code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import os import sys A : Tuple = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) A : Dict = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : List[Any] ) -> str: """simple docstring""" return AutoConfig.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return AutoModel.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Tuple ) -> List[str]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> Optional[int]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase ( *__magic_name__ : Dict , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*__magic_name__ , **__magic_name__ )
15
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =FunnelTokenizer a_ =FunnelTokenizerFast a_ =True a_ =True def UpperCAmelCase ( self )-> str: '''simple docstring''' super().setUp() lowerCAmelCase__ = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Any: '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = "UNwant\u00E9d,running" lowerCAmelCase__ = "unwanted, running" return input_text, output_text def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__UpperCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizers(do_lower_case=__UpperCAmelCase ) for tokenizer in tokenizers: lowerCAmelCase__ = tokenizer("UNwant\u00E9d,running" ) lowerCAmelCase__ = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) lowerCAmelCase__ = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
339
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __lowerCAmelCase : Tuple =pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def _UpperCamelCase ( lowercase__ , lowercase__ ): inspect_dataset(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = path + '''.py''' assert script_name in os.listdir(lowercase__ ) assert "__pycache__" not in os.listdir(lowercase__ ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def _UpperCamelCase ( lowercase__ , lowercase__ ): inspect_metric(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = path + '''.py''' assert script_name in os.listdir(lowercase__ ) assert "__pycache__" not in os.listdir(lowercase__ ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = get_dataset_config_info(lowercase__ , config_name=lowercase__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): with pytest.raises(lowercase__ ): get_dataset_config_info(lowercase__ , config_name=lowercase__ ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = get_dataset_config_names(lowercase__ ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = get_dataset_infos(lowercase__ ) assert list(infos.keys() ) == expected_configs __SCREAMING_SNAKE_CASE : List[Any] = expected_configs[0] assert expected_config in infos __SCREAMING_SNAKE_CASE : Optional[Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = get_dataset_infos(lowercase__ ) assert expected_config in infos __SCREAMING_SNAKE_CASE : Tuple = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): with pytest.raises(lowercase__ ): get_dataset_split_names(lowercase__ , config_name=lowercase__ )
719
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowerCAmelCase : Dict =logging.get_logger(__name__) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ['''pixel_values'''] def __init__( self :str , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Optional[Dict[str, int]] = None , lowerCAmelCase__ :PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Union[int, float] = 1 / 255 , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ :Tuple , ) -> None: super().__init__(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = size if size is not None else {'''shortest_edge''': 256} __SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = do_resize __SCREAMING_SNAKE_CASE : str = size __SCREAMING_SNAKE_CASE : Any = resample __SCREAMING_SNAKE_CASE : Union[str, Any] = do_center_crop __SCREAMING_SNAKE_CASE : Tuple = crop_size __SCREAMING_SNAKE_CASE : List[str] = do_rescale __SCREAMING_SNAKE_CASE : List[Any] = rescale_factor __SCREAMING_SNAKE_CASE : Any = do_normalize __SCREAMING_SNAKE_CASE : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __SCREAMING_SNAKE_CASE : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __magic_name__( self :Dict , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Dict[str, int] , lowerCAmelCase__ :PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :int , ) -> np.ndarray: __SCREAMING_SNAKE_CASE : Tuple = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __SCREAMING_SNAKE_CASE : Optional[int] = get_resize_output_image_size(lowerCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :str , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Dict[str, int] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :Any , ) -> np.ndarray: __SCREAMING_SNAKE_CASE : str = get_size_dict(lowerCAmelCase__ ) return center_crop(lowerCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :float , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :str ) -> np.ndarray: return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :Dict , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Union[float, List[float]] , lowerCAmelCase__ :Union[float, List[float]] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :List[Any] , ) -> np.ndarray: return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :ImageInput , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :PILImageResampling = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Optional[float] = None , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :Optional[Union[str, TensorType]] = None , lowerCAmelCase__ :Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ :Optional[Any] , ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE : Tuple = size if size is not None else self.size __SCREAMING_SNAKE_CASE : Dict = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __SCREAMING_SNAKE_CASE : Optional[Any] = crop_size if crop_size is not None else self.crop_size __SCREAMING_SNAKE_CASE : str = get_size_dict(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE : Tuple = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE : int = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE : int = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE : int = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE : Optional[Any] = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE : int = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE : Tuple = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE : Dict = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
260
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = "bert-generation" def __init__( self : Any , _lowercase : List[Any]=5_03_58 , _lowercase : str=10_24 , _lowercase : str=24 , _lowercase : int=16 , _lowercase : Any=40_96 , _lowercase : Union[str, Any]="gelu" , _lowercase : str=0.1 , _lowercase : Union[str, Any]=0.1 , _lowercase : Optional[Any]=5_12 , _lowercase : str=0.02 , _lowercase : Dict=1E-12 , _lowercase : int=0 , _lowercase : Optional[int]=2 , _lowercase : Dict=1 , _lowercase : Dict="absolute" , _lowercase : Tuple=True , **_lowercase : str , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
49
'''simple docstring''' import pprint import requests A_ = "https://zenquotes.io/api" def _UpperCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + '/today' ).json() def _UpperCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": A_ = random_quotes() pprint.pprint(response)
42
0
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image UpperCamelCase__ = ['text', 'image', 'audio'] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[Any] = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): inputs.append(create_inputs(_UpperCamelCase ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = [] for output in outputs: if isinstance(_UpperCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(_UpperCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(_UpperCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class _UpperCAmelCase : def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) lowercase_ : Optional[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , a ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowercase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : List[str] = create_inputs(self.tool.inputs ) lowercase_ : List[str] = self.tool(*a ) # There is a single output if len(self.tool.outputs ) == 1: lowercase_ : Union[str, Any] = [outputs] self.assertListEqual(output_types(a ) , self.tool.outputs ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Any = create_inputs(self.tool.inputs ) lowercase_ : str = self.tool(*a ) if not isinstance(a , a ): lowercase_ : List[Any] = [outputs] self.assertEqual(len(a ) , len(self.tool.outputs ) ) for output, output_type in zip(a , self.tool.outputs ): lowercase_ : int = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(a , a ) ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Dict = create_inputs(self.tool.inputs ) lowercase_ : Optional[int] = [] for _input, input_type in zip(a , self.tool.inputs ): if isinstance(a , a ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowercase_ : Any = self.tool(*a ) if not isinstance(a , a ): lowercase_ : Any = [outputs] self.assertEqual(len(a ) , len(self.tool.outputs ) )
709
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: Dict = KandinskyVaaPriorPipeline __lowerCamelCase: Optional[int] = ['prompt'] __lowerCamelCase: Any = ['prompt', 'negative_prompt'] __lowerCamelCase: List[Any] = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase: List[Any] = False @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return 1_0_0 @property def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(a ) @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : List[str] = { "num_attention_heads": 2, "attention_head_dim": 1_2, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } lowercase_ : Union[str, Any] = PriorTransformer(**a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowercase_ : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Dict = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) lowercase_ : Optional[Any] = CLIPVisionModelWithProjection(a ) return model @property def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : List[str] = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=a , do_normalize=a , do_resize=a , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_2_4 , ) return image_processor def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Any = self.dummy_prior lowercase_ : Optional[Any] = self.dummy_image_encoder lowercase_ : List[Any] = self.dummy_text_encoder lowercase_ : Any = self.dummy_tokenizer lowercase_ : Optional[Any] = self.dummy_image_processor lowercase_ : List[str] = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=a , clip_sample_range=10.0 , ) lowercase_ : List[Any] = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def lowerCAmelCase__ ( self : Any , a : Dict , a : Dict=0 ): '''simple docstring''' if str(a ).startswith("mps" ): lowercase_ : int = torch.manual_seed(a ) else: lowercase_ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowercase_ : Any = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : str = "cpu" lowercase_ : Any = self.get_dummy_components() lowercase_ : int = self.pipeline_class(**a ) lowercase_ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase_ : Any = pipe(**self.get_dummy_inputs(a ) ) lowercase_ : List[Any] = output.image_embeds lowercase_ : str = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] lowercase_ : Any = image[0, -1_0:] lowercase_ : Dict = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) lowercase_ : int = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : int = torch_device == "cpu" lowercase_ : Tuple = True lowercase_ : str = False self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , test_mean_pixel_difference=a , ) @skip_mps def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : Any = torch_device == "cpu" lowercase_ : int = False self._test_attention_slicing_forward_pass( test_max_difference=a , test_mean_pixel_difference=a , )
640
0
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
71
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
316
0
"""simple docstring""" from collections.abc import Callable import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> np.array: '''simple docstring''' lowercase_ = int(np.ceil((x_end - xa) / step_size ) ) lowercase_ = np.zeros((n + 1,) ) lowercase_ = ya lowercase_ = xa for k in range(__lowerCAmelCase ): lowercase_ = y[k] + step_size * ode_func(__lowerCAmelCase , y[k] ) lowercase_ = y[k] + ( (step_size / 2) * (ode_func(__lowerCAmelCase , y[k] ) + ode_func(x + step_size , __lowerCAmelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
100
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Optional[Any] = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
100
1
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __lowercase : List[Any] = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __lowercase : List[Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] ): __a : Tuple = SavedModel() __a : Any = [] with open(os.path.join(_SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: __a : Dict = json.load(_SCREAMING_SNAKE_CASE )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(_SCREAMING_SNAKE_CASE )] ) with open(_SCREAMING_SNAKE_CASE , 'rb' ) as f: saved_model.ParseFromString(f.read() ) __a : int = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __a : int = sorted(_SCREAMING_SNAKE_CASE ) __a : Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_SCREAMING_SNAKE_CASE ) if strict and len(_SCREAMING_SNAKE_CASE ) > 0: raise Exception(F"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(_SCREAMING_SNAKE_CASE ) > 0: print(F"""Found the following incompatible ops for the opset {opset}:""" ) print(*_SCREAMING_SNAKE_CASE , sep='\n' ) else: print(F"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": __lowercase : List[str] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) __lowercase : str = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
476
'''simple docstring''' from math import ceil def lowerCamelCase (_SCREAMING_SNAKE_CASE : int = 1_001 ): __a : Union[str, Any] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __a : Optional[Any] = 2 * i + 1 __a : Dict = 2 * i __a : List[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __lowercase : Any = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
476
1
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __lowercase (__lowerCamelCase ): _lowerCamelCase = 42 _lowerCamelCase = jnp.floataa _lowerCamelCase = True def __UpperCamelCase ( self : Optional[Any]): super().setup() UpperCamelCase__ : int = nn.Dense(5 , dtype=self.dtype) def __call__( self : Tuple , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Dict): UpperCamelCase__ : str = super().__call__(*UpperCAmelCase_ , **UpperCAmelCase_) UpperCamelCase__ : str = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class __lowercase (__lowerCamelCase ): _lowerCamelCase = FlaxBigBirdForNaturalQuestionsModule def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any: def cross_entropy(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None): UpperCamelCase__ : Tuple = logits.shape[-1] UpperCamelCase__ : Any = (labels[..., None] == jnp.arange(lowerCamelCase_)[None]).astype('f4') UpperCamelCase__ : Tuple = jax.nn.log_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase__ : List[str] = -jnp.sum(labels * logits , axis=-1) if reduction is not None: UpperCamelCase__ : List[str] = reduction(lowerCamelCase_) return loss UpperCamelCase__ : int = partial(lowerCamelCase_ , reduction=jnp.mean) UpperCamelCase__ : int = cross_entropy(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : str = cross_entropy(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Dict = cross_entropy(lowerCamelCase_ , lowerCamelCase_) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __lowercase : _lowerCamelCase = "google/bigbird-roberta-base" _lowerCamelCase = 3000 _lowerCamelCase = 10500 _lowerCamelCase = 128 _lowerCamelCase = 3 _lowerCamelCase = 1 _lowerCamelCase = 5 # tx_args _lowerCamelCase = 3E-5 _lowerCamelCase = 0.0 _lowerCamelCase = 20000 _lowerCamelCase = 0.0095 _lowerCamelCase = "bigbird-roberta-natural-questions" _lowerCamelCase = "training-expt" _lowerCamelCase = "data/nq-training.jsonl" _lowerCamelCase = "data/nq-validation.jsonl" def __UpperCamelCase ( self : List[Any]): os.makedirs(self.base_dir , exist_ok=UpperCAmelCase_) UpperCamelCase__ : str = os.path.join(self.base_dir , self.save_dir) UpperCamelCase__ : Optional[int] = self.batch_size_per_device * jax.device_count() @dataclass class __lowercase : _lowerCamelCase = 42 _lowerCamelCase = 4096 # no dynamic padding on TPUs def __call__( self : Dict , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = self.collate_fn(UpperCAmelCase_) UpperCamelCase__ : Tuple = jax.tree_util.tree_map(UpperCAmelCase_ , UpperCAmelCase_) return batch def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__, UpperCamelCase__ : List[Any] = self.fetch_inputs(features['input_ids']) UpperCamelCase__ : Union[str, Any] = { 'input_ids': jnp.array(UpperCAmelCase_ , dtype=jnp.intaa), 'attention_mask': jnp.array(UpperCAmelCase_ , dtype=jnp.intaa), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa), } return batch def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : list): UpperCamelCase__ : int = [self._fetch_inputs(UpperCAmelCase_) for ids in input_ids] return zip(*UpperCAmelCase_) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list): UpperCamelCase__ : Dict = [1 for _ in range(len(UpperCAmelCase_))] while len(UpperCAmelCase_) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if seed is not None: UpperCamelCase__ : str = dataset.shuffle(seed=lowerCamelCase_) for i in range(len(lowerCamelCase_) // batch_size): UpperCamelCase__ : Any = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowerCamelCase_) @partial(jax.pmap , axis_name='batch') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: def loss_fn(lowerCamelCase_): UpperCamelCase__ : List[Any] = model_inputs.pop('start_labels') UpperCamelCase__ : Any = model_inputs.pop('end_labels') UpperCamelCase__ : Optional[Any] = model_inputs.pop('pooled_labels') UpperCamelCase__ : int = state.apply_fn(**lowerCamelCase_ , params=lowerCamelCase_ , dropout_rng=lowerCamelCase_ , train=lowerCamelCase_) UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Any = outputs return state.loss_fn( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__, UpperCamelCase__ : str = jax.random.split(lowerCamelCase_) UpperCamelCase__ : str = jax.value_and_grad(lowerCamelCase_) UpperCamelCase__, UpperCamelCase__ : Any = grad_fn(state.params) UpperCamelCase__ : Tuple = jax.lax.pmean({'loss': loss} , axis_name='batch') UpperCamelCase__ : Optional[Any] = jax.lax.pmean(lowerCamelCase_ , 'batch') UpperCamelCase__ : List[Any] = state.apply_gradients(grads=lowerCamelCase_) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch') def __UpperCAmelCase ( lowerCamelCase_ , **lowerCamelCase_) -> Dict: UpperCamelCase__ : Tuple = model_inputs.pop('start_labels') UpperCamelCase__ : Dict = model_inputs.pop('end_labels') UpperCamelCase__ : Any = model_inputs.pop('pooled_labels') UpperCamelCase__ : Optional[Any] = state.apply_fn(**lowerCamelCase_ , params=state.params , train=lowerCamelCase_) UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = outputs UpperCamelCase__ : str = state.loss_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = jax.lax.pmean({'loss': loss} , axis_name='batch') return metrics class __lowercase (train_state.TrainState ): _lowerCamelCase = struct.field(pytree_node=__lowerCamelCase ) @dataclass class __lowercase : _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=None): UpperCamelCase__ : Any = model.params UpperCamelCase__ : str = TrainState.create( apply_fn=model.__call__ , params=UpperCAmelCase_ , tx=UpperCAmelCase_ , loss_fn=UpperCAmelCase_ , ) if ckpt_dir is not None: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Optional[int] = restore_checkpoint(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Tuple = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } UpperCamelCase__, UpperCamelCase__ : Optional[Any] = build_tx(**UpperCAmelCase_) UpperCamelCase__ : List[Any] = train_state.TrainState( step=UpperCAmelCase_ , apply_fn=model.__call__ , params=UpperCAmelCase_ , tx=UpperCAmelCase_ , opt_state=UpperCAmelCase_ , ) UpperCamelCase__ : Tuple = args UpperCamelCase__ : Optional[Any] = data_collator UpperCamelCase__ : str = lr UpperCamelCase__ : Any = params UpperCamelCase__ : Any = jax_utils.replicate(UpperCAmelCase_) return state def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str): UpperCamelCase__ : int = self.args UpperCamelCase__ : str = len(UpperCAmelCase_) // args.batch_size UpperCamelCase__ : Tuple = jax.random.PRNGKey(0) UpperCamelCase__ : Optional[Any] = jax.random.split(UpperCAmelCase_ , jax.device_count()) for epoch in range(args.max_epochs): UpperCamelCase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa) UpperCamelCase__ : Optional[int] = get_batched_dataset(UpperCAmelCase_ , args.batch_size , seed=UpperCAmelCase_) UpperCamelCase__ : Dict = 0 for batch in tqdm(UpperCAmelCase_ , total=UpperCAmelCase_ , desc=F'Running EPOCH-{epoch}'): UpperCamelCase__ : str = self.data_collator(UpperCAmelCase_) UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Dict = self.train_step_fn(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_) running_loss += jax_utils.unreplicate(metrics['loss']) i += 1 if i % args.logging_steps == 0: UpperCamelCase__ : Optional[Any] = jax_utils.unreplicate(state.step) UpperCamelCase__ : List[Any] = running_loss.item() / i UpperCamelCase__ : Optional[Any] = self.scheduler_fn(state_step - 1) UpperCamelCase__ : List[str] = self.evaluate(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Dict = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(UpperCAmelCase_)) self.logger.log(UpperCAmelCase_ , commit=UpperCAmelCase_) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=UpperCAmelCase_) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : int): UpperCamelCase__ : str = get_batched_dataset(UpperCAmelCase_ , self.args.batch_size) UpperCamelCase__ : Any = len(UpperCAmelCase_) // self.args.batch_size UpperCamelCase__ : Optional[Any] = jnp.array(0 , dtype=jnp.floataa) UpperCamelCase__ : Optional[Any] = 0 for batch in tqdm(UpperCAmelCase_ , total=UpperCAmelCase_ , desc='Evaluating ... '): UpperCamelCase__ : Optional[Any] = self.data_collator(UpperCAmelCase_) UpperCamelCase__ : str = self.val_step_fn(UpperCAmelCase_ , **UpperCAmelCase_) running_loss += jax_utils.unreplicate(metrics['loss']) i += 1 return running_loss / i def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Union[str, Any] = jax_utils.unreplicate(UpperCAmelCase_) print(F'SAVING CHECKPOINT IN {save_dir}' , end=' ... ') self.model_save_fn(UpperCAmelCase_ , params=state.params) with open(os.path.join(UpperCAmelCase_ , 'opt_state.msgpack') , 'wb') as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(UpperCAmelCase_ , 'args.joblib')) joblib.dump(self.data_collator , os.path.join(UpperCAmelCase_ , 'data_collator.joblib')) with open(os.path.join(UpperCAmelCase_ , 'training_state.json') , 'w') as f: json.dump({'step': state.step.item()} , UpperCAmelCase_) print('DONE') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Dict: print(f'RESTORING CHECKPOINT FROM {save_dir}' , end=' ... ') with open(os.path.join(lowerCamelCase_ , 'flax_model.msgpack') , 'rb') as f: UpperCamelCase__ : Optional[Any] = from_bytes(state.params , f.read()) with open(os.path.join(lowerCamelCase_ , 'opt_state.msgpack') , 'rb') as f: UpperCamelCase__ : Any = from_bytes(state.opt_state , f.read()) UpperCamelCase__ : Union[str, Any] = joblib.load(os.path.join(lowerCamelCase_ , 'args.joblib')) UpperCamelCase__ : int = joblib.load(os.path.join(lowerCamelCase_ , 'data_collator.joblib')) with open(os.path.join(lowerCamelCase_ , 'training_state.json') , 'r') as f: UpperCamelCase__ : str = json.load(lowerCamelCase_) UpperCamelCase__ : Optional[int] = training_state['step'] print('DONE') return params, opt_state, step, args, data_collator def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : List[str] = num_train_steps - warmup_steps UpperCamelCase__ : List[Any] = optax.linear_schedule(init_value=lowerCamelCase_ , end_value=lowerCamelCase_ , transition_steps=lowerCamelCase_) UpperCamelCase__ : Dict = optax.linear_schedule(init_value=lowerCamelCase_ , end_value=1e-7 , transition_steps=lowerCamelCase_) UpperCamelCase__ : Optional[int] = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps]) return lr def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: def weight_decay_mask(lowerCamelCase_): UpperCamelCase__ : int = traverse_util.flatten_dict(lowerCamelCase_) UpperCamelCase__ : Dict = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(lowerCamelCase_) UpperCamelCase__ : str = scheduler_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : str = optax.adamw(learning_rate=lowerCamelCase_ , weight_decay=lowerCamelCase_ , mask=lowerCamelCase_) return tx, lr
6
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]): UpperCamelCase__ : int = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.') if len(UpperCAmelCase_) != 0: UpperCamelCase__ : str = len(rows[0]) if cols == 0: raise error for row in rows: if len(UpperCAmelCase_) != cols: raise error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise error UpperCamelCase__ : Optional[int] = rows else: UpperCamelCase__ : Optional[Any] = [] def __UpperCamelCase ( self : Union[str, Any]): return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def __UpperCamelCase ( self : Dict): return len(self.rows) @property def __UpperCamelCase ( self : Tuple): return len(self.rows[0]) @property def __UpperCamelCase ( self : List[Any]): return (self.num_rows, self.num_columns) @property def __UpperCamelCase ( self : Any): return self.order[0] == self.order[1] def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : Dict): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def __UpperCamelCase ( self : str): return bool(self.determinant()) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(UpperCAmelCase_).determinant() def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): return Matrix( [ [self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def __UpperCamelCase ( self : Optional[int]): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse') return self.adjugate() * (1 / determinant) def __repr__( self : Any): return str(self.rows) def __str__( self : List[Any]): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]' for row in self.rows ]) + "]" ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix') if position is None: self.rows.append(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:] def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : int = TypeError( 'Column must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in column: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix') if position is None: UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: UpperCamelCase__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self : List[Any] , UpperCAmelCase_ : object): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): return NotImplemented return self.rows == other.rows def __ne__( self : Any , UpperCAmelCase_ : object): return not self == other def __neg__( self : Union[str, Any]): return self * -1 def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Addition requires matrices of the same order') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self : Tuple , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float): if isinstance(UpperCAmelCase_ , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second') return Matrix( [ [Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()] for row in self.rows ]) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix') def __pow__( self : Dict , UpperCAmelCase_ : int): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError('A Matrix can only be raised to the power of an int') if not self.is_square: raise ValueError('Only square matrices can be raised to a power') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power') UpperCamelCase__ : str = self for _ in range(other - 1): result *= self return result @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
6
1
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): # Initialise PyTorch model __SCREAMING_SNAKE_CASE : str = BertConfig.from_json_file(lowercase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = BertForPreTraining(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": __lowerCAmelCase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase : Any =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
696
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : str =logging.get_logger(__name__) __lowerCAmelCase : Any ={ # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''megatron-bert''' def __init__( self :int , lowerCAmelCase__ :int=29_056 , lowerCAmelCase__ :Dict=1_024 , lowerCAmelCase__ :Optional[int]=24 , lowerCAmelCase__ :str=16 , lowerCAmelCase__ :Optional[int]=4_096 , lowerCAmelCase__ :Optional[Any]="gelu" , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :List[str]=512 , lowerCAmelCase__ :Any=2 , lowerCAmelCase__ :int=0.02 , lowerCAmelCase__ :Tuple=1E-1_2 , lowerCAmelCase__ :Tuple=0 , lowerCAmelCase__ :Optional[int]="absolute" , lowerCAmelCase__ :List[str]=True , **lowerCAmelCase__ :Tuple , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : List[str] = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Any = intermediate_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : str = initializer_range __SCREAMING_SNAKE_CASE : Dict = layer_norm_eps __SCREAMING_SNAKE_CASE : Dict = position_embedding_type __SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache
696
1
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _lowercase : Any = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _lowercase : Union[str, Any] = get_tests_dir("fixtures/vocab.json") _lowercase : int = get_tests_dir("fixtures") class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" lowerCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] def _UpperCAmelCase ( self ) -> List[Any]: A = 0 def _UpperCAmelCase ( self ) -> Optional[Any]: A = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(a__ , a__ ) def _UpperCAmelCase ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdirname: A = WavaVecaConfig() A = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(a__ ) processor.save_pretrained(a__ ) A = AutoProcessor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def _UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(a__ , os.path.join(a__ , a__ ) ) copyfile(a__ , os.path.join(a__ , """vocab.json""" ) ) A = AutoProcessor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def _UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: A = WavaVecaFeatureExtractor() A = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) A = WavaVecaProcessor(a__ , a__ ) # save in new folder processor.save_pretrained(a__ ) # drop `processor_class` in tokenizer with open(os.path.join(a__ , a__ ) , """r""" ) as f: A = json.load(a__ ) config_dict.pop("""processor_class""" ) with open(os.path.join(a__ , a__ ) , """w""" ) as f: f.write(json.dumps(a__ ) ) A = AutoProcessor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def _UpperCAmelCase ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: A = WavaVecaFeatureExtractor() A = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) A = WavaVecaProcessor(a__ , a__ ) # save in new folder processor.save_pretrained(a__ ) # drop `processor_class` in feature extractor with open(os.path.join(a__ , a__ ) , """r""" ) as f: A = json.load(a__ ) config_dict.pop("""processor_class""" ) with open(os.path.join(a__ , a__ ) , """w""" ) as f: f.write(json.dumps(a__ ) ) A = AutoProcessor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def _UpperCAmelCase ( self ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: A = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(a__ ) # copy relevant files copyfile(a__ , os.path.join(a__ , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(a__ , a__ ) , """w""" ) as f: f.write("""{}""" ) A = AutoProcessor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def _UpperCAmelCase ( self ) -> List[Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(a__ ): A = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(a__ ): A = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=a__ ) A = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=a__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) A = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) A = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version A = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=a__ , use_fast=a__ ) A = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def _UpperCAmelCase ( self ) -> Optional[int]: try: AutoConfig.register("""custom""" , a__ ) AutoFeatureExtractor.register(a__ , a__ ) AutoTokenizer.register(a__ , slow_tokenizer_class=a__ ) AutoProcessor.register(a__ , a__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a__ ): AutoProcessor.register(a__ , a__ ) # Now that the config is registered, it can be used as any other config with the auto-API A = CustomFeatureExtractor.from_pretrained(a__ ) with tempfile.TemporaryDirectory() as tmp_dir: A = os.path.join(a__ , """vocab.txt""" ) with open(a__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) A = CustomTokenizer(a__ ) A = CustomProcessor(a__ , a__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(a__ ) A = AutoProcessor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _UpperCAmelCase ( self ) -> Any: class _UpperCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase = False class _UpperCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase = False class _UpperCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase = 'AutoFeatureExtractor' lowerCAmelCase = 'AutoTokenizer' lowerCAmelCase = False try: AutoConfig.register("""custom""" , a__ ) AutoFeatureExtractor.register(a__ , a__ ) AutoTokenizer.register(a__ , slow_tokenizer_class=a__ ) AutoProcessor.register(a__ , a__ ) # If remote code is not set, the default is to use local classes. A = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=a__ ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=a__ ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _UpperCAmelCase ( self ) -> Dict: A = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def _UpperCAmelCase ( self ) -> str: A = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" lowerCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def _UpperCAmelCase ( cls ) -> str: A = TOKEN HfFolder.save_token(a__ ) @classmethod def _UpperCAmelCase ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def _UpperCAmelCase ( self ) -> Any: A = WavaVecaProcessor.from_pretrained(a__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(a__ , """test-processor""" ) , push_to_hub=a__ , use_auth_token=self._token ) A = WavaVecaProcessor.from_pretrained(f'{USER}/test-processor' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(a__ , getattr(new_processor.feature_extractor , a__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _UpperCAmelCase ( self ) -> Optional[int]: A = WavaVecaProcessor.from_pretrained(a__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(a__ , """test-processor-org""" ) , push_to_hub=a__ , use_auth_token=self._token , organization="""valid_org""" , ) A = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(a__ , getattr(new_processor.feature_extractor , a__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _UpperCAmelCase ( self ) -> int: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A = CustomFeatureExtractor.from_pretrained(a__ ) with tempfile.TemporaryDirectory() as tmp_dir: A = os.path.join(a__ , """vocab.txt""" ) with open(a__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) A = CustomTokenizer(a__ ) A = CustomProcessor(a__ , a__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'{USER}/test-dynamic-processor' , token=self._token ) A = Repository(a__ , clone_from=f'{USER}/test-dynamic-processor' , token=self._token ) processor.save_pretrained(a__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(a__ , """tokenizer_config.json""" ) ) as f: A = json.load(a__ ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(a__ , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(a__ , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(a__ , """custom_processing.py""" ) ) ) repo.push_to_hub() A = AutoProcessor.from_pretrained(f'{USER}/test-dynamic-processor' , trust_remote_code=a__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
700
import math def _lowerCAmelCase ( UpperCamelCase__: int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( UpperCamelCase__: float = 0.1 ) -> int: """simple docstring""" A = 3 A = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(UpperCamelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
546
0
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") SCREAMING_SNAKE_CASE_ = F"""https://www.google.com/search?q={query}&num=100""" SCREAMING_SNAKE_CASE_ = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: SCREAMING_SNAKE_CASE_ = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: SCREAMING_SNAKE_CASE_ = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
237
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable SCREAMING_SNAKE_CASE_ = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""DPTFeatureExtractor"""] SCREAMING_SNAKE_CASE_ = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
237
1
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase : Any ={"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys UpperCAmelCase : List[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
504
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase : Dict =logging.get_logger(__name__) class _lowercase (a_ ): '''simple docstring''' lowercase__ = ["""pixel_values"""] def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = PILImageResampling.BILINEAR , snake_case__ = True , snake_case__ = None , snake_case__ = True , snake_case__ = 1 / 255 , snake_case__ = True , snake_case__ = None , snake_case__ = None , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCamelCase_ = size if size is not None else {"shortest_edge": 256} UpperCamelCase_ = get_size_dict(snake_case__ , default_to_square=snake_case__ ) UpperCamelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCamelCase_ = get_size_dict(snake_case__ ) UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = resample UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = None , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = get_size_dict(snake_case__ , default_to_square=snake_case__ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCamelCase_ = get_resize_output_image_size(snake_case__ , size=size["shortest_edge"] , default_to_square=snake_case__ ) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = get_size_dict(snake_case__ ) return center_crop(snake_case__ , size=(size["height"], size["width"]) , data_format=snake_case__ , **snake_case__ ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ ): '''simple docstring''' return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): '''simple docstring''' return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _lowerCamelCase ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(snake_case__ , default_to_square=snake_case__ ) UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size UpperCamelCase_ = get_size_dict(snake_case__ ) UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ = image_std if image_std is not None else self.image_std UpperCamelCase_ = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(snake_case__ ) for image in images] if do_resize: UpperCamelCase_ = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] if do_center_crop: UpperCamelCase_ = [self.center_crop(image=snake_case__ , size=snake_case__ ) for image in images] if do_rescale: UpperCamelCase_ = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_normalize: UpperCamelCase_ = [self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) for image in images] UpperCamelCase_ = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] UpperCamelCase_ = {"pixel_values": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
504
1
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np A_ : Optional[int] = re.compile(R'\b(a|an|the)\b', re.UNICODE) A_ : str = None def __snake_case ( ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=__A , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=__A , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __snake_case ( __A : List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: SCREAMING_SNAKE_CASE : Optional[Any] = bool(qa['answers']['text'] ) return qid_to_has_ans def __snake_case ( __A : int ) -> List[str]: '''simple docstring''' def remove_articles(__A : Tuple ): return ARTICLES_REGEX.sub(' ' , __A ) def white_space_fix(__A : Dict ): return " ".join(text.split() ) def remove_punc(__A : Tuple ): SCREAMING_SNAKE_CASE : List[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__A : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__A ) ) ) ) def __snake_case ( __A : str ) -> str: '''simple docstring''' if not s: return [] return normalize_answer(__A ).split() def __snake_case ( __A : List[str] , __A : str ) -> int: '''simple docstring''' return int(normalize_answer(__A ) == normalize_answer(__A ) ) def __snake_case ( __A : Dict , __A : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = get_tokens(__A ) SCREAMING_SNAKE_CASE : Optional[Any] = get_tokens(__A ) SCREAMING_SNAKE_CASE : Union[str, Any] = collections.Counter(__A ) & collections.Counter(__A ) SCREAMING_SNAKE_CASE : Optional[Any] = sum(common.values() ) if len(__A ) == 0 or len(__A ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE : int = 1.0 * num_same / len(__A ) SCREAMING_SNAKE_CASE : Union[str, Any] = 1.0 * num_same / len(__A ) SCREAMING_SNAKE_CASE : Optional[int] = (2 * precision * recall) / (precision + recall) return fa def __snake_case ( __A : Union[str, Any] , __A : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : List[Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: SCREAMING_SNAKE_CASE : Tuple = qa['id'] SCREAMING_SNAKE_CASE : str = [t for t in qa['answers']['text'] if normalize_answer(__A )] if not gold_answers: # For unanswerable questions, only correct answer is empty string SCREAMING_SNAKE_CASE : Optional[int] = [''] if qid not in preds: print(F"""Missing prediction for {qid}""" ) continue SCREAMING_SNAKE_CASE : List[str] = preds[qid] # Take max over all gold answers SCREAMING_SNAKE_CASE : str = max(compute_exact(__A , __A ) for a in gold_answers ) SCREAMING_SNAKE_CASE : Union[str, Any] = max(compute_fa(__A , __A ) for a in gold_answers ) return exact_scores, fa_scores def __snake_case ( __A : Optional[int] , __A : List[Any] , __A : List[Any] , __A : Union[str, Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = {} for qid, s in scores.items(): SCREAMING_SNAKE_CASE : str = na_probs[qid] > na_prob_thresh if pred_na: SCREAMING_SNAKE_CASE : List[Any] = float(not qid_to_has_ans[qid] ) else: SCREAMING_SNAKE_CASE : Any = s return new_scores def __snake_case ( __A : Union[str, Any] , __A : Optional[Any] , __A : Any=None ) -> Optional[Any]: '''simple docstring''' if not qid_list: SCREAMING_SNAKE_CASE : Optional[int] = len(__A ) return collections.OrderedDict( [ ('exact', 1_0_0.0 * sum(exact_scores.values() ) / total), ('f1', 1_0_0.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: SCREAMING_SNAKE_CASE : Any = len(__A ) return collections.OrderedDict( [ ('exact', 1_0_0.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 1_0_0.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def __snake_case ( __A : List[Any] , __A : Union[str, Any] , __A : Optional[int] ) -> List[Any]: '''simple docstring''' for k in new_eval: SCREAMING_SNAKE_CASE : int = new_eval[k] def __snake_case ( __A : Optional[Any] , __A : Optional[int] , __A : str , __A : Dict ) -> Optional[Any]: '''simple docstring''' plt.step(__A , __A , color='b' , alpha=0.2 , where='post' ) plt.fill_between(__A , __A , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(__A ) plt.savefig(__A ) plt.clf() def __snake_case ( __A : Dict , __A : Any , __A : List[str] , __A : List[Any] , __A : Dict=None , __A : Tuple=None ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = sorted(__A , key=lambda __A : na_probs[k] ) SCREAMING_SNAKE_CASE : Optional[int] = 0.0 SCREAMING_SNAKE_CASE : Any = 1.0 SCREAMING_SNAKE_CASE : List[str] = 0.0 SCREAMING_SNAKE_CASE : Union[str, Any] = [1.0] SCREAMING_SNAKE_CASE : Tuple = [0.0] SCREAMING_SNAKE_CASE : str = 0.0 for i, qid in enumerate(__A ): if qid_to_has_ans[qid]: true_pos += scores[qid] SCREAMING_SNAKE_CASE : int = true_pos / float(i + 1 ) SCREAMING_SNAKE_CASE : List[str] = true_pos / float(__A ) if i == len(__A ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__A ) recalls.append(__A ) if out_image: plot_pr_curve(__A , __A , __A , __A ) return {"ap": 1_0_0.0 * avg_prec} def __snake_case ( __A : Tuple , __A : List[str] , __A : Union[str, Any] , __A : Optional[Any] , __A : Tuple , __A : str ) -> Union[str, Any]: '''simple docstring''' if out_image_dir and not os.path.exists(__A ): os.makedirs(__A ) SCREAMING_SNAKE_CASE : Dict = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return SCREAMING_SNAKE_CASE : List[Any] = make_precision_recall_eval( __A , __A , __A , __A , out_image=os.path.join(__A , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) SCREAMING_SNAKE_CASE : Optional[Any] = make_precision_recall_eval( __A , __A , __A , __A , out_image=os.path.join(__A , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) SCREAMING_SNAKE_CASE : str = {k: float(__A ) for k, v in qid_to_has_ans.items()} SCREAMING_SNAKE_CASE : Union[str, Any] = make_precision_recall_eval( __A , __A , __A , __A , out_image=os.path.join(__A , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(__A , __A , 'pr_exact' ) merge_eval(__A , __A , 'pr_f1' ) merge_eval(__A , __A , 'pr_oracle' ) def __snake_case ( __A : List[Any] , __A : str , __A : Tuple , __A : int ) -> str: '''simple docstring''' if not qid_list: return SCREAMING_SNAKE_CASE : Any = [na_probs[k] for k in qid_list] SCREAMING_SNAKE_CASE : int = np.ones_like(__A ) / float(len(__A ) ) plt.hist(__A , weights=__A , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(F"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(__A , F"""na_prob_hist_{name}.png""" ) ) plt.clf() def __snake_case ( __A : List[str] , __A : Optional[Any] , __A : Union[str, Any] , __A : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : str = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) SCREAMING_SNAKE_CASE : Union[str, Any] = num_no_ans SCREAMING_SNAKE_CASE : Tuple = cur_score SCREAMING_SNAKE_CASE : Dict = 0.0 SCREAMING_SNAKE_CASE : Tuple = sorted(__A , key=lambda __A : na_probs[k] ) for i, qid in enumerate(__A ): if qid not in scores: continue if qid_to_has_ans[qid]: SCREAMING_SNAKE_CASE : Union[str, Any] = scores[qid] else: if preds[qid]: SCREAMING_SNAKE_CASE : Optional[Any] = -1 else: SCREAMING_SNAKE_CASE : Optional[int] = 0 cur_score += diff if cur_score > best_score: SCREAMING_SNAKE_CASE : str = cur_score SCREAMING_SNAKE_CASE : int = na_probs[qid] return 1_0_0.0 * best_score / len(__A ), best_thresh def __snake_case ( __A : Any , __A : Optional[int] , __A : List[Any] , __A : Any , __A : Tuple , __A : Union[str, Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = find_best_thresh(__A , __A , __A , __A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = find_best_thresh(__A , __A , __A , __A ) SCREAMING_SNAKE_CASE : str = best_exact SCREAMING_SNAKE_CASE : Optional[int] = exact_thresh SCREAMING_SNAKE_CASE : Tuple = best_fa SCREAMING_SNAKE_CASE : List[str] = fa_thresh def __snake_case ( ) -> Optional[Any]: '''simple docstring''' with open(OPTS.data_file ) as f: SCREAMING_SNAKE_CASE : int = json.load(__A ) SCREAMING_SNAKE_CASE : int = dataset_json['data'] with open(OPTS.pred_file ) as f: SCREAMING_SNAKE_CASE : Any = json.load(__A ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: SCREAMING_SNAKE_CASE : Optional[Any] = json.load(__A ) else: SCREAMING_SNAKE_CASE : List[Any] = {k: 0.0 for k in preds} SCREAMING_SNAKE_CASE : Union[str, Any] = make_qid_to_has_ans(__A ) # maps qid to True/False SCREAMING_SNAKE_CASE : List[str] = [k for k, v in qid_to_has_ans.items() if v] SCREAMING_SNAKE_CASE : Tuple = [k for k, v in qid_to_has_ans.items() if not v] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = get_raw_scores(__A , __A ) SCREAMING_SNAKE_CASE : Optional[int] = apply_no_ans_threshold(__A , __A , __A , OPTS.na_prob_thresh ) SCREAMING_SNAKE_CASE : List[Any] = apply_no_ans_threshold(__A , __A , __A , OPTS.na_prob_thresh ) SCREAMING_SNAKE_CASE : Any = make_eval_dict(__A , __A ) if has_ans_qids: SCREAMING_SNAKE_CASE : Optional[int] = make_eval_dict(__A , __A , qid_list=__A ) merge_eval(__A , __A , 'HasAns' ) if no_ans_qids: SCREAMING_SNAKE_CASE : List[str] = make_eval_dict(__A , __A , qid_list=__A ) merge_eval(__A , __A , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(__A , __A , __A , __A , __A , __A ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__A , __A , __A , __A , __A , OPTS.out_image_dir ) histogram_na_prob(__A , __A , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(__A , __A , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(__A , __A ) else: print(json.dumps(__A , indent=2 ) ) if __name__ == "__main__": A_ : List[str] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
265
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
265
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Dict = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
"""simple docstring""" def A ( snake_case :int ) -> bool: return str(snake_case ) == str(snake_case )[::-1] def A ( snake_case :int ) -> int: return int(snake_case ) + int(str(snake_case )[::-1] ) def A ( snake_case :int = 1_0_0_0_0 ) -> int: __UpperCamelCase = [] for num in range(1 , snake_case ): __UpperCamelCase = 0 __UpperCamelCase = num while iterations < 5_0: __UpperCamelCase = sum_reverse(snake_case ) iterations += 1 if is_palindrome(snake_case ): break else: lychrel_nums.append(snake_case ) return len(snake_case ) if __name__ == "__main__": print(f'''{solution() = }''')
293
0
'''simple docstring''' import itertools import math def _a ( lowerCamelCase_ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _a ( ): snake_case : Tuple =2 while True: if is_prime(lowerCamelCase_ ): yield num num += 1 def _a ( lowerCamelCase_ = 1_00_01 ): return next(itertools.islice(prime_generator() , nth - 1 , lowerCamelCase_ ) ) if __name__ == "__main__": print(f"{solution() = }")
349
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A : List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =SwinvaConfig() SCREAMING_SNAKE_CASE_: Union[str, Any] =swinva_name.split("""_""" ) SCREAMING_SNAKE_CASE_: Tuple =name_split[1] if "to" in name_split[3]: SCREAMING_SNAKE_CASE_: List[str] =int(name_split[3][-3:] ) else: SCREAMING_SNAKE_CASE_: Optional[Any] =int(name_split[3] ) if "to" in name_split[2]: SCREAMING_SNAKE_CASE_: List[Any] =int(name_split[2][-2:] ) else: SCREAMING_SNAKE_CASE_: int =int(name_split[2][6:] ) if model_size == "tiny": SCREAMING_SNAKE_CASE_: Any =96 SCREAMING_SNAKE_CASE_: Tuple =(2, 2, 6, 2) SCREAMING_SNAKE_CASE_: Dict =(3, 6, 12, 24) elif model_size == "small": SCREAMING_SNAKE_CASE_: List[Any] =96 SCREAMING_SNAKE_CASE_: Tuple =(2, 2, 18, 2) SCREAMING_SNAKE_CASE_: List[Any] =(3, 6, 12, 24) elif model_size == "base": SCREAMING_SNAKE_CASE_: Dict =128 SCREAMING_SNAKE_CASE_: List[str] =(2, 2, 18, 2) SCREAMING_SNAKE_CASE_: Union[str, Any] =(4, 8, 16, 32) else: SCREAMING_SNAKE_CASE_: Union[str, Any] =192 SCREAMING_SNAKE_CASE_: Any =(2, 2, 18, 2) SCREAMING_SNAKE_CASE_: Optional[Any] =(6, 12, 24, 48) if "to" in swinva_name: SCREAMING_SNAKE_CASE_: int =(12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): SCREAMING_SNAKE_CASE_: List[str] =2_1841 SCREAMING_SNAKE_CASE_: List[Any] ="huggingface/label-files" SCREAMING_SNAKE_CASE_: List[Any] ="imagenet-22k-id2label.json" SCREAMING_SNAKE_CASE_: Dict =json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE_: List[str] ={int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Tuple =idalabel SCREAMING_SNAKE_CASE_: Any ={v: k for k, v in idalabel.items()} else: SCREAMING_SNAKE_CASE_: Dict =1000 SCREAMING_SNAKE_CASE_: str ="huggingface/label-files" SCREAMING_SNAKE_CASE_: str ="imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE_: int =json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE_: int ={int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: List[Any] =idalabel SCREAMING_SNAKE_CASE_: List[str] ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: int =img_size SCREAMING_SNAKE_CASE_: Tuple =num_classes SCREAMING_SNAKE_CASE_: Dict =embed_dim SCREAMING_SNAKE_CASE_: str =depths SCREAMING_SNAKE_CASE_: Any =num_heads SCREAMING_SNAKE_CASE_: int =window_size return config def __magic_name__ ( lowercase ): if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE_: Any =name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: SCREAMING_SNAKE_CASE_: Tuple ="encoder." + name if "attn.proj" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE_: Tuple =name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] =name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: SCREAMING_SNAKE_CASE_: Any =name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: SCREAMING_SNAKE_CASE_: Tuple =name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] =name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if name == "norm.weight": SCREAMING_SNAKE_CASE_: List[Any] ="layernorm.weight" if name == "norm.bias": SCREAMING_SNAKE_CASE_: List[Any] ="layernorm.bias" if "head" in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""head""" , """classifier""" ) else: SCREAMING_SNAKE_CASE_: List[Any] ="swinv2." + name return name def __magic_name__ ( lowercase , lowercase ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: List[str] =orig_state_dict.pop(__SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: SCREAMING_SNAKE_CASE_: List[str] =key.split(""".""" ) SCREAMING_SNAKE_CASE_: Optional[int] =int(key_split[1] ) SCREAMING_SNAKE_CASE_: Dict =int(key_split[3] ) SCREAMING_SNAKE_CASE_: Union[str, Any] =model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE_: List[str] =val[:dim, :] SCREAMING_SNAKE_CASE_: Optional[int] =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: Tuple =val[-dim:, :] else: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim] SCREAMING_SNAKE_CASE_: List[Any] =val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE_: Optional[int] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Optional[int] =val return orig_state_dict def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =timm.create_model(__SCREAMING_SNAKE_CASE , pretrained=__SCREAMING_SNAKE_CASE ) timm_model.eval() SCREAMING_SNAKE_CASE_: int =get_swinva_config(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_: int =SwinvaForImageClassification(__SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE_: List[Any] =convert_state_dict(timm_model.state_dict() , __SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_: Optional[int] ="http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE_: List[Any] =AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swinva_name.replace("""_""" , """-""" ) ) ) SCREAMING_SNAKE_CASE_: str =Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) SCREAMING_SNAKE_CASE_: Union[str, Any] =image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE_: int =timm_model(inputs["""pixel_values"""] ) SCREAMING_SNAKE_CASE_: Tuple =model(**__SCREAMING_SNAKE_CASE ).logits assert torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) print(f'''Saving model {swinva_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization="""nandwalritik""" , commit_message="""Add model""" , ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
703
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _UpperCAmelCase = ["""text""", """image""", """audio"""] def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: str =[] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(lowercase , lowercase ): inputs.append(create_inputs(lowercase ) ) else: raise ValueError(f'''Invalid type requested: {input_type}''' ) return inputs def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: int =[] for output in outputs: if isinstance(lowercase , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(lowercase , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(lowercase , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(f'''Invalid output: {output}''' ) return output_types @is_tool_test class a : def lowerCamelCase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) SCREAMING_SNAKE_CASE_: Optional[int] =self.tool.inputs for _input in inputs: if isinstance(_input , lowerCAmelCase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) SCREAMING_SNAKE_CASE_: Any =self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCamelCase__ ( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: List[Any] =self.tool(*lowerCAmelCase ) # There is a single output if len(self.tool.outputs ) == 1: SCREAMING_SNAKE_CASE_: str =[outputs] self.assertListEqual(output_types(lowerCAmelCase ) , self.tool.outputs ) def lowerCamelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def lowerCamelCase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: Tuple =self.tool(*lowerCAmelCase ) if not isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: int =[outputs] self.assertEqual(len(lowerCAmelCase ) , len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase , self.tool.outputs ): SCREAMING_SNAKE_CASE_: int =AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase , lowerCAmelCase ) ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: Union[str, Any] =[] for _input, input_type in zip(lowerCAmelCase , self.tool.inputs ): if isinstance(lowerCAmelCase , lowerCAmelCase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error SCREAMING_SNAKE_CASE_: Dict =self.tool(*lowerCAmelCase ) if not isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] =[outputs] self.assertEqual(len(lowerCAmelCase ) , len(self.tool.outputs ) )
36
0
def _snake_case (__lowercase): UpperCamelCase_ = abs(__lowercase) UpperCamelCase_ = 0 while n > 0: res += n % 10 n //= 10 return res def _snake_case (__lowercase): UpperCamelCase_ = abs(__lowercase) return n if n < 10 else n % 10 + sum_of_digits(n // 10) def _snake_case (__lowercase): return sum(int(__lowercase) for c in str(abs(__lowercase))) def _snake_case (): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowercase , __lowercase) -> None: UpperCamelCase_ = f"""{func.__name__}({value})""" UpperCamelCase_ = timeit(f"""__main__.{call}""" , setup='import __main__') print(f"""{call:56} = {func(__lowercase)} -- {timing:.4f} seconds""") for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__lowercase , __lowercase) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
23
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _lowercase : List[Any] =logging.get_logger(__name__) _lowercase : str ={ '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Optional[int] = "marian" lowercase : Dict = ["past_key_values"] lowercase : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_81_01 , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Any=10_24 , SCREAMING_SNAKE_CASE__ : Any=12 , SCREAMING_SNAKE_CASE__ : Tuple=40_96 , SCREAMING_SNAKE_CASE__ : Optional[int]=16 , SCREAMING_SNAKE_CASE__ : str=12 , SCREAMING_SNAKE_CASE__ : List[str]=40_96 , SCREAMING_SNAKE_CASE__ : Dict=16 , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : str=10_24 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : List[str]=0.0 , SCREAMING_SNAKE_CASE__ : int=0.0_2 , SCREAMING_SNAKE_CASE__ : int=5_81_00 , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Optional[int]=5_81_00 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : int=True , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Union[str, Any]: A : Optional[Any] =vocab_size A : List[Any] =decoder_vocab_size or vocab_size A : Optional[Any] =max_position_embeddings A : Optional[int] =d_model A : Dict =encoder_ffn_dim A : List[str] =encoder_layers A : Optional[Any] =encoder_attention_heads A : str =decoder_ffn_dim A : Optional[Any] =decoder_layers A : int =decoder_attention_heads A : Optional[Any] =dropout A : Tuple =attention_dropout A : str =activation_dropout A : int =activation_function A : int =init_std A : Union[str, Any] =encoder_layerdrop A : str =decoder_layerdrop A : List[str] =use_cache A : Optional[int] =encoder_layers A : Tuple =scale_embedding # scale factor will be sqrt(d_model) if True A : Tuple =share_encoder_decoder_embeddings super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , forced_eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: A : Any =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A : Optional[Any] ={0: 'batch'} A : Optional[int] ={0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A : Tuple ={0: 'batch', 1: 'decoder_sequence'} A : List[Any] ={0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. A : Dict =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A , A : List[Any] =self.num_layers for i in range(SCREAMING_SNAKE_CASE__ ): A : Dict ={0: 'batch', 2: 'past_sequence + sequence'} A : Any ={0: 'batch', 2: 'past_sequence + sequence'} else: A : List[str] =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: A : List[Any] =super().outputs else: A : Optional[Any] =super(SCREAMING_SNAKE_CASE__ , self ).outputs if self.use_past: A , A : List[str] =self.num_layers for i in range(SCREAMING_SNAKE_CASE__ ): A : Optional[int] ={0: 'batch', 2: 'past_sequence + sequence'} A : Union[str, Any] ={0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : PreTrainedTokenizer , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: A : str =self._generate_dummy_inputs_for_encoder_and_decoder( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Generate decoder inputs A : List[Any] =seq_length if not self.use_past else 1 A : Dict =self._generate_dummy_inputs_for_encoder_and_decoder( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : List[str] ={f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} A : Optional[Any] =dict(**SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A : List[Any] =common_inputs['input_ids'].shape A : Tuple =common_inputs['decoder_input_ids'].shape[1] A , A : Union[str, Any] =self.num_attention_heads A : List[str] =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A : List[Any] =decoder_seq_length + 3 A : str =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A : Tuple =torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] , dim=1 ) A : List[Any] =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered A , A : List[Any] =self.num_layers A : Optional[Any] =min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Optional[int] =max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) - min_num_layers A : str ='encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(SCREAMING_SNAKE_CASE__ ): common_inputs["past_key_values"].append( ( torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ ), ) ) # TODO: test this. A : List[str] =encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): common_inputs["past_key_values"].append((torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ )) ) return common_inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : PreTrainedTokenizer , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: A : str =self._generate_dummy_inputs_for_encoder_and_decoder( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A : str =common_inputs['input_ids'].shape # Not using the same length for past_key_values A : str =seqlen + 2 A , A : Dict =self.num_layers A , A : Any =self.num_attention_heads A : Optional[int] =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A : str =common_inputs['attention_mask'].dtype A : Optional[int] =torch.cat( [common_inputs['attention_mask'], torch.ones(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ )] , dim=1 ) A : Dict =[ (torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ )) for _ in range(SCREAMING_SNAKE_CASE__ ) ] return common_inputs def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : PreTrainedTokenizer , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A : List[Any] =compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A : Union[str, Any] =tokenizer.num_special_tokens_to_add(SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=SCREAMING_SNAKE_CASE__ ) # Generate dummy inputs according to compute batch and sequence A : Optional[Any] =[' '.join([tokenizer.unk_token] ) * seq_length] * batch_size A : Tuple =dict(tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) ) return common_inputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : PreTrainedTokenizer , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: A : Union[str, Any] =self._generate_dummy_inputs_for_default_and_seqaseq_lm( SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , is_pair=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) else: A : Dict =self._generate_dummy_inputs_for_causal_lm( SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , is_pair=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) return common_inputs def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: if self.task in ["default", "seq2seq-lm"]: A : List[Any] =super()._flatten_past_key_values_(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: A : List[str] =super(SCREAMING_SNAKE_CASE__ , self )._flatten_past_key_values_( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> float: return 1e-4
305
0
"""simple docstring""" import os import numpy import onnx def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = a.name lowercase_ = b.name lowercase_ = '''''' lowercase_ = '''''' lowercase_ = a == b lowercase_ = name_a lowercase_ = name_b return res def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(__lowerCAmelCase , __lowerCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , __lowerCAmelCase , __lowerCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , __lowerCAmelCase , __lowerCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , __lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = list(model.graph.initializer ) lowercase_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase_ = inits[i].name lowercase_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , __lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = os.path.dirname(__lowerCAmelCase ) lowercase_ = os.path.basename(__lowerCAmelCase ) lowercase_ = onnx.load(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase_ = list(model.graph.initializer ) lowercase_ = set() lowercase_ = {} lowercase_ = [] lowercase_ = 0 for i in range(len(__lowerCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(__lowerCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(__lowerCAmelCase ) dup_set.add(__lowerCAmelCase ) lowercase_ = inits[j].data_type lowercase_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , __lowerCAmelCase ) total_reduced_size += mem_size lowercase_ = inits[i].name lowercase_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(__lowerCAmelCase ) else: lowercase_ = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 10_24 / 10_24 / 10_24 , """GB""" ) lowercase_ = sorted(__lowerCAmelCase ) _remove_dup_initializers_from_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase_ = '''optimized_''' + model_file_name lowercase_ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) onnx.save(__lowerCAmelCase , __lowerCAmelCase ) return new_model
718
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase=2_81_23 ) -> Optional[Any]: '''simple docstring''' lowercase_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowercase_ = set() lowercase_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(__lowerCAmelCase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
100
0
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __UpperCAmelCase ( __a : Any ) -> Optional[Any]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self , _a , _a ) -> int: super().__init__() _a : List[Any] = module _a : Optional[Any] = nn.Sequential( nn.Linear(module.in_features , __lowercase , bias=__lowercase ) , nn.Linear(__lowercase , module.out_features , bias=__lowercase ) , ) _a : List[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=__lowercase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __lowercase ( self , _a , *_a , **_a ) -> int: return self.module(__lowercase , *__lowercase , **__lowercase ) + self.adapter(__lowercase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "bigscience/bloom-1b7" # Constant values UpperCAmelCase__ : str = 2.109659552692574 UpperCAmelCase__ : Union[str, Any] = "Hello my name is" UpperCAmelCase__ : List[str] = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) UpperCAmelCase__ : Optional[Any] = 10 def __lowercase ( self ) -> List[Any]: _a : Union[str, Any] = AutoTokenizer.from_pretrained(self.model_name ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> Union[str, Any]: super().setUp() # Models and tokenizer _a : Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) _a : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__lowercase , device_map='''auto''' ) def __lowercase ( self ) -> Any: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Union[str, Any]: _a : List[str] = self.model_abit.config self.assertTrue(hasattr(__lowercase , '''quantization_config''' ) ) _a : Optional[int] = config.to_dict() _a : Tuple = config.to_diff_dict() _a : Optional[int] = config.to_json_string() def __lowercase ( self ) -> Dict: from bitsandbytes.nn import Paramsabit _a : List[str] = self.model_fpaa.get_memory_footprint() _a : List[str] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) _a : str = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __lowercase ( self ) -> Optional[int]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(__lowercase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __lowercase ( self ) -> str: _a : Optional[int] = self.tokenizer(self.input_text , return_tensors='''pt''' ) _a : Optional[Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__lowercase ) , self.EXPECTED_OUTPUTS ) def __lowercase ( self ) -> Tuple: _a : Dict = BitsAndBytesConfig() _a : Dict = True _a : Any = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__lowercase , device_map='''auto''' ) _a : List[str] = self.tokenizer(self.input_text , return_tensors='''pt''' ) _a : Any = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__lowercase ) , self.EXPECTED_OUTPUTS ) def __lowercase ( self ) -> Tuple: with self.assertRaises(__lowercase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(__lowercase ) def __lowercase ( self ) -> Any: _a : List[Any] = BitsAndBytesConfig() with self.assertRaises(__lowercase ): _a : Any = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__lowercase , load_in_abit=__lowercase , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def __lowercase ( self ) -> str: with self.assertRaises(__lowercase ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(__lowercase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(__lowercase ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(__lowercase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(__lowercase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything _a : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ) _a : Optional[int] = self.model_fpaa.to(torch.floataa ) _a : Union[str, Any] = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) # Check this does not throw an error _a : List[Any] = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error _a : List[Any] = self.model_fpaa.half() # Check this does not throw an error _a : Dict = self.model_fpaa.float() def __lowercase ( self ) -> int: _a : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=__lowercase , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowercase ( cls ) -> List[Any]: _a : int = '''t5-small''' _a : Dict = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense _a : Union[str, Any] = AutoTokenizer.from_pretrained(cls.model_name ) _a : Optional[int] = '''Translate in German: Hello, my dog is cute''' def __lowercase ( self ) -> Dict: gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Any: from transformers import TaForConditionalGeneration _a : Dict = TaForConditionalGeneration._keep_in_fpaa_modules _a : Any = None # test with `t5-small` _a : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__lowercase , device_map='''auto''' ) _a : List[str] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) _a : List[str] = model.generate(**__lowercase ) # test with `flan-t5-small` _a : Union[str, Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__lowercase , device_map='''auto''' ) _a : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) _a : List[Any] = model.generate(**__lowercase ) _a : Tuple = modules def __lowercase ( self ) -> Dict: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` _a : Optional[int] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__lowercase , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) _a : Optional[int] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) _a : Optional[Any] = model.generate(**__lowercase ) # test with `flan-t5-small` _a : Optional[int] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__lowercase , device_map='''auto''' ) _a : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) _a : List[str] = model.generate(**__lowercase ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: super().setUp() # model_name _a : Optional[int] = '''bigscience/bloom-560m''' _a : int = '''t5-small''' # Different types of model _a : Any = AutoModel.from_pretrained(self.model_name , load_in_abit=__lowercase , device_map='''auto''' ) # Sequence classification model _a : Optional[int] = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=__lowercase , device_map='''auto''' ) # CausalLM model _a : Dict = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__lowercase , device_map='''auto''' ) # Seq2seq model _a : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=__lowercase , device_map='''auto''' ) def __lowercase ( self ) -> Optional[int]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Union[str, Any]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> Optional[Any]: super().setUp() def __lowercase ( self ) -> Optional[Any]: del self.pipe gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Optional[int]: _a : Optional[Any] = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass _a : Optional[Any] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> List[str]: super().setUp() def __lowercase ( self ) -> List[str]: _a : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=__lowercase , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model _a : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch _a : Optional[int] = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__lowercase ) , self.EXPECTED_OUTPUTS ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> str: _a : Tuple = '''facebook/opt-350m''' super().setUp() def __lowercase ( self ) -> Any: if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters _a : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__lowercase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): _a : List[Any] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability _a : str = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(__lowercase ) ): _a : Tuple = LoRALayer(module.q_proj , rank=1_6 ) _a : Optional[int] = LoRALayer(module.k_proj , rank=1_6 ) _a : Optional[Any] = LoRALayer(module.v_proj , rank=1_6 ) # Step 3: dummy batch _a : str = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): _a : int = model.forward(**__lowercase ) out.logits.norm().backward() for module in model.modules(): if isinstance(__lowercase , __lowercase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(__lowercase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = "gpt2-xl" UpperCAmelCase__ : Union[str, Any] = 3.3191854854152187
14
'''simple docstring''' import string def __UpperCamelCase ( lowercase__ : str ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): __lowercase ='' for symbol in message: if symbol in string.ascii_uppercase: __lowercase =string.ascii_uppercase.find(lowercase__ ) __lowercase =num - key if num < 0: __lowercase =num + len(string.ascii_uppercase ) __lowercase =translated + string.ascii_uppercase[num] else: __lowercase =translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def __UpperCamelCase ( ): '''simple docstring''' __lowercase =input('Encrypted message: ' ) __lowercase =message.upper() decrypt(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
119
0
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def A_ ( ) -> List[str]: a : List[Any] = 9 a : List[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] a : int = kruskal(UpperCAmelCase__ , UpperCAmelCase__ ) a : List[Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(UpperCAmelCase__ ) == sorted(UpperCAmelCase__ )
710
"""simple docstring""" from collections import Counter from timeit import timeit def A_ ( UpperCAmelCase__ = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A_ ( UpperCAmelCase__ = "" ) -> bool: if len(UpperCAmelCase__ ) == 0: return True a : Union[str, Any] = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string a : dict[str, int] = {} for character in lower_case_input_str: a : Optional[Any] = character_freq_dict.get(UpperCAmelCase__ , 0 ) + 1 a : Any = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A_ ( UpperCAmelCase__ = "" ) -> None: print('\nFor string = ' , UpperCAmelCase__ , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(UpperCAmelCase__ ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(UpperCAmelCase__ ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Union[str, Any] = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) SCREAMING_SNAKE_CASE__ : List[Any] = can_string_be_rearranged_as_palindrome_counter(check_str) print(F'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
509
0
from argparse import ArgumentParser from . import BaseTransformersCLICommand def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> Union[str, Any]: return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def _A ( __UpperCAmelCase ): """simple docstring""" a__ : List[Any] = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=__UpperCAmelCase , default=__UpperCAmelCase , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=__UpperCAmelCase , help="Name of the model to download" ) download_parser.set_defaults(func=__UpperCAmelCase ) def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" a__ : Union[str, Any] = model a__ : Any = cache a__ : List[Any] = force a__ : Optional[int] = trust_remote_code def _A ( self ): """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
191
import unittest from knapsack import knapsack as k class _a ( unittest.TestCase ): '''simple docstring''' def _A ( self ): """simple docstring""" a__ : List[str] = 0 a__ : Union[str, Any] = [0] a__ : Optional[Any] = [0] a__ : Tuple = len(__UpperCAmelCase ) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , 0 ) a__ : Optional[Any] = [60] a__ : Tuple = [10] a__ : Optional[Any] = len(__UpperCAmelCase ) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , 0 ) def _A ( self ): """simple docstring""" a__ : Dict = 3 a__ : Optional[int] = [1, 2, 3] a__ : List[Any] = [3, 2, 1] a__ : List[Any] = len(__UpperCAmelCase ) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , 5 ) def _A ( self ): """simple docstring""" a__ : List[Any] = 50 a__ : Union[str, Any] = [60, 100, 120] a__ : str = [10, 20, 30] a__ : Union[str, Any] = len(__UpperCAmelCase ) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , 220 ) if __name__ == "__main__": unittest.main()
191
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[Any] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowercase__ ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) UpperCamelCase_ = VideoClassificationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase , top_k=2 ) UpperCamelCase_ = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def lowercase__ ( self : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" for example in examples: UpperCamelCase_ = video_classifier(__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {'score': ANY(__UpperCAmelCase ), 'label': ANY(__UpperCAmelCase )}, {'score': ANY(__UpperCAmelCase ), 'label': ANY(__UpperCAmelCase )}, ] , ) @require_torch def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' UpperCamelCase_ = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) UpperCamelCase_ = pipeline( 'video-classification' , model=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , frame_sampling_rate=4 ) UpperCamelCase_ = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) UpperCamelCase_ = video_classifier(__UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [{'score': 0.5_199, 'label': 'LABEL_0'}, {'score': 0.4_801, 'label': 'LABEL_1'}] , ) UpperCamelCase_ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [{'score': 0.5_199, 'label': 'LABEL_0'}, {'score': 0.4_801, 'label': 'LABEL_1'}], [{'score': 0.5_199, 'label': 'LABEL_0'}, {'score': 0.4_801, 'label': 'LABEL_1'}], ] , ) @require_tf def lowercase__ ( self : int ) -> Tuple: """simple docstring""" pass
710
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class A ( lowerCamelCase_ , unittest.TestCase ): # TODO: is there an appropriate internal test set? _SCREAMING_SNAKE_CASE : int = '''ssube/stable-diffusion-x4-upscaler-onnx''' def lowercase__ ( self : Tuple , __UpperCAmelCase : Optional[Any]=0 ) -> int: """simple docstring""" UpperCamelCase_ = floats_tensor((1, 3, 128, 128) , rng=random.Random(__UpperCAmelCase ) ) UpperCamelCase_ = torch.manual_seed(__UpperCAmelCase ) UpperCamelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase__ ( self : Tuple ) -> int: """simple docstring""" UpperCamelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCamelCase_ = self.get_dummy_inputs() UpperCamelCase_ = pipe(**__UpperCAmelCase ).images UpperCamelCase_ = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCamelCase_ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCamelCase_ = self.get_dummy_inputs() UpperCamelCase_ = pipe(**__UpperCAmelCase ).images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowercase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCamelCase_ = self.get_dummy_inputs() UpperCamelCase_ = pipe(**__UpperCAmelCase ).images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCamelCase_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCamelCase_ = self.get_dummy_inputs() UpperCamelCase_ = pipe(**__UpperCAmelCase ).images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowercase__ ( self : str ) -> str: """simple docstring""" UpperCamelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCamelCase_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCamelCase_ = self.get_dummy_inputs() UpperCamelCase_ = pipe(**__UpperCAmelCase ).images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class A ( unittest.TestCase ): @property def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = ort.SessionOptions() UpperCamelCase_ = False return options def lowercase__ ( self : int ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) UpperCamelCase_ = init_image.resize((128, 128) ) # using the PNDM scheduler by default UpperCamelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCamelCase_ = 'A fantasy landscape, trending on artstation' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=__UpperCAmelCase , output_type='np' , ) UpperCamelCase_ = output.images UpperCamelCase_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowercase__ ( self : int ) -> List[str]: """simple docstring""" UpperCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) UpperCamelCase_ = init_image.resize((128, 128) ) UpperCamelCase_ = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , subfolder='scheduler' ) UpperCamelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , scheduler=__UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCamelCase_ = 'A fantasy landscape, trending on artstation' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=__UpperCAmelCase , output_type='np' , ) UpperCamelCase_ = output.images UpperCamelCase_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
559
0
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __lowerCamelCase : """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str=sys.maxsize ) -> Union[str, Any]: lowerCAmelCase__ = "bilinear" lowerCAmelCase__ = max_size lowerCAmelCase__ = short_edge_length def __call__( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Union[str, Any]: lowerCAmelCase__ = [] for img in imgs: lowerCAmelCase__ , lowerCAmelCase__ = img.shape[:2] # later: provide list and randomly choose index for resize lowerCAmelCase__ = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowerCAmelCase__ = size * 1.0 / min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if h < w: lowerCAmelCase__ , lowerCAmelCase__ = size, scale * w else: lowerCAmelCase__ , lowerCAmelCase__ = scale * h, size if max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) > self.max_size: lowerCAmelCase__ = self.max_size * 1.0 / max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = newh * scale lowerCAmelCase__ = neww * scale lowerCAmelCase__ = int(neww + 0.5 ) lowerCAmelCase__ = int(newh + 0.5 ) if img.dtype == np.uinta: lowerCAmelCase__ = Image.fromarray(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowerCAmelCase__ = np.asarray(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase__ = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowerCAmelCase__ = nn.functional.interpolate( SCREAMING_SNAKE_CASE__ , (newh, neww) , mode=self.interp_method , align_corners=SCREAMING_SNAKE_CASE__ ).squeeze(0 ) img_augs.append(SCREAMING_SNAKE_CASE__ ) return img_augs class __lowerCamelCase : """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict: lowerCAmelCase__ = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowerCAmelCase__ = cfg.INPUT.FORMAT lowerCAmelCase__ = cfg.SIZE_DIVISIBILITY lowerCAmelCase__ = cfg.PAD_VALUE lowerCAmelCase__ = cfg.INPUT.MAX_SIZE_TEST lowerCAmelCase__ = cfg.MODEL.DEVICE lowerCAmelCase__ = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase__ = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase__ = lambda SCREAMING_SNAKE_CASE__ : (x - self.pixel_mean) / self.pixel_std def a ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> Any: lowerCAmelCase__ = tuple(max(SCREAMING_SNAKE_CASE__ ) for s in zip(*[img.shape for img in images] ) ) lowerCAmelCase__ = [im.shape[-2:] for im in images] lowerCAmelCase__ = [ nn.functional.pad( SCREAMING_SNAKE_CASE__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ] return torch.stack(SCREAMING_SNAKE_CASE__ ), torch.tensor(SCREAMING_SNAKE_CASE__ ) def __call__( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any=False ) -> Dict: with torch.no_grad(): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = [images] if single_image: assert len(SCREAMING_SNAKE_CASE__ ) == 1 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(SCREAMING_SNAKE_CASE__ , images.pop(SCREAMING_SNAKE_CASE__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( SCREAMING_SNAKE_CASE__ , torch.as_tensor(img_tensorize(images.pop(SCREAMING_SNAKE_CASE__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowerCAmelCase__ = torch.tensor([im.shape[:2] for im in images] ) lowerCAmelCase__ = self.aug(SCREAMING_SNAKE_CASE__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowerCAmelCase__ = [self.normalizer(SCREAMING_SNAKE_CASE__ ) for x in images] # now pad them to do the following operations lowerCAmelCase__ , lowerCAmelCase__ = self.pad(SCREAMING_SNAKE_CASE__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowerCAmelCase__ = torch.true_divide(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _A ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : int ): """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _A ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple[int, int] ): """simple docstring""" assert torch.isfinite(lowerCAmelCase_ ).all(), "Box tensor contains infinite or NaN!" lowerCAmelCase__ , lowerCAmelCase__ = box_size tensor[:, 0].clamp_(min=0 , max=lowerCAmelCase_ ) tensor[:, 1].clamp_(min=0 , max=lowerCAmelCase_ ) tensor[:, 2].clamp_(min=0 , max=lowerCAmelCase_ ) tensor[:, 3].clamp_(min=0 , max=lowerCAmelCase_ )
61
"""simple docstring""" import argparse import struct import unittest class a : def __init__( self : List[str] , lowerCAmelCase : bytes ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =data # Initialize hash values SCREAMING_SNAKE_CASE_: int =[ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants SCREAMING_SNAKE_CASE_: List[Any] =[ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] SCREAMING_SNAKE_CASE_: int =self.preprocessing(self.data ) self.final_hash() @staticmethod def lowerCamelCase__ ( lowerCAmelCase : bytes ) -> bytes: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =B"""\x80""" + (B"""\x00""" * (63 - (len(lowerCAmelCase ) + 8) % 64)) SCREAMING_SNAKE_CASE_: List[Any] =struct.pack(""">Q""" , (len(lowerCAmelCase ) * 8) ) return data + padding + big_endian_integer def lowerCamelCase__ ( self : Optional[Any] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =[ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers SCREAMING_SNAKE_CASE_: Optional[int] =list(struct.unpack(""">16L""" , lowerCAmelCase ) ) # add 48 0-ed integers words += [0] * 48 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array SCREAMING_SNAKE_CASE_: Any =( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) SCREAMING_SNAKE_CASE_: Tuple =( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) SCREAMING_SNAKE_CASE_: List[str] =( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression SCREAMING_SNAKE_CASE_: Dict =self.ror(lowerCAmelCase , 6 ) ^ self.ror(lowerCAmelCase , 11 ) ^ self.ror(lowerCAmelCase , 25 ) SCREAMING_SNAKE_CASE_: Any =(e & f) ^ ((~e & 0XFF_FFF_FFF) & g) SCREAMING_SNAKE_CASE_: Union[str, Any] =( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 SCREAMING_SNAKE_CASE_: List[Any] =self.ror(lowerCAmelCase , 2 ) ^ self.ror(lowerCAmelCase , 13 ) ^ self.ror(lowerCAmelCase , 22 ) SCREAMING_SNAKE_CASE_: int =(a & b) ^ (a & c) ^ (b & c) SCREAMING_SNAKE_CASE_: Optional[int] =(sa + maj) % 0X100_000_000 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] =( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) SCREAMING_SNAKE_CASE_: Dict =[a, b, c, d, e, f, g, h] # Modify final values SCREAMING_SNAKE_CASE_: List[Any] =[ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes ) ] SCREAMING_SNAKE_CASE_: Tuple ="""""".join([hex(lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : int ) -> int: '''simple docstring''' return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class a ( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] ) -> None: '''simple docstring''' import hashlib SCREAMING_SNAKE_CASE_: Union[str, Any] =bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(lowerCAmelCase ).hash , hashlib.shaaaa(lowerCAmelCase ).hexdigest() ) def __magic_name__ ( ): import doctest doctest.testmod() SCREAMING_SNAKE_CASE_: str =argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) SCREAMING_SNAKE_CASE_: Any =parser.parse_args() SCREAMING_SNAKE_CASE_: List[str] =args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: SCREAMING_SNAKE_CASE_: Optional[Any] =f.read() else: SCREAMING_SNAKE_CASE_: Optional[Any] =bytes(lowercase , """utf-8""" ) print(SHAaaa(lowercase ).hash ) if __name__ == "__main__": main()
409
0
import re from filelock import FileLock try: import nltk __magic_name__ =True except (ImportError, ModuleNotFoundError): __magic_name__ =False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def __UpperCamelCase ( A ): re.sub('''<n>''' , '''''' , A ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(A ) )
469
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class _A : def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=None , ) -> str: '''simple docstring''' UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = decoder_seq_length # For common tests UpperCamelCase__ = self.decoder_seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_attention_mask UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = d_model UpperCamelCase__ = d_model UpperCamelCase__ = decoder_layers UpperCamelCase__ = decoder_layers UpperCamelCase__ = decoder_ffn_dim UpperCamelCase__ = decoder_attention_heads UpperCamelCase__ = decoder_attention_heads UpperCamelCase__ = eos_token_id UpperCamelCase__ = bos_token_id UpperCamelCase__ = pad_token_id UpperCamelCase__ = decoder_start_token_id UpperCamelCase__ = use_cache UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = None UpperCamelCase__ = decoder_seq_length UpperCamelCase__ = 2 UpperCamelCase__ = 1 def _a (self ) -> str: '''simple docstring''' UpperCamelCase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_attention_mask: UpperCamelCase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCamelCase__ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Any: '''simple docstring''' UpperCamelCase__ = True UpperCamelCase__ = TrOCRDecoder(config=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ).eval() UpperCamelCase__ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) + 1 ) UpperCamelCase__ = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids UpperCamelCase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and UpperCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ )['''last_hidden_state'''] UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ )['''last_hidden_state'''] # select random slice UpperCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() UpperCamelCase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) def _a (self ) -> Dict: '''simple docstring''' UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class _A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Tuple =(TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Any =(TrOCRForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Optional[int] ={"text-generation": TrOCRForCausalLM} if is_torch_available() else {} SCREAMING_SNAKE_CASE_ : Optional[int] =True SCREAMING_SNAKE_CASE_ : Dict =False def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ = TrOCRStandaloneDecoderModelTester(self , is_training=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ ) def _a (self ) -> Dict: '''simple docstring''' pass def _a (self ) -> List[str]: '''simple docstring''' pass def _a (self ) -> int: '''simple docstring''' pass def _a (self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def _a (self ) -> Any: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*SCREAMING_SNAKE_CASE_ ) def _a (self ) -> List[Any]: '''simple docstring''' return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def _a (self ) -> Optional[int]: '''simple docstring''' pass
469
1
from __future__ import annotations import math def a(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , lowercase__ , lowercase__ , lowercase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowercase__ , lowercase__ , lowercase__ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , lowercase__ , lowercase__ , lowercase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowercase__ , lowercase__ , lowercase__ ) , ) ) def a(): '''simple docstring''' snake_case_ = [90, 23, 6, 33, 21, 65, 123, 34423] snake_case_ = math.log(len(lowercase__ ) , 2 ) print(f"""Optimal value : {minimax(0 , 0 , lowercase__ , lowercase__ , lowercase__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
187
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): """simple docstring""" __A = KandinskyImgaImgPipeline __A = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] __A = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] __A = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __A = False @property def __lowerCAmelCase ( self ): """simple docstring""" return 32 @property def __lowerCAmelCase ( self ): """simple docstring""" return 32 @property def __lowerCAmelCase ( self ): """simple docstring""" return self.time_input_dim @property def __lowerCAmelCase ( self ): """simple docstring""" return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ): """simple docstring""" return 1_00 @property def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) snake_case_ = MultilingualCLIP(__UpperCamelCase ) snake_case_ = text_encoder.eval() return text_encoder @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } snake_case_ = UNetaDConditionModel(**__UpperCamelCase ) return model @property def __lowerCAmelCase ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.dummy_text_encoder snake_case_ = self.dummy_tokenizer snake_case_ = self.dummy_unet snake_case_ = self.dummy_movq snake_case_ = { 'num_train_timesteps': 10_00, 'beta_schedule': 'linear', 'beta_start': 0.0_0085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } snake_case_ = DDIMScheduler(**__UpperCamelCase ) snake_case_ = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase=0 ): """simple docstring""" snake_case_ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case_ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__UpperCamelCase ) # create init_image snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert('RGB' ).resize((2_56, 2_56) ) if str(__UpperCamelCase ).startswith('mps' ): snake_case_ = torch.manual_seed(__UpperCamelCase ) else: snake_case_ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case_ = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = 'cpu' snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**__UpperCamelCase ) snake_case_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) snake_case_ = output.images snake_case_ = pipe( **self.get_dummy_inputs(__UpperCamelCase ) , return_dict=__UpperCamelCase , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array( [0.6147_4943, 0.607_3539, 0.4330_8544, 0.592_8269, 0.4749_3595, 0.4675_5973, 0.461_3838, 0.4536_8797, 0.5011_9233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) snake_case_ = 'A red cartoon frog, 4k' snake_case_ = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCamelCase ) snake_case_ = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa ) snake_case_ = pipeline.to(__UpperCamelCase ) pipeline.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = torch.Generator(device='cpu' ).manual_seed(0 ) snake_case_ , snake_case_ = pipe_prior( __UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() snake_case_ = pipeline( __UpperCamelCase , image=__UpperCamelCase , image_embeds=__UpperCamelCase , negative_image_embeds=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type='np' , ) snake_case_ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
187
1
'''simple docstring''' def A ( snake_case__ : list[list[float]] ) -> int: '''simple docstring''' __snake_case = [] for data in source_data: for i, el in enumerate(__lowerCAmelCase ): if len(__lowerCAmelCase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(__lowerCAmelCase ) ) return data_lists def A ( snake_case__ : list[list[float]] , snake_case__ : list[int] ) -> Tuple: '''simple docstring''' __snake_case = [] for dlist, weight in zip(__lowerCAmelCase , __lowerCAmelCase ): __snake_case = min(__lowerCAmelCase ) __snake_case = max(__lowerCAmelCase ) __snake_case = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: __snake_case = f"Invalid weight of {weight:f} provided" raise ValueError(__lowerCAmelCase ) score_lists.append(__lowerCAmelCase ) return score_lists def A ( snake_case__ : list[list[float]] ) -> List[str]: '''simple docstring''' __snake_case = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(__lowerCAmelCase ): __snake_case = final_scores[j] + ele return final_scores def A ( snake_case__ : list[list[float]] , snake_case__ : list[int] ) -> Optional[Any]: '''simple docstring''' __snake_case = get_data(__lowerCAmelCase ) __snake_case = calculate_each_score(__lowerCAmelCase , __lowerCAmelCase ) __snake_case = generate_final_scores(__lowerCAmelCase ) # append scores to source data for i, ele in enumerate(__lowerCAmelCase ): source_data[i].append(__lowerCAmelCase ) return source_data
709
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __lowercase : def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]: __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def _a ( self) -> Union[str, Any]: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length]) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __snake_case = ids_tensor([self.batch_size] , self.num_choices) __snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self) -> Tuple: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]: __snake_case = OpenLlamaModel(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_) __snake_case = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[Any]: __snake_case = True __snake_case = OpenLlamaModel(lowercase_) model.to(lowercase_) model.eval() __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) __snake_case = model(lowercase_ , attention_mask=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str: __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: __snake_case = True __snake_case = True __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() # first forward pass __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) __snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size) __snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __snake_case = torch.cat([input_ids, next_tokens] , dim=-1) __snake_case = torch.cat([input_mask, next_mask] , dim=-1) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice __snake_case = ids_tensor((1,) , output_from_past.shape[-1]).item() __snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3)) def _a ( self) -> Optional[Any]: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self) -> Tuple: __snake_case = OpenLlamaModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7) def _a ( self) -> int: self.config_tester.run_common_tests() def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'single_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> int: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'multi_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test') def _a ( self) -> List[Any]: pass @parameterized.expand([('linear',), ('dynamic',)]) def _a ( self , lowercase_) -> Optional[Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = ids_tensor([1, 1_0] , config.vocab_size) __snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = OpenLlamaModel(lowercase_) original_model.to(lowercase_) original_model.eval() __snake_case = original_model(lowercase_).last_hidden_state __snake_case = original_model(lowercase_).last_hidden_state set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = {'type': scaling_type, 'factor': 10.0} __snake_case = OpenLlamaModel(lowercase_) scaled_model.to(lowercase_) scaled_model.eval() __snake_case = scaled_model(lowercase_).last_hidden_state __snake_case = scaled_model(lowercase_).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
676
0
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class A_ ( unittest.TestCase ): _UpperCAmelCase : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCAmelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Any): __lowerCamelCase : List[Any] = AudioClassificationPipeline(model=SCREAMING_SNAKE_CASE__ ,feature_extractor=SCREAMING_SNAKE_CASE__) # test with a raw waveform __lowerCamelCase : str = np.zeros((3_4_0_0_0,)) __lowerCamelCase : List[Any] = np.zeros((1_4_0_0_0,)) return audio_classifier, [audioa, audio] def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[Any]): __lowerCamelCase , __lowerCamelCase : Union[str, Any] = examples __lowerCamelCase : Tuple = audio_classifier(SCREAMING_SNAKE_CASE__) # by default a model is initialized with num_labels=2 self.assertEqual( SCREAMING_SNAKE_CASE__ ,[ {'score': ANY(SCREAMING_SNAKE_CASE__), 'label': ANY(SCREAMING_SNAKE_CASE__)}, {'score': ANY(SCREAMING_SNAKE_CASE__), 'label': ANY(SCREAMING_SNAKE_CASE__)}, ] ,) __lowerCamelCase : Optional[Any] = audio_classifier(SCREAMING_SNAKE_CASE__ ,top_k=1) self.assertEqual( SCREAMING_SNAKE_CASE__ ,[ {'score': ANY(SCREAMING_SNAKE_CASE__), 'label': ANY(SCREAMING_SNAKE_CASE__)}, ] ,) self.run_torchaudio(SCREAMING_SNAKE_CASE__) @require_torchaudio def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : List[Any]): import datasets # test with a local file __lowerCamelCase : int = datasets.load_dataset('hf-internal-testing/librispeech_asr_dummy' ,'clean' ,split='validation') __lowerCamelCase : Tuple = dataset[0]['audio']['array'] __lowerCamelCase : Union[str, Any] = audio_classifier(SCREAMING_SNAKE_CASE__) self.assertEqual( SCREAMING_SNAKE_CASE__ ,[ {'score': ANY(SCREAMING_SNAKE_CASE__), 'label': ANY(SCREAMING_SNAKE_CASE__)}, {'score': ANY(SCREAMING_SNAKE_CASE__), 'label': ANY(SCREAMING_SNAKE_CASE__)}, ] ,) @require_torch def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Union[str, Any] = 'anton-l/wav2vec2-random-tiny-classifier' __lowerCamelCase : str = pipeline('audio-classification' ,model=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = np.ones((8_0_0_0,)) __lowerCamelCase : int = audio_classifier(SCREAMING_SNAKE_CASE__ ,top_k=4) __lowerCamelCase : int = [ {'score': 0.0842, 'label': 'no'}, {'score': 0.0838, 'label': 'up'}, {'score': 0.0837, 'label': 'go'}, {'score': 0.0834, 'label': 'right'}, ] __lowerCamelCase : Union[str, Any] = [ {'score': 0.0845, 'label': 'stop'}, {'score': 0.0844, 'label': 'on'}, {'score': 0.0841, 'label': 'right'}, {'score': 0.0834, 'label': 'left'}, ] self.assertIn(nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=4) ,[EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2]) __lowerCamelCase : Tuple = {'array': np.ones((8_0_0_0,)), 'sampling_rate': audio_classifier.feature_extractor.sampling_rate} __lowerCamelCase : Optional[int] = audio_classifier(SCREAMING_SNAKE_CASE__ ,top_k=4) self.assertIn(nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=4) ,[EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2]) @require_torch @slow def lowerCAmelCase ( self : Union[str, Any]): import datasets __lowerCamelCase : Tuple = 'superb/wav2vec2-base-superb-ks' __lowerCamelCase : List[Any] = pipeline('audio-classification' ,model=SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = datasets.load_dataset('anton-l/superb_dummy' ,'ks' ,split='test') __lowerCamelCase : str = np.array(dataset[3]['speech'] ,dtype=np.floataa) __lowerCamelCase : Union[str, Any] = audio_classifier(SCREAMING_SNAKE_CASE__ ,top_k=4) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ,decimals=3) ,[ {'score': 0.981, 'label': 'go'}, {'score': 0.007, 'label': 'up'}, {'score': 0.006, 'label': '_unknown_'}, {'score': 0.001, 'label': 'down'}, ] ,) @require_tf @unittest.skip('Audio classification is not implemented for TF') def lowerCAmelCase ( self : List[str]): pass
652
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow a =logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Path ,SCREAMING_SNAKE_CASE__ : Union[str, None] = None ,SCREAMING_SNAKE_CASE__ : Union[List[str], None] = None ,SCREAMING_SNAKE_CASE__ : Union[str, List[str], None] = None ,SCREAMING_SNAKE_CASE__ : bool = True ,): __lowerCamelCase : List[str] = [file for file in os.listdir(SCREAMING_SNAKE_CASE__) if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__))] if identifier is not None: __lowerCamelCase : str = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): for n_ in n_identifier: __lowerCamelCase : Optional[int] = [file for file in files if n_ not in file] else: __lowerCamelCase : Dict = [file for file in files if n_identifier not in file] __lowerCamelCase : str = ignore_files or [] ignore_files.append('__init__.py') __lowerCamelCase : Tuple = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' ,SCREAMING_SNAKE_CASE__) if only_modules: __lowerCamelCase : Optional[int] = file.split('.')[0] try: __lowerCamelCase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = doctest.DocTestSuite(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = unittest.TextTestRunner().run(SCREAMING_SNAKE_CASE__) self.assertIs(len(result.failures) ,0) except AttributeError: logger.info(F"{module_identifier} is not a module.") else: __lowerCamelCase : int = doctest.testfile(str('..' / directory / file) ,optionflags=doctest.ELLIPSIS) self.assertIs(result.failed ,0) def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : Dict = Path('src/transformers') __lowerCamelCase : Any = 'modeling' __lowerCamelCase : Dict = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(SCREAMING_SNAKE_CASE__ ,identifier=SCREAMING_SNAKE_CASE__ ,ignore_files=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Dict): __lowerCamelCase : Tuple = Path('src/transformers') __lowerCamelCase : Optional[int] = 'tokenization' self.analyze_directory(SCREAMING_SNAKE_CASE__ ,identifier=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Tuple): __lowerCamelCase : List[Any] = Path('src/transformers') __lowerCamelCase : str = 'configuration' self.analyze_directory(SCREAMING_SNAKE_CASE__ ,identifier=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int): __lowerCamelCase : Dict = Path('src/transformers') __lowerCamelCase : Any = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(SCREAMING_SNAKE_CASE__ ,n_identifier=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int): __lowerCamelCase : List[Any] = Path('docs/source') __lowerCamelCase : str = ['favicon.ico'] self.analyze_directory(SCREAMING_SNAKE_CASE__ ,ignore_files=SCREAMING_SNAKE_CASE__ ,only_modules=SCREAMING_SNAKE_CASE__)
652
1
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __lowercase : def __init__( self , lowercase_ , lowercase_=3 , lowercase_=3_2 , lowercase_=3 , lowercase_=1_0 , lowercase_=[8, 1_6, 3_2, 6_4] , lowercase_=[1, 1, 2, 1] , lowercase_=True , lowercase_=True , lowercase_="relu" , lowercase_=3 , lowercase_=None , lowercase_=["stage2", "stage3", "stage4"] , lowercase_=[2, 3, 4] , lowercase_=1 , ) -> Tuple: __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = embeddings_size __snake_case = hidden_sizes __snake_case = depths __snake_case = is_training __snake_case = use_labels __snake_case = hidden_act __snake_case = num_labels __snake_case = scope __snake_case = len(lowercase_) __snake_case = out_features __snake_case = out_indices __snake_case = num_groups def _a ( self) -> Union[str, Any]: __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.num_labels) __snake_case = self.get_config() return config, pixel_values, labels def _a ( self) -> Optional[int]: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _a ( self , lowercase_ , lowercase_ , lowercase_) -> int: __snake_case = BitModel(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _a ( self , lowercase_ , lowercase_ , lowercase_) -> str: __snake_case = self.num_labels __snake_case = BitForImageClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _a ( self , lowercase_ , lowercase_ , lowercase_) -> int: __snake_case = BitBackbone(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None __snake_case = None __snake_case = BitBackbone(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def _a ( self) -> Optional[int]: __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __UpperCAmelCase = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self) -> int: __snake_case = BitModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_) def _a ( self) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self) -> Optional[Any]: return @unittest.skip(reason='Bit does not output attentions') def _a ( self) -> str: pass @unittest.skip(reason='Bit does not use inputs_embeds') def _a ( self) -> List[Any]: pass @unittest.skip(reason='Bit does not support input and output embeddings') def _a ( self) -> Dict: pass def _a ( self) -> Dict: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(lowercase_) __snake_case = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) def _a ( self) -> List[str]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> Optional[int]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowercase_) def _a ( self) -> Any: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(config=lowercase_) for name, module in model.named_modules(): if isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) def _a ( self) -> str: def check_hidden_states_output(lowercase_ , lowercase_ , lowercase_): __snake_case = model_class(lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(lowercase_ , lowercase_)) __snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case = self.model_tester.num_stages self.assertEqual(len(lowercase_) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __snake_case = layer_type __snake_case = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) @unittest.skip(reason='Bit does not use feedforward chunking') def _a ( self) -> Union[str, Any]: pass def _a ( self) -> Optional[int]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_) @slow def _a ( self) -> List[str]: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = BitModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def A ( ) -> List[str]: '''simple docstring''' __snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): @cached_property def _a ( self) -> str: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def _a ( self) -> List[Any]: __snake_case = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(lowercase_) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=lowercase_ , return_tensors='pt').to(lowercase_) # forward pass with torch.no_grad(): __snake_case = model(**lowercase_) # verify the logits __snake_case = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , lowercase_) __snake_case = torch.tensor([[-0.6526, -0.5263, -1.4398]]).to(lowercase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4)) @require_torch class __lowercase ( lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = (BitBackbone,) if is_torch_available() else () __UpperCAmelCase = BitConfig __UpperCAmelCase = False def _a ( self) -> List[Any]: __snake_case = BitModelTester(self)
715
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def A ( snake_case__ : List[Any] ) -> Any: '''simple docstring''' __snake_case = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __snake_case = 4 __snake_case = 48 __snake_case = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = [6, 6, 6, 6] __snake_case = 60 __snake_case = [6, 6, 6, 6] __snake_case = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = 4 __snake_case = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __snake_case = 1 __snake_case = 1 __snake_case = 126 __snake_case = 7 __snake_case = 255.0 __snake_case = '' return config def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: __snake_case = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __snake_case = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: __snake_case = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: __snake_case = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: __snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __snake_case = name.replace('attn' , 'attention.self' ) if "norm1" in name: __snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: __snake_case = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: __snake_case = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: __snake_case = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: __snake_case = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: __snake_case = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": __snake_case = 'layernorm.weight' if name == "norm.bias": __snake_case = 'layernorm.bias' if "conv_first" in name: __snake_case = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __snake_case = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __snake_case = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: __snake_case = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: __snake_case = name.replace('upsample.2' , 'upsample.convolution_1' ) __snake_case = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": __snake_case = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) __snake_case = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: __snake_case = 'swin2sr.' + name return name def A ( snake_case__ : str , snake_case__ : List[Any] ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): __snake_case = orig_state_dict.pop(snake_case__ ) if "qkv" in key: __snake_case = key.split('.' ) __snake_case = int(key_split[1] ) __snake_case = int(key_split[4] ) __snake_case = config.embed_dim if "weight" in key: __snake_case = val[:dim, :] __snake_case = val[dim : dim * 2, :] __snake_case = val[-dim:, :] else: __snake_case = val[:dim] __snake_case = val[dim : dim * 2] __snake_case = val[-dim:] pass else: __snake_case = val return orig_state_dict def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : int ) -> Tuple: '''simple docstring''' __snake_case = get_config(snake_case__ ) __snake_case = SwinaSRForImageSuperResolution(snake_case__ ) model.eval() __snake_case = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' ) __snake_case = convert_state_dict(snake_case__ , snake_case__ ) __snake_case , __snake_case = model.load_state_dict(snake_case__ , strict=snake_case__ ) if len(snake_case__ ) > 0: raise ValueError('Missing keys when converting: {}'.format(snake_case__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict" ) # verify values __snake_case = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' __snake_case = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) __snake_case = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __snake_case = 126 if 'Jpeg' in checkpoint_url else 256 __snake_case = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __snake_case = transforms(snake_case__ ).unsqueeze(0 ) if config.num_channels == 1: __snake_case = pixel_values[:, 0, :, :].unsqueeze(1 ) __snake_case = model(snake_case__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , snake_case__ , atol=1e-3 ) print('Looks ok!' ) __snake_case = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } __snake_case = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(snake_case__ ) if push_to_hub: model.push_to_hub(f"caidas/{model_name}" ) processor.push_to_hub(f"caidas/{model_name}" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") UpperCAmelCase__ : Optional[Any] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
676
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCAmelCase_ = logging.getLogger(__name__) def __magic_name__ ( lowercase , lowercase ) -> str: """simple docstring""" return (preds == labels).mean() @dataclass class UpperCamelCase__ : '''simple docstring''' __a : int = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __a : Optional[Any] = field( default=lowerCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __a : Union[str, Any] = field( default=lowerCamelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __a : Any = field( default=lowerCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class UpperCamelCase__ : '''simple docstring''' __a : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) __a : int = field(metadata={"""help""": """Should contain the data files for the task."""} ) __a : Any = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __a : int = field( default=lowerCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __magic_name__ ( ) -> Optional[Any]: """simple docstring""" lowercase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase_ : Optional[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowercase ) # Set seed set_seed(training_args.seed ) try: lowercase_ : int = processors[data_args.task_name]() lowercase_ : Union[str, Any] = processor.get_labels() lowercase_ : Union[str, Any] = len(lowercase ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowercase_ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase_ : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase_ : List[str] = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase_ : str = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowercase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowercase ) -> Dict: lowercase_ : str = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowercase , p.label_ids )} # Data collator lowercase_ : Any = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase_ : Dict = Trainer( model=lowercase , args=lowercase , train_dataset=lowercase , eval_dataset=lowercase , compute_metrics=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase_ : List[str] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase_ : str = trainer.evaluate() lowercase_ : str = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(lowercase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , lowercase , lowercase ) writer.write("""%s = %s\n""" % (key, value) ) results.update(lowercase ) return results def __magic_name__ ( lowercase ) -> Tuple: """simple docstring""" main() if __name__ == "__main__": main()
458
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: int ) -> list[list[int]]: _UpperCAmelCase : list[list[int]] = [] create_all_state(1 , lowerCAmelCase , lowerCAmelCase , [] , lowerCAmelCase ) return result def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: list[int] , lowerCAmelCase: list[list[int]] , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(lowerCAmelCase , total_number - level + 2 ): current_list.append(lowerCAmelCase ) create_all_state(i + 1 , lowerCAmelCase , level - 1 , lowerCAmelCase , lowerCAmelCase ) current_list.pop() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list[list[int]] ) -> None: for i in total_list: print(*lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k) print_all_state(total_list)
300
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # Initialise PyTorch model SCREAMING_SNAKE_CASE_ = MobileBertConfig.from_json_file(_lowerCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) SCREAMING_SNAKE_CASE_ = MobileBertForPreTraining(_lowerCAmelCase ) # Load weights from tf checkpoint SCREAMING_SNAKE_CASE_ = load_tf_weights_in_mobilebert(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _lowerCAmelCase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
705
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __SCREAMING_SNAKE_CASE ="""%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") __SCREAMING_SNAKE_CASE =f"""https://www.google.com/search?q={query}&num=100""" __SCREAMING_SNAKE_CASE =requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: __SCREAMING_SNAKE_CASE =( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: __SCREAMING_SNAKE_CASE =parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
89
0
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __snake_case ( ): """simple docstring""" UpperCamelCase = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' ,type=_lowercase ,default=1 ,help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' ,type=_lowercase ,help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) ,) # rest from the training program parser.add_argument('''training_script_args''' ,nargs=_lowercase ) return parser.parse_args() def __snake_case ( ): """simple docstring""" UpperCamelCase = parse_args() # Import training_script as a module. UpperCamelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCamelCase = script_fpath.stem UpperCamelCase = importlib.import_module(_lowercase ) # Patch sys.argv UpperCamelCase = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
34
def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' return "\n".join( F'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
472
0
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _UpperCAmelCase : Any = get_logger(__name__) _UpperCAmelCase : Tuple = R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class lowercase : @add_start_docstrings(A_ ) def __call__( self , A_ , A_ ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase : @add_start_docstrings(A_ ) def __call__( self , A_ , A_ ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase ( _SCREAMING_SNAKE_CASE ): @add_start_docstrings(A_ ) def __call__( self , A_ , A_ , A_ , **A_ ) -> jnp.ndarray: """simple docstring""" for processor in self: UpperCamelCase = inspect.signature(processor.__call__ ).parameters if len(A_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' F'''{processor.__class__} are passed to the logits processor.''' ) UpperCamelCase = processor(A_ , A_ , A_ , **A_ ) else: UpperCamelCase = processor(A_ , A_ , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> Union[str, Any]: """simple docstring""" if not isinstance(A_ , A_ ) or not (temperature > 0): raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' ) UpperCamelCase = temperature def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = scores / self.temperature return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ = -float('Inf' ) , A_ = 1 ) -> Union[str, Any]: """simple docstring""" if not isinstance(A_ , A_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(A_ , A_ ) or (min_tokens_to_keep < 1): raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) UpperCamelCase = top_p UpperCamelCase = filter_value UpperCamelCase = min_tokens_to_keep def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase , UpperCamelCase = lax.top_k(A_ , scores.shape[-1] ) UpperCamelCase = jnp.full_like(A_ , self.filter_value ) UpperCamelCase = jax.nn.softmax(A_ , axis=-1 ).cumsum(axis=-1 ) UpperCamelCase = cumulative_probs < self.top_p # include the token that is higher than top_p as well UpperCamelCase = jnp.roll(A_ , 1 ) score_mask |= score_mask.at[:, 0].set(A_ ) # min tokens to keep UpperCamelCase = score_mask.at[:, : self.min_tokens_to_keep].set(A_ ) UpperCamelCase = jnp.where(A_ , A_ , A_ ) UpperCamelCase = jax.lax.sort_key_val(A_ , A_ )[-1] return next_scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ = -float('Inf' ) , A_ = 1 ) -> Any: """simple docstring""" if not isinstance(A_ , A_ ) or top_k <= 0: raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) UpperCamelCase = max(A_ , A_ ) UpperCamelCase = filter_value def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase , UpperCamelCase = scores.shape UpperCamelCase = jnp.full(batch_size * vocab_size , self.filter_value ) UpperCamelCase = min(self.top_k , scores.shape[-1] ) # Safety check UpperCamelCase , UpperCamelCase = lax.top_k(A_ , A_ ) UpperCamelCase = jnp.broadcast_to((jnp.arange(A_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() UpperCamelCase = topk_scores.flatten() UpperCamelCase = topk_indices.flatten() + shift UpperCamelCase = next_scores_flat.at[topk_indices_flat].set(A_ ) UpperCamelCase = next_scores_flat.reshape(A_ , A_ ) return next_scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = bos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = jnp.full(scores.shape , -float('inf' ) ) UpperCamelCase = 1 - jnp.bool_(cur_len - 1 ) UpperCamelCase = jnp.where(A_ , new_scores.at[:, self.bos_token_id].set(0 ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = max_length UpperCamelCase = eos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = jnp.full(scores.shape , -float('inf' ) ) UpperCamelCase = 1 - jnp.bool_(cur_len - self.max_length + 1 ) UpperCamelCase = jnp.where(A_ , new_scores.at[:, self.eos_token_id].set(0 ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> Tuple: """simple docstring""" if not isinstance(A_ , A_ ) or min_length < 0: raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(A_ , A_ ) or eos_token_id < 0: raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) UpperCamelCase = min_length UpperCamelCase = eos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" # create boolean flag to decide if min length penalty should be applied UpperCamelCase = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) UpperCamelCase = jnp.where(A_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = list(A_ ) UpperCamelCase = begin_index def __call__( self , A_ , A_ , A_ ) -> Any: """simple docstring""" UpperCamelCase = 1 - jnp.bool_(cur_len - self.begin_index ) UpperCamelCase = jnp.where(A_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> Any: """simple docstring""" UpperCamelCase = list(A_ ) def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = dict(A_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. UpperCamelCase = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: UpperCamelCase = force_token_array.at[index].set(A_ ) UpperCamelCase = jnp.intaa(A_ ) def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" def _force_token(A_ ): UpperCamelCase = scores.shape[0] UpperCamelCase = self.force_token_array[generation_idx] UpperCamelCase = jnp.ones_like(A_ , dtype=scores.dtype ) * -float('inf' ) UpperCamelCase = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) UpperCamelCase = lax.dynamic_update_slice(A_ , A_ , (0, current_token) ) return new_scores UpperCamelCase = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(A_ ) , lambda: scores , ) , ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ , A_ ) -> int: """simple docstring""" UpperCamelCase = generate_config.eos_token_id UpperCamelCase = generate_config.no_timestamps_token_id UpperCamelCase = generate_config.no_timestamps_token_id + 1 UpperCamelCase = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(A_ , 'max_initial_timestamp_index' ): UpperCamelCase = generate_config.max_initial_timestamp_index else: UpperCamelCase = model_config.vocab_size if self.max_initial_timestamp_index is None: UpperCamelCase = model_config.vocab_size def __call__( self , A_ , A_ , A_ ) -> int: """simple docstring""" # suppress <|notimestamps|> which is handled by without_timestamps UpperCamelCase = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(A_ , A_ ): UpperCamelCase = jnp.where((cur_len - self.begin_index) >= 1 , A_ , A_ ) UpperCamelCase = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , A_ , ) UpperCamelCase = jnp.where((cur_len - self.begin_index) < 2 , A_ , A_ ) UpperCamelCase = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , A_ , A_ , ) return jnp.where( A_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , A_ , ) UpperCamelCase = jax.vmap(A_ )(A_ , A_ ) UpperCamelCase = jnp.where(cur_len == self.begin_index , A_ , A_ ) UpperCamelCase = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , A_ , ) UpperCamelCase = self.timestamp_begin + self.max_initial_timestamp_index UpperCamelCase = jnp.where( A_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , A_ , ) # if sum of probability over timestamps is above any other token, sample timestamp UpperCamelCase = jax.nn.log_softmax(A_ , axis=-1 ) def handle_cumulative_probs(A_ , A_ ): UpperCamelCase = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) UpperCamelCase = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , A_ , ) UpperCamelCase = jax.vmap(A_ )(A_ , A_ ) return scores
3
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Dict = "data2vec-text" def __init__( self , A_=30_522 , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ) -> Any: """simple docstring""" super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = use_cache UpperCamelCase = classifier_dropout class lowercase ( _SCREAMING_SNAKE_CASE ): @property def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
3
1
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": _snake_case : int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) _snake_case : Dict = parser.parse_args() _snake_case : List[Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
693
from typing import Any class __SCREAMING_SNAKE_CASE : def __init__( self, _a ) -> Any: __SCREAMING_SNAKE_CASE = data __SCREAMING_SNAKE_CASE = None def __repr__( self ) -> str: return f'''Node({self.data})''' class __SCREAMING_SNAKE_CASE : def __init__( self ) -> Tuple: __SCREAMING_SNAKE_CASE = None def __iter__( self ) -> Any: __SCREAMING_SNAKE_CASE = self.head while node: yield node.data __SCREAMING_SNAKE_CASE = node.next def __len__( self ) -> int: return sum(1 for _ in self ) def __repr__( self ) -> str: return "->".join([str(_a ) for item in self] ) def __getitem__( self, _a ) -> Any: if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self, _a, _a ) -> None: if not 0 <= index < len(self ): raise ValueError("list index out of range." ) __SCREAMING_SNAKE_CASE = self.head for _ in range(_a ): __SCREAMING_SNAKE_CASE = current.next __SCREAMING_SNAKE_CASE = data def __lowerCAmelCase ( self, _a ) -> None: self.insert_nth(len(self ), _a ) def __lowerCAmelCase ( self, _a ) -> None: self.insert_nth(0, _a ) def __lowerCAmelCase ( self, _a, _a ) -> None: if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) __SCREAMING_SNAKE_CASE = Node(_a ) if self.head is None: __SCREAMING_SNAKE_CASE = new_node elif index == 0: __SCREAMING_SNAKE_CASE = self.head # link new_node to head __SCREAMING_SNAKE_CASE = new_node else: __SCREAMING_SNAKE_CASE = self.head for _ in range(index - 1 ): __SCREAMING_SNAKE_CASE = temp.next __SCREAMING_SNAKE_CASE = temp.next __SCREAMING_SNAKE_CASE = new_node def __lowerCAmelCase ( self ) -> None: # print every node data print(self ) def __lowerCAmelCase ( self ) -> Any: return self.delete_nth(0 ) def __lowerCAmelCase ( self ) -> Any: # delete from tail return self.delete_nth(len(self ) - 1 ) def __lowerCAmelCase ( self, _a = 0 ) -> Any: if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) __SCREAMING_SNAKE_CASE = self.head # default first node if index == 0: __SCREAMING_SNAKE_CASE = self.head.next else: __SCREAMING_SNAKE_CASE = self.head for _ in range(index - 1 ): __SCREAMING_SNAKE_CASE = temp.next __SCREAMING_SNAKE_CASE = temp.next __SCREAMING_SNAKE_CASE = temp.next.next return delete_node.data def __lowerCAmelCase ( self ) -> bool: return self.head is None def __lowerCAmelCase ( self ) -> None: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = self.head while current: # Store the current node's next node. __SCREAMING_SNAKE_CASE = current.next # Make the current node's next point backwards __SCREAMING_SNAKE_CASE = prev # Make the previous node be the current node __SCREAMING_SNAKE_CASE = current # Make the current node the next node (to progress iteration) __SCREAMING_SNAKE_CASE = next_node # Return prev in order to put the head at the end __SCREAMING_SNAKE_CASE = prev def _A ( ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = LinkedList() assert linked_list.is_empty() is True assert str(__snake_case ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__snake_case ) == i linked_list.insert_nth(__snake_case , i + 1 ) assert str(__snake_case ) == "->".join(str(__snake_case ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__snake_case ) == "->".join(str(__snake_case ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__snake_case ) == 9 assert str(__snake_case ) == "->".join(str(__snake_case ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __SCREAMING_SNAKE_CASE = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(__snake_case ) == "->".join(str(__snake_case ) for i in range(-8 , 1 ) ) def _A ( ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = [ -9, 100, Node(7734_5112 ), "dlrow olleH", 7, 5555, 0, -1_9_2.5_5_5_5_5, "Hello, world!", 7_7.9, Node(10 ), None, None, 1_2.2_0, ] __SCREAMING_SNAKE_CASE = LinkedList() for i in test_input: linked_list.insert_tail(__snake_case ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__snake_case ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __SCREAMING_SNAKE_CASE = linked_list.delete_head() assert result == -9 assert ( str(__snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __SCREAMING_SNAKE_CASE = linked_list.delete_tail() assert result == 1_2.2 assert ( str(__snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __SCREAMING_SNAKE_CASE = linked_list.delete_nth(10 ) assert result is None assert ( str(__snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(__snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__snake_case ) assert ( str(__snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__snake_case ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _A ( ) -> Union[str, Any]: """simple docstring""" from doctest import testmod testmod() __SCREAMING_SNAKE_CASE = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(__snake_case ) print("\nReading/changing Node data using indexing:" ) print(f'''Element at Position 1: {linked_list[1]}''' ) __SCREAMING_SNAKE_CASE = input("Enter New Value: " ).strip() print("New list:" ) print(__snake_case ) print(f'''length of linked_list is : {len(__snake_case )}''' ) if __name__ == "__main__": main()
693
1
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def lowerCamelCase_ ( _lowercase ) -> Any: return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def lowerCamelCase_ ( ) -> Optional[int]: __A : List[str] = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=_lowercase ) __A : Optional[int] = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_lowercase ) EnvironmentCommand.register_subcommand(_lowercase ) TestCommand.register_subcommand(_lowercase ) RunBeamCommand.register_subcommand(_lowercase ) DummyDataCommand.register_subcommand(_lowercase ) # Parse args __A : Dict = parser.parse_known_args() if not hasattr(_lowercase , "func" ): parser.print_help() exit(1 ) __A : List[Any] = parse_unknown_args(_lowercase ) # Run __A : Any = args.func(_lowercase , **_lowercase ) service.run() if __name__ == "__main__": main()
720
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowerCamelCase_ ( _lowercase ) -> Dict: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowerCamelCase_ ( _lowercase ) -> Dict: __A : Dict = create_tensor(_lowercase ) __A : int = gather(_lowercase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowerCamelCase_ ( _lowercase ) -> str: __A : Tuple = [state.process_index] __A : Optional[int] = gather_object(_lowercase ) assert len(_lowercase ) == state.num_processes, F"{gathered_obj}, {len(_lowercase )} != {state.num_processes}" assert gathered_obj == list(range(state.num_processes ) ), F"{gathered_obj} != {list(range(state.num_processes ) )}" def lowerCamelCase_ ( _lowercase ) -> str: __A : List[str] = create_tensor(_lowercase ) __A : Any = broadcast(_lowercase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowerCamelCase_ ( _lowercase ) -> str: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: __A : str = torch.arange(state.num_processes + 1 ).to(state.device ) else: __A : Dict = torch.arange(state.num_processes ).to(state.device ) __A : Optional[Any] = pad_across_processes(_lowercase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowerCamelCase_ ( _lowercase ) -> str: # For now runs on only two processes if state.num_processes != 2: return __A : Dict = create_tensor(_lowercase ) __A : int = reduce(_lowercase , "sum" ) __A : str = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(_lowercase , _lowercase ), F"{reduced_tensor} != {truth_tensor}" def lowerCamelCase_ ( _lowercase ) -> List[str]: # For now runs on only two processes if state.num_processes != 2: return __A : Tuple = create_tensor(_lowercase ) __A : List[str] = reduce(_lowercase , "mean" ) __A : Union[str, Any] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(_lowercase , _lowercase ), F"{reduced_tensor} != {truth_tensor}" def lowerCamelCase_ ( _lowercase ) -> Optional[int]: # For xla_spawn (TPUs) main() def lowerCamelCase_ ( ) -> List[str]: __A : Optional[int] = PartialState() state.print(F"State: {state}" ) state.print("testing gather" ) test_gather(_lowercase ) state.print("testing gather_object" ) test_gather_object(_lowercase ) state.print("testing broadcast" ) test_broadcast(_lowercase ) state.print("testing pad_across_processes" ) test_pad_across_processes(_lowercase ) state.print("testing reduce_sum" ) test_reduce_sum(_lowercase ) state.print("testing reduce_mean" ) test_reduce_mean(_lowercase ) if __name__ == "__main__": main()
387
0
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __snake_case ( _lowercase): snake_case__ : Tuple = ["image_processor", "tokenizer"] snake_case__ : Dict = "BlipImageProcessor" snake_case__ : Optional[Any] = "AutoTokenizer" def __init__( self : str , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple ): """simple docstring""" super().__init__(__lowerCAmelCase , __lowerCAmelCase ) # add QFormer tokenizer _lowerCamelCase : Optional[Any] = qformer_tokenizer def __call__( self : Optional[Any] , __lowerCAmelCase : ImageInput = None , __lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCAmelCase : bool = True , __lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , __lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : int = 0 , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , **__lowerCAmelCase : List[Any] , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) _lowerCamelCase : int = BatchFeature() if text is not None: _lowerCamelCase : Union[str, Any] = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) encoding.update(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.qformer_tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) _lowerCamelCase : Optional[int] = qformer_text_encoding.pop('''input_ids''' ) _lowerCamelCase : Optional[Any] = qformer_text_encoding.pop('''attention_mask''' ) if images is not None: _lowerCamelCase : str = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase ) encoding.update(__lowerCAmelCase ) return encoding def SCREAMING_SNAKE_CASE ( self : List[str] , *__lowerCAmelCase : str , **__lowerCAmelCase : Dict ): """simple docstring""" return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : List[str] ): """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : str = self.tokenizer.model_input_names _lowerCamelCase : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Dict , **__lowerCAmelCase : Tuple ): """simple docstring""" if os.path.isfile(__lowerCAmelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(__lowerCAmelCase ) return super().save_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] , __lowerCAmelCase : Optional[int] , **__lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Dict = AutoTokenizer.from_pretrained(__lowerCAmelCase , subfolder='''qformer_tokenizer''' ) _lowerCamelCase : Optional[Any] = cls._get_arguments_from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) args.append(__lowerCAmelCase ) return cls(*__lowerCAmelCase )
83
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml lowerCAmelCase_ : Optional[Any] = NewType('''DataClass''', Any) lowerCAmelCase_ : Any = NewType('''DataClassType''', Any) def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' if isinstance(lowerCAmelCase , lowerCAmelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = {str(lowerCAmelCase ): choice for choice in choices} return lambda lowerCAmelCase : str_to_choice.get(lowerCAmelCase , lowerCAmelCase ) def _lowerCAmelCase ( *, lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = dataclasses.MISSING , lowerCAmelCase = dataclasses.MISSING , lowerCAmelCase = None , **lowerCAmelCase , ): '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls UpperCAmelCase = {} if aliases is not None: UpperCAmelCase = aliases if help is not None: UpperCAmelCase = help return dataclasses.field(metadata=lowerCAmelCase , default=lowerCAmelCase , default_factory=lowerCAmelCase , **lowerCAmelCase ) class UpperCamelCase_ ( a_ ): _A : Iterable[DataClassType] def __init__( self , snake_case__ , **snake_case__ ) -> List[str]: """simple docstring""" if "formatter_class" not in kwargs: UpperCAmelCase = ArgumentDefaultsHelpFormatter super().__init__(**snake_case__ ) if dataclasses.is_dataclass(snake_case__ ): UpperCAmelCase = [dataclass_types] UpperCAmelCase = list(snake_case__ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(snake_case__ ) @staticmethod def UpperCamelCase_ ( snake_case__ , snake_case__ ) -> str: """simple docstring""" UpperCAmelCase = f'''--{field.name}''' UpperCAmelCase = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , snake_case__ ): raise RuntimeError( """Unresolved type detected, which should have been done with the help of """ """`typing.get_type_hints` method by default""" ) UpperCAmelCase = kwargs.pop("""aliases""" , [] ) if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase = [aliases] UpperCAmelCase = getattr(field.type , """__origin__""" , field.type ) if origin_type is Union or (hasattr(snake_case__ , """UnionType""" ) and isinstance(snake_case__ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(snake_case__ ) not in field.type.__args__ ): raise ValueError( """Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because""" """ the argument parser only supports one type per argument.""" f''' Problem encountered in field \'{field.name}\'.''' ) if type(snake_case__ ) not in field.type.__args__: # filter `str` in Union UpperCAmelCase = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] UpperCAmelCase = getattr(field.type , """__origin__""" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) UpperCAmelCase = ( field.type.__args__[0] if isinstance(snake_case__ , field.type.__args__[1] ) else field.type.__args__[1] ) UpperCAmelCase = getattr(field.type , """__origin__""" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) UpperCAmelCase = {} if origin_type is Literal or (isinstance(field.type , snake_case__ ) and issubclass(field.type , snake_case__ )): if origin_type is Literal: UpperCAmelCase = field.type.__args__ else: UpperCAmelCase = [x.value for x in field.type] UpperCAmelCase = make_choice_type_function(kwargs["""choices"""] ) if field.default is not dataclasses.MISSING: UpperCAmelCase = field.default else: UpperCAmelCase = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument UpperCAmelCase = copy(snake_case__ ) # Hack because type=bool in argparse does not behave as we want. UpperCAmelCase = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. UpperCAmelCase = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way UpperCAmelCase = default # This tells argparse we accept 0 or 1 value after --field_name UpperCAmelCase = """?""" # This is the value that will get picked if we do --field_name (without value) UpperCAmelCase = True elif isclass(snake_case__ ) and issubclass(snake_case__ , snake_case__ ): UpperCAmelCase = field.type.__args__[0] UpperCAmelCase = """+""" if field.default_factory is not dataclasses.MISSING: UpperCAmelCase = field.default_factory() elif field.default is dataclasses.MISSING: UpperCAmelCase = True else: UpperCAmelCase = field.type if field.default is not dataclasses.MISSING: UpperCAmelCase = field.default elif field.default_factory is not dataclasses.MISSING: UpperCAmelCase = field.default_factory() else: UpperCAmelCase = True parser.add_argument(snake_case__ , *snake_case__ , **snake_case__ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): UpperCAmelCase = False parser.add_argument(f'''--no_{field.name}''' , action="""store_false""" , dest=field.name , **snake_case__ ) def UpperCamelCase_ ( self , snake_case__ ) -> Any: """simple docstring""" if hasattr(snake_case__ , """_argument_group_name""" ): UpperCAmelCase = self.add_argument_group(dtype._argument_group_name ) else: UpperCAmelCase = self try: UpperCAmelCase = get_type_hints(snake_case__ ) except NameError: raise RuntimeError( f'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' """removing line of `from __future__ import annotations` which opts in Postponed """ """Evaluation of Annotations (PEP 563)""" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(snake_case__ ): UpperCAmelCase = """.""".join(map(snake_case__ , sys.version_info[:3] ) ) raise RuntimeError( f'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' """line of `from __future__ import annotations` which opts in union types as """ """`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To """ """support Python versions that lower than 3.10, you need to use """ """`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of """ """`X | None`.""" ) from ex raise for field in dataclasses.fields(snake_case__ ): if not field.init: continue UpperCAmelCase = type_hints[field.name] self._parse_dataclass_field(snake_case__ , snake_case__ ) def UpperCamelCase_ ( self , snake_case__=None , snake_case__=False , snake_case__=True , snake_case__=None , snake_case__=None , ) -> Tuple[DataClass, ...]: """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): UpperCAmelCase = [] if args_filename: args_files.append(Path(snake_case__ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(""".args""" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values UpperCAmelCase = ArgumentParser() args_file_parser.add_argument(snake_case__ , type=snake_case__ , action="""append""" ) # Use only remaining args for further parsing (remove the args_file_flag) UpperCAmelCase , UpperCAmelCase = args_file_parser.parse_known_args(args=snake_case__ ) UpperCAmelCase = vars(snake_case__ ).get(args_file_flag.lstrip("""-""" ) , snake_case__ ) if cmd_args_file_paths: args_files.extend([Path(snake_case__ ) for p in cmd_args_file_paths] ) UpperCAmelCase = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last UpperCAmelCase = file_args + args if args is not None else file_args + sys.argv[1:] UpperCAmelCase , UpperCAmelCase = self.parse_known_args(args=snake_case__ ) UpperCAmelCase = [] for dtype in self.dataclass_types: UpperCAmelCase = {f.name for f in dataclasses.fields(snake_case__ ) if f.init} UpperCAmelCase = {k: v for k, v in vars(snake_case__ ).items() if k in keys} for k in keys: delattr(snake_case__ , snake_case__ ) UpperCAmelCase = dtype(**snake_case__ ) outputs.append(snake_case__ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(snake_case__ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def UpperCamelCase_ ( self , snake_case__ , snake_case__ = False ) -> Tuple[DataClass, ...]: """simple docstring""" UpperCAmelCase = set(args.keys() ) UpperCAmelCase = [] for dtype in self.dataclass_types: UpperCAmelCase = {f.name for f in dataclasses.fields(snake_case__ ) if f.init} UpperCAmelCase = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) UpperCAmelCase = dtype(**snake_case__ ) outputs.append(snake_case__ ) if not allow_extra_keys and unused_keys: raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(snake_case__ )}''' ) return tuple(snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ = False ) -> Tuple[DataClass, ...]: """simple docstring""" with open(Path(snake_case__ ) , encoding="""utf-8""" ) as open_json_file: UpperCAmelCase = json.loads(open_json_file.read() ) UpperCAmelCase = self.parse_dict(snake_case__ , allow_extra_keys=snake_case__ ) return tuple(snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ = False ) -> Tuple[DataClass, ...]: """simple docstring""" UpperCAmelCase = self.parse_dict(yaml.safe_load(Path(snake_case__ ).read_text() ) , allow_extra_keys=snake_case__ ) return tuple(snake_case__ )
673
0
def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) __a = (boundary[1] - boundary[0]) / steps __a = boundary[0] __a = boundary[1] __a = make_points(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __a = 0.0 y += (h / 2.0) * f(__lowerCamelCase ) for i in x_i: # print(i) y += h * f(__lowerCamelCase ) y += (h / 2.0) * f(__lowerCamelCase ) return y def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = a + h while x < (b - h): yield x __a = x + h def lowerCAmelCase( __lowerCamelCase ): # enter your function here __a = (x - 0) * (x - 0) return y def lowerCAmelCase( ): __a = 0.0 # Lower bound of integration __a = 1.0 # Upper bound of integration __a = 10.0 # define number of steps or resolution __a = [a, b] # define boundary of integration __a = method_a(__lowerCamelCase , __lowerCamelCase ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
700
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ : Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase_ : Union[str, Any] = 250_004 lowerCamelCase_ : List[str] = 250_020 @require_sentencepiece @require_tokenizers class a__ ( __snake_case , unittest.TestCase ): A__ : Optional[Any] = MBartTokenizer A__ : Optional[Any] = MBartTokenizerFast A__ : Dict = True A__ : Dict = True def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing __a = MBartTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = MBartTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) __a = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __a = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __a = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __a = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __a = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) __a = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) __a = tempfile.mkdtemp() __a = tokenizer_r.save_pretrained(UpperCAmelCase ) __a = tokenizer_p.save_pretrained(UpperCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(UpperCAmelCase , UpperCAmelCase ) # Checks everything loads correctly in the same way __a = tokenizer_r.from_pretrained(UpperCAmelCase ) __a = tokenizer_p.from_pretrained(UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCAmelCase ) # Save tokenizer rust, legacy_format=True __a = tempfile.mkdtemp() __a = tokenizer_r.save_pretrained(UpperCAmelCase , legacy_format=UpperCAmelCase ) __a = tokenizer_p.save_pretrained(UpperCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase , UpperCAmelCase ) # Checks everything loads correctly in the same way __a = tokenizer_r.from_pretrained(UpperCAmelCase ) __a = tokenizer_p.from_pretrained(UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) ) shutil.rmtree(UpperCAmelCase ) # Save tokenizer rust, legacy_format=False __a = tempfile.mkdtemp() __a = tokenizer_r.save_pretrained(UpperCAmelCase , legacy_format=UpperCAmelCase ) __a = tokenizer_p.save_pretrained(UpperCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a = tokenizer_r.from_pretrained(UpperCAmelCase ) __a = tokenizer_p.from_pretrained(UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) ) shutil.rmtree(UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): A__ : Optional[Any] = 'facebook/mbart-large-en-ro' A__ : Union[str, Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] A__ : Tuple = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] A__ : Dict = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def __SCREAMING_SNAKE_CASE ( cls ) -> Optional[Any]: __a = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) __a = 1 return cls def __SCREAMING_SNAKE_CASE ( self ) -> str: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 2_5_0_0_2_0 ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: self.assertIn(UpperCAmelCase , self.tokenizer.all_special_ids ) __a = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] __a = self.tokenizer.decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) __a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = ['this is gunna be a long sentence ' * 2_0] assert isinstance(src_text[0] , UpperCAmelCase ) __a = 1_0 __a = self.tokenizer(UpperCAmelCase , max_length=UpperCAmelCase , truncation=UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = tempfile.mkdtemp() __a = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCAmelCase ) __a = MBartTokenizer.from_pretrained(UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCAmelCase ) @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: __a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase , return_tensors='pt' ) __a = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) __a = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = self.tokenizer(self.src_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=3 , return_tensors='pt' ) __a = self.tokenizer( text_target=self.tgt_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=1_0 , return_tensors='pt' ) __a = targets['input_ids'] __a = shift_tokens_right(UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { # A, test, EOS, en_XX 'input_ids': [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 2_5_0_0_0_1, } , )
246
0
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __A : Any = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") __A : Optional[int] = parser.parse_args() __A : List[str] = "cpu" __A : List[Any] = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" __A : str = "path-to-your-trained-model" __A : int = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __A : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __A : int = pipe.to(device) # to channels last __A : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) __A : str = pipe.vae.to(memory_format=torch.channels_last) __A : int = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __A : Union[str, Any] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __A : List[str] = torch.randn(2, 4, 64, 64) __A : Any = torch.rand(1) * 999 __A : Optional[int] = torch.randn(2, 77, 768) __A : int = (sample, timestep, encoder_hidden_status) try: __A : int = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __A : int = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __A : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __A : Tuple = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __A : int = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __A : Optional[int] = 666 __A : Optional[Any] = torch.Generator(device).manual_seed(seed) __A : Any = {"generator": generator} if args.steps is not None: __A : Optional[int] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __A : Any = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
275
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = LongformerTokenizer __UpperCAmelCase = True __UpperCAmelCase = LongformerTokenizerFast __UpperCAmelCase = True def lowercase_ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case : Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __snake_case : Optional[int] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __snake_case : List[Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __snake_case : str = {'unk_token': '<unk>'} __snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCAmelCase ) ) def lowercase_ ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = 'lower newer' __snake_case : List[Any] = 'lower newer' return input_text, output_text def lowercase_ ( self ): __snake_case : str = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __snake_case : str = 'lower newer' __snake_case : List[Any] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] __snake_case : str = tokenizer.tokenize(_UpperCAmelCase ) # , add_prefix_space=True) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Optional[Any] = tokens + [tokenizer.unk_token] __snake_case : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : int = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=_UpperCAmelCase ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=_UpperCAmelCase ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowercase_ ( self ): __snake_case : Optional[int] = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) __snake_case : List[Any] = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) __snake_case : Optional[Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) __snake_case : Optional[int] = tokenizer.encode( 'sequence builders' , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __snake_case : Tuple = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __snake_case : str = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __snake_case : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowercase_ ( self ): __snake_case : int = self.get_tokenizer() __snake_case : str = 'Encode this sequence.' __snake_case : Optional[int] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments __snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : List[str] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __snake_case : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) __snake_case : str = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __snake_case : Any = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing spaces after special tokens __snake_case : int = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase )} ) # mask token has a left space __snake_case : Optional[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) __snake_case : Any = 'Encode <mask> sequence' __snake_case : str = 'Encode <mask>sequence' __snake_case : Union[str, Any] = tokenizer.encode(_UpperCAmelCase ) __snake_case : Optional[Any] = encoded.index(_UpperCAmelCase ) __snake_case : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : List[Any] = tokenizer.encode(_UpperCAmelCase ) __snake_case : List[Any] = encoded.index(_UpperCAmelCase ) __snake_case : List[str] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): pass def lowercase_ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : int = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : List[str] = 'A, <mask> AllenNLP sentence.' __snake_case : Optional[Any] = tokenizer_r.encode_plus(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) __snake_case : List[Any] = tokenizer_p.encode_plus(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) __snake_case : Any = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) __snake_case : str = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _UpperCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _UpperCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def lowercase_ ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __snake_case : str = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __snake_case : List[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __snake_case : int = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , _UpperCAmelCase ) self.assertEqual(post_processor_state['add_prefix_space'] , _UpperCAmelCase ) self.assertEqual(post_processor_state['trim_offsets'] , _UpperCAmelCase ) def lowercase_ ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case : List[Any] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` __snake_case : Any = F"""{text_of_1_token} {text_of_1_token}""" __snake_case : Optional[int] = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __snake_case : List[str] = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ) + 1, len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __snake_case : str = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __snake_case : List[Any] = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ) + 1, len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __snake_case : Optional[int] = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __snake_case : Optional[Any] = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ), len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __snake_case : Tuple = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __snake_case : Any = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ), len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __snake_case : Optional[int] = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __snake_case : Tuple = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __snake_case : Optional[Any] = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ) + 1, 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __snake_case : Any = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ), 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __snake_case : Any = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __snake_case : Tuple = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ), 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , )
576
0
def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError('String lengths must match!' ) __snake_case : List[str] = 0 for chara, chara in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
703
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __magic_name__ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCAmelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowercase_ ( self ): if self.train_file is not None: __snake_case : Union[str, Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case : List[str] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = True __UpperCAmelCase = None __UpperCAmelCase = None def __call__( self , _UpperCAmelCase ): __snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels' __snake_case : Dict = [feature.pop(_UpperCAmelCase ) for feature in features] __snake_case : List[Any] = len(_UpperCAmelCase ) __snake_case : Union[str, Any] = len(features[0]['input_ids'] ) __snake_case : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features ] __snake_case : Union[str, Any] = list(chain(*_UpperCAmelCase ) ) __snake_case : Optional[Any] = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten __snake_case : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()} # Add back labels __snake_case : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) return batch def UpperCAmelCase__( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , __UpperCAmelCase , __UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __snake_case : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case : Optional[int] = {} if data_args.train_file is not None: __snake_case : Optional[int] = data_args.train_file if data_args.validation_file is not None: __snake_case : int = data_args.validation_file __snake_case : int = data_args.train_file.split('.' )[-1] __snake_case : Tuple = load_dataset( __UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case : Optional[int] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case : str = [F"""ending{i}""" for i in range(4 )] __snake_case : Optional[Any] = 'sent1' __snake_case : Tuple = 'sent2' if data_args.max_seq_length is None: __snake_case : List[Any] = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __snake_case : List[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __snake_case : str = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__UpperCAmelCase : Tuple ): __snake_case : Union[str, Any] = [[context] * 4 for context in examples[context_name]] __snake_case : Union[str, Any] = examples[question_header_name] __snake_case : Optional[int] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__UpperCAmelCase ) ] # Flatten out __snake_case : Optional[Any] = list(chain(*__UpperCAmelCase ) ) __snake_case : int = list(chain(*__UpperCAmelCase ) ) # Tokenize __snake_case : Tuple = tokenizer( __UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __snake_case : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: __snake_case : Tuple = min(len(__UpperCAmelCase ) , data_args.max_train_samples ) __snake_case : List[str] = train_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __snake_case : int = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __snake_case : Optional[Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: __snake_case : List[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples ) __snake_case : Optional[Any] = eval_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __snake_case : List[Any] = eval_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__UpperCAmelCase : int ): __snake_case , __snake_case : Union[str, Any] = eval_predictions __snake_case : Tuple = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case : List[str] = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: __snake_case : Dict = None if training_args.resume_from_checkpoint is not None: __snake_case : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case : List[str] = last_checkpoint __snake_case : List[str] = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case : List[Any] = train_result.metrics __snake_case : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __snake_case : Tuple = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('train' , __UpperCAmelCase ) trainer.save_metrics('train' , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case : Dict = trainer.evaluate() __snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __snake_case : Optional[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('eval' , __UpperCAmelCase ) trainer.save_metrics('eval' , __UpperCAmelCase ) __snake_case : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
679
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { """configuration_x_clip""": [ """XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XCLIPConfig""", """XCLIPTextConfig""", """XCLIPVisionConfig""", ], """processing_x_clip""": ["""XCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """XCLIPModel""", """XCLIPPreTrainedModel""", """XCLIPTextModel""", """XCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
477
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : @staticmethod def lowerCAmelCase (*snake_case_ : int , **snake_case_ : List[str] ): pass @is_pipeline_test @require_vision @require_timm @require_torch class UpperCamelCase__ ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = MODEL_FOR_OBJECT_DETECTION_MAPPING def lowerCAmelCase (self : Tuple , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Dict ): __a : Union[str, Any] = ObjectDetectionPipeline(model=snake_case_ , image_processor=snake_case_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def lowerCAmelCase (self : Tuple , snake_case_ : List[str] , snake_case_ : Any ): __a : Any = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' , threshold=0.0 ) self.assertGreater(len(snake_case_ ) , 0 ) for detected_object in outputs: self.assertEqual( snake_case_ , { '''score''': ANY(snake_case_ ), '''label''': ANY(snake_case_ ), '''box''': {'''xmin''': ANY(snake_case_ ), '''ymin''': ANY(snake_case_ ), '''xmax''': ANY(snake_case_ ), '''ymax''': ANY(snake_case_ )}, } , ) import datasets __a : List[Any] = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) __a : List[str] = [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] __a : Optional[int] = object_detector(snake_case_ , threshold=0.0 ) self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for outputs in batch_outputs: self.assertGreater(len(snake_case_ ) , 0 ) for detected_object in outputs: self.assertEqual( snake_case_ , { '''score''': ANY(snake_case_ ), '''label''': ANY(snake_case_ ), '''box''': {'''xmin''': ANY(snake_case_ ), '''ymin''': ANY(snake_case_ ), '''xmax''': ANY(snake_case_ ), '''ymax''': ANY(snake_case_ )}, } , ) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def lowerCAmelCase (self : int ): pass @require_torch def lowerCAmelCase (self : Tuple ): __a : str = '''hf-internal-testing/tiny-detr-mobilenetsv3''' __a : int = AutoModelForObjectDetection.from_pretrained(snake_case_ ) __a : int = AutoFeatureExtractor.from_pretrained(snake_case_ ) __a : Union[str, Any] = ObjectDetectionPipeline(model=snake_case_ , feature_extractor=snake_case_ ) __a : List[str] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=0.0 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ] , ) __a : Dict = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ], [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ], ] , ) @require_torch @slow def lowerCAmelCase (self : List[Any] ): __a : Optional[Any] = '''facebook/detr-resnet-50''' __a : int = AutoModelForObjectDetection.from_pretrained(snake_case_ ) __a : str = AutoFeatureExtractor.from_pretrained(snake_case_ ) __a : Tuple = ObjectDetectionPipeline(model=snake_case_ , feature_extractor=snake_case_ ) __a : Union[str, Any] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) __a : Optional[Any] = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], ] , ) @require_torch @slow def lowerCAmelCase (self : Optional[int] ): __a : Any = '''facebook/detr-resnet-50''' __a : Optional[Any] = pipeline('''object-detection''' , model=snake_case_ ) __a : Optional[int] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) __a : List[str] = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], ] , ) @require_torch @slow def lowerCAmelCase (self : Union[str, Any] ): __a : Tuple = 0.9985 __a : Tuple = '''facebook/detr-resnet-50''' __a : int = pipeline('''object-detection''' , model=snake_case_ ) __a : Optional[Any] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=snake_case_ ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) @require_torch @require_pytesseract @slow def lowerCAmelCase (self : List[str] ): __a : Optional[int] = '''Narsil/layoutlmv3-finetuned-funsd''' __a : Any = 0.9993 __a : Tuple = pipeline('''object-detection''' , model=snake_case_ , threshold=snake_case_ ) __a : Optional[Any] = object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_9_4, '''ymin''': 2_5_4, '''xmax''': 3_4_3, '''ymax''': 2_6_4}}, {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_9_4, '''ymin''': 2_5_4, '''xmax''': 3_4_3, '''ymax''': 2_6_4}}, ] , )
521
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def SCREAMING_SNAKE_CASE_ () -> str: lowerCamelCase__ : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCamelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCamelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCamelCase_ ) return parser.parse_args() def SCREAMING_SNAKE_CASE_ () -> str: lowerCamelCase__ : int = parse_args() # Import training_script as a module. lowerCamelCase__ : Tuple = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCamelCase__ : Optional[Any] = script_fpath.stem lowerCamelCase__ : int = importlib.import_module(lowerCamelCase_ ) # Patch sys.argv lowerCamelCase__ : str = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
713
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _A : int =get_tests_dir('''fixtures/test_sentencepiece.model''') _A : Tuple ={'''target_lang''': '''fi''', '''source_lang''': '''en'''} _A : int ='''>>zh<<''' _A : Dict ='''Helsinki-NLP/''' if is_torch_available(): _A : List[Any] ='''pt''' elif is_tf_available(): _A : Optional[int] ='''tf''' else: _A : Dict ='''jax''' @require_sentencepiece class _lowercase ( _lowercase , unittest.TestCase ): a = MarianTokenizer a = False a = True def lowerCamelCase_ ( self: List[str] ): super().setUp() lowerCamelCase__ : List[Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] lowerCamelCase__ : Optional[Any] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) lowerCamelCase__ : Optional[int] = Path(self.tmpdirname ) save_json(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) lowerCamelCase__ : Dict = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self: Optional[Any] , **UpperCamelCase__: Any ): return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: str , UpperCamelCase__: List[str] ): return ( "This is a test", "This is a test", ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Any = """</s>""" lowerCamelCase__ : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase__ ) , 9 ) def lowerCamelCase_ ( self: int ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowerCamelCase_ ( self: int ): lowerCamelCase__ : List[Any] = MarianTokenizer.from_pretrained(F'''{ORG_NAME}opus-mt-en-de''' ) lowerCamelCase__ : Optional[int] = en_de_tokenizer(["""I am a small frog"""] , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = [38, 121, 14, 697, 38_848, 0] self.assertListEqual(UpperCamelCase__ , batch.input_ids[0] ) lowerCamelCase__ : List[str] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(UpperCamelCase__ ) lowerCamelCase__ : Tuple = [x.name for x in Path(UpperCamelCase__ ).glob("""*""" )] self.assertIn("""source.spm""" , UpperCamelCase__ ) MarianTokenizer.from_pretrained(UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : List[Any] = self.get_tokenizer() lowerCamelCase__ : Any = tok( ["""I am a small frog""" * 1_000, """I am a small frog"""] , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : str = self.get_tokenizer() lowerCamelCase__ : Dict = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowerCamelCase_ ( self: List[str] ): # fmt: off lowerCamelCase__ : int = {"""input_ids""": [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Union[str, Any] = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) lowerCamelCase__ : str = """Tämä on testi""" lowerCamelCase__ : Any = """This is a test""" lowerCamelCase__ : int = [76, 7, 2_047, 2] lowerCamelCase__ : List[str] = [69, 12, 11, 940, 2] lowerCamelCase__ : Tuple = tokenizer(UpperCamelCase__ ).input_ids self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = tokenizer(text_target=UpperCamelCase__ ).input_ids self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Tuple = tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
631
0
"""simple docstring""" import datasets from .evaluate import evaluate UpperCAmelCase = """\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ UpperCAmelCase = """ This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. """ UpperCAmelCase = """ Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': the text of the answer references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the SQuAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}] >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] >>> squad_metric = datasets.load_metric(\"squad\") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCamelCase_ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string"""), """prediction_text""": datasets.Value("""string""")}, """references""": { """id""": datasets.Value("""string"""), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string"""), """answer_start""": datasets.Value("""int32"""), }), }, }) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Tuple: _lowerCamelCase : Dict = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} _lowerCamelCase : Optional[Any] = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] _lowerCamelCase : str = evaluate(dataset=SCREAMING_SNAKE_CASE , predictions=SCREAMING_SNAKE_CASE) return score
88
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class lowerCAmelCase__ ( __lowercase ): UpperCamelCase_ : Union[str, Any] = "pix2struct_text_model" UpperCamelCase_ : str = ["past_key_values"] UpperCamelCase_ : str = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , a=5_02_44 , a=7_68 , a=64 , a=20_48 , a=12 , a=12 , a=32 , a=1_28 , a=0.1 , a=1e-6 , a=1.0 , a="gelu_new" , a=0 , a=False , a=0 , a=1 , a=False , a=True , **a , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = d_kv _UpperCamelCase = d_ff _UpperCamelCase = num_layers _UpperCamelCase = num_heads _UpperCamelCase = relative_attention_num_buckets _UpperCamelCase = relative_attention_max_distance _UpperCamelCase = dropout_rate _UpperCamelCase = layer_norm_epsilon _UpperCamelCase = initializer_factor _UpperCamelCase = use_cache _UpperCamelCase = eos_token_id _UpperCamelCase = decoder_start_token_id # for backwards compatibility _UpperCamelCase = dense_act_fn super().__init__( pad_token_id=a , eos_token_id=a , decoder_start_token_id=a , tie_word_embeddings=a , is_decoder=a , **a , ) @classmethod def A_ ( cls , a , **a ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(a ) _UpperCamelCase , _UpperCamelCase = cls.get_config_dict(a , **a ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": _UpperCamelCase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a , **a ) class lowerCAmelCase__ ( __lowercase ): UpperCamelCase_ : int = "pix2struct_vision_model" def __init__( self , a=7_68 , a=7_68 , a=20_48 , a=64 , a=12 , a=12 , a="gelu_new" , a=1e-6 , a=0.0 , a=0.0 , a=1e-10 , a=1.0 , a=40_96 , a=32 , a=1_28 , **a , ) -> Tuple: '''simple docstring''' super().__init__(**a ) _UpperCamelCase = hidden_size _UpperCamelCase = patch_embed_hidden_size _UpperCamelCase = d_ff _UpperCamelCase = dropout_rate _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = initializer_range _UpperCamelCase = initializer_factor _UpperCamelCase = attention_dropout _UpperCamelCase = layer_norm_eps _UpperCamelCase = dense_act_fn _UpperCamelCase = seq_len _UpperCamelCase = relative_attention_num_buckets _UpperCamelCase = relative_attention_max_distance _UpperCamelCase = d_kv @classmethod def A_ ( cls , a , **a ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(a ) _UpperCamelCase , _UpperCamelCase = cls.get_config_dict(a , **a ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": _UpperCamelCase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a , **a ) class lowerCAmelCase__ ( __lowercase ): UpperCamelCase_ : Dict = "pix2struct" UpperCamelCase_ : int = True def __init__( self , a=None , a=None , a=1.0 , a=0.02 , a=False , a=False , a=True , **a , ) -> Optional[Any]: '''simple docstring''' super().__init__(tie_word_embeddings=a , is_encoder_decoder=a , **a ) if text_config is None: _UpperCamelCase = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: _UpperCamelCase = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) _UpperCamelCase = PixaStructTextConfig(**a ) _UpperCamelCase = PixaStructVisionConfig(**a ) _UpperCamelCase = self.text_config.decoder_start_token_id _UpperCamelCase = self.text_config.pad_token_id _UpperCamelCase = self.text_config.eos_token_id _UpperCamelCase = initializer_factor _UpperCamelCase = initializer_range _UpperCamelCase = self.initializer_range _UpperCamelCase = self.initializer_range _UpperCamelCase = is_vqa @classmethod def A_ ( cls , a , a , **a ) -> str: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a ) def A_ ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.text_config.to_dict() _UpperCamelCase = self.vision_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
612
0
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def UpperCamelCase__( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None , UpperCamelCase__ : Dict=None , )->Dict: if attention_mask is None: A__ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: A__ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: A__ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=UpperCamelCase__ ) if decoder_head_mask is None: A__ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=UpperCamelCase__ ) if cross_attn_head_mask is None: A__ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=UpperCamelCase__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase,__lowerCamelCase=13,__lowerCamelCase=7,__lowerCamelCase=True,__lowerCamelCase=False,__lowerCamelCase=99,__lowerCamelCase=16,__lowerCamelCase=2,__lowerCamelCase=4,__lowerCamelCase=4,__lowerCamelCase="relu",__lowerCamelCase=0.1,__lowerCamelCase=0.1,__lowerCamelCase=0.0,__lowerCamelCase=0.0,__lowerCamelCase=20,__lowerCamelCase=2,__lowerCamelCase=1,__lowerCamelCase=0,): A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id def UpperCamelCase ( self ): A__ = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) A__ = self.eos_token_id # Eos Token A__ = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input A__ = input_ids.clamp(self.pad_token_id + 1 ) A__ = decoder_input_ids.clamp(self.pad_token_id + 1 ) A__ = self.get_config() A__ = prepare_mam_aaa_inputs_dict(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) return config, inputs_dict def UpperCamelCase ( self ): return MaMaaaConfig( vocab_size=self.vocab_size,d_model=self.hidden_size,encoder_layers=self.num_hidden_layers,decoder_layers=self.num_hidden_layers,encoder_attention_heads=self.num_attention_heads,decoder_attention_heads=self.num_attention_heads,encoder_ffn_dim=self.intermediate_size,decoder_ffn_dim=self.intermediate_size,dropout=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,encoder_layerdrop=self.encoder_layerdrop,decoder_layerdrop=self.decoder_layerdrop,max_position_embeddings=self.max_position_embeddings,eos_token_id=self.eos_token_id,bos_token_id=self.bos_token_id,pad_token_id=self.pad_token_id,) def UpperCamelCase ( self ): A__ , A__ = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = MaMaaaModel(config=__lowerCamelCase ).get_decoder().to(__lowerCamelCase ).eval() A__ = inputs_dict['''input_ids'''] A__ = inputs_dict['''attention_mask'''] A__ = inputs_dict['''head_mask'''] # first forward pass A__ = model(__lowerCamelCase,attention_mask=__lowerCamelCase,head_mask=__lowerCamelCase,use_cache=__lowerCamelCase ) A__ , A__ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3),config.vocab_size ) A__ = ids_tensor((self.batch_size, 3),2 ) # append to next input_ids and A__ = torch.cat([input_ids, next_tokens],dim=-1 ) A__ = torch.cat([attention_mask, next_attn_mask],dim=-1 ) A__ = model(__lowerCamelCase,attention_mask=__lowerCamelCase )['''last_hidden_state'''] A__ = model(__lowerCamelCase,attention_mask=__lowerCamelCase,past_key_values=__lowerCamelCase )[ '''last_hidden_state''' ] # select random slice A__ = ids_tensor((1,),output_from_past.shape[-1] ).item() A__ = output_from_no_past[:, -3:, random_slice_idx].detach() A__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase,__lowerCamelCase,atol=1E-2 ) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = MaMaaaModel(config=__lowerCamelCase ).to(__lowerCamelCase ).eval() A__ = model(**__lowerCamelCase ) A__ = outputs.encoder_last_hidden_state A__ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: A__ = model.get_encoder() encoder.save_pretrained(__lowerCamelCase ) A__ = MaMaaaEncoder.from_pretrained(__lowerCamelCase ).to(__lowerCamelCase ) A__ = encoder(inputs_dict['''input_ids'''],attention_mask=inputs_dict['''attention_mask'''] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = model.get_decoder() decoder.save_pretrained(__lowerCamelCase ) A__ = MaMaaaDecoder.from_pretrained(__lowerCamelCase ).to(__lowerCamelCase ) A__ = decoder( input_ids=inputs_dict['''decoder_input_ids'''],attention_mask=inputs_dict['''decoder_attention_mask'''],encoder_hidden_states=__lowerCamelCase,encoder_attention_mask=inputs_dict['''attention_mask'''],)[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = (MaMaaaForConditionalGeneration,) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { '''conversational''': MaMaaaForConditionalGeneration, '''feature-extraction''': MaMaaaModel, '''summarization''': MaMaaaForConditionalGeneration, '''text2text-generation''': MaMaaaForConditionalGeneration, '''translation''': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def UpperCamelCase ( self ): A__ = MaMaaaModelTester(self ) A__ = ConfigTester(self,config_class=__lowerCamelCase ) def UpperCamelCase ( self ): self.config_tester.run_common_tests() def UpperCamelCase ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: A__ = model_class(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) A__ , A__ = model_class.from_pretrained(__lowerCamelCase,output_loading_info=__lowerCamelCase ) self.assertEqual(info['''missing_keys'''],[] ) def UpperCamelCase ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__lowerCamelCase ) def UpperCamelCase ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): A__ = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A__ = copy.deepcopy(self._prepare_for_class(__lowerCamelCase,__lowerCamelCase ) ) if not self.is_encoder_decoder: A__ = inputs['''input_ids'''] del inputs["input_ids"] else: A__ = inputs['''input_ids'''] A__ = inputs.get('''decoder_input_ids''',__lowerCamelCase ) del inputs["input_ids"] inputs.pop('''decoder_input_ids''',__lowerCamelCase ) A__ = model.get_input_embeddings() if not self.is_encoder_decoder: A__ = wte(__lowerCamelCase ) else: A__ = wte(__lowerCamelCase ) A__ = wte(__lowerCamelCase ) with torch.no_grad(): model(**__lowerCamelCase )[0] def UpperCamelCase ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs() A__ = input_dict['''input_ids'''] A__ = input_ids.ne(1 ).to(__lowerCamelCase ) A__ = MaMaaaForConditionalGeneration(__lowerCamelCase ).eval().to(__lowerCamelCase ) if torch_device == "cuda": model.half() model.generate(__lowerCamelCase,attention_mask=__lowerCamelCase ) model.generate(num_beams=4,do_sample=__lowerCamelCase,early_stopping=__lowerCamelCase,num_return_sequences=3 ) def UpperCamelCase__( UpperCamelCase__ : Optional[int] )->str: return torch.tensor(UpperCamelCase__ , dtype=torch.long , device=UpperCamelCase__ ) a__: int = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def UpperCamelCase ( self ): return MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' ) def UpperCamelCase ( self ): A__ = MaMaaaModel.from_pretrained('''facebook/m2m100_418M''' ).to(__lowerCamelCase ) A__ = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) A__ = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) A__ = prepare_mam_aaa_inputs_dict(model.config,__lowerCamelCase,__lowerCamelCase ) with torch.no_grad(): A__ = model(**__lowerCamelCase )[0] A__ = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape,__lowerCamelCase ) # change to expected output here A__ = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]],device=__lowerCamelCase ) self.assertTrue(torch.allclose(output[:, :3, :3],__lowerCamelCase,atol=__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(__lowerCamelCase ) # change to intended input A__ = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) A__ = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) A__ = prepare_mam_aaa_inputs_dict(model.config,__lowerCamelCase,__lowerCamelCase ) with torch.no_grad(): A__ = model(**__lowerCamelCase )[0] A__ = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape,__lowerCamelCase ) # change to expected output here A__ = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]],device=__lowerCamelCase ) self.assertTrue(torch.allclose(output[:, :3, :3],__lowerCamelCase,atol=__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(__lowerCamelCase ) A__ = MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''',src_lang='''fr''',tgt_lang='''en''' ) A__ = [ '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent''' ''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de''' ''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''', ] # The below article tests that we don't add any hypotheses outside of the top n_beams A__ = tokenizer(__lowerCamelCase,padding=__lowerCamelCase,return_tensors='''pt''' ) A__ = model.generate( input_ids=dct['''input_ids'''].to(__lowerCamelCase ),attention_mask=dct['''attention_mask'''].to(__lowerCamelCase ),num_beams=5,forced_bos_token_id=tokenizer.get_lang_id('''en''' ),) A__ = [ '''The NSA case highlights the total absence of intelligence debate''', '''I think there are two levels of response from the French government.''', '''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.''' ''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all''' ''' communications in France.''', ] A__ = tokenizer.batch_decode( hypotheses_batch.tolist(),clean_up_tokenization_spaces=__lowerCamelCase,skip_special_tokens=__lowerCamelCase ) assert generated == expected_en
714
def UpperCamelCase__( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] )->List[str]: A__ = [1] for i in range(2 , UpperCamelCase__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" A__ = [] A__ = list(range(UpperCamelCase__ ) ) # Find permutation while factorials: A__ = factorials.pop() A__ , A__ = divmod(UpperCamelCase__ , UpperCamelCase__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
212
0
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase__ : '''simple docstring''' def __init__( self, snake_case__, snake_case__=13, snake_case__=64, snake_case__=2, snake_case__=3, snake_case__=True, snake_case__=True, snake_case__=32, snake_case__=5, snake_case__=4, snake_case__=37, snake_case__="gelu", snake_case__=0.1, snake_case__=0.1, snake_case__=10, snake_case__=0.02, snake_case__=[1, 16, 4, 4], snake_case__=None, ) -> Union[str, Any]: """simple docstring""" lowercase_ : Union[str, Any] = parent lowercase_ : List[str] = batch_size lowercase_ : Optional[int] = image_size lowercase_ : Any = patch_size lowercase_ : List[str] = num_channels lowercase_ : Optional[int] = is_training lowercase_ : str = use_labels lowercase_ : Optional[int] = hidden_size lowercase_ : Dict = num_hidden_layers lowercase_ : Optional[int] = num_attention_heads lowercase_ : Any = intermediate_size lowercase_ : Tuple = hidden_act lowercase_ : List[Any] = hidden_dropout_prob lowercase_ : Tuple = attention_probs_dropout_prob lowercase_ : List[Any] = type_sequence_label_size lowercase_ : Dict = initializer_range lowercase_ : Tuple = scope lowercase_ : int = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowercase_ : Union[str, Any] = (self.image_size // 32) ** 2 lowercase_ : Union[str, Any] = num_patches + 1 def snake_case__ ( self ) -> List[str]: """simple docstring""" lowercase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : Tuple = None if self.use_labels: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase_ : Dict = self.get_config() return config, pixel_values, labels def snake_case__ ( self ) -> Dict: """simple docstring""" lowercase_ : Optional[Any] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__snake_case, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=__snake_case, ) def snake_case__ ( self, snake_case__, snake_case__, snake_case__ ) -> Optional[Any]: """simple docstring""" lowercase_ : List[str] = ViTHybridModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowercase_ : Dict = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self, snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: """simple docstring""" lowercase_ : Optional[int] = self.type_sequence_label_size lowercase_ : List[str] = ViTHybridForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() lowercase_ : Any = model(__snake_case, labels=__snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" lowercase_ : int = self.prepare_config_and_inputs() lowercase_ : Any = config_and_inputs lowercase_ : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __a : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __a : Optional[Any] = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __a : int = False __a : int = False __a : Dict = False def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" lowercase_ : Union[str, Any] = ViTHybridModelTester(self ) lowercase_ : Optional[Any] = ConfigTester(self, config_class=__snake_case, has_text_modality=__snake_case, hidden_size=37 ) def snake_case__ ( self ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" pass def snake_case__ ( self ) -> int: """simple docstring""" lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : List[Any] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowercase_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case, nn.Linear ) ) def snake_case__ ( self ) -> int: """simple docstring""" lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[Any] = model_class(__snake_case ) lowercase_ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Optional[Any] = [*signature.parameters.keys()] lowercase_ : int = ['pixel_values'] self.assertListEqual(arg_names[:1], __snake_case ) def snake_case__ ( self ) -> Any: """simple docstring""" lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Optional[Any] = _config_zero_init(__snake_case ) for model_class in self.all_model_classes: lowercase_ : Union[str, Any] = model_class(config=__snake_case ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowercase_ : Any = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"""Parameter {name} of model {model_class} seems not properly initialized""", ) @slow def snake_case__ ( self ) -> Any: """simple docstring""" for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : int = ViTHybridModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def __magic_name__ ( ) -> Union[str, Any]: """simple docstring""" lowercase_ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__ ( self ) -> List[Any]: """simple docstring""" return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def snake_case__ ( self ) -> Optional[int]: """simple docstring""" lowercase_ : Dict = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __snake_case ) lowercase_ : Any = self.default_image_processor lowercase_ : Optional[int] = prepare_img() lowercase_ : str = image_processor(images=__snake_case, return_tensors="""pt""" ).to(__snake_case ) # forward pass with torch.no_grad(): lowercase_ : List[Any] = model(**__snake_case ) # verify the logits lowercase_ : List[str] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape, __snake_case ) lowercase_ : Any = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __snake_case, atol=1E-4 ) ) @slow @require_accelerate def snake_case__ ( self ) -> Any: """simple docstring""" lowercase_ : int = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) lowercase_ : List[str] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""", device_map="""auto""" ) lowercase_ : List[Any] = prepare_img() lowercase_ : Optional[int] = image_processor(images=__snake_case, return_tensors="""pt""" ) lowercase_ : Tuple = model(**__snake_case ) lowercase_ : Any = outputs.logits # model predicts one of the 1000 ImageNet classes lowercase_ : int = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx], """tabby, tabby cat""" )
458
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase: List[str] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: str = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCAmelCase: Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
526
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__: Union[str, Any] = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: List[Any] = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys UpperCamelCase__: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
528
'''simple docstring''' import numpy as np UpperCamelCase__: Any = [ ["a", "b", "c", "d", "e"], ["f", "g", "h", "i", "k"], ["l", "m", "n", "o", "p"], ["q", "r", "s", "t", "u"], ["v", "w", "x", "y", "z"], ] class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : Any ) -> None: UpperCAmelCase : Optional[int] = np.array(__snake_case ) def A ( self : str , __snake_case : str ) -> np.ndarray: UpperCAmelCase , UpperCAmelCase : Dict = np.where(letter == self.SQUARE ) UpperCAmelCase : Dict = np.concatenate([indexa + 1, indexa + 1] ) return indexes def A ( self : Union[str, Any] , __snake_case : int , __snake_case : int ) -> str: UpperCAmelCase : int = self.SQUARE[indexa - 1, indexa - 1] return letter def A ( self : List[Any] , __snake_case : str ) -> str: UpperCAmelCase : Any = message.lower() UpperCAmelCase : List[Any] = message.replace(''' ''' , '''''' ) UpperCAmelCase : List[Any] = message.replace('''j''' , '''i''' ) UpperCAmelCase : Tuple = np.empty((2, len(__snake_case )) ) for letter_index in range(len(__snake_case ) ): UpperCAmelCase : str = self.letter_to_numbers(message[letter_index] ) UpperCAmelCase : Any = numbers[0] UpperCAmelCase : Optional[Any] = numbers[1] UpperCAmelCase : List[str] = first_step.reshape(2 * len(__snake_case ) ) UpperCAmelCase : Union[str, Any] = '''''' for numbers_index in range(len(__snake_case ) ): UpperCAmelCase : Dict = int(second_step[numbers_index * 2] ) UpperCAmelCase : Union[str, Any] = int(second_step[(numbers_index * 2) + 1] ) UpperCAmelCase : Dict = self.numbers_to_letter(__snake_case , __snake_case ) UpperCAmelCase : int = encoded_message + letter return encoded_message def A ( self : Optional[Any] , __snake_case : str ) -> str: UpperCAmelCase : str = message.lower() message.replace(''' ''' , '''''' ) UpperCAmelCase : Optional[int] = np.empty(2 * len(__snake_case ) ) for letter_index in range(len(__snake_case ) ): UpperCAmelCase : int = self.letter_to_numbers(message[letter_index] ) UpperCAmelCase : Optional[Any] = numbers[0] UpperCAmelCase : List[Any] = numbers[1] UpperCAmelCase : Tuple = first_step.reshape((2, len(__snake_case )) ) UpperCAmelCase : str = '''''' for numbers_index in range(len(__snake_case ) ): UpperCAmelCase : Tuple = int(second_step[0, numbers_index] ) UpperCAmelCase : List[str] = int(second_step[1, numbers_index] ) UpperCAmelCase : Union[str, Any] = self.numbers_to_letter(__snake_case , __snake_case ) UpperCAmelCase : Union[str, Any] = decoded_message + letter return decoded_message
528
1
import numpy as np import qiskit def _A ( lowerCAmelCase_ : int = 8 , lowerCAmelCase_ : int | None = None ): """simple docstring""" lowerCAmelCase__ = np.random.default_rng(seed=lowerCAmelCase_ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. lowerCAmelCase__ = 6 * key_len # Measurement basis for Alice's qubits. lowerCAmelCase__ = rng.integers(2 , size=lowerCAmelCase_ ) # The set of states Alice will prepare. lowerCAmelCase__ = rng.integers(2 , size=lowerCAmelCase_ ) # Measurement basis for Bob's qubits. lowerCAmelCase__ = rng.integers(2 , size=lowerCAmelCase_ ) # Quantum Circuit to simulate BB84 lowerCAmelCase__ = qiskit.QuantumCircuit(lowerCAmelCase_ , name="BB84" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(lowerCAmelCase_ ): if alice_state[index] == 1: bbaa_circ.x(lowerCAmelCase_ ) if alice_basis[index] == 1: bbaa_circ.h(lowerCAmelCase_ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(lowerCAmelCase_ ): if bob_basis[index] == 1: bbaa_circ.h(lowerCAmelCase_ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. lowerCAmelCase__ = qiskit.Aer.get_backend("aer_simulator" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. lowerCAmelCase__ = qiskit.execute(lowerCAmelCase_ , lowerCAmelCase_ , shots=1 , seed_simulator=lowerCAmelCase_ ) # Returns the result of measurement. lowerCAmelCase__ = job.result().get_counts(lowerCAmelCase_ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. lowerCAmelCase__ = "".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. lowerCAmelCase__ = gen_key[:key_len] if len(lowerCAmelCase_ ) >= key_len else gen_key.ljust(lowerCAmelCase_ , "0" ) return key if __name__ == "__main__": print(F"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
61
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """conditional_detr""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , _lowerCAmelCase : int=True , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Union[str, Any]=3_0_0 , _lowerCAmelCase : Tuple=6 , _lowerCAmelCase : Dict=2_0_4_8 , _lowerCAmelCase : Union[str, Any]=8 , _lowerCAmelCase : Dict=6 , _lowerCAmelCase : Optional[int]=2_0_4_8 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : int=True , _lowerCAmelCase : List[str]="relu" , _lowerCAmelCase : Optional[int]=2_5_6 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : str=1.0 , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : List[str]="sine" , _lowerCAmelCase : str="resnet50" , _lowerCAmelCase : Any=True , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : Dict=5 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : int=5 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Tuple=0.25 , **_lowerCAmelCase : Any , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') __lowercase =CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(_lowerCAmelCase , _lowerCAmelCase): __lowercase =backbone_config.get('model_type') __lowercase =CONFIG_MAPPING[backbone_model_type] __lowercase =config_class.from_dict(_lowerCAmelCase) __lowercase =use_timm_backbone __lowercase =backbone_config __lowercase =num_channels __lowercase =num_queries __lowercase =d_model __lowercase =encoder_ffn_dim __lowercase =encoder_layers __lowercase =encoder_attention_heads __lowercase =decoder_ffn_dim __lowercase =decoder_layers __lowercase =decoder_attention_heads __lowercase =dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =activation_function __lowercase =init_std __lowercase =init_xavier_std __lowercase =encoder_layerdrop __lowercase =decoder_layerdrop __lowercase =encoder_layers __lowercase =auxiliary_loss __lowercase =position_embedding_type __lowercase =backbone __lowercase =use_pretrained_backbone __lowercase =dilation # Hungarian matcher __lowercase =class_cost __lowercase =bbox_cost __lowercase =giou_cost # Loss coefficients __lowercase =mask_loss_coefficient __lowercase =dice_loss_coefficient __lowercase =cls_loss_coefficient __lowercase =bbox_loss_coefficient __lowercase =giou_loss_coefficient __lowercase =focal_alpha super().__init__(is_encoder_decoder=_lowerCAmelCase , **_lowerCAmelCase) @property def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return self.encoder_attention_heads @property def __lowerCamelCase ( self : List[str]): '''simple docstring''' return self.d_model def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =copy.deepcopy(self.__dict__) if self.backbone_config is not None: __lowercase =self.backbone_config.to_dict() __lowercase =self.__class__.model_type return output class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = version.parse("""1.11""" ) @property def __lowerCamelCase ( self : Tuple): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ]) @property def __lowerCamelCase ( self : int): '''simple docstring''' return 1e-5 @property def __lowerCamelCase ( self : str): '''simple docstring''' return 1_2
474
0
"""simple docstring""" from collections import defaultdict from math import gcd def _UpperCamelCase ( _A = 1_5_0_0_0_0_0 ) -> int: """simple docstring""" _UpperCAmelCase = defaultdict(_A ) _UpperCAmelCase = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , _A , 2 ): if gcd(_A , _A ) > 1: continue _UpperCAmelCase = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(_A , limit + 1 , _A ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
19
"""simple docstring""" import re from filelock import FileLock try: import nltk a : str = True except (ImportError, ModuleNotFoundError): a : List[str] = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def _UpperCamelCase ( _A ) -> str: """simple docstring""" re.sub("""<n>""" , """""" , _A ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_A ) )
19
1
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def __lowerCAmelCase ( A , A , A , A ): UpperCAmelCase_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCAmelCase_ = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } UpperCAmelCase_ = F"{src_lang}-{tgt_lang}" UpperCAmelCase_ = F"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=A , exist_ok=A ) UpperCAmelCase_ = os.path.join(A , "README.md" ) print(F"Generating {path}" ) with open(A , "w" , encoding="utf-8" ) as f: f.write(A ) # make sure we are under the root of the project _a: str = Path(__file__).resolve().parent.parent.parent _a: Union[str, Any] = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: _a: Dict = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
162
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a: Any = logging.get_logger(__name__) _a: int = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class __UpperCamelCase ( lowercase ): SCREAMING_SNAKE_CASE__ = 'table-transformer' SCREAMING_SNAKE_CASE__ = ['past_key_values'] SCREAMING_SNAKE_CASE__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Dict , lowerCAmelCase : Any=True , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Optional[Any]=100 , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : List[Any]=2_048 , lowerCAmelCase : str=8 , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : List[str]=2_048 , lowerCAmelCase : Tuple=8 , lowerCAmelCase : str=0.0 , lowerCAmelCase : str=0.0 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : List[str]="relu" , lowerCAmelCase : Optional[Any]=256 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Any=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : Tuple=1.0 , lowerCAmelCase : Dict=False , lowerCAmelCase : str="sine" , lowerCAmelCase : Optional[Any]="resnet50" , lowerCAmelCase : Tuple=True , lowerCAmelCase : Tuple=False , lowerCAmelCase : Dict=1 , lowerCAmelCase : Tuple=5 , lowerCAmelCase : Dict=2 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=1 , lowerCAmelCase : Dict=5 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : str=0.1 , **lowerCAmelCase : Any , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = backbone_config.get("model_type" ) UpperCAmelCase_ = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ = config_class.from_dict(lowerCAmelCase ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None, None, None UpperCAmelCase_ = use_timm_backbone UpperCAmelCase_ = backbone_config UpperCAmelCase_ = num_channels UpperCAmelCase_ = num_queries UpperCAmelCase_ = d_model UpperCAmelCase_ = encoder_ffn_dim UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = encoder_attention_heads UpperCAmelCase_ = decoder_ffn_dim UpperCAmelCase_ = decoder_layers UpperCAmelCase_ = decoder_attention_heads UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = activation_function UpperCAmelCase_ = init_std UpperCAmelCase_ = init_xavier_std UpperCAmelCase_ = encoder_layerdrop UpperCAmelCase_ = decoder_layerdrop UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = auxiliary_loss UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = backbone UpperCAmelCase_ = use_pretrained_backbone UpperCAmelCase_ = dilation # Hungarian matcher UpperCAmelCase_ = class_cost UpperCAmelCase_ = bbox_cost UpperCAmelCase_ = giou_cost # Loss coefficients UpperCAmelCase_ = mask_loss_coefficient UpperCAmelCase_ = dice_loss_coefficient UpperCAmelCase_ = bbox_loss_coefficient UpperCAmelCase_ = giou_loss_coefficient UpperCAmelCase_ = eos_coefficient super().__init__(is_encoder_decoder=lowerCAmelCase , **lowerCAmelCase ) @property def __A ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def __A ( self : Optional[Any] ): '''simple docstring''' return self.d_model class __UpperCamelCase ( lowercase ): SCREAMING_SNAKE_CASE__ = version.parse('1.11' ) @property def __A ( self : Optional[int] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def __A ( self : Optional[int] ): '''simple docstring''' return 1e-5 @property def __A ( self : Tuple ): '''simple docstring''' return 12
162
1
def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): if index == number_of_items: return 0 _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = knapsack(__snake_case , __snake_case , __snake_case , __snake_case , index + 1 ) if weights[index] <= max_weight: _UpperCamelCase = values[index] + knapsack( __snake_case , __snake_case , __snake_case , max_weight - weights[index] , index + 1 ) return max(__snake_case , __snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
715
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCAmelCase = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
71
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) def a__ ( A_, A_=False ): '''simple docstring''' __magic_name__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __magic_name__ = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def a__ ( A_, A_, A_=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: __magic_name__ = """""" else: __magic_name__ = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __magic_name__ = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) __magic_name__ = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ = in_proj_weight[ : config.hidden_size, : ] __magic_name__ = in_proj_bias[: config.hidden_size] __magic_name__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __magic_name__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __magic_name__ = in_proj_weight[ -config.hidden_size :, : ] __magic_name__ = in_proj_bias[-config.hidden_size :] def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = dct.pop(snake_case_ ) __magic_name__ = val def a__ ( ): '''simple docstring''' __magic_name__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" __magic_name__ = Image.open(requests.get(snake_case_, stream=snake_case_ ).raw ) return im @torch.no_grad() def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = DeiTConfig() # all deit models have fine-tuned heads __magic_name__ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __magic_name__ = 1000 __magic_name__ = """huggingface/label-files""" __magic_name__ = """imagenet-1k-id2label.json""" __magic_name__ = json.load(open(hf_hub_download(snake_case_, snake_case_, repo_type="""dataset""" ), """r""" ) ) __magic_name__ = {int(snake_case_ ): v for k, v in idalabel.items()} __magic_name__ = idalabel __magic_name__ = {v: k for k, v in idalabel.items()} __magic_name__ = int(deit_name[-6:-4] ) __magic_name__ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): __magic_name__ = 192 __magic_name__ = 768 __magic_name__ = 12 __magic_name__ = 3 elif deit_name[9:].startswith("""small""" ): __magic_name__ = 384 __magic_name__ = 1536 __magic_name__ = 12 __magic_name__ = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): __magic_name__ = 1024 __magic_name__ = 4096 __magic_name__ = 24 __magic_name__ = 16 # load original model from timm __magic_name__ = timm.create_model(snake_case_, pretrained=snake_case_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __magic_name__ = timm_model.state_dict() __magic_name__ = create_rename_keys(snake_case_, snake_case_ ) for src, dest in rename_keys: rename_key(snake_case_, snake_case_, snake_case_ ) read_in_q_k_v(snake_case_, snake_case_, snake_case_ ) # load HuggingFace model __magic_name__ = DeiTForImageClassificationWithTeacher(snake_case_ ).eval() model.load_state_dict(snake_case_ ) # Check outputs on an image, prepared by DeiTImageProcessor __magic_name__ = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __magic_name__ = DeiTImageProcessor(size=snake_case_, crop_size=config.image_size ) __magic_name__ = image_processor(images=prepare_img(), return_tensors="""pt""" ) __magic_name__ = encoding["""pixel_values"""] __magic_name__ = model(snake_case_ ) __magic_name__ = timm_model(snake_case_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(snake_case_, outputs.logits, atol=1e-3 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __lowerCAmelCase : List[str] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
529
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } _snake_case = { "gpt-neox-20b": 2048, } class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["input_ids", "attention_mask"] def __init__( self , _a=None , _a=None , _a=None , _a="<|endoftext|>" , _a="<|endoftext|>" , _a="<|endoftext|>" , _a=False , **_a , ) -> str: super().__init__( _a , _a , tokenizer_file=_a , unk_token=_a , bos_token=_a , eos_token=_a , add_prefix_space=_a , **_a , ) _A : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _a ) != add_prefix_space: _A : List[Any] = getattr(_a , pre_tok_state.pop("""type""" ) ) _A : List[str] = add_prefix_space _A : int = pre_tok_class(**_a ) _A : Optional[Any] = add_prefix_space def a__ ( self , _a , _a = None ) -> Tuple[str]: _A : Optional[int] = self._tokenizer.model.save(_a , name=_a ) return tuple(_a ) def a__ ( self , _a ) -> List[int]: _A : Optional[int] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_a , add_special_tokens=_a ) + [self.eos_token_id] ) if len(_a ) > self.model_max_length: _A : List[str] = input_ids[-self.model_max_length :] return input_ids
307
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class UpperCAmelCase__ ( __lowerCAmelCase ): """simple docstring""" A : Optional[int] = '''xlm-roberta''' def __init__(self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , **_a , ) -> List[Any]: super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) lowercase_ : Union[str, Any] = vocab_size lowercase_ : Tuple = hidden_size lowercase_ : Union[str, Any] = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : List[str] = hidden_act lowercase_ : List[Any] = intermediate_size lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Tuple = max_position_embeddings lowercase_ : Union[str, Any] = type_vocab_size lowercase_ : Dict = initializer_range lowercase_ : Any = layer_norm_eps lowercase_ : Union[str, Any] = position_embedding_type lowercase_ : Tuple = use_cache lowercase_ : int = classifier_dropout class UpperCAmelCase__ ( __lowerCAmelCase ): """simple docstring""" @property def _lowerCamelCase (self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase_ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase_ : Union[str, Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
715
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase__ ( _snake_case ): """simple docstring""" # to overwrite at feature extractactor specific tests A : List[str] = None A : Tuple = None @property def _lowerCamelCase (self ) -> Any: return self.feat_extract_tester.prepare_feat_extract_dict() def _lowerCamelCase (self ) -> str: lowercase_ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , 'feature_size' ) ) self.assertTrue(hasattr(_a , 'sampling_rate' ) ) self.assertTrue(hasattr(_a , 'padding_value' ) ) def _lowerCamelCase (self ) -> Dict: lowercase_ : List[str] = self.feat_extract_tester.prepare_inputs_for_common() lowercase_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase_ : Union[str, Any] = feat_extract.model_input_names[0] lowercase_ : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_a ) == len(_a ) for x, y in zip(_a , processed_features[input_name] ) ) ) lowercase_ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_a ) lowercase_ : Tuple = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) lowercase_ : Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase_ : Optional[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def _lowerCamelCase (self ) -> Tuple: lowercase_ : List[Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_a ) lowercase_ : Any = self.feature_extraction_class(**self.feat_extract_dict ) lowercase_ : int = feat_extract.model_input_names[0] lowercase_ : Union[str, Any] = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) lowercase_ : Tuple = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase_ : List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def _lowerCamelCase (self ) -> Union[str, Any]: lowercase_ : List[Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_a ) lowercase_ : int = self.feature_extraction_class(**self.feat_extract_dict ) lowercase_ : Dict = feat_extract.model_input_names[0] lowercase_ : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type='tf' ) lowercase_ : int = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase_ : Union[str, Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def _lowerCamelCase (self , _a=False ) -> Union[str, Any]: def _inputs_have_equal_length(_a ): lowercase_ : Optional[Any] = len(input[0] ) for input_slice in input[1:]: if len(_a ) != length: return False return True def _inputs_are_equal(_a , _a ): if len(_a ) != len(_a ): return False for input_slice_a, input_slice_a in zip(_a , _a ): if not np.allclose(np.asarray(_a ) , np.asarray(_a ) , atol=1e-3 ): return False return True lowercase_ : int = self.feature_extraction_class(**self.feat_extract_dict ) lowercase_ : str = self.feat_extract_tester.prepare_inputs_for_common(numpify=_a ) lowercase_ : Union[str, Any] = feat_extract.model_input_names[0] lowercase_ : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) lowercase_ : Optional[Any] = self.feat_extract_tester.seq_length_diff lowercase_ : Union[str, Any] = self.feat_extract_tester.max_seq_length + pad_diff lowercase_ : str = self.feat_extract_tester.min_seq_length lowercase_ : Optional[Any] = self.feat_extract_tester.batch_size lowercase_ : Any = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowercase_ : List[str] = feat_extract.pad(_a , padding=_a ) lowercase_ : Any = input_a[input_name] lowercase_ : str = feat_extract.pad(_a , padding='longest' ) lowercase_ : List[str] = input_a[input_name] lowercase_ : Dict = feat_extract.pad(_a , padding='max_length' , max_length=len(speech_inputs[-1] ) ) lowercase_ : Any = input_a[input_name] lowercase_ : Any = feat_extract.pad(_a , padding='longest' , return_tensors='np' ) lowercase_ : str = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_a ): feat_extract.pad(_a , padding='max_length' )[input_name] lowercase_ : Union[str, Any] = feat_extract.pad( _a , padding='max_length' , max_length=_a , return_tensors='np' ) lowercase_ : Any = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_are_equal(_a , _a ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy lowercase_ : Tuple = feat_extract.pad(_a , pad_to_multiple_of=10 ) lowercase_ : Dict = input_a[input_name] lowercase_ : int = feat_extract.pad(_a , padding='longest' , pad_to_multiple_of=10 ) lowercase_ : Union[str, Any] = input_a[input_name] lowercase_ : Optional[int] = feat_extract.pad( _a , padding='max_length' , pad_to_multiple_of=10 , max_length=_a ) lowercase_ : Tuple = input_a[input_name] lowercase_ : Optional[int] = feat_extract.pad( _a , padding='max_length' , pad_to_multiple_of=10 , max_length=_a , return_tensors='np' , ) lowercase_ : Union[str, Any] = input_a[input_name] self.assertTrue(all(len(_a ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_a , _a ) ) lowercase_ : str = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_a ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct lowercase_ : Optional[int] = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def _lowerCamelCase (self , _a=False ) -> Union[str, Any]: def _inputs_have_equal_length(_a ): lowercase_ : str = len(input[0] ) for input_slice in input[1:]: if len(_a ) != length: return False return True def _inputs_are_equal(_a , _a ): if len(_a ) != len(_a ): return False for input_slice_a, input_slice_a in zip(_a , _a ): if not np.allclose(np.asarray(_a ) , np.asarray(_a ) , atol=1e-3 ): return False return True lowercase_ : Any = self.feature_extraction_class(**self.feat_extract_dict ) lowercase_ : List[Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=_a ) lowercase_ : List[str] = feat_extract.model_input_names[0] lowercase_ : str = BatchFeature({input_name: speech_inputs} ) # truncate to smallest lowercase_ : Union[str, Any] = feat_extract.pad( _a , padding='max_length' , max_length=len(speech_inputs[0] ) , truncation=_a ) lowercase_ : List[str] = input_a[input_name] lowercase_ : Optional[int] = feat_extract.pad(_a , padding='max_length' , max_length=len(speech_inputs[0] ) ) lowercase_ : Union[str, Any] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertFalse(_inputs_have_equal_length(_a ) ) # truncate to smallest with np lowercase_ : List[str] = feat_extract.pad( _a , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' , truncation=_a , ) lowercase_ : List[str] = input_a[input_name] lowercase_ : List[Any] = feat_extract.pad( _a , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' ) lowercase_ : List[Any] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_a ) ) # truncate to middle lowercase_ : int = feat_extract.pad( _a , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=_a , return_tensors='np' , ) lowercase_ : Union[str, Any] = input_a[input_name] lowercase_ : str = feat_extract.pad( _a , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=_a ) lowercase_ : int = input_a[input_name] lowercase_ : Dict = feat_extract.pad( _a , padding='max_length' , max_length=len(speech_inputs[1] ) , return_tensors='np' ) lowercase_ : Optional[int] = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_are_equal(_a , _a ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_a ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_a ): feat_extract.pad(_a , truncation=_a )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_a ): feat_extract.pad(_a , padding='longest' , truncation=_a )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_a ): feat_extract.pad(_a , padding='longest' , truncation=_a )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_a ): feat_extract.pad(_a , padding='max_length' , truncation=_a )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowercase_ : str = 12 lowercase_ : List[Any] = feat_extract.pad( _a , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_a , truncation=_a , ) lowercase_ : Any = input_a[input_name] lowercase_ : List[Any] = feat_extract.pad( _a , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_a , ) lowercase_ : str = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowercase_ : Dict = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: lowercase_ : List[Any] = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertFalse(_inputs_have_equal_length(_a ) ) def _lowerCamelCase (self ) -> str: self._check_padding(numpify=_a ) def _lowerCamelCase (self ) -> Optional[int]: self._check_padding(numpify=_a ) def _lowerCamelCase (self ) -> Any: self._check_truncation(numpify=_a ) def _lowerCamelCase (self ) -> Any: self._check_truncation(numpify=_a ) @require_torch def _lowerCamelCase (self ) -> int: lowercase_ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) lowercase_ : List[Any] = self.feat_extract_tester.prepare_inputs_for_common() lowercase_ : Optional[Any] = feat_extract.model_input_names[0] lowercase_ : Dict = BatchFeature({input_name: speech_inputs} ) lowercase_ : Tuple = feat_extract.pad(_a , padding='longest' , return_tensors='np' )[input_name] lowercase_ : List[Any] = feat_extract.pad(_a , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def _lowerCamelCase (self ) -> List[Any]: lowercase_ : Any = self.feature_extraction_class(**self.feat_extract_dict ) lowercase_ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_common() lowercase_ : List[Any] = feat_extract.model_input_names[0] lowercase_ : Tuple = BatchFeature({input_name: speech_inputs} ) lowercase_ : List[Any] = feat_extract.pad(_a , padding='longest' , return_tensors='np' )[input_name] lowercase_ : Optional[int] = feat_extract.pad(_a , padding='longest' , return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _lowerCamelCase (self ) -> List[str]: lowercase_ : Any = self.feat_extract_dict lowercase_ : List[Any] = True lowercase_ : Tuple = self.feature_extraction_class(**_a ) lowercase_ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() lowercase_ : str = [len(_a ) for x in speech_inputs] lowercase_ : Union[str, Any] = feat_extract.model_input_names[0] lowercase_ : List[Any] = BatchFeature({input_name: speech_inputs} ) lowercase_ : str = feat_extract.pad(_a , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , _a ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _a ) def _lowerCamelCase (self ) -> List[Any]: lowercase_ : Union[str, Any] = self.feat_extract_dict lowercase_ : List[Any] = True lowercase_ : List[Any] = self.feature_extraction_class(**_a ) lowercase_ : List[Any] = self.feat_extract_tester.prepare_inputs_for_common() lowercase_ : Optional[int] = [len(_a ) for x in speech_inputs] lowercase_ : int = feat_extract.model_input_names[0] lowercase_ : Tuple = BatchFeature({input_name: speech_inputs} ) lowercase_ : Optional[Any] = min(_a ) lowercase_ : int = feat_extract.pad( _a , padding='max_length' , max_length=_a , truncation=_a , return_tensors='np' ) self.assertIn('attention_mask' , _a ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
438
0
from typing import Any def lowerCamelCase__ ( __lowerCamelCase : list , __lowerCamelCase : list , __lowerCamelCase : dict , __lowerCamelCase : dict , __lowerCamelCase : dict , ): _validation( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) # Creates data structures and fill initial step __UpperCAmelCase : dict = {} __UpperCAmelCase : dict = {} for state in states_space: __UpperCAmelCase : List[str] = observations_space[0] __UpperCAmelCase : Union[str, Any] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __UpperCAmelCase : Optional[int] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__lowerCamelCase ) ): __UpperCAmelCase : List[Any] = observations_space[o] __UpperCAmelCase : Any = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __UpperCAmelCase : Optional[int] = """""" __UpperCAmelCase : Tuple = -1 for k_state in states_space: __UpperCAmelCase : str = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __UpperCAmelCase : int = probability __UpperCAmelCase : int = k_state # Update probabilities and pointers dicts __UpperCAmelCase : Optional[Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __UpperCAmelCase : Tuple = arg_max # The final observation __UpperCAmelCase : int = observations_space[len(__lowerCamelCase ) - 1] # argmax for given final observation __UpperCAmelCase : Tuple = """""" __UpperCAmelCase : List[str] = -1 for k_state in states_space: __UpperCAmelCase : Dict = probabilities[(k_state, final_observation)] if probability > max_probability: __UpperCAmelCase : Dict = probability __UpperCAmelCase : Tuple = k_state __UpperCAmelCase : Tuple = arg_max # Process pointers backwards __UpperCAmelCase : Tuple = last_state __UpperCAmelCase : Dict = [] for o in range(len(__lowerCamelCase ) - 1 , -1 , -1 ): result.append(__lowerCamelCase ) __UpperCAmelCase : str = pointers[previous, observations_space[o]] result.reverse() return result def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , ): _validate_not_empty( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _validate_lists(__lowerCamelCase , __lowerCamelCase ) _validate_dicts( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("""There's an empty parameter""" ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Any ): _validate_list(__lowerCamelCase , """observations_space""" ) _validate_list(__lowerCamelCase , """states_space""" ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : str ): if not isinstance(_object , __lowerCamelCase ): __UpperCAmelCase : List[str] = f"""{var_name} must be a list""" raise ValueError(__lowerCamelCase ) else: for x in _object: if not isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Dict = f"""{var_name} must be a list of strings""" raise ValueError(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , ): _validate_dict(__lowerCamelCase , """initial_probabilities""" , __lowerCamelCase ) _validate_nested_dict(__lowerCamelCase , """transition_probabilities""" ) _validate_nested_dict(__lowerCamelCase , """emission_probabilities""" ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : str ): _validate_dict(_object , __lowerCamelCase , __lowerCamelCase ) for x in _object.values(): _validate_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : type , __lowerCamelCase : bool = False ): if not isinstance(_object , __lowerCamelCase ): __UpperCAmelCase : Any = f"""{var_name} must be a dict""" raise ValueError(__lowerCamelCase ) if not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for x in _object ): __UpperCAmelCase : Union[str, Any] = f"""{var_name} all keys must be strings""" raise ValueError(__lowerCamelCase ) if not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for x in _object.values() ): __UpperCAmelCase : int = """nested dictionary """ if nested else """""" __UpperCAmelCase : Optional[Any] = f"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
63
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [False] * len(_UpperCamelCase ) __lowerCAmelCase = [] queue.append(_UpperCamelCase ) __lowerCAmelCase = True while queue: __lowerCAmelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_UpperCamelCase ) __lowerCAmelCase = True __lowerCAmelCase = u return visited[t] def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [-1] * (len(_UpperCamelCase )) __lowerCAmelCase = 0 while bfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = float("Inf" ) __lowerCAmelCase = sink while s != source: # Find the minimum value in select path __lowerCAmelCase = min(_UpperCamelCase , graph[parent[s]][s] ) __lowerCAmelCase = parent[s] max_flow += path_flow __lowerCAmelCase = sink while v != source: __lowerCAmelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __lowerCAmelCase = parent[v] return max_flow A : Union[str, Any] = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] A , A : Any = 0, 5 print(ford_fulkerson(graph, source, sink))
636
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __A : List[Any] = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __A : Optional[int] = 'UperNetConfig' class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , _a , _a , _a , _a = 0 , _a = False , _a = 1 , ): """simple docstring""" super().__init__() a__ = nn.Convad( in_channels=_a , out_channels=_a , kernel_size=_a , padding=_a , bias=_a , dilation=_a , ) a__ = nn.BatchNormad(_a ) a__ = nn.ReLU() def lowercase__ ( self , _a ): """simple docstring""" a__ = self.conv(_a ) a__ = self.batch_norm(_a ) a__ = self.activation(_a ) return output class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , _a , _a , _a ): """simple docstring""" super().__init__() a__ = [ nn.AdaptiveAvgPoolad(_a ), UperNetConvModule(_a , _a , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_a ) , _a ) def lowercase__ ( self , _a ): """simple docstring""" a__ = input for layer in self.layers: a__ = layer(_a ) return hidden_state class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , _a , _a , _a , _a ): """simple docstring""" super().__init__() a__ = pool_scales a__ = align_corners a__ = in_channels a__ = channels a__ = [] for i, pool_scale in enumerate(_a ): a__ = UperNetPyramidPoolingBlock(pool_scale=_a , in_channels=_a , channels=_a ) self.blocks.append(_a ) self.add_module(str(_a ) , _a ) def lowercase__ ( self , _a ): """simple docstring""" a__ = [] for ppm in self.blocks: a__ = ppm(_a ) a__ = nn.functional.interpolate( _a , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners ) ppm_outs.append(_a ) return ppm_outs class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , _a , _a ): """simple docstring""" super().__init__() a__ = config a__ = config.pool_scales # e.g. (1, 2, 3, 6) a__ = in_channels a__ = config.hidden_size a__ = False a__ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module a__ = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) a__ = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module a__ = nn.ModuleList() a__ = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer a__ = UperNetConvModule(_a , self.channels , kernel_size=1 ) a__ = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(_a ) self.fpn_convs.append(_a ) a__ = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def lowercase__ ( self ): """simple docstring""" self.apply(self._init_weights ) def lowercase__ ( self , _a ): """simple docstring""" if isinstance(_a , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowercase__ ( self , _a ): """simple docstring""" a__ = inputs[-1] a__ = [x] psp_outs.extend(self.psp_modules(_a ) ) a__ = torch.cat(_a , dim=1 ) a__ = self.bottleneck(_a ) return output def lowercase__ ( self , _a ): """simple docstring""" # build laterals a__ = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_a ) ) # build top-down path a__ = len(_a ) for i in range(used_backbone_levels - 1 , 0 , -1 ): a__ = laterals[i - 1].shape[2:] a__ = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=_a , mode='bilinear' , align_corners=self.align_corners ) # build outputs a__ = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): a__ = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners ) a__ = torch.cat(_a , dim=1 ) a__ = self.fpn_bottleneck(_a ) a__ = self.classifier(_a ) return output class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , _a , _a = 2 , _a = 3 , _a = 1 ): """simple docstring""" super().__init__() a__ = config a__ = config.auxiliary_in_channels a__ = config.auxiliary_channels a__ = config.auxiliary_num_convs a__ = config.auxiliary_concat_input a__ = in_index a__ = (kernel_size // 2) * dilation a__ = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=_a , padding=_a , dilation=_a ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=_a , padding=_a , dilation=_a ) ) if self.num_convs == 0: a__ = nn.Identity() else: a__ = nn.Sequential(*_a ) if self.concat_input: a__ = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=_a , padding=kernel_size // 2 ) a__ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def lowercase__ ( self ): """simple docstring""" self.apply(self._init_weights ) def lowercase__ ( self , _a ): """simple docstring""" if isinstance(_a , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowercase__ ( self , _a ): """simple docstring""" # just take the relevant feature maps a__ = encoder_hidden_states[self.in_index] a__ = self.convs(_a ) if self.concat_input: a__ = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) a__ = self.classifier(_a ) return output class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:Tuple = UperNetConfig SCREAMING_SNAKE_CASE:Optional[Any] = 'pixel_values' SCREAMING_SNAKE_CASE:Union[str, Any] = True def lowercase__ ( self , _a ): """simple docstring""" if isinstance(_a , _a ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def lowercase__ ( self ): """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def lowercase__ ( self , _a , _a=False ): """simple docstring""" if isinstance(_a , _a ): a__ = value __A : Optional[Any] = r'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __A : Any = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.' , _A , ) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self , _a ): """simple docstring""" super().__init__(_a ) a__ = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) a__ = UperNetHead(_a , in_channels=self.backbone.channels ) a__ = UperNetFCNHead(_a ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) ) @replace_return_docstrings(output_type=_a , config_class=_CONFIG_FOR_DOC ) def lowercase__ ( self , _a = None , _a = None , _a = None , _a = None , _a = None , ): """simple docstring""" a__ = return_dict if return_dict is not None else self.config.use_return_dict a__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a__ = output_attentions if output_attentions is not None else self.config.output_attentions a__ = self.backbone.forward_with_filtered_kwargs( _a , output_hidden_states=_a , output_attentions=_a ) a__ = outputs.feature_maps a__ = self.decode_head(_a ) a__ = nn.functional.interpolate(_a , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=_a ) a__ = None if self.auxiliary_head is not None: a__ = self.auxiliary_head(_a ) a__ = nn.functional.interpolate( _a , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=_a ) a__ = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one' ) else: # compute weighted loss a__ = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) a__ = loss_fct(_a , _a ) a__ = loss_fct(_a , _a ) a__ = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: a__ = (logits,) + outputs[1:] else: a__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_a , logits=_a , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
126
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __A : Any = 'pt' elif is_tf_available(): __A : List[str] = 'tf' else: __A : Union[str, Any] = 'jax' class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE:str = PerceiverTokenizer SCREAMING_SNAKE_CASE:Optional[int] = False def lowercase__ ( self ): """simple docstring""" super().setUp() a__ = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self ): """simple docstring""" return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowercase__ ( self , **_a ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **_a ) def lowercase__ ( self , _a , _a=False , _a=20 , _a=5 ): """simple docstring""" # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. a__ = [] for i in range(len(_a ) ): try: a__ = tokenizer.decode([i] , clean_up_tokenization_spaces=_a ) except UnicodeDecodeError: pass toks.append((i, tok) ) a__ = list(filter(lambda _a : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _a ) ) a__ = list(filter(lambda _a : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_a ) , _a ) ) if max_length is not None and len(_a ) > max_length: a__ = toks[:max_length] if min_length is not None and len(_a ) < min_length and len(_a ) > 0: while len(_a ) < min_length: a__ = toks + toks # toks_str = [t[1] for t in toks] a__ = [t[0] for t in toks] # Ensure consistency a__ = tokenizer.decode(_a , clean_up_tokenization_spaces=_a ) if " " not in output_txt and len(_a ) > 1: a__ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_a ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_a ) ) if with_prefix_space: a__ = ' ' + output_txt a__ = tokenizer.encode(_a , add_special_tokens=_a ) return output_txt, output_ids def lowercase__ ( self ): """simple docstring""" a__ = self.perceiver_tokenizer a__ = 'Unicode €.' a__ = tokenizer(_a ) a__ = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _a ) # decoding a__ = tokenizer.decode(_a ) self.assertEqual(_a , '[CLS]Unicode €.[SEP]' ) a__ = tokenizer('e è é ê ë' ) a__ = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _a ) # decoding a__ = tokenizer.decode(_a ) self.assertEqual(_a , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowercase__ ( self ): """simple docstring""" a__ = self.perceiver_tokenizer a__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off a__ = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on a__ = tokenizer(_a , padding=_a , return_tensors=_a ) self.assertIsInstance(_a , _a ) if FRAMEWORK != "jax": a__ = list(batch.input_ids.numpy()[0] ) else: a__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_a , _a ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase__ ( self ): """simple docstring""" a__ = self.perceiver_tokenizer a__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] a__ = tokenizer(_a , padding=_a , return_tensors=_a ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _a ) self.assertIn('attention_mask' , _a ) self.assertNotIn('decoder_input_ids' , _a ) self.assertNotIn('decoder_attention_mask' , _a ) def lowercase__ ( self ): """simple docstring""" a__ = self.perceiver_tokenizer a__ = [ 'Summary of the text.', 'Another summary.', ] a__ = tokenizer( text_target=_a , max_length=32 , padding='max_length' , truncation=_a , return_tensors=_a ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase__ ( self ): """simple docstring""" # safety check on max_len default value so we are sure the test works a__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test a__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc a__ = tempfile.mkdtemp() a__ = ' He is very happy, UNwant\u00E9d,running' a__ = tokenizer.encode(_a , add_special_tokens=_a ) tokenizer.save_pretrained(_a ) a__ = tokenizer.__class__.from_pretrained(_a ) a__ = after_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) shutil.rmtree(_a ) a__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc a__ = tempfile.mkdtemp() a__ = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) a__ = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) a__ = tokenizer.encode(_a , add_special_tokens=_a ) tokenizer.save_pretrained(_a ) a__ = tokenizer.__class__.from_pretrained(_a ) a__ = after_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) a__ = tokenizer.__class__.from_pretrained(_a , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_a ) def lowercase__ ( self ): """simple docstring""" a__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_a ) with open(os.path.join(_a , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: a__ = json.load(_a ) with open(os.path.join(_a , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: a__ = json.load(_a ) a__ = [F'''<extra_id_{i}>''' for i in range(125 )] a__ = added_tokens_extra_ids + [ 'an_additional_special_token' ] a__ = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_a , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_a , _a ) with open(os.path.join(_a , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_a , _a ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files a__ = tokenizer_class.from_pretrained( _a , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained a__ = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_a )] a__ = tokenizer_class.from_pretrained( _a , additional_special_tokens=_a , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase__ ( self ): """simple docstring""" a__ = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens a__ = self.get_tokenizers(fast=_a , do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): a__ = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] a__ = tokenizer.convert_tokens_to_string(_a ) self.assertIsInstance(_a , _a )
126
1
import unittest import numpy as np def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , ): UpperCamelCase__ : Tuple = np.shape(UpperCamelCase__ ) UpperCamelCase__ : Tuple = np.shape(UpperCamelCase__ ) UpperCamelCase__ : List[Any] = np.shape(UpperCamelCase__ ) if shape_a[0] != shape_b[0]: UpperCamelCase__ : Any = ( '''Expected the same number of rows for A and B. ''' f'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(UpperCamelCase__ ) if shape_b[1] != shape_c[1]: UpperCamelCase__ : Dict = ( '''Expected the same number of columns for B and C. ''' f'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(UpperCamelCase__ ) UpperCamelCase__ : List[str] = pseudo_inv if a_inv is None: try: UpperCamelCase__ : Union[str, Any] = np.linalg.inv(UpperCamelCase__ ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> None: """simple docstring""" UpperCamelCase__ : Dict = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase__ : int = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase__ : List[Any] = np.array([[2, 1], [6, 3]] ) UpperCamelCase__ : Union[str, Any] = schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = np.block([[a, b], [b.T, c]] ) UpperCamelCase__ : Any = np.linalg.det(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = np.linalg.det(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = np.linalg.det(__SCREAMING_SNAKE_CASE ) self.assertAlmostEqual(__SCREAMING_SNAKE_CASE , det_a * det_s ) def __SCREAMING_SNAKE_CASE ( self ) -> None: """simple docstring""" UpperCamelCase__ : Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase__ : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase__ : Any = np.array([[2, 1], [6, 3]] ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> None: """simple docstring""" UpperCamelCase__ : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase__ : Union[str, Any] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase__ : Optional[int] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
285
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase =logging.get_logger(__name__) lowerCamelCase ={ "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = '''wav2vec2''' def __init__( self , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=7_6_8 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=3_0_7_2 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE="group" , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __SCREAMING_SNAKE_CASE=(5, 2, 2, 2, 2, 2, 2) , __SCREAMING_SNAKE_CASE=(1_0, 3, 3, 3, 3, 2, 2) , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1_2_8 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.05 , __SCREAMING_SNAKE_CASE=1_0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=1_0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=3_2_0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1_0_0 , __SCREAMING_SNAKE_CASE=2_5_6 , __SCREAMING_SNAKE_CASE=2_5_6 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE="sum" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=2_5_6 , __SCREAMING_SNAKE_CASE=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , __SCREAMING_SNAKE_CASE=(5, 3, 3, 1, 1) , __SCREAMING_SNAKE_CASE=(1, 2, 3, 1, 1) , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE , pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = hidden_size UpperCamelCase__ : List[Any] = feat_extract_norm UpperCamelCase__ : Union[str, Any] = feat_extract_activation UpperCamelCase__ : Union[str, Any] = list(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = list(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = list(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = conv_bias UpperCamelCase__ : Optional[Any] = num_conv_pos_embeddings UpperCamelCase__ : Tuple = num_conv_pos_embedding_groups UpperCamelCase__ : Tuple = len(self.conv_dim ) UpperCamelCase__ : Optional[Any] = num_hidden_layers UpperCamelCase__ : Union[str, Any] = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : List[Any] = num_attention_heads UpperCamelCase__ : Optional[int] = hidden_dropout UpperCamelCase__ : Tuple = attention_dropout UpperCamelCase__ : List[Any] = activation_dropout UpperCamelCase__ : Optional[int] = feat_proj_dropout UpperCamelCase__ : int = final_dropout UpperCamelCase__ : str = layerdrop UpperCamelCase__ : Dict = layer_norm_eps UpperCamelCase__ : str = initializer_range UpperCamelCase__ : List[Any] = vocab_size UpperCamelCase__ : Dict = do_stable_layer_norm UpperCamelCase__ : Dict = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ : Tuple = apply_spec_augment UpperCamelCase__ : str = mask_time_prob UpperCamelCase__ : Tuple = mask_time_length UpperCamelCase__ : Optional[Any] = mask_time_min_masks UpperCamelCase__ : str = mask_feature_prob UpperCamelCase__ : List[str] = mask_feature_length UpperCamelCase__ : Optional[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCamelCase__ : Dict = num_codevectors_per_group UpperCamelCase__ : Optional[int] = num_codevector_groups UpperCamelCase__ : Dict = contrastive_logits_temperature UpperCamelCase__ : List[Any] = feat_quantizer_dropout UpperCamelCase__ : List[Any] = num_negatives UpperCamelCase__ : Tuple = codevector_dim UpperCamelCase__ : List[str] = proj_codevector_dim UpperCamelCase__ : Tuple = diversity_loss_weight # ctc loss UpperCamelCase__ : List[str] = ctc_loss_reduction UpperCamelCase__ : Optional[Any] = ctc_zero_infinity # adapter UpperCamelCase__ : List[Any] = add_adapter UpperCamelCase__ : Any = adapter_kernel_size UpperCamelCase__ : Tuple = adapter_stride UpperCamelCase__ : Tuple = num_adapter_layers UpperCamelCase__ : Optional[Any] = output_hidden_size or hidden_size UpperCamelCase__ : Union[str, Any] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase__ : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase__ : Union[str, Any] = list(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = list(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = list(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = xvector_output_dim @property def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
285
1
"""simple docstring""" from math import isqrt, loga def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->list[int]: _lowerCamelCase : int = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _lowerCamelCase : Union[str, Any] = False return [i for i in range(2 , SCREAMING_SNAKE_CASE_ ) if is_prime[i]] def UpperCamelCase ( SCREAMING_SNAKE_CASE_ = 80_0800 , SCREAMING_SNAKE_CASE_ = 80_0800 ) ->int: _lowerCamelCase : List[str] = degree * loga(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Tuple = int(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Union[str, Any] = calculate_prime_numbers(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Dict = 0 _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"""{solution() = }""")
700
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig SCREAMING_SNAKE_CASE__ : Tuple =logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict ={ 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = """dpt""" def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-12 , _lowercase=384 , _lowercase=16 , _lowercase=3 , _lowercase=False , _lowercase=True , _lowercase=[2, 5, 8, 11] , _lowercase="project" , _lowercase=[4, 2, 1, 0.5] , _lowercase=[96, 192, 384, 768] , _lowercase=256 , _lowercase=-1 , _lowercase=False , _lowercase=True , _lowercase=0.4 , _lowercase=255 , _lowercase=0.1 , _lowercase=[1, 1024, 24, 24] , _lowercase=[0, 1] , _lowercase=None , **_lowercase , ) -> Optional[int]: super().__init__(**_lowercase ) _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : Optional[Any] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) _lowerCamelCase : List[Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } _lowerCamelCase : Any = BitConfig(**_lowercase ) elif isinstance(_lowercase , _lowercase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) _lowerCamelCase : int = BitConfig(**_lowercase ) elif isinstance(_lowercase , _lowercase ): _lowerCamelCase : int = backbone_config else: raise ValueError( F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) _lowerCamelCase : List[Any] = backbone_featmap_shape _lowerCamelCase : Optional[int] = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: _lowerCamelCase : Optional[int] = None _lowerCamelCase : int = None _lowerCamelCase : Dict = [] _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Optional[int] = intermediate_size _lowerCamelCase : int = hidden_act _lowerCamelCase : Optional[Any] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : str = initializer_range _lowerCamelCase : Dict = layer_norm_eps _lowerCamelCase : str = image_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Tuple = qkv_bias _lowerCamelCase : Tuple = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) _lowerCamelCase : Union[str, Any] = readout_type _lowerCamelCase : List[str] = reassemble_factors _lowerCamelCase : Union[str, Any] = neck_hidden_sizes _lowerCamelCase : List[Any] = fusion_hidden_size _lowerCamelCase : List[Any] = head_in_index _lowerCamelCase : List[str] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _lowerCamelCase : List[str] = use_auxiliary_head _lowerCamelCase : List[str] = auxiliary_loss_weight _lowerCamelCase : str = semantic_loss_ignore_index _lowerCamelCase : Optional[Any] = semantic_classifier_dropout def a__ ( self ) -> Any: _lowerCamelCase : Tuple = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _lowerCamelCase : int = self.backbone_config.to_dict() _lowerCamelCase : List[Any] = self.__class__.model_type return output
558
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase__ = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def __UpperCAmelCase ( ) -> int: UpperCamelCase__ : List[str] = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: UpperCamelCase__ : str = get_sagemaker_input() else: UpperCamelCase__ : Any = get_cluster_input() return config def __UpperCAmelCase ( lowerCamelCase_=None) -> Union[str, Any]: if subparsers is not None: UpperCamelCase__ : int = subparsers.add_parser('config' , description=lowerCamelCase_) else: UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser('Accelerate config command' , description=lowerCamelCase_) parser.add_argument( '--config_file' , default=lowerCamelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase_) return parser def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : List[Any] = get_user_input() if args.config_file is not None: UpperCamelCase__ : Any = args.config_file else: if not os.path.isdir(lowerCamelCase_): os.makedirs(lowerCamelCase_) UpperCamelCase__ : str = default_yaml_config_file if config_file.endswith('.json'): config.to_json_file(lowerCamelCase_) else: config.to_yaml_file(lowerCamelCase_) print(f'accelerate configuration saved at {config_file}') def __UpperCAmelCase ( ) -> Tuple: UpperCamelCase__ : Optional[Any] = config_command_parser() UpperCamelCase__ : Dict = parser.parse_args() config_command(lowerCamelCase_) if __name__ == "__main__": main()
596
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class a_ ( unittest.TestCase ): def __init__( self : Any , UpperCAmelCase__ : Optional[Any] ): """simple docstring""" snake_case : Union[str, Any] = parent def lowerCAmelCase( self : Optional[int] ): """simple docstring""" return {} def a_ ( ) -> int: """simple docstring""" snake_case : Any = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' snake_case : Tuple = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class a_ ( a , unittest.TestCase ): A__ : List[Any] = MarkupLMFeatureExtractor if is_bsa_available() else None def lowerCAmelCase( self : Dict ): """simple docstring""" snake_case : int = MarkupLMFeatureExtractionTester(self ) @property def lowerCAmelCase( self : Tuple ): """simple docstring""" return self.feature_extract_tester.prepare_feat_extract_dict() def lowerCAmelCase( self : Optional[Any] ): """simple docstring""" # Initialize feature_extractor snake_case : List[Any] = self.feature_extraction_class() # Test not batched input snake_case : List[str] = get_html_strings()[0] snake_case : Any = feature_extractor(UpperCAmelCase__ ) # fmt: off snake_case : List[Any] = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] snake_case : List[str] = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , UpperCAmelCase__ ) self.assertEqual(encoding.xpaths , UpperCAmelCase__ ) # Test batched snake_case : List[str] = get_html_strings() snake_case : Optional[Any] = feature_extractor(UpperCAmelCase__ ) # fmt: off snake_case : List[Any] = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] snake_case : Union[str, Any] = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , UpperCAmelCase__ ) self.assertEqual(encoding.xpaths , UpperCAmelCase__ )
598
0
'''simple docstring''' from collections import namedtuple lowercase = namedtuple('''from_to''', '''from_ to''') lowercase = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.001, 1000), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.0_0454, 264.172), '''cubicyard''': from_to(0.7_6455, 1.3_0795), '''cubicfoot''': from_to(0.028, 35.3147), '''cup''': from_to(0.0_0023_6588, 4226.75), } def __A ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( f'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + ", ".join(_SCREAMING_SNAKE_CASE ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + ", ".join(_SCREAMING_SNAKE_CASE ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
564
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : Dict = IFInpaintingSuperResolutionPipeline snake_case__ : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} snake_case__ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) snake_case__ : str = PipelineTesterMixin.required_optional_params - {'''latents'''} def a_ ( self ): return self._get_superresolution_dummy_components() def a_ ( self , a__ , a__=0 ): if str(a__ ).startswith("mps" ): __SCREAMING_SNAKE_CASE : int = torch.manual_seed(a__ ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(a__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(a__ ) ).to(a__ ) __SCREAMING_SNAKE_CASE : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def a_ ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def a_ ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def a_ ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def a_ ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def a_ ( self ): self._test_save_load_local() def a_ ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
564
1
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) SCREAMING_SNAKE_CASE__ : List[str] = 2_9_9_7_9_2_4_5_8 # Symbols SCREAMING_SNAKE_CASE__ : List[Any] = symbols("""ct x y z""") def _A ( lowerCamelCase ): if velocity > c: raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("Speed must be greater than or equal to 1!" ) return velocity / c def _A ( lowerCamelCase ): return 1 / sqrt(1 - beta(__lowerCamelCase ) ** 2 ) def _A ( lowerCamelCase ): return np.array( [ [gamma(__lowerCamelCase ), -gamma(__lowerCamelCase ) * beta(__lowerCamelCase ), 0, 0], [-gamma(__lowerCamelCase ) * beta(__lowerCamelCase ), gamma(__lowerCamelCase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def _A ( lowerCamelCase , lowerCamelCase = None ): # Ensure event is not empty if event is None: a__ : int = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(__lowerCamelCase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: SCREAMING_SNAKE_CASE__ : Optional[Any] = transform(2_9_9_7_9_2_4_5) print("""Example of four vector: """) print(f'ct\' = {four_vector[0]}') print(f'x\' = {four_vector[1]}') print(f'y\' = {four_vector[2]}') print(f'z\' = {four_vector[3]}') # Substitute symbols with numerical values SCREAMING_SNAKE_CASE__ : List[Any] = {ct: c, x: 1, y: 1, z: 1} SCREAMING_SNAKE_CASE__ : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'\n{numerical_vector}')
112
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self :Tuple , __magic_name__ :int , __magic_name__ :Optional[Any] ): '''simple docstring''' return F'gaussian_noise_s={seed}_shape={"_".join([str(__magic_name__ ) for s in shape] )}.npy' def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' super().tearDown() gc.collect() def lowerCamelCase__ ( self :int , __magic_name__ :List[str]=0 , __magic_name__ :List[Any]=(4, 4, 64, 64) , __magic_name__ :Optional[int]=False ): '''simple docstring''' a = jnp.bfloataa if fpaa else jnp.floataa a = jnp.array(load_hf_numpy(self.get_file_format(__magic_name__ , __magic_name__ ) ) , dtype=__magic_name__ ) return image def lowerCamelCase__ ( self :Any , __magic_name__ :int=False , __magic_name__ :List[str]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' a = jnp.bfloataa if fpaa else jnp.floataa a = """bf16""" if fpaa else None a , a = FlaxUNetaDConditionModel.from_pretrained( __magic_name__ , subfolder="""unet""" , dtype=__magic_name__ , revision=__magic_name__ ) return model, params def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Union[str, Any]=0 , __magic_name__ :Any=(4, 77, 768) , __magic_name__ :Optional[Any]=False ): '''simple docstring''' a = jnp.bfloataa if fpaa else jnp.floataa a = jnp.array(load_hf_numpy(self.get_file_format(__magic_name__ , __magic_name__ ) ) , dtype=__magic_name__ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :str , __magic_name__ :Optional[Any] , __magic_name__ :Optional[int] ): '''simple docstring''' a , a = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=__magic_name__ ) a = self.get_latents(__magic_name__ , fpaa=__magic_name__ ) a = self.get_encoder_hidden_states(__magic_name__ , fpaa=__magic_name__ ) a = model.apply( {"""params""": params} , __magic_name__ , jnp.array(__magic_name__ , dtype=jnp.intaa ) , encoder_hidden_states=__magic_name__ , ).sample assert sample.shape == latents.shape a = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) a = jnp.array(__magic_name__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__magic_name__ , __magic_name__ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :List[Any] , __magic_name__ :int , __magic_name__ :str ): '''simple docstring''' a , a = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=__magic_name__ ) a = self.get_latents(__magic_name__ , shape=(4, 4, 96, 96) , fpaa=__magic_name__ ) a = self.get_encoder_hidden_states(__magic_name__ , shape=(4, 77, 1024) , fpaa=__magic_name__ ) a = model.apply( {"""params""": params} , __magic_name__ , jnp.array(__magic_name__ , dtype=jnp.intaa ) , encoder_hidden_states=__magic_name__ , ).sample assert sample.shape == latents.shape a = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) a = jnp.array(__magic_name__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__magic_name__ , __magic_name__ , atol=1E-2 )
468
0
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def A ( lowercase , lowercase ) -> float: '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(lowercase , lowercase ) ) ) def A ( lowercase , lowercase ) -> list[list[list[float] | float]]: '''simple docstring''' if dataset.ndim != value_array.ndim: UpperCamelCase = ( 'Wrong input data\'s dimensions... ' f'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(lowercase ) try: if dataset.shape[1] != value_array.shape[1]: UpperCamelCase = ( 'Wrong input data\'s shape... ' f'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(lowercase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCamelCase = ( 'Input data have different datatype... ' f'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(lowercase ) UpperCamelCase = [] for value in value_array: UpperCamelCase = euclidean(lowercase , dataset[0] ) UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCamelCase = euclidean(lowercase , lowercase ) if dist > temp_dist: UpperCamelCase = temp_dist UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def A ( lowercase , lowercase ) -> float: '''simple docstring''' return np.dot(lowercase , lowercase ) / (norm(lowercase ) * norm(lowercase )) if __name__ == "__main__": import doctest doctest.testmod()
707
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _UpperCAmelCase : Tuple = _symbol_database.Default() _UpperCAmelCase : List[Any] = _descriptor_pool.Default().AddSerializedFile( b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) _UpperCAmelCase : int = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _UpperCAmelCase : int = None _UpperCAmelCase : List[str] = b"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _UpperCAmelCase : Optional[Any] = 45 _UpperCAmelCase : Any = 1_581 _UpperCAmelCase : Tuple = 1_517 _UpperCAmelCase : List[str] = 1_570 _UpperCAmelCase : int = 1_584 _UpperCAmelCase : List[Any] = 1_793 _UpperCAmelCase : Optional[int] = 1_795 _UpperCAmelCase : Any = 1_916 _UpperCAmelCase : Tuple = 1_864 _UpperCAmelCase : List[Any] = 1_905 _UpperCAmelCase : Union[str, Any] = 1_919 _UpperCAmelCase : str = 2_429 _UpperCAmelCase : Any = 2_208 _UpperCAmelCase : Dict = 2_418 _UpperCAmelCase : Optional[Any] = 2_323 _UpperCAmelCase : Tuple = 2_407 # @@protoc_insertion_point(module_scope)
3
0
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" @register_to_config def __init__( self :Any , __lowercase :List[Any] , __lowercase :Union[str, Any] , __lowercase :str , __lowercase :Optional[int] , __lowercase :Union[str, Any] , __lowercase :Dict , __lowercase :str , __lowercase :str , __lowercase :str , __lowercase :List[str] = False , ): super().__init__() __lowerCamelCase : Optional[Any] =nn.Embedding(__lowercase , __lowercase ) __lowerCamelCase : Any =nn.Embedding(__lowercase , __lowercase ) __lowerCamelCase : List[str] =False __lowerCamelCase : Any =nn.Dropout(p=__lowercase ) __lowerCamelCase : Optional[Any] =TaConfig( vocab_size=__lowercase , d_model=__lowercase , num_heads=__lowercase , d_kv=__lowercase , d_ff=__lowercase , dropout_rate=__lowercase , feed_forward_proj=__lowercase , is_decoder=__lowercase , is_encoder_decoder=__lowercase , ) __lowerCamelCase : Any =nn.ModuleList() for lyr_num in range(__lowercase ): __lowerCamelCase : Union[str, Any] =TaBlock(__lowercase ) self.encoders.append(__lowercase ) __lowerCamelCase : List[Any] =TaLayerNorm(__lowercase ) __lowerCamelCase : Union[str, Any] =nn.Dropout(p=__lowercase ) def __lowercase ( self :Any , __lowercase :Optional[int] , __lowercase :Tuple ): __lowerCamelCase : List[Any] =self.token_embedder(__lowercase ) __lowerCamelCase : Optional[Any] =encoder_input_tokens.shape[1] __lowerCamelCase : int =torch.arange(__lowercase , device=encoder_input_tokens.device ) x += self.position_encoding(__lowercase ) __lowerCamelCase : Union[str, Any] =self.dropout_pre(__lowercase ) # inverted the attention mask __lowerCamelCase : int =encoder_input_tokens.size() __lowerCamelCase : Dict =self.get_extended_attention_mask(__lowercase , __lowercase ) for lyr in self.encoders: __lowerCamelCase : Optional[int] =lyr(__lowercase , __lowercase )[0] __lowerCamelCase : Union[str, Any] =self.layer_norm(__lowercase ) return self.dropout_post(__lowercase ), encoder_inputs_mask
179
'''simple docstring''' import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): lowerCAmelCase_ = True from torch.cuda.amp import autocast lowerCAmelCase_ = logging.getLogger(__name__) def A__ ( A : str=None , A : Union[str, Any]=None): '''simple docstring''' return field(default_factory=lambda: default , metadata=A) @dataclass class UpperCAmelCase_ : """simple docstring""" __SCREAMING_SNAKE_CASE = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __SCREAMING_SNAKE_CASE = field( default=0.1 , metadata={'''help''': '''The dropout ratio for the attention probabilities.'''} ) __SCREAMING_SNAKE_CASE = field( default=0.1 , metadata={'''help''': '''The dropout ratio for activations inside the fully connected layer.'''} ) __SCREAMING_SNAKE_CASE = field( default=0.1 , metadata={ '''help''': '''The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.''' } , ) __SCREAMING_SNAKE_CASE = field( default=0.1 , metadata={'''help''': '''The dropout probabilitiy for all 1D convolutional layers in feature extractor.'''} , ) __SCREAMING_SNAKE_CASE = field( default=0.05 , metadata={ '''help''': ( '''Propability of each feature vector along the time axis to be chosen as the start of the vector''' '''span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature''' '''vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.''' ) } , ) __SCREAMING_SNAKE_CASE = field(default=0.0 , metadata={'''help''': '''The LayerDrop probability.'''} ) @dataclass class UpperCAmelCase_ : """simple docstring""" __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __SCREAMING_SNAKE_CASE = field( default='''train+validation''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __SCREAMING_SNAKE_CASE = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of validation examples to this ''' '''value if set.''' ) } , ) __SCREAMING_SNAKE_CASE = list_field( default=[''',''', '''?''', '''.''', '''!''', '''-''', ''';''', ''':''', '''""''', '''%''', '''\'''', '''"''', '''�'''] , metadata={'''help''': '''A list of characters to remove from the transcripts.'''} , ) @dataclass class UpperCAmelCase_ : """simple docstring""" __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def __call__( self , lowerCamelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCamelCase : Dict = [{"input_values": feature["input_values"]} for feature in features] UpperCamelCase : str = [{"input_ids": feature["labels"]} for feature in features] UpperCamelCase : Optional[Any] = self.processor.pad( lowerCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) UpperCamelCase : Union[str, Any] = self.processor.pad( labels=lowerCamelCase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="pt" , ) # replace padding with -100 to ignore loss correctly UpperCamelCase : int = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_00 ) UpperCamelCase : Any = labels return batch class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase ) -> torch.Tensor: '''simple docstring''' model.train() UpperCamelCase : List[Any] = self._prepare_inputs(lowerCamelCase ) if self.use_amp: with autocast(): UpperCamelCase : Union[str, Any] = self.compute_loss(lowerCamelCase , lowerCamelCase ) else: UpperCamelCase : List[str] = self.compute_loss(lowerCamelCase , lowerCamelCase ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": UpperCamelCase : Optional[Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": UpperCamelCase : str = loss.sum() / (inputs["labels"] >= 0).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: UpperCamelCase : List[Any] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCamelCase ).backward() elif self.use_apex: with amp.scale_loss(lowerCamelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCamelCase ) else: loss.backward() return loss.detach() def A__ ( ): '''simple docstring''' UpperCamelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase , UpperCamelCase , UpperCamelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: UpperCamelCase , UpperCamelCase , UpperCamelCase : List[str] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. UpperCamelCase : Any = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase : Dict = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome.") elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch.") # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout)] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}''') # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , A) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: UpperCamelCase : Union[str, Any] = datasets.load_dataset( "common_voice" , data_args.dataset_config_name , split=data_args.train_split_name) UpperCamelCase : Optional[int] = datasets.load_dataset("common_voice" , data_args.dataset_config_name , split="test") # Create and save tokenizer UpperCamelCase : List[str] = F'''[{''.join(data_args.chars_to_ignore)}]''' def remove_special_characters(A : List[Any]): UpperCamelCase : Optional[int] = re.sub(A , "" , batch["sentence"]).lower() + " " return batch UpperCamelCase : Any = train_dataset.map(A , remove_columns=["sentence"]) UpperCamelCase : int = eval_dataset.map(A , remove_columns=["sentence"]) def extract_all_chars(A : Union[str, Any]): UpperCamelCase : Tuple = " ".join(batch["text"]) UpperCamelCase : Optional[Any] = list(set(A)) return {"vocab": [vocab], "all_text": [all_text]} UpperCamelCase : Tuple = train_dataset.map( A , batched=A , batch_size=-1 , keep_in_memory=A , remove_columns=train_dataset.column_names , ) UpperCamelCase : Optional[Any] = train_dataset.map( A , batched=A , batch_size=-1 , keep_in_memory=A , remove_columns=eval_dataset.column_names , ) UpperCamelCase : Dict = list(set(vocab_train["vocab"][0]) | set(vocab_test["vocab"][0])) UpperCamelCase : Tuple = {v: k for k, v in enumerate(A)} UpperCamelCase : Tuple = vocab_dict[" "] del vocab_dict[" "] UpperCamelCase : List[str] = len(A) UpperCamelCase : Dict = len(A) with open("vocab.json" , "w") as vocab_file: json.dump(A , A) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase : int = WavaVecaCTCTokenizer( "vocab.json" , unk_token="[UNK]" , pad_token="[PAD]" , word_delimiter_token="|" , ) UpperCamelCase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0.0 , do_normalize=A , return_attention_mask=A) UpperCamelCase : int = WavaVecaProcessor(feature_extractor=A , tokenizer=A) UpperCamelCase : str = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="mean" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer) , ) if data_args.max_train_samples is not None: UpperCamelCase : Union[str, Any] = min(len(A) , data_args.max_train_samples) UpperCamelCase : int = train_dataset.select(range(A)) if data_args.max_val_samples is not None: UpperCamelCase : Dict = eval_dataset.select(range(data_args.max_val_samples)) UpperCamelCase : Union[str, Any] = torchaudio.transforms.Resample(4_80_00 , 1_60_00) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(A : Union[str, Any]): UpperCamelCase , UpperCamelCase : List[str] = torchaudio.load(batch["path"]) UpperCamelCase : List[str] = resampler(A).squeeze().numpy() UpperCamelCase : Dict = 1_60_00 UpperCamelCase : str = batch["text"] return batch UpperCamelCase : int = train_dataset.map( A , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) UpperCamelCase : int = eval_dataset.map( A , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(A : Dict): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"])) == 1 ), F'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' UpperCamelCase : Union[str, Any] = processor( audio=batch["speech"] , text=batch["target_text"] , sampling_rate=batch["sampling_rate"][0]) batch.update(A) return batch UpperCamelCase : str = train_dataset.map( A , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=A , num_proc=data_args.preprocessing_num_workers , ) UpperCamelCase : Union[str, Any] = eval_dataset.map( A , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=A , num_proc=data_args.preprocessing_num_workers , ) # Metric UpperCamelCase : Tuple = datasets.load_metric("wer") def compute_metrics(A : int): UpperCamelCase : Union[str, Any] = pred.predictions UpperCamelCase : Tuple = np.argmax(A , axis=-1) UpperCamelCase : int = processor.tokenizer.pad_token_id UpperCamelCase : Union[str, Any] = processor.batch_decode(A) # we do not want to group tokens when computing the metrics UpperCamelCase : List[Any] = processor.batch_decode(pred.label_ids , group_tokens=A) UpperCamelCase : Optional[Any] = wer_metric.compute(predictions=A , references=A) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator UpperCamelCase : Dict = DataCollatorCTCWithPadding(processor=A , padding=A) # Initialize our Trainer UpperCamelCase : int = CTCTrainer( model=A , data_collator=A , args=A , compute_metrics=A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: UpperCamelCase : List[Any] = last_checkpoint elif os.path.isdir(model_args.model_name_or_path): UpperCamelCase : Tuple = model_args.model_name_or_path else: UpperCamelCase : str = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank): processor.save_pretrained(training_args.output_dir) UpperCamelCase : Union[str, Any] = trainer.train(resume_from_checkpoint=A) trainer.save_model() UpperCamelCase : int = train_result.metrics UpperCamelCase : int = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(A) ) UpperCamelCase : int = min(A , len(A)) trainer.log_metrics("train" , A) trainer.save_metrics("train" , A) trainer.save_state() # Evaluation UpperCamelCase : int = {} if training_args.do_eval: logger.info("*** Evaluate ***") UpperCamelCase : Optional[Any] = trainer.evaluate() UpperCamelCase : int = data_args.max_val_samples if data_args.max_val_samples is not None else len(A) UpperCamelCase : Dict = min(A , len(A)) trainer.log_metrics("eval" , A) trainer.save_metrics("eval" , A) return results if __name__ == "__main__": main()
173
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer snake_case__ : Optional[Any] = flax_key_tuple[:-1] + ("weight",) snake_case__ : Dict = torch.permute(lowerCAmelCase_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCAmelCase_ ): # linear layer snake_case__ : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) snake_case__ : Union[str, Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: snake_case__ : Optional[int] = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: """simple docstring""" if "metadata" in layer: snake_case__ : int = layer.split('''metadata''' ) snake_case__ : Dict = "".join(split_layer[0] )[:-1] snake_case__ : List[str] = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: snake_case__ : List[Any] = layer.split('''kvstore''' ) snake_case__ : List[str] = "".join(split_layer[0] )[:-1] snake_case__ : Tuple = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: snake_case__ : Any = layer.split('''/''' ) snake_case__ : Tuple = "/".join(split_layer[:-1] ) snake_case__ : Any = (split_layer[-1],) if "kvstore/path" in layer: snake_case__ : Union[str, Any] = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: snake_case__ : List[Any] = "file" else: snake_case__ : Optional[int] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: """simple docstring""" snake_case__ : Dict = rename_keys(lowerCAmelCase_ ) snake_case__ : int = {} for k, v in current_block.items(): snake_case__ : Optional[Any] = v snake_case__ : str = new_current_block torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = WEIGHTS_NAME ) -> str: """simple docstring""" snake_case__ : Dict = convert_file_size_to_int(lowerCAmelCase_ ) snake_case__ : List[Any] = [] snake_case__ : int = {} snake_case__ : Optional[Any] = 0 snake_case__ : List[Any] = 0 os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: snake_case__ : str = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] snake_case__ : Dict = flatten_dict(lowerCAmelCase_ , sep='''/''' ) snake_case__ : Optional[int] = {} for layer in checkpoint_info.keys(): snake_case__ : Optional[Any] = get_key_and_tensorstore_dict( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if curr_real_layer_name in all_layers: snake_case__ : List[Any] = content else: snake_case__ : Dict = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file snake_case__ : Optional[Any] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() snake_case__ : str = torch.tensor(lowerCAmelCase_ ) snake_case__ : Union[str, Any] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts snake_case__ : Optional[Any] = rename_base_flax_keys(tuple(key.split('''/''' ) ) , lowerCAmelCase_ ) snake_case__ : Any = "/".join(lowerCAmelCase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: snake_case__ : List[Any] = os.path.join( lowerCAmelCase_ , weights_name.replace('''.bin''' , f"""-{len(lowerCAmelCase_ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(lowerCAmelCase_ , lowerCAmelCase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block snake_case__ : List[Any] = {} snake_case__ : Optional[int] = 0 snake_case__ : Any = raw_weights.to(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block snake_case__ : Optional[Any] = os.path.join(lowerCAmelCase_ , weights_name.replace('''.bin''' , f"""-{len(lowerCAmelCase_ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(lowerCAmelCase_ , lowerCAmelCase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowerCAmelCase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index snake_case__ : Dict = {} snake_case__ : List[str] = {} for idx, shard in enumerate(lowerCAmelCase_ ): snake_case__ : Optional[int] = weights_name.replace( '''.bin''' , f"""-{idx+1:05d}-of-{len(lowerCAmelCase_ ):05d}.bin""" ) # len(sharded_state_dicts):05d} snake_case__ : Tuple = os.path.join(lowerCAmelCase_ , weights_name.replace('''.bin''' , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) snake_case__ : Optional[int] = shard for key in shard: snake_case__ : Union[str, Any] = shard_file # Add the metadata snake_case__ : Dict = {"total_size": total_size} snake_case__ : Tuple = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , '''w''' , encoding='''utf-8''' ) as f: snake_case__ : Union[str, Any] = json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + "\n" f.write(lowerCAmelCase_ ) return metadata, index if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) A__ = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _lowerCAmelCase ( ) -> str: """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer snake_case__ : Optional[Any] = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) snake_case__ : str = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) snake_case__ : Optional[int] = TaTokenizer.from_pretrained('''t5-small''' ) snake_case__ : Optional[Any] = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." snake_case__ : Optional[int] = tokenizer(lowerCAmelCase_ , return_tensors='''pt''' ).input_ids snake_case__ : int = model.generate(lowerCAmelCase_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
707
def _lowerCAmelCase ( __lowerCAmelCase ) -> float: """simple docstring""" if edge <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _lowerCAmelCase ( __lowerCAmelCase ) -> float: """simple docstring""" if edge <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
219
0
'''simple docstring''' import math lowercase_ = 10 lowercase_ = 7 lowercase_ = BALLS_PER_COLOUR * NUM_COLOURS def lowerCAmelCase (__A = 20): """simple docstring""" _a = math.comb(__A , __A) _a = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __A) _a = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
11
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
0
"""simple docstring""" def _snake_case ( snake_case__ : int ): A = abs(snake_case__ ) A = 0 while n > 0: res += n % 10 n //= 10 return res def _snake_case ( snake_case__ : int ): A = abs(snake_case__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _snake_case ( snake_case__ : int ): return sum(int(snake_case__ ) for c in str(abs(snake_case__ ) ) ) def _snake_case ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case__ : Callable , snake_case__ : int ) -> None: A = F'{func.__name__}({value})' A = timeit(F'__main__.{call}' , setup='import __main__' ) print(F'{call:56} = {func(snake_case__ )} -- {timing:.4f} seconds' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(snake_case__ , snake_case__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
22
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowercase = True except ImportError: _lowercase = False _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( snake_case__ : Namespace ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' ,action='store_true' ,help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' ,type=A_ ,help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' ,type=A_ ,help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=A_ ) def __init__( self : Tuple ,A_ : bool ,A_ : str ,A_ : Tuple=None ,*A_ : List[str] ) -> Union[str, Any]: A = testing A = testing_file A = path def _SCREAMING_SNAKE_CASE ( self : int ) -> int: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory A = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(A_ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) A = ( Path(A_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) A = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(A_ ) ) else: with open(self._testing_file ,'r' ) as configuration_file: A = json.load(A_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=A_ ,extra_context=A_ ,) A = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' ,'r' ) as configuration_file: A = json.load(A_ ) A = configuration['lowercase_modelname'] A = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(F'{directory}/configuration.json' ) A = 'PyTorch' in generate_tensorflow_pytorch_and_flax A = 'TensorFlow' in generate_tensorflow_pytorch_and_flax A = 'Flax' in generate_tensorflow_pytorch_and_flax A = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(A_ ,exist_ok=A_ ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=A_ ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,'w' ): pass shutil.move( F'{directory}/__init__.py' ,F'{model_dir}/__init__.py' ,) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' ,F'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(A_ : int ): with open(A_ ,'r' ) as f: A = f.readlines() with open(A_ ,'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(A_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' ,F'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' ,F'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' ,F'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' ,F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(A_ : str ,A_ : str ,A_ : List[str] ): # Create temp file A , A = mkstemp() A = False with fdopen(A_ ,'w' ) as new_file: with open(A_ ) as old_file: for line in old_file: new_file.write(A_ ) if line_to_copy_below in line: A = True for line_to_copy in lines_to_copy: new_file.write(A_ ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(A_ ,A_ ) # Remove original file remove(A_ ) # Move new file move(A_ ,A_ ) def skip_units(A_ : Dict ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(A_ : Tuple ): with open(A_ ) as datafile: A = [] A = False A = False for line in datafile: if "# To replace in: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# Below: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(A_ ,A_ ,A_ ) A = [] elif "# Replace with" in line and "##" not in line: A = [] elif "##" not in line: lines_to_copy.append(A_ ) remove(A_ ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(A_ )
22
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = "▁" lowerCamelCase__ = {"vocab_file": "sentencepiece.bpe.model"} lowerCamelCase__ = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } lowerCamelCase__ = { "facebook/nllb-200-distilled-600M": 1024, } # fmt: off lowerCamelCase__ = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class lowerCAmelCase__ ( __lowercase ): UpperCamelCase_ : int = VOCAB_FILES_NAMES UpperCamelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Tuple = ["input_ids", "attention_mask"] UpperCamelCase_ : List[int] = [] UpperCamelCase_ : List[int] = [] def __init__( self , a , a="<s>" , a="</s>" , a="</s>" , a="<s>" , a="<unk>" , a="<pad>" , a="<mask>" , a=None , a=None , a=None , a = None , a=None , a=False , **a , ) -> int: '''simple docstring''' _UpperCamelCase = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs _UpperCamelCase = legacy_behaviour super().__init__( bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , tokenizer_file=a , src_lang=a , tgt_lang=a , additional_special_tokens=a , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=a , **a , ) _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a ) ) _UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase = 1 _UpperCamelCase = len(self.sp_model ) _UpperCamelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(a ) } _UpperCamelCase = {v: k for k, v in self.lang_code_to_id.items()} _UpperCamelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _UpperCamelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _UpperCamelCase = src_lang if src_lang is not None else """eng_Latn""" _UpperCamelCase = self.lang_code_to_id[self._src_lang] _UpperCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> str: '''simple docstring''' _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None _UpperCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , a ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def A_ ( self ) -> Union[str, Any]: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def A_ ( self ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def A_ ( self , a ) -> None: '''simple docstring''' _UpperCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A_ ( self , a , a = None , a = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) _UpperCamelCase = [1] * len(self.prefix_tokens ) _UpperCamelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(a )) + suffix_ones return prefix_ones + ([0] * len(a )) + ([0] * len(a )) + suffix_ones def A_ ( self , a , a = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self , a , a = None ) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self , a , a , a , a , **a ) -> Optional[Any]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _UpperCamelCase = src_lang _UpperCamelCase = self(a , add_special_tokens=a , return_tensors=a , **a ) _UpperCamelCase = self.convert_tokens_to_ids(a ) _UpperCamelCase = tgt_lang_id return inputs def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A_ ( self , a ) -> List[str]: '''simple docstring''' return self.sp_model.encode(a , out_type=a ) def A_ ( self , a ) -> List[str]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase = self.sp_model.PieceToId(a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A_ ( self , a ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A_ ( self , a ) -> int: '''simple docstring''' _UpperCamelCase = """""".join(a ).replace(a , """ """ ).strip() return out_string def A_ ( self , a , a = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(a ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCamelCase = os.path.join( a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , """wb""" ) as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,) def A_ ( self , a , a = "eng_Latn" , a = None , a = "fra_Latn" , **a , ) -> BatchEncoding: '''simple docstring''' _UpperCamelCase = src_lang _UpperCamelCase = tgt_lang return super().prepare_seqaseq_batch(a , a , **a ) def A_ ( self ) -> Union[str, Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self ) -> Tuple: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self , a ) -> None: '''simple docstring''' _UpperCamelCase = self.lang_code_to_id[src_lang] if self.legacy_behaviour: _UpperCamelCase = [] _UpperCamelCase = [self.eos_token_id, self.cur_lang_code] else: _UpperCamelCase = [self.cur_lang_code] _UpperCamelCase = [self.eos_token_id] def A_ ( self , a ) -> None: '''simple docstring''' _UpperCamelCase = self.lang_code_to_id[lang] if self.legacy_behaviour: _UpperCamelCase = [] _UpperCamelCase = [self.eos_token_id, self.cur_lang_code] else: _UpperCamelCase = [self.cur_lang_code] _UpperCamelCase = [self.eos_token_id]
612
def __A(lowerCAmelCase ) -> bool: """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) _UpperCamelCase = str(lowerCAmelCase ) _UpperCamelCase = """""".join(sorted(lowerCAmelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __A(lowerCAmelCase = 9_9 ) -> int: """simple docstring""" if not 0 < percent < 1_0_0: raise ValueError("""solution() only accepts values from 0 to 100""" ) _UpperCamelCase = 0 _UpperCamelCase = 1 while True: if check_bouncy(lowerCAmelCase ): bouncy_num += 1 if (bouncy_num / num) * 1_0_0 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
612
1
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __SCREAMING_SNAKE_CASE( a_ , unittest.TestCase ): _UpperCAmelCase = KandinskyVaaControlnetPipeline _UpperCAmelCase = ["image_embeds", "negative_image_embeds", "hint"] _UpperCAmelCase = ["image_embeds", "negative_image_embeds", "hint"] _UpperCAmelCase = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _UpperCAmelCase = False @property def lowerCAmelCase_ ( self: Optional[Any] ) -> Union[str, Any]: return 32 @property def lowerCAmelCase_ ( self: List[str] ) -> Dict: return 32 @property def lowerCAmelCase_ ( self: List[str] ) -> Optional[int]: return self.time_input_dim @property def lowerCAmelCase_ ( self: str ) -> Optional[int]: return self.time_input_dim * 4 @property def lowerCAmelCase_ ( self: List[str] ) -> List[str]: return 1_00 @property def lowerCAmelCase_ ( self: Optional[int] ) -> str: torch.manual_seed(0 ) snake_case__ = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } snake_case__ = UNetaDConditionModel(**UpperCamelCase ) return model @property def lowerCAmelCase_ ( self: Optional[int] ) -> List[str]: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase_ ( self: Dict ) -> Tuple: torch.manual_seed(0 ) snake_case__ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase_ ( self: Dict ) -> List[Any]: snake_case__ = self.dummy_unet snake_case__ = self.dummy_movq snake_case__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCamelCase , set_alpha_to_one=UpperCamelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=UpperCamelCase , ) snake_case__ = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: int , UpperCamelCase: Dict=0 ) -> int: snake_case__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) snake_case__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCamelCase ) # create hint snake_case__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if str(UpperCamelCase ).startswith('mps' ): snake_case__ = torch.manual_seed(UpperCamelCase ) else: snake_case__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) snake_case__ = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def lowerCAmelCase_ ( self: List[Any] ) -> List[str]: snake_case__ = 'cpu' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**UpperCamelCase ) snake_case__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) snake_case__ = output.images snake_case__ = pipe( **self.get_dummy_inputs(UpperCamelCase ) , return_dict=UpperCamelCase , )[0] snake_case__ = image[0, -3:, -3:, -1] snake_case__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ = np.array( [0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def lowerCAmelCase_ ( self: List[Any] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self: Optional[int] ) -> str: snake_case__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) snake_case__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) snake_case__ = torch.from_numpy(np.array(UpperCamelCase ) ).float() / 255.0 snake_case__ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case__ = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase ) snake_case__ = KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) snake_case__ = pipeline.to(UpperCamelCase ) pipeline.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ = 'A robot, 4k photo' snake_case__ = torch.Generator(device='cuda' ).manual_seed(0 ) snake_case__ , snake_case__ = pipe_prior( UpperCamelCase , generator=UpperCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() snake_case__ = torch.Generator(device='cuda' ).manual_seed(0 ) snake_case__ = pipeline( image_embeds=UpperCamelCase , negative_image_embeds=UpperCamelCase , hint=UpperCamelCase , generator=UpperCamelCase , num_inference_steps=1_00 , output_type='np' , ) snake_case__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
372
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : int = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
372
1
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ): """simple docstring""" if attention_mask is None: _lowerCAmelCase : Union[str, Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _lowerCAmelCase : Dict = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _lowerCAmelCase : int = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=__lowercase ) if decoder_head_mask is None: _lowerCAmelCase : Tuple = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__lowercase ) if cross_attn_head_mask is None: _lowerCAmelCase : str = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__lowercase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __A : '''simple docstring''' def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=False , _snake_case=99 , _snake_case=16 , _snake_case=2 , _snake_case=4 , _snake_case=4 , _snake_case="relu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=20 , _snake_case=2 , _snake_case=1 , _snake_case=0 , ): _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Optional[int] = batch_size _lowerCAmelCase : Optional[int] = seq_length _lowerCAmelCase : Optional[Any] = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Union[str, Any] = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Optional[int] = intermediate_size _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : List[str] = encoder_layerdrop _lowerCAmelCase : int = decoder_layerdrop _lowerCAmelCase : str = max_position_embeddings _lowerCAmelCase : Optional[int] = eos_token_id _lowerCAmelCase : Optional[Any] = pad_token_id _lowerCAmelCase : Any = bos_token_id def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Any = self.eos_token_id # Eos Token _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _lowerCAmelCase : List[Any] = input_ids.clamp(self.pad_token_id + 1 ) _lowerCAmelCase : List[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) _lowerCAmelCase : Union[str, Any] = self.get_config() _lowerCAmelCase : Optional[Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase , _lowerCAmelCase : int = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): _lowerCAmelCase : List[str] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval() _lowerCAmelCase : str = inputs_dict["input_ids"] _lowerCAmelCase : Optional[int] = inputs_dict["attention_mask"] _lowerCAmelCase : List[Any] = inputs_dict["head_mask"] # first forward pass _lowerCAmelCase : Union[str, Any] = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _lowerCAmelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase : str = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _lowerCAmelCase : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase : Union[str, Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _lowerCAmelCase : Optional[int] = model(__A , attention_mask=__A )["last_hidden_state"] _lowerCAmelCase : Any = model(__A , attention_mask=__A , past_key_values=__A )[ "last_hidden_state" ] # select random slice _lowerCAmelCase : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCAmelCase : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1E-2 ) ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): _lowerCAmelCase : List[Any] = MaMaaaModel(config=__A ).to(__A ).eval() _lowerCAmelCase : Tuple = model(**__A ) _lowerCAmelCase : Tuple = outputs.encoder_last_hidden_state _lowerCAmelCase : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Dict = model.get_encoder() encoder.save_pretrained(__A ) _lowerCAmelCase : Tuple = MaMaaaEncoder.from_pretrained(__A ).to(__A ) _lowerCAmelCase : Optional[Any] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Tuple = model.get_decoder() decoder.save_pretrained(__A ) _lowerCAmelCase : Dict = MaMaaaDecoder.from_pretrained(__A ).to(__A ) _lowerCAmelCase : int = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A ( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,unittest.TestCase ): '''simple docstring''' a_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a_ = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a_ = True a_ = True a_ = False a_ = False def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : List[Any] = MaMaaaModelTester(self ) _lowerCAmelCase : Dict = ConfigTester(self , config_class=__A ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase , _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _lowerCAmelCase : str = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) _lowerCAmelCase , _lowerCAmelCase : int = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info["missing_keys"] , [] ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase , _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): _lowerCAmelCase : Optional[Any] = model_class(__A ) model.to(__A ) model.eval() _lowerCAmelCase : Any = copy.deepcopy(self._prepare_for_class(__A , __A ) ) if not self.is_encoder_decoder: _lowerCAmelCase : str = inputs["input_ids"] del inputs["input_ids"] else: _lowerCAmelCase : Dict = inputs["input_ids"] _lowerCAmelCase : int = inputs.get("decoder_input_ids" , __A ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __A ) _lowerCAmelCase : List[str] = model.get_input_embeddings() if not self.is_encoder_decoder: _lowerCAmelCase : str = wte(__A ) else: _lowerCAmelCase : Union[str, Any] = wte(__A ) _lowerCAmelCase : Optional[Any] = wte(__A ) with torch.no_grad(): model(**__A )[0] def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase : Dict = input_dict["input_ids"] _lowerCAmelCase : str = input_ids.ne(1 ).to(__A ) _lowerCAmelCase : int = MaMaaaForConditionalGeneration(__A ).eval().to(__A ) if torch_device == "cuda": model.half() model.generate(__A , attention_mask=__A ) model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 ) def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" return torch.tensor(__lowercase , dtype=torch.long , device=__lowercase ) snake_case = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : str = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A ) _lowerCAmelCase : Optional[int] = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) _lowerCAmelCase : Any = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) _lowerCAmelCase : List[str] = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model(**__A )[0] _lowerCAmelCase : Any = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , __A ) # change to expected output here _lowerCAmelCase : Tuple = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Dict = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) # change to intended input _lowerCAmelCase : str = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) _lowerCAmelCase : Dict = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) _lowerCAmelCase : List[Any] = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): _lowerCAmelCase : str = model(**__A )[0] _lowerCAmelCase : Any = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , __A ) # change to expected output here _lowerCAmelCase : Optional[Any] = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : str = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) _lowerCAmelCase : str = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) _lowerCAmelCase : Any = [ "L\'affaire NSA souligne l\'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams _lowerCAmelCase : str = tokenizer(__A , padding=__A , return_tensors="pt" ) _lowerCAmelCase : Any = model.generate( input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) _lowerCAmelCase : Tuple = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] _lowerCAmelCase : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A ) assert generated == expected_en
424
'''simple docstring''' def lowercase__ ( __lowercase : int , __lowercase : Tuple , __lowercase : Tuple ) -> Any: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__lowercase , n - 1 , __lowercase ) * a) % mod else: __UpperCamelCase = binary_exponentiation(__lowercase , n / 2 , __lowercase ) return (b * b) % mod # a prime number a__ : List[str] =701 a__ : Union[str, Any] =1_000_000_000 a__ : Union[str, Any] =10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
399
0
def _SCREAMING_SNAKE_CASE ( a , a , a ) -> Any: return round(float(moles / volume ) * nfactor ) def _SCREAMING_SNAKE_CASE ( a , a , a ) -> Optional[Any]: return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def _SCREAMING_SNAKE_CASE ( a , a , a ) -> List[Any]: return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def _SCREAMING_SNAKE_CASE ( a , a , a ) -> int: return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
719
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase : Tuple = { '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } UpperCAmelCase : int = logging.get_logger(__name__) class _A( snake_case__ ): """simple docstring""" UpperCamelCase : Union[str, Any] = '''mask2former''' UpperCamelCase : Any = ['''swin'''] UpperCamelCase : Union[str, Any] = {'''hidden_size''': '''hidden_dim'''} def __init__( self , _A = None , _A = 256 , _A = 256 , _A = 256 , _A = 1024 , _A = "relu" , _A = 6 , _A = 10 , _A = 8 , _A = 0.0 , _A = 2048 , _A = False , _A = False , _A = 4 , _A = 255 , _A = 100 , _A = 0.1 , _A = 2.0 , _A = 5.0 , _A = 5.0 , _A = 12544 , _A = 3.0 , _A = 0.7_5 , _A = 0.0_2 , _A = 1.0 , _A = True , _A = [4, 8, 16, 32] , _A = None , **_A , ): if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __A : Optional[int] = CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_A , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_A , _A ): __A : Dict = backbone_config.pop('model_type' ) __A : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] __A : List[str] = config_class.from_dict(_A ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ F"""Supported model types: {",".join(self.backbones_supported )}""" ) __A : Optional[int] = backbone_config __A : Optional[Any] = feature_size __A : Any = mask_feature_size __A : Optional[Any] = hidden_dim __A : Union[str, Any] = encoder_feedforward_dim __A : Optional[Any] = activation_function __A : List[Any] = encoder_layers __A : Union[str, Any] = decoder_layers __A : Dict = num_attention_heads __A : Tuple = dropout __A : Dict = dim_feedforward __A : Tuple = pre_norm __A : Dict = enforce_input_projection __A : Optional[int] = common_stride __A : Optional[Any] = ignore_value __A : str = num_queries __A : List[Any] = no_object_weight __A : List[str] = class_weight __A : List[Any] = mask_weight __A : List[Any] = dice_weight __A : Tuple = train_num_points __A : Optional[Any] = oversample_ratio __A : Union[str, Any] = importance_sample_ratio __A : Union[str, Any] = init_std __A : int = init_xavier_std __A : Union[str, Any] = use_auxiliary_loss __A : Union[str, Any] = feature_strides __A : List[Any] = output_auxiliary_logits __A : Optional[Any] = decoder_layers super().__init__(**_A ) @classmethod def UpperCAmelCase_ ( cls , _A , **_A ): return cls( backbone_config=_A , **_A , ) def UpperCAmelCase_ ( self ): __A : Union[str, Any] = copy.deepcopy(self.__dict__ ) __A : List[Any] = self.backbone_config.to_dict() __A : Union[str, Any] = self.__class__.model_type return output
77
0
from __future__ import annotations from typing import Any class lowercase : '''simple docstring''' def __init__( self : Optional[int] , snake_case : int , snake_case : int , snake_case : float = 0 ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = row, column SCREAMING_SNAKE_CASE : List[Any] = [[default_value for c in range(snake_case )] for r in range(snake_case )] def __str__( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier SCREAMING_SNAKE_CASE : int = 0 for row_vector in self.array: for obj in row_vector: SCREAMING_SNAKE_CASE : Union[str, Any] = max(snake_case , len(str(snake_case ) ) ) SCREAMING_SNAKE_CASE : List[Any] = f'''%{max_element_length}s''' # Make string and return def single_line(snake_case : list[float] ) -> str: nonlocal string_format_identifier SCREAMING_SNAKE_CASE : Tuple = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(snake_case ) for row_vector in self.array ) return s def __repr__( self : List[str] ): '''simple docstring''' return str(self ) def lowerCamelCase_ ( self : List[str] , snake_case : tuple[int, int] ): '''simple docstring''' if not (isinstance(snake_case , (list, tuple) ) and len(snake_case ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : List[Any] , snake_case : tuple[int, int] ): '''simple docstring''' assert self.validate_indicies(snake_case ) return self.array[loc[0]][loc[1]] def __setitem__( self : List[str] , snake_case : tuple[int, int] , snake_case : float ): '''simple docstring''' assert self.validate_indicies(snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = value def __add__( self : List[str] , snake_case : Matrix ): '''simple docstring''' assert isinstance(snake_case , snake_case ) assert self.row == another.row and self.column == another.column # Add SCREAMING_SNAKE_CASE : str = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE : Any = self[r, c] + another[r, c] return result def __neg__( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE : Union[str, Any] = -self[r, c] return result def __sub__( self : Optional[int] , snake_case : Matrix ): '''simple docstring''' return self + (-another) def __mul__( self : int , snake_case : int | float | Matrix ): '''simple docstring''' if isinstance(snake_case , (int, float) ): # Scalar multiplication SCREAMING_SNAKE_CASE : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE : Dict = self[r, c] * another return result elif isinstance(snake_case , snake_case ): # Matrix multiplication assert self.column == another.row SCREAMING_SNAKE_CASE : Tuple = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: SCREAMING_SNAKE_CASE : Tuple = f'''Unsupported type given for another ({type(snake_case )})''' raise TypeError(snake_case ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE : List[str] = self[r, c] return result def lowerCamelCase_ ( self : List[Any] , snake_case : Matrix , snake_case : Matrix ): '''simple docstring''' assert isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate SCREAMING_SNAKE_CASE : Optional[Any] = v.transpose() SCREAMING_SNAKE_CASE : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def __a ( ) -> None: # a^(-1) SCREAMING_SNAKE_CASE : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): SCREAMING_SNAKE_CASE : Any = 1 print(F'''a^(-1) is {ainv}''' ) # u, v SCREAMING_SNAKE_CASE : Dict = Matrix(3 , 1 , 0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 1, 2, -3 SCREAMING_SNAKE_CASE : Optional[Any] = Matrix(3 , 1 , 0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(__lowerCAmelCase , __lowerCAmelCase )}''' ) def __a ( ) -> None: import doctest doctest.testmod() testa()
352
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _lowerCamelCase : Any = False class lowercase ( unittest.TestCase): '''simple docstring''' pass @nightly @require_torch_gpu class lowercase ( unittest.TestCase): '''simple docstring''' def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) SCREAMING_SNAKE_CASE : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.dual_guided( prompt='first prompt' , image=snake_case , text_to_image_strength=0.75 , generator=snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case ) SCREAMING_SNAKE_CASE : Any = VersatileDiffusionPipeline.from_pretrained(snake_case , torch_dtype=torch.floataa ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) SCREAMING_SNAKE_CASE : List[str] = generator.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.dual_guided( prompt='first prompt' , image=snake_case , text_to_image_strength=0.75 , generator=snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = 'cyberpunk 2077' SCREAMING_SNAKE_CASE : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe.dual_guided( prompt=snake_case , image=snake_case , text_to_image_strength=0.75 , generator=snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images SCREAMING_SNAKE_CASE : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 SCREAMING_SNAKE_CASE : Any = 'A painting of a squirrel eating a burger ' SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe.text_to_image( prompt=snake_case , generator=snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images SCREAMING_SNAKE_CASE : Dict = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 SCREAMING_SNAKE_CASE : Optional[Any] = pipe.image_variation(snake_case , generator=snake_case , output_type='numpy' ).images SCREAMING_SNAKE_CASE : Optional[int] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
352
1
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=0 ): # Format the message. if name is None: A_ : Optional[Any] = None else: A_ : Dict = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" A_ : Any = fmt.format(snake_case__ ) # Print and recurse (if needed). if isinstance(snake_case__ , snake_case__ ): if msg is not None: print(snake_case__ ) for k in val.keys(): recursive_print(snake_case__ , val[k] , spaces + 2 ) elif isinstance(snake_case__ , torch.Tensor ): print(snake_case__ , """:""" , val.size() ) else: print(snake_case__ , """:""" , snake_case__ ) def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. A_ : Optional[Any] = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] A_ : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] A_ : List[Any] = param.view(*snake_case__ ) A_ : str = param.transpose(0 , 2 ) A_ : Dict = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] A_ : str = (num_heads, num_splits, hidden_size) + input_shape[1:] A_ : Dict = param.view(*snake_case__ ) A_ : Any = param.transpose(0 , 1 ).contiguous() A_ : List[Any] = param.view(*snake_case__ ) return param def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ ): # The converted output model. A_ : List[Any] = {} # old versions did not store training args A_ : Optional[Any] = input_state_dict.get("""args""" , snake_case__ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) A_ : Any = ds_args.padded_vocab_size A_ : Tuple = ds_args.max_position_embeddings A_ : Union[str, Any] = ds_args.hidden_size A_ : List[Any] = ds_args.num_layers A_ : Dict = ds_args.num_attention_heads A_ : List[Any] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. A_ : Optional[Any] = config.n_head # The hidden_size per head. A_ : List[str] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): A_ : Any = input_state_dict["""checkpoint_version"""] else: A_ : List[Any] = 0.0 # The model. A_ : Tuple = input_state_dict["""model"""] # The language model. A_ : List[str] = model["""language_model"""] # The embeddings. A_ : Dict = lm["""embedding"""] # The word embeddings. A_ : Optional[int] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. A_ : int = word_embeddings[: config.vocab_size, :] A_ : str = word_embeddings # The position embeddings. A_ : List[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] A_ : str = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"""pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match""" ) # Store the position embeddings. A_ : Optional[int] = pos_embeddings # The transformer. A_ : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. A_ : int = re.compile(R"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. A_ : Optional[int] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. A_ : Any = layer_re.match(snake_case__ ) # Stop if that's not a layer if m is None: break # The index of the layer. A_ : str = int(m.group(1 ) ) # The name of the operation. A_ : Optional[Any] = m.group(2 ) # Is it a weight or a bias? A_ : Optional[int] = m.group(3 ) # The name of the layer. A_ : str = F"""transformer.h.{layer_idx}""" # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): A_ : Tuple = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" A_ : int = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. A_ : List[str] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , snake_case__ , snake_case__ ) A_ : Dict = causal_mask # Insert a "dummy" tensor for masked_bias. A_ : Dict = torch.tensor(-1E4 , dtype=torch.floataa ) A_ : str = masked_bias A_ : Dict = fix_query_key_value_ordering(snake_case__ , snake_case__ , 3 , snake_case__ , snake_case__ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. A_ : Dict = out_val.transpose(0 , 1 ).contiguous() # Store. A_ : Optional[Any] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": A_ : Union[str, Any] = fix_query_key_value_ordering(snake_case__ , snake_case__ , 3 , snake_case__ , snake_case__ ) # Store. No change of shape. A_ : List[str] = out_val # Transpose the weights. elif weight_or_bias == "weight": A_ : Any = megatron_to_transformers[op_name] A_ : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": A_ : int = megatron_to_transformers[op_name] A_ : Dict = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. A_ : List[Any] = transformer["""final_layernorm.weight"""] A_ : Optional[Any] = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. A_ : Union[str, Any] = word_embeddings # It should be done! return output_state_dict def __UpperCamelCase ( ): # Create the argument parser. A_ : str = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=snake_case__ , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=snake_case__ , help="""An optional config json file describing the pre-trained model.""" , ) A_ : List[str] = parser.parse_args() # Extract the basename. A_ : int = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"""Extracting PyTorch state dictionary from {args.path_to_checkpoint}""" ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: A_ : Dict = torch.load(snake_case__ , map_location="""cpu""" ) else: A_ : Any = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) A_ : Dict = input_state_dict.get("""args""" , snake_case__ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: A_ : Union[str, Any] = """gelu_fast""" elif ds_args.openai_gelu: A_ : Tuple = """gelu_new""" else: A_ : int = """gelu""" else: # in the very early days this used to be "gelu_new" A_ : List[Any] = """gelu_new""" # Spell out all parameters in case the defaults change. A_ : Optional[Any] = GPTaConfig( vocab_size=50_257 , n_positions=1_024 , n_embd=1_024 , n_layer=24 , n_head=16 , n_inner=4_096 , activation_function=snake_case__ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=snake_case__ , summary_activation=snake_case__ , summary_proj_to_labels=snake_case__ , summary_first_dropout=0.1 , scale_attn_weights=snake_case__ , use_cache=snake_case__ , bos_token_id=50_256 , eos_token_id=50_256 , ) else: A_ : Tuple = GPTaConfig.from_json_file(args.config_file ) A_ : str = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) A_ : Optional[Any] = convert_megatron_checkpoint(snake_case__ , snake_case__ , snake_case__ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(snake_case__ , snake_case__ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: A_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": A_ : Optional[int] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": A_ : Tuple = ds_args.tokenizer_name_or_path else: raise ValueError(F"""Unrecognized tokenizer_type {tokenizer_type}""" ) else: A_ : List[Any] = """gpt2""" A_ : Dict = AutoTokenizer.from_pretrained(snake_case__ ) A_ : Optional[int] = type(snake_case__ ).__name__ A_ : Tuple = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(snake_case__ ) # Save tokenizer based on args print(F"""Adding {tokenizer_class} tokenizer files""" ) tokenizer.save_pretrained(snake_case__ ) # Store the state_dict to file. A_ : int = os.path.join(snake_case__ , """pytorch_model.bin""" ) print(F"""Saving checkpoint to \"{output_checkpoint_file}\"""" ) torch.save(snake_case__ , snake_case__ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
480
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE : """simple docstring""" @staticmethod def lowerCamelCase(*lowerCAmelCase_ , **lowerCAmelCase_ ): pass @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" _A : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : Union[str, Any] = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) A_ : Union[str, Any] = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : str = vqa_pipeline(lowerCAmelCase_ , top_k=1 ) self.assertEqual( lowerCAmelCase_ , [ [{"""score""": ANY(lowerCAmelCase_ ), """answer""": ANY(lowerCAmelCase_ )}], [{"""score""": ANY(lowerCAmelCase_ ), """answer""": ANY(lowerCAmelCase_ )}], ] , ) @require_torch def lowerCamelCase(self ): A_ : Tuple = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) A_ : Any = """./tests/fixtures/tests_samples/COCO/000000039769.png""" A_ : Any = """How many cats are there?""" A_ : Optional[int] = vqa_pipeline(image=lowerCAmelCase_ , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( lowerCAmelCase_ , [{"""score""": ANY(lowerCAmelCase_ ), """answer""": ANY(lowerCAmelCase_ )}, {"""score""": ANY(lowerCAmelCase_ ), """answer""": ANY(lowerCAmelCase_ )}] ) A_ : Any = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( lowerCAmelCase_ , [{"""score""": ANY(lowerCAmelCase_ ), """answer""": ANY(lowerCAmelCase_ )}, {"""score""": ANY(lowerCAmelCase_ ), """answer""": ANY(lowerCAmelCase_ )}] ) @slow @require_torch def lowerCamelCase(self ): A_ : int = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) A_ : Tuple = """./tests/fixtures/tests_samples/COCO/000000039769.png""" A_ : int = """How many cats are there?""" A_ : List[Any] = vqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) A_ : Any = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) A_ : Tuple = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [[{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def lowerCamelCase(self ): pass
480
1
'''simple docstring''' __magic_name__ = [ (1_000, 'M'), (900, 'CM'), (500, 'D'), (400, 'CD'), (100, 'C'), (90, 'XC'), (50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def lowerCamelCase ( lowerCamelCase : str): A_ : Union[str, Any] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000} A_ : Dict = 0 A_ : Union[str, Any] = 0 while place < len(lowerCamelCase): if (place + 1 < len(lowerCamelCase)) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowerCamelCase ( lowerCamelCase : int): A_ : Optional[int] = [] for arabic, roman in ROMAN: ((A_) , (A_)) : Optional[Any] = divmod(lowerCamelCase , lowerCamelCase) result.append(roman * factor) if number == 0: break return "".join(lowerCamelCase) if __name__ == "__main__": import doctest doctest.testmod()
665
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = { 'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'], 'tokenization_deberta': ['DebertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['DebertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'DebertaForMaskedLM', 'DebertaForQuestionAnswering', 'DebertaForSequenceClassification', 'DebertaForTokenClassification', 'DebertaModel', 'DebertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDebertaForMaskedLM', 'TFDebertaForQuestionAnswering', 'TFDebertaForSequenceClassification', 'TFDebertaForTokenClassification', 'TFDebertaModel', 'TFDebertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
665
1
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
672
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : Dict = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """yolos""" def __init__( self , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1e-12 , A_=[512, 864] , A_=16 , A_=3 , A_=True , A_=100 , A_=True , A_=False , A_=1 , A_=5 , A_=2 , A_=5 , A_=2 , A_=0.1 , **A_ , )-> Tuple: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = qkv_bias UpperCamelCase = num_detection_tokens UpperCamelCase = use_mid_position_embeddings UpperCamelCase = auxiliary_loss # Hungarian matcher UpperCamelCase = class_cost UpperCamelCase = bbox_cost UpperCamelCase = giou_cost # Loss coefficients UpperCamelCase = bbox_loss_coefficient UpperCamelCase = giou_loss_coefficient UpperCamelCase = eos_coefficient class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = version.parse("""1.11""") @property def UpperCAmelCase_ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCAmelCase_ ( self )-> float: '''simple docstring''' return 1e-4 @property def UpperCAmelCase_ ( self )-> int: '''simple docstring''' return 12
3
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self , __A , __A=7 , __A=3 , __A=30 , __A=400 , __A=True , __A=None , __A=True , __A=[0.5, 0.5, 0.5] , __A=[0.5, 0.5, 0.5] , __A=True , __A=1 / 255 , __A=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE_ : Any =size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} SCREAMING_SNAKE_CASE_ : Dict =parent SCREAMING_SNAKE_CASE_ : Optional[Any] =batch_size SCREAMING_SNAKE_CASE_ : List[Any] =num_channels SCREAMING_SNAKE_CASE_ : Optional[int] =min_resolution SCREAMING_SNAKE_CASE_ : str =max_resolution SCREAMING_SNAKE_CASE_ : int =do_resize SCREAMING_SNAKE_CASE_ : Optional[int] =size SCREAMING_SNAKE_CASE_ : str =do_normalize SCREAMING_SNAKE_CASE_ : Optional[int] =image_mean SCREAMING_SNAKE_CASE_ : Any =image_std SCREAMING_SNAKE_CASE_ : Optional[int] =do_rescale SCREAMING_SNAKE_CASE_ : Union[str, Any] =rescale_factor SCREAMING_SNAKE_CASE_ : str =do_pad def _snake_case ( self ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _snake_case ( self , __A , __A=False ) -> Any: if not batched: SCREAMING_SNAKE_CASE_ : str =image_inputs[0] if isinstance(__A , Image.Image ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] =image.size else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str =image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE_ : List[Any] =int(self.size['''shortest_edge'''] * h / w ) SCREAMING_SNAKE_CASE_ : Optional[int] =self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE_ : List[Any] =self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE_ : Dict =int(self.size['''shortest_edge'''] * w / h ) else: SCREAMING_SNAKE_CASE_ : str =self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE_ : str =self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE_ : Any =[] for image in image_inputs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE_ : str =max(__A , key=lambda __A : item[0] )[0] SCREAMING_SNAKE_CASE_ : List[Any] =max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ ( A , unittest.TestCase ): __lowerCamelCase = YolosImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Dict: SCREAMING_SNAKE_CASE_ : str =YolosImageProcessingTester(self ) @property def _snake_case ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , '''image_mean''' ) ) self.assertTrue(hasattr(__A , '''image_std''' ) ) self.assertTrue(hasattr(__A , '''do_normalize''' ) ) self.assertTrue(hasattr(__A , '''do_resize''' ) ) self.assertTrue(hasattr(__A , '''size''' ) ) def _snake_case ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ : str =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad , __A ) SCREAMING_SNAKE_CASE_ : Dict =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __A ) def _snake_case ( self ) -> List[str]: pass def _snake_case ( self ) -> int: # Initialize image_processing SCREAMING_SNAKE_CASE_ : str =self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : List[str] =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] =self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] =self.image_processor_tester.get_expected_values(__A , batched=__A ) SCREAMING_SNAKE_CASE_ : str =image_processing(__A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Optional[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE_ : Tuple =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : Dict =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] =self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ : Dict =image_processing(__A , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] =self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE_ : str =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : Dict =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : Any =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ : str =image_processing(__A , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] =self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> List[Any]: # Initialize image_processings SCREAMING_SNAKE_CASE_ : List[str] =self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE_ : str =self.image_processing_class(do_resize=__A , do_normalize=__A , do_rescale=__A ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : Dict =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE_ : List[Any] =image_processing_a.pad(__A , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =image_processing_a(__A , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def _snake_case ( self ) -> Any: # prepare image and target SCREAMING_SNAKE_CASE_ : Dict =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] =json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Dict ={'''image_id''': 39_769, '''annotations''': target} # encode them SCREAMING_SNAKE_CASE_ : Union[str, Any] =YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) SCREAMING_SNAKE_CASE_ : Dict =image_processing(images=__A , annotations=__A , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE_ : Dict =torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , __A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE_ : Tuple =torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __A ) ) # verify boxes SCREAMING_SNAKE_CASE_ : Dict =torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __A , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ : Union[str, Any] =torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __A ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ : Optional[int] =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __A ) ) # verify class_labels SCREAMING_SNAKE_CASE_ : str =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __A ) ) # verify orig_size SCREAMING_SNAKE_CASE_ : str =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __A ) ) # verify size SCREAMING_SNAKE_CASE_ : Dict =torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __A ) ) @slow def _snake_case ( self ) -> Tuple: # prepare image, target and masks_path SCREAMING_SNAKE_CASE_ : Union[str, Any] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] =json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Union[str, Any] ={'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} SCREAMING_SNAKE_CASE_ : Tuple =pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them SCREAMING_SNAKE_CASE_ : Optional[Any] =YolosImageProcessor(format='''coco_panoptic''' ) SCREAMING_SNAKE_CASE_ : Optional[int] =image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE_ : Optional[int] =torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , __A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE_ : List[Any] =torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __A ) ) # verify boxes SCREAMING_SNAKE_CASE_ : Tuple =torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __A ) SCREAMING_SNAKE_CASE_ : List[Any] =torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __A , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ : Any =torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __A ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ : Tuple =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __A ) ) # verify class_labels SCREAMING_SNAKE_CASE_ : Optional[Any] =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __A ) ) # verify masks SCREAMING_SNAKE_CASE_ : List[Any] =822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __A ) # verify orig_size SCREAMING_SNAKE_CASE_ : List[str] =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __A ) ) # verify size SCREAMING_SNAKE_CASE_ : Any =torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __A ) )
443
0
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 1_00 , )-> float: __UpperCAmelCase = x_start __UpperCAmelCase = fnc(_lowerCAmelCase ) __UpperCAmelCase = 0.0 for _ in range(_lowerCAmelCase ): # Approximates curve as a sequence of linear lines and sums their length __UpperCAmelCase = (x_end - x_start) / steps + xa __UpperCAmelCase = fnc(_lowerCAmelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step __UpperCAmelCase = xa __UpperCAmelCase = fxa return length if __name__ == "__main__": def _lowerCAmelCase ( _lowerCAmelCase )-> Any: return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") _A: Optional[int] = 10 while i <= 100_000: print(F"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
617
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( _lowerCAmelCase )-> int: if not nums: return 0 __UpperCAmelCase = nums[0] __UpperCAmelCase = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase = ( max_excluding + num, max(_lowerCAmelCase , _lowerCAmelCase ), ) return max(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
617
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Optional[Any] = 42 @flax_register_to_config class A__ ( nn.Module , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Union[str, Any] = 32 _UpperCAmelCase : Optional[int] = 4 _UpperCAmelCase : Any = 4 _UpperCAmelCase : Dict = ( """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""", """DownBlock2D""", ) _UpperCAmelCase : Any = ("""UpBlock2D""", """CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""") _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Tuple = (320, 640, 1280, 1280) _UpperCAmelCase : str = 2 _UpperCAmelCase : List[Any] = 8 _UpperCAmelCase : Dict = None _UpperCAmelCase : int = 1280 _UpperCAmelCase : Union[str, Any] = 0.0 _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : Optional[int] = jnp.floataa _UpperCAmelCase : int = True _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : str = False def UpperCamelCase__ ( self , __magic_name__ ): lowerCamelCase : Union[str, Any] = (1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase : Optional[Any] = jnp.zeros(_a , dtype=jnp.floataa ) lowerCamelCase : Union[str, Any] = jnp.ones((1,) , dtype=jnp.intaa ) lowerCamelCase : str = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCamelCase : Optional[Any] = jax.random.split(_a ) lowerCamelCase : Optional[Any] = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(_a , _a , _a , _a )["params"] def UpperCamelCase__ ( self ): lowerCamelCase : Dict = self.block_out_channels lowerCamelCase : str = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( """At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase : Optional[Any] = self.num_attention_heads or self.attention_head_dim # input lowerCamelCase : int = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCamelCase : Any = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCamelCase : List[str] = FlaxTimestepEmbedding(_a , dtype=self.dtype ) lowerCamelCase : Optional[int] = self.only_cross_attention if isinstance(_a , _a ): lowerCamelCase : str = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_a , _a ): lowerCamelCase : List[Any] = (num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase : Optional[Any] = [] lowerCamelCase : Dict = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase : Tuple = output_channel lowerCamelCase : List[Any] = block_out_channels[i] lowerCamelCase : Optional[int] = i == len(_a ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase : Tuple = FlaxCrossAttnDownBlockaD( in_channels=_a , out_channels=_a , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCamelCase : str = FlaxDownBlockaD( in_channels=_a , out_channels=_a , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_a ) lowerCamelCase : Union[str, Any] = down_blocks # mid lowerCamelCase : Optional[Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up lowerCamelCase : Dict = [] lowerCamelCase : List[str] = list(reversed(_a ) ) lowerCamelCase : Any = list(reversed(_a ) ) lowerCamelCase : Union[str, Any] = list(reversed(_a ) ) lowerCamelCase : Any = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): lowerCamelCase : Dict = output_channel lowerCamelCase : Optional[int] = reversed_block_out_channels[i] lowerCamelCase : Optional[int] = reversed_block_out_channels[min(i + 1 , len(_a ) - 1 )] lowerCamelCase : Dict = i == len(_a ) - 1 if up_block_type == "CrossAttnUpBlock2D": lowerCamelCase : Any = FlaxCrossAttnUpBlockaD( in_channels=_a , out_channels=_a , prev_output_channel=_a , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCamelCase : Dict = FlaxUpBlockaD( in_channels=_a , out_channels=_a , prev_output_channel=_a , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_a ) lowerCamelCase : int = output_channel lowerCamelCase : Dict = up_blocks # out lowerCamelCase : int = nn.GroupNorm(num_groups=3_2 , epsilon=1e-5 ) lowerCamelCase : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__ = True , __magic_name__ = False , ): if not isinstance(_a , jnp.ndarray ): lowerCamelCase : Any = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_a , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase : int = timesteps.astype(dtype=jnp.floataa ) lowerCamelCase : List[str] = jnp.expand_dims(_a , 0 ) lowerCamelCase : int = self.time_proj(_a ) lowerCamelCase : Union[str, Any] = self.time_embedding(_a ) # 2. pre-process lowerCamelCase : str = jnp.transpose(_a , (0, 2, 3, 1) ) lowerCamelCase : List[str] = self.conv_in(_a ) # 3. down lowerCamelCase : Tuple = (sample,) for down_block in self.down_blocks: if isinstance(_a , _a ): lowerCamelCase : Union[str, Any] = down_block(_a , _a , _a , deterministic=not train ) else: lowerCamelCase : str = down_block(_a , _a , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: lowerCamelCase : List[Any] = () for down_block_res_sample, down_block_additional_residual in zip( _a , _a ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) lowerCamelCase : Union[str, Any] = new_down_block_res_samples # 4. mid lowerCamelCase : List[Any] = self.mid_block(_a , _a , _a , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: lowerCamelCase : Union[str, Any] = down_block_res_samples[-(self.layers_per_block + 1) :] lowerCamelCase : Any = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_a , _a ): lowerCamelCase : List[str] = up_block( _a , temb=_a , encoder_hidden_states=_a , res_hidden_states_tuple=_a , deterministic=not train , ) else: lowerCamelCase : Optional[int] = up_block(_a , temb=_a , res_hidden_states_tuple=_a , deterministic=not train ) # 6. post-process lowerCamelCase : Optional[Any] = self.conv_norm_out(_a ) lowerCamelCase : Tuple = nn.silu(_a ) lowerCamelCase : Optional[Any] = self.conv_out(_a ) lowerCamelCase : List[str] = jnp.transpose(_a , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_a )
681
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """gpt_bigcode""" a_ = ["""past_key_values"""] a_ = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Optional[int] ,_a : Optional[int]=50257 ,_a : Dict=1024 ,_a : Union[str, Any]=768 ,_a : Union[str, Any]=12 ,_a : Union[str, Any]=12 ,_a : Tuple=None ,_a : int="gelu_pytorch_tanh" ,_a : Optional[Any]=0.1 ,_a : List[str]=0.1 ,_a : Union[str, Any]=0.1 ,_a : List[Any]=1e-5 ,_a : List[str]=0.02 ,_a : Any=True ,_a : Union[str, Any]=True ,_a : Tuple=50256 ,_a : Optional[int]=50256 ,_a : int=True ,_a : Optional[int]=True ,_a : Optional[int]=True ,**_a : List[str] ,): '''simple docstring''' A_ : Optional[Any] = vocab_size A_ : int = n_positions A_ : Union[str, Any] = n_embd A_ : int = n_layer A_ : Optional[int] = n_head A_ : Union[str, Any] = n_inner A_ : List[Any] = activation_function A_ : Dict = resid_pdrop A_ : int = embd_pdrop A_ : Optional[int] = attn_pdrop A_ : Union[str, Any] = layer_norm_epsilon A_ : int = initializer_range A_ : Union[str, Any] = scale_attn_weights A_ : List[str] = use_cache A_ : Tuple = attention_softmax_in_fpaa A_ : List[str] = scale_attention_softmax_in_fpaa A_ : Union[str, Any] = multi_query A_ : Any = bos_token_id A_ : Optional[int] = eos_token_id super().__init__(bos_token_id=_a ,eos_token_id=_a ,**_a )
665
0
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = """laion/clap-htsat-unfused""" UpperCamelCase_: List[str] = tempfile.mkdtemp() def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Optional[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Any ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Dict = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[str] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Optional[Any] = floats_list((3, 1000) ) UpperCamelCase_: List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: int = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.get_feature_extractor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Dict = """This is a test string""" UpperCamelCase_: Tuple = processor(text=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = self.get_feature_extractor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Tuple = processor.batch_decode(snake_case_ ) UpperCamelCase_: str = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = self.get_feature_extractor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
670
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : int = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class lowerCAmelCase ( __lowerCAmelCase): __lowercase : int = '''marian''' __lowercase : Any = ['''past_key_values'''] __lowercase : List[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , __SCREAMING_SNAKE_CASE=5_8101 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=1024 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=4096 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=4096 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=1024 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=5_8100 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=5_8100 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ) -> str: '''simple docstring''' __snake_case = vocab_size __snake_case = decoder_vocab_size or vocab_size __snake_case = max_position_embeddings __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = use_cache __snake_case = encoder_layers __snake_case = scale_embedding # scale factor will be sqrt(d_model) if True __snake_case = share_encoder_decoder_embeddings super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , is_encoder_decoder=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , forced_eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) class lowerCAmelCase ( __lowerCAmelCase): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __snake_case = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __snake_case = {0: '''batch'''} __snake_case = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __snake_case = {0: '''batch''', 1: '''decoder_sequence'''} __snake_case = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __snake_case = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __snake_case , __snake_case = self.num_layers for i in range(__SCREAMING_SNAKE_CASE ): __snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} __snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __snake_case = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __snake_case = super().outputs else: __snake_case = super(__SCREAMING_SNAKE_CASE , self ).outputs if self.use_past: __snake_case , __snake_case = self.num_layers for i in range(__SCREAMING_SNAKE_CASE ): __snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} __snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: '''simple docstring''' __snake_case = self._generate_dummy_inputs_for_encoder_and_decoder( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Generate decoder inputs __snake_case = seq_length if not self.use_past else 1 __snake_case = self._generate_dummy_inputs_for_encoder_and_decoder( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} __snake_case = dict(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __snake_case , __snake_case = common_inputs['''input_ids'''].shape __snake_case = common_inputs['''decoder_input_ids'''].shape[1] __snake_case , __snake_case = self.num_attention_heads __snake_case = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __snake_case = decoder_seq_length + 3 __snake_case = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __snake_case = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] , dim=1 ) __snake_case = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __snake_case , __snake_case = self.num_layers __snake_case = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) - min_num_layers __snake_case = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append( ( torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE ), ) ) # TODO: test this. __snake_case = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append((torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) ) return common_inputs def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: '''simple docstring''' __snake_case = self._generate_dummy_inputs_for_encoder_and_decoder( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __snake_case , __snake_case = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __snake_case = seqlen + 2 __snake_case , __snake_case = self.num_layers __snake_case , __snake_case = self.num_attention_heads __snake_case = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __snake_case = common_inputs['''attention_mask'''].dtype __snake_case = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) __snake_case = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(__SCREAMING_SNAKE_CASE ) ] return common_inputs def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: '''simple docstring''' __snake_case = compute_effective_axis_dimension( __SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __snake_case = tokenizer.num_special_tokens_to_add(__SCREAMING_SNAKE_CASE ) __snake_case = compute_effective_axis_dimension( __SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence __snake_case = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __snake_case = dict(tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) ) return common_inputs def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __snake_case = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) else: __snake_case = self._generate_dummy_inputs_for_causal_lm( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) return common_inputs def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __snake_case = super()._flatten_past_key_values_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: __snake_case = super(__SCREAMING_SNAKE_CASE , self )._flatten_past_key_values_( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @property def lowerCAmelCase ( self ) -> float: '''simple docstring''' return 1E-4
24
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , _A , _A = None , _A = None , _A = True , _A = None , _A = False , _A = None , _A = True , _A = "arrow" , **_A , ): '''simple docstring''' super().__init__( split=_A , features=_A , cache_dir=_A , keep_in_memory=_A , streaming=_A , **_A , ) UpperCamelCase : Optional[Any] = load_from_cache_file UpperCamelCase : List[str] = file_format UpperCamelCase : Optional[Any] = Spark( df=_A , features=_A , cache_dir=_A , working_dir=_A , **_A , ) def _a ( self ): '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) UpperCamelCase : Dict = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_A , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
102
0
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : float ) -> float: '''simple docstring''' if edge <= 0 or not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError('Length must be a positive.' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __UpperCAmelCase ( UpperCAmelCase_ : float ) -> float: '''simple docstring''' if edge <= 0 or not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError('Length must be a positive.' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
192
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _a : Any= {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any]= ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple= ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _a : str= _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
192
1
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
196
"""simple docstring""" def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): SCREAMING_SNAKE_CASE__ = n - k # Calculate C(n,k) for i in range(snake_case__ ): result *= n - i result //= i + 1 return result def A ( snake_case__ ): '''simple docstring''' return binomial_coefficient(2 * node_count , snake_case__ ) // (node_count + 1) def A ( snake_case__ ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) SCREAMING_SNAKE_CASE__ = 1 for i in range(1 , n + 1 ): result *= i return result def A ( snake_case__ ): '''simple docstring''' return catalan_number(snake_case__ ) * factorial(snake_case__ ) if __name__ == "__main__": A_ : Optional[int] = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( F'Given {node_count} nodes, there are {binary_tree_count(node_count)} ' F'binary trees and {catalan_number(node_count)} binary search trees.' )
196
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _a ( ): _SCREAMING_SNAKE_CASE = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=_SCREAMING_SNAKE_CASE , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=_SCREAMING_SNAKE_CASE , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=_SCREAMING_SNAKE_CASE ) return parser.parse_args() def _a ( ): _SCREAMING_SNAKE_CASE = parse_args() # Import training_script as a module. _SCREAMING_SNAKE_CASE = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _SCREAMING_SNAKE_CASE = script_fpath.stem _SCREAMING_SNAKE_CASE = importlib.import_module(_SCREAMING_SNAKE_CASE ) # Patch sys.argv _SCREAMING_SNAKE_CASE = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
493
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case : int = { """configuration_longformer""": [ """LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongformerConfig""", """LongformerOnnxConfig""", ], """tokenization_longformer""": ["""LongformerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = ["""LongformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = [ """LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongformerForMaskedLM""", """LongformerForMultipleChoice""", """LongformerForQuestionAnswering""", """LongformerForSequenceClassification""", """LongformerForTokenClassification""", """LongformerModel""", """LongformerPreTrainedModel""", """LongformerSelfAttention""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Tuple = [ """TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLongformerForMaskedLM""", """TFLongformerForMultipleChoice""", """TFLongformerForQuestionAnswering""", """TFLongformerForSequenceClassification""", """TFLongformerForTokenClassification""", """TFLongformerModel""", """TFLongformerPreTrainedModel""", """TFLongformerSelfAttention""", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys _snake_case : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
493
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] , _lowerCamelCase : List[str] , _lowerCamelCase : int=7 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : Union[str, Any]=10 , _lowerCamelCase : Any=18 , _lowerCamelCase : Union[str, Any]=30 , _lowerCamelCase : Any=4_00 , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : List[str]=None , _lowerCamelCase : str=True , _lowerCamelCase : List[Any]=[0.5, 0.5, 0.5] , _lowerCamelCase : List[str]=[0.5, 0.5, 0.5] , _lowerCamelCase : List[Any]=None , ) -> Any: __magic_name__ = size if size is not None else {"shortest_edge": 18} __magic_name__ = crop_size if crop_size is not None else {"height": 18, "width": 18} __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = num_frames __magic_name__ = image_size __magic_name__ = min_resolution __magic_name__ = max_resolution __magic_name__ = do_resize __magic_name__ = size __magic_name__ = do_normalize __magic_name__ = image_mean __magic_name__ = image_std __magic_name__ = crop_size def __A ( self : int ) -> Optional[int]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase_ ( A , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = VivitImageProcessor if is_vision_available() else None def __A ( self : Optional[Any] ) -> int: __magic_name__ = VivitImageProcessingTester(self ) @property def __A ( self : Union[str, Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : Any ) -> List[str]: __magic_name__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(_lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(_lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(_lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(_lowerCamelCase , "do_center_crop" ) ) self.assertTrue(hasattr(_lowerCamelCase , "size" ) ) def __A ( self : List[Any] ) -> Optional[Any]: __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def __A ( self : List[Any] ) -> List[str]: # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos __magic_name__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for video in video_inputs: self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input __magic_name__ = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __magic_name__ = image_processing(_lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __A ( self : Union[str, Any] ) -> Tuple: # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for video in video_inputs: self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input __magic_name__ = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __magic_name__ = image_processing(_lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __A ( self : Optional[Any] ) -> Dict: # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for video in video_inputs: self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input __magic_name__ = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __magic_name__ = image_processing(_lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
664
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): __magic_name__ : str ={ 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: __magic_name__ : Tuple ={ 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def __snake_case ( lowerCamelCase_ : Optional[Any] ): '''simple docstring''' __magic_name__ = (images / 2 + 0.5).clamp(0 , 1 ) __magic_name__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __magic_name__ = numpy_to_pil(lowerCamelCase_ ) return images def __snake_case ( lowerCamelCase_ : Optional[Any] ): '''simple docstring''' if images.ndim == 3: __magic_name__ = images[None, ...] __magic_name__ = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __magic_name__ = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: __magic_name__ = [Image.fromarray(lowerCamelCase_ ) for image in images] return pil_images
664
1
'''simple docstring''' from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowerCamelCase (a__ ): _lowercase : int = """Salesforce/blip-image-captioning-base""" _lowercase : Union[str, Any] = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) _lowercase : List[Any] = """image_captioner""" _lowercase : List[Any] = AutoModelForVisionaSeq _lowercase : Tuple = ["""image"""] _lowercase : str = ["""text"""] def __init__( self , *lowercase__ , **lowercase__ ) -> Tuple: """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*__UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[Any]: """simple docstring""" return self.pre_processor(images=__UpperCamelCase , return_tensors='''pt''' ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[Any]: """simple docstring""" return self.model.generate(**__UpperCamelCase ) def UpperCAmelCase_ ( self , lowercase__ ) -> int: """simple docstring""" return self.pre_processor.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase )[0].strip()
706
'''simple docstring''' from __future__ import annotations def _a ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ): """simple docstring""" if start is None: _snake_case : Optional[Any] = 0 if end is None: _snake_case : Any = len(lowerCAmelCase_ ) - 1 if start >= end: return _snake_case : Optional[Any] = (start + end) // 2 slowsort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) slowsort(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ ) if sequence[end] < sequence[mid]: _snake_case , _snake_case : int = sequence[mid], sequence[end] slowsort(lowerCAmelCase_ , lowerCAmelCase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __UpperCAmelCase : Optional[int] = logging.getLogger(__name__) __UpperCAmelCase : str = tf.data.AUTOTUNE def A ( ): """simple docstring""" snake_case_ :Optional[Any] = argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config", type=_A, default="roberta-base", help="The model config to use. Note that we don't copy the model's weights, only the config!", ) parser.add_argument( "--tokenizer", type=_A, default="unigram-tokenizer-wikitext", help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.", ) parser.add_argument( "--per_replica_batch_size", type=_A, default=8, help="Batch size per TPU core.", ) parser.add_argument( "--no_tpu", action="store_true", help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.", ) parser.add_argument( "--tpu_name", type=_A, help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.", default="local", ) parser.add_argument( "--tpu_zone", type=_A, help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.", ) parser.add_argument( "--gcp_project", type=_A, help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16", action="store_true", help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.", ) parser.add_argument( "--train_dataset", type=_A, help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket.", ) parser.add_argument( "--shuffle_buffer_size", type=_A, default=2**18, help="Size of the shuffle buffer (in samples)", ) parser.add_argument( "--eval_dataset", type=_A, help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket.", ) parser.add_argument( "--num_epochs", type=_A, default=1, help="Number of epochs to train for.", ) parser.add_argument( "--learning_rate", type=_A, default=1e-4, help="Learning rate to use for training.", ) parser.add_argument( "--weight_decay_rate", type=_A, default=1e-3, help="Weight decay rate to use for training.", ) parser.add_argument( "--max_length", type=_A, default=512, help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py", ) parser.add_argument( "--mlm_probability", type=_A, default=0.15, help="Fraction of tokens to mask during training.", ) parser.add_argument("--output_dir", type=_A, required=_A, help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id", type=_A, help="Model ID to upload to on the Hugging Face Hub." ) snake_case_ :Any = parser.parse_args() return args def A ( _A ): """simple docstring""" try: if args.tpu_name: snake_case_ :List[Any] = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name, zone=args.tpu_zone, project=args.gcp_project ) else: snake_case_ :Any = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(_A ) tf.tpu.experimental.initialize_tpu_system(_A ) return tpu def A ( _A ): """simple docstring""" snake_case_ :Optional[int] = 0 for file in file_list: snake_case_ :Dict = file.split("/" )[-1] snake_case_ :str = re.search(R"-\d+-(\d+)\.tfrecord", _A ).group(1 ) snake_case_ :List[Any] = int(_A ) num_samples += sample_count return num_samples def A ( _A, _A, _A, _A, _A, _A=None ): """simple docstring""" snake_case_ :Optional[Any] = count_samples(_A ) snake_case_ :Dict = tf.data.Dataset.from_tensor_slices(_A ) if shuffle: snake_case_ :Optional[Any] = dataset.shuffle(len(_A ) ) snake_case_ :int = tf.data.TFRecordDataset(_A, num_parallel_reads=_A ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here snake_case_ :Tuple = dataset.apply(tf.data.experimental.assert_cardinality(_A ) ) snake_case_ :Optional[int] = dataset.map(_A, num_parallel_calls=_A ) if shuffle: assert shuffle_buffer_size is not None snake_case_ :Optional[int] = dataset.shuffle(args.shuffle_buffer_size ) snake_case_ :Optional[Any] = dataset.batch(_A, drop_remainder=_A ) snake_case_ :Union[str, Any] = dataset.map(_A, num_parallel_calls=_A ) snake_case_ :int = dataset.prefetch(_A ) return dataset def A ( _A ): """simple docstring""" if not args.no_tpu: snake_case_ :Optional[Any] = initialize_tpu(_A ) snake_case_ :int = tf.distribute.TPUStrategy(_A ) else: snake_case_ :Dict = tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) snake_case_ :List[Any] = AutoTokenizer.from_pretrained(args.tokenizer ) snake_case_ :Optional[Any] = AutoConfig.from_pretrained(args.pretrained_model_config ) snake_case_ :Dict = tokenizer.vocab_size snake_case_ :Dict = tf.io.gfile.glob(os.path.join(args.train_dataset, "*.tfrecord" ) ) if not training_records: raise ValueError(F'''No .tfrecord files found in {args.train_dataset}.''' ) snake_case_ :List[str] = tf.io.gfile.glob(os.path.join(args.eval_dataset, "*.tfrecord" ) ) if not eval_records: raise ValueError(F'''No .tfrecord files found in {args.eval_dataset}.''' ) snake_case_ :Tuple = count_samples(_A ) snake_case_ :Any = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) snake_case_ :Union[str, Any] = steps_per_epoch * args.num_epochs with strategy.scope(): snake_case_ :List[str] = TFAutoModelForMaskedLM.from_config(_A ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built snake_case_ , snake_case_ :Tuple = create_optimizer( num_train_steps=_A, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=_A, metrics=["accuracy"] ) def decode_fn(_A ): snake_case_ :Optional[Any] = { "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), } return tf.io.parse_single_example(_A, _A ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. snake_case_ :Dict = DataCollatorForLanguageModeling( tokenizer=_A, mlm_probability=args.mlm_probability, mlm=_A, return_tensors="tf" ) def mask_with_collator(_A ): # TF really needs an isin() function snake_case_ :Any = ( ~tf.cast(batch["attention_mask"], tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) snake_case_ , snake_case_ :Union[str, Any] = data_collator.tf_mask_tokens( batch["input_ids"], vocab_size=len(_A ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=_A, ) return batch snake_case_ :int = args.per_replica_batch_size * strategy.num_replicas_in_sync snake_case_ :List[str] = prepare_dataset( _A, decode_fn=_A, mask_fn=_A, batch_size=_A, shuffle=_A, shuffle_buffer_size=args.shuffle_buffer_size, ) snake_case_ :Optional[Any] = prepare_dataset( _A, decode_fn=_A, mask_fn=_A, batch_size=_A, shuffle=_A, ) snake_case_ :str = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=_A ) ) model.fit( _A, validation_data=_A, epochs=args.num_epochs, callbacks=_A, ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __UpperCAmelCase : Union[str, Any] = parse_args() main(args)
584
"""simple docstring""" class __lowerCAmelCase : '''simple docstring''' def __init__( self ): """simple docstring""" snake_case_ :Optional[Any] = 0 snake_case_ :Dict = 0 snake_case_ :Any = {} def _a ( self , a ): """simple docstring""" if vertex not in self.adjacency: snake_case_ :str = {} self.num_vertices += 1 def _a ( self , a , a , a ): """simple docstring""" self.add_vertex(a ) self.add_vertex(a ) if head == tail: return snake_case_ :List[Any] = weight snake_case_ :str = weight def _a ( self ): """simple docstring""" snake_case_ :Optional[int] = self.get_edges() for edge in edges: snake_case_ , snake_case_ , snake_case_ :Any = edge edges.remove((tail, head, weight) ) for i in range(len(a ) ): snake_case_ :Dict = list(edges[i] ) edges.sort(key=lambda a : e[2] ) for i in range(len(a ) - 1 ): if edges[i][2] >= edges[i + 1][2]: snake_case_ :Tuple = edges[i][2] + 1 for edge in edges: snake_case_ , snake_case_ , snake_case_ :Any = edge snake_case_ :Dict = weight snake_case_ :int = weight def __str__( self ): """simple docstring""" snake_case_ :List[Any] = "" for tail in self.adjacency: for head in self.adjacency[tail]: snake_case_ :List[Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def _a ( self ): """simple docstring""" snake_case_ :int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def _a ( self ): """simple docstring""" return self.adjacency.keys() @staticmethod def _a ( a=None , a=None ): """simple docstring""" snake_case_ :Optional[Any] = Graph() if vertices is None: snake_case_ :int = [] if edges is None: snake_case_ :Any = [] for vertex in vertices: g.add_vertex(a ) for edge in edges: g.add_edge(*a ) return g class __lowerCAmelCase : '''simple docstring''' def __init__( self ): """simple docstring""" snake_case_ :Dict = {} snake_case_ :Optional[int] = {} def __len__( self ): """simple docstring""" return len(self.parent ) def _a ( self , a ): """simple docstring""" if item in self.parent: return self.find(a ) snake_case_ :Optional[Any] = item snake_case_ :str = 0 return item def _a ( self , a ): """simple docstring""" if item not in self.parent: return self.make_set(a ) if item != self.parent[item]: snake_case_ :Optional[int] = self.find(self.parent[item] ) return self.parent[item] def _a ( self , a , a ): """simple docstring""" snake_case_ :Any = self.find(a ) snake_case_ :str = self.find(a ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: snake_case_ :Union[str, Any] = roota return roota if self.rank[roota] < self.rank[roota]: snake_case_ :Any = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 snake_case_ :Union[str, Any] = roota return roota return None @staticmethod def _a ( a ): """simple docstring""" snake_case_ :Any = graph.num_vertices snake_case_ :Any = Graph.UnionFind() snake_case_ :Optional[Any] = [] while num_components > 1: snake_case_ :List[Any] = {} for vertex in graph.get_vertices(): snake_case_ :str = -1 snake_case_ :Tuple = graph.get_edges() for edge in edges: snake_case_ , snake_case_ , snake_case_ :Optional[int] = edge edges.remove((tail, head, weight) ) for edge in edges: snake_case_ , snake_case_ , snake_case_ :Optional[int] = edge snake_case_ :List[Any] = union_find.find(a ) snake_case_ :Union[str, Any] = union_find.find(a ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: snake_case_ :Optional[int] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: snake_case_ :Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: snake_case_ , snake_case_ , snake_case_ :List[Any] = cheap_edge[vertex] if union_find.find(a ) != union_find.find(a ): union_find.union(a , a ) mst_edges.append(cheap_edge[vertex] ) snake_case_ :List[Any] = num_components - 1 snake_case_ :Any = Graph.build(edges=a ) return mst
584
1
"""simple docstring""" import numpy # List of input, output pairs __lowerCamelCase :int = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) __lowerCamelCase :int = (((515, 22, 13), 555), ((61, 35, 49), 150)) __lowerCamelCase :List[Any] = [2, 4, 1, 5] __lowerCamelCase :Optional[Any] = len(train_data) __lowerCamelCase :Tuple = 0.009 def snake_case ( UpperCamelCase__ : int , UpperCamelCase__ : int="train" ) -> Any: return calculate_hypothesis_value(__snake_case , __snake_case ) - output( __snake_case , __snake_case ) def snake_case ( UpperCamelCase__ : int ) -> Tuple: lowerCamelCase : Union[str, Any] = 0 for i in range(len(__snake_case ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def snake_case ( UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ) -> str: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def snake_case ( UpperCamelCase__ : str , UpperCamelCase__ : List[str] ) -> Union[str, Any]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def snake_case ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any]=m ) -> Tuple: lowerCamelCase : Union[str, Any] = 0 for i in range(__snake_case ): if index == -1: summation_value += _error(__snake_case ) else: summation_value += _error(__snake_case ) * train_data[i][0][index] return summation_value def snake_case ( UpperCamelCase__ : List[str] ) -> Any: lowerCamelCase : str = summation_of_cost_derivative(__snake_case , __snake_case ) / m return cost_derivative_value def snake_case ( ) -> Union[str, Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase : Dict = 0.0_0_0_0_0_2 lowerCamelCase : List[str] = 0 lowerCamelCase : Tuple = 0 while True: j += 1 lowerCamelCase : str = [0, 0, 0, 0] for i in range(0 , len(__snake_case ) ): lowerCamelCase : Any = get_cost_derivative(i - 1 ) lowerCamelCase : str = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __snake_case , __snake_case , atol=__snake_case , rtol=__snake_case , ): break lowerCamelCase : List[str] = temp_parameter_vector print(("""Number of iterations:""", j) ) def snake_case ( ) -> Union[str, Any]: for i in range(len(__snake_case ) ): print(("""Actual output value:""", output(__snake_case , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(__snake_case , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
712
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCamelCase :Optional[Any] = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase :Union[str, Any] = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __lowerCamelCase :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
42
0
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() __magic_name__ : Dict = logging.get_logger(__name__) __magic_name__ : Union[str, Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } __magic_name__ : Optional[int] = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for attribute in key.split("." ): _snake_case = getattr(__snake_case , __snake_case ) if weight_type is not None: _snake_case = getattr(__snake_case , __snake_case ).shape else: _snake_case = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": _snake_case = value elif weight_type == "weight_g": _snake_case = value elif weight_type == "weight_v": _snake_case = value elif weight_type == "bias": _snake_case = value else: _snake_case = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = [] _snake_case = fairseq_model.state_dict() _snake_case = hf_model.feature_extractor for name, value in fairseq_dict.items(): _snake_case = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == "group" , ) _snake_case = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _snake_case = True if "*" in mapped_key: _snake_case = name.split(__snake_case )[0].split("." )[-2] _snake_case = mapped_key.replace("*" , __snake_case ) if "weight_g" in name: _snake_case = '''weight_g''' elif "weight_v" in name: _snake_case = '''weight_v''' elif "bias" in name and "relative_attention_bias" not in name: _snake_case = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _snake_case = '''weight''' else: _snake_case = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'''Unused weights: {unused_weights}''' ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = full_name.split("conv_layers." )[-1] _snake_case = name.split("." ) _snake_case = int(items[0] ) _snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _snake_case = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _snake_case = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _snake_case = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _snake_case = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' _snake_case = torch.load(__snake_case ) _snake_case = WavLMConfigOrig(checkpoint["cfg"] ) _snake_case = WavLMOrig(__snake_case ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: _snake_case = WavLMConfig.from_pretrained(__snake_case ) else: _snake_case = WavLMConfig() _snake_case = WavLMModel(__snake_case ) recursively_load_weights(__snake_case , __snake_case ) hf_wavlm.save_pretrained(__snake_case ) if __name__ == "__main__": __magic_name__ : Any = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") __magic_name__ : Optional[int] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
672
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCamelCase = logging.get_logger(__name__) def a ( __snake_case : Any, __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ :Any = b.T UpperCAmelCase_ :Tuple = np.sum(np.square(__snake_case ), axis=1 ) UpperCAmelCase_ :List[str] = np.sum(np.square(__snake_case ), axis=0 ) UpperCAmelCase_ :Optional[Any] = np.matmul(__snake_case, __snake_case ) UpperCAmelCase_ :str = aa[:, None] - 2 * ab + ba[None, :] return d def a ( __snake_case : Union[str, Any], __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ :List[str] = x.reshape(-1, 3 ) UpperCAmelCase_ :List[str] = squared_euclidean_distance(__snake_case, __snake_case ) return np.argmin(__snake_case, axis=1 ) class _snake_case ( A__ ): '''simple docstring''' UpperCamelCase__ =["""pixel_values"""] def __init__( self : Any , snake_case : Optional[Union[List[List[int]], np.ndarray]] = None , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = PILImageResampling.BILINEAR , snake_case : bool = True , snake_case : bool = True , **snake_case : Optional[Any] , ): super().__init__(**snake_case ) UpperCAmelCase_ :List[str] = size if size is not None else {'''height''': 256, '''width''': 256} UpperCAmelCase_ :Any = get_size_dict(snake_case ) UpperCAmelCase_ :str = np.array(snake_case ) if clusters is not None else None UpperCAmelCase_ :List[Any] = do_resize UpperCAmelCase_ :Optional[int] = size UpperCAmelCase_ :Union[str, Any] = resample UpperCAmelCase_ :Dict = do_normalize UpperCAmelCase_ :Optional[Any] = do_color_quantize def snake_case_ ( self : Any , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : PILImageResampling = PILImageResampling.BILINEAR , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Dict , ): UpperCAmelCase_ :Any = get_size_dict(snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( snake_case , size=(size['''height'''], size['''width''']) , resample=snake_case , data_format=snake_case , **snake_case ) def snake_case_ ( self : Tuple , snake_case : np.ndarray , snake_case : Optional[Union[str, ChannelDimension]] = None , ): UpperCAmelCase_ :Optional[int] = rescale(image=snake_case , scale=1 / 127.5 , data_format=snake_case ) UpperCAmelCase_ :str = image - 1 return image def snake_case_ ( self : Any , snake_case : ImageInput , snake_case : bool = None , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = None , snake_case : bool = None , snake_case : Optional[bool] = None , snake_case : Optional[Union[List[List[int]], np.ndarray]] = None , snake_case : Optional[Union[str, TensorType]] = None , snake_case : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **snake_case : List[Any] , ): UpperCAmelCase_ :Dict = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ :List[Any] = size if size is not None else self.size UpperCAmelCase_ :Optional[int] = get_size_dict(snake_case ) UpperCAmelCase_ :Optional[int] = resample if resample is not None else self.resample UpperCAmelCase_ :str = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ :str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize UpperCAmelCase_ :Optional[int] = clusters if clusters is not None else self.clusters UpperCAmelCase_ :Any = np.array(snake_case ) UpperCAmelCase_ :Tuple = make_list_of_images(snake_case ) if not valid_images(snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase_ :Optional[Any] = [to_numpy_array(snake_case ) for image in images] if do_resize: UpperCAmelCase_ :Optional[Any] = [self.resize(image=snake_case , size=snake_case , resample=snake_case ) for image in images] if do_normalize: UpperCAmelCase_ :Optional[Any] = [self.normalize(image=snake_case ) for image in images] if do_color_quantize: UpperCAmelCase_ :List[Any] = [to_channel_dimension_format(snake_case , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) UpperCAmelCase_ :str = np.array(snake_case ) UpperCAmelCase_ :Dict = color_quantize(snake_case , snake_case ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) UpperCAmelCase_ :Tuple = images.shape[0] UpperCAmelCase_ :int = images.reshape(snake_case , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. UpperCAmelCase_ :int = list(snake_case ) else: UpperCAmelCase_ :Any = [to_channel_dimension_format(snake_case , snake_case ) for image in images] UpperCAmelCase_ :Optional[Any] = {'''input_ids''': images} return BatchFeature(data=snake_case , tensor_type=snake_case )
608
0
"""simple docstring""" from __future__ import annotations A = [] def UpperCamelCase_ ( lowerCamelCase : list[list[int]] , lowerCamelCase : int , lowerCamelCase : int ) -> bool: """simple docstring""" for i in range(len(lowerCamelCase ) ): if board[row][i] == 1: return False for i in range(len(lowerCamelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(lowerCamelCase , -1 , -1 ) , range(lowerCamelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(lowerCamelCase , -1 , -1 ) , range(lowerCamelCase , len(lowerCamelCase ) ) ): if board[i][j] == 1: return False return True def UpperCamelCase_ ( lowerCamelCase : list[list[int]] , lowerCamelCase : int ) -> bool: """simple docstring""" if row >= len(lowerCamelCase ): solution.append(lowerCamelCase ) printboard(lowerCamelCase ) print() return True for i in range(len(lowerCamelCase ) ): if is_safe(lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Tuple = 1 solve(lowerCamelCase , row + 1 ) __magic_name__ : Tuple = 0 return False def UpperCamelCase_ ( lowerCamelCase : list[list[int]] ) -> None: """simple docstring""" for i in range(len(lowerCamelCase ) ): for j in range(len(lowerCamelCase ) ): if board[i][j] == 1: print('''Q''' , end=''' ''' ) else: print('''.''' , end=''' ''' ) print() # n=int(input("The no. of queens")) A = 8 A = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
714
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def UpperCamelCase_ ( lowerCamelCase : ndarray ) -> float: """simple docstring""" return np.dot(lowerCamelCase , lowerCamelCase ) class _UpperCamelCase : """simple docstring""" def __init__( self : Any , *, snake_case : float = np.inf , snake_case : str = "linear" , snake_case : float = 0.0 , ) -> None: '''simple docstring''' __magic_name__ : Optional[int] = regularization __magic_name__ : Dict = gamma if kernel == "linear": __magic_name__ : Dict = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) __magic_name__ : int = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __magic_name__ : List[str] = f"""Unknown kernel: {kernel}""" raise ValueError(snake_case ) def _UpperCAmelCase ( self : str , snake_case : ndarray , snake_case : ndarray ) -> float: '''simple docstring''' return np.dot(snake_case , snake_case ) def _UpperCAmelCase ( self : List[str] , snake_case : ndarray , snake_case : ndarray ) -> float: '''simple docstring''' return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def _UpperCAmelCase ( self : Tuple , snake_case : list[ndarray] , snake_case : ndarray ) -> None: '''simple docstring''' __magic_name__ : List[str] = observations __magic_name__ : List[Any] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((__magic_name__) , ) : Union[str, Any] = np.shape(snake_case ) def to_minimize(snake_case : ndarray ) -> float: __magic_name__ : Union[str, Any] = 0 ((__magic_name__) , ) : Tuple = np.shape(snake_case ) for i in range(snake_case ): for j in range(snake_case ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(snake_case ) __magic_name__ : Optional[Any] = LinearConstraint(snake_case , 0 , 0 ) __magic_name__ : Union[str, Any] = Bounds(0 , self.regularization ) __magic_name__ : Optional[Any] = minimize( snake_case , np.ones(snake_case ) , bounds=snake_case , constraints=[ly_contraint] ).x __magic_name__ : str = l_star # calculating mean offset of separation plane to points __magic_name__ : Any = 0 for i in range(snake_case ): for j in range(snake_case ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __magic_name__ : str = s / n def _UpperCAmelCase ( self : str , snake_case : ndarray ) -> int: '''simple docstring''' __magic_name__ : str = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , snake_case ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
147
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem _lowerCAmelCase: List[Any] = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 _lowerCAmelCase: List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def _lowercase( __a : str ): if "://" in dataset_path: a__ =dataset_path.split('://' )[1] return dataset_path def _lowercase( __a : fsspec.AbstractFileSystem ): if fs is not None and fs.protocol != "file": return True else: return False def _lowercase( __a : fsspec.AbstractFileSystem , __a : str , __a : str ): a__ =not is_remote_filesystem(__a ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__a ) , fs._strip_protocol(__a ) ) else: fs.mv(__a , __a , recursive=__a ) def _lowercase( ): if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: a__ =None a__ =None a__ =threading.Lock()
20
'''simple docstring''' from functools import reduce __lowerCamelCase = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def a__ ( UpperCamelCase_ : str = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda UpperCamelCase_, UpperCamelCase_ : str(int(UpperCamelCase_ ) * int(UpperCamelCase_ ) ), n[i : i + 13] ) ) for i in range(len(UpperCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
467
0
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase ( __lowerCAmelCase : tuple[int, int] , __lowerCAmelCase : int ) -> list[tuple[int, int]]: _UpperCamelCase , _UpperCamelCase : Any = position _UpperCamelCase : Dict = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _UpperCamelCase : Dict = [] for position in positions: _UpperCamelCase , _UpperCamelCase : List[str] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__lowerCAmelCase ) return permissible_positions def __lowerCAmelCase ( __lowerCAmelCase : list[list[int]] ) -> bool: return not any(elem == 0 for row in board for elem in row ) def __lowerCAmelCase ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : tuple[int, int] , __lowerCAmelCase : int ) -> bool: if is_complete(__lowerCAmelCase ): return True for position in get_valid_pos(__lowerCAmelCase , len(__lowerCAmelCase ) ): _UpperCamelCase , _UpperCamelCase : Optional[int] = position if board[y][x] == 0: _UpperCamelCase : str = curr + 1 if open_knight_tour_helper(__lowerCAmelCase , __lowerCAmelCase , curr + 1 ): return True _UpperCamelCase : Optional[Any] = 0 return False def __lowerCAmelCase ( __lowerCAmelCase : int ) -> list[list[int]]: _UpperCamelCase : Any = [[0 for i in range(__lowerCAmelCase )] for j in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): _UpperCamelCase : List[Any] = 1 if open_knight_tour_helper(__lowerCAmelCase , (i, j) , 1 ): return board _UpperCamelCase : List[str] = 0 _UpperCamelCase : Any = f"Open Kight Tour cannot be performed on a board of size {n}" raise ValueError(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
239
"""simple docstring""" import math class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self , lowerCAmelCase__=0 ): # a graph with Node 0,1,...,N-1 '''simple docstring''' _UpperCamelCase : Dict = n _UpperCamelCase : Tuple = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # adjacency matrix for weight _UpperCamelCase : Dict = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # dp[i][j] stores minimum distance from i to j def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : List[Any] = w def lowercase_ (self ): '''simple docstring''' for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCamelCase : int = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' return self.dp[u][v] if __name__ == "__main__": _SCREAMING_SNAKE_CASE = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
239
1
from math import sqrt def snake_case__ ( lowerCamelCase_ ): A : int = 0 for i in range(1 , int(sqrt(lowerCamelCase_ ) + 1 ) ): if n % i == 0 and i != sqrt(lowerCamelCase_ ): total += i + n // i elif i == sqrt(lowerCamelCase_ ): total += i return total - n def snake_case__ ( lowerCamelCase_ = 10000 ): A : Union[str, Any] = sum( i for i in range(1 , lowerCamelCase_ ) if sum_of_divisors(sum_of_divisors(lowerCamelCase_ ) ) == i and sum_of_divisors(lowerCamelCase_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
542
import string from math import logaa def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): A : List[str] = document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) A : Optional[int] = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): A : Dict = corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' A : Dict = corpus_without_punctuation.split('''\n''' ) A : List[Any] = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowerCamelCase_ )) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ): if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): return round(tf * idf , 3 )
542
1
def A_ ( lowercase_ , lowercase_ ) ->int: """simple docstring""" if len(lowercase_ ) != len(lowercase_ ): raise ValueError('String lengths must match!' ) SCREAMING_SNAKE_CASE = 0 for chara, chara in zip(lowercase_ , lowercase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
259
from math import factorial def A_ ( lowercase_ , lowercase_ ) ->int: """simple docstring""" if n < k or k < 0: raise ValueError('Please enter positive integers for n and k where n >= k' ) return factorial(lowercase_ ) // (factorial(lowercase_ ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", f'fifty-two card deck is: {combinations(5_2, 5)}\n', ) print( "If a class of 40 students must be arranged into groups of", f'4 for group projects, there are {combinations(4_0, 4)} ways', "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", f'are {combinations(1_0, 3)} ways that first, second and', "third place can be awarded.", )
259
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ : Dict = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ : str = { """gpt-neox-20b""": 20_48, } class lowerCamelCase_ ( lowerCamelCase ): a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ['''input_ids''', '''attention_mask'''] def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="<|endoftext|>" , __lowerCAmelCase="<|endoftext|>" , __lowerCAmelCase="<|endoftext|>" , __lowerCAmelCase=False , **__lowerCAmelCase , ): """simple docstring""" super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , unk_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , **__lowerCAmelCase , ) __magic_name__ :Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __lowerCAmelCase ) != add_prefix_space: __magic_name__ :List[str] = getattr(__lowerCAmelCase , pre_tok_state.pop('''type''' ) ) __magic_name__ :List[str] = add_prefix_space __magic_name__ :List[str] = pre_tok_class(**__lowerCAmelCase ) __magic_name__ :Any = add_prefix_space def A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" __magic_name__ :Optional[Any] = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase ) def A ( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[int] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) + [self.eos_token_id] ) if len(__lowerCAmelCase ) > self.model_max_length: __magic_name__ :Union[str, Any] = input_ids[-self.model_max_length :] return input_ids
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = prime_factors(lowercase__ ) if is_square_free(lowercase__ ): return -1 if len(lowercase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
696
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class lowerCAmelCase_ ( _a): lowerCamelCase_ = 'wav2vec2' def __init__( self : Tuple , __A : Optional[int]=32 , __A : List[str]=768 , __A : Tuple=12 , __A : str=12 , __A : Any=3072 , __A : Tuple="gelu" , __A : Tuple=0.1 , __A : Any=0.1 , __A : List[str]=0.1 , __A : List[Any]=0.0 , __A : str=0.0 , __A : str=0.1 , __A : List[Any]=0.1 , __A : Dict=0.02 , __A : int=1E-5 , __A : Dict="group" , __A : Tuple="gelu" , __A : Optional[int]=(512, 512, 512, 512, 512, 512, 512) , __A : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , __A : int=(10, 3, 3, 3, 3, 2, 2) , __A : List[Any]=False , __A : Tuple=128 , __A : Any=16 , __A : List[str]=False , __A : List[str]=True , __A : Dict=0.05 , __A : Union[str, Any]=10 , __A : int=2 , __A : List[Any]=0.0 , __A : List[Any]=10 , __A : List[str]=0 , __A : Optional[Any]=320 , __A : Optional[int]=2 , __A : List[Any]=0.1 , __A : int=100 , __A : int=256 , __A : str=256 , __A : Dict=0.1 , __A : Union[str, Any]="sum" , __A : Optional[int]=False , __A : Optional[int]=False , __A : Dict=256 , __A : List[Any]=(512, 512, 512, 512, 1500) , __A : int=(5, 3, 3, 1, 1) , __A : Optional[Any]=(1, 2, 3, 1, 1) , __A : Dict=512 , __A : Any=0 , __A : Union[str, Any]=1 , __A : List[str]=2 , __A : List[str]=False , __A : int=3 , __A : Dict=2 , __A : Optional[Any]=3 , __A : Optional[int]=None , __A : Tuple=None , **__A : Tuple , ) ->Dict: """simple docstring""" super().__init__(**__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase ) a__ :Any = hidden_size a__ :int = feat_extract_norm a__ :Optional[Any] = feat_extract_activation a__ :Union[str, Any] = list(__UpperCamelCase ) a__ :Tuple = list(__UpperCamelCase ) a__ :Any = list(__UpperCamelCase ) a__ :Dict = conv_bias a__ :str = num_conv_pos_embeddings a__ :Optional[Any] = num_conv_pos_embedding_groups a__ :str = len(self.conv_dim ) a__ :Tuple = num_hidden_layers a__ :List[str] = intermediate_size a__ :Any = hidden_act a__ :Union[str, Any] = num_attention_heads a__ :Any = hidden_dropout a__ :Tuple = attention_dropout a__ :Union[str, Any] = activation_dropout a__ :int = feat_proj_dropout a__ :List[str] = final_dropout a__ :int = layerdrop a__ :str = layer_norm_eps a__ :int = initializer_range a__ :Optional[int] = vocab_size a__ :Dict = do_stable_layer_norm a__ :Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a__ :Dict = apply_spec_augment a__ :Any = mask_time_prob a__ :Union[str, Any] = mask_time_length a__ :Tuple = mask_time_min_masks a__ :List[str] = mask_feature_prob a__ :Tuple = mask_feature_length a__ :Dict = mask_feature_min_masks # parameters for pretraining with codevector quantized representations a__ :List[str] = num_codevectors_per_group a__ :Optional[Any] = num_codevector_groups a__ :List[str] = contrastive_logits_temperature a__ :List[Any] = feat_quantizer_dropout a__ :Optional[Any] = num_negatives a__ :str = codevector_dim a__ :str = proj_codevector_dim a__ :List[Any] = diversity_loss_weight # ctc loss a__ :Dict = ctc_loss_reduction a__ :Dict = ctc_zero_infinity # adapter a__ :Optional[Any] = add_adapter a__ :List[str] = adapter_kernel_size a__ :int = adapter_stride a__ :str = num_adapter_layers a__ :List[Any] = output_hidden_size or hidden_size a__ :int = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. a__ :str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. a__ :Optional[int] = list(__UpperCamelCase ) a__ :Dict = list(__UpperCamelCase ) a__ :List[Any] = list(__UpperCamelCase ) a__ :Optional[Any] = xvector_output_dim @property def _snake_case ( self : Dict ) ->Optional[int]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
715
def lowerCamelCase__ ( a : int = 1_000_000 ) -> int: """simple docstring""" a__ :int = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , a ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
373
0
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ = TypeVar('''T''') def A__ (snake_case : Tuple ) -> List[Any]: return (position - 1) // 2 def A__ (snake_case : int ) -> List[str]: return (2 * position) + 1 def A__ (snake_case : Optional[Any] ) -> Union[str, Any]: return (2 * position) + 2 class SCREAMING_SNAKE_CASE_ ( Generic[T] ): """simple docstring""" def __init__( self : int ) -> Dict: """simple docstring""" __UpperCamelCase : list[tuple[T, int]] = [] __UpperCamelCase : dict[T, int] = {} __UpperCamelCase : int = 0 def __len__( self : Union[str, Any] ) -> Any: """simple docstring""" return self.elements def __repr__( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return str(self.heap ) def lowerCamelCase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return self.elements == 0 def lowerCamelCase__ ( self : str , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.heap.append((elem, weight) ) __UpperCamelCase : Union[str, Any] = self.elements self.elements += 1 self._bubble_up(lowerCAmelCase__ ) def lowerCamelCase__ ( self : Dict ) -> Tuple: """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __UpperCamelCase : Any = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __UpperCamelCase : List[Any] = self.heap[0] self._bubble_down(lowerCAmelCase__ ) return elem def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] ) -> Any: """simple docstring""" __UpperCamelCase : str = self.position_map[elem] __UpperCamelCase : List[str] = (elem, weight) if position > 0: __UpperCamelCase : Tuple = get_parent_position(lowerCAmelCase__ ) __UpperCamelCase : Optional[Any] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(lowerCAmelCase__ ) else: self._bubble_down(lowerCAmelCase__ ) else: self._bubble_down(lowerCAmelCase__ ) def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : str ) -> Optional[int]: """simple docstring""" __UpperCamelCase : int = self.position_map[elem] if curr_pos == 0: return None __UpperCamelCase : Optional[Any] = get_parent_position(lowerCAmelCase__ ) __UpperCamelCase : Tuple = self.heap[curr_pos] __UpperCamelCase : Dict = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(lowerCAmelCase__ , lowerCAmelCase__ ) return self._bubble_up(lowerCAmelCase__ ) return None def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" __UpperCamelCase : Optional[int] = self.position_map[elem] __UpperCamelCase : Any = self.heap[curr_pos] __UpperCamelCase : Tuple = get_child_left_position(lowerCAmelCase__ ) __UpperCamelCase : Any = get_child_right_position(lowerCAmelCase__ ) if child_left_position < self.elements and child_right_position < self.elements: __UpperCamelCase : List[Any] = self.heap[child_left_position] __UpperCamelCase : Union[str, Any] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(lowerCAmelCase__ , lowerCAmelCase__ ) return self._bubble_down(lowerCAmelCase__ ) if child_left_position < self.elements: __UpperCamelCase : Dict = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(lowerCAmelCase__ , lowerCAmelCase__ ) return self._bubble_down(lowerCAmelCase__ ) else: return None if child_right_position < self.elements: __UpperCamelCase : str = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(lowerCAmelCase__ , lowerCAmelCase__ ) return self._bubble_down(lowerCAmelCase__ ) return None def lowerCamelCase__ ( self : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" __UpperCamelCase : List[Any] = self.heap[nodea_pos][0] __UpperCamelCase : Dict = self.heap[nodea_pos][0] __UpperCamelCase : List[Any] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __UpperCamelCase : Tuple = nodea_pos __UpperCamelCase : Any = nodea_pos class SCREAMING_SNAKE_CASE_ ( Generic[T] ): """simple docstring""" def __init__( self : Optional[int] ) -> Any: """simple docstring""" __UpperCamelCase : dict[T, dict[T, int]] = {} __UpperCamelCase : int = 0 def __repr__( self : Tuple ) -> Dict: """simple docstring""" return str(self.connections ) def __len__( self : int ) -> List[str]: """simple docstring""" return self.nodes def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : Dict ) -> Any: """simple docstring""" if node not in self.connections: __UpperCamelCase : Union[str, Any] = {} self.nodes += 1 def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] ) -> int: """simple docstring""" self.add_node(lowerCAmelCase__ ) self.add_node(lowerCAmelCase__ ) __UpperCamelCase : str = weight __UpperCamelCase : int = weight def A__ (snake_case : Optional[int] , ) -> Any: __UpperCamelCase : dict[T, int] = {node: maxsize for node in graph.connections} __UpperCamelCase : dict[T, T | None] = {node: None for node in graph.connections} __UpperCamelCase : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowerCAmelCase_ , lowerCAmelCase_ ) if priority_queue.is_empty(): return dist, parent # initialization __UpperCamelCase : str = priority_queue.extract_min() __UpperCamelCase : Tuple = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __UpperCamelCase : Optional[int] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase_ , dist[neighbour] ) __UpperCamelCase : int = node # running prim's algorithm while not priority_queue.is_empty(): __UpperCamelCase : Optional[int] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __UpperCamelCase : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase_ , dist[neighbour] ) __UpperCamelCase : Any = node return dist, parent
279
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __lowerCAmelCase ( __a ): snake_case : str = """cvt""" def __init__(self , lowerCAmelCase__=3 , lowerCAmelCase__=[7, 3, 3] , lowerCAmelCase__=[4, 2, 2] , lowerCAmelCase__=[2, 1, 1] , lowerCAmelCase__=[6_4, 1_9_2, 3_8_4] , lowerCAmelCase__=[1, 3, 6] , lowerCAmelCase__=[1, 2, 1_0] , lowerCAmelCase__=[4.0, 4.0, 4.0] , lowerCAmelCase__=[0.0, 0.0, 0.0] , lowerCAmelCase__=[0.0, 0.0, 0.0] , lowerCAmelCase__=[0.0, 0.0, 0.1] , lowerCAmelCase__=[True, True, True] , lowerCAmelCase__=[False, False, True] , lowerCAmelCase__=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase__=[3, 3, 3] , lowerCAmelCase__=[1, 1, 1] , lowerCAmelCase__=[2, 2, 2] , lowerCAmelCase__=[1, 1, 1] , lowerCAmelCase__=[1, 1, 1] , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-12 , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : int = num_channels _UpperCAmelCase : Any = patch_sizes _UpperCAmelCase : Any = patch_stride _UpperCAmelCase : Optional[int] = patch_padding _UpperCAmelCase : Any = embed_dim _UpperCAmelCase : List[Any] = num_heads _UpperCAmelCase : List[Any] = depth _UpperCAmelCase : Tuple = mlp_ratio _UpperCAmelCase : Optional[Any] = attention_drop_rate _UpperCAmelCase : Dict = drop_rate _UpperCAmelCase : Union[str, Any] = drop_path_rate _UpperCAmelCase : List[Any] = qkv_bias _UpperCAmelCase : List[Any] = cls_token _UpperCAmelCase : Tuple = qkv_projection_method _UpperCAmelCase : str = kernel_qkv _UpperCAmelCase : Tuple = padding_kv _UpperCAmelCase : Dict = stride_kv _UpperCAmelCase : int = padding_q _UpperCAmelCase : Union[str, Any] = stride_q _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps
414
0
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def snake_case__ ( __lowercase = "isbn/0140328726" ) -> dict: """simple docstring""" A__ : Any = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: A__ : str = F'{olid} is not a valid Open Library olid' raise ValueError(__lowercase ) return requests.get(F'https://openlibrary.org/{new_olid}.json' ).json() def snake_case__ ( __lowercase ) -> dict: """simple docstring""" A__ : List[Any] = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } A__ : int = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} A__ : Optional[int] = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] A__ : Optional[int] = data["First sentence"]["value"] for key, value in data.items(): if isinstance(__lowercase , __lowercase ): A__ : int = ", ".join(__lowercase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: snake_case : List[str] = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (1_0, 1_3) or not isbn.isdigit(): print(f"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(f"""\nSearching Open Library for ISBN: {isbn}...\n""") try: snake_case : str = summarize_book(get_openlibrary_data(f"""isbn/{isbn}""")) print('\n'.join(f"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f"""Sorry, there are no results for ISBN: {isbn}.""")
720
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 snake_case : List[str] = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_2_8, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 5_0, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 1_0, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 1_0, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): @classmethod def _lowercase ( cls : str): A__ : int = TOKEN HfFolder.save_token(_A) @classmethod def _lowercase ( cls : Optional[Any]): try: delete_repo(token=cls._token , repo_id="test-config") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config") except HTTPError: pass def _lowercase ( self : Dict): A__ : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub("test-config" , use_auth_token=self._token) A__ : Dict = BertConfig.from_pretrained(F'{USER}/test-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_A , getattr(_A , _A)) # Reset repo delete_repo(token=self._token , repo_id="test-config") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_A , repo_id="test-config" , push_to_hub=_A , use_auth_token=self._token) A__ : Tuple = BertConfig.from_pretrained(F'{USER}/test-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_A , getattr(_A , _A)) def _lowercase ( self : List[Any]): A__ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token) A__ : Union[str, Any] = BertConfig.from_pretrained("valid_org/test-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_A , getattr(_A , _A)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _A , repo_id="valid_org/test-config-org" , push_to_hub=_A , use_auth_token=self._token) A__ : List[str] = BertConfig.from_pretrained("valid_org/test-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_A , getattr(_A , _A)) def _lowercase ( self : Optional[int]): CustomConfig.register_for_auto_class() A__ : Optional[Any] = CustomConfig(attribute=42) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"}) A__ : Optional[Any] = AutoConfig.from_pretrained(F'{USER}/test-dynamic-config' , trust_remote_code=_A) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig") self.assertEqual(new_config.attribute , 42) class lowerCAmelCase__ ( unittest.TestCase ): def _lowercase ( self : Optional[int]): A__ : List[str] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated A__ : Optional[int] = c.n_embd + 1 # int A__ : Tuple = c.resid_pdrop + 1.0 # float A__ : Any = not c.scale_attn_weights # bool A__ : List[Any] = c.summary_type + "foo" # str c.update_from_string( F'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}') self.assertEqual(_A , c.n_embd , "mismatch for key: n_embd") self.assertEqual(_A , c.resid_pdrop , "mismatch for key: resid_pdrop") self.assertEqual(_A , c.scale_attn_weights , "mismatch for key: scale_attn_weights") self.assertEqual(_A , c.summary_type , "mismatch for key: summary_type") def _lowercase ( self : Optional[int]): A__ : Any = PretrainedConfig() A__ : Optional[Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _A , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"]) A__ : Optional[Any] = [key for key, value in config_common_kwargs.items() if value == getattr(_A , _A)] if len(_A) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F' {", ".join(_A)}.') def _lowercase ( self : List[str]): with self.assertRaises(_A): # config is in subfolder, the following should not work without specifying the subfolder A__ : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder") A__ : str = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert") self.assertIsNotNone(_A) def _lowercase ( self : List[str]): # A mock response for an HTTP head request to emulate server down A__ : Tuple = mock.Mock() A__ : Dict = 500 A__ : Union[str, Any] = {} A__ : List[Any] = HTTPError A__ : Optional[int] = {} # Download this model to make sure it's in the cache. A__ : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=_A) as mock_head: A__ : List[str] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") # This check we did call the fake head request mock_head.assert_called() def _lowercase ( self : Optional[int]): # This test is for deprecated behavior and can be removed in v5 A__ : List[str] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json") def _lowercase ( self : Union[str, Any]): A__ : Union[str, Any] = AutoConfig.from_pretrained("bert-base-cased") A__ : str = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_A) A__ : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(_A , "config.4.0.0.json") , "w")) # This should pick the new configuration file as the version of Transformers is > 4.0.0 A__ : Any = AutoConfig.from_pretrained(_A) self.assertEqual(new_configuration.hidden_size , 2) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 A__ : str = ["config.42.0.0.json"] A__ : Optional[int] = 768 configuration.save_pretrained(_A) shutil.move(os.path.join(_A , "config.4.0.0.json") , os.path.join(_A , "config.42.0.0.json")) A__ : Optional[int] = AutoConfig.from_pretrained(_A) self.assertEqual(new_configuration.hidden_size , 768) def _lowercase ( self : Optional[int]): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. A__ : List[str] = "hf-internal-testing/test-two-configs" import transformers as new_transformers A__ : int = "v4.0.0" A__ , A__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( _A , return_unused_kwargs=_A) self.assertEqual(new_configuration.hidden_size , 2) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_A , {}) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers A__ : List[Any] = "v3.0.0" A__ : Optional[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(_A) self.assertEqual(old_configuration.hidden_size , 768)
182
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = StableDiffusionDiffEditPipeline __snake_case : Any = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""} __snake_case : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""} __snake_case : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __snake_case : List[Any] = frozenset([] ) def A ( self : Any ): torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , ) lowerCAmelCase_ : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) lowerCAmelCase_ : List[Any] = DDIMInverseScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase_ , set_alpha_to_zero=UpperCamelCase_ , ) torch.manual_seed(0 ) lowerCAmelCase_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) lowerCAmelCase_ : str = CLIPTextModel(UpperCamelCase_ ) lowerCAmelCase_ : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase_ : Optional[int] = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=0 ): lowerCAmelCase_ : Tuple = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith("""mps""" ): lowerCAmelCase_ : Optional[int] = torch.manual_seed(UpperCamelCase_ ) else: lowerCAmelCase_ : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowerCAmelCase_ : Optional[int] = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def A ( self : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : int=0 ): lowerCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) lowerCAmelCase_ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ : List[Any] = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ) if str(UpperCamelCase_ ).startswith("""mps""" ): lowerCAmelCase_ : Optional[int] = torch.manual_seed(UpperCamelCase_ ) else: lowerCAmelCase_ : Optional[Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowerCAmelCase_ : Dict = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def A ( self : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int]=0 ): lowerCAmelCase_ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) lowerCAmelCase_ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ) if str(UpperCamelCase_ ).startswith("""mps""" ): lowerCAmelCase_ : Tuple = torch.manual_seed(UpperCamelCase_ ) else: lowerCAmelCase_ : Tuple = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowerCAmelCase_ : str = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def A ( self : List[str] ): if not hasattr(self.pipeline_class , """_optional_components""" ): return lowerCAmelCase_ : int = self.get_dummy_components() lowerCAmelCase_ : List[Any] = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowerCAmelCase_ : Dict = self.get_dummy_inputs(UpperCamelCase_ ) lowerCAmelCase_ : Optional[Any] = pipe(**UpperCamelCase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase_ ) lowerCAmelCase_ : str = self.pipeline_class.from_pretrained(UpperCamelCase_ ) pipe_loaded.to(UpperCamelCase_ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase_ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase_ , UpperCamelCase_ ) is None , F'`{optional_component}` did not stay set to None after loading.' , ) lowerCAmelCase_ : Optional[int] = self.get_dummy_inputs(UpperCamelCase_ ) lowerCAmelCase_ : Optional[Any] = pipe_loaded(**UpperCamelCase_ )[0] lowerCAmelCase_ : Tuple = np.abs(output - output_loaded ).max() self.assertLess(UpperCamelCase_ , 1e-4 ) def A ( self : List[Any] ): lowerCAmelCase_ : List[Any] = 'cpu' lowerCAmelCase_ : Optional[Any] = self.get_dummy_components() lowerCAmelCase_ : List[str] = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase_ : List[Any] = self.get_dummy_mask_inputs(UpperCamelCase_ ) lowerCAmelCase_ : Union[str, Any] = pipe.generate_mask(**UpperCamelCase_ ) lowerCAmelCase_ : Any = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowerCAmelCase_ : str = np.array([0] * 9 ) lowerCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A ( self : Optional[int] ): lowerCAmelCase_ : Tuple = 'cpu' lowerCAmelCase_ : List[str] = self.get_dummy_components() lowerCAmelCase_ : Optional[int] = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase_ : List[Any] = self.get_dummy_inversion_inputs(UpperCamelCase_ ) lowerCAmelCase_ : Union[str, Any] = pipe.invert(**UpperCamelCase_ ).images lowerCAmelCase_ : List[str] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCAmelCase_ : Optional[int] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) lowerCAmelCase_ : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1e-3 ) def A ( self : Any ): super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A ( self : List[Any] ): lowerCAmelCase_ : Optional[Any] = 'cpu' lowerCAmelCase_ : int = self.get_dummy_components() lowerCAmelCase_ : List[Any] = {'beta_start': 0.0_0085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} lowerCAmelCase_ : List[str] = DPMSolverMultistepScheduler(**UpperCamelCase_ ) lowerCAmelCase_ : Tuple = DPMSolverMultistepInverseScheduler(**UpperCamelCase_ ) lowerCAmelCase_ : List[Any] = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase_ : Optional[Any] = self.get_dummy_inversion_inputs(UpperCamelCase_ ) lowerCAmelCase_ : Tuple = pipe.invert(**UpperCamelCase_ ).images lowerCAmelCase_ : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCAmelCase_ : Dict = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) lowerCAmelCase_ : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1e-3 ) @require_torch_gpu @slow class __a ( unittest.TestCase ): def A ( self : Tuple ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A ( cls : Optional[int] ): lowerCAmelCase_ : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowerCAmelCase_ : List[Any] = raw_image.convert("""RGB""" ).resize((7_68, 7_68) ) lowerCAmelCase_ : List[Any] = raw_image def A ( self : str ): lowerCAmelCase_ : int = torch.manual_seed(0 ) lowerCAmelCase_ : List[str] = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa ) lowerCAmelCase_ : Tuple = DDIMScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase_ : Tuple = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase_ : List[str] = 'a bowl of fruit' lowerCAmelCase_ : Optional[Any] = 'a bowl of pears' lowerCAmelCase_ : Tuple = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase_ , target_prompt=UpperCamelCase_ , generator=UpperCamelCase_ , ) lowerCAmelCase_ : str = pipe.invert( prompt=UpperCamelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase_ ).latents lowerCAmelCase_ : Any = pipe( prompt=UpperCamelCase_ , mask_image=UpperCamelCase_ , image_latents=UpperCamelCase_ , generator=UpperCamelCase_ , negative_prompt=UpperCamelCase_ , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowerCAmelCase_ : List[str] = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A ( self : int ): lowerCAmelCase_ : str = torch.manual_seed(0 ) lowerCAmelCase_ : Any = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa ) lowerCAmelCase_ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase_ : List[Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase_ : List[str] = 'a bowl of fruit' lowerCAmelCase_ : Tuple = 'a bowl of pears' lowerCAmelCase_ : List[Any] = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase_ , target_prompt=UpperCamelCase_ , generator=UpperCamelCase_ , ) lowerCAmelCase_ : Tuple = pipe.invert( prompt=UpperCamelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase_ , num_inference_steps=25 , ).latents lowerCAmelCase_ : Any = pipe( prompt=UpperCamelCase_ , mask_image=UpperCamelCase_ , image_latents=UpperCamelCase_ , generator=UpperCamelCase_ , negative_prompt=UpperCamelCase_ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowerCAmelCase_ : Union[str, Any] = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
600
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 UpperCamelCase__ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_28, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class a ( unittest.TestCase ): @classmethod def __snake_case ( cls ): UpperCAmelCase__ : List[str] = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def __snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def __snake_case ( self ): UpperCAmelCase__ : Optional[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) UpperCAmelCase__ : Optional[int] = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ , repo_id='test-config' , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) UpperCAmelCase__ : Union[str, Any] = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def __snake_case ( self ): UpperCAmelCase__ : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) UpperCAmelCase__ : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id='valid_org/test-config-org' , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) UpperCAmelCase__ : Optional[Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def __snake_case ( self ): CustomConfig.register_for_auto_class() UpperCAmelCase__ : Dict = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) UpperCAmelCase__ : Any = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=UpperCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class a ( unittest.TestCase ): def __snake_case ( self ): UpperCAmelCase__ : List[str] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated UpperCAmelCase__ : List[str] = c.n_embd + 1 # int UpperCAmelCase__ : Optional[int] = c.resid_pdrop + 1.0 # float UpperCAmelCase__ : Optional[int] = not c.scale_attn_weights # bool UpperCAmelCase__ : str = c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(UpperCamelCase_ , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(UpperCamelCase_ , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(UpperCamelCase_ , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(UpperCamelCase_ , c.summary_type , 'mismatch for key: summary_type' ) def __snake_case ( self ): UpperCAmelCase__ : Dict = PretrainedConfig() UpperCAmelCase__ : str = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCamelCase_ , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) UpperCAmelCase__ : int = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCamelCase_ , UpperCamelCase_ )] if len(UpperCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(UpperCamelCase_ )}.''' ) def __snake_case ( self ): with self.assertRaises(UpperCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder UpperCAmelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) UpperCAmelCase__ : str = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(UpperCamelCase_ ) def __snake_case ( self ): # A mock response for an HTTP head request to emulate server down UpperCAmelCase__ : str = mock.Mock() UpperCAmelCase__ : List[Any] = 500 UpperCAmelCase__ : Optional[int] = {} UpperCAmelCase__ : Dict = HTTPError UpperCAmelCase__ : Optional[int] = {} # Download this model to make sure it's in the cache. UpperCAmelCase__ : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=UpperCamelCase_ ) as mock_head: UpperCAmelCase__ : Optional[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def __snake_case ( self ): # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase__ : List[str] = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def __snake_case ( self ): UpperCAmelCase__ : int = AutoConfig.from_pretrained('bert-base-cased' ) UpperCAmelCase__ : str = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCamelCase_ ) UpperCAmelCase__ : List[str] = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCamelCase_ , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 UpperCAmelCase__ : Any = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 UpperCAmelCase__ : Tuple = ['config.42.0.0.json'] UpperCAmelCase__ : Tuple = 768 configuration.save_pretrained(UpperCamelCase_ ) shutil.move(os.path.join(UpperCamelCase_ , 'config.4.0.0.json' ) , os.path.join(UpperCamelCase_ , 'config.42.0.0.json' ) ) UpperCAmelCase__ : Any = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertEqual(new_configuration.hidden_size , 768 ) def __snake_case ( self ): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. UpperCAmelCase__ : Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers UpperCAmelCase__ : Optional[int] = 'v4.0.0' UpperCAmelCase__ , UpperCAmelCase__ : Any = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCamelCase_ , return_unused_kwargs=UpperCamelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCamelCase_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers UpperCAmelCase__ : List[Any] = 'v3.0.0' UpperCAmelCase__ : Union[str, Any] = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertEqual(old_configuration.hidden_size , 768 )
110
0
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase__ = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class A_ ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCAmelCase_ ( cls : int ) -> Dict: UpperCAmelCase : Union[str, Any] = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def UpperCAmelCase_ ( cls : Tuple ) -> Any: try: delete_repo(token=cls._token , repo_id='test-model-flax' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-model-flax-org' ) except HTTPError: pass def UpperCAmelCase_ ( self : Tuple ) -> Dict: UpperCAmelCase : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : str = FlaxBertModel(lowercase_ ) model.push_to_hub('test-model-flax' , use_auth_token=self._token ) UpperCAmelCase : Any = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) UpperCAmelCase : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : List[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1E-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='test-model-flax' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase_ , repo_id='test-model-flax' , push_to_hub=lowercase_ , use_auth_token=self._token ) UpperCAmelCase : Optional[int] = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) UpperCAmelCase : List[str] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Union[str, Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1E-3 , msg=f"""{key} not identical""" ) def UpperCAmelCase_ ( self : str ) -> List[Any]: UpperCAmelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Optional[Any] = FlaxBertModel(lowercase_ ) model.push_to_hub('valid_org/test-model-flax-org' , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) UpperCAmelCase : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : str = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1E-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-model-flax-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowercase_ , repo_id='valid_org/test-model-flax-org' , push_to_hub=lowercase_ , use_auth_token=self._token ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) UpperCAmelCase : Union[str, Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Dict = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : List[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1E-3 , msg=f"""{key} not identical""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = True UpperCAmelCase : str = flatten_dict(modela.params ) UpperCAmelCase : Tuple = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: UpperCAmelCase : Optional[int] = False return models_are_equal @require_flax class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : List[str] ) -> Dict: UpperCAmelCase : str = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) UpperCAmelCase : List[str] = FlaxBertModel(lowercase_ ) UpperCAmelCase : List[Any] = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowercase_ , lowercase_ ) ) with self.assertRaises(lowercase_ ): UpperCAmelCase : Any = FlaxBertModel.from_pretrained(lowercase_ ) UpperCAmelCase : int = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.assertTrue(check_models_equal(lowercase_ , lowercase_ ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: UpperCAmelCase : int = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) UpperCAmelCase : Optional[int] = FlaxBertModel(lowercase_ ) UpperCAmelCase : int = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowercase_ , lowercase_ ) , max_shard_size='10KB' ) with self.assertRaises(lowercase_ ): UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(lowercase_ ) UpperCAmelCase : List[str] = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.assertTrue(check_models_equal(lowercase_ , lowercase_ ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: UpperCAmelCase : List[Any] = 'bert' UpperCAmelCase : Any = 'hf-internal-testing/tiny-random-bert-subfolder' with self.assertRaises(lowercase_ ): UpperCAmelCase : Optional[int] = FlaxBertModel.from_pretrained(lowercase_ ) UpperCAmelCase : List[Any] = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> int: UpperCAmelCase : Any = 'bert' UpperCAmelCase : str = 'hf-internal-testing/tiny-random-bert-sharded-subfolder' with self.assertRaises(lowercase_ ): UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(lowercase_ ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.assertIsNotNone(lowercase_ )
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
1
'''simple docstring''' from __future__ import annotations class __lowerCamelCase : '''simple docstring''' def __init__( self , a__ ): __SCREAMING_SNAKE_CASE : Optional[int] = order # a_{0} ... a_{k} __SCREAMING_SNAKE_CASE : Union[str, Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} __SCREAMING_SNAKE_CASE : Optional[Any] = [1.0] + [0.0] * order # x[n-1] ... x[n-k] __SCREAMING_SNAKE_CASE : Dict = [0.0] * self.order # y[n-1] ... y[n-k] __SCREAMING_SNAKE_CASE : Tuple = [0.0] * self.order def a_ ( self , a__ , a__ ): if len(_lowercase ) < self.order: __SCREAMING_SNAKE_CASE : str = [1.0, *a_coeffs] if len(_lowercase ) != self.order + 1: __SCREAMING_SNAKE_CASE : List[Any] = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowercase )}' ) raise ValueError(_lowercase ) if len(_lowercase ) != self.order + 1: __SCREAMING_SNAKE_CASE : Any = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_lowercase )}' ) raise ValueError(_lowercase ) __SCREAMING_SNAKE_CASE : str = a_coeffs __SCREAMING_SNAKE_CASE : Tuple = b_coeffs def a_ ( self , a__ ): __SCREAMING_SNAKE_CASE : str = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) __SCREAMING_SNAKE_CASE : Optional[int] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] __SCREAMING_SNAKE_CASE : Any = self.input_history[:-1] __SCREAMING_SNAKE_CASE : int = self.output_history[:-1] __SCREAMING_SNAKE_CASE : Optional[int] = sample __SCREAMING_SNAKE_CASE : List[Any] = result return result
211
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class A__(unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.0_2 , _lowercase=4 , ) -> Tuple: a_ : Tuple = parent a_ : Optional[Any] = batch_size a_ : int = seq_length a_ : List[str] = is_training a_ : str = use_attention_mask a_ : Optional[int] = use_token_type_ids a_ : Optional[int] = use_labels a_ : int = vocab_size a_ : Union[str, Any] = hidden_size a_ : Optional[int] = num_hidden_layers a_ : Optional[int] = num_attention_heads a_ : Tuple = intermediate_size a_ : int = hidden_act a_ : Any = hidden_dropout_prob a_ : int = attention_probs_dropout_prob a_ : List[str] = max_position_embeddings a_ : Optional[int] = type_vocab_size a_ : List[str] = type_sequence_label_size a_ : Optional[Any] = initializer_range a_ : Optional[int] = num_choices def UpperCamelCase__ ( self ) -> str: a_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Dict = None if self.use_attention_mask: a_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) a_ : List[str] = None if self.use_token_type_ids: a_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ : Any = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ ( self ) -> int: a_ : Optional[Any] = self.prepare_config_and_inputs() a_ , a_ , a_ , a_ : Any = config_and_inputs a_ : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCamelCase__ ( self ) -> List[Any]: a_ : Optional[Any] = self.prepare_config_and_inputs() a_ , a_ , a_ , a_ : str = config_and_inputs a_ : str = True a_ : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class A__(a_, unittest.TestCase ): """simple docstring""" _A : List[str] = True _A : int = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ ( self ) -> List[str]: a_ : Optional[int] = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCamelCase__ ( self ) -> int: for model_class_name in self.all_model_classes: a_ : Union[str, Any] = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) a_ : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class A__(unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self ) -> List[str]: a_ : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) a_ : Union[str, Any] = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) a_ : Tuple = model(_lowercase )[0] a_ : Tuple = [1, 11, 50_265] self.assertEqual(list(output.shape ) , _lowercase ) # compare the actual values for a slice. a_ : Tuple = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1e-4 ) ) @slow def UpperCamelCase__ ( self ) -> Dict: a_ : Union[str, Any] = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) a_ : List[str] = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) a_ : str = model(_lowercase )[0] # compare the actual values for a slice. a_ : Union[str, Any] = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1e-4 ) )
540
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _lowerCamelCase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCamelCase : Dict = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class lowerCamelCase__ ( __snake_case ): __UpperCAmelCase = 42 class lowerCamelCase__ ( __snake_case ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( prior=lowerCAmelCase__ , image_encoder=lowerCAmelCase__ , image_processor=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , renderer=lowerCAmelCase__ , ) def _UpperCamelCase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: """simple docstring""" if latents is None: _UpperCamelCase :List[Any] =randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _UpperCamelCase :int =latents.to(lowerCAmelCase__ ) _UpperCamelCase :Optional[int] =latents * scheduler.init_noise_sigma return latents def _UpperCamelCase ( self , lowerCAmelCase__=0 ) -> Tuple: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _UpperCamelCase :int =torch.device(f'''cuda:{gpu_id}''' ) _UpperCamelCase :Tuple =[self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase__ , lowerCAmelCase__ ) @property def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowerCAmelCase__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def _UpperCamelCase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(image[0] , torch.Tensor ): _UpperCamelCase :List[Any] =torch.cat(lowerCAmelCase__ , axis=0 ) if image[0].ndim == 4 else torch.stack(lowerCAmelCase__ , axis=0 ) if not isinstance(lowerCAmelCase__ , torch.Tensor ): _UpperCamelCase :Union[str, Any] =self.image_processor(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) _UpperCamelCase :Any =image.to(dtype=self.image_encoder.dtype , device=lowerCAmelCase__ ) _UpperCamelCase :Optional[Any] =self.image_encoder(lowerCAmelCase__ )["""last_hidden_state"""] _UpperCamelCase :List[str] =image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _UpperCamelCase :Dict =image_embeds.repeat_interleave(lowerCAmelCase__ , dim=0 ) if do_classifier_free_guidance: _UpperCamelCase :Optional[int] =torch.zeros_like(lowerCAmelCase__ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCamelCase :int =torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowerCAmelCase__ ) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 25 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 4.0 , lowerCAmelCase__ = 64 , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ) -> int: """simple docstring""" if isinstance(lowerCAmelCase__ , PIL.Image.Image ): _UpperCamelCase :Any =1 elif isinstance(lowerCAmelCase__ , torch.Tensor ): _UpperCamelCase :Tuple =image.shape[0] elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _UpperCamelCase :Tuple =len(lowerCAmelCase__ ) else: raise ValueError( f'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowerCAmelCase__ )}''' ) _UpperCamelCase :int =self._execution_device _UpperCamelCase :Optional[Any] =batch_size * num_images_per_prompt _UpperCamelCase :Any =guidance_scale > 1.0 _UpperCamelCase :Optional[Any] =self._encode_image(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # prior self.scheduler.set_timesteps(lowerCAmelCase__ , device=lowerCAmelCase__ ) _UpperCamelCase :str =self.scheduler.timesteps _UpperCamelCase :Tuple =self.prior.config.num_embeddings _UpperCamelCase :Dict =self.prior.config.embedding_dim _UpperCamelCase :Any =self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _UpperCamelCase :List[str] =latents.reshape(latents.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) for i, t in enumerate(self.progress_bar(lowerCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance _UpperCamelCase :List[str] =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCamelCase :Tuple =self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase :str =self.prior( lowerCAmelCase__ , timestep=lowerCAmelCase__ , proj_embedding=lowerCAmelCase__ , ).predicted_image_embedding # remove the variance _UpperCamelCase :List[Any] =noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _UpperCamelCase :Tuple =noise_pred.chunk(2 ) _UpperCamelCase :str =noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _UpperCamelCase :Optional[Any] =self.scheduler.step( lowerCAmelCase__ , timestep=lowerCAmelCase__ , sample=lowerCAmelCase__ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowerCAmelCase__ ) _UpperCamelCase :Optional[Any] =[] for i, latent in enumerate(lowerCAmelCase__ ): print() _UpperCamelCase :Any =self.renderer.decode( latent[None, :] , lowerCAmelCase__ , size=lowerCAmelCase__ , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(lowerCAmelCase__ ) _UpperCamelCase :Tuple =torch.stack(lowerCAmelCase__ ) if output_type not in ["np", "pil"]: raise ValueError(f'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) _UpperCamelCase :List[Any] =images.cpu().numpy() if output_type == "pil": _UpperCamelCase :List[str] =[self.numpy_to_pil(lowerCAmelCase__ ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowerCAmelCase__ )
707
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Optional[int] = { """configuration_upernet""": ["""UperNetConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ """UperNetForSemanticSegmentation""", """UperNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
512
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Optional[Any] ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys A_ : Optional[int] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
650
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0" raise ValueError(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ = sylvester(number - 1 ) SCREAMING_SNAKE_CASE_ = num - 1 SCREAMING_SNAKE_CASE_ = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
31
0
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowercase__ : def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=100 , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : Union[str, Any]=30 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[str]=4 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Optional[Any]=10 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Optional[Any]=[0, 1, 2, 3] , ) -> int: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = 100 UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = out_indices UpperCAmelCase_ = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 1 def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ) -> str: '''simple docstring''' UpperCAmelCase_ = BeitModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = BeitForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowercase__ ( self : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = BeitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = BeitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = BeitForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCamelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = BeitModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def lowercase__ ( self : Any ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def lowercase__ ( self : Dict ) -> str: '''simple docstring''' pass def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_UpperCAmelCase ), BeitForMaskedImageModeling]: continue UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCAmelCase_ = model(**_UpperCAmelCase ).loss loss.backward() def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase_ = False UpperCAmelCase_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCAmelCase_ = model(**_UpperCAmelCase ).loss loss.backward() def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def lowercase__ ( self : Dict ) -> List[Any]: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = BeitModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): @cached_property def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def lowercase__ ( self : str ) -> str: '''simple docstring''' UpperCAmelCase_ = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(_UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).pixel_values.to(_UpperCAmelCase ) # prepare bool_masked_pos UpperCAmelCase_ = torch.ones((1, 196) , dtype=torch.bool ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(pixel_values=_UpperCAmelCase , bool_masked_pos=_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _UpperCAmelCase , atol=1e-2 ) ) @slow def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(_UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) UpperCAmelCase_ = 281 self.assertEqual(logits.argmax(-1 ).item() , _UpperCAmelCase ) @slow def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' UpperCAmelCase_ = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( _UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21841) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([1.6881, -0.2787, 0.5901] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) UpperCAmelCase_ = 2396 self.assertEqual(logits.argmax(-1 ).item() , _UpperCAmelCase ) @slow def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = BeitImageProcessor(do_resize=_UpperCAmelCase , size=640 , do_center_crop=_UpperCAmelCase ) UpperCAmelCase_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase_ = Image.open(ds[0]["file"] ) UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: UpperCAmelCase_ = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=_UpperCAmelCase , ) else: UpperCAmelCase_ = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = BeitImageProcessor(do_resize=_UpperCAmelCase , size=640 , do_center_crop=_UpperCAmelCase ) UpperCAmelCase_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase_ = Image.open(ds[0]["file"] ) UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits.detach().cpu() UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(500, 300)] ) UpperCAmelCase_ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) UpperCAmelCase_ = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
701
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''mobilenet_v1''' def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = depth_multiplier UpperCAmelCase_ = min_depth UpperCAmelCase_ = hidden_act UpperCAmelCase_ = tf_padding UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = version.parse('''1.11''' ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowercase__ ( self : Tuple ) -> float: '''simple docstring''' return 1e-4
14
0
from ....configuration_utils import PretrainedConfig from ....utils import logging a__: Tuple = logging.get_logger(__name__) a__: Optional[Any] = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''mctct''' def __init__( self,__lowerCamelCase=8065,__lowerCamelCase=1536,__lowerCamelCase=36,__lowerCamelCase=6144,__lowerCamelCase=4,__lowerCamelCase=384,__lowerCamelCase=920,__lowerCamelCase=1E-5,__lowerCamelCase=0.3,__lowerCamelCase="relu",__lowerCamelCase=0.02,__lowerCamelCase=0.3,__lowerCamelCase=0.3,__lowerCamelCase=1,__lowerCamelCase=0,__lowerCamelCase=2,__lowerCamelCase=1,__lowerCamelCase=0.3,__lowerCamelCase=1,__lowerCamelCase=(7,),__lowerCamelCase=(3,),__lowerCamelCase=80,__lowerCamelCase=1,__lowerCamelCase=None,__lowerCamelCase="sum",__lowerCamelCase=False,**__lowerCamelCase,): super().__init__(**__lowerCamelCase,pad_token_id=__lowerCamelCase,bos_token_id=__lowerCamelCase,eos_token_id=__lowerCamelCase ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = intermediate_size A__ = num_attention_heads A__ = attention_head_dim A__ = max_position_embeddings A__ = layer_norm_eps A__ = layerdrop A__ = hidden_act A__ = initializer_range A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = pad_token_id A__ = bos_token_id A__ = eos_token_id A__ = conv_glu_dim A__ = conv_dropout A__ = num_conv_layers A__ = input_feat_per_channel A__ = input_channels A__ = conv_channels A__ = ctc_loss_reduction A__ = ctc_zero_infinity # prevents config testing fail with exporting to json A__ = list(__lowerCamelCase ) A__ = list(__lowerCamelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' f"but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, " f"`config.num_conv_layers = {self.num_conv_layers}`." )
190
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
190
1
"""simple docstring""" from __future__ import annotations from scipy.special import comb # type: ignore class _lowercase : def __init__( self , UpperCAmelCase_ ) -> Tuple: lowerCamelCase : int = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowerCamelCase : Any = len(UpperCAmelCase_ ) - 1 def _UpperCamelCase ( self , UpperCAmelCase_ ) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCamelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , UpperCAmelCase_ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(UpperCAmelCase_ ) , 5 ) == 1 return output_values def _UpperCamelCase ( self , UpperCAmelCase_ ) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCamelCase : str = self.basis_function(UpperCAmelCase_ ) lowerCamelCase : Dict = 0.0 lowerCamelCase : Tuple = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _UpperCamelCase ( self , UpperCAmelCase_ = 0.01 ) -> Optional[int]: from matplotlib import pyplot as plt # type: ignore lowerCamelCase : list[float] = [] # x coordinates of points to plot lowerCamelCase : list[float] = [] # y coordinates of points to plot lowerCamelCase : int = 0.0 while t <= 1: lowerCamelCase : Union[str, Any] = self.bezier_curve_function(UpperCAmelCase_ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowerCamelCase : Optional[Any] = [i[0] for i in self.list_of_points] lowerCamelCase : str = [i[1] for i in self.list_of_points] plt.plot( UpperCAmelCase_ , UpperCAmelCase_ , color='blue' , label='Curve of Degree ' + str(self.degree ) , ) plt.scatter(UpperCAmelCase_ , UpperCAmelCase_ , color='red' , label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
711
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def UpperCAmelCase ( a_, a_ ): '''simple docstring''' lowerCamelCase : int = Mock() lowerCamelCase : int = conn, Mock() lowerCamelCase : Any = iter([1, None] ) lowerCamelCase : Dict = lambda a_ : next(a_ ) # ===== invoke ===== send_file(filename='mytext.txt', testing=a_ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
133
0