest doctest.testmod() testa()
257
1
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) _UpperCamelCase = logging.getLogger() def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = {} UpperCAmelCase = os.path.join(_snake_case , """all_results.json""" ) if os.path.exists(_snake_case ): with open(_snake_case , """r""" ) as f: UpperCAmelCase = json.load(_snake_case ) else: raise ValueError(F'''can\'t find {path}''' ) return results _UpperCamelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class lowerCamelCase__ ( snake_case ): def _UpperCamelCase ( self ): import xla_spawn UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = F''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(A ,"""argv""" ,A ): UpperCAmelCase = time() xla_spawn.main() UpperCAmelCase = time() UpperCAmelCase = get_results(A ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start ,500 ) def _UpperCamelCase ( self ): import xla_spawn UpperCAmelCase = """ ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py """.split() with patch.object(A ,"""argv""" ,A ): xla_spawn.main()
74
"""simple docstring""" from __future__ import annotations from typing import Any class lowerCamelCase__ : def __init__( self ,A = 6 ): UpperCAmelCase = None UpperCAmelCase = None self.create_linked_list(A ) def _UpperCamelCase ( self ,A ): UpperCAmelCase = Node() UpperCAmelCase = current_node UpperCAmelCase = current_node UpperCAmelCase = current_node for _ in range(1 ,A ): UpperCAmelCase = Node() UpperCAmelCase = current_node UpperCAmelCase = previous_node UpperCAmelCase = current_node UpperCAmelCase = self.front UpperCAmelCase = previous_node def _UpperCamelCase ( self ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _UpperCamelCase ( self ): self.check_can_perform_operation() return self.front.data if self.front else None def _UpperCamelCase ( self ,A ): if self.rear is None: return self.check_is_full() if not self.is_empty(): UpperCAmelCase = self.rear.next if self.rear: UpperCAmelCase = data def _UpperCamelCase ( self ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: UpperCAmelCase = self.front.data UpperCAmelCase = None return data UpperCAmelCase = self.front UpperCAmelCase = old_front.next UpperCAmelCase = old_front.data UpperCAmelCase = None return data def _UpperCamelCase ( self ): if self.is_empty(): raise Exception("""Empty Queue""" ) def _UpperCamelCase ( self ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class lowerCamelCase__ : def __init__( self ): UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if __name__ == "__main__": import doctest doctest.testmod()
74
1
from collections.abc import Iterable from typing import Generic, TypeVar __lowercase = TypeVar("""_T""") class _lowercase ( Generic[_T] ): def __init__( self : Any , lowerCamelCase__ : Iterable[_T] | None = None ) -> None: """simple docstring""" A_ = list(iterable or [] ) A_ = [] def __len__( self : Optional[Any] ) -> int: """simple docstring""" return len(self._stacka ) + len(self._stacka ) def __repr__( self : Dict ) -> str: """simple docstring""" return F"Queue({tuple(self._stacka[::-1] + self._stacka )})" def UpperCamelCase ( self : Union[str, Any] , lowerCamelCase__ : _T ) -> None: """simple docstring""" self._stacka.append(lowerCamelCase__ ) def UpperCamelCase ( self : str ) -> _T: """simple docstring""" A_ = self._stacka.pop A_ = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
203
__lowercase = """Alexander Joslin""" import operator as op from .stack import Stack def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} A_ = Stack() A_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 A_ = operator_stack.peek() operator_stack.pop() A_ = operand_stack.peek() operand_stack.pop() A_ = operand_stack.peek() operand_stack.pop() A_ = operators[opr](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) operand_stack.push(SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __lowercase = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(f'{equation} = {dijkstras_two_stack_algorithm(equation)}')
203
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : List[str] = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : Optional[int] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' __snake_case = 'bit' __snake_case = ['preactivation', 'bottleneck'] __snake_case = ['SAME', 'VALID'] def __init__( self : List[str] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : int=64 , lowerCAmelCase_ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : str=[3, 4, 6, 3] , lowerCAmelCase_ : Optional[Any]="preactivation" , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A__ : List[Any] =global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) A__ : List[Any] =num_channels A__ : Tuple =embedding_size A__ : Union[str, Any] =hidden_sizes A__ : List[str] =depths A__ : Optional[Any] =layer_type A__ : int =hidden_act A__ : int =global_padding A__ : int =num_groups A__ : str =drop_path_rate A__ : str =embedding_dynamic_padding A__ : Dict =output_stride A__ : Optional[int] =width_factor A__ : List[str] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] A__ , A__ : Union[str, Any] =get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
687
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: SCREAMING_SNAKE_CASE_: Dict = [1_44, 1_92, 2_40] SCREAMING_SNAKE_CASE_: Any = [16, 32, 64, 96, 1_28, 1_60, 6_40] elif "mobilevit_xs" in mobilevit_name: SCREAMING_SNAKE_CASE_: str = [96, 1_20, 1_44] SCREAMING_SNAKE_CASE_: Tuple = [16, 32, 48, 64, 80, 96, 3_84] elif "mobilevit_xxs" in mobilevit_name: SCREAMING_SNAKE_CASE_: List[str] = [64, 80, 96] SCREAMING_SNAKE_CASE_: Union[str, Any] = [16, 16, 24, 48, 64, 80, 3_20] SCREAMING_SNAKE_CASE_: str = 0.0_5 SCREAMING_SNAKE_CASE_: Any = 2.0 if mobilevit_name.startswith("deeplabv3_" ): SCREAMING_SNAKE_CASE_: List[str] = 5_12 SCREAMING_SNAKE_CASE_: Optional[Any] = 16 SCREAMING_SNAKE_CASE_: Optional[Any] = 21 SCREAMING_SNAKE_CASE_: List[Any] = "pascal-voc-id2label.json" else: SCREAMING_SNAKE_CASE_: Optional[Any] = 10_00 SCREAMING_SNAKE_CASE_: str = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE_: Optional[int] = "huggingface/label-files" SCREAMING_SNAKE_CASE_: Tuple = json.load(open(hf_hub_download(_A , _A , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE_: List[Any] = {int(_A ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: List[str] = idalabel SCREAMING_SNAKE_CASE_: Tuple = {v: k for k, v in idalabel.items()} return config def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): for i in range(1 , 6 ): if f"layer_{i}." in name: SCREAMING_SNAKE_CASE_: List[str] = name.replace(f"layer_{i}." , f"encoder.layer.{i - 1}." ) if "conv_1." in name: SCREAMING_SNAKE_CASE_: Optional[int] = name.replace("conv_1." , "conv_stem." ) if ".block." in name: SCREAMING_SNAKE_CASE_: List[Any] = name.replace(".block." , "." ) if "exp_1x1" in name: SCREAMING_SNAKE_CASE_: int = name.replace("exp_1x1" , "expand_1x1" ) if "red_1x1" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] = name.replace("red_1x1" , "reduce_1x1" ) if ".local_rep.conv_3x3." in name: SCREAMING_SNAKE_CASE_: Optional[Any] = name.replace(".local_rep.conv_3x3." , ".conv_kxk." ) if ".local_rep.conv_1x1." in name: SCREAMING_SNAKE_CASE_: Optional[Any] = name.replace(".local_rep.conv_1x1." , ".conv_1x1." ) if ".norm." in name: SCREAMING_SNAKE_CASE_: Union[str, Any] = name.replace(".norm." , ".normalization." ) if ".conv." in name: SCREAMING_SNAKE_CASE_: Optional[int] = name.replace(".conv." , ".convolution." ) if ".conv_proj." in name: SCREAMING_SNAKE_CASE_: List[str] = name.replace(".conv_proj." , ".conv_projection." ) for i in range(0 , 2 ): for j in range(0 , 4 ): if f".{i}.{j}." in name: SCREAMING_SNAKE_CASE_: Optional[int] = name.replace(f".{i}.{j}." , f".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if f".{i}.{j}." in name: SCREAMING_SNAKE_CASE_: Tuple = name.replace(f".{i}.{j}." , f".{i}." ) if "expand_1x1" in name: SCREAMING_SNAKE_CASE_: int = name.replace("expand_1x1" , "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: SCREAMING_SNAKE_CASE_: List[str] = name.replace("conv_3x3" , "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: SCREAMING_SNAKE_CASE_: Tuple = name.replace("reduce_1x1" , "downsampling_layer.reduce_1x1" ) for i in range(2 , 5 ): if f".global_rep.{i}.weight" in name: SCREAMING_SNAKE_CASE_: Optional[Any] = name.replace(f".global_rep.{i}.weight" , ".layernorm.weight" ) if f".global_rep.{i}.bias" in name: SCREAMING_SNAKE_CASE_: List[str] = name.replace(f".global_rep.{i}.bias" , ".layernorm.bias" ) if ".global_rep." in name: SCREAMING_SNAKE_CASE_: Tuple = name.replace(".global_rep." , ".transformer." ) if ".pre_norm_mha.0." in name: SCREAMING_SNAKE_CASE_: List[Any] = name.replace(".pre_norm_mha.0." , ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: SCREAMING_SNAKE_CASE_: Optional[int] = name.replace(".pre_norm_mha.1.out_proj." , ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: SCREAMING_SNAKE_CASE_: Optional[int] = name.replace(".pre_norm_ffn.0." , ".layernorm_after." ) if ".pre_norm_ffn.1." in name: SCREAMING_SNAKE_CASE_: str = name.replace(".pre_norm_ffn.1." , ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: SCREAMING_SNAKE_CASE_: str = name.replace(".pre_norm_ffn.4." , ".output.dense." ) if ".transformer." in name: SCREAMING_SNAKE_CASE_: Optional[int] = name.replace(".transformer." , ".transformer.layer." ) if ".aspp_layer." in name: SCREAMING_SNAKE_CASE_: str = name.replace(".aspp_layer." , "." ) if ".aspp_pool." in name: SCREAMING_SNAKE_CASE_: Union[str, Any] = name.replace(".aspp_pool." , "." ) if "seg_head." in name: SCREAMING_SNAKE_CASE_: Optional[int] = name.replace("seg_head." , "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: SCREAMING_SNAKE_CASE_: Union[str, Any] = name.replace("segmentation_head.classifier.classifier." , "segmentation_head.classifier." ) if "classifier.fc." in name: SCREAMING_SNAKE_CASE_: Optional[int] = name.replace("classifier.fc." , "classifier." ) elif (not base_model) and ("segmentation_head." not in name): SCREAMING_SNAKE_CASE_: List[Any] = "mobilevit." + name return name def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): if base_model: SCREAMING_SNAKE_CASE_: Optional[Any] = "" else: SCREAMING_SNAKE_CASE_: Any = "mobilevit." for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: Optional[int] = orig_state_dict.pop(_A ) if key[:8] == "encoder.": SCREAMING_SNAKE_CASE_: Optional[int] = key[8:] if "qkv" in key: SCREAMING_SNAKE_CASE_: Tuple = key.split("." ) SCREAMING_SNAKE_CASE_: Optional[Any] = int(key_split[0][6:] ) - 1 SCREAMING_SNAKE_CASE_: int = int(key_split[3] ) SCREAMING_SNAKE_CASE_: Optional[Any] = model.get_submodule(f"{model_prefix}encoder.layer.{layer_num}" ) SCREAMING_SNAKE_CASE_: Optional[Any] = layer.transformer.layer[transformer_num].attention.attention.all_head_size SCREAMING_SNAKE_CASE_: int = ( f"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: SCREAMING_SNAKE_CASE_: Optional[Any] = val[:dim, :] SCREAMING_SNAKE_CASE_: str = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: Any = val[-dim:, :] else: SCREAMING_SNAKE_CASE_: Any = val[:dim] SCREAMING_SNAKE_CASE_: Union[str, Any] = val[dim : dim * 2] SCREAMING_SNAKE_CASE_: int = val[-dim:] else: SCREAMING_SNAKE_CASE_: Tuple = val return orig_state_dict def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE_: str = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_: List[Any] = get_mobilevit_config(_A ) # load original state_dict SCREAMING_SNAKE_CASE_: List[Any] = torch.load(_A , map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): SCREAMING_SNAKE_CASE_: Dict = MobileViTForSemanticSegmentation(_A ).eval() else: SCREAMING_SNAKE_CASE_: Any = MobileViTForImageClassification(_A ).eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = convert_state_dict(_A , _A ) model.load_state_dict(_A ) # Check outputs on an image, prepared by MobileViTImageProcessor SCREAMING_SNAKE_CASE_: Optional[int] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) SCREAMING_SNAKE_CASE_: Dict = image_processor(images=prepare_img() , return_tensors="pt" ) SCREAMING_SNAKE_CASE_: Tuple = model(**_A ) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": SCREAMING_SNAKE_CASE_: str = torch.tensor( [ [[6.2_0_6_5, 6.1_2_9_2, 6.2_0_7_0], [6.1_0_7_9, 6.1_2_5_4, 6.1_7_4_7], [6.0_0_4_2, 6.1_0_7_1, 6.1_0_3_4]], [[-6.9_2_5_3, -6.8_6_5_3, -7.0_3_9_8], [-7.3_2_1_8, -7.3_9_8_3, -7.3_6_7_0], [-7.1_9_6_1, -7.2_4_8_2, -7.1_5_6_9]], [[-4.4_7_2_3, -4.4_3_4_8, -4.3_7_6_9], [-5.3_6_2_9, -5.4_6_3_2, -5.4_5_9_8], [-5.1_5_8_7, -5.3_4_0_2, -5.5_0_5_9]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": SCREAMING_SNAKE_CASE_: Optional[Any] = torch.tensor( [ [[5.4_4_4_9, 5.5_7_3_3, 5.6_3_1_4], [5.1_8_1_5, 5.3_9_3_0, 5.5_9_6_3], [5.1_6_5_6, 5.4_3_3_3, 5.4_8_5_3]], [[-9.4_4_2_3, -9.7_7_6_6, -9.6_7_1_4], [-9.1_5_8_1, -9.5_7_2_0, -9.5_5_1_9], [-9.1_0_0_6, -9.6_4_5_8, -9.5_7_0_3]], [[-7.7_7_2_1, -7.3_7_1_6, -7.1_5_8_3], [-8.4_5_9_9, -8.0_6_2_4, -7.7_9_4_4], [-8.4_1_7_2, -7.8_3_6_6, -7.5_0_2_5]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": SCREAMING_SNAKE_CASE_: Tuple = torch.tensor( [ [[6.9_8_1_1, 6.9_7_4_3, 7.3_1_2_3], [7.1_7_7_7, 7.1_9_3_1, 7.3_9_3_8], [7.5_6_3_3, 7.8_0_5_0, 7.8_9_0_1]], [[-1_0.5_5_3_6, -1_0.2_3_3_2, -1_0.2_9_2_4], [-1_0.2_3_3_6, -9.8_6_2_4, -9.5_9_6_4], [-1_0.8_8_4_0, -1_0.8_1_5_8, -1_0.6_6_5_9]], [[-3.4_9_3_8, -3.0_6_3_1, -2.8_6_2_0], [-3.4_2_0_5, -2.8_1_3_5, -2.6_8_7_5], [-3.4_1_7_9, -2.7_9_4_5, -2.8_7_5_0]], ] ) else: raise ValueError(f"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , _A , atol=1e-4 ) else: assert logits.shape == (1, 10_00) if mobilevit_name == "mobilevit_s": SCREAMING_SNAKE_CASE_: Tuple = torch.tensor([-0.9_8_6_6, 0.2_3_9_2, -1.1_2_4_1] ) elif mobilevit_name == "mobilevit_xs": SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([-2.4_7_6_1, -0.9_3_9_9, -1.9_5_8_7] ) elif mobilevit_name == "mobilevit_xxs": SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ) else: raise ValueError(f"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , _A , atol=1e-4 ) Path(_A ).mkdir(exist_ok=_A ) print(f"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_A ) if push_to_hub: SCREAMING_SNAKE_CASE_: Dict = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub..." ) SCREAMING_SNAKE_CASE_: Any = model_mapping[mobilevit_name] image_processor.push_to_hub(_A , organization="apple" ) model.push_to_hub(_A , organization="apple" ) if __name__ == "__main__": lowerCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--mobilevit_name""", default="""mobilevit_s""", type=str, help=( """Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',""" """ 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'.""" ), ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase : List[str] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
671
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowercase__ : Union[str, Any] = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = ["DPTFeatureExtractor"] lowercase__ : Optional[Any] = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowercase__ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
376
0
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : int = np.inf def set_batch_size(_UpperCAmelCase ) -> None: nonlocal batch_size if isinstance(_UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : Tuple = min(_UpperCAmelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : Dict = min(_UpperCAmelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_UpperCAmelCase, _UpperCAmelCase ) and feature.dtype == "binary": __UpperCAmelCase : Optional[int] = min(_UpperCAmelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_UpperCAmelCase, _UpperCAmelCase ) return None if batch_size is np.inf else batch_size class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase_ : NestedDataStructureLike[PathLike] , UpperCAmelCase_ : Optional[NamedSplit] = None , UpperCAmelCase_ : Optional[Features] = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" super().__init__( UpperCAmelCase_ , split=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ , streaming=UpperCAmelCase_ , num_proc=UpperCAmelCase_ , **UpperCAmelCase_ , ) __UpperCAmelCase : Tuple = path_or_paths if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else {self.split: path_or_paths} __UpperCAmelCase : Optional[int] = _PACKAGED_DATASETS_MODULES["parquet"][1] __UpperCAmelCase : int = Parquet( cache_dir=UpperCAmelCase_ , data_files=UpperCAmelCase_ , features=UpperCAmelCase_ , hash=UpperCAmelCase_ , **UpperCAmelCase_ , ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" # Build iterable dataset if self.streaming: __UpperCAmelCase : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCAmelCase : int = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : str = None __UpperCAmelCase : Dict = None self.builder.download_and_prepare( download_config=UpperCAmelCase_ , download_mode=UpperCAmelCase_ , verification_mode=UpperCAmelCase_ , base_path=UpperCAmelCase_ , num_proc=self.num_proc , ) __UpperCAmelCase : Tuple = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase_ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dataset , UpperCAmelCase_ : Union[PathLike, BinaryIO] , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : List[str] , ): """simple docstring""" __UpperCAmelCase : Optional[int] = dataset __UpperCAmelCase : Union[str, Any] = path_or_buf __UpperCAmelCase : List[Any] = batch_size or get_writer_batch_size(dataset.features ) __UpperCAmelCase : List[Any] = parquet_writer_kwargs def lowerCamelCase_ ( self : Dict ): """simple docstring""" __UpperCAmelCase : List[str] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: __UpperCAmelCase : List[str] = self._write(file_obj=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **self.parquet_writer_kwargs ) else: __UpperCAmelCase : Any = self._write(file_obj=self.path_or_buf , batch_size=UpperCAmelCase_ , **self.parquet_writer_kwargs ) return written def lowerCamelCase_ ( self : str , UpperCAmelCase_ : BinaryIO , UpperCAmelCase_ : int , **UpperCAmelCase_ : List[str] ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Union[str, Any] = parquet_writer_kwargs.pop("path_or_buf" , UpperCAmelCase_ ) __UpperCAmelCase : Dict = self.dataset.features.arrow_schema __UpperCAmelCase : Optional[int] = pq.ParquetWriter(UpperCAmelCase_ , schema=UpperCAmelCase_ , **UpperCAmelCase_ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , UpperCAmelCase_ ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): __UpperCAmelCase : Dict = query_table( table=self.dataset._data , key=slice(UpperCAmelCase_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(UpperCAmelCase_ ) written += batch.nbytes writer.close() return written
709
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset lowerCAmelCase__ : int = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : int , UpperCAmelCase_ : int ): """simple docstring""" super().__init__() __UpperCAmelCase : Optional[Any] = torchvision.models.resnetaaa(pretrained=UpperCAmelCase_ ) __UpperCAmelCase : List[str] = list(model.children() )[:-2] __UpperCAmelCase : int = nn.Sequential(*UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase_ : int ): """simple docstring""" # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 __UpperCAmelCase : Tuple = self.pool(self.model(UpperCAmelCase_ ) ) __UpperCAmelCase : Dict = torch.flatten(UpperCAmelCase_ , start_dim=2 ) __UpperCAmelCase : int = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : List[str] = [json.loads(UpperCAmelCase_ ) for l in open(UpperCAmelCase_ )] __UpperCAmelCase : List[Any] = os.path.dirname(UpperCAmelCase_ ) __UpperCAmelCase : Any = tokenizer __UpperCAmelCase : Union[str, Any] = labels __UpperCAmelCase : Any = len(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = max_seq_length __UpperCAmelCase : Any = transforms def __len__( self : List[str] ): """simple docstring""" return len(self.data ) def __getitem__( self : Tuple , UpperCAmelCase_ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Dict = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=UpperCAmelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = sentence[0], sentence[1:-1], sentence[-1] __UpperCAmelCase : Tuple = sentence[: self.max_seq_length] __UpperCAmelCase : int = torch.zeros(self.n_classes ) __UpperCAmelCase : str = 1 __UpperCAmelCase : int = Image.open(os.path.join(self.data_dir , self.data[index]["img"] ) ).convert("RGB" ) __UpperCAmelCase : Dict = self.transforms(UpperCAmelCase_ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : str = [len(row["sentence"] ) for row in batch] __UpperCAmelCase , __UpperCAmelCase : Optional[int] = len(_UpperCAmelCase ), max(_UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = torch.zeros(_UpperCAmelCase, _UpperCAmelCase, dtype=torch.long ) __UpperCAmelCase : List[Any] = torch.zeros(_UpperCAmelCase, _UpperCAmelCase, dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_UpperCAmelCase, _UpperCAmelCase ) ): __UpperCAmelCase : str = input_row["sentence"] __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Dict = torch.stack([row["image"] for row in batch] ) __UpperCAmelCase : List[Any] = torch.stack([row["label"] for row in batch] ) __UpperCAmelCase : Tuple = torch.stack([row["image_start_token"] for row in batch] ) __UpperCAmelCase : Optional[Any] = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def __UpperCamelCase ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def __UpperCamelCase ( ): return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017], std=[0.12_221_994, 0.12_145_835, 0.14_380_469], ), ] )
329
0
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_=0.01 , lowerCamelCase_=10_00 ) -> Union[str, Any]: lowerCAmelCase__ = p_stop lowerCAmelCase__ = max_length def __iter__( self ) -> Any: lowerCAmelCase__ = 0 lowerCAmelCase__ = False while not stop and count < self.max_length: yield count count += 1 lowerCAmelCase__ = random.random() < self.p_stop class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True ) -> Optional[Any]: lowerCAmelCase__ = [ BatchSamplerShard(lowerCamelCase_ , 2 , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ ) for i in range(2 ) ] lowerCAmelCase__ = [list(lowerCamelCase_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowerCamelCase_ ) for shard in batch_sampler_shards] , [len(lowerCamelCase_ ) for e in expected] ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Check the shards when the dataset is a round multiple of total batch size. lowerCAmelCase__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCamelCase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowerCAmelCase__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowerCAmelCase__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowerCAmelCase__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ ) # Check the shards when the dataset is very small. lowerCAmelCase__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [[], []] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> str: # Check the shards when the dataset is a round multiple of batch size. lowerCAmelCase__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCamelCase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ ) # Check the shards when the dataset is not a round multiple of batch size. lowerCAmelCase__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowerCAmelCase__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ ) # Check the shards when the dataset is very small. lowerCAmelCase__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [[], []] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. lowerCAmelCase__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCamelCase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowerCAmelCase__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowerCAmelCase__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowerCAmelCase__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ ) # Check the shards when the dataset is very small. lowerCAmelCase__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [[], []] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: # Check the shards when the dataset is a round multiple of batch size. lowerCAmelCase__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCamelCase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ ) # Check the shards when the dataset is not a round multiple of batch size. lowerCAmelCase__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowerCAmelCase__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ ) # Check the shards when the dataset is very small. lowerCAmelCase__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [[], []] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] lowerCAmelCase__ = [BatchSamplerShard(lowerCamelCase_ , 2 , lowerCamelCase_ , even_batches=lowerCamelCase_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=2 , lowerCamelCase_=False ) -> str: random.seed(lowerCamelCase_ ) lowerCAmelCase__ = list(lowerCamelCase_ ) lowerCAmelCase__ = [ IterableDatasetShard( lowerCamelCase_ , batch_size=lowerCamelCase_ , drop_last=lowerCamelCase_ , num_processes=lowerCamelCase_ , process_index=lowerCamelCase_ , split_batches=lowerCamelCase_ , ) for i in range(lowerCamelCase_ ) ] lowerCAmelCase__ = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowerCamelCase_ ) iterable_dataset_lists.append(list(lowerCamelCase_ ) ) lowerCAmelCase__ = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size lowerCAmelCase__ = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) self.assertTrue(len(lowerCamelCase_ ) % shard_batch_size == 0 ) lowerCAmelCase__ = [] for idx in range(0 , len(lowerCamelCase_ ) , lowerCamelCase_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowerCamelCase_ ) < len(lowerCamelCase_ ): reference += reference self.assertListEqual(lowerCamelCase_ , reference[: len(lowerCamelCase_ )] ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = 42 lowerCAmelCase__ = RandomIterableDataset() self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ ) self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ ) self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ ) self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ ) # Edge case with a very small dataset lowerCAmelCase__ = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ ) self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ ) self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ ) self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = BatchSampler(range(16 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = SkipBatchSampler(lowerCamelCase_ , 2 ) self.assertListEqual(list(lowerCamelCase_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = DataLoader(list(range(16 ) ) , batch_size=4 ) lowerCAmelCase__ = skip_first_batches(lowerCamelCase_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(lowerCamelCase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowerCamelCase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __SCREAMING_SNAKE_CASE ( self ) -> str: Accelerator() lowerCAmelCase__ = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(lowerCamelCase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowerCamelCase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
90
'''simple docstring''' from __future__ import annotations def _snake_case ( A ) -> bool: lowerCAmelCase__ = str(A ) return len(A ) == 9 and set(A ) == set('''123456789''' ) def _snake_case ( ) -> int | None: for base_num in range(9999 , 4999 , -1 ): lowerCAmelCase__ = 100002 * base_num if is_9_pandigital(A ): return candidate for base_num in range(333 , 99 , -1 ): lowerCAmelCase__ = 1002003 * base_num if is_9_pandigital(A ): return candidate return None if __name__ == "__main__": print(f"""{solution() = }""")
90
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _a ( UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : List[str]="pt" ) -> Tuple: """simple docstring""" lowerCAmelCase__ = {"add_prefix_space": True} if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and not line.startswith(" " ) else {} lowerCAmelCase__ = padding_side return tokenizer( [line] , max_length=UpperCamelCase_ , padding="max_length" if pad_to_max_length else None , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) def _a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Dict=None , ) -> Dict: """simple docstring""" lowerCAmelCase__ = input_ids.ne(UpperCamelCase_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowercase__ ( _UpperCAmelCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="train" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="" , )-> Optional[Any]: '''simple docstring''' super().__init__() lowerCAmelCase__ = Path(__UpperCAmelCase ).joinpath(type_path + ".source" ) lowerCAmelCase__ = Path(__UpperCAmelCase ).joinpath(type_path + ".target" ) lowerCAmelCase__ = self.get_char_lens(self.src_file ) lowerCAmelCase__ = max_source_length lowerCAmelCase__ = max_target_length assert min(self.src_lens ) > 0, F"found empty line in {self.src_file}" lowerCAmelCase__ = tokenizer lowerCAmelCase__ = prefix if n_obs is not None: lowerCAmelCase__ = self.src_lens[:n_obs] lowerCAmelCase__ = src_lang lowerCAmelCase__ = tgt_lang def __len__( self )-> List[Any]: '''simple docstring''' return len(self.src_lens ) def __getitem__( self , __UpperCAmelCase )-> Dict[str, torch.Tensor]: '''simple docstring''' lowerCAmelCase__ = index + 1 # linecache starts at 1 lowerCAmelCase__ = self.prefix + linecache.getline(str(self.src_file ) , __UpperCAmelCase ).rstrip("\n" ) lowerCAmelCase__ = linecache.getline(str(self.tgt_file ) , __UpperCAmelCase ).rstrip("\n" ) assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , __UpperCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowerCAmelCase__ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer ) lowerCAmelCase__ = self.tokenizer.generator if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer lowerCAmelCase__ = encode_line(__UpperCAmelCase , __UpperCAmelCase , self.max_source_length , "right" ) lowerCAmelCase__ = encode_line(__UpperCAmelCase , __UpperCAmelCase , self.max_target_length , "right" ) lowerCAmelCase__ = source_inputs["input_ids"].squeeze() lowerCAmelCase__ = target_inputs["input_ids"].squeeze() lowerCAmelCase__ = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCAmelCase ( __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return [len(__UpperCAmelCase ) for x in Path(__UpperCAmelCase ).open().readlines()] def UpperCAmelCase ( self , __UpperCAmelCase )-> Dict[str, torch.Tensor]: '''simple docstring''' lowerCAmelCase__ = torch.stack([x["input_ids"] for x in batch] ) lowerCAmelCase__ = torch.stack([x["attention_mask"] for x in batch] ) lowerCAmelCase__ = torch.stack([x["decoder_input_ids"] for x in batch] ) lowerCAmelCase__ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer.pad_token_id ) lowerCAmelCase__ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer.pad_token_id ) lowerCAmelCase__ = trim_batch(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ = trim_batch(__UpperCAmelCase , __UpperCAmelCase , attention_mask=__UpperCAmelCase ) lowerCAmelCase__ = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch a_ = getLogger(__name__) def _a ( UpperCamelCase_ : List[List] ) -> List[str]: """simple docstring""" return list(itertools.chain.from_iterable(UpperCamelCase_ ) ) def _a ( UpperCamelCase_ : str ) -> None: """simple docstring""" lowerCAmelCase__ = get_git_info() save_json(UpperCamelCase_ , os.path.join(UpperCamelCase_ , "git_log.json" ) ) def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict=4 , **UpperCamelCase_ : Tuple ) -> int: """simple docstring""" with open(UpperCamelCase_ , "w" ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ , indent=UpperCamelCase_ , **UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[Any] ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ ) as f: return json.load(UpperCamelCase_ ) def _a ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = git.Repo(search_parent_directories=UpperCamelCase_ ) lowerCAmelCase__ = { "repo_id": str(UpperCamelCase_ ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def _a ( UpperCamelCase_ : Callable , UpperCamelCase_ : Iterable ) -> List: """simple docstring""" return list(map(UpperCamelCase_ , UpperCamelCase_ ) ) def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" with open(UpperCamelCase_ , "wb" ) as f: return pickle.dump(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Dict ) -> Tuple: """simple docstring""" def remove_articles(UpperCamelCase_ : List[str] ): return re.sub(R"\b(a|an|the)\b" , " " , UpperCamelCase_ ) def white_space_fix(UpperCamelCase_ : Dict ): return " ".join(text.split() ) def remove_punc(UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCamelCase_ : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase_ ) ) ) ) def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = normalize_answer(UpperCamelCase_ ).split() lowerCAmelCase__ = normalize_answer(UpperCamelCase_ ).split() lowerCAmelCase__ = Counter(UpperCamelCase_ ) & Counter(UpperCamelCase_ ) lowerCAmelCase__ = sum(common.values() ) if num_same == 0: return 0 lowerCAmelCase__ = 1.0 * num_same / len(UpperCamelCase_ ) lowerCAmelCase__ = 1.0 * num_same / len(UpperCamelCase_ ) lowerCAmelCase__ = (2 * precision * recall) / (precision + recall) return fa def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : int ) -> List[str]: """simple docstring""" return normalize_answer(UpperCamelCase_ ) == normalize_answer(UpperCamelCase_ ) def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] ) -> Dict: """simple docstring""" assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) lowerCAmelCase__ = 0 for hypo, pred in zip(UpperCamelCase_ , UpperCamelCase_ ): em += exact_match_score(UpperCamelCase_ , UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: em /= len(UpperCamelCase_ ) return {"em": em} def _a ( UpperCamelCase_ : List[Any] ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith("rag" ) def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowerCAmelCase__ = "dropout_rate" for p in extra_params: if getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if not hasattr(UpperCamelCase_ , UpperCamelCase_ ) and not hasattr(UpperCamelCase_ , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(UpperCamelCase_ ) ) delattr(UpperCamelCase_ , UpperCamelCase_ ) continue lowerCAmelCase__ = p if hasattr(UpperCamelCase_ , UpperCamelCase_ ) else equivalent_param[p] setattr(UpperCamelCase_ , UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) delattr(UpperCamelCase_ , UpperCamelCase_ ) return hparams, config
115
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class lowercase__ ( _UpperCAmelCase ): def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCAmelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_attention_heads" ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_encoder_blocks" ) ) class lowercase__ : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=[2, 2, 2, 2] , __UpperCAmelCase=[8, 4, 2, 1] , __UpperCAmelCase=[16, 32, 64, 128] , __UpperCAmelCase=[1, 4, 8, 16] , __UpperCAmelCase=[1, 2, 4, 8] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=None , )-> str: '''simple docstring''' lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = num_encoder_blocks lowerCAmelCase__ = sr_ratios lowerCAmelCase__ = depths lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = downsampling_rates lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_labels lowerCAmelCase__ = scope def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = SegformerModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ = model(__UpperCAmelCase ) lowerCAmelCase__ = lowerCAmelCase__ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = SegformerForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) lowerCAmelCase__ = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = 1 lowerCAmelCase__ = SegformerForSemanticSegmentation(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(__UpperCAmelCase ) lowerCAmelCase__ = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase ): a_ =( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) a_ =( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) a_ =True a_ =False a_ =False a_ =False def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = SegformerModelTester(self ) lowerCAmelCase__ = SegformerConfigTester(self , config_class=__UpperCAmelCase ) def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*__UpperCAmelCase ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*__UpperCAmelCase ) @unittest.skip("SegFormer does not use inputs_embeds" ) def UpperCAmelCase ( self )-> Dict: '''simple docstring''' pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods" ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' pass def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(__UpperCAmelCase ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = True for model_class in self.all_model_classes: lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ = outputs.attentions lowerCAmelCase__ = sum(self.model_tester.depths ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ = True lowerCAmelCase__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # verify the first attentions (first block, first layer) lowerCAmelCase__ = (self.model_tester.image_size // 4) ** 2 lowerCAmelCase__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) lowerCAmelCase__ = (self.model_tester.image_size // 32) ** 2 lowerCAmelCase__ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) lowerCAmelCase__ = len(__UpperCAmelCase ) # Check attention is always last and order is fine lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(out_len + 1 , len(__UpperCAmelCase ) ) lowerCAmelCase__ = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # verify the first attentions (first block, first layer) lowerCAmelCase__ = (self.model_tester.image_size // 4) ** 2 lowerCAmelCase__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ = outputs.hidden_states lowerCAmelCase__ = self.model_tester.num_encoder_blocks self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = True for model_class in self.all_model_classes: if model_class in get_values(__UpperCAmelCase ): continue lowerCAmelCase__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() lowerCAmelCase__ = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) lowerCAmelCase__ = model(**__UpperCAmelCase ).loss loss.backward() @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' pass @slow def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = SegformerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" lowerCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class lowercase__ ( unittest.TestCase ): @slow def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__UpperCAmelCase , align=__UpperCAmelCase , do_random_crop=__UpperCAmelCase ) lowerCAmelCase__ = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( __UpperCAmelCase ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=__UpperCAmelCase , return_tensors="pt" ) lowerCAmelCase__ = encoded_inputs.pixel_values.to(__UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ = model(__UpperCAmelCase ) lowerCAmelCase__ = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) lowerCAmelCase__ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__UpperCAmelCase , align=__UpperCAmelCase , do_random_crop=__UpperCAmelCase ) lowerCAmelCase__ = SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(__UpperCAmelCase ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=__UpperCAmelCase , return_tensors="pt" ) lowerCAmelCase__ = encoded_inputs.pixel_values.to(__UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ = model(__UpperCAmelCase ) lowerCAmelCase__ = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) lowerCAmelCase__ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-1 ) ) @slow def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__UpperCAmelCase , align=__UpperCAmelCase , do_random_crop=__UpperCAmelCase ) lowerCAmelCase__ = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( __UpperCAmelCase ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=__UpperCAmelCase , return_tensors="pt" ) lowerCAmelCase__ = encoded_inputs.pixel_values.to(__UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ = model(__UpperCAmelCase ) lowerCAmelCase__ = outputs.logits.detach().cpu() lowerCAmelCase__ = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) lowerCAmelCase__ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) lowerCAmelCase__ = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) lowerCAmelCase__ = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
115
1
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def a_ (__A ) -> Dict: """simple docstring""" __a : Union[str, Any] = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" , __A ).groups()[0] class snake_case_ ( __UpperCamelCase ): """simple docstring""" def __init__(self: str , __UpperCAmelCase: int , __UpperCAmelCase: List[Any]=None , __UpperCAmelCase: List[str]=None ) -> Any: '''simple docstring''' __a : Optional[Any] = file_names __a : Tuple = image_transform __a : List[str] = label_to_id def __len__(self: Optional[Any] ) -> List[str]: '''simple docstring''' return len(self.file_names ) def __getitem__(self: Optional[Any] , __UpperCAmelCase: List[Any] ) -> Any: '''simple docstring''' __a : List[Any] = self.file_names[idx] __a : List[str] = PIL.Image.open(__UpperCAmelCase ) __a : List[Any] = raw_image.convert("RGB" ) if self.image_transform is not None: __a : str = self.image_transform(__UpperCAmelCase ) __a : List[str] = extract_label(__UpperCAmelCase ) if self.label_to_id is not None: __a : str = self.label_to_id[label] return {"image": image, "label": label} def a_ (__A , __A ) -> Optional[Any]: """simple docstring""" # Initialize accelerator if args.with_tracking: __a : int = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: __a : List[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a : Union[str, Any] = config["lr"] __a : List[str] = int(config["num_epochs"] ) __a : Any = int(config["seed"] ) __a : Union[str, Any] = int(config["batch_size"] ) __a : Tuple = config["image_size"] if not isinstance(__A , (list, tuple) ): __a : Tuple = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": __a : List[str] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): __a : Optional[int] = int(args.checkpointing_steps ) else: raise ValueError( f'Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.' ) else: __a : List[str] = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: __a : int = os.path.split(__A )[-1].split("." )[0] accelerator.init_trackers(__A , __A ) # Grab all the image filenames __a : Tuple = [os.path.join(args.data_dir , __A ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences __a : Dict = [extract_label(__A ) for fname in file_names] __a : Optional[int] = list(set(__A ) ) id_to_label.sort() __a : Tuple = {lbl: i for i, lbl in enumerate(__A )} # Set the seed before splitting the data. np.random.seed(__A ) torch.manual_seed(__A ) torch.cuda.manual_seed_all(__A ) # Split our filenames between train and validation __a : str = np.random.permutation(len(__A ) ) __a : Any = int(0.8 * len(__A ) ) __a : Optional[int] = random_perm[:cut] __a : str = random_perm[cut:] # For training we use a simple RandomResizedCrop __a : Dict = Compose([RandomResizedCrop(__A , scale=(0.5, 1.0) ), ToTensor()] ) __a : Tuple = PetsDataset( [file_names[i] for i in train_split] , image_transform=__A , label_to_id=__A ) # For evaluation, we use a deterministic Resize __a : str = Compose([Resize(__A ), ToTensor()] ) __a : List[str] = PetsDataset([file_names[i] for i in eval_split] , image_transform=__A , label_to_id=__A ) # Instantiate dataloaders. __a : Any = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) __a : Dict = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a : Optional[int] = create_model("resnet50d" , pretrained=__A , num_classes=len(__A ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __a : str = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): __a : Tuple = False for param in model.get_classifier().parameters(): __a : int = True # We normalize the batches of images to be a bit faster. __a : Dict = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) __a : str = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer __a : Dict = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler __a : Optional[int] = OneCycleLR(optimizer=__A , max_lr=__A , epochs=__A , steps_per_epoch=len(__A ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a : List[str] = accelerator.prepare( __A , __A , __A , __A , __A ) # We need to keep track of how many total steps we have iterated over __a : Optional[int] = 0 # We also need to keep track of the starting epoch so files are named properly __a : int = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f'Resumed from checkpoint: {args.resume_from_checkpoint}' ) accelerator.load_state(args.resume_from_checkpoint ) __a : Any = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint __a : Optional[int] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) __a : Optional[Any] = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` __a : Optional[int] = os.path.splitext(__A )[0] if "epoch" in training_difference: __a : List[str] = int(training_difference.replace("epoch_" , "" ) ) + 1 __a : Dict = None else: __a : List[str] = int(training_difference.replace("step_" , "" ) ) __a : Any = resume_step // len(__A ) resume_step -= starting_epoch * len(__A ) # Now we train the model for epoch in range(__A , __A ): model.train() if args.with_tracking: __a : List[str] = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step __a : Tuple = accelerator.skip_first_batches(__A , __A ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader __a : Any = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. __a : int = {k: v.to(accelerator.device ) for k, v in batch.items()} __a : str = (batch["image"] - mean) / std __a : int = model(__A ) __a : Optional[int] = torch.nn.functional.cross_entropy(__A , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__A , __A ): __a : Union[str, Any] = f'step_{overall_step}' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: __a : Dict = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) model.eval() __a : int = 0 __a : Optional[int] = 0 for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. __a : Tuple = {k: v.to(accelerator.device ) for k, v in batch.items()} __a : str = (batch["image"] - mean) / std with torch.no_grad(): __a : List[Any] = model(__A ) __a : Optional[int] = outputs.argmax(dim=-1 ) __a , __a : List[Any] = accelerator.gather_for_metrics((predictions, batch["label"]) ) __a : int = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() __a : str = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}: {100 * eval_metric:.2f}' ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(__A ), "epoch": epoch, } , step=__A , ) if checkpointing_steps == "epoch": __a : Dict = f'epoch_{epoch}' if args.output_dir is not None: __a : List[str] = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) if args.with_tracking: accelerator.end_training() def a_ () -> List[Any]: """simple docstring""" __a : int = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=__A , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=__A , default=__A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=__A , default=__A , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=__A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__A , default=__A , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=__A , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) __a : str = parser.parse_args() __a : int = {"lr": 3e-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(__A , __A ) if __name__ == "__main__": main()
351
UpperCAmelCase__ = '''Input must be a string of 8 numbers plus letter''' UpperCAmelCase__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def a_ (__A ) -> bool: """simple docstring""" if not isinstance(__A , __A ): __a : Any = f'Expected string as input, found {type(__A ).__name__}' raise TypeError(__A ) __a : int = spanish_id.replace("-" , "" ).upper() if len(__A ) != 9: raise ValueError(__A ) try: __a : Tuple = int(spanish_id_clean[0:8] ) __a : Optional[int] = spanish_id_clean[8] except ValueError as ex: raise ValueError(__A ) from ex if letter.isdigit(): raise ValueError(__A ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
351
1
'''simple docstring''' def __lowerCAmelCase ( snake_case__ , snake_case__ ): if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) __UpperCamelCase : Union[str, Any] = str(bin(snake_case__ ) ) binary_number += "0" * shift_amount return binary_number def __lowerCAmelCase ( snake_case__ , snake_case__ ): if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) __UpperCamelCase : Any = str(bin(snake_case__ ) )[2:] if shift_amount >= len(snake_case__ ): return "0b0" __UpperCamelCase : Tuple = binary_number[: len(snake_case__ ) - shift_amount] return "0b" + shifted_binary_number def __lowerCAmelCase ( snake_case__ , snake_case__ ): if number >= 0: # Get binary representation of positive number __UpperCamelCase : int = "0" + str(bin(snake_case__ ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number __UpperCamelCase : Tuple = len(bin(snake_case__ )[3:] ) # Find 2's complement of number __UpperCamelCase : Optional[Any] = bin(abs(snake_case__ ) - (1 << binary_number_length) )[3:] __UpperCamelCase : List[str] = ( "1" + "0" * (binary_number_length - len(snake_case__ )) + binary_number ) if shift_amount >= len(snake_case__ ): return "0b" + binary_number[0] * len(snake_case__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(snake_case__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
399
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class A ( unittest.TestCase , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def a_ (self ) -> List[Any]: __UpperCamelCase : str = load_tool("text-to-speech" ) self.tool.setup() def a_ (self ) -> Optional[int]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) __UpperCamelCase : List[str] = self.tool("hey" ) __UpperCamelCase : Tuple = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) ) def a_ (self ) -> str: # SpeechT5 isn't deterministic torch.manual_seed(0 ) __UpperCamelCase : str = self.tool("hey" ) __UpperCamelCase : str = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
399
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = ['''note_seq'''] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): requires_backends(self , ["""note_seq"""] ) @classmethod def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): requires_backends(cls , ["""note_seq"""] ) @classmethod def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): requires_backends(cls , ["""note_seq"""] )
38
'''simple docstring''' import warnings from .generation import TFGenerationMixin class __snake_case( _lowerCAmelCase ): '''simple docstring''' warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , _lowerCAmelCase , )
433
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=lowercase__ ): a : Union[str, Any] =["""speech"""] def __init__( self , *snake_case_ , **snake_case_ ) -> str: requires_backends(self , ['speech'] ) class __lowerCamelCase ( metaclass=lowercase__ ): a : Optional[Any] =["""speech"""] def __init__( self , *snake_case_ , **snake_case_ ) -> int: requires_backends(self , ['speech'] )
714
"""simple docstring""" import sys from collections import defaultdict class __lowerCamelCase : def __init__( self ) -> Tuple: UpperCamelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: return self.node_position[vertex] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = pos def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCamelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCamelCase__ = 2 * start + 1 else: UpperCamelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child] UpperCamelCase__ , UpperCamelCase__ = ( heap[start], positions[start], ) UpperCamelCase__ , UpperCamelCase__ = temp, tempa UpperCamelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = position[index] while index != 0: UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCamelCase__ = heap[parent] UpperCamelCase__ = position[parent] self.set_position(position[parent] , snake_case_ ) else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , snake_case_ ) break UpperCamelCase__ = parent else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , 0 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = positions[0] UpperCamelCase__ = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = Heap() UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex UpperCamelCase__ = [] for vertex in range(len(SCREAMING_SNAKE_CASE ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE ) heap.node_position.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] UpperCamelCase__ = 1 UpperCamelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCamelCase__ = 0 UpperCamelCase__ = distance heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCamelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )] ): UpperCamelCase__ = distance heap.bottom_to_top( SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Dict= int(input("""Enter number of edges: """).strip()) A__ : Dict= defaultdict(list) for _ in range(edges_number): A__ : Dict= [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
20
0
import itertools import string from collections.abc import Generator, Iterable def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: _UpperCAmelCase = iter(_lowerCAmelCase ) while True: _UpperCAmelCase = tuple(itertools.islice(_lowerCAmelCase , _lowerCAmelCase ) ) if not chunk: return yield chunk def __lowerCamelCase ( _lowerCAmelCase ) -> Tuple: _UpperCAmelCase = "".join([c.upper() for c in dirty if c in string.ascii_letters] ) _UpperCAmelCase = "" if len(_lowerCAmelCase ) < 2: return dirty for i in range(len(_lowerCAmelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_lowerCAmelCase ) & 1: clean += "X" return clean def __lowerCamelCase ( _lowerCAmelCase ) -> List[Any]: # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) _UpperCAmelCase = "ABCDEFGHIKLMNOPQRSTUVWXYZ" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _UpperCAmelCase = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_lowerCAmelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_lowerCAmelCase ) return table def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _UpperCAmelCase = generate_table(_lowerCAmelCase ) _UpperCAmelCase = prepare_input(_lowerCAmelCase ) _UpperCAmelCase = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowerCAmelCase , 2 ): _UpperCAmelCase , _UpperCAmelCase = divmod(table.index(_lowerCAmelCase ) , 5 ) _UpperCAmelCase , _UpperCAmelCase = divmod(table.index(_lowerCAmelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Any: _UpperCAmelCase = generate_table(_lowerCAmelCase ) _UpperCAmelCase = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowerCAmelCase , 2 ): _UpperCAmelCase , _UpperCAmelCase = divmod(table.index(_lowerCAmelCase ) , 5 ) _UpperCAmelCase , _UpperCAmelCase = divmod(table.index(_lowerCAmelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
684
"""simple docstring""" import argparse from collections import defaultdict def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case, snake_case, snake_case): __snake_case = f"{file}_{class_name}_{test_name}" done_test[_id] += 1 with open(snake_case, '''r''') as f: __snake_case = f.readlines() __snake_case = f"class {class_name}(" __snake_case = f"{4 * ' '}def {test_name}(" __snake_case = f"{8 * ' '}{correct_line.split()[0]}" __snake_case = f"{16 * ' '}{correct_line.split()[0]}" __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = 0 __snake_case = 0 __snake_case = [] for line in lines: if line.startswith(snake_case): __snake_case = True elif in_class and line.startswith(snake_case): __snake_case = True elif in_class and in_func and (line.startswith(snake_case) or line.startswith(snake_case)): __snake_case = len(line.split(correct_line.split()[0])[0]) count += 1 if count == done_test[_id]: __snake_case = True if in_class and in_func and in_line: if ")" not in line: continue else: __snake_case = True if in_class and in_func and in_line and insert_line: new_lines.append(f"{spaces * ' '}{correct_line}") __snake_case = __snake_case = __snake_case = __snake_case = False else: new_lines.append(snake_case) with open(snake_case, '''w''') as f: for line in new_lines: f.write(snake_case) def SCREAMING_SNAKE_CASE ( snake_case, snake_case=None): if fail is not None: with open(snake_case, '''r''') as f: __snake_case = {l.strip() for l in f.readlines()} else: __snake_case = None with open(snake_case, '''r''') as f: __snake_case = f.readlines() __snake_case = defaultdict(snake_case) for line in correct_lines: __snake_case , __snake_case , __snake_case , __snake_case = line.split(''';''') if test_failures is None or "::".join([file, class_name, test_name]) in test_failures: overwrite_file(snake_case, snake_case, snake_case, snake_case, snake_case) if __name__ == "__main__": __lowercase : Tuple = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) __lowercase : Union[str, Any] = parser.parse_args() main(args.correct_filename, args.fail_filename)
564
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
709
from __future__ import annotations from math import gcd def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int = 2 , __UpperCAmelCase: int = 1 , __UpperCAmelCase: int = 3 , ) -> int | None: # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError('''The input value cannot be less than 2''' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(__UpperCAmelCase: int , __UpperCAmelCase: int , __UpperCAmelCase: int ) -> int: return (pow(__UpperCAmelCase , 2 ) + step) % modulus for _ in range(__UpperCAmelCase ): # These track the position within the cycle detection logic. UpperCamelCase__ : List[Any] = seed UpperCamelCase__ : List[str] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. UpperCamelCase__ : Optional[int] = rand_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : List[str] = rand_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : Optional[int] = rand_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. UpperCamelCase__ : Optional[int] = gcd(hare - tortoise , __UpperCAmelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. UpperCamelCase__ : List[str] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( 'num', type=int, help='The value to find a divisor of', ) parser.add_argument( '--attempts', type=int, default=3, help='The number of attempts before giving up', ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F'''{args.num} is probably prime''') else: UpperCAmelCase_ = args.num // divisor print(F'''{args.num} = {divisor} * {quotient}''')
369
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __lowerCamelCase = 25_60_47 __lowerCamelCase = 25_61_45 @require_sentencepiece @require_tokenizers class _lowercase ( __UpperCAmelCase , unittest.TestCase ): _lowerCamelCase = NllbTokenizer _lowerCamelCase = NllbTokenizerFast _lowerCamelCase = True _lowerCamelCase = True _lowerCamelCase = {} def lowerCAmelCase__ ( self ): super().setUp() # We have a SentencePiece fixture for testing __magic_name__ = NllbTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self ): __magic_name__ = NllbTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) __magic_name__ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __magic_name__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __magic_name__ = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __magic_name__ = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def lowerCAmelCase__ ( self ): __magic_name__ = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __magic_name__ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) __magic_name__ = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) __magic_name__ = tempfile.mkdtemp() __magic_name__ = tokenizer_r.save_pretrained(UpperCamelCase_ ) __magic_name__ = tokenizer_p.save_pretrained(UpperCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __magic_name__ = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(UpperCamelCase_ , UpperCamelCase_ ) # Checks everything loads correctly in the same way __magic_name__ = tokenizer_r.from_pretrained(UpperCamelCase_ ) __magic_name__ = tokenizer_p.from_pretrained(UpperCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_ ) ) shutil.rmtree(UpperCamelCase_ ) # Save tokenizer rust, legacy_format=True __magic_name__ = tempfile.mkdtemp() __magic_name__ = tokenizer_r.save_pretrained(UpperCamelCase_ , legacy_format=UpperCamelCase_ ) __magic_name__ = tokenizer_p.save_pretrained(UpperCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(UpperCamelCase_ , UpperCamelCase_ ) # Checks everything loads correctly in the same way __magic_name__ = tokenizer_r.from_pretrained(UpperCamelCase_ ) __magic_name__ = tokenizer_p.from_pretrained(UpperCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_ ) ) shutil.rmtree(UpperCamelCase_ ) # Save tokenizer rust, legacy_format=False __magic_name__ = tempfile.mkdtemp() __magic_name__ = tokenizer_r.save_pretrained(UpperCamelCase_ , legacy_format=UpperCamelCase_ ) __magic_name__ = tokenizer_p.save_pretrained(UpperCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __magic_name__ = tokenizer_r.from_pretrained(UpperCamelCase_ ) __magic_name__ = tokenizer_p.from_pretrained(UpperCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_ ) ) shutil.rmtree(UpperCamelCase_ ) @require_torch def lowerCAmelCase__ ( self ): if not self.test_seqaseq: return __magic_name__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Longer text that will definitely require truncation. __magic_name__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] __magic_name__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: __magic_name__ = tokenizer.prepare_seqaseq_batch( src_texts=UpperCamelCase_ , tgt_texts=UpperCamelCase_ , max_length=3 , max_target_length=10 , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __magic_name__ = tokenizer.prepare_seqaseq_batch( UpperCamelCase_ , tgt_texts=UpperCamelCase_ , max_length=3 , return_tensors='''pt''' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __magic_name__ = tokenizer.prepare_seqaseq_batch( src_texts=UpperCamelCase_ , max_length=3 , max_target_length=10 , return_tensors='''pt''' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('''decoder_input_ids''' , UpperCamelCase_ ) @unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __magic_name__ = [AddedToken('''<special>''' , lstrip=UpperCamelCase_ )] __magic_name__ = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ ) __magic_name__ = tokenizer_r.encode('''Hey this is a <special> token''' ) __magic_name__ = tokenizer_r.encode('''<special>''' , add_special_tokens=UpperCamelCase_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __magic_name__ = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) __magic_name__ = self.tokenizer_class.from_pretrained( UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ ) __magic_name__ = tokenizer_p.encode('''Hey this is a <special> token''' ) __magic_name__ = tokenizer_cr.encode('''Hey this is a <special> token''' ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): _lowerCamelCase = '''facebook/nllb-200-distilled-600M''' _lowerCamelCase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] _lowerCamelCase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] _lowerCamelCase = [ 256047, 16297, 134408, 8165, 248066, 14734, 950, 1135, 105721, 3573, 83, 27352, 108, 49486, 2, ] @classmethod def lowerCAmelCase__ ( cls ): __magic_name__ = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' ) __magic_name__ = 1 return cls def lowerCAmelCase__ ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''] , 25_6057 ) def lowerCAmelCase__ ( self ): __magic_name__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): self.assertIn(UpperCamelCase_ , self.tokenizer.all_special_ids ) # fmt: off __magic_name__ = [RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __magic_name__ = self.tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) __magic_name__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): __magic_name__ = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , UpperCamelCase_ ) __magic_name__ = 10 __magic_name__ = self.tokenizer(UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , UpperCamelCase_ ) self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_6203, 3] ) def lowerCAmelCase__ ( self ): __magic_name__ = tempfile.mkdtemp() __magic_name__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCamelCase_ ) __magic_name__ = NllbTokenizer.from_pretrained(UpperCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCamelCase_ ) @require_torch def lowerCAmelCase__ ( self ): __magic_name__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __magic_name__ = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['''ron_Latn'''] ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __magic_name__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def lowerCAmelCase__ ( self ): __magic_name__ = self.tokenizer(self.src_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=3 , return_tensors='''pt''' ) __magic_name__ = self.tokenizer( text_target=self.tgt_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=10 , return_tensors='''pt''' ) __magic_name__ = targets['''input_ids'''] __magic_name__ = shift_tokens_right( UpperCamelCase_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowerCAmelCase__ ( self ): __magic_name__ = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , { # A, test, EOS, en_XX '''input_ids''': [[25_6047, 70, 7356, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_6057, } , ) @require_torch def lowerCAmelCase__ ( self ): __magic_name__ = True __magic_name__ = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __magic_name__ = False __magic_name__ = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
490
"""simple docstring""" import math def lowercase ( __UpperCamelCase = 100 ) -> int: __magic_name__ = sum(i * i for i in range(1 , n + 1 ) ) __magic_name__ = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
490
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : str =logging.get_logger(__name__) lowerCAmelCase : Any ={ "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = 'xlm-roberta' def __init__( self : List[str] , _UpperCamelCase : Any=3_0522 , _UpperCamelCase : Optional[Any]=768 , _UpperCamelCase : Any=12 , _UpperCamelCase : Optional[int]=12 , _UpperCamelCase : Optional[Any]=3072 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : Tuple=512 , _UpperCamelCase : str=2 , _UpperCamelCase : Dict=0.0_2 , _UpperCamelCase : List[str]=1E-1_2 , _UpperCamelCase : Optional[int]=1 , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : str=2 , _UpperCamelCase : Tuple="absolute" , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Dict , ) ->List[Any]: """simple docstring""" super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase) _lowerCamelCase : Union[str, Any] = vocab_size _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Any = layer_norm_eps _lowerCamelCase : Union[str, Any] = position_embedding_type _lowerCamelCase : Tuple = use_cache _lowerCamelCase : int = classifier_dropout class __snake_case ( __lowerCAmelCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _lowerCamelCase : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCamelCase : Union[str, Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
15
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" _lowerCamelCase : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""") _lowerCamelCase : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : Optional[Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : str = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : List[str] = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""") _lowerCamelCase : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : str = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : Union[str, Any] = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : int = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
15
1
"""simple docstring""" import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'vocab_file': 'spiece.model'} UpperCamelCase__ = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } UpperCamelCase__ = { 'google/bigbird-roberta-base': 40_96, 'google/bigbird-roberta-large': 40_96, 'google/bigbird-base-trivia-itc': 40_96, } class a ( lowercase ): UpperCamelCase : Dict = VOCAB_FILES_NAMES UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : List[str] = ["""input_ids""", """attention_mask"""] UpperCamelCase : List[int] = [] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<unk>" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<pad>" , UpperCamelCase_="[SEP]" , UpperCamelCase_="[MASK]" , UpperCamelCase_="[CLS]" , UpperCamelCase_ = None , **UpperCamelCase_ , ): UpperCAmelCase__ : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token UpperCAmelCase__ : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token UpperCAmelCase__ : List[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token UpperCAmelCase__ : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token UpperCAmelCase__ : Optional[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token UpperCAmelCase__ : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token UpperCAmelCase__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) UpperCAmelCase__ : Any = vocab_file UpperCAmelCase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase_ ) @property def __snake_case ( self ): return self.sp_model.get_piece_size() def __snake_case ( self ): UpperCAmelCase__ : Optional[Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): UpperCAmelCase__ : str = self.__dict__.copy() UpperCAmelCase__ : Dict = None return state def __setstate__( self , UpperCamelCase_ ): UpperCAmelCase__ : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase__ : Any = {} UpperCAmelCase__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ ): return self.sp_model.piece_to_id(UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ ): UpperCAmelCase__ : int = self.sp_model.IdToPiece(UpperCamelCase_ ) return token def __snake_case ( self , UpperCamelCase_ ): UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : Optional[Any] = '' UpperCAmelCase__ : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase_ ) + token UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ : str = [] else: current_sub_tokens.append(UpperCamelCase_ ) UpperCAmelCase__ : Tuple = False out_string += self.sp_model.decode(UpperCamelCase_ ) return out_string.strip() def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = True , **UpperCamelCase_ , ): UpperCAmelCase__ : Any = kwargs.pop('use_source_tokenizer' , UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = self.convert_ids_to_tokens(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : Any = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCamelCase_ ) ) UpperCAmelCase__ : Dict = [] sub_texts.append(UpperCamelCase_ ) else: current_sub_text.append(UpperCamelCase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCamelCase_ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: UpperCAmelCase__ : List[str] = re.sub(R' (\[(MASK|SEP)\])' , R'\1' , ' '.join(UpperCamelCase_ ) ) else: UpperCAmelCase__ : str = ''.join(UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase__ : str = self.clean_up_tokenization(UpperCamelCase_ ) return clean_text else: return text def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase__ : Tuple = os.path.join( UpperCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , 'wb' ) as fi: UpperCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : int = [self.cls_token_id] UpperCAmelCase__ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1] def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): UpperCAmelCase__ : str = [self.sep_token_id] UpperCAmelCase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
110
"""simple docstring""" __lowerCAmelCase : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' __lowerCAmelCase : Tuple = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __lowerCAmelCase : Any = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
58
0
"""simple docstring""" import torch from torch import nn class a ( nn.Module ): def __init__( self : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[Any]=1 , __lowerCAmelCase : Tuple=False ): super().__init__() _UpperCAmelCase = n_token _UpperCAmelCase = d_embed _UpperCAmelCase = d_proj _UpperCAmelCase = cutoffs + [n_token] _UpperCAmelCase = [0] + self.cutoffs _UpperCAmelCase = div_val _UpperCAmelCase = self.cutoffs[0] _UpperCAmelCase = len(self.cutoffs ) - 1 _UpperCAmelCase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _UpperCAmelCase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) _UpperCAmelCase = nn.Parameter(torch.zeros(self.n_clusters ) ) _UpperCAmelCase = nn.ModuleList() _UpperCAmelCase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowerCAmelCase , __lowerCAmelCase ) ) ) else: self.out_projs.append(__lowerCAmelCase ) self.out_layers.append(nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): _UpperCAmelCase , _UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowerCAmelCase , __lowerCAmelCase ) ) ) self.out_layers.append(nn.Linear(__lowerCAmelCase , r_idx - l_idx ) ) _UpperCAmelCase = keep_order def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ): if proj is None: _UpperCAmelCase = nn.functional.linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _UpperCAmelCase = nn.functional.linear(__lowerCAmelCase , proj.t().contiguous() ) _UpperCAmelCase = nn.functional.linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Union[str, Any]=False ): if labels is not None: # Shift so that tokens < n predict n _UpperCAmelCase = hidden[..., :-1, :].contiguous() _UpperCAmelCase = labels[..., 1:].contiguous() _UpperCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) _UpperCAmelCase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: _UpperCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: _UpperCAmelCase = labels != -100 _UpperCAmelCase = torch.zeros_like(__lowerCAmelCase , dtype=hidden.dtype , device=hidden.device ) _UpperCAmelCase = ( -nn.functional.log_softmax(__lowerCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) else: # construct weights and biases _UpperCAmelCase , _UpperCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _UpperCAmelCase , _UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase = self.out_layers[0].weight[l_idx:r_idx] _UpperCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: _UpperCAmelCase = self.out_layers[i].weight _UpperCAmelCase = self.out_layers[i].bias if i == 0: _UpperCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _UpperCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowerCAmelCase ) biases.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[0], biases[0], self.out_projs[0] _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) if labels is None: _UpperCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: _UpperCAmelCase = torch.zeros_like(__lowerCAmelCase , dtype=hidden.dtype , device=hidden.device ) _UpperCAmelCase = 0 _UpperCAmelCase = [0] + self.cutoffs for i in range(len(__lowerCAmelCase ) - 1 ): _UpperCAmelCase , _UpperCAmelCase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _UpperCAmelCase = (labels >= l_idx) & (labels < r_idx) _UpperCAmelCase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _UpperCAmelCase = labels.index_select(0 , __lowerCAmelCase ) - l_idx _UpperCAmelCase = head_logprob.index_select(0 , __lowerCAmelCase ) _UpperCAmelCase = hidden.index_select(0 , __lowerCAmelCase ) else: _UpperCAmelCase = hidden if i == 0: if labels is not None: _UpperCAmelCase = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: _UpperCAmelCase = head_logprob[:, : self.cutoffs[0]] else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[i], biases[i], self.out_projs[i] _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) _UpperCAmelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _UpperCAmelCase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: _UpperCAmelCase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _UpperCAmelCase = logprob_i if labels is not None: if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0 , __lowerCAmelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : List[Any] ): if self.n_clusters == 0: _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) else: # construct weights and biases _UpperCAmelCase , _UpperCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _UpperCAmelCase , _UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase = self.out_layers[0].weight[l_idx:r_idx] _UpperCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: _UpperCAmelCase = self.out_layers[i].weight _UpperCAmelCase = self.out_layers[i].bias if i == 0: _UpperCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _UpperCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowerCAmelCase ) biases.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[0], biases[0], self.out_projs[0] _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) _UpperCAmelCase = [0] + self.cutoffs for i in range(len(__lowerCAmelCase ) - 1 ): _UpperCAmelCase , _UpperCAmelCase = cutoff_values[i], cutoff_values[i + 1] if i == 0: _UpperCAmelCase = head_logprob[:, : self.cutoffs[0]] else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[i], biases[i], self.out_projs[i] _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) _UpperCAmelCase = head_logprob[:, -i] + tail_logprob_i _UpperCAmelCase = logprob_i return out
275
"""simple docstring""" import unittest from knapsack import knapsack as k class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(__lowerCAmelCase ) self.assertEqual(k.knapsack(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , 0 ) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(__lowerCAmelCase ) self.assertEqual(k.knapsack(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , 0 ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(__lowerCAmelCase ) self.assertEqual(k.knapsack(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , 5 ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = 50 _UpperCAmelCase = [60, 100, 120] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(__lowerCAmelCase ) self.assertEqual(k.knapsack(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , 220 ) if __name__ == "__main__": unittest.main()
275
1
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __a ( __UpperCAmelCase : Tuple=None , __UpperCAmelCase : List[Any]=None ) -> Dict: """simple docstring""" return field(default_factory=lambda: default , metadata=__UpperCAmelCase ) @dataclass class snake_case_ : '''simple docstring''' lowerCamelCase = field( metadata={"help": "The csv file to plot."} , ) lowerCamelCase = field( default=__A , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) lowerCamelCase = field( default=__A , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) lowerCamelCase = field( default=__A , metadata={"help": "Disable logarithmic scale when plotting"} , ) lowerCamelCase = field( default=__A , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) lowerCamelCase = field( default=__A , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) lowerCamelCase = list_field( default=__A , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def __a ( __UpperCAmelCase : Union[str, Any] ) -> int: """simple docstring""" try: int(__UpperCAmelCase ) return True except ValueError: return False def __a ( __UpperCAmelCase : Any ) -> List[str]: """simple docstring""" try: float(__UpperCAmelCase ) return True except ValueError: return False class snake_case_ : '''simple docstring''' def __init__( self : int , __magic_name__ : List[str] ) -> List[Any]: lowerCamelCase_ : int = args lowerCamelCase_ : Tuple = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="" ) as csv_file: lowerCamelCase_ : Optional[Any] = csv.DictReader(__magic_name__ ) for row in reader: lowerCamelCase_ : Union[str, Any] = row["model"] self.result_dict[model_name]["bsz"].append(int(row["batch_size"] ) ) self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"] ) ) if can_convert_to_int(row["result"] ): # value is not None lowerCamelCase_ : Tuple = int(row["result"] ) elif can_convert_to_float(row["result"] ): # value is not None lowerCamelCase_ : Tuple = float(row["result"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: lowerCamelCase_ , lowerCamelCase_ : int = plt.subplots() lowerCamelCase_ : Any = "Time usage" if self.args.is_time else "Memory usage" lowerCamelCase_ : int = title_str + " for training" if self.args.is_train else title_str + " for inference" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("log" ) ax.set_yscale("log" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): lowerCamelCase_ : Any = sorted(set(self.result_dict[model_name]["bsz"] ) ) lowerCamelCase_ : List[str] = sorted(set(self.result_dict[model_name]["seq_len"] ) ) lowerCamelCase_ : Any = self.result_dict[model_name]["result"] ((lowerCamelCase_) , (lowerCamelCase_)) : List[Any] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) lowerCamelCase_ : Dict = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: lowerCamelCase_ : Any = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__magic_name__ , ) else: lowerCamelCase_ : int = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((lowerCamelCase_) , (lowerCamelCase_)) : Optional[Any] = ( ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz") ) lowerCamelCase_ : Optional[int] = np.asarray(__magic_name__ , __magic_name__ )[: len(__magic_name__ )] plt.scatter( __magic_name__ , __magic_name__ , label=F"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(__magic_name__ , __magic_name__ , "--" ) title_str += F" {label_model_name} vs." lowerCamelCase_ : Optional[int] = title_str[:-4] lowerCamelCase_ : List[str] = "Time in s" if self.args.is_time else "Memory in MB" # plot plt.title(__magic_name__ ) plt.xlabel(__magic_name__ ) plt.ylabel(__magic_name__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __a ( ) -> Any: """simple docstring""" lowerCamelCase_ : Any = HfArgumentParser(__UpperCAmelCase ) lowerCamelCase_ : Any = parser.parse_args_into_dataclasses()[0] lowerCamelCase_ : Optional[int] = Plot(args=__UpperCAmelCase ) plot.plot() if __name__ == "__main__": main()
488
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case_ : List[Any] = {"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = [ "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys snake_case_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
488
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= 'Wav2Vec2FeatureExtractor' A__= 'AutoTokenizer' def __init__( self : Any , _lowercase : Any , _lowercase : Dict ): """simple docstring""" super().__init__(_lowercase , _lowercase ) UpperCAmelCase__ = self.feature_extractor UpperCAmelCase__ = False @classmethod def _UpperCAmelCase ( cls : List[str] , _lowercase : Tuple , **_lowercase : List[Any] ): """simple docstring""" try: return super().from_pretrained(_lowercase , **_lowercase ) except OSError: warnings.warn( F"""Loading a tokenizer inside {cls.__name__} from a config that does not""" " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , _lowercase , ) UpperCAmelCase__ = WavaVecaFeatureExtractor.from_pretrained(_lowercase , **_lowercase ) UpperCAmelCase__ = WavaVecaCTCTokenizer.from_pretrained(_lowercase , **_lowercase ) return cls(feature_extractor=_lowercase , tokenizer=_lowercase ) def __call__( self : int , *_lowercase : Union[str, Any] , **_lowercase : Dict ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) UpperCAmelCase__ = kwargs.pop("raw_speech" ) else: UpperCAmelCase__ = kwargs.pop("audio" , _lowercase ) UpperCAmelCase__ = kwargs.pop("sampling_rate" , _lowercase ) UpperCAmelCase__ = kwargs.pop("text" , _lowercase ) if len(_lowercase ) > 0: UpperCAmelCase__ = args[0] UpperCAmelCase__ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: UpperCAmelCase__ = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if text is not None: UpperCAmelCase__ = self.tokenizer(_lowercase , **_lowercase ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase__ = encodings["input_ids"] return inputs def _UpperCAmelCase ( self : str , *_lowercase : str , **_lowercase : List[Any] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*_lowercase , **_lowercase ) UpperCAmelCase__ = kwargs.pop("input_features" , _lowercase ) UpperCAmelCase__ = kwargs.pop("labels" , _lowercase ) if len(_lowercase ) > 0: UpperCAmelCase__ = args[0] UpperCAmelCase__ = args[1:] if input_features is not None: UpperCAmelCase__ = self.feature_extractor.pad(_lowercase , *_lowercase , **_lowercase ) if labels is not None: UpperCAmelCase__ = self.tokenizer.pad(_lowercase , **_lowercase ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase__ = labels["input_ids"] return input_features def _UpperCAmelCase ( self : Any , *_lowercase : str , **_lowercase : str ): """simple docstring""" return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def _UpperCAmelCase ( self : Optional[int] , *_lowercase : Optional[int] , **_lowercase : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*_lowercase , **_lowercase ) @contextmanager def _UpperCAmelCase ( self : int ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) UpperCAmelCase__ = True UpperCAmelCase__ = self.tokenizer yield UpperCAmelCase__ = self.feature_extractor UpperCAmelCase__ = False
277
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments A = logging.getLogger(__name__) @dataclass class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) A__= field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to SortishSamler or not.'} ) A__= field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) A__= field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'whether to use adafactor'} ) A__= field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) A__= field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) A__= field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Dropout probability. Goes into model.config.'} ) A__= field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) A__= field( default='linear' , metadata={'help': f'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
277
1
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( _snake_case , unittest.TestCase ): UpperCAmelCase = DebertaTokenizer UpperCAmelCase = True UpperCAmelCase = DebertaTokenizerFast def __SCREAMING_SNAKE_CASE ( self : Dict ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ :List[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] UpperCAmelCase__ :int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) UpperCAmelCase__ :str = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase__ :Optional[int] = {'''unk_token''': '''[UNK]'''} UpperCAmelCase__ :str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ :Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCamelCase ) ) def __SCREAMING_SNAKE_CASE ( self : Any , **__lowerCamelCase : List[Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCamelCase : Tuple ): UpperCAmelCase__ :List[str] = '''lower newer''' UpperCAmelCase__ :str = '''lower newer''' return input_text, output_text def __SCREAMING_SNAKE_CASE ( self : List[str] ): UpperCAmelCase__ :Optional[Any] = self.get_tokenizer() UpperCAmelCase__ :List[str] = '''lower newer''' UpperCAmelCase__ :str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCAmelCase__ :int = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase__ :List[Any] = tokens + [tokenizer.unk_token] UpperCAmelCase__ :Optional[int] = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): UpperCAmelCase__ :Tuple = self.get_tokenizer() UpperCAmelCase__ :Dict = tokenizer('''Hello''' , '''World''' ) UpperCAmelCase__ :Any = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __lowerCamelCase ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): UpperCAmelCase__ :Any = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCAmelCase__ :Any = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowerCamelCase ) UpperCAmelCase__ :Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowerCamelCase ) UpperCAmelCase__ :Optional[Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) UpperCAmelCase__ :Optional[int] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) UpperCAmelCase__ :Optional[int] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) UpperCAmelCase__ :Optional[int] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __SCREAMING_SNAKE_CASE ( self : str ): UpperCAmelCase__ :str = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCAmelCase__ :List[Any] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCAmelCase__ :Tuple = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] UpperCAmelCase__ :Optional[int] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase ) UpperCAmelCase__ :List[str] = [tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) for seq in encoding['''input_ids''']] # fmt: off UpperCAmelCase__ :List[str] = { '''input_ids''': [ [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 3_5, 8_3, 2_5_1_9_1, 1_6_3, 1_8_8_5_4, 1_3, 1_2_1_5_6, 1_2, 1_6_1_0_1, 2_5_3_7_6, 1_3_8_0_7, 9, 2_2_2_0_5, 2_7_8_9_3, 1_6_3_5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 2_4_5_3_6, 8_0, 4_3_7_9_7, 4_8_7_8, 7_3_7_3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_3_3, 7_8, 6_5, 1_6, 1_0, 3_7_2_4, 1_5_3_8, 3_3_1_8_3, 1_1_3_0_3, 4_3_7_9_7, 1_9_3_8, 4, 8_7_0, 2_4_1_6_5, 2_9_1_0_5, 5, 7_3_9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 3_6_1_7_3, 8_8, 8_0, 6_5_0, 7_8_2_1, 4_5_9_4_0, 6, 5_2, 2_5_5_9, 5, 1_8_3_6, 9, 5, 7_3_9_7, 1_3_1_7_1, 3_1, 5, 1_8_3_6, 9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCAmelCase__ :Any = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __lowerCamelCase ) for expected, decoded in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(__lowerCamelCase , __lowerCamelCase )
467
'''simple docstring''' from functools import reduce __lowerCamelCase = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def a__ ( UpperCamelCase_ : str = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda UpperCamelCase_, UpperCamelCase_ : str(int(UpperCamelCase_ ) * int(UpperCamelCase_ ) ), n[i : i + 13] ) ) for i in range(len(UpperCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
467
1
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _a ( self) -> None: __snake_case = Vector([1, 2, 3]) self.assertEqual(x.component(0) , 1) self.assertEqual(x.component(2) , 3) __snake_case = Vector() def _a ( self) -> None: __snake_case = Vector([0, 0, 0, 0, 0, 1]) self.assertEqual(str(lowercase_) , '(0,0,0,0,0,1)') def _a ( self) -> None: __snake_case = Vector([1, 2, 3, 4]) self.assertEqual(len(lowercase_) , 4) def _a ( self) -> None: __snake_case = Vector([1, 2]) __snake_case = Vector([1, 2, 3, 4, 5]) __snake_case = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) __snake_case = Vector([1, -1, 1, -1, 2, -3, 4, -5]) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3) self.assertEqual(z.euclidean_length() , 0) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3) def _a ( self) -> None: __snake_case = Vector([1, 2, 3]) __snake_case = Vector([1, 1, 1]) self.assertEqual((x + y).component(0) , 2) self.assertEqual((x + y).component(1) , 3) self.assertEqual((x + y).component(2) , 4) def _a ( self) -> None: __snake_case = Vector([1, 2, 3]) __snake_case = Vector([1, 1, 1]) self.assertEqual((x - y).component(0) , 0) self.assertEqual((x - y).component(1) , 1) self.assertEqual((x - y).component(2) , 2) def _a ( self) -> None: __snake_case = Vector([1, 2, 3]) __snake_case = Vector([2, -1, 4]) # for test of dot product __snake_case = Vector([1, -2, -1]) self.assertEqual(str(x * 3.0) , '(3.0,6.0,9.0)') self.assertEqual((a * b) , 0) def _a ( self) -> None: self.assertEqual(str(zero_vector(1_0)).count('0') , 1_0) def _a ( self) -> None: self.assertEqual(str(unit_basis_vector(3 , 1)) , '(0,1,0)') def _a ( self) -> None: __snake_case = Vector([1, 2, 3]) __snake_case = Vector([1, 0, 1]) self.assertEqual(str(axpy(2 , lowercase_ , lowercase_)) , '(3,4,7)') def _a ( self) -> None: __snake_case = Vector([1, 0, 0, 0, 0, 0]) __snake_case = x.copy() self.assertEqual(str(lowercase_) , str(lowercase_)) def _a ( self) -> None: __snake_case = Vector([1, 0, 0]) x.change_component(0 , 0) x.change_component(1 , 1) self.assertEqual(str(lowercase_) , '(0,1,0)') def _a ( self) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(lowercase_)) def _a ( self) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) __snake_case = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(minors[x][y] , a.minor(lowercase_ , lowercase_)) def _a ( self) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) __snake_case = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(cofactors[x][y] , a.cofactor(lowercase_ , lowercase_)) def _a ( self) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(-5 , a.determinant()) def _a ( self) -> None: __snake_case = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3) __snake_case = Vector([1, 2, 3]) self.assertEqual('(14,32,50)' , str(a * x)) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2)) def _a ( self) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) a.change_component(0 , 2 , 5) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(lowercase_)) def _a ( self) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(7 , a.component(2 , 1) , 0.01) def _a ( self) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) __snake_case = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b)) def _a ( self) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) __snake_case = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b)) def _a ( self) -> None: self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5)) , ) if __name__ == "__main__": unittest.main()
719
from maths.prime_check import is_prime def A ( snake_case__ : int ) -> int: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if is_prime(snake_case__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
676
0
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = (DPMSolverSinglestepScheduler,) __lowerCamelCase : int = (("num_inference_steps", 25),) def _snake_case ( self , **_lowerCAmelCase ) -> Any: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase ) new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase , _lowerCAmelCase = sample, sample for t in range(_lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self ) -> int: pass def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple: if scheduler is None: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = 50 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults _lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 _lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> str: self.check_over_configs(thresholding=_lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , algorithm_type="dpmsolver++" , solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , ) def _snake_case ( self ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) _lowerCAmelCase = self.full_loop( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) assert not torch.isnan(_lowerCAmelCase ).any(), "Samples have nan numbers" def _snake_case ( self ) -> Optional[Any]: self.check_over_configs(lower_order_final=_lowerCAmelCase ) self.check_over_configs(lower_order_final=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def _snake_case ( self ) -> str: self.check_over_configs(variance_type=_lowerCAmelCase ) self.check_over_configs(variance_type="learned_range" ) def _snake_case ( self ) -> int: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowerCAmelCase , time_step=0 ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.full_loop() _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.full_loop(use_karras_sigmas=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def _snake_case ( self ) -> Any: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(thresholding=_lowerCAmelCase , dynamic_thresholding_ratio=0 ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
18
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , )-> Dict: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size if size is not None else {'height': 18, 'width': 20} UpperCamelCase = do_thumbnail UpperCamelCase = do_align_axis UpperCamelCase = do_pad UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase): lowerCAmelCase_ = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = DonutImageProcessingTester(self ) @property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_thumbnail' ) ) self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) ) self.assertTrue(hasattr(A_ , 'do_pad' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' pass @is_flaky() def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
3
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowerCAmelCase__ = [ '''openmmlab/upernet-convnext-tiny''', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowerCAmelCase__ = '''UperNetConfig''' class __snake_case ( nn.Module): def __init__( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Union[int, Tuple[int, int]] , __lowerCAmelCase : Union[int, Tuple[int, int], str] = 0 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Union[int, Tuple[int, int]] = 1 , ): """simple docstring""" super().__init__() _lowerCamelCase : Optional[Any] = nn.Convad( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , kernel_size=__lowerCAmelCase , padding=__lowerCAmelCase , bias=__lowerCAmelCase , dilation=__lowerCAmelCase , ) _lowerCamelCase : Tuple = nn.BatchNormad(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = nn.ReLU() def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : torch.Tensor ): """simple docstring""" _lowerCamelCase : List[Any] = self.conv(__lowerCAmelCase ) _lowerCamelCase : int = self.batch_norm(__lowerCAmelCase ) _lowerCamelCase : Tuple = self.activation(__lowerCAmelCase ) return output class __snake_case ( nn.Module): def __init__( self : str , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ): """simple docstring""" super().__init__() _lowerCamelCase : Optional[Any] = [ nn.AdaptiveAvgPoolad(__lowerCAmelCase ), UperNetConvModule(__lowerCAmelCase , __lowerCAmelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : torch.Tensor ): """simple docstring""" _lowerCamelCase : List[Any] = input for layer in self.layers: _lowerCamelCase : List[str] = layer(__lowerCAmelCase ) return hidden_state class __snake_case ( nn.Module): def __init__( self : Union[str, Any] , __lowerCAmelCase : Tuple[int, ...] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : bool ): """simple docstring""" super().__init__() _lowerCamelCase : int = pool_scales _lowerCamelCase : Any = align_corners _lowerCamelCase : Optional[Any] = in_channels _lowerCamelCase : Any = channels _lowerCamelCase : Dict = [] for i, pool_scale in enumerate(__lowerCAmelCase ): _lowerCamelCase : str = UperNetPyramidPoolingBlock(pool_scale=__lowerCAmelCase , in_channels=__lowerCAmelCase , channels=__lowerCAmelCase ) self.blocks.append(__lowerCAmelCase ) self.add_module(str(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : torch.Tensor ): """simple docstring""" _lowerCamelCase : Tuple = [] for ppm in self.blocks: _lowerCamelCase : List[Any] = ppm(__lowerCAmelCase ) _lowerCamelCase : List[Any] = nn.functional.interpolate( __lowerCAmelCase , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(__lowerCAmelCase ) return ppm_outs class __snake_case ( nn.Module): def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int ): """simple docstring""" super().__init__() _lowerCamelCase : Union[str, Any] = config _lowerCamelCase : int = config.pool_scales # e.g. (1, 2, 3, 6) _lowerCamelCase : Optional[Any] = in_channels _lowerCamelCase : List[str] = config.hidden_size _lowerCamelCase : List[str] = False _lowerCamelCase : Union[str, Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module _lowerCamelCase : Any = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) _lowerCamelCase : Optional[Any] = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module _lowerCamelCase : Optional[Any] = nn.ModuleList() _lowerCamelCase : Optional[int] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer _lowerCamelCase : Any = UperNetConvModule(__lowerCAmelCase , self.channels , kernel_size=1 ) _lowerCamelCase : Union[str, Any] = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__lowerCAmelCase ) self.fpn_convs.append(__lowerCAmelCase ) _lowerCamelCase : List[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" self.apply(self._init_weights ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Optional[Any] ): """simple docstring""" if isinstance(__lowerCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : List[str] = inputs[-1] _lowerCamelCase : List[str] = [x] psp_outs.extend(self.psp_modules(__lowerCAmelCase ) ) _lowerCamelCase : Optional[Any] = torch.cat(__lowerCAmelCase , dim=1 ) _lowerCamelCase : Any = self.bottleneck(__lowerCAmelCase ) return output def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : torch.Tensor ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__lowerCAmelCase ) ) # build top-down path _lowerCamelCase : List[str] = len(__lowerCAmelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): _lowerCamelCase : List[str] = laterals[i - 1].shape[2:] _lowerCamelCase : List[str] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__lowerCAmelCase , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs _lowerCamelCase : Optional[Any] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): _lowerCamelCase : List[Any] = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) _lowerCamelCase : Optional[Any] = torch.cat(__lowerCAmelCase , dim=1 ) _lowerCamelCase : Union[str, Any] = self.fpn_bottleneck(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.classifier(__lowerCAmelCase ) return output class __snake_case ( nn.Module): def __init__( self : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int = 2 , __lowerCAmelCase : int = 3 , __lowerCAmelCase : Union[int, Tuple[int, int]] = 1 ): """simple docstring""" super().__init__() _lowerCamelCase : str = config _lowerCamelCase : List[Any] = config.auxiliary_in_channels _lowerCamelCase : int = config.auxiliary_channels _lowerCamelCase : List[Any] = config.auxiliary_num_convs _lowerCamelCase : List[str] = config.auxiliary_concat_input _lowerCamelCase : Tuple = in_index _lowerCamelCase : str = (kernel_size // 2) * dilation _lowerCamelCase : List[Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__lowerCAmelCase , padding=__lowerCAmelCase , dilation=__lowerCAmelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__lowerCAmelCase , padding=__lowerCAmelCase , dilation=__lowerCAmelCase ) ) if self.num_convs == 0: _lowerCamelCase : str = nn.Identity() else: _lowerCamelCase : Tuple = nn.Sequential(*__lowerCAmelCase ) if self.concat_input: _lowerCamelCase : Tuple = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__lowerCAmelCase , padding=kernel_size // 2 ) _lowerCamelCase : Any = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" self.apply(self._init_weights ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : int ): """simple docstring""" if isinstance(__lowerCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : torch.Tensor ): """simple docstring""" _lowerCamelCase : int = encoder_hidden_states[self.in_index] _lowerCamelCase : Any = self.convs(__lowerCAmelCase ) if self.concat_input: _lowerCamelCase : List[str] = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) _lowerCamelCase : Optional[Any] = self.classifier(__lowerCAmelCase ) return output class __snake_case ( _lowercase): snake_case__ : List[Any] = UperNetConfig snake_case__ : Union[str, Any] = "pixel_values" snake_case__ : Optional[int] = True def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : Tuple ): """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any=False ): """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : str = value lowerCAmelCase__ = R''' Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowerCAmelCase__ = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , _lowercase , ) class __snake_case ( _lowercase): def __init__( self : str , __lowerCAmelCase : Optional[Any] ): """simple docstring""" super().__init__(__lowerCAmelCase ) _lowerCamelCase : str = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) _lowerCamelCase : Optional[Any] = UperNetHead(__lowerCAmelCase , in_channels=self.backbone.channels ) _lowerCamelCase : Optional[Any] = UperNetFCNHead(__lowerCAmelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : Optional[torch.Tensor] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[torch.Tensor] = None , __lowerCAmelCase : Optional[bool] = None , ): """simple docstring""" _lowerCamelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict _lowerCamelCase : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCamelCase : Union[str, Any] = output_attentions if output_attentions is not None else self.config.output_attentions _lowerCamelCase : List[Any] = self.backbone.forward_with_filtered_kwargs( __lowerCAmelCase , output_hidden_states=__lowerCAmelCase , output_attentions=__lowerCAmelCase ) _lowerCamelCase : Any = outputs.feature_maps _lowerCamelCase : Tuple = self.decode_head(__lowerCAmelCase ) _lowerCamelCase : int = nn.functional.interpolate(__lowerCAmelCase , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__lowerCAmelCase ) _lowerCamelCase : int = None if self.auxiliary_head is not None: _lowerCamelCase : Optional[Any] = self.auxiliary_head(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = nn.functional.interpolate( __lowerCAmelCase , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss _lowerCamelCase : List[str] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) _lowerCamelCase : Any = loss_fct(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Optional[int] = loss_fct(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : str = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: _lowerCamelCase : int = (logits,) + outputs[1:] else: _lowerCamelCase : Any = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__lowerCAmelCase , logits=__lowerCAmelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
712
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : Tuple = GPTaTokenizer snake_case__ : str = GPTaTokenizerFast snake_case__ : Union[str, Any] = True snake_case__ : Dict = {"add_prefix_space": True} snake_case__ : Any = False def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : List[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] _lowerCamelCase : Union[str, Any] = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _lowerCamelCase : List[Any] = {'''unk_token''': '''<unk>'''} _lowerCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Any , **__lowerCAmelCase : List[str] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , **__lowerCAmelCase : Tuple ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = '''lower newer''' _lowerCamelCase : Any = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Any = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : Any = '''lower newer''' _lowerCamelCase : Dict = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _lowerCamelCase : Optional[int] = tokenizer.tokenize(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Dict = tokens + [tokenizer.unk_token] _lowerCamelCase : List[str] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" if not self.test_rust_tokenizer: return _lowerCamelCase : Any = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_rust_tokenizer(add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : int = '''lower newer''' # Testing tokenization _lowerCamelCase : Optional[int] = tokenizer.tokenize(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = rust_tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens _lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens _lowerCamelCase : str = self.get_rust_tokenizer(add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : Dict = rust_tokenizer.encode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing the unknown token _lowerCamelCase : int = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : List[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , *__lowerCAmelCase : Optional[int] , **__lowerCAmelCase : str ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : List[Any]=1_5 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) # Simple input _lowerCamelCase : Tuple = '''This is a simple input''' _lowerCamelCase : List[Any] = ['''This is a simple input 1''', '''This is a simple input 2'''] _lowerCamelCase : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') _lowerCamelCase : Tuple = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' , ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' , ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Any = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input _lowerCamelCase : List[str] = '''This is a simple input''' _lowerCamelCase : int = ['''This is a simple input looooooooong''', '''This is a simple input'''] _lowerCamelCase : int = ('''This is a simple input''', '''This is a pair''') _lowerCamelCase : int = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] _lowerCamelCase : Tuple = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__lowerCAmelCase , padding='''max_length''' , max_length=3_0 , return_tensors='''np''' ) _lowerCamelCase : Any = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncate=__lowerCAmelCase , return_tensors='''np''' ) _lowerCamelCase : List[Any] = tokenizer(*__lowerCAmelCase , padding='''max_length''' , max_length=6_0 , return_tensors='''np''' ) _lowerCamelCase : Optional[Any] = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncate=__lowerCAmelCase , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = '''$$$''' _lowerCamelCase : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__lowerCAmelCase , add_bos_token=__lowerCAmelCase ) _lowerCamelCase : Any = '''This is a simple input''' _lowerCamelCase : Tuple = ['''This is a simple input 1''', '''This is a simple input 2'''] _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = tokenizer(__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer(__lowerCAmelCase ) self.assertEqual(out_s.input_ids[0] , __lowerCAmelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : Any = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : Any = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __lowerCAmelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : List[str] = [self.get_tokenizer(do_lower_case=__lowerCAmelCase , add_bos_token=__lowerCAmelCase )] for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _lowerCamelCase : str = '''Encode this.''' _lowerCamelCase : Optional[Any] = '''This one too please.''' _lowerCamelCase : List[str] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) encoded_sequence += tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) _lowerCamelCase : List[Any] = tokenizer.encode_plus( __lowerCAmelCase , __lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , ) _lowerCamelCase : str = encoded_sequence_dict['''input_ids'''] _lowerCamelCase : List[Any] = encoded_sequence_dict['''special_tokens_mask'''] self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) _lowerCamelCase : Any = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__lowerCAmelCase ) ] _lowerCamelCase : List[Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @require_tokenizers class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Dict = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=__lowerCAmelCase ) _lowerCamelCase : Tuple = '''A photo of a cat''' _lowerCamelCase : Tuple = tokenizer.encode( __lowerCAmelCase , ) self.assertEqual(__lowerCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('''test_opt''' ) _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained('''./test_opt''' ) _lowerCamelCase : Optional[int] = tokenizer.encode( __lowerCAmelCase , ) self.assertEqual(__lowerCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , use_slow=__lowerCAmelCase ) _lowerCamelCase : Tuple = '''A photo of a cat''' _lowerCamelCase : List[str] = tokenizer.encode( __lowerCAmelCase , ) # Same as above self.assertEqual(__lowerCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) @unittest.skip('''This test is failing because of a bug in the fast tokenizer''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = '''bos''' _lowerCamelCase : Optional[Any] = tokenizer.get_vocab()['''bos'''] _lowerCamelCase : Any = '''A photo of a cat''' _lowerCamelCase : int = tokenizer.encode( __lowerCAmelCase , ) # We changed the bos token self.assertEqual(__lowerCAmelCase , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('''./tok''' ) _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained('''./tok''' ) self.assertTrue(tokenizer.is_fast ) _lowerCamelCase : Tuple = tokenizer.encode( __lowerCAmelCase , ) self.assertEqual(__lowerCAmelCase , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
598
0
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging __snake_case = { """cola""": 2, """mnli""": 3, """mrpc""": 2, """sst-2""": 2, """sts-b""": 1, """qqp""": 2, """qnli""": 2, """rte""": 2, """wnli""": 2, } logging.set_verbosity_info() def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ = XLNetConfig.from_json_file(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = finetuning_task.lower() if finetuning_task is not None else '' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' ) SCREAMING_SNAKE_CASE__ = finetuning_task SCREAMING_SNAKE_CASE__ = GLUE_TASKS_NUM_LABELS[finetuning_task] SCREAMING_SNAKE_CASE__ = XLNetForSequenceClassification(UpperCamelCase_ ) elif "squad" in finetuning_task: SCREAMING_SNAKE_CASE__ = finetuning_task SCREAMING_SNAKE_CASE__ = XLNetForQuestionAnswering(UpperCamelCase_ ) else: SCREAMING_SNAKE_CASE__ = XLNetLMHeadModel(UpperCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) print(F'Save PyTorch model to {os.path.abspath(UpperCamelCase_ )}' ) torch.save(model.state_dict() , UpperCamelCase_ ) print(F'Save configuration file to {os.path.abspath(UpperCamelCase_ )}' ) with open(UpperCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--xlnet_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained XLNet model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--finetuning_task""", default=None, type=str, help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""", ) __snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
472
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __snake_case = logging.get_logger(__name__) __snake_case = { """openai/imagegpt-small""": """""", """openai/imagegpt-medium""": """""", """openai/imagegpt-large""": """""", } class lowercase__ ( _UpperCAmelCase ): A__ : Optional[int] ="""imagegpt""" A__ : Union[str, Any] =["""past_key_values"""] A__ : Union[str, Any] ={ """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : int , UpperCAmelCase_ : Dict=512 + 1 , UpperCAmelCase_ : Union[str, Any]=32 * 32 , UpperCAmelCase_ : List[str]=512 , UpperCAmelCase_ : Union[str, Any]=24 , UpperCAmelCase_ : List[str]=8 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Tuple="quick_gelu" , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=1e-5 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Optional[Any]=False , **UpperCAmelCase_ : List[str] , ): SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = n_positions SCREAMING_SNAKE_CASE__ = n_embd SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = n_inner SCREAMING_SNAKE_CASE__ = activation_function SCREAMING_SNAKE_CASE__ = resid_pdrop SCREAMING_SNAKE_CASE__ = embd_pdrop SCREAMING_SNAKE_CASE__ = attn_pdrop SCREAMING_SNAKE_CASE__ = layer_norm_epsilon SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = scale_attn_weights SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE__ = reorder_and_upcast_attn SCREAMING_SNAKE_CASE__ = tie_word_embeddings super().__init__(tie_word_embeddings=UpperCAmelCase_ , **UpperCAmelCase_ ) class lowercase__ ( _UpperCAmelCase ): @property def A_ ( self : List[str] ): return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ] ) def A_ ( self : Optional[int] , UpperCAmelCase_ : "FeatureExtractionMixin" , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : int = 32 , ): SCREAMING_SNAKE_CASE__ = self._generate_dummy_images(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = dict(preprocessor(images=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) ) return inputs
472
1
import copy import re class _SCREAMING_SNAKE_CASE : snake_case__ : Optional[int] = """hp""" snake_case__ : int = {} snake_case__ : str = None @classmethod def _A ( cls : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any ): UpperCamelCase :Optional[int] = prefix UpperCamelCase :Union[str, Any] = defaults cls.build_naming_info() @staticmethod def _A ( __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): if len(_UpperCamelCase ) == 0: return "" UpperCamelCase :Optional[Any] = None if any(char.isdigit() for char in word ): raise Exception(F"""Parameters should not contain numbers: '{word}' contains a number""" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(_UpperCamelCase ) + 1 ): UpperCamelCase :List[str] = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: UpperCamelCase :int = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__lowerCamelCase : Dict ): UpperCamelCase :Union[str, Any] = """""" while integer != 0: UpperCamelCase :Any = chr(ord("""A""" ) + integer % 10 ) + s integer //= 10 return s UpperCamelCase :int = 0 while True: UpperCamelCase :int = word + """#""" + int_to_alphabetic(_UpperCamelCase ) if sword in info["reverse_short_word"]: continue else: UpperCamelCase :Optional[Any] = sword break UpperCamelCase :Tuple = short_word UpperCamelCase :Union[str, Any] = word return short_word @staticmethod def _A ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] ): UpperCamelCase :Optional[Any] = param_name.split("""_""" ) UpperCamelCase :int = [TrialShortNamer.shortname_for_word(_UpperCamelCase , _UpperCamelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name UpperCamelCase :str = ["""""", """_"""] for separator in separators: UpperCamelCase :Optional[Any] = separator.join(_UpperCamelCase ) if shortname not in info["reverse_short_param"]: UpperCamelCase :Any = shortname UpperCamelCase :Optional[int] = param_name return shortname return param_name @staticmethod def _A ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ): UpperCamelCase :str = TrialShortNamer.shortname_for_key(_UpperCamelCase , _UpperCamelCase ) UpperCamelCase :int = short_name UpperCamelCase :Optional[int] = param_name @classmethod def _A ( cls : Tuple ): if cls.NAMING_INFO is not None: return UpperCamelCase :str = { """short_word""": {}, """reverse_short_word""": {}, """short_param""": {}, """reverse_short_param""": {}, } UpperCamelCase :int = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(_UpperCamelCase , _UpperCamelCase ) UpperCamelCase :List[Any] = info @classmethod def _A ( cls : Dict , __lowerCamelCase : List[str] ): cls.build_naming_info() assert cls.PREFIX is not None UpperCamelCase :List[str] = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F"""You should provide a default value for the param name {k} with value {v}""" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue UpperCamelCase :Any = cls.NAMING_INFO["""short_param"""][k] if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCamelCase :int = 1 if v else 0 UpperCamelCase :List[str] = """""" if isinstance(_UpperCamelCase , (int, float) ) else """-""" UpperCamelCase :Dict = F"""{key}{sep}{v}""" name.append(_UpperCamelCase ) return "_".join(_UpperCamelCase ) @classmethod def _A ( cls : int , __lowerCamelCase : Tuple ): UpperCamelCase :Tuple = repr[len(cls.PREFIX ) + 1 :] if repr == "": UpperCamelCase :List[Any] = [] else: UpperCamelCase :Dict = repr.split("""_""" ) UpperCamelCase :Tuple = {} for value in values: if "-" in value: UpperCamelCase :Tuple = value.split("""-""" ) else: UpperCamelCase :int = re.sub("""[0-9.]""" , """""" , _UpperCamelCase ) UpperCamelCase :Tuple = float(re.sub("""[^0-9.]""" , """""" , _UpperCamelCase ) ) UpperCamelCase :Dict = cls.NAMING_INFO["""reverse_short_param"""][p_k] UpperCamelCase :int = p_v for k in cls.DEFAULTS: if k not in parameters: UpperCamelCase :List[Any] = cls.DEFAULTS[k] return parameters
715
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : str = '''▁''' UpperCAmelCase_ : str = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } UpperCAmelCase_ : List[str] = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } UpperCAmelCase_ : Any = { '''facebook/s2t-small-librispeech-asr''': 10_24, } UpperCAmelCase_ : Tuple = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] UpperCAmelCase_ : int = {'''mustc''': MUSTC_LANGS} class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Optional[int] = VOCAB_FILES_NAMES snake_case__ : Tuple = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Union[str, Any] = MAX_MODEL_INPUT_SIZES snake_case__ : Optional[int] = ["""input_ids""", """attention_mask"""] snake_case__ : List[int] = [] def __init__( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Dict=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : int , ): UpperCamelCase :List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_upper_case=__lowerCamelCase , do_lower_case=__lowerCamelCase , tgt_lang=__lowerCamelCase , lang_codes=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) UpperCamelCase :List[str] = do_upper_case UpperCamelCase :int = do_lower_case UpperCamelCase :Dict = load_json(__lowerCamelCase ) UpperCamelCase :Optional[int] = {v: k for k, v in self.encoder.items()} UpperCamelCase :Optional[Any] = spm_file UpperCamelCase :str = load_spm(__lowerCamelCase , self.sp_model_kwargs ) if lang_codes is not None: UpperCamelCase :Dict = lang_codes UpperCamelCase :List[str] = LANGUAGES[lang_codes] UpperCamelCase :List[Any] = [F"""<lang:{lang}>""" for lang in self.langs] UpperCamelCase :int = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} UpperCamelCase :Union[str, Any] = self.lang_tokens UpperCamelCase :Tuple = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: UpperCamelCase :Optional[Any] = {} @property def _A ( self : Any ): return len(self.encoder ) @property def _A ( self : int ): return self._tgt_lang @tgt_lang.setter def _A ( self : Union[str, Any] , __lowerCamelCase : int ): UpperCamelCase :str = new_tgt_lang self.set_tgt_lang_special_tokens(__lowerCamelCase ) def _A ( self : Dict , __lowerCamelCase : str ): UpperCamelCase :int = self.lang_code_to_id[tgt_lang] UpperCamelCase :Optional[int] = [lang_code_id] def _A ( self : Union[str, Any] , __lowerCamelCase : str ): return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def _A ( self : Optional[int] , __lowerCamelCase : List[str] ): return self.encoder.get(__lowerCamelCase , self.encoder[self.unk_token] ) def _A ( self : Optional[int] , __lowerCamelCase : int ): return self.decoder.get(__lowerCamelCase , self.unk_token ) def _A ( self : Union[str, Any] , __lowerCamelCase : List[str] ): UpperCamelCase :Any = [] UpperCamelCase :Dict = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: UpperCamelCase :Dict = self.sp_model.decode(__lowerCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " UpperCamelCase :Dict = [] else: current_sub_tokens.append(__lowerCamelCase ) UpperCamelCase :Dict = self.sp_model.decode(__lowerCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _A ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int]=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _A ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) UpperCamelCase :Tuple = [1] * len(self.prefix_tokens ) UpperCamelCase :Tuple = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(__lowerCamelCase )) + ([0] * len(__lowerCamelCase )) + suffix_ones def _A ( self : Any ): UpperCamelCase :Optional[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ): UpperCamelCase :Optional[int] = self.__dict__.copy() UpperCamelCase :List[str] = None return state def __setstate__( self : int , __lowerCamelCase : Dict ): UpperCamelCase :List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase :int = {} UpperCamelCase :Optional[int] = load_spm(self.spm_file , self.sp_model_kwargs ) def _A ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): UpperCamelCase :Union[str, Any] = Path(__lowerCamelCase ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" UpperCamelCase :Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) UpperCamelCase :str = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , __lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(__lowerCamelCase , """wb""" ) as fi: UpperCamelCase :Any = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (str(__lowerCamelCase ), str(__lowerCamelCase )) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str , __magic_name__ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" UpperCamelCase :int = sentencepiece.SentencePieceProcessor(**__magic_name__ ) spm.Load(str(__magic_name__ ) ) return spm def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> Union[Dict, List]: """simple docstring""" with open(__magic_name__ , """r""" ) as f: return json.load(__magic_name__ ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : str ) -> None: """simple docstring""" with open(__magic_name__ , """w""" ) as f: json.dump(__magic_name__ , __magic_name__ , indent=2 )
590
0
import re def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> bool: '''simple docstring''' A = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(lowerCAmelCase__ , lowerCAmelCase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
106
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def UpperCamelCase_ ( snake_case_ : str , snake_case_ : List[str]=10_00 ) -> Dict: '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd __lowerCAmelCase = n - 1 __lowerCAmelCase = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) __lowerCAmelCase = 0 while count < prec: __lowerCAmelCase = random.randint(2 , n - 1 ) __lowerCAmelCase = bin_exp_mod(snake_case_ , snake_case_ , snake_case_ ) if b != 1: __lowerCAmelCase = True for _ in range(snake_case_ ): if b == n - 1: __lowerCAmelCase = False break __lowerCAmelCase = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _A : Union[str, Any] = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
427
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : torch.FloatTensor class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ): @register_to_config def __init__( self , _lowerCAmelCase = 3 , _lowerCAmelCase = 3 , _lowerCAmelCase = ("DownEncoderBlock2D",) , _lowerCAmelCase = ("UpDecoderBlock2D",) , _lowerCAmelCase = (64,) , _lowerCAmelCase = 1 , _lowerCAmelCase = "silu" , _lowerCAmelCase = 3 , _lowerCAmelCase = 32 , _lowerCAmelCase = 256 , _lowerCAmelCase = 32 , _lowerCAmelCase = None , _lowerCAmelCase = 0.18215 , _lowerCAmelCase = "group" , ) -> int: super().__init__() # pass init params to Encoder _lowerCAmelCase = Encoder( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , down_block_types=_lowerCAmelCase , block_out_channels=_lowerCAmelCase , layers_per_block=_lowerCAmelCase , act_fn=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , double_z=_lowerCAmelCase , ) _lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels _lowerCAmelCase = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) _lowerCAmelCase = VectorQuantizer(_lowerCAmelCase , _lowerCAmelCase , beta=0.25 , remap=_lowerCAmelCase , sane_index_shape=_lowerCAmelCase ) _lowerCAmelCase = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) # pass init params to Decoder _lowerCAmelCase = Decoder( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , up_block_types=_lowerCAmelCase , block_out_channels=_lowerCAmelCase , layers_per_block=_lowerCAmelCase , act_fn=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , norm_type=_lowerCAmelCase , ) @apply_forward_hook def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = True ) -> VQEncoderOutput: _lowerCAmelCase = self.encoder(_lowerCAmelCase ) _lowerCAmelCase = self.quant_conv(_lowerCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=_lowerCAmelCase ) @apply_forward_hook def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.quantize(_lowerCAmelCase ) else: _lowerCAmelCase = h _lowerCAmelCase = self.post_quant_conv(_lowerCAmelCase ) _lowerCAmelCase = self.decoder(_lowerCAmelCase , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: _lowerCAmelCase = sample _lowerCAmelCase = self.encode(_lowerCAmelCase ).latents _lowerCAmelCase = self.decode(_lowerCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase )
489
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = "T5Config" def __a(SCREAMING_SNAKE_CASE_ : jnp.array , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = jnp.zeros_like(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) _lowerCAmelCase = shifted_input_ids.at[:, 0].set(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = jnp.where(shifted_input_ids == -100 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return shifted_input_ids class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = "mt5" __lowerCamelCase : Any = MTaConfig class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = "mt5" __lowerCamelCase : Dict = MTaConfig class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Optional[Any] = "mt5" __lowerCamelCase : str = MTaConfig
489
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ : List[Any] = { "configuration_jukebox": [ "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "JukeboxConfig", "JukeboxPriorConfig", "JukeboxVQVAEConfig", ], "tokenization_jukebox": ["JukeboxTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[str] = [ "JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST", "JukeboxModel", "JukeboxPreTrainedModel", "JukeboxVQVAE", "JukeboxPrior", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys UpperCAmelCase__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
48
from manim import * class _a ( A__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase =Rectangle(height=0.25 , width=0.25 ) _UpperCAmelCase =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _UpperCAmelCase =[mem.copy() for i in range(6 )] _UpperCAmelCase =[mem.copy() for i in range(6 )] _UpperCAmelCase =VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) _UpperCAmelCase =VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) _UpperCAmelCase =VGroup(_snake_case , _snake_case ).arrange(_snake_case , buff=0 ) _UpperCAmelCase =Text("CPU" , font_size=24 ) _UpperCAmelCase =Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_snake_case ) _UpperCAmelCase =[mem.copy() for i in range(4 )] _UpperCAmelCase =VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) _UpperCAmelCase =Text("GPU" , font_size=24 ) _UpperCAmelCase =Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) gpu.move_to([-1, -1, 0] ) self.add(_snake_case ) _UpperCAmelCase =[mem.copy() for i in range(6 )] _UpperCAmelCase =VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) _UpperCAmelCase =Text("Model" , font_size=24 ) _UpperCAmelCase =Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) model.move_to([3, -1.0, 0] ) self.add(_snake_case ) _UpperCAmelCase =[] _UpperCAmelCase =[] _UpperCAmelCase =[] for i, rect in enumerate(_snake_case ): rect.set_stroke(_snake_case ) _UpperCAmelCase =Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=_snake_case , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=_snake_case , buff=0.0 ) self.add(_snake_case ) model_cpu_arr.append(_snake_case ) self.add(*_snake_case , *_snake_case , *_snake_case ) _UpperCAmelCase =[mem.copy() for i in range(6 )] _UpperCAmelCase =VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) _UpperCAmelCase =Text("Loaded Checkpoint" , font_size=24 ) _UpperCAmelCase =Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) checkpoint.move_to([3, 0.5, 0] ) self.add(_snake_case ) _UpperCAmelCase =[] _UpperCAmelCase =[] for i, rect in enumerate(_snake_case ): _UpperCAmelCase =fill.copy().set_fill(_snake_case , opacity=0.7 ) target.move_to(_snake_case ) ckpt_arr.append(_snake_case ) _UpperCAmelCase =target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(_snake_case ) self.add(*_snake_case , *_snake_case ) _UpperCAmelCase =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase =MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_snake_case , _snake_case ) _UpperCAmelCase =MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(_snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_snake_case ) _UpperCAmelCase =MarkupText( F"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=24 , ) step_a.move_to([2, 2, 0] ) _UpperCAmelCase =[meta_mem.copy() for i in range(6 )] _UpperCAmelCase =[meta_mem.copy() for i in range(6 )] _UpperCAmelCase =VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) _UpperCAmelCase =VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) _UpperCAmelCase =VGroup(_snake_case , _snake_case ).arrange(_snake_case , buff=0 ) _UpperCAmelCase =Text("Disk" , font_size=24 ) _UpperCAmelCase =Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(_snake_case , run_time=3 ) , Write(_snake_case , run_time=1 ) , Create(_snake_case , run_time=1 ) ) _UpperCAmelCase =[] for i, rect in enumerate(_snake_case ): _UpperCAmelCase =rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(_snake_case , run_time=1.5 ) ) self.play(*_snake_case ) self.play(FadeOut(_snake_case ) ) _UpperCAmelCase =MarkupText(F"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_snake_case , run_time=3 ) ) self.play( FadeOut(_snake_case , _snake_case , *_snake_case , *_snake_case ) , ) self.wait()
408
0
import argparse import datetime def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : Any = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } _lowerCAmelCase : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCAmelCase__ ) < 11: raise ValueError("Must be 10 characters long" ) # Get month _lowerCAmelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12" ) _lowerCAmelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day _lowerCAmelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31" ) # Get second separator _lowerCAmelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year _lowerCAmelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 85_00: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation _lowerCAmelCase : str = datetime.date(int(lowerCAmelCase__ ) , int(lowerCAmelCase__ ) , int(lowerCAmelCase__ ) ) # Start math if m <= 2: _lowerCAmelCase : Any = y - 1 _lowerCAmelCase : str = m + 12 # maths var _lowerCAmelCase : int = int(str(lowerCAmelCase__ )[:2] ) _lowerCAmelCase : int = int(str(lowerCAmelCase__ )[2:] ) _lowerCAmelCase : int = int(2.6 * m - 5.39 ) _lowerCAmelCase : int = int(c / 4 ) _lowerCAmelCase : int = int(k / 4 ) _lowerCAmelCase : int = int(d + k ) _lowerCAmelCase : int = int(t + u + v + x ) _lowerCAmelCase : int = int(z - (2 * c) ) _lowerCAmelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response _lowerCAmelCase : str = f"""Your date {date_input}, is a {days[str(lowerCAmelCase__ )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() snake_case = argparse.ArgumentParser( description=( "Find out what day of the week nearly any date is or was. Enter " "date as a string in the mm-dd-yyyy or mm/dd/yyyy format" ) ) parser.add_argument( "date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)" ) snake_case = parser.parse_args() zeller(args.date_input)
587
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = "▁" snake_case = {"vocab_file": "sentencepiece.bpe.model"} snake_case = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } snake_case = { "facebook/mbart-large-50-one-to-many-mmt": 1024, } # fmt: off snake_case = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class __A ( snake_case__ ): '''simple docstring''' a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = ['''input_ids''', '''attention_mask'''] a_ = [] a_ = [] def __init__( self , _snake_case , _snake_case=None , _snake_case=None , _snake_case="</s>" , _snake_case="</s>" , _snake_case="<s>" , _snake_case="<unk>" , _snake_case="<pad>" , _snake_case="<mask>" , _snake_case = None , **_snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Dict = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token _lowerCAmelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase : int = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_snake_case , tgt_lang=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) _lowerCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) _lowerCAmelCase : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase : Tuple = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = len(self.sp_model ) _lowerCAmelCase : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_snake_case ) } _lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.lang_code_to_id.items()} _lowerCAmelCase : List[str] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _lowerCAmelCase : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowerCAmelCase : List[Any] = src_lang if src_lang is not None else "en_XX" _lowerCAmelCase : Optional[Any] = self.lang_code_to_id[self._src_lang] _lowerCAmelCase : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE__ ( self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def SCREAMING_SNAKE_CASE__ ( self ): return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): _lowerCAmelCase : Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : Dict = None return state def __setstate__( self , _snake_case ): _lowerCAmelCase : Tuple = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowerCAmelCase : Tuple = {} _lowerCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): return self.sp_model.encode(_snake_case , out_type=_snake_case ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase : Optional[Any] = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): _lowerCAmelCase : str = [] _lowerCAmelCase : Optional[Any] = "" _lowerCAmelCase : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_snake_case ) + token _lowerCAmelCase : int = True _lowerCAmelCase : int = [] else: current_sub_tokens.append(_snake_case ) _lowerCAmelCase : Any = False out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case = None ): if not os.path.isdir(_snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : Union[str, Any] = os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , "wb" ) as fi: _lowerCAmelCase : int = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case = None , _snake_case = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) _lowerCAmelCase : Any = [1] * len(self.prefix_tokens ) _lowerCAmelCase : Union[str, Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_snake_case )) + suffix_ones return prefix_ones + ([0] * len(_snake_case )) + ([0] * len(_snake_case )) + suffix_ones def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) _lowerCAmelCase : Dict = src_lang _lowerCAmelCase : Optional[Any] = self(_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , **_snake_case ) _lowerCAmelCase : Optional[int] = self.convert_tokens_to_ids(_snake_case ) _lowerCAmelCase : Optional[Any] = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case = "en_XX" , _snake_case = None , _snake_case = "ro_RO" , **_snake_case , ): _lowerCAmelCase : Union[str, Any] = src_lang _lowerCAmelCase : List[str] = tgt_lang return super().prepare_seqaseq_batch(_snake_case , _snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE__ ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): _lowerCAmelCase : List[str] = self.lang_code_to_id[src_lang] _lowerCAmelCase : List[str] = [self.cur_lang_code_id] _lowerCAmelCase : Optional[int] = [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): _lowerCAmelCase : int = self.lang_code_to_id[tgt_lang] _lowerCAmelCase : List[str] = [self.cur_lang_code_id] _lowerCAmelCase : int = [self.eos_token_id]
587
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class UpperCamelCase ( snake_case_ ): UpperCamelCase : Dict = '''nllb-moe''' UpperCamelCase : int = ['''past_key_values'''] UpperCamelCase : Optional[int] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , UpperCAmelCase__ : List[Any]=128112 , UpperCAmelCase__ : Optional[Any]=1024 , UpperCAmelCase__ : Any=12 , UpperCAmelCase__ : int=4096 , UpperCAmelCase__ : Any=16 , UpperCAmelCase__ : List[Any]=12 , UpperCAmelCase__ : int=4096 , UpperCAmelCase__ : Dict=16 , UpperCAmelCase__ : Any=0.0_5 , UpperCAmelCase__ : Optional[Any]=0.0_5 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Any="relu" , UpperCAmelCase__ : Optional[int]=1024 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Dict=0.0_2 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Any="float32" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : str=128 , UpperCAmelCase__ : Union[str, Any]=64 , UpperCAmelCase__ : int=4 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : Optional[Any]=0.0_0_1 , UpperCAmelCase__ : Union[str, Any]=0.0_0_1 , UpperCAmelCase__ : Tuple="all" , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : int=False , UpperCAmelCase__ : Any=1.0 , UpperCAmelCase__ : int=0.2 , UpperCAmelCase__ : Optional[Any]=1 , UpperCAmelCase__ : Dict=0 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : Any=False , **UpperCAmelCase__ : int , ) -> Any: _a : str = vocab_size _a : Dict = max_position_embeddings _a : Optional[Any] = d_model _a : Tuple = encoder_ffn_dim _a : int = encoder_layers _a : Optional[int] = encoder_attention_heads _a : Optional[Any] = decoder_ffn_dim _a : Tuple = decoder_layers _a : int = decoder_attention_heads _a : Tuple = dropout _a : List[str] = attention_dropout _a : Any = activation_dropout _a : Optional[int] = activation_function _a : Tuple = init_std _a : Optional[int] = encoder_layerdrop _a : List[str] = decoder_layerdrop _a : List[Any] = use_cache _a : List[Any] = encoder_layers _a : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _a : Tuple = router_z_loss_coef _a : int = router_aux_loss_coef _a : Union[str, Any] = decoder_sparse_step _a : Dict = encoder_sparse_step _a : List[Any] = num_experts _a : Union[str, Any] = expert_capacity _a : Dict = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) _a : Tuple = router_dtype _a : Tuple = router_ignore_padding_tokens _a : Optional[int] = batch_prioritized_routing _a : Dict = second_expert_policy _a : List[str] = normalize_router_prob_before_dropping _a : List[Any] = moe_eval_capacity_token_fraction _a : int = moe_token_dropout _a : List[str] = output_router_logits super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , is_encoder_decoder=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
389
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCamelCase ( snake_case_ ): UpperCamelCase : Union[str, Any] = '''wav2vec2''' def __init__( self : Tuple , UpperCAmelCase__ : str=32 , UpperCAmelCase__ : int=768 , UpperCAmelCase__ : Optional[Any]=12 , UpperCAmelCase__ : Union[str, Any]=12 , UpperCAmelCase__ : Optional[int]=3072 , UpperCAmelCase__ : List[Any]="gelu" , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Optional[Any]=0.0 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Dict=0.0_2 , UpperCAmelCase__ : List[Any]=1E-5 , UpperCAmelCase__ : Tuple="group" , UpperCAmelCase__ : Optional[Any]="gelu" , UpperCAmelCase__ : List[str]=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase__ : Dict=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase__ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : Tuple=128 , UpperCAmelCase__ : int=16 , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Optional[Any]=0.0_5 , UpperCAmelCase__ : List[Any]=10 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : Optional[int]=0.0 , UpperCAmelCase__ : Optional[int]=10 , UpperCAmelCase__ : List[str]=0 , UpperCAmelCase__ : List[str]=320 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : str=100 , UpperCAmelCase__ : Any=256 , UpperCAmelCase__ : Dict=256 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Optional[int]="sum" , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Union[str, Any]=256 , UpperCAmelCase__ : Dict=(512, 512, 512, 512, 1500) , UpperCAmelCase__ : Optional[Any]=(5, 3, 3, 1, 1) , UpperCAmelCase__ : Optional[Any]=(1, 2, 3, 1, 1) , UpperCAmelCase__ : int=512 , UpperCAmelCase__ : List[Any]=0 , UpperCAmelCase__ : str=1 , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : int , ) -> List[Any]: super().__init__(**UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) _a : int = hidden_size _a : Union[str, Any] = feat_extract_norm _a : Any = feat_extract_activation _a : int = list(UpperCAmelCase__ ) _a : List[str] = list(UpperCAmelCase__ ) _a : Optional[Any] = list(UpperCAmelCase__ ) _a : str = conv_bias _a : Dict = num_conv_pos_embeddings _a : List[Any] = num_conv_pos_embedding_groups _a : List[str] = len(self.conv_dim ) _a : Tuple = num_hidden_layers _a : List[str] = intermediate_size _a : Any = hidden_act _a : Union[str, Any] = num_attention_heads _a : List[str] = hidden_dropout _a : Optional[Any] = attention_dropout _a : Dict = activation_dropout _a : Optional[int] = feat_proj_dropout _a : Optional[int] = final_dropout _a : int = layerdrop _a : Union[str, Any] = layer_norm_eps _a : Optional[int] = initializer_range _a : int = vocab_size _a : Any = do_stable_layer_norm _a : int = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a : Optional[Any] = apply_spec_augment _a : List[str] = mask_time_prob _a : str = mask_time_length _a : Optional[Any] = mask_time_min_masks _a : Union[str, Any] = mask_feature_prob _a : Tuple = mask_feature_length _a : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a : List[str] = num_codevectors_per_group _a : Any = num_codevector_groups _a : List[str] = contrastive_logits_temperature _a : Dict = feat_quantizer_dropout _a : Dict = num_negatives _a : Optional[Any] = codevector_dim _a : Tuple = proj_codevector_dim _a : str = diversity_loss_weight # ctc loss _a : Optional[int] = ctc_loss_reduction _a : Union[str, Any] = ctc_zero_infinity # adapter _a : Union[str, Any] = add_adapter _a : List[str] = adapter_kernel_size _a : Dict = adapter_stride _a : Dict = num_adapter_layers _a : Any = output_hidden_size or hidden_size _a : Union[str, Any] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a : Tuple = list(UpperCAmelCase__ ) _a : Any = list(UpperCAmelCase__ ) _a : Optional[Any] = list(UpperCAmelCase__ ) _a : int = xvector_output_dim @property def _lowercase ( self : List[Any] ) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1 )
389
1
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : int = IFPipeline __snake_case : Tuple = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} __snake_case : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS __snake_case : Any = PipelineTesterMixin.required_optional_params - {"latents"} def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: '''simple docstring''' return self._get_dummy_components() def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any]=0 ) -> Any: '''simple docstring''' if str(lowerCamelCase__ ).startswith("""mps""" ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCamelCase__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" ,reason="""float16 requires CUDA""" ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> int: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[str]: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> str: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 ,) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" ,variant="""fp16""" ,torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" ,variant="""fp16""" ,torch_dtype=torch.floataa ,text_encoder=lowerCamelCase__ ,tokenizer=lowerCamelCase__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = pipe_a.encode_prompt("""anime turtle""" ,device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img SCREAMING_SNAKE_CASE = IFImgaImgPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting SCREAMING_SNAKE_CASE = IFInpaintingPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : int ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : List[Any] ) -> int: '''simple docstring''' _start_torch_memory_measurement() SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe_a( prompt_embeds=lowerCamelCase__ ,negative_prompt_embeds=lowerCamelCase__ ,num_inference_steps=2 ,generator=lowerCamelCase__ ,output_type="""np""" ,) SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(lowerCamelCase__ ,lowerCamelCase__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) ,rng=random.Random(0 ) ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = pipe_a( prompt_embeds=lowerCamelCase__ ,negative_prompt_embeds=lowerCamelCase__ ,image=lowerCamelCase__ ,generator=lowerCamelCase__ ,num_inference_steps=2 ,output_type="""np""" ,) SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Any ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[int] ) -> Optional[int]: '''simple docstring''' _start_torch_memory_measurement() SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) ,rng=random.Random(0 ) ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe_a( prompt_embeds=lowerCamelCase__ ,negative_prompt_embeds=lowerCamelCase__ ,image=lowerCamelCase__ ,num_inference_steps=2 ,generator=lowerCamelCase__ ,output_type="""np""" ,) SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(lowerCamelCase__ ,lowerCamelCase__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 256, 256) ,rng=random.Random(0 ) ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) ,rng=random.Random(0 ) ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = pipe_a( prompt_embeds=lowerCamelCase__ ,negative_prompt_embeds=lowerCamelCase__ ,image=lowerCamelCase__ ,original_image=lowerCamelCase__ ,generator=lowerCamelCase__ ,num_inference_steps=2 ,output_type="""np""" ,) SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Any ) -> List[str]: '''simple docstring''' _start_torch_memory_measurement() SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) ,rng=random.Random(0 ) ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) ,rng=random.Random(1 ) ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe_a( prompt_embeds=lowerCamelCase__ ,negative_prompt_embeds=lowerCamelCase__ ,image=lowerCamelCase__ ,mask_image=lowerCamelCase__ ,num_inference_steps=2 ,generator=lowerCamelCase__ ,output_type="""np""" ,) SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(lowerCamelCase__ ,lowerCamelCase__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) ,rng=random.Random(0 ) ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 256, 256) ,rng=random.Random(0 ) ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 256, 256) ,rng=random.Random(1 ) ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = pipe_a( prompt_embeds=lowerCamelCase__ ,negative_prompt_embeds=lowerCamelCase__ ,image=lowerCamelCase__ ,mask_image=lowerCamelCase__ ,original_image=lowerCamelCase__ ,generator=lowerCamelCase__ ,num_inference_steps=2 ,output_type="""np""" ,) SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(lowerCamelCase__ ,lowerCamelCase__ ) def __lowercase ( ) -> Tuple: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
116
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : int ,*lowerCamelCase__ : int ,**lowerCamelCase__ : List[Any] ) -> None: '''simple docstring''' warnings.warn( """The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use DeformableDetrImageProcessor instead.""" ,lowerCamelCase__ ,) super().__init__(*lowerCamelCase__ ,**lowerCamelCase__ )
116
1
"""simple docstring""" UpperCAmelCase_ : str = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} UpperCAmelCase_ : Any = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _A (__a , __a , __a ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__a , __a , __a ) order.append(__a ) return order def _A (__a , __a , __a ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = True SCREAMING_SNAKE_CASE_ : Tuple = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__a , __a , __a ) return component def _A (__a ) -> list[list[int]]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = len(__a ) * [False] SCREAMING_SNAKE_CASE_ : dict[int, list[int]] = {vert: [] for vert in range(len(__a ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__a ) SCREAMING_SNAKE_CASE_ : Tuple = [] for i, was_visited in enumerate(__a ): if not was_visited: order += topology_sort(__a , __a , __a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : List[Any] = len(__a ) * [False] for i in range(len(__a ) ): SCREAMING_SNAKE_CASE_ : Any = order[len(__a ) - i - 1] if not visited[vert]: SCREAMING_SNAKE_CASE_ : int = find_components(__a , __a , __a ) components_list.append(__a ) return components_list
512
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCAmelCase_ : int = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Dict , *lowercase_ : List[str] , **lowercase_ : Optional[int]): '''simple docstring''' warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_)
512
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Any = logging.get_logger(__name__) A : Union[str, Any] = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class UpperCamelCase( _a ): snake_case_ : Any = """visual_bert""" def __init__( self : str , SCREAMING_SNAKE_CASE : Dict=3_0_5_2_2 , SCREAMING_SNAKE_CASE : int=7_6_8 , SCREAMING_SNAKE_CASE : Dict=5_1_2 , SCREAMING_SNAKE_CASE : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE : List[str]=1_2 , SCREAMING_SNAKE_CASE : Optional[int]=3_0_7_2 , SCREAMING_SNAKE_CASE : List[str]="gelu" , SCREAMING_SNAKE_CASE : List[str]=0.1 , SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE : int=5_1_2 , SCREAMING_SNAKE_CASE : Optional[Any]=2 , SCREAMING_SNAKE_CASE : Optional[int]=0.02 , SCREAMING_SNAKE_CASE : Union[str, Any]=1e-1_2 , SCREAMING_SNAKE_CASE : str=False , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : Dict=1 , SCREAMING_SNAKE_CASE : List[str]=0 , SCREAMING_SNAKE_CASE : Tuple=2 , **SCREAMING_SNAKE_CASE : Optional[int] , ) -> str: '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) __snake_case = vocab_size __snake_case = max_position_embeddings __snake_case = hidden_size __snake_case = visual_embedding_dim __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = type_vocab_size __snake_case = layer_norm_eps __snake_case = bypass_transformer __snake_case = special_visual_initialize
703
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase: def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any]=1_3 , SCREAMING_SNAKE_CASE : Optional[Any]=6_4 , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , SCREAMING_SNAKE_CASE : Union[str, Any]=3 , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Any=3_2 , SCREAMING_SNAKE_CASE : Any=5 , SCREAMING_SNAKE_CASE : List[Any]=4 , SCREAMING_SNAKE_CASE : Optional[int]=3_7 , SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE : Dict=0.1 , SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE : Optional[int]=1_0 , SCREAMING_SNAKE_CASE : int=0.02 , SCREAMING_SNAKE_CASE : Dict=[1, 1_6, 4, 4] , SCREAMING_SNAKE_CASE : List[str]=None , ) -> int: '''simple docstring''' __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = scope __snake_case = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __snake_case = (self.image_size // 3_2) ** 2 __snake_case = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int: '''simple docstring''' __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [4, 8, 1_6, 3_2], "num_groups": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str ) -> int: '''simple docstring''' __snake_case = ViTHybridModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() __snake_case = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: '''simple docstring''' __snake_case = self.type_sequence_label_size __snake_case = ViTHybridForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() __snake_case = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> str: '''simple docstring''' __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase( _a , _a , unittest.TestCase ): snake_case_ : Union[str, Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () snake_case_ : str = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) snake_case_ : Tuple = False snake_case_ : Optional[Any] = False snake_case_ : Dict = False def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> int: '''simple docstring''' __snake_case = ViTHybridModelTester(self ) __snake_case = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int: '''simple docstring''' __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[Any]: '''simple docstring''' __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(SCREAMING_SNAKE_CASE ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Dict: '''simple docstring''' __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]: '''simple docstring''' __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]: '''simple docstring''' __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __snake_case = model_class(config=SCREAMING_SNAKE_CASE ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ) -> Tuple: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = ViTHybridModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( ) -> List[str]: '''simple docstring''' __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCamelCase( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ) -> str: '''simple docstring''' __snake_case = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( SCREAMING_SNAKE_CASE ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __snake_case = model(**SCREAMING_SNAKE_CASE ) # verify the logits __snake_case = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) __snake_case = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow @require_accelerate def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' __snake_case = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384" ) __snake_case = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384" , device_map="auto" ) __snake_case = prepare_img() __snake_case = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ) __snake_case = model(**SCREAMING_SNAKE_CASE ) __snake_case = outputs.logits # model predicts one of the 1000 ImageNet classes __snake_case = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , "tabby, tabby cat" )
473
0
from math import factorial def A__ ( snake_case_ : int , snake_case_ : int ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(snake_case_ ) // (factorial(snake_case_ ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', f'''fifty-two card deck is: {combinations(5_2, 5)}\n''', ) print( 'If a class of 40 students must be arranged into groups of', f'''4 for group projects, there are {combinations(4_0, 4)} ways''', 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', f'''are {combinations(1_0, 3)} ways that first, second and''', 'third place can be awarded.', )
64
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict=None , _UpperCamelCase : Dict=None , _UpperCamelCase : int=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , ) -> Tuple: '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: SCREAMING_SNAKE_CASE = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=_UpperCamelCase ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_UpperCamelCase ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_UpperCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class UpperCamelCase : def __init__( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any=1_3 , snake_case__ : List[str]=7 , snake_case__ : Optional[int]=True , snake_case__ : Tuple=False , snake_case__ : Optional[int]=9_9 , snake_case__ : List[str]=1_6 , snake_case__ : int=2 , snake_case__ : Optional[int]=4 , snake_case__ : str=4 , snake_case__ : Dict="relu" , snake_case__ : Tuple=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Any=0.0 , snake_case__ : Dict=0.0 , snake_case__ : Optional[Any]=2_0 , snake_case__ : int=2 , snake_case__ : Optional[Any]=1 , snake_case__ : Any=0 , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = encoder_layerdrop SCREAMING_SNAKE_CASE = decoder_layerdrop SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = pad_token_id SCREAMING_SNAKE_CASE = bos_token_id def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = self.eos_token_id # Eos Token SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input SCREAMING_SNAKE_CASE = input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE = decoder_input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE = self.get_config() SCREAMING_SNAKE_CASE = prepare_mam_aaa_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def UpperCamelCase ( self : int ): """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase ( self : Tuple , snake_case__ : List[str] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = MaMaaaModel(config=snake_case__ ).get_decoder().to(snake_case__ ).eval() SCREAMING_SNAKE_CASE = inputs_dict['input_ids'] SCREAMING_SNAKE_CASE = inputs_dict['attention_mask'] SCREAMING_SNAKE_CASE = inputs_dict['head_mask'] # first forward pass SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ )['last_hidden_state'] SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[ 'last_hidden_state' ] # select random slice SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-2 ) ) def UpperCamelCase ( self : List[str] , snake_case__ : Any , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = MaMaaaModel(config=snake_case__ ).to(snake_case__ ).eval() SCREAMING_SNAKE_CASE = model(**snake_case__ ) SCREAMING_SNAKE_CASE = outputs.encoder_last_hidden_state SCREAMING_SNAKE_CASE = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = model.get_encoder() encoder.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = MaMaaaEncoder.from_pretrained(snake_case__ ).to(snake_case__ ) SCREAMING_SNAKE_CASE = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = model.get_decoder() decoder.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = MaMaaaDecoder.from_pretrained(snake_case__ ).to(snake_case__ ) SCREAMING_SNAKE_CASE = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=snake_case__ , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) __UpperCamelCase =(MaMaaaForConditionalGeneration,) if is_torch_available() else () __UpperCamelCase =( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : Optional[Any] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] ): """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = MaMaaaModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model_class.from_pretrained(snake_case__ , output_loading_info=snake_case__ ) self.assertEqual(info['missing_keys'] , [] ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case__ ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): SCREAMING_SNAKE_CASE = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE = copy.deepcopy(self._prepare_for_class(snake_case__ , snake_case__ ) ) if not self.is_encoder_decoder: SCREAMING_SNAKE_CASE = inputs['input_ids'] del inputs["input_ids"] else: SCREAMING_SNAKE_CASE = inputs['input_ids'] SCREAMING_SNAKE_CASE = inputs.get('decoder_input_ids' , snake_case__ ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , snake_case__ ) SCREAMING_SNAKE_CASE = model.get_input_embeddings() if not self.is_encoder_decoder: SCREAMING_SNAKE_CASE = wte(snake_case__ ) else: SCREAMING_SNAKE_CASE = wte(snake_case__ ) SCREAMING_SNAKE_CASE = wte(snake_case__ ) with torch.no_grad(): model(**snake_case__ )[0] def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = input_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(snake_case__ ).eval().to(snake_case__ ) if torch_device == "cuda": model.half() model.generate(snake_case__ , attention_mask=snake_case__ ) model.generate(num_beams=4 , do_sample=snake_case__ , early_stopping=snake_case__ , num_return_sequences=3 ) def __lowerCAmelCase ( _UpperCamelCase : Tuple ) -> Dict: '''simple docstring''' return torch.tensor(_UpperCamelCase , dtype=torch.long , device=_UpperCamelCase ) a_ : Optional[int] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class UpperCamelCase ( unittest.TestCase ): @cached_property def UpperCamelCase ( self : Any ): """simple docstring""" return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(snake_case__ ) SCREAMING_SNAKE_CASE = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) SCREAMING_SNAKE_CASE = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) SCREAMING_SNAKE_CASE = prepare_mam_aaa_inputs_dict(model.config , snake_case__ , snake_case__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**snake_case__ )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , snake_case__ ) # change to expected output here SCREAMING_SNAKE_CASE = torch.tensor( [[-0.7_780, -0.1_676, 0.1_038], [-6.7_556, -1.3_992, 0.0_567], [-7.5_383, -0.5_920, -0.2_779]] , device=snake_case__ ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=snake_case__ ) ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(snake_case__ ) # change to intended input SCREAMING_SNAKE_CASE = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) SCREAMING_SNAKE_CASE = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) SCREAMING_SNAKE_CASE = prepare_mam_aaa_inputs_dict(model.config , snake_case__ , snake_case__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**snake_case__ )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , snake_case__ ) # change to expected output here SCREAMING_SNAKE_CASE = torch.tensor( [[-1.0_448, -1.0_411, 3.7_992], [-3.2_191, -3.2_386, -1.3_451], [-3.6_210, -3.5_993, 0.4_925]] , device=snake_case__ ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=snake_case__ ) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(snake_case__ ) SCREAMING_SNAKE_CASE = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) SCREAMING_SNAKE_CASE = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams SCREAMING_SNAKE_CASE = tokenizer(snake_case__ , padding=snake_case__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE = model.generate( input_ids=dct['input_ids'].to(snake_case__ ) , attention_mask=dct['attention_mask'].to(snake_case__ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) SCREAMING_SNAKE_CASE = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] SCREAMING_SNAKE_CASE = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=snake_case__ , skip_special_tokens=snake_case__ ) assert generated == expected_en
439
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
719
'''simple docstring''' def A (__lowerCamelCase :list , __lowerCamelCase :list , __lowerCamelCase :int ): _lowerCAmelCase = len(__lowerCamelCase ) _lowerCAmelCase = [[0] * n for i in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): _lowerCAmelCase = y_points[i] for i in range(2 , __lowerCamelCase ): for j in range(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
162
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCAmelCase__ : def __init__( self , a , a=13 , a=30 , a=2 , a=3 , a=True , a=True , a=32 , a=2 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=10 , a=0.02 , a=3 , a=None , a=2 , ) -> int: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _UpperCamelCase = (image_size // patch_size) ** 2 _UpperCamelCase = num_patches + 2 def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = self.get_config() return config, pixel_values, labels def A_ ( self ) -> Union[str, Any]: '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A_ ( self , a , a , a ) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDeiTModel(config=a ) _UpperCamelCase = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , a , a , a ) -> Any: '''simple docstring''' _UpperCamelCase = TFDeiTForMaskedImageModeling(config=a ) _UpperCamelCase = model(a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCamelCase = 1 _UpperCamelCase = TFDeiTForMaskedImageModeling(a ) _UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase = model(a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A_ ( self , a , a , a ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = TFDeiTForImageClassification(a ) _UpperCamelCase = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase = 1 _UpperCamelCase = TFDeiTForImageClassification(a ) _UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self ) -> int: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase = config_and_inputs _UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Dict = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase_ : int = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Dict = False UpperCamelCase_ : List[str] = False UpperCamelCase_ : List[Any] = False def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = TFDeiTModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def A_ ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def A_ ( self ) -> Dict: '''simple docstring''' pass def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , tf.keras.layers.Dense ) ) def A_ ( self ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(a ) _UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a ) def A_ ( self ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) def A_ ( self , a , a , a=False ) -> List[Any]: '''simple docstring''' _UpperCamelCase = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def A_ ( self ) -> str: '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDeiTModel.from_pretrained(a ) self.assertIsNotNone(a ) def __A() -> Any: """simple docstring""" _UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def A_ ( self ) -> List[str]: '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def A_ ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=a , return_tensors="""tf""" ) # forward pass _UpperCamelCase = model(**a ) # verify the logits _UpperCamelCase = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , a ) _UpperCamelCase = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) )
612
UpperCAmelCase__ : Dict = tuple[float, float, float] UpperCAmelCase__ : Tuple = tuple[float, float, float] def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Vectorad: UpperCamelCase__ : Optional[int] = end_pointa[0] - end_pointa[0] UpperCamelCase__ : Tuple = end_pointa[1] - end_pointa[1] UpperCamelCase__ : Dict = end_pointa[2] - end_pointa[2] return (x, y, z) def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Vectorad: UpperCamelCase__ : Optional[int] = ab[1] * ac[2] - ab[2] * ac[1] # *i UpperCamelCase__ : Any = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j UpperCamelCase__ : Any = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> bool: return tuple(round(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for x in vector ) == (0, 0, 0) def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 10 ) -> bool: UpperCamelCase__ : str = create_vector(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = create_vector(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return is_zero_vector(get_ad_vectors_cross(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
410
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __magic_name__ = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : List[str] = 'sequence-classification' def __init__( self , lowerCamelCase ): if type(lowerCamelCase ) == dict: snake_case__ = Namespace(**lowerCamelCase ) snake_case__ = glue_output_modes[hparams.task] snake_case__ = glue_tasks_num_labels[hparams.task] super().__init__(lowerCamelCase , lowerCamelCase , self.mode ) def A_ ( self , **lowerCamelCase ): return self.model(**lowerCamelCase ) def A_ ( self , lowerCamelCase , lowerCamelCase ): snake_case__ = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: snake_case__ = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None snake_case__ = self(**lowerCamelCase ) snake_case__ = outputs[0] snake_case__ = self.trainer.lr_schedulers[0]["scheduler"] snake_case__ = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A_ ( self ): snake_case__ = self.hparams snake_case__ = processors[args.task]() snake_case__ = processor.get_labels() for mode in ["train", "dev"]: snake_case__ = self._feature_file(lowerCamelCase ) if os.path.exists(lowerCamelCase ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowerCamelCase ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) snake_case__ = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) snake_case__ = convert_examples_to_features( lowerCamelCase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , lowerCamelCase ) torch.save(lowerCamelCase , lowerCamelCase ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): snake_case__ = "dev" if mode == "test" else mode snake_case__ = self._feature_file(lowerCamelCase ) logger.info("Loading features from cached file %s" , lowerCamelCase ) snake_case__ = torch.load(lowerCamelCase ) snake_case__ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) snake_case__ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) snake_case__ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": snake_case__ = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": snake_case__ = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) , batch_size=lowerCamelCase , shuffle=lowerCamelCase , ) def A_ ( self , lowerCamelCase , lowerCamelCase ): snake_case__ = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: snake_case__ = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None snake_case__ = self(**lowerCamelCase ) snake_case__ , snake_case__ = outputs[:2] snake_case__ = logits.detach().cpu().numpy() snake_case__ = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A_ ( self , lowerCamelCase ): snake_case__ = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() snake_case__ = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": snake_case__ = np.argmax(lowerCamelCase , axis=1 ) elif self.hparams.glue_output_mode == "regression": snake_case__ = np.squeeze(lowerCamelCase ) snake_case__ = np.concatenate([x["target"] for x in outputs] , axis=0 ) snake_case__ = [[] for _ in range(out_label_ids.shape[0] )] snake_case__ = [[] for _ in range(out_label_ids.shape[0] )] snake_case__ = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , lowerCamelCase , lowerCamelCase )} snake_case__ = dict(results.items() ) snake_case__ = results return ret, preds_list, out_label_list def A_ ( self , lowerCamelCase ): snake_case__ , snake_case__ , snake_case__ = self._eval_end(lowerCamelCase ) snake_case__ = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A_ ( self , lowerCamelCase ): snake_case__ , snake_case__ , snake_case__ = self._eval_end(lowerCamelCase ) snake_case__ = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A_ ( lowerCamelCase , lowerCamelCase ): BaseTransformer.add_model_specific_args(lowerCamelCase , lowerCamelCase ) parser.add_argument( "--max_seq_length" , default=1_28 , type=lowerCamelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=lowerCamelCase , required=lowerCamelCase , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=lowerCamelCase , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def SCREAMING_SNAKE_CASE__ ( ): snake_case__ = argparse.ArgumentParser() add_generic_args(__lowerCAmelCase , os.getcwd() ) snake_case__ = GLUETransformer.add_model_specific_args(__lowerCAmelCase , os.getcwd() ) snake_case__ = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: snake_case__ = os.path.join( "./results" , F"""{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}""" , ) os.makedirs(args.output_dir ) snake_case__ = GLUETransformer(__lowerCAmelCase ) snake_case__ = generic_train(__lowerCAmelCase , __lowerCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: snake_case__ = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=__lowerCAmelCase ) ) snake_case__ = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowerCAmelCase ) if __name__ == "__main__": main()
530
from math import factorial def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase = 100 ): return sum(int(__lowerCAmelCase ) for x in str(factorial(__lowerCAmelCase ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
530
1
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = iter(lowerCAmelCase_ ) while True: __SCREAMING_SNAKE_CASE = tuple(itertools.islice(lowerCAmelCase_ , lowerCAmelCase_ ) ) if not chunk: return yield chunk def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = "".join([c.upper() for c in dirty if c in string.ascii_letters] ) __SCREAMING_SNAKE_CASE = "" if len(lowerCAmelCase_ ) < 2: return dirty for i in range(len(lowerCAmelCase_ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowerCAmelCase_ ) & 1: clean += "X" return clean def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = "ABCDEFGHIKLMNOPQRSTUVWXYZ" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler __SCREAMING_SNAKE_CASE = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowerCAmelCase_ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowerCAmelCase_ ) return table def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = generate_table(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = prepare_input(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowerCAmelCase_ , 2 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = divmod(table.index(lowerCAmelCase_ ) , 5 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = divmod(table.index(lowerCAmelCase_ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = generate_table(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowerCAmelCase_ , 2 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = divmod(table.index(lowerCAmelCase_ ) , 5 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = divmod(table.index(lowerCAmelCase_ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
682
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging a__ : Any = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : Any , UpperCAmelCase__ : Union[str, Any]=None , **UpperCAmelCase__ : Union[str, Any] ) -> Any: warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." , UpperCAmelCase__ , ) super().__init__(args=UpperCAmelCase__ , **UpperCAmelCase__ )
682
1
'''simple docstring''' import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging lowerCAmelCase_ : Any = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (snake_case__ ): """simple docstring""" __a =CLIPConfig __a =['CLIPEncoderLayer'] def __init__( self : Union[str, Any] , __a : Tuple ): super().__init__(lowercase_ ) _a = CLIPVisionModelWithProjection(config.vision_config ) _a = nn.Linear(config.vision_config.projection_dim , 1 ) _a = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def UpperCamelCase__ ( self : Dict , __a : Any , __a : List[Any] , __a : Optional[int]=0.5 , __a : Any=0.5 ): _a = self.vision_model(lowercase_ )[0] _a = self.p_head(lowercase_ ) _a = nsfw_detected.flatten() _a = nsfw_detected > p_threshold _a = nsfw_detected.tolist() if any(lowercase_ ): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, nsfw_detected_ in enumerate(lowercase_ ): if nsfw_detected_: _a = np.zeros(images[idx].shape ) _a = self.w_head(lowercase_ ) _a = watermark_detected.flatten() _a = watermark_detected > w_threshold _a = watermark_detected.tolist() if any(lowercase_ ): logger.warning( "Potential watermarked content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, watermark_detected_ in enumerate(lowercase_ ): if watermark_detected_: _a = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
704
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def _lowerCamelCase ( lowercase : List[str] ) -> List[str]: _a = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " F'{test_file} instead.' ) _a = components[-1] if not test_fn.endswith("py" ): raise ValueError(F'`test_file` should be a python file. Got {test_fn} instead.' ) if not test_fn.startswith("test_modeling_" ): raise ValueError( F'`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.' ) _a = components[:-1] + [test_fn.replace(".py" , "" )] _a = ".".join(lowercase ) return test_module_path def _lowerCamelCase ( lowercase : List[str] ) -> Optional[Any]: _a = get_module_path(lowercase ) _a = importlib.import_module(lowercase ) return test_module def _lowerCamelCase ( lowercase : Optional[Any] ) -> List[str]: _a = [] _a = get_test_module(lowercase ) for attr in dir(lowercase ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(lowercase , lowercase ) ) # sort with class names return sorted(lowercase , key=lambda lowercase : x.__name__ ) def _lowerCamelCase ( lowercase : List[str] ) -> Any: _a = [] _a = get_test_module(lowercase ) for attr in dir(lowercase ): _a = getattr(lowercase , lowercase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _a = getattr(lowercase , "all_model_classes" , [] ) if len(lowercase ) > 0: test_classes.append(lowercase ) # sort with class names return sorted(lowercase , key=lambda lowercase : x.__name__ ) def _lowerCamelCase ( lowercase : int ) -> str: _a = get_test_classes(lowercase ) _a = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowercase , key=lambda lowercase : x.__name__ ) def _lowerCamelCase ( lowercase : Optional[Any] ) -> Dict: _a = test_class() if hasattr(lowercase , "setUp" ): test.setUp() _a = None if hasattr(lowercase , "model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _a = test.model_tester.__class__ return model_tester def _lowerCamelCase ( lowercase : str , lowercase : Dict ) -> str: _a = get_test_classes(lowercase ) _a = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowercase ) # sort with class names return sorted(lowercase , key=lambda lowercase : x.__name__ ) def _lowerCamelCase ( lowercase : Dict , lowercase : Union[str, Any] ) -> Dict: _a = get_test_classes_for_model(lowercase , lowercase ) _a = [] for test_class in test_classes: _a = get_model_tester_from_test_class(lowercase ) if tester_class is not None: tester_classes.append(lowercase ) # sort with class names return sorted(lowercase , key=lambda lowercase : x.__name__ ) def _lowerCamelCase ( lowercase : List[Any] ) -> Tuple: _a = get_test_classes(lowercase ) _a = {test_class: get_model_tester_from_test_class(lowercase ) for test_class in test_classes} return test_tester_mapping def _lowerCamelCase ( lowercase : List[str] ) -> Union[str, Any]: _a = get_model_classes(lowercase ) _a = { model_class: get_test_classes_for_model(lowercase , lowercase ) for model_class in model_classes } return model_test_mapping def _lowerCamelCase ( lowercase : Optional[Any] ) -> str: _a = get_model_classes(lowercase ) _a = { model_class: get_tester_classes_for_model(lowercase , lowercase ) for model_class in model_classes } return model_to_tester_mapping def _lowerCamelCase ( lowercase : List[str] ) -> Tuple: if isinstance(lowercase , lowercase ): return o elif isinstance(lowercase , lowercase ): return o.__name__ elif isinstance(lowercase , (list, tuple) ): return [to_json(lowercase ) for x in o] elif isinstance(lowercase , lowercase ): return {to_json(lowercase ): to_json(lowercase ) for k, v in o.items()} else: return o
521
0
from ..utils import DummyObject, requires_backends class a__ ( metaclass=A__ ): A = ['keras_nlp'] def __init__( self : Tuple,*_A : List[Any],**_A : List[Any] ): """simple docstring""" requires_backends(self,["keras_nlp"] )
216
from scipy.stats import pearsonr import datasets __lowerCamelCase : Union[str, Any] = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' __lowerCamelCase : Optional[int] = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' __lowerCamelCase : Tuple = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def __UpperCamelCase ( self : int ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ),reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"],) def __UpperCamelCase ( self : int,_A : List[str],_A : Optional[int],_A : int=False ): """simple docstring""" if return_pvalue: SCREAMING_SNAKE_CASE_ : Any = pearsonr(_A,_A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(_A,_A )[0] )}
216
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ =logging.get_logger(__name__) UpperCAmelCase_ ={ """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } UpperCAmelCase_ =[ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def UpperCAmelCase ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCAmelCase = '''lm_head''' lowerCAmelCase = getattr(_snake_case , _snake_case ) if weight_type is not None: lowerCAmelCase = getattr(_snake_case , _snake_case ).shape else: lowerCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def UpperCAmelCase ( _snake_case , _snake_case , _snake_case ): lowerCAmelCase = [] lowerCAmelCase = fairseq_model.state_dict() lowerCAmelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(_snake_case )[0].split('''.''' )[-2] lowerCAmelCase = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: lowerCAmelCase = '''weight_g''' elif "weight_v" in name: lowerCAmelCase = '''weight_v''' elif "bias" in name: lowerCAmelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase = '''weight''' else: lowerCAmelCase = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(F"""Unused weights: {unused_weights}""" ) def UpperCAmelCase ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): lowerCAmelCase = full_name.split('''conv_layers.''' )[-1] lowerCAmelCase = name.split('''.''' ) lowerCAmelCase = int(items[0] ) lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCAmelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def UpperCAmelCase ( _snake_case , _snake_case , _snake_case=None , _snake_case=None , _snake_case=True ): if config_path is not None: lowerCAmelCase = UniSpeechConfig.from_pretrained(_snake_case ) else: lowerCAmelCase = UniSpeechConfig() if is_finetuned: if dict_path: lowerCAmelCase = Dictionary.load_from_json(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase = target_dict.pad_index lowerCAmelCase = target_dict.bos_index lowerCAmelCase = target_dict.eos_index lowerCAmelCase = len(target_dict.symbols ) lowerCAmelCase = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) lowerCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase = 42 lowerCAmelCase = 43 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_snake_case , _snake_case ) lowerCAmelCase = WavaVecaPhonemeCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) lowerCAmelCase = True if config.feat_extract_norm == '''layer''' else False lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) lowerCAmelCase = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) lowerCAmelCase = UniSpeechForCTC(_snake_case ) else: lowerCAmelCase = UniSpeechForPreTraining(_snake_case ) if is_finetuned: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCAmelCase = model[0].eval() recursively_load_weights(_snake_case , _snake_case , _snake_case ) hf_unispeech.save_pretrained(_snake_case ) if __name__ == "__main__": UpperCAmelCase_ =argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCAmelCase_ =parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
716
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __UpperCamelCase ( __UpperCAmelCase ): '''simple docstring''' def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = True , UpperCAmelCase_ = None , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = True , UpperCAmelCase_ = "arrow" , **UpperCAmelCase_ , ): super().__init__( split=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ , streaming=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCAmelCase = load_from_cache_file lowerCAmelCase = file_format lowerCAmelCase = Spark( df=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , working_dir=UpperCAmelCase_ , **UpperCAmelCase_ , ) def __snake_case ( self ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowerCAmelCase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=UpperCAmelCase_ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
33
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : Tuple = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : str = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def lowerCAmelCase( __lowerCamelCase ): __a = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' f'''{test_file} instead.''' ) __a = components[-1] if not test_fn.endswith('py' ): raise ValueError(f'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('test_modeling_' ): raise ValueError( f'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) __a = components[:-1] + [test_fn.replace('.py' , '' )] __a = '.'.join(__lowerCamelCase ) return test_module_path def lowerCAmelCase( __lowerCamelCase ): __a = get_module_path(__lowerCamelCase ) __a = importlib.import_module(__lowerCamelCase ) return test_module def lowerCAmelCase( __lowerCamelCase ): __a = [] __a = get_test_module(__lowerCamelCase ) for attr in dir(__lowerCamelCase ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(__lowerCamelCase , __lowerCamelCase ) ) # sort with class names return sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x.__name__ ) def lowerCAmelCase( __lowerCamelCase ): __a = [] __a = get_test_module(__lowerCamelCase ) for attr in dir(__lowerCamelCase ): __a = getattr(__lowerCamelCase , __lowerCamelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __a = getattr(__lowerCamelCase , 'all_model_classes' , [] ) if len(__lowerCamelCase ) > 0: test_classes.append(__lowerCamelCase ) # sort with class names return sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x.__name__ ) def lowerCAmelCase( __lowerCamelCase ): __a = get_test_classes(__lowerCamelCase ) __a = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x.__name__ ) def lowerCAmelCase( __lowerCamelCase ): __a = test_class() if hasattr(__lowerCamelCase , 'setUp' ): test.setUp() __a = None if hasattr(__lowerCamelCase , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __a = test.model_tester.__class__ return model_tester def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): __a = get_test_classes(__lowerCamelCase ) __a = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__lowerCamelCase ) # sort with class names return sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x.__name__ ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): __a = get_test_classes_for_model(__lowerCamelCase , __lowerCamelCase ) __a = [] for test_class in test_classes: __a = get_model_tester_from_test_class(__lowerCamelCase ) if tester_class is not None: tester_classes.append(__lowerCamelCase ) # sort with class names return sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x.__name__ ) def lowerCAmelCase( __lowerCamelCase ): __a = get_test_classes(__lowerCamelCase ) __a = {test_class: get_model_tester_from_test_class(__lowerCamelCase ) for test_class in test_classes} return test_tester_mapping def lowerCAmelCase( __lowerCamelCase ): __a = get_model_classes(__lowerCamelCase ) __a = { model_class: get_test_classes_for_model(__lowerCamelCase , __lowerCamelCase ) for model_class in model_classes } return model_test_mapping def lowerCAmelCase( __lowerCamelCase ): __a = get_model_classes(__lowerCamelCase ) __a = { model_class: get_tester_classes_for_model(__lowerCamelCase , __lowerCamelCase ) for model_class in model_classes } return model_to_tester_mapping def lowerCAmelCase( __lowerCamelCase ): if isinstance(__lowerCamelCase , __lowerCamelCase ): return o elif isinstance(__lowerCamelCase , __lowerCamelCase ): return o.__name__ elif isinstance(__lowerCamelCase , (list, tuple) ): return [to_json(__lowerCamelCase ) for x in o] elif isinstance(__lowerCamelCase , __lowerCamelCase ): return {to_json(__lowerCamelCase ): to_json(__lowerCamelCase ) for k, v in o.items()} else: return o
559
0
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase__ : List[str] = 1_6 lowerCamelCase__ : Optional[Any] = 3_2 def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 16 ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[str] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase__ : List[str] = DatasetDict( { """train""": dataset["""train"""].select(lowercase_ ), """validation""": dataset["""train"""].select(lowercase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowercase_ ): # max_length=None => use the model max length (it's actually the default) lowercase__ : str = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Optional[int] = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : Any = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": lowercase__ : Tuple = 8 else: lowercase__ : Optional[Any] = None return tokenizer.pad( lowercase_ , padding="""longest""" , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase__ : str = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) lowercase__ : str = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) lowercase__ : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader, test_dataloader def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowercase__ : Any = [] # Download the dataset lowercase__ : Tuple = load_dataset("""glue""" , """mrpc""" ) # Create our splits lowercase__ : List[str] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowercase__ : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Optional[Any] = config["""lr"""] lowercase__ : Union[str, Any] = int(config["""num_epochs"""] ) lowercase__ : str = int(config["""seed"""] ) lowercase__ : str = int(config["""batch_size"""] ) lowercase__ : List[str] = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowercase__ : Dict = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase__ : int = batch_size // MAX_GPU_BATCH_SIZE lowercase__ : List[str] = MAX_GPU_BATCH_SIZE set_seed(lowercase_ ) # New Code # # Create our folds: lowercase__ : Optional[Any] = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) lowercase__ : Optional[int] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowercase_ ): lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_fold_dataloaders( lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : int = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Any = AdamW(params=model.parameters() , lr=lowercase_ ) # Instantiate scheduler lowercase__ : Dict = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=1_00 , num_training_steps=(len(lowercase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Now we train the model for epoch in range(lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : List[str] = model(**lowercase_ ) lowercase__ : Dict = outputs.loss lowercase__ : List[Any] = loss / gradient_accumulation_steps accelerator.backward(lowercase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : int = model(**lowercase_ ) lowercase__ : Any = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) lowercase__ : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowercase_ ) # New Code # # We also run predictions on the test set at the very end lowercase__ : Dict = [] for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Union[str, Any] = model(**lowercase_ ) lowercase__ : str = outputs.logits lowercase__ , lowercase__ : List[str] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowercase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowercase__ : Dict = torch.cat(lowercase_ , dim=0 ) lowercase__ : Union[str, Any] = torch.stack(lowercase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowercase__ : Any = metric.compute(predictions=lowercase_ , references=lowercase_ ) accelerator.print("""Average test metrics from all folds:""" , lowercase_ ) def UpperCamelCase ( ) -> List[str]: '''simple docstring''' lowercase__ : Optional[int] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowercase_ , default=lowercase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowercase_ , default=3 , help="""The number of splits to perform across the dataset""" ) lowercase__ : Any = parser.parse_args() lowercase__ : Union[str, Any] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
495
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' if components is None: lowercase__ : List[str] = [] lowercase__ : Dict = list(SCREAMING_SNAKE_CASE_) def __len__( self): '''simple docstring''' return len(self.__components) def __str__( self): '''simple docstring''' return "(" + ",".join(map(SCREAMING_SNAKE_CASE_ , self.__components)) + ")" def __add__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Optional[Any] = len(self) if size == len(SCREAMING_SNAKE_CASE_): lowercase__ : List[str] = [self.__components[i] + other.component(SCREAMING_SNAKE_CASE_) for i in range(SCREAMING_SNAKE_CASE_)] return Vector(SCREAMING_SNAKE_CASE_) else: raise Exception("""must have the same size""") def __sub__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = len(self) if size == len(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = [self.__components[i] - other.component(SCREAMING_SNAKE_CASE_) for i in range(SCREAMING_SNAKE_CASE_)] return Vector(SCREAMING_SNAKE_CASE_) else: # error case raise Exception("""must have the same size""") @overload def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' ... @overload def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' ... def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , (float, int)): lowercase__ : Optional[int] = [c * other for c in self.__components] return Vector(SCREAMING_SNAKE_CASE_) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and len(self) == len(SCREAMING_SNAKE_CASE_): lowercase__ : Dict = len(self) lowercase__ : Optional[Any] = [self.__components[i] * other.component(SCREAMING_SNAKE_CASE_) for i in range(SCREAMING_SNAKE_CASE_)] return sum(SCREAMING_SNAKE_CASE_) else: # error case raise Exception("""invalid operand!""") def lowercase__ ( self): '''simple docstring''' return Vector(self.__components) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and -len(self.__components) <= i < len(self.__components): return self.__components[i] else: raise Exception("""index out of range""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' assert -len(self.__components) <= pos < len(self.__components) lowercase__ : List[Any] = value def lowercase__ ( self): '''simple docstring''' if len(self.__components) == 0: raise Exception("""Vector is empty""") lowercase__ : Union[str, Any] = [c**2 for c in self.__components] return math.sqrt(sum(SCREAMING_SNAKE_CASE_)) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False): '''simple docstring''' lowercase__ : Union[str, Any] = self * other lowercase__ : Optional[Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den)) else: return math.acos(num / den) def UpperCamelCase ( lowercase_ ) -> Vector: '''simple docstring''' assert isinstance(lowercase_ , lowercase_ ) return Vector([0] * dimension ) def UpperCamelCase ( lowercase_ , lowercase_ ) -> Vector: '''simple docstring''' assert isinstance(lowercase_ , lowercase_ ) and (isinstance(lowercase_ , lowercase_ )) lowercase__ : Union[str, Any] = [0] * dimension lowercase__ : Any = 1 return Vector(lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Vector: '''simple docstring''' assert ( isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ) and (isinstance(lowercase_ , (int, float) )) ) return x * scalar + y def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Vector: '''simple docstring''' random.seed(lowercase_ ) lowercase__ : int = [random.randint(lowercase_ , lowercase_ ) for _ in range(lowercase_ )] return Vector(lowercase_ ) class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = matrix lowercase__ : Any = w lowercase__ : Any = h def __str__( self): '''simple docstring''' lowercase__ : str = """""" for i in range(self.__height): ans += "|" for j in range(self.__width): if j < self.__width - 1: ans += str(self.__matrix[i][j]) + "," else: ans += str(self.__matrix[i][j]) + "|\n" return ans def __add__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): lowercase__ : Tuple = [] for i in range(self.__height): lowercase__ : Tuple = [ self.__matrix[i][j] + other.component(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for j in range(self.__width) ] matrix.append(SCREAMING_SNAKE_CASE_) return Matrix(SCREAMING_SNAKE_CASE_ , self.__width , self.__height) else: raise Exception("""matrix must have the same dimension!""") def __sub__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): lowercase__ : Optional[int] = [] for i in range(self.__height): lowercase__ : List[str] = [ self.__matrix[i][j] - other.component(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for j in range(self.__width) ] matrix.append(SCREAMING_SNAKE_CASE_) return Matrix(SCREAMING_SNAKE_CASE_ , self.__width , self.__height) else: raise Exception("""matrices must have the same dimension!""") @overload def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' ... @overload def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' ... def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): # matrix-vector if len(SCREAMING_SNAKE_CASE_) == self.__width: lowercase__ : List[Any] = zero_vector(self.__height) for i in range(self.__height): lowercase__ : Union[str, Any] = [ self.__matrix[i][j] * other.component(SCREAMING_SNAKE_CASE_) for j in range(self.__width) ] ans.change_component(SCREAMING_SNAKE_CASE_ , sum(SCREAMING_SNAKE_CASE_)) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""") elif isinstance(SCREAMING_SNAKE_CASE_ , (int, float)): # matrix-scalar lowercase__ : Tuple = [ [self.__matrix[i][j] * other for j in range(self.__width)] for i in range(self.__height) ] return Matrix(SCREAMING_SNAKE_CASE_ , self.__width , self.__height) return None def lowercase__ ( self): '''simple docstring''' return self.__height def lowercase__ ( self): '''simple docstring''' return self.__width def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: lowercase__ : Tuple = value else: raise Exception("""change_component: indices out of bounds""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""") lowercase__ : List[Any] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(SCREAMING_SNAKE_CASE_)): lowercase__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(SCREAMING_SNAKE_CASE_ , self.__width - 1 , self.__height - 1).determinant() def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""") if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else: raise Exception("""Indices out of bounds""") def lowercase__ ( self): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""") if self.__height < 1: raise Exception("""Matrix has no element""") elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: lowercase__ : Optional[int] = [ self.__matrix[0][y] * self.cofactor(0 , SCREAMING_SNAKE_CASE_) for y in range(self.__width) ] return sum(SCREAMING_SNAKE_CASE_) def UpperCamelCase ( lowercase_ ) -> Matrix: '''simple docstring''' lowercase__ : list[list[float]] = [[0] * n for _ in range(lowercase_ )] return Matrix(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Matrix: '''simple docstring''' random.seed(lowercase_ ) lowercase__ : list[list[float]] = [ [random.randint(lowercase_ , lowercase_ ) for _ in range(lowercase_ )] for _ in range(lowercase_ ) ] return Matrix(lowercase_ , lowercase_ , lowercase_ )
495
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase=False )-> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = OmegaConf.load(UpperCAmelCase ) if display: print(yaml.dump(OmegaConf.to_container(UpperCAmelCase ) ) ) return config def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase=None ,UpperCAmelCase=None )-> Dict: '''simple docstring''' if conf_path is None: SCREAMING_SNAKE_CASE_ = '''./model_checkpoints/vqgan_only.yaml''' SCREAMING_SNAKE_CASE_ = load_config(UpperCAmelCase ,display=UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = VQModel(**config.model.params ) if ckpt_path is None: SCREAMING_SNAKE_CASE_ = '''./model_checkpoints/vqgan_only.pt''' SCREAMING_SNAKE_CASE_ = torch.load(UpperCAmelCase ,map_location=UpperCAmelCase ) if ".ckpt" in ckpt_path: SCREAMING_SNAKE_CASE_ = sd['''state_dict'''] model.load_state_dict(UpperCAmelCase ,strict=UpperCAmelCase ) model.to(UpperCAmelCase ) del sd return model def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = model.encode(UpperCAmelCase ) print(f'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) SCREAMING_SNAKE_CASE_ = model.decode(UpperCAmelCase ) return xrec def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase=False )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = string.rsplit('''.''' ,1 ) if reload: SCREAMING_SNAKE_CASE_ = importlib.import_module(UpperCAmelCase ) importlib.reload(UpperCAmelCase ) return getattr(importlib.import_module(UpperCAmelCase ,package=UpperCAmelCase ) ,cls ) def UpperCAmelCase ( UpperCAmelCase )-> Any: '''simple docstring''' if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' ,{} ) ) def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=True ,UpperCAmelCase=True )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = instantiate_from_config(UpperCAmelCase ) if sd is not None: model.load_state_dict(UpperCAmelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase )-> List[Any]: '''simple docstring''' if ckpt: SCREAMING_SNAKE_CASE_ = torch.load(UpperCAmelCase ,map_location='''cpu''' ) SCREAMING_SNAKE_CASE_ = pl_sd['''global_step'''] print(f'''loaded model from global step {global_step}.''' ) else: SCREAMING_SNAKE_CASE_ = {'''state_dict''': None} SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = load_model_from_config(config.model ,pl_sd['''state_dict'''] ,gpu=UpperCAmelCase ,eval_mode=UpperCAmelCase )['''model'''] return model, global_step
393
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def UpperCAmelCase ( UpperCAmelCase )-> int: '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : int ) -> Optional[Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ = module SCREAMING_SNAKE_CASE_ = nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , ) SCREAMING_SNAKE_CASE_ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _lowercase ( self : List[Any] , lowerCAmelCase_ : Any , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ) -> Dict: """simple docstring""" return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class snake_case ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : int = """bigscience/bloom-1b7""" # Constant values UpperCAmelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 UpperCAmelCase : int = """Hello my name is""" UpperCAmelCase : List[str] = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) UpperCAmelCase : Dict = 10 def _lowercase ( self : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(self.model_name ) class snake_case ( lowerCAmelCase__ ): '''simple docstring''' def _lowercase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().setUp() # Models and tokenizer SCREAMING_SNAKE_CASE_ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) SCREAMING_SNAKE_CASE_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map='''auto''' ) def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _lowercase ( self : int ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase_ , '''quantization_config''' ) ) SCREAMING_SNAKE_CASE_ = config.to_dict() SCREAMING_SNAKE_CASE_ = config.to_diff_dict() SCREAMING_SNAKE_CASE_ = config.to_json_string() def _lowercase ( self : int ) -> List[Any]: """simple docstring""" from bitsandbytes.nn import Paramsabit SCREAMING_SNAKE_CASE_ = self.model_fpaa.get_memory_footprint() SCREAMING_SNAKE_CASE_ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) SCREAMING_SNAKE_CASE_ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _lowercase ( self : List[Any] ) -> str: """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _lowercase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE_ = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def _lowercase ( self : List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ = BitsAndBytesConfig() SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , device_map='''auto''' ) SCREAMING_SNAKE_CASE_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE_ = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def _lowercase ( self : Optional[int] ) -> str: """simple docstring""" with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase_ ) def _lowercase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ = BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def _lowercase ( self : Dict ) -> Optional[int]: """simple docstring""" with self.assertRaises(lowerCAmelCase_ ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything SCREAMING_SNAKE_CASE_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE_ = self.model_fpaa.to(torch.floataa ) SCREAMING_SNAKE_CASE_ = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error SCREAMING_SNAKE_CASE_ = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error SCREAMING_SNAKE_CASE_ = self.model_fpaa.half() # Check this does not throw an error SCREAMING_SNAKE_CASE_ = self.model_fpaa.float() def _lowercase ( self : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=lowerCAmelCase_ , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class snake_case ( unittest.TestCase ): '''simple docstring''' @classmethod def _lowercase ( cls : Dict ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = '''t5-small''' SCREAMING_SNAKE_CASE_ = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(cls.model_name ) SCREAMING_SNAKE_CASE_ = '''Translate in German: Hello, my dog is cute''' def _lowercase ( self : Any ) -> str: """simple docstring""" gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Tuple ) -> List[str]: """simple docstring""" from transformers import TaForConditionalGeneration SCREAMING_SNAKE_CASE_ = TaForConditionalGeneration._keep_in_fpaa_modules SCREAMING_SNAKE_CASE_ = None # test with `t5-small` SCREAMING_SNAKE_CASE_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map='''auto''' ) SCREAMING_SNAKE_CASE_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) SCREAMING_SNAKE_CASE_ = model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` SCREAMING_SNAKE_CASE_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map='''auto''' ) SCREAMING_SNAKE_CASE_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) SCREAMING_SNAKE_CASE_ = model.generate(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = modules def _lowercase ( self : Optional[Any] ) -> int: """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` SCREAMING_SNAKE_CASE_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) SCREAMING_SNAKE_CASE_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) SCREAMING_SNAKE_CASE_ = model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` SCREAMING_SNAKE_CASE_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map='''auto''' ) SCREAMING_SNAKE_CASE_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) SCREAMING_SNAKE_CASE_ = model.generate(**lowerCAmelCase_ ) class snake_case ( lowerCAmelCase__ ): '''simple docstring''' def _lowercase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" super().setUp() # model_name SCREAMING_SNAKE_CASE_ = '''bigscience/bloom-560m''' SCREAMING_SNAKE_CASE_ = '''t5-small''' # Different types of model SCREAMING_SNAKE_CASE_ = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map='''auto''' ) # Sequence classification model SCREAMING_SNAKE_CASE_ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map='''auto''' ) # CausalLM model SCREAMING_SNAKE_CASE_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map='''auto''' ) # Seq2seq model SCREAMING_SNAKE_CASE_ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map='''auto''' ) def _lowercase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class snake_case ( lowerCAmelCase__ ): '''simple docstring''' def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" super().setUp() def _lowercase ( self : List[str] ) -> Dict: """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass SCREAMING_SNAKE_CASE_ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class snake_case ( lowerCAmelCase__ ): '''simple docstring''' def _lowercase ( self : List[Any] ) -> Optional[int]: """simple docstring""" super().setUp() def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model SCREAMING_SNAKE_CASE_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch SCREAMING_SNAKE_CASE_ = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) class snake_case ( lowerCAmelCase__ ): '''simple docstring''' def _lowercase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ = '''facebook/opt-350m''' super().setUp() def _lowercase ( self : Optional[Any] ) -> List[str]: """simple docstring""" if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters SCREAMING_SNAKE_CASE_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): SCREAMING_SNAKE_CASE_ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability SCREAMING_SNAKE_CASE_ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase_ ) ): SCREAMING_SNAKE_CASE_ = LoRALayer(module.q_proj , rank=16 ) SCREAMING_SNAKE_CASE_ = LoRALayer(module.k_proj , rank=16 ) SCREAMING_SNAKE_CASE_ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch SCREAMING_SNAKE_CASE_ = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): SCREAMING_SNAKE_CASE_ = model.forward(**lowerCAmelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class snake_case ( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase : Tuple = """gpt2-xl""" UpperCAmelCase : str = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
393
1
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool: """simple docstring""" __UpperCamelCase = [int(lowercase_ ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(lowercase_ ) == 4 and all(0 <= int(lowercase_ ) <= 2_54 for octet in octets ) if __name__ == "__main__": a_ = input().strip() a_ = "valid" if is_ip_va_address_valid(ip) else "invalid" print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
375
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class _lowerCamelCase : """simple docstring""" def __init__( self : str , snake_case : Any , snake_case : str=14 , snake_case : Dict=7 , snake_case : Any=True , snake_case : Any=True , snake_case : str=True , snake_case : List[str]=True , snake_case : int=True , snake_case : List[Any]=99 , snake_case : Optional[int]=32 , snake_case : str=5 , snake_case : int=4 , snake_case : str=37 , snake_case : Union[str, Any]="gelu" , snake_case : List[str]=0.1 , snake_case : Optional[int]=0.1 , snake_case : Tuple=512 , snake_case : int=16 , snake_case : Any=2 , snake_case : List[str]=0.02 , snake_case : List[Any]=3 , snake_case : str=4 , snake_case : Tuple=None , ): __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_input_mask __UpperCamelCase = use_labels __UpperCamelCase = use_mc_token_ids __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope __UpperCamelCase = self.vocab_size - 1 def snake_case ( self : Optional[Any] ): __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase = None if self.use_mc_token_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() __UpperCamelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def snake_case ( self : Optional[int] ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def snake_case ( self : Any , snake_case : Optional[int] , snake_case : Any , snake_case : Union[str, Any] , snake_case : Dict , snake_case : List[Any] , *snake_case : Union[str, Any] ): __UpperCamelCase = CTRLModel(config=snake_case ) model.to(snake_case ) model.eval() model(snake_case , token_type_ids=snake_case , head_mask=snake_case ) model(snake_case , token_type_ids=snake_case ) __UpperCamelCase = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def snake_case ( self : Any , snake_case : Tuple , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Dict , snake_case : List[str] , *snake_case : Union[str, Any] ): __UpperCamelCase = CTRLLMHeadModel(snake_case ) model.to(snake_case ) model.eval() __UpperCamelCase = model(snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : Any ): __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def snake_case ( self : List[Any] , snake_case : int , snake_case : Dict , snake_case : Optional[Any] , snake_case : Any , *snake_case : str ): __UpperCamelCase = self.num_labels __UpperCamelCase = CTRLForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = model(snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class _lowerCamelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : int = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowerCAmelCase__ : List[str] = (CTRLLMHeadModel,) if is_torch_available() else () lowerCAmelCase__ : str = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Dict = True lowerCAmelCase__ : List[Any] = False lowerCAmelCase__ : str = False def snake_case ( self : str , snake_case : Optional[int] , snake_case : List[str] , snake_case : Tuple , snake_case : Dict , snake_case : List[str] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def snake_case ( self : Optional[int] ): __UpperCamelCase = CTRLModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=snake_case , n_embd=37 ) def snake_case ( self : Union[str, Any] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def snake_case ( self : Dict ): self.config_tester.run_common_tests() def snake_case ( self : Optional[int] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*snake_case ) def snake_case ( self : Tuple ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*snake_case ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case ( self : List[Any] ): pass @slow def snake_case ( self : Optional[Any] ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = CTRLModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def snake_case ( self : List[Any] ): pass @require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self : int ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def snake_case ( self : Optional[int] ): __UpperCamelCase = CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(snake_case ) __UpperCamelCase = torch.tensor( [[11859, 0, 1611, 8]] , dtype=torch.long , device=snake_case ) # Legal the president is __UpperCamelCase = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __UpperCamelCase = model.generate(snake_case , do_sample=snake_case ) self.assertListEqual(output_ids[0].tolist() , snake_case )
375
1
from collections.abc import Callable import numpy as np def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = int(np.ceil((x_end - xa) / step_size ) ) lowercase = np.zeros((n + 1,) ) lowercase = ya lowercase = xa for k in range(__SCREAMING_SNAKE_CASE ): lowercase = y[k] + step_size * ode_func(__SCREAMING_SNAKE_CASE , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
84
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase( snake_case_ ): """simple docstring""" a : torch.FloatTensor a : Optional[torch.FloatTensor] = None def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=0.999 ,SCREAMING_SNAKE_CASE_="cosine" ,) -> str: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) lowercase__ : List[str] = [] for i in range(SCREAMING_SNAKE_CASE_ ): lowercase__ : int = i / num_diffusion_timesteps lowercase__ : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) ,SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ ,dtype=torch.floataa ) class UpperCAmelCase( snake_case_ , snake_case_ ): """simple docstring""" a : int = 1 @register_to_config def __init__( self , lowerCamelCase = 1000 , lowerCamelCase = 0.00_01 , lowerCamelCase = 0.02 , lowerCamelCase = "linear" , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = True , lowerCamelCase = 0 , lowerCamelCase = "epsilon" , lowerCamelCase = 1.0 , **lowerCamelCase , ) -> List[Any]: """simple docstring""" if kwargs.get("set_alpha_to_one" , lowerCamelCase ) is not None: lowercase__ : Any = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , lowerCamelCase , standard_warn=lowerCamelCase ) lowercase__ : Optional[int] = kwargs["set_alpha_to_one"] if trained_betas is not None: lowercase__ : Optional[int] = torch.tensor(lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase__ : int = torch.linspace(lowerCamelCase , lowerCamelCase , lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase__ : List[str] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase__ : Optional[Any] = betas_for_alpha_bar(lowerCamelCase ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) lowercase__ : List[str] = 1.0 - self.betas lowercase__ : List[str] = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. lowercase__ : Dict = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution lowercase__ : Optional[int] = 1.0 # setable values lowercase__ : int = None lowercase__ : int = torch.from_numpy(np.arange(0 , lowerCamelCase ).copy().astype(np.intaa ) ) def __a ( self , lowerCamelCase , lowerCamelCase = None ) -> torch.FloatTensor: """simple docstring""" return sample def __a ( self , lowerCamelCase , lowerCamelCase = None ) -> Optional[Any]: """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"""`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:""" f""" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle""" f""" maximal {self.config.num_train_timesteps} timesteps.""" ) lowercase__ : Optional[Any] = num_inference_steps lowercase__ : Dict = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase__ : Dict = (np.arange(0 , lowerCamelCase ) * step_ratio).round().copy().astype(np.intaa ) lowercase__ : Any = torch.from_numpy(lowerCamelCase ).to(lowerCamelCase ) self.timesteps += self.config.steps_offset def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" lowercase__ : int = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process lowercase__ : Optional[int] = self.alphas_cumprod[timestep] lowercase__ : Dict = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) lowercase__ : Optional[int] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": lowercase__ : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 lowercase__ : Optional[int] = model_output elif self.config.prediction_type == "sample": lowercase__ : Any = model_output lowercase__ : Optional[int] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": lowercase__ : List[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output lowercase__ : Any = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or""" " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: lowercase__ : Optional[Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : int = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : Dict = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCamelCase , pred_original_sample=lowerCamelCase ) def __len__( self ) -> Tuple: """simple docstring""" return self.config.num_train_timesteps
397
0
from __future__ import annotations import math def _a ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : float ): """simple docstring""" if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) ) def _a ( ): """simple docstring""" _lowerCAmelCase = [90, 23, 6, 33, 21, 65, 123, 34423] _lowerCAmelCase = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 ) print(f'''Optimal value : {minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
711
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class __lowercase( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=7 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : int=30 , _lowerCAmelCase : Optional[Any]=400 , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , _lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Dict=1 / 255 , _lowerCAmelCase : int=True , ) -> Union[str, Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_pad def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE_ ( self : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Dict=False ) -> Dict: if not batched: _lowerCAmelCase = image_inputs[0] if isinstance(_lowerCAmelCase , Image.Image ): _lowerCAmelCase , _lowerCAmelCase = image.size else: _lowerCAmelCase , _lowerCAmelCase = image.shape[1], image.shape[2] if w < h: _lowerCAmelCase = int(self.size['shortest_edge'] * h / w ) _lowerCAmelCase = self.size['shortest_edge'] elif w > h: _lowerCAmelCase = self.size['shortest_edge'] _lowerCAmelCase = int(self.size['shortest_edge'] * w / h ) else: _lowerCAmelCase = self.size['shortest_edge'] _lowerCAmelCase = self.size['shortest_edge'] else: _lowerCAmelCase = [] for image in image_inputs: _lowerCAmelCase , _lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCAmelCase = max(_lowerCAmelCase , key=lambda _lowerCAmelCase : item[0] )[0] _lowerCAmelCase = max(_lowerCAmelCase , key=lambda _lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowercase( SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ConditionalDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple: _lowerCAmelCase = ConditionalDetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Optional[Any]: _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'size' ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[Any]: _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _lowerCAmelCase ) _lowerCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowerCAmelCase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str: pass def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Optional[int]: # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]: # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str: # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict: # prepare image and target _lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: _lowerCAmelCase = json.loads(f.read() ) _lowerCAmelCase = {'image_id': 3_9769, 'annotations': target} # encode them _lowerCAmelCase = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) _lowerCAmelCase = image_processing(images=_lowerCAmelCase , annotations=_lowerCAmelCase , return_tensors='pt' ) # verify pixel values _lowerCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _lowerCAmelCase , atol=1e-4 ) ) # verify area _lowerCAmelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _lowerCAmelCase ) ) # verify boxes _lowerCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _lowerCAmelCase , atol=1e-3 ) ) # verify image_id _lowerCAmelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _lowerCAmelCase ) ) # verify is_crowd _lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _lowerCAmelCase ) ) # verify class_labels _lowerCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _lowerCAmelCase ) ) # verify orig_size _lowerCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _lowerCAmelCase ) ) # verify size _lowerCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _lowerCAmelCase ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[Any]: # prepare image, target and masks_path _lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: _lowerCAmelCase = json.loads(f.read() ) _lowerCAmelCase = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} _lowerCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _lowerCAmelCase = ConditionalDetrImageProcessor(format='coco_panoptic' ) _lowerCAmelCase = image_processing(images=_lowerCAmelCase , annotations=_lowerCAmelCase , masks_path=_lowerCAmelCase , return_tensors='pt' ) # verify pixel values _lowerCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _lowerCAmelCase , atol=1e-4 ) ) # verify area _lowerCAmelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _lowerCAmelCase ) ) # verify boxes _lowerCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _lowerCAmelCase , atol=1e-3 ) ) # verify image_id _lowerCAmelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _lowerCAmelCase ) ) # verify is_crowd _lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _lowerCAmelCase ) ) # verify class_labels _lowerCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _lowerCAmelCase ) ) # verify masks _lowerCAmelCase = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _lowerCAmelCase ) # verify orig_size _lowerCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _lowerCAmelCase ) ) # verify size _lowerCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _lowerCAmelCase ) )
585
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Dict = ["pixel_values"] def __init__( self, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = 1 / 255, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = True, **SCREAMING_SNAKE_CASE_, ) -> None: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = size if size is not None else {'height': 384, 'width': 384} UpperCamelCase : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_, default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = do_resize UpperCamelCase : Tuple = size UpperCamelCase : Optional[int] = resample UpperCamelCase : Union[str, Any] = do_rescale UpperCamelCase : Union[str, Any] = rescale_factor UpperCamelCase : Optional[int] = do_normalize UpperCamelCase : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCamelCase : Any = image_std if image_std is not None else OPENAI_CLIP_STD UpperCamelCase : Dict = do_convert_rgb def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> np.ndarray: UpperCamelCase : str = get_size_dict(SCREAMING_SNAKE_CASE_, default_to_square=SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) UpperCamelCase : Optional[int] = (size['height'], size['width']) return resize(SCREAMING_SNAKE_CASE_, size=SCREAMING_SNAKE_CASE_, resample=SCREAMING_SNAKE_CASE_, data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> Tuple: return rescale(SCREAMING_SNAKE_CASE_, scale=SCREAMING_SNAKE_CASE_, data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE_, mean=SCREAMING_SNAKE_CASE_, std=SCREAMING_SNAKE_CASE_, data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST, **SCREAMING_SNAKE_CASE_, ) -> PIL.Image.Image: UpperCamelCase : Tuple = do_resize if do_resize is not None else self.do_resize UpperCamelCase : Optional[Any] = resample if resample is not None else self.resample UpperCamelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean UpperCamelCase : str = image_std if image_std is not None else self.image_std UpperCamelCase : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase : Dict = size if size is not None else self.size UpperCamelCase : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE_, default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase : Any = [convert_to_rgb(SCREAMING_SNAKE_CASE_ ) for image in images] # All transformations expect numpy arrays. UpperCamelCase : Any = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: UpperCamelCase : Optional[int] = [self.resize(image=SCREAMING_SNAKE_CASE_, size=SCREAMING_SNAKE_CASE_, resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: UpperCamelCase : Optional[Any] = [self.rescale(image=SCREAMING_SNAKE_CASE_, scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: UpperCamelCase : List[Any] = [self.normalize(image=SCREAMING_SNAKE_CASE_, mean=SCREAMING_SNAKE_CASE_, std=SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase : Optional[int] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase : Tuple = BatchFeature(data={'pixel_values': images}, tensor_type=SCREAMING_SNAKE_CASE_ ) return encoded_outputs
40
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
1
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __SCREAMING_SNAKE_CASE ( UpperCamelCase : List[str] , UpperCamelCase : str , **UpperCamelCase : Tuple ) -> Dict: """simple docstring""" a_ = AutoConfig.from_pretrained(a__ , **a__ ) a_ = AutoModelForSeqaSeqLM.from_config(a__ ) model.save_pretrained(a__ ) AutoTokenizer.from_pretrained(a__ ).save_pretrained(a__ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
714
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _A = '\nHuman: <<task>>\n\nAssistant: ' _A = 'huggingface-tools/default-prompts' _A = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def __SCREAMING_SNAKE_CASE ( UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any]="run" ) -> int: """simple docstring""" if prompt_or_repo_id is None: a_ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("""\\s""" , UpperCamelCase ) is not None: return prompt_or_repo_id a_ = cached_file( UpperCamelCase , PROMPT_FILES[mode] , repo_type="""dataset""" , user_agent={"""agent""": agent_name} ) with open(UpperCamelCase , """r""" , encoding="""utf-8""" ) as f: return f.read()
403
0
'''simple docstring''' import os import sys lowerCAmelCase: Optional[Any] = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCAmelCase: Union[str, Any] = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def lowerCamelCase__ ( *_A , **_A ): return AutoConfig.from_pretrained(*_A , **_A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowerCamelCase__ ( *_A , **_A ): return AutoTokenizer.from_pretrained(*_A , **_A ) @add_start_docstrings(AutoModel.__doc__ ) def lowerCamelCase__ ( *_A , **_A ): return AutoModel.from_pretrained(*_A , **_A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowerCamelCase__ ( *_A , **_A ): return AutoModelForCausalLM.from_pretrained(*_A , **_A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowerCamelCase__ ( *_A , **_A ): return AutoModelForMaskedLM.from_pretrained(*_A , **_A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowerCamelCase__ ( *_A , **_A ): return AutoModelForSequenceClassification.from_pretrained(*_A , **_A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowerCamelCase__ ( *_A , **_A ): return AutoModelForQuestionAnswering.from_pretrained(*_A , **_A )
526
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase: Dict = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Optional[int] = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: List[Any] = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCAmelCase: Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
526
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __SCREAMING_SNAKE_CASE : str = 'pt' elif is_tf_available(): __SCREAMING_SNAKE_CASE : str = 'tf' else: __SCREAMING_SNAKE_CASE : Union[str, Any] = 'jax' class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): lowercase__ = PerceiverTokenizer lowercase__ = False def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() __a : int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" ) def __lowerCamelCase ( self , **__UpperCamelCase ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=20 , __UpperCamelCase=5 ): '''simple docstring''' __a : Union[str, Any] = [] for i in range(len(__UpperCamelCase ) ): try: __a : str = tokenizer.decode([i] , clean_up_tokenization_spaces=__UpperCamelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __a : str = list(filter(lambda __UpperCamelCase : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , __UpperCamelCase ) ) __a : Tuple = list(filter(lambda __UpperCamelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__UpperCamelCase ) , __UpperCamelCase ) ) if max_length is not None and len(__UpperCamelCase ) > max_length: __a : List[Any] = toks[:max_length] if min_length is not None and len(__UpperCamelCase ) < min_length and len(__UpperCamelCase ) > 0: while len(__UpperCamelCase ) < min_length: __a : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] __a : int = [t[0] for t in toks] # Ensure consistency __a : Tuple = tokenizer.decode(__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase ) if " " not in output_txt and len(__UpperCamelCase ) > 1: __a : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__UpperCamelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__UpperCamelCase ) ) if with_prefix_space: __a : List[Any] = """ """ + output_txt __a : Any = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) return output_txt, output_ids def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = self.perceiver_tokenizer __a : Optional[Any] = """Unicode €.""" __a : List[str] = tokenizer(__UpperCamelCase ) __a : str = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["""input_ids"""] , __UpperCamelCase ) # decoding __a : Tuple = tokenizer.decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , """[CLS]Unicode €.[SEP]""" ) __a : str = tokenizer("""e è é ê ë""" ) __a : Tuple = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["""input_ids"""] , __UpperCamelCase ) # decoding __a : Tuple = tokenizer.decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , """[CLS]e è é ê ë[SEP]""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = self.perceiver_tokenizer __a : int = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off __a : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __a : List[str] = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors=__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) if FRAMEWORK != "jax": __a : Union[str, Any] = list(batch.input_ids.numpy()[0] ) else: __a : Tuple = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = self.perceiver_tokenizer __a : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __a : Tuple = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors=__UpperCamelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , __UpperCamelCase ) self.assertIn("""attention_mask""" , __UpperCamelCase ) self.assertNotIn("""decoder_input_ids""" , __UpperCamelCase ) self.assertNotIn("""decoder_attention_mask""" , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = self.perceiver_tokenizer __a : str = [ """Summary of the text.""", """Another summary.""", ] __a : List[Any] = tokenizer( text_target=__UpperCamelCase , max_length=32 , padding="""max_length""" , truncation=__UpperCamelCase , return_tensors=__UpperCamelCase ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __a : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __a : Union[str, Any] = tempfile.mkdtemp() __a : Optional[int] = """ He is very happy, UNwant\u00E9d,running""" __a : Any = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) __a : str = tokenizer.__class__.from_pretrained(__UpperCamelCase ) __a : Any = after_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) shutil.rmtree(__UpperCamelCase ) __a : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __a : Optional[Any] = tempfile.mkdtemp() __a : int = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) __a : Optional[Any] = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __a : Any = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) __a : List[Any] = tokenizer.__class__.from_pretrained(__UpperCamelCase ) __a : str = after_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __a : Tuple = tokenizer.__class__.from_pretrained(__UpperCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__UpperCamelCase ) with open(os.path.join(__UpperCamelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __a : Any = json.load(__UpperCamelCase ) with open(os.path.join(__UpperCamelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __a : Dict = json.load(__UpperCamelCase ) __a : Union[str, Any] = [f"""<extra_id_{i}>""" for i in range(125 )] __a : List[Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] __a : Union[str, Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(__UpperCamelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__UpperCamelCase , __UpperCamelCase ) with open(os.path.join(__UpperCamelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__UpperCamelCase , __UpperCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __a : int = tokenizer_class.from_pretrained( __UpperCamelCase , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __a : Optional[Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=__UpperCamelCase )] __a : str = tokenizer_class.from_pretrained( __UpperCamelCase , additional_special_tokens=__UpperCamelCase , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , """�""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = self.get_tokenizers(fast=__UpperCamelCase , do_lower_case=__UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __a : Tuple = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""] __a : Optional[Any] = tokenizer.convert_tokens_to_string(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase )
697
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _snake_case ( lowercase , lowercase , lowercase ) -> Any: # Construct model if gpta_config_file == "": __a : Dict = GPTaConfig() else: __a : Optional[Any] = GPTaConfig.from_json_file(lowercase ) __a : Union[str, Any] = GPTaModel(lowercase ) # Load weights from numpy load_tf_weights_in_gpta(lowercase , lowercase , lowercase ) # Save pytorch-model __a : Optional[int] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME __a : Dict = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , lowercase ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) __SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
697
1
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Union[List[PIL.Image.Image], np.ndarray] __UpperCamelCase: Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
244
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: str = "M-CLIP" def __init__( self : Union[str, Any] , A : Optional[Any]=1024 , A : List[str]=768 , **A : Union[str, Any] ): _UpperCAmelCase : str = transformerDimSize _UpperCAmelCase : int = imageDimSize super().__init__(**A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[Any] = MCLIPConfig def __init__( self : Optional[int] , A : Union[str, Any] , *A : Any , **A : Optional[int] ): super().__init__(A , *A , **A ) _UpperCAmelCase : Optional[int] = XLMRobertaModel(A ) _UpperCAmelCase : int = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def _A ( self : int , A : int , A : int ): _UpperCAmelCase : Optional[int] = self.transformer(input_ids=A , attention_mask=A )[0] _UpperCAmelCase : Optional[int] = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A ), embs
244
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): __lowercase = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ).convert("RGB" ) return image def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") ) # fmt: on return rename_keys def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = dct.pop(_SCREAMING_SNAKE_CASE ) __lowercase = val def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __lowercase = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) __lowercase = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict __lowercase = torch.cat((q_bias, torch.zeros_like(_SCREAMING_SNAKE_CASE , requires_grad=_SCREAMING_SNAKE_CASE ), v_bias) ) __lowercase = qkv_bias def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = 3_6_4 if "coco" in model_name else 2_2_4 __lowercase = InstructBlipVisionConfig(image_size=_SCREAMING_SNAKE_CASE ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: __lowercase = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __lowercase = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: __lowercase = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf" , vocab_size=3_2_0_0_1 ).to_dict() elif "vicuna-13b" in model_name: __lowercase = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf" , vocab_size=3_2_0_0_1 ).to_dict() else: raise ValueError("Model name not supported" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 __lowercase = InstructBlipQFormerConfig(vocab_size=3_0_5_2_3 ).to_dict() __lowercase = InstructBlipConfig(vision_config=_SCREAMING_SNAKE_CASE , text_config=_SCREAMING_SNAKE_CASE , qformer_config=_SCREAMING_SNAKE_CASE ) return config, image_size @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ): __lowercase = AutoTokenizer.from_pretrained("bert-base-uncased" , truncation_side="left" ) qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} ) if "t5" in model_name: __lowercase = TaTokenizerFast.from_pretrained("google/flan-t5-xl" , truncation_side="left" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) __lowercase = LlamaTokenizerFast.from_pretrained( "huggyllama/llama-7b" , truncation_side="left" , bos_token="</s>" , unk_token="</s>" ) tokenizer.add_special_tokens({"pad_token": "[PAD]"} ) __lowercase , __lowercase = get_blipa_config(_SCREAMING_SNAKE_CASE ) __lowercase = InstructBlipForConditionalGeneration(_SCREAMING_SNAKE_CASE ).eval() __lowercase = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } __lowercase , __lowercase = model_name_to_original[model_name] # load original model print("Loading original model..." ) __lowercase = "cuda:1" if torch.cuda.is_available() else "cpu" __lowercase = "cuda:2" if torch.cuda.is_available() else "cpu" __lowercase , __lowercase , __lowercase = load_model_and_preprocess( name=_SCREAMING_SNAKE_CASE , model_type=_SCREAMING_SNAKE_CASE , is_eval=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) original_model.eval() print("Done!" ) # update state dict keys __lowercase = original_model.state_dict() __lowercase = create_rename_keys(_SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __lowercase = state_dict.pop(_SCREAMING_SNAKE_CASE ) if key.startswith("Qformer.bert" ): __lowercase = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: __lowercase = key.replace("self" , "attention" ) if "llm_proj" in key: __lowercase = key.replace("llm_proj" , "language_projection" ) if "t5_proj" in key: __lowercase = key.replace("t5_proj" , "language_projection" ) if key.startswith("llm_model" ): __lowercase = key.replace("llm_model" , "language_model" ) if key.startswith("t5" ): __lowercase = key.replace("t5" , "language" ) __lowercase = val # read in qv biases read_in_q_v_bias(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) __lowercase = load_demo_image() __lowercase = "What is unusual about this image?" # create processor __lowercase = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=_SCREAMING_SNAKE_CASE , image_std=_SCREAMING_SNAKE_CASE ) __lowercase = InstructBlipProcessor( image_processor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , qformer_tokenizer=_SCREAMING_SNAKE_CASE , ) __lowercase = processor(images=_SCREAMING_SNAKE_CASE , text=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # make sure processor creates exact same pixel values __lowercase = vis_processors["eval"](_SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(_SCREAMING_SNAKE_CASE ) __lowercase = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , _SCREAMING_SNAKE_CASE ) original_model.to(_SCREAMING_SNAKE_CASE ) hf_model.to(_SCREAMING_SNAKE_CASE ) with torch.no_grad(): if "vicuna" in model_name: __lowercase = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits __lowercase = hf_model(**_SCREAMING_SNAKE_CASE ).logits else: __lowercase = original_model( {"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits __lowercase = tokenizer("\n" , return_tensors="pt" ).input_ids.to(_SCREAMING_SNAKE_CASE ) __lowercase = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_0_0 ) __lowercase = hf_model(**_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ).logits print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape __lowercase = 1E-4 if "vicuna" in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) print("Looks ok!" ) print("Generating with original model..." ) __lowercase = original_model.generate({"image": original_pixel_values, "prompt": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("Generating with HF model..." ) __lowercase = hf_model.generate( **_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , num_beams=5 , max_length=2_5_6 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? __lowercase = 2 print("Original generation:" , _SCREAMING_SNAKE_CASE ) __lowercase = processor.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) __lowercase = [text.strip() for text in output_text] print("HF generation:" , _SCREAMING_SNAKE_CASE ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_SCREAMING_SNAKE_CASE ) hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: processor.push_to_hub(F"""Salesforce/{model_name}""" ) hf_model.push_to_hub(F"""Salesforce/{model_name}""" ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() snake_case__ : Tuple = [ """instructblip-vicuna-7b""", """instructblip-vicuna-13b""", """instructblip-flan-t5-xl""", """instructblip-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""instructblip-flan-t5-xl""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) snake_case__ : Dict = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
713
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["prompt"] __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] if "image" in inputs: __lowercase = inputs["image"] else: __lowercase = None if "mask_image" in inputs: __lowercase = inputs["mask_image"] else: __lowercase = None if "original_image" in inputs: __lowercase = inputs["original_image"] else: __lowercase = None __lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
655
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : def __init__( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=13 , _UpperCamelCase : Union[str, Any]=7 , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Optional[Any]=True , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Dict=99 , _UpperCamelCase : Dict=24 , _UpperCamelCase : Optional[Any]=2 , _UpperCamelCase : List[str]=6 , _UpperCamelCase : Union[str, Any]=37 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Optional[Any]=0.1 , _UpperCamelCase : int=0.1 , _UpperCamelCase : str=512 , _UpperCamelCase : Optional[int]=16 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Dict=0.0_2 , _UpperCamelCase : Optional[Any]=3 , _UpperCamelCase : int=None , _UpperCamelCase : Optional[int]=1_000 , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = range_bbox def __snake_case( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE = bbox[i, j, 3] SCREAMING_SNAKE_CASE = bbox[i, j, 1] SCREAMING_SNAKE_CASE = t if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE = bbox[i, j, 2] SCREAMING_SNAKE_CASE = bbox[i, j, 0] SCREAMING_SNAKE_CASE = t SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __snake_case( self : int ) -> str: '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __snake_case( self : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = LiltModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , bbox=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __snake_case( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : int , ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = LiltForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case( self : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] , ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = LiltForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case( self : int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class lowercase ( a , a , a , unittest.TestCase ): lowercase__ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowercase__ : List[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : Union[str, Any] = False def __snake_case( self : str , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[Any] , _UpperCamelCase : int ) -> str: '''simple docstring''' return True def __snake_case( self : Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = LiltModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def __snake_case( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __snake_case( self : List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __snake_case( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def __snake_case( self : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def __snake_case( self : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def __snake_case( self : List[str] ) -> Optional[Any]: '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = LiltModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch @slow class lowercase ( unittest.TestCase ): def __snake_case( self : Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([[1, 2]] , device=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.Size([1, 2, 768] ) SCREAMING_SNAKE_CASE = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=_UpperCamelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) )
403
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class lowercase ( unittest.TestCase ): def __init__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=13 , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Dict=True , _UpperCamelCase : str=True , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : int=99 , _UpperCamelCase : Optional[int]=32 , _UpperCamelCase : str=5 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=37 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Optional[Any]=512 , _UpperCamelCase : Optional[Any]=16 , _UpperCamelCase : Tuple=2 , _UpperCamelCase : Union[str, Any]=0.0_2 , _UpperCamelCase : str=4 , ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_attention_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_choices def __snake_case( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_attention_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __snake_case( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def __snake_case( self : Union[str, Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class lowercase ( a , unittest.TestCase ): lowercase__ : List[Any] = True lowercase__ : str = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def __snake_case( self : str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxRobertaPreLayerNormModelTester(self ) @slow def __snake_case( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCamelCase ) @require_flax class lowercase ( unittest.TestCase ): @slow def __snake_case( self : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase )[0] SCREAMING_SNAKE_CASE = [1, 11, 50_265] self.assertEqual(list(output.shape ) , _UpperCamelCase ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def __snake_case( self : List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) )
403
1
def snake_case__ ( ) -> Union[str, Any]: """simple docstring""" A__ : Tuple = [] A__ : Optional[int] = 1 while len(__lowercase ) < 1E6: constant.append(str(__lowercase ) ) i += 1 A__ : Any = "".join(__lowercase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
706
from collections import Counter from timeit import timeit def snake_case__ ( __lowercase = "" , ) -> bool: """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2 def snake_case__ ( __lowercase = "" ) -> bool: """simple docstring""" if len(__lowercase ) == 0: return True A__ : Any = input_str.replace(" " , "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string A__ : dict[str, int] = {} for character in lower_case_input_str: A__ : Optional[int] = character_freq_dict.get(__lowercase , 0 ) + 1 A__ : List[Any] = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def snake_case__ ( __lowercase = "" ) -> None: """simple docstring""" print("\nFor string = " , __lowercase , ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(__lowercase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(__lowercase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": snake_case : Dict = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) snake_case : Dict = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
182
0
'''simple docstring''' import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : Optional[int] = DownBlockaD # noqa F405 _A : Optional[Any] = """down""" def __lowerCamelCase ( self ): __UpperCAmelCase = [-0.0_2_3_2, -0.9_8_6_9, 0.8_0_5_4, -0.0_6_3_7, -0.1_6_8_8, -1.4_2_6_4, 0.4_4_7_0, -1.3_3_9_4, 0.0_9_0_4] super().test_output(lowercase_ ) class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : int = ResnetDownsampleBlockaD # noqa F405 _A : int = """down""" def __lowerCamelCase ( self ): __UpperCAmelCase = [0.0_7_1_0, 0.2_4_1_0, -0.7_3_2_0, -1.0_7_5_7, -1.1_3_4_3, 0.3_5_4_0, -0.0_1_3_3, -0.2_5_7_6, 0.0_9_4_8] super().test_output(lowercase_ ) class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : List[Any] = AttnDownBlockaD # noqa F405 _A : str = """down""" def __lowerCamelCase ( self ): __UpperCAmelCase = [0.0_6_3_6, 0.8_9_6_4, -0.6_2_3_4, -1.0_1_3_1, 0.0_8_4_4, 0.4_9_3_5, 0.3_4_3_7, 0.0_9_1_1, -0.2_9_5_7] super().test_output(lowercase_ ) class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : Optional[int] = CrossAttnDownBlockaD # noqa F405 _A : int = """down""" def __lowerCamelCase ( self ): __UpperCAmelCase = super().prepare_init_args_and_inputs_for_common() __UpperCAmelCase = 32 return init_dict, inputs_dict def __lowerCamelCase ( self ): __UpperCAmelCase = [0.2_2_3_8, -0.7_3_9_6, -0.2_2_5_5, -0.3_8_2_9, 0.1_9_2_5, 1.1_6_6_5, 0.0_6_0_3, -0.7_2_9_5, 0.1_9_8_3] super().test_output(lowercase_ ) class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : Optional[int] = SimpleCrossAttnDownBlockaD # noqa F405 _A : List[str] = """down""" @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=lowercase_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = super().prepare_init_args_and_inputs_for_common() __UpperCAmelCase = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def __lowerCamelCase ( self ): __UpperCAmelCase = [0.7_9_2_1, -0.0_9_9_2, -0.1_9_6_2, -0.7_6_9_5, -0.4_2_4_2, 0.7_8_0_4, 0.4_7_3_7, 0.2_7_6_5, 0.3_3_3_8] super().test_output(lowercase_ ) class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : List[str] = SkipDownBlockaD # noqa F405 _A : Tuple = """down""" @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_skip_sample=lowercase_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = [-0.0_8_4_5, -0.2_0_8_7, -0.2_4_6_5, 0.0_9_7_1, 0.1_9_0_0, -0.0_4_8_4, 0.2_6_6_4, 0.4_1_7_9, 0.5_0_6_9] super().test_output(lowercase_ ) class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : str = AttnSkipDownBlockaD # noqa F405 _A : List[str] = """down""" @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_skip_sample=lowercase_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = [0.5_5_3_9, 0.1_6_0_9, 0.4_9_2_4, 0.0_5_3_7, -0.1_9_9_5, 0.4_0_5_0, 0.0_9_7_9, -0.2_7_2_1, -0.0_6_4_2] super().test_output(lowercase_ ) class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : Tuple = DownEncoderBlockaD # noqa F405 _A : Optional[Any] = """down""" @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_temb=lowercase_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = { "in_channels": 32, "out_channels": 32, } __UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self ): __UpperCAmelCase = [1.1_1_0_2, 0.5_3_0_2, 0.4_8_7_2, -0.0_0_2_3, -0.8_0_4_2, 0.0_4_8_3, -0.3_4_8_9, -0.5_6_3_2, 0.7_6_2_6] super().test_output(lowercase_ ) class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405 _A : Any = """down""" @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_temb=lowercase_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = { "in_channels": 32, "out_channels": 32, } __UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self ): __UpperCAmelCase = [0.8_9_6_6, -0.1_4_8_6, 0.8_5_6_8, 0.8_1_4_1, -0.9_0_4_6, -0.1_3_4_2, -0.0_9_7_2, -0.7_4_1_7, 0.1_5_3_8] super().test_output(lowercase_ ) class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : str = UNetMidBlockaD # noqa F405 _A : Any = """mid""" def __lowerCamelCase ( self ): __UpperCAmelCase = { "in_channels": 32, "temb_channels": 128, } __UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self ): __UpperCAmelCase = [-0.1_0_6_2, 1.7_2_4_8, 0.3_4_9_4, 1.4_5_6_9, -0.0_9_1_0, -1.2_4_2_1, -0.9_9_8_4, 0.6_7_3_6, 1.0_0_2_8] super().test_output(lowercase_ ) class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : Dict = UNetMidBlockaDCrossAttn # noqa F405 _A : int = """mid""" def __lowerCamelCase ( self ): __UpperCAmelCase = super().prepare_init_args_and_inputs_for_common() __UpperCAmelCase = 32 return init_dict, inputs_dict def __lowerCamelCase ( self ): __UpperCAmelCase = [0.0_1_8_7, 2.4_2_2_0, 0.4_4_8_4, 1.1_2_0_3, -0.6_1_2_1, -1.5_1_2_2, -0.8_2_7_0, 0.7_8_5_1, 1.8_3_3_5] super().test_output(lowercase_ ) class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : Tuple = UNetMidBlockaDSimpleCrossAttn # noqa F405 _A : List[Any] = """mid""" @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=lowercase_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = super().prepare_init_args_and_inputs_for_common() __UpperCAmelCase = 32 return init_dict, inputs_dict def __lowerCamelCase ( self ): __UpperCAmelCase = [0.7_1_4_3, 1.9_9_7_4, 0.5_4_4_8, 1.3_9_7_7, 0.1_2_8_2, -1.1_2_3_7, -1.4_2_3_8, 0.5_5_3_0, 0.8_8_8_0] super().test_output(lowercase_ ) class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : str = UpBlockaD # noqa F405 _A : Dict = """up""" @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = [-0.2_0_4_1, -0.4_1_6_5, -0.3_0_2_2, 0.0_0_4_1, -0.6_6_2_8, -0.7_0_5_3, 0.1_9_2_8, -0.0_3_2_5, 0.0_5_2_3] super().test_output(lowercase_ ) class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : List[Any] = ResnetUpsampleBlockaD # noqa F405 _A : Optional[Any] = """up""" @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = [0.2_2_8_7, 0.3_5_4_9, -0.1_3_4_6, 0.4_7_9_7, -0.1_7_1_5, -0.9_6_4_9, 0.7_3_0_5, -0.5_8_6_4, -0.6_2_4_4] super().test_output(lowercase_ ) class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : Optional[int] = CrossAttnUpBlockaD # noqa F405 _A : str = """up""" @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = super().prepare_init_args_and_inputs_for_common() __UpperCAmelCase = 32 return init_dict, inputs_dict def __lowerCamelCase ( self ): __UpperCAmelCase = [-0.1_4_0_3, -0.3_5_1_5, -0.0_4_2_0, -0.1_4_2_5, 0.3_1_6_7, 0.5_0_9_4, -0.2_1_8_1, 0.5_9_3_1, 0.5_5_8_2] super().test_output(lowercase_ ) class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : Optional[Any] = SimpleCrossAttnUpBlockaD # noqa F405 _A : List[Any] = """up""" @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ , include_encoder_hidden_states=lowercase_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = super().prepare_init_args_and_inputs_for_common() __UpperCAmelCase = 32 return init_dict, inputs_dict def __lowerCamelCase ( self ): __UpperCAmelCase = [0.2_6_4_5, 0.1_4_8_0, 0.0_9_0_9, 0.8_0_4_4, -0.9_7_5_8, -0.9_0_8_3, 0.0_9_9_4, -1.1_4_5_3, -0.7_4_0_2] super().test_output(lowercase_ ) class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : Any = AttnUpBlockaD # noqa F405 _A : List[Any] = """up""" @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def __lowerCamelCase ( self ): __UpperCAmelCase = [0.0_9_7_9, 0.1_3_2_6, 0.0_0_2_1, 0.0_6_5_9, 0.2_2_4_9, 0.0_0_5_9, 0.1_1_3_2, 0.5_9_5_2, 0.1_0_3_3] super().test_output(lowercase_ ) class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : Union[str, Any] = SkipUpBlockaD # noqa F405 _A : Any = """up""" @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = [-0.0_8_9_3, -0.1_2_3_4, -0.1_5_0_6, -0.0_3_3_2, 0.0_1_2_3, -0.0_2_1_1, 0.0_5_6_6, 0.0_1_4_3, 0.0_3_6_2] super().test_output(lowercase_ ) class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : Union[str, Any] = AttnSkipUpBlockaD # noqa F405 _A : Optional[int] = """up""" @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = [0.0_3_6_1, 0.0_6_1_7, 0.2_7_8_7, -0.0_3_5_0, 0.0_3_4_2, 0.3_4_2_1, -0.0_8_4_3, 0.0_9_1_3, 0.3_0_1_5] super().test_output(lowercase_ ) class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : Tuple = UpDecoderBlockaD # noqa F405 _A : List[str] = """up""" @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_temb=lowercase_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = {"in_channels": 32, "out_channels": 32} __UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self ): __UpperCAmelCase = [0.4_4_0_4, 0.1_9_9_8, -0.9_8_8_6, -0.3_3_2_0, -0.3_1_2_8, -0.7_0_3_4, -0.6_9_5_5, -0.2_3_3_8, -0.3_1_3_7] super().test_output(lowercase_ ) class UpperCAmelCase ( __snake_case , unittest.TestCase ): _A : str = AttnUpDecoderBlockaD # noqa F405 _A : Optional[int] = """up""" @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_temb=lowercase_ ) def __lowerCamelCase ( self ): __UpperCAmelCase = {"in_channels": 32, "out_channels": 32} __UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self ): __UpperCAmelCase = [0.6_7_3_8, 0.4_4_9_1, 0.1_0_5_5, 1.0_7_1_0, 0.7_3_1_6, 0.3_3_3_9, 0.3_3_5_2, 0.1_0_2_3, 0.3_5_6_8] super().test_output(lowercase_ )
126
from __future__ import annotations def snake_case (__lowercase , __lowercase , __lowercase ) -> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
670
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _lowercase = logging.get_logger(__name__) def _snake_case ( snake_case__ : int ): if isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCAmelCase ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: str = ['''pixel_values'''] def __init__( self : Union[str, Any] ,A_ : str = True ,A_ : int = None ,A_ : Optional[int] = PILImageResampling.BILINEAR ,A_ : Optional[Any] = True ,A_ : Any = None ,A_ : str = True ,A_ : Tuple = 1 / 255 ,A_ : Any = True ,A_ : Optional[Any] = True ,A_ : Union[str, Any] = None ,A_ : Union[str, Any] = None ,**A_ : str ,) -> Optional[Any]: super().__init__(**_lowerCAmelCase ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(_lowerCAmelCase ,default_to_square=_lowerCAmelCase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowerCAmelCase ,param_name='crop_size' ) A = do_resize A = size A = do_center_crop A = crop_size A = resample A = do_rescale A = rescale_factor A = offset A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : str ,A_ : Dict ,A_ : int = PILImageResampling.BILINEAR ,A_ : int = None ,**A_ : int ,) -> Tuple: A = get_size_dict(_lowerCAmelCase ,default_to_square=_lowerCAmelCase ) if "shortest_edge" in size: A = get_resize_output_image_size(_lowerCAmelCase ,size['shortest_edge'] ,default_to_square=_lowerCAmelCase ) elif "height" in size and "width" in size: A = (size['height'], size['width']) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(_lowerCAmelCase ,size=_lowerCAmelCase ,resample=_lowerCAmelCase ,data_format=_lowerCAmelCase ,**_lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Any ,A_ : Optional[Any] ,A_ : Dict = None ,**A_ : List[str] ,) -> str: A = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(_lowerCAmelCase ,size=(size['height'], size['width']) ,data_format=_lowerCAmelCase ,**_lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : Union[str, Any] ,A_ : Optional[Any] = True ,A_ : str = None ,**A_ : Tuple ,) -> str: A = image.astype(np.floataa ) if offset: A = image - (scale / 2) return rescale(_lowerCAmelCase ,scale=_lowerCAmelCase ,data_format=_lowerCAmelCase ,**_lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Tuple ,A_ : Dict ,A_ : Tuple ,A_ : str = None ,**A_ : Tuple ,) -> Dict: return normalize(_lowerCAmelCase ,mean=_lowerCAmelCase ,std=_lowerCAmelCase ,data_format=_lowerCAmelCase ,**_lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Any ,A_ : Tuple = None ,A_ : Union[str, Any] = None ,A_ : str = None ,A_ : List[str] = None ,A_ : str = None ,A_ : Union[str, Any] = None ,A_ : str = None ,A_ : List[Any] = None ,A_ : Optional[int] = None ,A_ : Union[str, Any] = None ,A_ : List[Any] = None ,A_ : Tuple = ChannelDimension.FIRST ,) -> str: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. A = to_numpy_array(_lowerCAmelCase ) if do_resize: A = self.resize(image=_lowerCAmelCase ,size=_lowerCAmelCase ,resample=_lowerCAmelCase ) if do_center_crop: A = self.center_crop(_lowerCAmelCase ,size=_lowerCAmelCase ) if do_rescale: A = self.rescale(image=_lowerCAmelCase ,scale=_lowerCAmelCase ,offset=_lowerCAmelCase ) if do_normalize: A = self.normalize(image=_lowerCAmelCase ,mean=_lowerCAmelCase ,std=_lowerCAmelCase ) A = to_channel_dimension_format(_lowerCAmelCase ,_lowerCAmelCase ) return image def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Union[str, Any] ,A_ : List[str] = None ,A_ : Optional[Any] = None ,A_ : List[str] = None ,A_ : Dict = None ,A_ : Union[str, Any] = None ,A_ : Optional[Any] = None ,A_ : Optional[Any] = None ,A_ : Dict = None ,A_ : List[str] = None ,A_ : Dict = None ,A_ : Union[str, Any] = None ,A_ : Dict = None ,A_ : str = ChannelDimension.FIRST ,**A_ : Any ,) -> Dict: A = do_resize if do_resize is not None else self.do_resize A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = offset if offset is not None else self.offset A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = size if size is not None else self.size A = get_size_dict(_lowerCAmelCase ,default_to_square=_lowerCAmelCase ) A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowerCAmelCase ,param_name='crop_size' ) if not valid_images(_lowerCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) A = make_batched(_lowerCAmelCase ) A = [ [ self._preprocess_image( image=_lowerCAmelCase ,do_resize=_lowerCAmelCase ,size=_lowerCAmelCase ,resample=_lowerCAmelCase ,do_center_crop=_lowerCAmelCase ,crop_size=_lowerCAmelCase ,do_rescale=_lowerCAmelCase ,rescale_factor=_lowerCAmelCase ,offset=_lowerCAmelCase ,do_normalize=_lowerCAmelCase ,image_mean=_lowerCAmelCase ,image_std=_lowerCAmelCase ,data_format=_lowerCAmelCase ,) for img in video ] for video in videos ] A = {'pixel_values': videos} return BatchFeature(data=_lowerCAmelCase ,tensor_type=_lowerCAmelCase )
709
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def _snake_case ( snake_case__ : int ): A = SwinvaConfig() A = swinva_name.split('_' ) A = name_split[1] if "to" in name_split[3]: A = int(name_split[3][-3:] ) else: A = int(name_split[3] ) if "to" in name_split[2]: A = int(name_split[2][-2:] ) else: A = int(name_split[2][6:] ) if model_size == "tiny": A = 96 A = (2, 2, 6, 2) A = (3, 6, 12, 24) elif model_size == "small": A = 96 A = (2, 2, 18, 2) A = (3, 6, 12, 24) elif model_size == "base": A = 128 A = (2, 2, 18, 2) A = (4, 8, 16, 32) else: A = 192 A = (2, 2, 18, 2) A = (6, 12, 24, 48) if "to" in swinva_name: A = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): A = 2_1841 A = 'huggingface/label-files' A = 'imagenet-22k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} else: A = 1000 A = 'huggingface/label-files' A = 'imagenet-1k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} A = img_size A = num_classes A = embed_dim A = depths A = num_heads A = window_size return config def _snake_case ( snake_case__ : List[Any] ): if "patch_embed.proj" in name: A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: A = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: A = 'encoder.' + name if "attn.proj" in name: A = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A = name.replace('attn' , 'attention.self' ) if "norm1" in name: A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: A = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: A = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: A = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: A = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": A = 'layernorm.weight' if name == "norm.bias": A = 'layernorm.bias' if "head" in name: A = name.replace('head' , 'classifier' ) else: A = 'swinv2.' + name return name def _snake_case ( snake_case__ : List[Any] , snake_case__ : List[Any] ): for key in orig_state_dict.copy().keys(): A = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: A = key.split('.' ) A = int(key_split[1] ) A = int(key_split[3] ) A = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A = val[:dim, :] A = val[dim : dim * 2, :] A = val[-dim:, :] else: A = val[:dim] A = val[ dim : dim * 2 ] A = val[-dim:] else: A = val return orig_state_dict def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Tuple ): A = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() A = get_swinva_config(snake_case__ ) A = SwinvaForImageClassification(snake_case__ ) model.eval() A = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A = image_processor(images=snake_case__ , return_tensors='pt' ) A = timm_model(inputs['pixel_values'] ) A = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print(F'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowercase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
22
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def UpperCAmelCase ( a_ , a_=False ) -> str: """simple docstring""" try: __A = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __A = default else: # KEY is set, convert it to True or False. try: __A = strtobool(a_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value SCREAMING_SNAKE_CASE :List[Any] = parse_flag_from_env('RUN_SLOW', default=False) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" return unittest.skip("Test was skipped" )(a_ ) def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , "test is slow" )(a_ ) def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU" )(a_ ) def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU" )(a_ ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , "test requires a XPU" )(a_ ) def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`" )(a_ ) def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite" )(a_ ) def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library" )(a_ ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , "test requires TPU" )(a_ ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU" )(a_ ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU" )(a_ ) def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs" )(a_ ) def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs" )(a_ ) def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , "test requires safetensors" )(a_ ) def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed" )(a_ ) def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version(">=" , "1.12.0" ) , "test requires torch version >= 1.12.0" )(a_ ) def UpperCAmelCase ( a_=None , a_=None ) -> Dict: """simple docstring""" if test_case is None: return partial(a_ , version=a_ ) return unittest.skipUnless(is_torch_version(">=" , a_ ) , F'''test requires torch version >= {version}''' )(a_ ) def UpperCAmelCase ( a_ ) -> str: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard" )(a_ ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(is_wandb_available() , "test requires wandb" )(a_ ) def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml" )(a_ ) SCREAMING_SNAKE_CASE :Optional[int] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(a_ ) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' snake_case_ = True @classmethod def UpperCamelCase_ ( cls : Any ): __A = tempfile.mkdtemp() @classmethod def UpperCamelCase_ ( cls : Optional[Any] ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def UpperCamelCase_ ( self : Tuple ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(A ) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[Any] ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[Any] ,A : Union[mock.Mock, List[mock.Mock]] ): __A = mocks if isinstance(A ,(tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = AcceleratorState() __A = tensor[None].clone().to(state.device ) __A = gather(a_ ).cpu() __A = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , a_ ): return False return True class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,A : List[str] ,A : Tuple ,A : Dict ): __A = returncode __A = stdout __A = stderr async def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]: """simple docstring""" while True: __A = await stream.readline() if line: callback(a_ ) else: break async def UpperCAmelCase ( a_ , a_=None , a_=None , a_=None , a_=False , a_=False ) -> _RunOutput: """simple docstring""" if echo: print("\nRunning: " , " ".join(a_ ) ) __A = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=a_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=a_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __A = [] __A = [] def tee(a_ , a_ , a_ , a_="" ): __A = line.decode("utf-8" ).rstrip() sink.append(a_ ) if not quiet: print(a_ , a_ , file=a_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda a_ : tee(a_ , a_ , sys.stdout , label="stdout:" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda a_ : tee(a_ , a_ , sys.stderr , label="stderr:" ) ) ), ] , timeout=a_ , ) return _RunOutput(await p.wait() , a_ , a_ ) def UpperCAmelCase ( a_ , a_=None , a_=None , a_=1_8_0 , a_=False , a_=True ) -> _RunOutput: """simple docstring""" __A = asyncio.get_event_loop() __A = loop.run_until_complete( _stream_subprocess(a_ , env=a_ , stdin=a_ , timeout=a_ , quiet=a_ , echo=a_ ) ) __A = " ".join(a_ ) if result.returncode > 0: __A = "\n".join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) return result class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' pass def UpperCAmelCase ( a_ , a_=False ) -> Dict: """simple docstring""" try: __A = subprocess.check_output(a_ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(a_ , "decode" ): __A = output.decode("utf-8" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'''Command `{' '.join(a_ )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
55
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor lowerCamelCase_ : Any = logging.getLogger(__name__) lowerCamelCase_ : int = 50 # max width of layer names lowerCamelCase_ : Any = 70 # max width of quantizer names def lowerCAmelCase( __lowerCamelCase ): __a = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=__lowerCamelCase , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=__lowerCamelCase , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=__lowerCamelCase , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=__lowerCamelCase , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=__lowerCamelCase , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=__lowerCamelCase , type=__lowerCamelCase , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=__lowerCamelCase , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def lowerCAmelCase( __lowerCamelCase ): if args.calibrator == "max": __a = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) __a = 'histogram' elif args.calibrator == "mse": __a = 'histogram' else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) __a = QuantDescriptor(num_bits=args.aprec , calib_method=__lowerCamelCase ) __a = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__lowerCamelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(__lowerCamelCase ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False , __lowerCamelCase=False ): logger.info('Configuring Model for Quantization' ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__lowerCamelCase , ['embeddings'] , which='weight' , _disabled=__lowerCamelCase ) if args.quant_disable: set_quantizer_by_name(__lowerCamelCase , [''] , _disabled=__lowerCamelCase ) if args.quant_disable_keyword: set_quantizer_by_name(__lowerCamelCase , args.quant_disable_keyword , _disabled=__lowerCamelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(__lowerCamelCase , [r'layer.\d+.' + args.quant_disable_layer_module] , _disabled=__lowerCamelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(__lowerCamelCase , [r'layer.\d+.' + args.quant_enable_layer_module] , _disabled=__lowerCamelCase ) if args.recalibrate_weights: recalibrate_weights(__lowerCamelCase ) if args.fuse_qkv: fuse_qkv(__lowerCamelCase , __lowerCamelCase ) if args.clip_gelu: clip_gelu(__lowerCamelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__lowerCamelCase ) def lowerCAmelCase( __lowerCamelCase ): logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__lowerCamelCase ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): def fusea(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): for mod in [qq, qk, qv]: if not hasattr(__lowerCamelCase , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return __a = qq._amax.detach().item() __a = qk._amax.detach().item() __a = qv._amax.detach().item() __a = max(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) qq._amax.fill_(__lowerCamelCase ) qk._amax.fill_(__lowerCamelCase ) qv._amax.fill_(__lowerCamelCase ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): __a = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__lowerCamelCase ) __a = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def lowerCAmelCase( __lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(__lowerCamelCase , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: __a = mod.weight.shape[0] __a = mod._weight_quantizer._amax.detach() __a = torch.ones(__lowerCamelCase , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def lowerCAmelCase( __lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(__lowerCamelCase , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) __a = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) __a = set(range(len(mod.weight.size() ) ) ) - axis_set __a = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__lowerCamelCase , keepdims=__lowerCamelCase ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) __a = amax def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase=25 , __lowerCamelCase=180 , __lowerCamelCase=None ): if ignore is None: __a = [] elif not isinstance(__lowerCamelCase , __lowerCamelCase ): __a = [ignore] __a = 0 for name, mod in model.named_modules(): if not hasattr(__lowerCamelCase , 'weight' ): continue __a = max(__lowerCamelCase , len(__lowerCamelCase ) ) for name, mod in model.named_modules(): __a = getattr(__lowerCamelCase , '_input_quantizer' , __lowerCamelCase ) __a = getattr(__lowerCamelCase , '_weight_quantizer' , __lowerCamelCase ) if not hasattr(__lowerCamelCase , 'weight' ): continue if type(__lowerCamelCase ) in ignore: continue if [True for s in ignore if type(__lowerCamelCase ) is str and s in name]: continue __a = f'''Act:{input_q.extra_repr()}''' __a = f'''Wgt:{weight_q.extra_repr()}''' __a = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(__lowerCamelCase ) <= line_width: logger.info(__lowerCamelCase ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{" ":{name_width}} {wgt_str}''' ) def lowerCAmelCase( __lowerCamelCase ): __a = 0 for name, mod in model.named_modules(): if isinstance(__lowerCamelCase , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if quantizer_mod is not None: assert hasattr(__lowerCamelCase , __lowerCamelCase ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: logger.warning(f'''{name} has no {quantizer}''' ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase="both" , **__lowerCamelCase ): __a = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(__lowerCamelCase , __lowerCamelCase , '_input_quantizer' , __lowerCamelCase , __lowerCamelCase ) if which in ["weight", "both"]: set_quantizer(__lowerCamelCase , __lowerCamelCase , '_weight_quantizer' , __lowerCamelCase , __lowerCamelCase ) logger.info(__lowerCamelCase ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(__lowerCamelCase , '_input_quantizer' ) or hasattr(__lowerCamelCase , '_weight_quantizer' ): for n in names: if re.search(__lowerCamelCase , __lowerCamelCase ): set_quantizers(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) elif name.endswith('_quantizer' ): for n in names: if re.search(__lowerCamelCase , __lowerCamelCase ): __a = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) logger.info(__lowerCamelCase )
559
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """tiiuae/falcon-40b""": """https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json""", """tiiuae/falcon-7b""": """https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json""", } class lowercase ( _lowercase ): """simple docstring""" a__ = "falcon" a__ = ["past_key_values"] def __init__( self , __snake_case=6_50_24 , __snake_case=45_44 , __snake_case=32 , __snake_case=71 , __snake_case=1e-5 , __snake_case=0.0_2 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=None , __snake_case=False , __snake_case=False , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=11 , __snake_case=11 , **__snake_case , ): _UpperCamelCase : List[Any] = vocab_size # Backward compatibility with n_embed kwarg _UpperCamelCase : Tuple = kwargs.pop('n_embed' , __snake_case) _UpperCamelCase : Union[str, Any] = hidden_size if n_embed is None else n_embed _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Optional[Any] = layer_norm_epsilon _UpperCamelCase : str = initializer_range _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : List[str] = hidden_dropout _UpperCamelCase : Optional[Any] = attention_dropout _UpperCamelCase : Optional[Any] = bos_token_id _UpperCamelCase : Union[str, Any] = eos_token_id _UpperCamelCase : str = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCamelCase : List[Any] = alibi _UpperCamelCase : Union[str, Any] = new_decoder_architecture _UpperCamelCase : str = multi_query # Ignored when new_decoder_architecture is True _UpperCamelCase : int = parallel_attn _UpperCamelCase : List[str] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case) @property def A__ ( self): return self.hidden_size // self.num_attention_heads @property def A__ ( self): return not self.alibi
648
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
648
1
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def A__( __lowerCAmelCase , __lowerCAmelCase ): # ===== initialization ===== _snake_case : int = Mock() _snake_case : Optional[int] = conn, Mock() _snake_case : int = iter([1, None] ) _snake_case : Dict = lambda __lowerCAmelCase : next(__lowerCAmelCase ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=__lowerCAmelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
304
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def _A( lowerCAmelCase ): def decorator(lowerCAmelCase ): A__ : Any = getattr(lowerCAmelCase , """handle_key""" , [] ) handle += [key] setattr(lowerCAmelCase , """handle_key""" , lowerCAmelCase ) return func return decorator def _A( *lowerCAmelCase ): def decorator(lowerCAmelCase ): A__ : Optional[Any] = getattr(lowerCAmelCase , """handle_key""" , [] ) handle += keys setattr(lowerCAmelCase , """handle_key""" , lowerCAmelCase ) return func return decorator class __UpperCAmelCase (__A ): '''simple docstring''' def __new__( cls , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' A__ : Union[str, Any] = super().__new__(cls , snake_case_ , snake_case_ , snake_case_ ) if not hasattr(snake_case_ , """key_handler""" ): setattr(snake_case_ , """key_handler""" , {} ) setattr(snake_case_ , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): A__ : Dict = getattr(snake_case_ , """handle_key""" , [] ) for key in handled_keys: A__ : Optional[Any] = value return new_cls @staticmethod def lowerCamelCase ( cls ): '''simple docstring''' A__ : int = get_character() if char != KEYMAP["undefined"]: A__ : Union[str, Any] = ord(snake_case_ ) A__ : int = cls.key_handler.get(snake_case_ ) if handler: A__ : int = char return handler(cls ) else: return None def _A( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
363
0
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __magic_name__ = logging.get_logger(__name__) def _lowerCAmelCase ( A__: Tuple , A__: Any ): '''simple docstring''' UpperCAmelCase = nn.functional.normalize(A__ ) UpperCAmelCase = nn.functional.normalize(A__ ) return torch.mm(A__ , normalized_text_embeds.t() ) class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = CLIPConfig __SCREAMING_SNAKE_CASE = ["""CLIPEncoderLayer"""] def __init__( self , _snake_case ) -> Optional[Any]: """simple docstring""" super().__init__(_snake_case ) UpperCAmelCase = CLIPVisionModel(config.vision_config ) UpperCAmelCase = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_snake_case ) UpperCAmelCase = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_snake_case ) UpperCAmelCase = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_snake_case ) UpperCAmelCase = nn.Parameter(torch.ones(17 ) , requires_grad=_snake_case ) UpperCAmelCase = nn.Parameter(torch.ones(3 ) , requires_grad=_snake_case ) @torch.no_grad() def snake_case_ ( self , _snake_case , _snake_case ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.vision_model(_snake_case )[1] # pooled_output UpperCAmelCase = self.visual_projection(_snake_case ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase = cosine_distance(_snake_case , self.special_care_embeds ).cpu().float().numpy() UpperCAmelCase = cosine_distance(_snake_case , self.concept_embeds ).cpu().float().numpy() UpperCAmelCase = [] UpperCAmelCase = image_embeds.shape[0] for i in range(_snake_case ): UpperCAmelCase = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images UpperCAmelCase = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): UpperCAmelCase = special_cos_dist[i][concept_idx] UpperCAmelCase = self.special_care_embeds_weights[concept_idx].item() UpperCAmelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) UpperCAmelCase = 0.01 for concept_idx in range(len(cos_dist[0] ) ): UpperCAmelCase = cos_dist[i][concept_idx] UpperCAmelCase = self.concept_embeds_weights[concept_idx].item() UpperCAmelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_snake_case ) result.append(_snake_case ) UpperCAmelCase = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def snake_case_ ( self , _snake_case , _snake_case ) -> List[str]: """simple docstring""" UpperCAmelCase = self.vision_model(_snake_case )[1] # pooled_output UpperCAmelCase = self.visual_projection(_snake_case ) UpperCAmelCase = cosine_distance(_snake_case , self.special_care_embeds ) UpperCAmelCase = cosine_distance(_snake_case , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images UpperCAmelCase = 0.0 UpperCAmelCase = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) UpperCAmelCase = torch.any(special_scores > 0 , dim=1 ) UpperCAmelCase = special_care * 0.01 UpperCAmelCase = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) UpperCAmelCase = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) UpperCAmelCase = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
391
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __magic_name__ = logging.getLogger(__name__) class lowercase ( A__ ): '''simple docstring''' def snake_case_ ( self , _snake_case , _snake_case , _snake_case=None , _snake_case=None ) -> Any: """simple docstring""" UpperCAmelCase = self.layer[current_layer](_snake_case , _snake_case , head_mask[current_layer] ) UpperCAmelCase = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , A__ , ) class lowercase ( A__ ): '''simple docstring''' def __init__( self , _snake_case ) -> Optional[Any]: """simple docstring""" super().__init__(_snake_case ) UpperCAmelCase = BertEncoderWithPabee(_snake_case ) self.init_weights() UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 def snake_case_ ( self , _snake_case ) -> int: """simple docstring""" UpperCAmelCase = threshold def snake_case_ ( self , _snake_case ) -> str: """simple docstring""" UpperCAmelCase = patience def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = 0 UpperCAmelCase = 0 def snake_case_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = self.inference_layers_num / self.inference_instances_num UpperCAmelCase = ( f"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" f""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_snake_case ) @add_start_docstrings_to_model_forward(_snake_case ) def snake_case_ ( self , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=False , ) -> List[Any]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: UpperCAmelCase = input_ids.size() elif inputs_embeds is not None: UpperCAmelCase = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) UpperCAmelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: UpperCAmelCase = torch.ones(_snake_case , device=_snake_case ) if token_type_ids is None: UpperCAmelCase = torch.zeros(_snake_case , dtype=torch.long , device=_snake_case ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. UpperCAmelCase = self.get_extended_attention_mask(_snake_case , _snake_case , _snake_case ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = encoder_hidden_states.size() UpperCAmelCase = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: UpperCAmelCase = torch.ones(_snake_case , device=_snake_case ) UpperCAmelCase = self.invert_attention_mask(_snake_case ) else: UpperCAmelCase = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] UpperCAmelCase = self.get_head_mask(_snake_case , self.config.num_hidden_layers ) UpperCAmelCase = self.embeddings( input_ids=_snake_case , position_ids=_snake_case , token_type_ids=_snake_case , inputs_embeds=_snake_case ) UpperCAmelCase = embedding_output if self.training: UpperCAmelCase = [] for i in range(self.config.num_hidden_layers ): UpperCAmelCase = self.encoder.adaptive_forward( _snake_case , current_layer=_snake_case , attention_mask=_snake_case , head_mask=_snake_case ) UpperCAmelCase = self.pooler(_snake_case ) UpperCAmelCase = output_layers[i](output_dropout(_snake_case ) ) res.append(_snake_case ) elif self.patience == 0: # Use all layers for inference UpperCAmelCase = self.encoder( _snake_case , attention_mask=_snake_case , head_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) UpperCAmelCase = self.pooler(encoder_outputs[0] ) UpperCAmelCase = [output_layers[self.config.num_hidden_layers - 1](_snake_case )] else: UpperCAmelCase = 0 UpperCAmelCase = None UpperCAmelCase = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 UpperCAmelCase = self.encoder.adaptive_forward( _snake_case , current_layer=_snake_case , attention_mask=_snake_case , head_mask=_snake_case ) UpperCAmelCase = self.pooler(_snake_case ) UpperCAmelCase = output_layers[i](_snake_case ) if regression: UpperCAmelCase = logits.detach() if patient_result is not None: UpperCAmelCase = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: UpperCAmelCase = 0 else: UpperCAmelCase = logits.detach().argmax(dim=1 ) if patient_result is not None: UpperCAmelCase = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_snake_case ) ): patient_counter += 1 else: UpperCAmelCase = 0 UpperCAmelCase = logits if patient_counter == self.patience: break UpperCAmelCase = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , A__ , ) class lowercase ( A__ ): '''simple docstring''' def __init__( self , _snake_case ) -> Optional[int]: """simple docstring""" super().__init__(_snake_case ) UpperCAmelCase = config.num_labels UpperCAmelCase = BertModelWithPabee(_snake_case ) UpperCAmelCase = nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_snake_case ) def snake_case_ ( self , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , ) -> Tuple: """simple docstring""" UpperCAmelCase = self.bert( input_ids=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , position_ids=_snake_case , head_mask=_snake_case , inputs_embeds=_snake_case , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) UpperCAmelCase = (logits[-1],) if labels is not None: UpperCAmelCase = None UpperCAmelCase = 0 for ix, logits_item in enumerate(_snake_case ): if self.num_labels == 1: # We are doing regression UpperCAmelCase = MSELoss() UpperCAmelCase = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase = CrossEntropyLoss() UpperCAmelCase = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: UpperCAmelCase = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 UpperCAmelCase = (total_loss / total_weights,) + outputs return outputs
391
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool _lowerCAmelCase = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class UpperCamelCase (__snake_case ): _SCREAMING_SNAKE_CASE : Any = """facebook/nllb-200-distilled-600M""" _SCREAMING_SNAKE_CASE : str = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) _SCREAMING_SNAKE_CASE : Optional[int] = """translator""" _SCREAMING_SNAKE_CASE : Any = AutoTokenizer _SCREAMING_SNAKE_CASE : str = AutoModelForSeqaSeqLM _SCREAMING_SNAKE_CASE : str = LANGUAGE_CODES _SCREAMING_SNAKE_CASE : Dict = ["""text""", """text""", """text"""] _SCREAMING_SNAKE_CASE : Tuple = ["""text"""] def __snake_case ( self :Union[str, Any] , __magic_name__ :Optional[int] , __magic_name__ :Dict , __magic_name__ :int ) ->Any: if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) lowercase : Optional[Any] = self.lang_to_code[src_lang] lowercase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __magic_name__ , return_tensors="""pt""" , src_lang=__magic_name__ , tgt_lang=__magic_name__ ) def __snake_case ( self :List[str] , __magic_name__ :List[str] ) ->Dict: return self.model.generate(**__magic_name__ ) def __snake_case ( self :Tuple , __magic_name__ :Optional[int] ) ->List[Any]: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__magic_name__ )
264
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } _lowerCAmelCase = { 'b0': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 2_24, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 2_40, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 14_08, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 2_60, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 15_36, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 3_00, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 17_92, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 3_80, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 20_48, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 4_56, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 23_04, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 5_28, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 25_60, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 6_00, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def UpperCamelCase ( _A ) -> List[str]: lowercase : List[str] = EfficientNetConfig() lowercase : Any = CONFIG_MAP[model_name]["""hidden_dim"""] lowercase : List[str] = CONFIG_MAP[model_name]["""width_coef"""] lowercase : str = CONFIG_MAP[model_name]["""depth_coef"""] lowercase : int = CONFIG_MAP[model_name]["""image_size"""] lowercase : List[Any] = CONFIG_MAP[model_name]["""dropout_rate"""] lowercase : int = CONFIG_MAP[model_name]["""dw_padding"""] lowercase : Optional[int] = """huggingface/label-files""" lowercase : int = """imagenet-1k-id2label.json""" lowercase : Any = 1_000 lowercase : Any = json.load(open(hf_hub_download(_A , _A , repo_type="""dataset""" ) , """r""" ) ) lowercase : Optional[int] = {int(_A ): v for k, v in idalabel.items()} lowercase : int = idalabel lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( ) -> Tuple: lowercase : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase : Optional[int] = Image.open(requests.get(_A , stream=_A ).raw ) return im def UpperCamelCase ( _A ) -> Optional[Any]: lowercase : str = CONFIG_MAP[model_name]["""image_size"""] lowercase : Optional[int] = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=_A , ) return preprocessor def UpperCamelCase ( _A ) -> Optional[int]: lowercase : Union[str, Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] lowercase : Optional[Any] = sorted(set(_A ) ) lowercase : Dict = len(_A ) lowercase : List[str] = {b: str(_A ) for b, i in zip(_A , range(_A ) )} lowercase : Union[str, Any] = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: lowercase : str = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) lowercase : Union[str, Any] = {} for item in rename_keys: if item[0] in original_param_names: lowercase : Optional[int] = """efficientnet.""" + item[1] lowercase : Any = """classifier.weight""" lowercase : Tuple = """classifier.bias""" return key_mapping def UpperCamelCase ( _A , _A , _A ) -> Optional[Any]: for key, value in tf_params.items(): if "normalization" in key: continue lowercase : List[Any] = key_mapping[key] if "_conv" in key and "kernel" in key: lowercase : str = torch.from_numpy(_A ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowercase : Optional[int] = torch.from_numpy(_A ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowercase : List[Any] = torch.from_numpy(np.transpose(_A ) ) else: lowercase : Optional[int] = torch.from_numpy(_A ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_A ) @torch.no_grad() def UpperCamelCase ( _A , _A , _A , _A ) -> str: lowercase : Any = model_classes[model_name]( include_top=_A , weights="""imagenet""" , input_tensor=_A , input_shape=_A , pooling=_A , classes=1_000 , classifier_activation="""softmax""" , ) lowercase : Dict = original_model.trainable_variables lowercase : Any = original_model.non_trainable_variables lowercase : Any = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowercase : Dict = param.numpy() lowercase : List[str] = list(tf_params.keys() ) # Load HuggingFace model lowercase : str = get_efficientnet_config(_A ) lowercase : List[Any] = EfficientNetForImageClassification(_A ).eval() lowercase : Optional[int] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) lowercase : int = rename_keys(_A ) replace_params(_A , _A , _A ) # Initialize preprocessor and preprocess input image lowercase : Optional[int] = convert_image_processor(_A ) lowercase : Any = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): lowercase : Union[str, Any] = hf_model(**_A ) lowercase : List[Any] = outputs.logits.detach().numpy() # Original model inference lowercase : Optional[Any] = False lowercase : str = CONFIG_MAP[model_name]["""image_size"""] lowercase : Optional[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowercase : Optional[Any] = image.img_to_array(_A ) lowercase : Dict = np.expand_dims(_A , axis=0 ) lowercase : List[str] = original_model.predict(_A ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_A , _A , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(_A ): os.mkdir(_A ) # Save converted model and image processor hf_model.save_pretrained(_A ) preprocessor.save_pretrained(_A ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) lowercase : Dict = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(_A ) hf_model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') _lowerCAmelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
264
1
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _lowercase = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. _lowercase = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) _lowercase = spec.loader.load_module() _lowercase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _lowercase = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") _lowercase = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowerCAmelCase__ ( )-> int: A__ = [] for config_class in list(CONFIG_MAPPING.values() ): A__ = False # source code of `config_class` A__ = inspect.getsource(UpperCamelCase_ ) A__ = _re_checkpoint.findall(UpperCamelCase_ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` A__ , A__ = checkpoint # verify the checkpoint name corresponds to the checkpoint link A__ = f"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: A__ = True break A__ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: A__ = '''\n'''.join(sorted(UpperCamelCase_ ) ) raise ValueError(f"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
526
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = "▁" _lowercase = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} _lowercase = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } _lowercase = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } _lowercase = { "ernie-m-base": 514, "ernie-m-large": 514, } _lowercase = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class _UpperCAmelCase ( A__ ): UpperCamelCase__ = ["input_ids"] UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = RESOURCE_FILES_NAMES def __init__( self , a__ , a__=None , a__=False , a__="utf8" , a__="[UNK]" , a__="[SEP]" , a__="[PAD]" , a__="[CLS]" , a__="[MASK]" , a__ = None , **a__ , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , vocab_file=a__ , encoding=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) A__ = do_lower_case A__ = sentencepiece_model_ckpt A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(a__) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: A__ = self.load_vocab(filepath=a__) else: A__ = {self.sp_model.id_to_piece(a__): id for id in range(self.sp_model.get_piece_size())} A__ = {v: k for k, v in self.vocab.items()} def snake_case_ ( self , a__): if text is None: return None A__ = self.tokenize(a__) A__ , A__ = '''''', [] for i, ch in enumerate(a__): if ch in self.SP_CHAR_MAPPING: A__ = self.SP_CHAR_MAPPING.get(a__) else: A__ = unicodedata.normalize('''NFKC''' , a__) if self.is_whitespace(a__): continue normalized_text += ch char_mapping.extend([i] * len(a__)) A__ , A__ , A__ = normalized_text, [], 0 if self.do_lower_case: A__ = text.lower() for token in split_tokens: if token[:1] == "▁": A__ = token[1:] A__ = text[offset:].index(a__) + offset A__ = start + len(a__) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1)) A__ = end return token_mapping @property def snake_case_ ( self): return len(self.vocab) def snake_case_ ( self): return dict(self.vocab , **self.added_tokens_encoder) def __getstate__( self): A__ = self.__dict__.copy() A__ = None return state def __setstate__( self , a__): A__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.sentencepiece_model_ckpt) def snake_case_ ( self , a__): return "".join((self.SP_CHAR_MAPPING.get(a__ , a__) for c in text)) def snake_case_ ( self , a__ , a__=False , a__=6_4 , a__=0.1): if self.sp_model_kwargs.get('''enable_sampling''') is True: A__ = True if self.sp_model_kwargs.get('''alpha''') is not None: A__ = self.sp_model_kwargs.get('''alpha''') if self.sp_model_kwargs.get('''nbest_size''') is not None: A__ = self.sp_model_kwargs.get('''nbest_size''') if not enable_sampling: A__ = self.sp_model.EncodeAsPieces(a__) else: A__ = self.sp_model.SampleEncodeAsPieces(a__ , a__ , a__) A__ = [] for pi, piece in enumerate(a__): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(a__) and pi != 0: new_pieces.append(a__) continue else: continue A__ = 0 for i, chunk in enumerate(a__): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(a__) or self.is_punct(a__): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i]) new_pieces.append(a__) A__ = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i]) A__ = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i]) A__ = i if len(a__) > lst_i: new_pieces.append(piece[lst_i:]) return new_pieces def snake_case_ ( self , a__): A__ = ''''''.join(a__).replace(a__ , ''' ''').strip() return out_string def snake_case_ ( self , a__): A__ = self.convert_ids_to_tokens(a__) A__ = ''''''.join(a__).replace(a__ , ''' ''').strip() return out_string def snake_case_ ( self , a__): return self.vocab.get(a__ , self.vocab.get(self.unk_token)) def snake_case_ ( self , a__): return self.reverse_vocab.get(a__ , self.unk_token) def snake_case_ ( self , a__ , a__=None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def snake_case_ ( self , a__ , a__=None): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def snake_case_ ( self , a__ , a__=None , a__=False): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''') return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(a__)) + [1, 1] + ([0] * len(a__)) + [1] return [1] + ([0] * len(a__)) + [1] def snake_case_ ( self , a__ , a__ = None): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(a__) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(a__) + 1) + [1] * (len(a__) + 3) def snake_case_ ( self , a__): if "\u4e00" <= char <= "\u9fff": return True return False def snake_case_ ( self , a__): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def snake_case_ ( self , a__): if char in ",;:.?!~,;:。?!《》【】": return True return False def snake_case_ ( self , a__): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(a__) == 1: A__ = unicodedata.category(a__) if cat == "Zs": return True return False def snake_case_ ( self , a__): A__ = {} with io.open(a__ , '''r''' , encoding='''utf-8''') as f: for index, line in enumerate(a__): A__ = line.rstrip('''\n''') A__ = int(a__) return token_to_idx def snake_case_ ( self , a__ , a__ = None): A__ = 0 if os.path.isdir(a__): A__ = os.path.join( a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: A__ = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(a__ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in sorted(self.vocab.items() , key=lambda a__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." ''' Please check that the vocabulary is not corrupted!''') A__ = token_index writer.write(token + '''\n''') index += 1 A__ = os.path.join(a__ , '''sentencepiece.bpe.model''') with open(a__ , '''wb''') as fi: A__ = self.sp_model.serialized_model_proto() fi.write(a__) return (vocab_file,)
526
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets a : int = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" a : int = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" a : Any = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): """simple docstring""" def UpperCAmelCase ( self : Union[str, Any] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[ """https://en.wikipedia.org/wiki/ROUGE_(metric)""", """https://github.com/google-research/google-research/tree/master/rouge""", ] , ) def UpperCAmelCase ( self : Optional[Any] , __lowercase : Tuple , __lowercase : str , __lowercase : Optional[Any]=None , __lowercase : List[str]=True , __lowercase : Optional[Any]=False ) -> Dict: if rouge_types is None: __UpperCAmelCase : Union[str, Any] = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""] __UpperCAmelCase : int = rouge_scorer.RougeScorer(rouge_types=__lowercase , use_stemmer=__lowercase ) if use_aggregator: __UpperCAmelCase : Any = scoring.BootstrapAggregator() else: __UpperCAmelCase : Union[str, Any] = [] for ref, pred in zip(__lowercase , __lowercase ): __UpperCAmelCase : Optional[Any] = scorer.score(__lowercase , __lowercase ) if use_aggregator: aggregator.add_scores(__lowercase ) else: scores.append(__lowercase ) if use_aggregator: __UpperCAmelCase : List[Any] = aggregator.aggregate() else: __UpperCAmelCase : Optional[Any] = {} for key in scores[0]: __UpperCAmelCase : Union[str, Any] = [score[key] for score in scores] return result
63
"""simple docstring""" from itertools import permutations def lowercase ( _SCREAMING_SNAKE_CASE : tuple ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase = [7, 11, 13, 17] for i, test in enumerate(_SCREAMING_SNAKE_CASE ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase ( _SCREAMING_SNAKE_CASE : int = 10 ): '''simple docstring''' return sum( int(''''''.join(map(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) for num in permutations(range(_SCREAMING_SNAKE_CASE ) ) if is_substring_divisible(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": print(f'''{solution() = }''')
602
0
'''simple docstring''' import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowercase__ = ["bart.large", "bart.large.mnli", "bart.large.cnn", "bart_xsum/model.pt"] lowercase__ = {"bart.large": BartModel, "bart.large.mnli": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("0.9.0"): raise Exception("requires fairseq >= 0.9.0") logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) lowercase__ = " Hello world! cécé herlolip" lowercase__ = [ ("model.classification_heads.mnli.dense.weight", "classification_head.dense.weight"), ("model.classification_heads.mnli.dense.bias", "classification_head.dense.bias"), ("model.classification_heads.mnli.out_proj.weight", "classification_head.out_proj.weight"), ("model.classification_heads.mnli.out_proj.bias", "classification_head.out_proj.bias"), ] def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', ] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = dct.pop(UpperCAmelCase_ ) UpperCAmelCase : List[str] = val def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Dict = torch.load(UpperCAmelCase_ , map_location='cpu' ) UpperCAmelCase : List[str] = torch.hub.load('pytorch/fairseq' , 'bart.large.cnn' ).eval() hub_interface.model.load_state_dict(sd['model'] ) return hub_interface def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = emb.weight.shape UpperCAmelCase : Optional[int] = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ , bias=UpperCAmelCase_ ) UpperCAmelCase : Tuple = emb.weight.data return lin_layer @torch.no_grad() def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ): if not os.path.exists(UpperCAmelCase_ ): UpperCAmelCase : str = torch.hub.load('pytorch/fairseq' , UpperCAmelCase_ ).eval() else: UpperCAmelCase : Union[str, Any] = load_xsum_checkpoint(UpperCAmelCase_ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: UpperCAmelCase : Tuple = checkpoint_path.replace('.' , '-' ) UpperCAmelCase : Tuple = BartConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : Any = bart.encode(UpperCAmelCase_ ).unsqueeze(0 ) UpperCAmelCase : Tuple = BartTokenizer.from_pretrained(UpperCAmelCase_ ).encode(UpperCAmelCase_ , return_tensors='pt' ).unsqueeze(0 ) if not torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ).all(): raise ValueError( F"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": UpperCAmelCase : str = bart.state_dict() remove_ignore_keys_(UpperCAmelCase_ ) UpperCAmelCase : Any = state_dict['model.decoder.embed_tokens.weight'] for src, dest in mnli_rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : int = BartForSequenceClassification(UpperCAmelCase_ ).eval() model.load_state_dict(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = bart.predict('mnli' , UpperCAmelCase_ , return_logits=UpperCAmelCase_ ) UpperCAmelCase : Tuple = model(UpperCAmelCase_ )[0] # logits else: # no classification heads to worry about UpperCAmelCase : Tuple = bart.model.state_dict() remove_ignore_keys_(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = state_dict['decoder.embed_tokens.weight'] UpperCAmelCase : str = bart.extract_features(UpperCAmelCase_ ) if hf_checkpoint_name == "facebook/bart-large": UpperCAmelCase : List[str] = BartModel(UpperCAmelCase_ ).eval() model.load_state_dict(UpperCAmelCase_ ) UpperCAmelCase : str = model(UpperCAmelCase_ ).model[0] else: UpperCAmelCase : Dict = BartForConditionalGeneration(UpperCAmelCase_ ).eval() # an existing summarization ckpt model.model.load_state_dict(UpperCAmelCase_ ) if hasattr(UpperCAmelCase_ , 'lm_head' ): UpperCAmelCase : List[str] = make_linear_from_emb(model.model.shared ) UpperCAmelCase : Any = model.model(UpperCAmelCase_ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('Some values in `fairseq_output` are different from `new_model_outputs`' ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default=None, type=str, help="Which huggingface architecture to use: bart-large-xsum" ) lowercase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
695
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowercase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = """whisper""" UpperCAmelCase_ : Tuple = ["""past_key_values"""] UpperCAmelCase_ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , lowercase_ : Any=51_865 , lowercase_ : List[Any]=80 , lowercase_ : int=6 , lowercase_ : Dict=4 , lowercase_ : List[Any]=6 , lowercase_ : Any=4 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=1_536 , lowercase_ : Tuple=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[Any]=50_257 , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : str="gelu" , lowercase_ : List[str]=256 , lowercase_ : str=0.0 , lowercase_ : Any=0.0 , lowercase_ : Tuple=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=False , lowercase_ : Union[str, Any]=1_500 , lowercase_ : List[Any]=448 , lowercase_ : int=50_256 , lowercase_ : Union[str, Any]=50_256 , lowercase_ : List[Any]=50_256 , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=[220, 50_256] , lowercase_ : Tuple=False , lowercase_ : str=256 , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.05 , lowercase_ : Any=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=10 , lowercase_ : int=0 , lowercase_ : Optional[int]=7 , **lowercase_ : Union[str, Any] , ) -> List[str]: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = num_mel_bins UpperCAmelCase : List[Any] = d_model UpperCAmelCase : int = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : Tuple = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : int = dropout UpperCAmelCase : int = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : str = decoder_layerdrop UpperCAmelCase : Union[str, Any] = use_cache UpperCAmelCase : int = encoder_layers UpperCAmelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Tuple = max_source_positions UpperCAmelCase : List[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : Optional[int] = classifier_proj_size UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : Optional[Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : str = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Tuple = mask_feature_length UpperCAmelCase : Optional[int] = mask_feature_min_masks UpperCAmelCase : str = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Optional[int] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase : int = {0: 'batch'} else: UpperCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22_050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Tuple = OrderedDict() UpperCAmelCase : Tuple = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase : Optional[Any] = encoder_inputs['input_features'].shape[2] UpperCAmelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = encoder_inputs.pop('input_features' ) UpperCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3
695
1
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a = logging.get_logger(__name__) a = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } a = {'''facebook/blenderbot_small-90M''': 512} def _snake_case ( _snake_case : List[str] ) -> Union[str, Any]: '''simple docstring''' _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char _A = set(_snake_case ) return pairs class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[str] = VOCAB_FILES_NAMES UpperCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : List[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple="__start__" , _UpperCAmelCase : int="__end__" , _UpperCAmelCase : Optional[Any]="__unk__" , _UpperCAmelCase : List[str]="__null__" , **_UpperCAmelCase : str , ): super().__init__(unk_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , **_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: _A = json.load(_UpperCAmelCase ) _A = {v: k for k, v in self.encoder.items()} with open(_UpperCAmelCase , encoding='utf-8' ) as merges_handle: _A = merges_handle.read().split('\n' )[1:-1] _A = [tuple(merge.split() ) for merge in merges] _A = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) _A = {} @property def lowerCAmelCase_ ( self : Optional[Any] ): return len(self.encoder ) def lowerCAmelCase_ ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : str ): if token in self.cache: return self.cache[token] _A = re.sub('([.,!?()])' , r' \1' , _UpperCAmelCase ) _A = re.sub('(\')' , r' \1 ' , _UpperCAmelCase ) _A = re.sub(r'\s{2,}' , ' ' , _UpperCAmelCase ) if "\n" in token: _A = token.replace('\n' , ' __newln__' ) _A = token.split(' ' ) _A = [] for token in tokens: if not len(_UpperCAmelCase ): continue _A = token.lower() _A = tuple(_UpperCAmelCase ) _A = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) _A = get_pairs(_UpperCAmelCase ) if not pairs: words.append(_UpperCAmelCase ) continue while True: _A = min(_UpperCAmelCase , key=lambda _UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(_UpperCAmelCase ): try: _A = word.index(_UpperCAmelCase , _UpperCAmelCase ) new_word.extend(word[i:j] ) _A = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(_UpperCAmelCase ) _A = new_word if len(_UpperCAmelCase ) == 1: break else: _A = get_pairs(_UpperCAmelCase ) _A = '@@ '.join(_UpperCAmelCase ) _A = word[:-4] _A = word words.append(_UpperCAmelCase ) return " ".join(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : str ): _A = [] _A = re.findall(r'\S+\n?' , _UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(_UpperCAmelCase ).split(' ' ) ) ) return split_tokens def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : str ): _A = token.lower() return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : int ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : List[str] ): _A = ' '.join(_UpperCAmelCase ).replace('@@ ' , '' ).strip() return out_string def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _A = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + '\n' ) _A = 0 with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) _A = token_index writer.write(' '.join(_UpperCAmelCase ) + '\n' ) index += 1 return vocab_file, merge_file
7
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def __UpperCAmelCase ( _UpperCAmelCase : str ) -> Optional[int]: return 1 / (1 + np.exp(-z )) def __UpperCAmelCase ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ) -> List[str]: return (-y * np.log(_UpperCAmelCase ) - (1 - y) * np.log(1 - h )).mean() def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] ) -> Optional[Any]: __snake_case = np.dot(_UpperCAmelCase , _UpperCAmelCase ) return np.sum(y * scores - np.log(1 + np.exp(_UpperCAmelCase ) ) ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str]=7_00_00 ) -> Union[str, Any]: __snake_case = np.zeros(x.shape[1] ) for iterations in range(_UpperCAmelCase ): __snake_case = np.dot(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = sigmoid_function(_UpperCAmelCase ) __snake_case = np.dot(x.T , h - y ) / y.size __snake_case = theta - alpha * gradient # updating the weights __snake_case = np.dot(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = sigmoid_function(_UpperCAmelCase ) __snake_case = cost_function(_UpperCAmelCase , _UpperCAmelCase ) if iterations % 1_00 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a : int = datasets.load_iris() a : int = iris.data[:, :2] a : Optional[Any] = (iris.target != 0) * 1 a : Tuple = 0.1 a : List[str] = logistic_reg(alpha, x, y, max_iterations=70_000) print('''theta: ''', theta) # printing the theta i.e our weights vector def __UpperCAmelCase ( _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: return sigmoid_function( np.dot(_UpperCAmelCase , _UpperCAmelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((a) , (a)) : Any = (x[:, 0].min(), x[:, 0].max()) ((a) , (a)) : Any = (x[:, 1].min(), x[:, 1].max()) ((a) , (a)) : Any = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a : Optional[Any] = np.c_[xxa.ravel(), xxa.ravel()] a : List[Any] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
69
0
"""simple docstring""" import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging _SCREAMING_SNAKE_CASE : Optional[int] = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] _SCREAMING_SNAKE_CASE : Union[str, Any] = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = ''' Hello world! cécé herlolip''' _SCREAMING_SNAKE_CASE : Tuple = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def lowerCamelCase__ ( _lowerCamelCase : Tuple ) -> int: lowerCamelCase_ = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : int ) -> Tuple: lowerCamelCase_ = dct.pop(_lowerCamelCase ) lowerCamelCase_ = val def lowerCamelCase__ ( _lowerCamelCase : Optional[Any] ) -> Optional[Any]: lowerCamelCase_ = torch.load(_lowerCamelCase , map_location='cpu' ) lowerCamelCase_ = torch.hub.load('pytorch/fairseq' , 'bart.large.cnn' ).eval() hub_interface.model.load_state_dict(sd['model'] ) return hub_interface def lowerCamelCase__ ( _lowerCamelCase : Tuple ) -> Optional[int]: lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape lowerCamelCase_ = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) lowerCamelCase_ = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int=None ) -> Union[str, Any]: if not os.path.exists(_lowerCamelCase ): lowerCamelCase_ = torch.hub.load('pytorch/fairseq' , _lowerCamelCase ).eval() else: lowerCamelCase_ = load_xsum_checkpoint(_lowerCamelCase ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: lowerCamelCase_ = checkpoint_path.replace('.' , '-' ) lowerCamelCase_ = BartConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase_ = bart.encode(_lowerCamelCase ).unsqueeze(0 ) lowerCamelCase_ = BartTokenizer.from_pretrained(_lowerCamelCase ).encode(_lowerCamelCase , return_tensors='pt' ).unsqueeze(0 ) if not torch.eq(_lowerCamelCase , _lowerCamelCase ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": lowerCamelCase_ = bart.state_dict() remove_ignore_keys_(_lowerCamelCase ) lowerCamelCase_ = state_dict['model.decoder.embed_tokens.weight'] for src, dest in mnli_rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCamelCase_ = BartForSequenceClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) lowerCamelCase_ = bart.predict('mnli' , _lowerCamelCase , return_logits=_lowerCamelCase ) lowerCamelCase_ = model(_lowerCamelCase )[0] # logits else: # no classification heads to worry about lowerCamelCase_ = bart.model.state_dict() remove_ignore_keys_(_lowerCamelCase ) lowerCamelCase_ = state_dict['decoder.embed_tokens.weight'] lowerCamelCase_ = bart.extract_features(_lowerCamelCase ) if hf_checkpoint_name == "facebook/bart-large": lowerCamelCase_ = BartModel(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) lowerCamelCase_ = model(_lowerCamelCase ).model[0] else: lowerCamelCase_ = BartForConditionalGeneration(_lowerCamelCase ).eval() # an existing summarization ckpt model.model.load_state_dict(_lowerCamelCase ) if hasattr(_lowerCamelCase , 'lm_head' ): lowerCamelCase_ = make_linear_from_emb(model.model.shared ) lowerCamelCase_ = model.model(_lowerCamelCase )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('Some values in `fairseq_output` are different from `new_model_outputs`' ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) _SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
137
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase : int , _lowerCamelCase : int ) -> int: while a != 0: lowerCamelCase_ , lowerCamelCase_ = b % a, a return b def lowerCamelCase__ ( _lowerCamelCase : int , _lowerCamelCase : int ) -> int: if gcd(_lowerCamelCase , _lowerCamelCase ) != 1: lowerCamelCase_ = F'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1, 0, a lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 0, 1, m while va != 0: lowerCamelCase_ = ua // va lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
137
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return int((input_a, input_a).count(0 ) == 0 ) def lowercase ( ): assert and_gate(0 ,0 ) == 0 assert and_gate(0 ,1 ) == 0 assert and_gate(1 ,0 ) == 0 assert and_gate(1 ,1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
29
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ): __a : Any = '' for i in table: res += inp[i - 1] return res def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] ): return data[1:] + data[0] def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] ): __a : Optional[int] = '' for i in range(len(lowerCamelCase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ): __a : List[str] = int('0b' + data[0] + data[-1] , 2 ) __a : List[str] = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ): __a : List[Any] = message[:4] __a : str = message[4:] __a : Any = apply_table(lowerCamelCase_ , lowerCamelCase_ ) __a : int = xor(lowerCamelCase_ , lowerCamelCase_ ) __a : Dict = apply_sbox(lowerCamelCase_ , temp[:4] ) # noqa: E741 __a : Tuple = apply_sbox(lowerCamelCase_ , temp[4:] ) __a : List[Any] = '0' * (2 - len(lowerCamelCase_ )) + l # noqa: E741 __a : List[str] = '0' * (2 - len(lowerCamelCase_ )) + r __a : List[Any] = apply_table(l + r , lowerCamelCase_ ) __a : Dict = xor(lowerCamelCase_ , lowerCamelCase_ ) return temp + right if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = input('''Enter 10 bit key: ''') SCREAMING_SNAKE_CASE__ = input('''Enter 8 bit message: ''') SCREAMING_SNAKE_CASE__ = [6, 3, 7, 4, 8, 5, 10, 9] SCREAMING_SNAKE_CASE__ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] SCREAMING_SNAKE_CASE__ = [2, 4, 3, 1] SCREAMING_SNAKE_CASE__ = [2, 6, 3, 1, 4, 8, 5, 7] SCREAMING_SNAKE_CASE__ = [4, 1, 3, 5, 7, 2, 8, 6] SCREAMING_SNAKE_CASE__ = [4, 1, 2, 3, 2, 3, 4, 1] SCREAMING_SNAKE_CASE__ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] SCREAMING_SNAKE_CASE__ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation SCREAMING_SNAKE_CASE__ = apply_table(key, paa_table) SCREAMING_SNAKE_CASE__ = temp[:5] SCREAMING_SNAKE_CASE__ = temp[5:] SCREAMING_SNAKE_CASE__ = left_shift(left) SCREAMING_SNAKE_CASE__ = left_shift(right) SCREAMING_SNAKE_CASE__ = apply_table(left + right, pa_table) SCREAMING_SNAKE_CASE__ = left_shift(left) SCREAMING_SNAKE_CASE__ = left_shift(right) SCREAMING_SNAKE_CASE__ = left_shift(left) SCREAMING_SNAKE_CASE__ = left_shift(right) SCREAMING_SNAKE_CASE__ = apply_table(left + right, pa_table) # encryption SCREAMING_SNAKE_CASE__ = apply_table(message, IP) SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ = temp[4:] + temp[:4] SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption SCREAMING_SNAKE_CASE__ = apply_table(CT, IP) SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ = temp[4:] + temp[:4] SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
47
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case_ : Union[str, Any] = { "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = [ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = [ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys snake_case_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
169
from __future__ import annotations def A (__A : list[int] ) -> list[int]: # This function is recursive """simple docstring""" UpperCAmelCase_ = len(__A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else UpperCAmelCase_ = array[0] UpperCAmelCase_ = False UpperCAmelCase_ = 1 UpperCAmelCase_ = [] while not is_found and i < array_length: if array[i] < pivot: UpperCAmelCase_ = True UpperCAmelCase_ = [element for element in array[i:] if element >= array[i]] UpperCAmelCase_ = longest_subsequence(__A ) if len(__A ) > len(__A ): UpperCAmelCase_ = temp_array else: i += 1 UpperCAmelCase_ = [element for element in array[1:] if element >= pivot] UpperCAmelCase_ = [pivot, *longest_subsequence(__A )] if len(__A ) > len(__A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
169
1
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a ( _lowerCamelCase , unittest.TestCase ): snake_case_ = CLIPTokenizer snake_case_ = CLIPTokenizerFast snake_case_ = True snake_case_ = {} snake_case_ = False def A_ ( self : List[Any] ): super().setUp() # fmt: off snake_case_ = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on snake_case_ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) snake_case_ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] snake_case_ = {'''unk_token''': '''<unk>'''} snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase_ ) ) def A_ ( self : Tuple , **lowercase_ : Tuple ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def A_ ( self : List[str] , **lowercase_ : Dict ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def A_ ( self : Optional[int] , lowercase_ : Optional[int] ): snake_case_ = '''lower newer''' snake_case_ = '''lower newer''' return input_text, output_text def A_ ( self : Optional[int] ): snake_case_ = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case_ = '''lower newer''' snake_case_ = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] snake_case_ = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) snake_case_ = tokens + [tokenizer.unk_token] snake_case_ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) @require_ftfy def A_ ( self : Optional[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case_ = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) snake_case_ = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) snake_case_ = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' snake_case_ = tokenizer_s.tokenize(lowercase_ ) snake_case_ = tokenizer_r.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways snake_case_ = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' snake_case_ = tokenizer_s.tokenize(lowercase_ ) snake_case_ = tokenizer_r.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Test that the tokenization is identical on unicode of space type snake_case_ = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: snake_case_ = tokenizer_s.tokenize(lowercase_ ) snake_case_ = tokenizer_r.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Test that the tokenization is identical on unicode of line break type snake_case_ = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: snake_case_ = tokenizer_s.tokenize(lowercase_ ) snake_case_ = tokenizer_r.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def A_ ( self : List[str] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case_ = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` snake_case_ = F"{text_of_1_token} {text_of_1_token}" snake_case_ = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , ) snake_case_ = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) snake_case_ = F" {text}" snake_case_ = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , ) snake_case_ = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ) + 1, 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) def A_ ( self : Optional[Any] ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowercase_ ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def A_ ( self : List[str] ): super().test_tokenization_python_rust_equals() def A_ ( self : List[Any] ): # CLIP always lower cases letters pass
640
'''simple docstring''' from PIL import Image def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Image: '''simple docstring''' def brightness(__UpperCAmelCase ) -> float: return 128 + level + (c - 128) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__UpperCAmelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 a : int = change_brightness(img, 100) brigt_img.save('image_data/lena_brightness.png', format='png')
640
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A = logging.get_logger(__name__) __A = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class _snake_case ( a__ ): snake_case__ = "deberta-v2" def __init__( self : Dict , UpperCAmelCase : Dict=128100 , UpperCAmelCase : List[str]=1536 , UpperCAmelCase : str=24 , UpperCAmelCase : Tuple=24 , UpperCAmelCase : str=6144 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : str=512 , UpperCAmelCase : Dict=0 , UpperCAmelCase : Dict=0.0_2 , UpperCAmelCase : str=1E-7 , UpperCAmelCase : Dict=False , UpperCAmelCase : List[Any]=-1 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : List[Any]="gelu" , **UpperCAmelCase : Optional[Any] , ): super().__init__(**UpperCAmelCase ) __lowerCamelCase : Dict = hidden_size __lowerCamelCase : Optional[Any] = num_hidden_layers __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : List[Any] = intermediate_size __lowerCamelCase : Tuple = hidden_act __lowerCamelCase : List[Any] = hidden_dropout_prob __lowerCamelCase : Any = attention_probs_dropout_prob __lowerCamelCase : List[str] = max_position_embeddings __lowerCamelCase : List[str] = type_vocab_size __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : int = relative_attention __lowerCamelCase : Tuple = max_relative_positions __lowerCamelCase : List[str] = pad_token_id __lowerCamelCase : str = position_biased_input # Backwards compatibility if type(UpperCAmelCase ) == str: __lowerCamelCase : Dict = [x.strip() for x in pos_att_type.lower().split("|" )] __lowerCamelCase : List[Any] = pos_att_type __lowerCamelCase : str = vocab_size __lowerCamelCase : List[Any] = layer_norm_eps __lowerCamelCase : Tuple = kwargs.get("pooler_hidden_size" , UpperCAmelCase ) __lowerCamelCase : str = pooler_dropout __lowerCamelCase : int = pooler_hidden_act class _snake_case ( a__ ): @property def lowerCamelCase__ ( self : Optional[Any] ): if self.task == "multiple-choice": __lowerCamelCase : Tuple = {0: "batch", 1: "choice", 2: "sequence"} else: __lowerCamelCase : Any = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def lowerCamelCase__ ( self : List[str] ): return 12 def lowerCamelCase__ ( self : str , UpperCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional["TensorType"] = None , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 40 , UpperCAmelCase : int = 40 , UpperCAmelCase : "PreTrainedTokenizerBase" = None , ): __lowerCamelCase : str = super().generate_dummy_inputs(preprocessor=UpperCAmelCase , framework=UpperCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
366
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Any=3 , UpperCAmelCase : str=18 , UpperCAmelCase : str=30 , UpperCAmelCase : Any=400 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Dict=None , UpperCAmelCase : List[str]=True , UpperCAmelCase : int=[0.5, 0.5, 0.5] , UpperCAmelCase : Tuple=[0.5, 0.5, 0.5] , ): __lowerCamelCase : Any = size if size is not None else {"shortest_edge": 18} __lowerCamelCase : Dict = crop_size if crop_size is not None else {"height": 18, "width": 18} __lowerCamelCase : List[str] = parent __lowerCamelCase : int = batch_size __lowerCamelCase : Any = num_channels __lowerCamelCase : Tuple = image_size __lowerCamelCase : int = min_resolution __lowerCamelCase : List[Any] = max_resolution __lowerCamelCase : List[str] = do_resize __lowerCamelCase : str = size __lowerCamelCase : Tuple = do_center_crop __lowerCamelCase : Optional[int] = crop_size __lowerCamelCase : Optional[Any] = do_normalize __lowerCamelCase : Optional[Any] = image_mean __lowerCamelCase : List[Any] = image_std def lowerCamelCase__ ( self : int ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _snake_case ( a__ , unittest.TestCase ): snake_case__ = LevitImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Optional[int] = LevitImageProcessingTester(self ) @property def lowerCamelCase__ ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase , "image_std" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_center_crop" ) ) self.assertTrue(hasattr(UpperCAmelCase , "size" ) ) def lowerCamelCase__ ( self : int ): __lowerCamelCase : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) __lowerCamelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def lowerCamelCase__ ( self : Dict ): pass def lowerCamelCase__ ( self : Any ): # Initialize image_processing __lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input __lowerCamelCase : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCamelCase : int = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCamelCase__ ( self : Any ): # Initialize image_processing __lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input __lowerCamelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCamelCase : Dict = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCamelCase__ ( self : Union[str, Any] ): # Initialize image_processing __lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input __lowerCamelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCamelCase : List[str] = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
366
1
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Optional[Any] ): """simple docstring""" __snake_case = 10 def a (self : Any ): """simple docstring""" __snake_case = [1, 2, 3, 4] __snake_case = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__UpperCAmelCase , self.block_size , 0 ) , __UpperCAmelCase ) def a (self : Tuple ): """simple docstring""" __snake_case = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] __snake_case = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__UpperCAmelCase , self.block_size , 0 ) , __UpperCAmelCase ) def a (self : int ): """simple docstring""" __snake_case = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] __snake_case = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__UpperCAmelCase , self.block_size , 0 ) , __UpperCAmelCase ) def a (self : str ): """simple docstring""" __snake_case = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' __snake_case , __snake_case = process_story(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [] ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = '''''' __snake_case , __snake_case = process_story(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [] ) self.assertEqual(__UpperCAmelCase , [] ) def a (self : List[Any] ): """simple docstring""" __snake_case = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) __snake_case , __snake_case = process_story(__UpperCAmelCase ) __snake_case = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) __snake_case = ['''It was the best of times.'''] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def a (self : Optional[int] ): """simple docstring""" __snake_case = torch.tensor([1, 2, 3, 4] ) __snake_case = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def a (self : Optional[int] ): """simple docstring""" __snake_case = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) __snake_case = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCAmelCase , 23 ).numpy() , expected.numpy() ) def a (self : List[str] ): """simple docstring""" __snake_case = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __snake_case = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def a (self : List[str] ): """simple docstring""" __snake_case = 101 __snake_case = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) __snake_case = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __snake_case = compute_token_type_ids(__UpperCAmelCase , __UpperCAmelCase ) np.testing.assert_array_equal(__UpperCAmelCase , __UpperCAmelCase )
592
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset A_ : int = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) A_ : int = dataset.iloc[:, 1:2].values A_ : Optional[Any] = dataset.iloc[:, 2].values A_ , A_ , A_ , A_ : str = train_test_split(X, y, test_size=0.2, random_state=0) A_ : Optional[Any] = PolynomialFeatures(degree=4) A_ : Tuple = poly_reg.fit_transform(X) A_ : str = LinearRegression() pol_reg.fit(X_poly, y) def A ( ): '''simple docstring''' plt.scatter(snake_case__ , snake_case__ , color="""red""" ) plt.plot(snake_case__ , pol_reg.predict(poly_reg.fit_transform(snake_case__ ) ) , color="""blue""" ) plt.title("""Truth or Bluff (Linear Regression)""" ) plt.xlabel("""Position level""" ) plt.ylabel("""Salary""" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
196
0
from __future__ import annotations import numpy as np def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_, UpperCAmelCase_ : List[str] = np.shape(_lowercase ) if rows != columns: UpperCAmelCase_ : Dict = ( '''\'table\' has to be of square shaped array but got a ''' f'''{rows}x{columns} array:\n{table}''' ) raise ValueError(_lowercase ) UpperCAmelCase_ : str = np.zeros((rows, columns) ) UpperCAmelCase_ : int = np.zeros((rows, columns) ) for i in range(_lowercase ): for j in range(_lowercase ): UpperCAmelCase_ : Any = sum(lower[i][k] * upper[k][j] for k in range(_lowercase ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) UpperCAmelCase_ : List[str] = (table[i][j] - total) / upper[j][j] UpperCAmelCase_ : str = 1 for j in range(_lowercase , _lowercase ): UpperCAmelCase_ : Optional[int] = sum(lower[i][k] * upper[k][j] for k in range(_lowercase ) ) UpperCAmelCase_ : Tuple = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
300
import os import string import sys __a = 1 << 8 __a = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } __a = KEYMAP['up'] __a = KEYMAP['left'] if sys.platform == "win32": __a = [] __a = { B'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, B'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, B'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, B'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, B'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, B'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, B'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, B'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): __a = ord(str(i)) def lowerCamelCase__ ( ): '''simple docstring''' if os.name == "nt": import msvcrt UpperCAmelCase_ : Union[str, Any] = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_lowercase ) == 0: # Read the keystroke UpperCAmelCase_ : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): UpperCAmelCase_ : Union[str, Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: UpperCAmelCase_ : List[Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(_lowercase ) if ord(_lowercase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) UpperCAmelCase_ : Tuple = chr(KEYMAP['''esc'''] ) except KeyError: UpperCAmelCase_ : Dict = cha[1] else: UpperCAmelCase_ : int = ch.decode(_lowercase ) else: UpperCAmelCase_ : Optional[Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty UpperCAmelCase_ : str = sys.stdin.fileno() UpperCAmelCase_ : Optional[Any] = termios.tcgetattr(_lowercase ) try: tty.setraw(_lowercase ) UpperCAmelCase_ : Dict = sys.stdin.read(1 ) finally: termios.tcsetattr(_lowercase , termios.TCSADRAIN , _lowercase ) return ch def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Dict = get_raw_chars() if ord(_lowercase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_lowercase ) == KEYMAP["esc"]: UpperCAmelCase_ : Union[str, Any] = get_raw_chars() if ord(_lowercase ) == KEYMAP["mod_int"]: UpperCAmelCase_ : Optional[int] = get_raw_chars() if ord(_lowercase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_lowercase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_lowercase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
300
1