code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" def _a ( UpperCAmelCase__ ) -> int: __SCREAMING_SNAKE_CASE = [1] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, 0, 0 __SCREAMING_SNAKE_CASE = ugly_nums[ia] * 2 __SCREAMING_SNAKE_CASE = ugly_nums[ia] * 3 __SCREAMING_SNAKE_CASE = ugly_nums[ia] * 5 for _ in range(1 , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = min(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) ugly_nums.append(UpperCAmelCase__ ) if next_num == next_a: ia += 1 __SCREAMING_SNAKE_CASE = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __SCREAMING_SNAKE_CASE = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __SCREAMING_SNAKE_CASE = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F'''{ugly_numbers(200) = }''')
482
"""simple docstring""" def _a ( UpperCAmelCase__ ) -> List[str]: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) for i in range(n - 1 ): for j in range(i + 1 , UpperCAmelCase__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( UpperCAmelCase__ ) -> int: if len(UpperCAmelCase__ ) <= 1: return arr, 0 __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) // 2 __SCREAMING_SNAKE_CASE = arr[0:mid] __SCREAMING_SNAKE_CASE = arr[mid:] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = count_inversions_recursive(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = count_inversions_recursive(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = _count_cross_inversions(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = __SCREAMING_SNAKE_CASE = __SCREAMING_SNAKE_CASE = 0 while i < len(UpperCAmelCase__ ) and j < len(UpperCAmelCase__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(UpperCAmelCase__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(UpperCAmelCase__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __SCREAMING_SNAKE_CASE = count_inversions_bf(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = count_inversions_recursive(UpperCAmelCase__ ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , UpperCAmelCase__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __SCREAMING_SNAKE_CASE = count_inversions_bf(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = count_inversions_recursive(UpperCAmelCase__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , UpperCAmelCase__ ) # an empty list should also have zero inversions __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = count_inversions_bf(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = count_inversions_recursive(UpperCAmelCase__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , UpperCAmelCase__ ) if __name__ == "__main__": main()
482
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class lowerCAmelCase : """simple docstring""" def __init__( self , UpperCamelCase__ , UpperCamelCase__=3 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ) -> List[str]: '''simple docstring''' lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=UpperCamelCase__ , ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' lowerCamelCase_ = FalconModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) lowerCamelCase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> int: '''simple docstring''' lowerCamelCase_ = True lowerCamelCase_ = FalconModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) lowerCamelCase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) lowerCamelCase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Any: '''simple docstring''' lowerCamelCase_ = FalconForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = FalconForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass lowerCamelCase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ , ) lowerCamelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCamelCase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )['''hidden_states'''][0] lowerCamelCase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )['''hidden_states'''][0] # select random slice lowerCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , a , unittest.TestCase ): """simple docstring""" __lowercase :str = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) __lowercase :Dict = (FalconForCausalLM,) if is_torch_available() else () __lowercase :Any = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) __lowercase :List[str] = False __lowercase :Dict = False def _lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = FalconModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def _lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowerCAmelCase ( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Dict: '''simple docstring''' lowerCamelCase_ , *lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: lowerCamelCase_ = alibi self.model_tester.create_and_check_model(UpperCamelCase__ , *UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = input_dict['''input_ids'''] lowerCamelCase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowerCamelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase_ = FalconForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = '''single_label_classification''' lowerCamelCase_ = input_dict['''input_ids'''] lowerCamelCase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowerCamelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase_ = FalconForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCAmelCase ( self ) -> int: '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = input_dict['''input_ids'''] lowerCamelCase_ = FalconForCausalLM(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase_ = model(UpperCamelCase__ , use_cache=UpperCamelCase__ ) lowerCamelCase_ = input_ids.shape[0] lowerCamelCase_ = model._convert_to_rw_cache(result.past_key_values ) lowerCamelCase_ = model._convert_cache_to_standard_format(UpperCamelCase__ , UpperCamelCase__ ) for layer in range(len(UpperCamelCase__ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def _lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = '''multi_label_classification''' lowerCamelCase_ = input_dict['''input_ids'''] lowerCamelCase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowerCamelCase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCamelCase_ = FalconForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' for model_class in self.all_generative_model_classes: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(UpperCamelCase__ , '''use_cache''' ): return lowerCamelCase_ = model_class(UpperCamelCase__ ).to(UpperCamelCase__ ) if "use_cache" not in inputs: lowerCamelCase_ = True lowerCamelCase_ = model(**UpperCamelCase__ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return lowerCamelCase_ = ( getattr(UpperCamelCase__ , '''decoder_layers''' , UpperCamelCase__ ) or getattr(UpperCamelCase__ , '''num_decoder_layers''' , UpperCamelCase__ ) or config.num_hidden_layers ) lowerCamelCase_ = getattr(UpperCamelCase__ , '''num_kv_heads''' , config.num_attention_heads ) lowerCamelCase_ = getattr(UpperCamelCase__ , '''d_model''' , config.hidden_size ) lowerCamelCase_ = embed_dim // num_attention_heads lowerCamelCase_ = outputs['''past_key_values'''] self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = inputs['''input_ids'''].shape for i in range(UpperCamelCase__ ): if config.new_decoder_architecture: lowerCamelCase_ = config.num_attention_heads elif config.multi_query: lowerCamelCase_ = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) lowerCamelCase_ = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(UpperCamelCase__ ) lowerCamelCase_ = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(UpperCamelCase__ ) lowerCamelCase_ = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) lowerCamelCase_ = model.generate(**UpperCamelCase__ , do_sample=UpperCamelCase__ , max_new_tokens=19 ) lowerCamelCase_ = tokenizer.batch_decode(UpperCamelCase__ )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def _lowerCAmelCase ( self ) -> int: '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: lowerCamelCase_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) lowerCamelCase_ = FalconForCausalLM.from_pretrained(UpperCamelCase__ ) model.eval() model.to(UpperCamelCase__ ) lowerCamelCase_ = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(UpperCamelCase__ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**UpperCamelCase__ , do_sample=UpperCamelCase__ , max_new_tokens=4 ) model.generate(**UpperCamelCase__ , do_sample=UpperCamelCase__ , max_new_tokens=4 ) model.generate(**UpperCamelCase__ , num_beams=2 , max_new_tokens=4 ) @slow def _lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: lowerCamelCase_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) lowerCamelCase_ = FalconForCausalLM.from_pretrained(UpperCamelCase__ ) model.eval() model.to(device=UpperCamelCase__ ) lowerCamelCase_ = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(UpperCamelCase__ ) # Test results are the same with and without cache lowerCamelCase_ = model.generate(**UpperCamelCase__ , do_sample=UpperCamelCase__ , max_new_tokens=20 , use_cache=UpperCamelCase__ ) lowerCamelCase_ = model.generate(**UpperCamelCase__ , do_sample=UpperCamelCase__ , max_new_tokens=20 , use_cache=UpperCamelCase__ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
66
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None ) -> List[Any]: '''simple docstring''' super().__init__() lowerCamelCase_ = pad_token_id lowerCamelCase_ = max_length lowerCamelCase_ = vocab lowerCamelCase_ = merges lowerCamelCase_ = BytePairTokenizer(UpperCamelCase__ , UpperCamelCase__ , sequence_length=UpperCamelCase__ ) @classmethod def _lowerCAmelCase ( cls , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' lowerCamelCase_ = [''' '''.join(UpperCamelCase__ ) for m in tokenizer.bpe_ranks.keys()] lowerCamelCase_ = tokenizer.get_vocab() return cls(UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def _lowerCAmelCase ( cls , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' lowerCamelCase_ = GPTaTokenizer.from_pretrained(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) return cls.from_tokenizer(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def _lowerCAmelCase ( cls , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return cls(**UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> int: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Any: '''simple docstring''' lowerCamelCase_ = self.tf_tokenizer(UpperCamelCase__ ) lowerCamelCase_ = tf.ones_like(UpperCamelCase__ ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCamelCase_ = max_length if max_length is not None else self.max_length if max_length is not None: lowerCamelCase_ , lowerCamelCase_ = pad_model_inputs( UpperCamelCase__ , max_seq_length=UpperCamelCase__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
66
1
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def UpperCAmelCase__ ( __snake_case="" ) -> int: _A = tempfile.mkdtemp() return os.path.join(__snake_case , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class _snake_case ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> str: """simple docstring""" _A = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 _A = AgentAudio(A_ ) _A = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(A_ , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(A_ ) ) # Ensure that the file contains the same value as the original tensor _A , _A = sf.read(A_ ) self.assertTrue(torch.allclose(A_ , torch.tensor(A_ ) , atol=1e-4 ) ) def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" _A = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 _A = get_new_path(suffix='''.wav''' ) sf.write(A_ , A_ , 1_6_0_0_0 ) _A = AgentAudio(A_ ) self.assertTrue(torch.allclose(A_ , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , A_ ) @require_vision @require_torch class _snake_case ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> int: """simple docstring""" _A = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3) ) _A = AgentImage(A_ ) _A = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(A_ , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(A_ ) ) def lowercase_ ( self ) -> List[str]: """simple docstring""" _A = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' _A = Image.open(A_ ) _A = AgentImage(A_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(A_ ) ) def lowercase_ ( self ) -> Tuple: """simple docstring""" _A = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' _A = Image.open(A_ ) _A = AgentImage(A_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(A_ ) ) class _snake_case ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> List[Any]: """simple docstring""" _A = '''Hey!''' _A = AgentText(A_ ) self.assertEqual(A_ , agent_type.to_string() ) self.assertEqual(A_ , agent_type.to_raw() ) self.assertEqual(A_ , A_ )
317
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 'donut-swin' __UpperCamelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self, A_=224, A_=4, A_=3, A_=96, A_=[2, 2, 6, 2], A_=[3, 6, 12, 24], A_=7, A_=4.0, A_=True, A_=0.0, A_=0.0, A_=0.1, A_="gelu", A_=False, A_=0.02, A_=1E-5, **A_, ) -> List[str]: super().__init__(**A_ ) UpperCAmelCase__ =image_size UpperCAmelCase__ =patch_size UpperCAmelCase__ =num_channels UpperCAmelCase__ =embed_dim UpperCAmelCase__ =depths UpperCAmelCase__ =len(A_ ) UpperCAmelCase__ =num_heads UpperCAmelCase__ =window_size UpperCAmelCase__ =mlp_ratio UpperCAmelCase__ =qkv_bias UpperCAmelCase__ =hidden_dropout_prob UpperCAmelCase__ =attention_probs_dropout_prob UpperCAmelCase__ =drop_path_rate UpperCAmelCase__ =hidden_act UpperCAmelCase__ =use_absolute_embeddings UpperCAmelCase__ =layer_norm_eps UpperCAmelCase__ =initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase__ =int(embed_dim * 2 ** (len(A_ ) - 1) )
625
0
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , lowercase : int , lowercase : int=13 , lowercase : Any=7 , lowercase : Optional[Any]=True , lowercase : List[str]=True , lowercase : int=True , lowercase : Optional[Any]=True , lowercase : Union[str, Any]=99 , lowercase : Union[str, Any]=32 , lowercase : List[Any]=5 , lowercase : List[str]=4 , lowercase : Union[str, Any]=37 , lowercase : int="gelu" , lowercase : List[str]=0.1 , lowercase : Any=0.1 , lowercase : List[str]=512 , lowercase : List[str]=16 , lowercase : Dict=2 , lowercase : Optional[Any]=0.02 , lowercase : Dict=4 , ) -> Optional[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_attention_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_choices def snake_case__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_attention_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowercase__ : Tuple = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = FlaxAlbertModelTester(self ) @slow def snake_case__ ( self : List[str] ) -> Optional[int]: """simple docstring""" for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("""albert-base-v2""" ) __lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self : str ) -> Dict: """simple docstring""" __lowercase = FlaxAlbertModel.from_pretrained("""albert-base-v2""" ) __lowercase = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) __lowercase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowercase = model(lowercase , attention_mask=lowercase )[0] __lowercase = (1, 11, 768) self.assertEqual(output.shape , lowercase ) __lowercase = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowercase , atol=1E-4 ) )
634
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput UpperCamelCase__ = "scheduler_config.json" class _lowerCAmelCase ( _UpperCAmelCase ): """simple docstring""" lowercase__ : List[Any] = 1 lowercase__ : Tuple = 2 lowercase__ : Union[str, Any] = 3 lowercase__ : Union[str, Any] = 4 lowercase__ : str = 5 lowercase__ : Any = 6 lowercase__ : Any = 7 lowercase__ : List[str] = 8 lowercase__ : Union[str, Any] = 9 lowercase__ : int = 10 lowercase__ : List[str] = 11 lowercase__ : List[Any] = 12 lowercase__ : str = 13 lowercase__ : Optional[int] = 14 @dataclass class _lowerCAmelCase ( _UpperCAmelCase ): """simple docstring""" lowercase__ : torch.FloatTensor class _lowerCAmelCase : """simple docstring""" lowercase__ : Optional[int] = SCHEDULER_CONFIG_NAME lowercase__ : int = [] lowercase__ : Dict = True @classmethod def snake_case__ ( cls : str , lowercase : Dict[str, Any] = None , lowercase : Optional[str] = None , lowercase : Any=False , **lowercase : List[str] , ) -> Union[str, Any]: """simple docstring""" __lowercase , __lowercase , __lowercase = cls.load_config( pretrained_model_name_or_path=lowercase , subfolder=lowercase , return_unused_kwargs=lowercase , return_commit_hash=lowercase , **lowercase , ) return cls.from_config(lowercase , return_unused_kwargs=lowercase , **lowercase ) def snake_case__ ( self : Dict , lowercase : Union[str, os.PathLike] , lowercase : bool = False , **lowercase : List[str] ) -> Optional[Any]: """simple docstring""" self.save_config(save_directory=lowercase , push_to_hub=lowercase , **lowercase ) @property def snake_case__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return self._get_compatibles() @classmethod def snake_case__ ( cls : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = list(set([cls.__name__] + cls._compatibles ) ) __lowercase = importlib.import_module(__name__.split(""".""" )[0] ) __lowercase = [ getattr(lowercase , lowercase ) for c in compatible_classes_str if hasattr(lowercase , lowercase ) ] return compatible_classes
634
1
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: """simple docstring""" lowerCAmelCase__ :int = BertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(F"Building PyTorch model from configuration: {config}" ) lowerCAmelCase__ :Union[str, Any] = BertForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_bert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
93
lowerCAmelCase : Dict = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def _lowercase ( __UpperCamelCase : dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): snake_case__ = set() # keep track of all the paths to be checked snake_case__ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue snake_case__ = queue.pop(0 ) # get the last node from the path snake_case__ = path[-1] if node not in explored: snake_case__ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: snake_case__ = list(__UpperCamelCase ) new_path.append(__UpperCamelCase ) queue.append(__UpperCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__UpperCamelCase ) # in case there's no path between the 2 nodes return [] def _lowercase ( __UpperCamelCase : dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] ): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 snake_case__ = [start] snake_case__ = set(__UpperCamelCase ) # Keep tab on distances from `start` node. snake_case__ = {start: 0, target: -1} while queue: snake_case__ = queue.pop(0 ) if node == target: snake_case__ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__UpperCamelCase ) queue.append(__UpperCamelCase ) snake_case__ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
214
0
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig _A : List[str] = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } _A : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Any = "maskformer" _UpperCAmelCase : Union[str, Any] = {"hidden_size": "mask_feature_size"} _UpperCAmelCase : Tuple = ["resnet", "swin"] _UpperCAmelCase : Dict = ["detr"] def __init__( self : List[str] , A : int = 2_5_6 , A : int = 2_5_6 , A : float = 0.1 , A : bool = False , A : Optional[Dict] = None , A : Optional[Dict] = None , A : float = 0.02 , A : float = 1.0 , A : float = 1.0 , A : float = 1.0 , A : float = 20.0 , A : Optional[bool] = None , **A : Optional[Any] , ) ->str: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowerCamelCase__ : List[Any] = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCamelCase__ : Any = backbone_config.pop('''model_type''' ) lowerCamelCase__ : str = CONFIG_MAPPING[backbone_model_type] lowerCamelCase__ : Union[str, Any] = config_class.from_dict(UpperCAmelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. " F"Supported model types: {','.join(self.backbones_supported )}" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowerCamelCase__ : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported lowerCamelCase__ : Any = ( decoder_config.pop('''model_type''' ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"Transformer Decoder {decoder_type} not supported, please use one of" F" {','.join(self.decoders_supported )}" ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCamelCase__ : List[Any] = CONFIG_MAPPING[decoder_type] lowerCamelCase__ : Union[str, Any] = config_class.from_dict(UpperCAmelCase__ ) lowerCamelCase__ : Union[str, Any] = backbone_config lowerCamelCase__ : int = decoder_config # main feature dimension for the model lowerCamelCase__ : List[str] = fpn_feature_size lowerCamelCase__ : Tuple = mask_feature_size # initializer lowerCamelCase__ : int = init_std lowerCamelCase__ : Any = init_xavier_std # Hungarian matcher && loss lowerCamelCase__ : Tuple = cross_entropy_weight lowerCamelCase__ : int = dice_weight lowerCamelCase__ : Any = mask_weight lowerCamelCase__ : str = use_auxiliary_loss lowerCamelCase__ : List[Any] = no_object_weight lowerCamelCase__ : List[str] = output_auxiliary_logits lowerCamelCase__ : int = self.decoder_config.encoder_attention_heads lowerCamelCase__ : str = self.decoder_config.num_hidden_layers super().__init__(**UpperCAmelCase__ ) @classmethod def __lowerCamelCase ( cls : Tuple , A : PretrainedConfig , A : PretrainedConfig , **A : List[Any] ) ->Dict: return cls( backbone_config=UpperCAmelCase__ , decoder_config=UpperCAmelCase__ , **UpperCAmelCase__ , ) def __lowerCamelCase ( self : Dict ) ->Dict[str, any]: lowerCamelCase__ : List[Any] = copy.deepcopy(self.__dict__ ) lowerCamelCase__ : Any = self.backbone_config.to_dict() lowerCamelCase__ : Optional[int] = self.decoder_config.to_dict() lowerCamelCase__ : Optional[Any] = self.__class__.model_type return output
721
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A : Optional[Any] = logging.get_logger(__name__) def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Tuple = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: lowerCamelCase__ : Tuple = 1024 lowerCamelCase__ : Any = 4096 lowerCamelCase__ : Optional[Any] = 24 lowerCamelCase__ : Dict = 16 lowerCamelCase__ : Optional[Any] = [5, 11, 17, 23] lowerCamelCase__ : str = [256, 512, 1024, 1024] lowerCamelCase__ : List[str] = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCamelCase__ : List[str] = 768 lowerCamelCase__ : Any = [1, 1, 1, 0.5] lowerCamelCase__ : Dict = [256, 512, 768, 768] lowerCamelCase__ : Dict = 150 lowerCamelCase__ : str = 16 lowerCamelCase__ : List[Any] = (1, 384, 384) lowerCamelCase__ : Any = False lowerCamelCase__ : int = '''project''' if "ade" in checkpoint_url: lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : List[Any] = 768 lowerCamelCase__ : int = [1, 1, 1, 0.5] lowerCamelCase__ : Any = 150 lowerCamelCase__ : Dict = 16 lowerCamelCase__ : Optional[Any] = '''huggingface/label-files''' lowerCamelCase__ : Any = '''ade20k-id2label.json''' lowerCamelCase__ : Optional[Any] = json.load(open(cached_download(hf_hub_url(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) lowerCamelCase__ : Any = {int(UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Any = idalabel lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} lowerCamelCase__ : Optional[Any] = [1, 150, 480, 480] return config, expected_shape def _a ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Optional[int] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCamelCase__ : Optional[int] = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: lowerCamelCase__ : Tuple = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: lowerCamelCase__ : int = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: lowerCamelCase__ : List[Any] = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: lowerCamelCase__ : str = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: lowerCamelCase__ : Any = name.replace('''proj''' , '''projection''' ) if "blocks" in name: lowerCamelCase__ : List[Any] = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: lowerCamelCase__ : Dict = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCamelCase__ : List[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: lowerCamelCase__ : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: lowerCamelCase__ : Any = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: lowerCamelCase__ : Tuple = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: lowerCamelCase__ : int = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: lowerCamelCase__ : Any = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: lowerCamelCase__ : Union[str, Any] = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: lowerCamelCase__ : Optional[int] = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: lowerCamelCase__ : Tuple = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: lowerCamelCase__ : Optional[Any] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCamelCase__ : List[str] = name.replace(f"refinenet{layer_idx}" , f"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: lowerCamelCase__ : str = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: lowerCamelCase__ : List[str] = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: lowerCamelCase__ : Optional[int] = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: lowerCamelCase__ : int = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: lowerCamelCase__ : List[str] = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCamelCase__ : Optional[Any] = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCamelCase__ : Dict = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCamelCase__ : str = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCamelCase__ : Optional[int] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCamelCase__ : Dict = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: lowerCamelCase__ : str = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: lowerCamelCase__ : int = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: lowerCamelCase__ : Union[str, Any] = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: lowerCamelCase__ : Optional[int] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: lowerCamelCase__ : Dict = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: lowerCamelCase__ : Tuple = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: lowerCamelCase__ : Any = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: lowerCamelCase__ : List[str] = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: lowerCamelCase__ : Optional[Any] = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: lowerCamelCase__ : List[Any] = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: lowerCamelCase__ : List[str] = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: lowerCamelCase__ : Union[str, Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: lowerCamelCase__ : Optional[Any] = name.replace('''..''' , '''.''' ) if "stem.conv" in name: lowerCamelCase__ : str = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: lowerCamelCase__ : List[Any] = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: lowerCamelCase__ : Tuple = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: lowerCamelCase__ : Union[str, Any] = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: lowerCamelCase__ : Union[str, Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: lowerCamelCase__ : int = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: lowerCamelCase__ : int = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def _a ( UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ : Dict = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight" ) lowerCamelCase__ : Optional[int] = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : int = in_proj_weight[: config.hidden_size, :] lowerCamelCase__ : str = in_proj_bias[: config.hidden_size] lowerCamelCase__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ : List[Any] = in_proj_bias[-config.hidden_size :] def _a ( ) -> str: """simple docstring""" lowerCamelCase__ : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase__ : Optional[Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : str = get_dpt_config(UpperCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCamelCase__ : int = torch.load(UpperCAmelCase , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(UpperCAmelCase ) # rename keys for key in state_dict.copy().keys(): lowerCamelCase__ : Union[str, Any] = state_dict.pop(UpperCAmelCase ) lowerCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(UpperCAmelCase , UpperCAmelCase ) # load HuggingFace model lowerCamelCase__ : Optional[Any] = DPTForSemanticSegmentation(UpperCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) model.eval() # Check outputs on an image lowerCamelCase__ : List[str] = 480 if '''ade''' in checkpoint_url else 384 lowerCamelCase__ : List[Any] = DPTImageProcessor(size=UpperCAmelCase ) lowerCamelCase__ : Optional[int] = prepare_img() lowerCamelCase__ : List[str] = image_processor(UpperCAmelCase , return_tensors='''pt''' ) # forward pass lowerCamelCase__ : Tuple = model(**UpperCAmelCase ).logits if '''ade''' in checkpoint_url else model(**UpperCAmelCase ).predicted_depth if show_prediction: lowerCamelCase__ : Union[str, Any] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=UpperCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCAmelCase ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": _A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) _A : List[Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
130
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : List[str] = KandinskyImgaImgPipeline _UpperCamelCase : List[str] = ["prompt", "image_embeds", "negative_image_embeds", "image"] _UpperCamelCase : Dict = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] _UpperCamelCase : Optional[int] = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _UpperCamelCase : Tuple = False @property def __a ( self ): return 3_2 @property def __a ( self ): return 3_2 @property def __a ( self ): return self.time_input_dim @property def __a ( self ): return self.time_input_dim * 4 @property def __a ( self ): return 1_0_0 @property def __a ( self ): _lowercase : int = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def __a ( self ): torch.manual_seed(0 ) _lowercase : Tuple = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _lowercase : Any = MultilingualCLIP(_lowerCAmelCase ) _lowercase : List[str] = text_encoder.eval() return text_encoder @property def __a ( self ): torch.manual_seed(0 ) _lowercase : Tuple = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowercase : Tuple = UNetaDConditionModel(**_lowerCAmelCase ) return model @property def __a ( self ): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __a ( self ): torch.manual_seed(0 ) _lowercase : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self ): _lowercase : Dict = self.dummy_text_encoder _lowercase : Dict = self.dummy_tokenizer _lowercase : Any = self.dummy_unet _lowercase : Optional[int] = self.dummy_movq _lowercase : Tuple = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } _lowercase : int = DDIMScheduler(**_lowerCAmelCase ) _lowercase : Tuple = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __a ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): _lowercase : str = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) _lowercase : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowerCAmelCase ) # create init_image _lowercase : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) _lowercase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowercase : Union[str, Any] = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) if str(_lowerCAmelCase ).startswith('mps' ): _lowercase : str = torch.manual_seed(_lowerCAmelCase ) else: _lowercase : Optional[int] = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowercase : Optional[int] = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def __a ( self ): _lowercase : List[Any] = 'cpu' _lowercase : Union[str, Any] = self.get_dummy_components() _lowercase : str = self.pipeline_class(**_lowerCAmelCase ) _lowercase : List[str] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowercase : Dict = pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) _lowercase : Tuple = output.images _lowercase : Union[str, Any] = pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] _lowercase : Optional[int] = image[0, -3:, -3:, -1] _lowercase : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _lowercase : Union[str, Any] = np.array( [0.61_47_49_43, 0.6_07_35_39, 0.43_30_85_44, 0.5_92_82_69, 0.47_49_35_95, 0.46_75_59_73, 0.4_61_38_38, 0.45_36_87_97, 0.50_11_92_33] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ): _lowercase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) _lowercase : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowercase : Optional[int] = 'A red cartoon frog, 4k' _lowercase : Optional[Any] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) _lowercase : Tuple = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa ) _lowercase : Tuple = pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) _lowercase : Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) _lowercase , _lowercase : Any = pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowercase : Any = pipeline( _lowerCAmelCase , image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type='np' , ) _lowercase : Union[str, Any] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
66
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging _snake_case : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : List[Any] , lowerCamelCase : CLIPSegForImageSegmentation , lowerCamelCase : CLIPSegProcessor , lowerCamelCase : AutoencoderKL , lowerCamelCase : CLIPTextModel , lowerCamelCase : CLIPTokenizer , lowerCamelCase : UNetaDConditionModel , lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase : StableDiffusionSafetyChecker , lowerCamelCase : CLIPImageProcessor , ) -> Tuple: super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: __snake_case : Tuple = ( F'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' F' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , lowerCamelCase , standard_warn=lowerCamelCase ) __snake_case : Any = dict(scheduler.config ) __snake_case : List[Any] = 1 __snake_case : Tuple = FrozenDict(lowerCamelCase ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: __snake_case : List[str] = ( F'The configuration file of this scheduler: {scheduler} has not set the configuration' " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , lowerCamelCase , standard_warn=lowerCamelCase ) __snake_case : List[str] = dict(scheduler.config ) __snake_case : List[str] = True __snake_case : Any = FrozenDict(lowerCamelCase ) if safety_checker is None: logger.warning( F'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=lowerCamelCase , segmentation_processor=lowerCamelCase , vae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , safety_checker=lowerCamelCase , feature_extractor=lowerCamelCase , ) def __snake_case ( self : Dict , lowerCamelCase : Optional[Union[str, int]] = "auto" ) -> Tuple: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __snake_case : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def __snake_case ( self : List[Any] ) -> Any: self.enable_attention_slicing(lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> str: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) __snake_case : Optional[int] = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase , lowerCamelCase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __snake_case ( self : int ) -> Any: if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : List[Any] , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : Union[torch.FloatTensor, PIL.Image.Image] , lowerCamelCase : str , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 50 , lowerCamelCase : float = 7.5 , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , **lowerCamelCase : Dict , ) -> List[str]: __snake_case : Tuple = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) __snake_case : str = self.segmentation_model(**lowerCamelCase ) __snake_case : Dict = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __snake_case : List[Any] = self.numpy_to_pil(lowerCamelCase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __snake_case : Tuple = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowerCamelCase , image=lowerCamelCase , mask_image=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , )
81
0
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def __UpperCAmelCase ( __a : Optional[int] ,__a : int=False ) -> Union[str, Any]: """simple docstring""" try: _a : Optional[Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _a : Optional[int] = default else: # KEY is set, convert it to True or False. try: _a : List[str] = strtobool(a_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value a__ = parse_flag_from_env('''RUN_SLOW''', default=False) a__ = parse_flag_from_env('''RUN_REMOTE''', default=False) a__ = parse_flag_from_env('''RUN_LOCAL''', default=True) a__ = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression a__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') a__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') a__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio a__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam a__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility a__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows a__ = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def __UpperCAmelCase ( __a : Optional[Any] ) -> Dict: """simple docstring""" try: import faiss # noqa except ImportError: _a : Dict = unittest.skip('''test requires faiss''' )(a_ ) return test_case def __UpperCAmelCase ( __a : Any ) -> Optional[int]: """simple docstring""" try: import regex # noqa except ImportError: _a : int = unittest.skip('''test requires regex''' )(a_ ) return test_case def __UpperCAmelCase ( __a : List[str] ) -> List[str]: """simple docstring""" try: import elasticsearch # noqa except ImportError: _a : Optional[int] = unittest.skip('''test requires elasticsearch''' )(a_ ) return test_case def __UpperCAmelCase ( __a : int ) -> Tuple: """simple docstring""" try: import sqlalchemy # noqa except ImportError: _a : List[str] = unittest.skip('''test requires sqlalchemy''' )(a_ ) return test_case def __UpperCAmelCase ( __a : Optional[Any] ) -> int: """simple docstring""" if not config.TORCH_AVAILABLE: _a : List[Any] = unittest.skip('''test requires PyTorch''' )(a_ ) return test_case def __UpperCAmelCase ( __a : int ) -> List[Any]: """simple docstring""" if not config.TF_AVAILABLE: _a : Any = unittest.skip('''test requires TensorFlow''' )(a_ ) return test_case def __UpperCAmelCase ( __a : Dict ) -> Any: """simple docstring""" if not config.JAX_AVAILABLE: _a : List[str] = unittest.skip('''test requires JAX''' )(a_ ) return test_case def __UpperCAmelCase ( __a : Optional[Any] ) -> Any: """simple docstring""" if not config.PIL_AVAILABLE: _a : List[Any] = unittest.skip('''test requires Pillow''' )(a_ ) return test_case def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(a_ ) else: return test_case def __UpperCAmelCase ( __a : Tuple ) -> Optional[int]: """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(a_ ) else: return test_case def __UpperCAmelCase ( __a : Union[str, Any] ) -> int: """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(a_ ) else: return test_case def __UpperCAmelCase ( __a : Tuple ) -> int: """simple docstring""" def _require_spacy_model(__a : Optional[int] ): try: import spacy # noqa F401 spacy.load(a_ ) except ImportError: return unittest.skip('''test requires spacy''' )(a_ ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(a_ ) )(a_ ) else: return test_case return _require_spacy_model def __UpperCAmelCase ( __a : str ) -> int: """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(a_ ) else: return test_case def __UpperCAmelCase ( __a : List[Any] ) -> Optional[Any]: """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(a_ ) else: return test_case def __UpperCAmelCase ( __a : Dict ) -> str: """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: _a : Union[str, Any] = unittest.skip('''test is slow''' )(a_ ) return test_case def __UpperCAmelCase ( __a : str ) -> List[Any]: """simple docstring""" if not _run_local_tests or _run_local_tests == 0: _a : Optional[int] = unittest.skip('''test is local''' )(a_ ) return test_case def __UpperCAmelCase ( __a : str ) -> str: """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: _a : int = unittest.skip('''test is packaged''' )(a_ ) return test_case def __UpperCAmelCase ( __a : str ) -> Tuple: """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: _a : Optional[int] = unittest.skip('''test requires remote''' )(a_ ) return test_case def __UpperCAmelCase ( *__a : int ) -> Tuple: """simple docstring""" def decorate(cls : Any ): for name, fn in cls.__dict__.items(): if callable(a_ ) and name.startswith('''test''' ): for decorator in decorators: _a : Optional[Any] = decorator(a_ ) setattr(cls ,a_ ,a_ ) return cls return decorate class UpperCAmelCase_ ( _UpperCAmelCase ): """simple docstring""" pass class UpperCAmelCase_ ( _UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : Any = 1 UpperCAmelCase__ : Optional[Any] = 2 @contextmanager def __UpperCAmelCase ( __a : List[str]=OfflineSimulationMode.CONNECTION_FAILS ,__a : List[Any]=1E-16 ) -> str: """simple docstring""" _a : List[Any] = requests.Session().request def timeout_request(__a : int ,__a : int ,__a : Dict ,**__a : Tuple ): # Change the url to an invalid url so that the connection hangs _a : Union[str, Any] = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) _a : Dict = timeout try: return online_request(a_ ,a_ ,**a_ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _a : int = url _a : Any = e.args[0] _a : Optional[int] = (max_retry_error.args[0].replace('''10.255.255.1''' ,F"""OfflineMock[{url}]""" ),) _a : Union[str, Any] = (max_retry_error,) raise def raise_connection_error(__a : Dict ,__a : Dict ,**__a : List[Any] ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=a_ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,a_ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,a_ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,a_ ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __UpperCAmelCase ( *__a : Optional[int] ,**__a : Any ) -> List[Any]: """simple docstring""" _a : Union[str, Any] = str(Path().resolve() ) with tempfile.TemporaryDirectory(*a_ ,**a_ ) as tmp_dir: try: os.chdir(a_ ) yield finally: os.chdir(a_ ) @contextmanager def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" import gc gc.collect() _a : List[str] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" import gc gc.collect() _a : Tuple = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __UpperCAmelCase ( __a : Any ,__a : str ) -> List[str]: """simple docstring""" return deepcopy(a_ ).integers(0 ,100 ,10 ).tolist() == deepcopy(a_ ).integers(0 ,100 ,10 ).tolist() def __UpperCAmelCase ( __a : Tuple ) -> Tuple: """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(__a : Dict ,*__a : int ,**__a : Tuple ): try: return func(*a_ ,**a_ ) except HTTPError as err: if str(a_ ).startswith('''500''' ) or str(a_ ).startswith('''502''' ): pytest.xfail(str(a_ ) ) raise err return decorator.decorator(_wrapper ,a_ ) class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a ) -> List[str]: _a : Any = returncode _a : int = stdout _a : Tuple = stderr async def __UpperCAmelCase ( __a : List[str] ,__a : Optional[int] ) -> Tuple: """simple docstring""" while True: _a : int = await stream.readline() if line: callback(a_ ) else: break async def __UpperCAmelCase ( __a : Optional[int] ,__a : Optional[Any]=None ,__a : int=None ,__a : int=None ,__a : List[str]=False ,__a : Optional[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(a_ ) ) _a : Dict = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=a_ ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=a_ ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _a : str = [] _a : Tuple = [] def tee(__a : int ,__a : Tuple ,__a : Any ,__a : Optional[Any]="" ): _a : Union[str, Any] = line.decode('''utf-8''' ).rstrip() sink.append(a_ ) if not quiet: print(a_ ,a_ ,file=a_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda __a : tee(a_ ,a_ ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda __a : tee(a_ ,a_ ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=a_ ,) return _RunOutput(await p.wait() ,a_ ,a_ ) def __UpperCAmelCase ( __a : Optional[Any] ,__a : Any=None ,__a : List[str]=None ,__a : Tuple=180 ,__a : List[Any]=False ,__a : str=True ) -> _RunOutput: """simple docstring""" _a : int = asyncio.get_event_loop() _a : Any = loop.run_until_complete( _stream_subprocess(a_ ,env=a_ ,stdin=a_ ,timeout=a_ ,quiet=a_ ,echo=a_ ) ) _a : Optional[Any] = ''' '''.join(a_ ) if result.returncode > 0: _a : List[Any] = '''\n'''.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : List[Any] = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) _a : Union[str, Any] = re.sub(R'''^gw''' ,'''''' ,a_ ,0 ,re.M ) return int(a_ ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" _a : Any = 29_500 _a : str = pytest_xdist_worker_id() return port + uniq_delta
718
def __UpperCAmelCase ( __a : int = 2_000_000 ) -> int: """simple docstring""" _a : List[str] = [0 for i in range(n + 1 )] _a : Tuple = 1 _a : Tuple = 1 for i in range(2 ,int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i ,n + 1 ,__a ): _a : List[str] = 1 _a : List[Any] = 0 for i in range(__a ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
578
0
from __future__ import annotations import time __lowercase : Optional[Any] = list[tuple[int, int]] __lowercase : Tuple = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowercase : Optional[Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class _A : '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Tuple = pos_x snake_case : List[str] = pos_y snake_case : Optional[int] = (pos_y, pos_x) snake_case : List[str] = goal_x snake_case : str = goal_y snake_case : int = parent class _A : '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Union[str, Any] = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = [self.start] snake_case : int = False def snake_case_ ( self ): '''simple docstring''' while self.node_queue: snake_case : Any = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case : List[Any] = True return self.retrace_path(SCREAMING_SNAKE_CASE_ ) snake_case : Dict = self.get_successors(SCREAMING_SNAKE_CASE_ ) for node in successors: self.node_queue.append(SCREAMING_SNAKE_CASE_ ) if not self.reached: return [self.start.pos] return None def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : int = [] for action in delta: snake_case : Optional[Any] = parent.pos_x + action[1] snake_case : Optional[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,self.target.pos_y ,self.target.pos_x ,SCREAMING_SNAKE_CASE_ ) ) return successors def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : List[Any] = node snake_case : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case : Any = current_node.parent path.reverse() return path class _A : '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : int = BreadthFirstSearch(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : Any = BreadthFirstSearch(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : int = False def snake_case_ ( self ): '''simple docstring''' while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case : List[str] = self.fwd_bfs.node_queue.pop(0 ) snake_case : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case : Optional[int] = True return self.retrace_bidirectional_path( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : Tuple = current_bwd_node snake_case : Any = current_fwd_node snake_case : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(SCREAMING_SNAKE_CASE_ ), self.bwd_bfs: self.bwd_bfs.get_successors(SCREAMING_SNAKE_CASE_ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(SCREAMING_SNAKE_CASE_ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Dict = self.fwd_bfs.retrace_path(SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = self.bwd_bfs.retrace_path(SCREAMING_SNAKE_CASE_ ) bwd_path.pop() bwd_path.reverse() snake_case : Optional[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowercase : List[Any] = (0, 0) __lowercase : Optional[int] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowercase : Optional[int] = time.time() __lowercase : Optional[int] = BreadthFirstSearch(init, goal) __lowercase : Any = bfs.search() __lowercase : List[str] = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) __lowercase : List[str] = time.time() __lowercase : Dict = BidirectionalBreadthFirstSearch(init, goal) __lowercase : Union[str, Any] = bd_bfs.search() __lowercase : Optional[Any] = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
36
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "AutoImageProcessor" lowerCamelCase_ = "AutoTokenizer" def __init__( self :Optional[int] , __A :Optional[Any] , __A :Dict ) -> Dict: """simple docstring""" super().__init__(__A , __A ) SCREAMING_SNAKE_CASE__ = self.image_processor def __call__( self :int , __A :str=None , __A :int=None , __A :Union[str, Any]=None , **__A :str ) -> Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :str , *__A :List[str] , **__A :List[str] ) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :List[str] , *__A :Any , **__A :Any ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :Dict ) -> List[Any]: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
6
0
from __future__ import annotations import math def A_ ( snake_case : int , snake_case : int , snake_case : bool , snake_case : list[int] , snake_case : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(snake_case ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , snake_case , snake_case , snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , snake_case , snake_case , snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , snake_case , snake_case , snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , snake_case , snake_case , snake_case ) , ) def A_ ( ) -> None: '''simple docstring''' __UpperCamelCase = [90, 23, 6, 33, 21, 65, 123, 34423] __UpperCamelCase = math.log(len(snake_case ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , snake_case , snake_case , snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
451
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : int = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowercase__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
451
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : str = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys a : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
633
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase (unittest.TestCase ): """simple docstring""" @require_torch def A_ ( self : Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = pipeline( task="zero-shot-audio-classification", model="hf-internal-testing/tiny-clap-htsat-unfused" ) SCREAMING_SNAKE_CASE__ : int = load_dataset("ashraq/esc50" ) SCREAMING_SNAKE_CASE__ : int = dataset["train"]["audio"][-1]["array"] SCREAMING_SNAKE_CASE__ : Union[str, Any] = audio_classifier(_UpperCAmelCase, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(_UpperCAmelCase ), [{"score": 0.501, "label": "Sound of a dog"}, {"score": 0.499, "label": "Sound of vaccum cleaner"}], ) @unittest.skip("No models are available in TF" ) def A_ ( self : str ) -> Dict: """simple docstring""" pass @slow @require_torch def A_ ( self : str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = pipeline( task="zero-shot-audio-classification", model="laion/clap-htsat-unfused", ) # This is an audio of a dog SCREAMING_SNAKE_CASE__ : List[str] = load_dataset("ashraq/esc50" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = dataset["train"]["audio"][-1]["array"] SCREAMING_SNAKE_CASE__ : Optional[Any] = audio_classifier(_UpperCAmelCase, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(_UpperCAmelCase ), [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ) SCREAMING_SNAKE_CASE__ : Any = audio_classifier([audio] * 5, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(_UpperCAmelCase ), [ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5, ) SCREAMING_SNAKE_CASE__ : Any = audio_classifier( [audio] * 5, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"], batch_size=5 ) self.assertEqual( nested_simplify(_UpperCAmelCase ), [ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5, ) @unittest.skip("No models are available in TF" ) def A_ ( self : str ) -> List[str]: """simple docstring""" pass
663
0
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowercase__ ( __lowercase : List[str] ) -> Tuple: """simple docstring""" return 1 / (1 + np.exp(-z )) def lowercase__ ( __lowercase : Optional[Any] , __lowercase : Dict ) -> Any: """simple docstring""" return (-y * np.log(__lowercase ) - (1 - y) * np.log(1 - h )).mean() def lowercase__ ( __lowercase : str , __lowercase : str , __lowercase : str ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = np.dot(__lowercase , __lowercase ) return np.sum(y * scores - np.log(1 + np.exp(__lowercase ) ) ) def lowercase__ ( __lowercase : List[Any] , __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : int=70000 ) -> List[str]: """simple docstring""" __UpperCamelCase = np.zeros(x.shape[1] ) for iterations in range(__lowercase ): __UpperCamelCase = np.dot(__lowercase , __lowercase ) __UpperCamelCase = sigmoid_function(__lowercase ) __UpperCamelCase = np.dot(x.T , h - y ) / y.size __UpperCamelCase = theta - alpha * gradient # updating the weights __UpperCamelCase = np.dot(__lowercase , __lowercase ) __UpperCamelCase = sigmoid_function(__lowercase ) __UpperCamelCase = cost_function(__lowercase , __lowercase ) if iterations % 100 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a__ : Optional[Any] =datasets.load_iris() a__ : List[str] =iris.data[:, :2] a__ : Union[str, Any] =(iris.target != 0) * 1 a__ : List[str] =0.1 a__ : List[str] =logistic_reg(alpha, x, y, max_iterations=70_000) print('''theta: ''', theta) # printing the theta i.e our weights vector def lowercase__ ( __lowercase : Dict ) -> str: """simple docstring""" return sigmoid_function( np.dot(__lowercase , __lowercase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((a__) , (a__)) : Optional[int] =(x[:, 0].min(), x[:, 0].max()) ((a__) , (a__)) : Optional[int] =(x[:, 1].min(), x[:, 1].max()) ((a__) , (a__)) : Optional[Any] =np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a__ : str =np.c_[xxa.ravel(), xxa.ravel()] a__ : Dict =predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
434
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class snake_case ( __lowerCamelCase ): """simple docstring""" @staticmethod @abstractmethod def _lowerCamelCase ( __A : ArgumentParser ): raise NotImplementedError() @abstractmethod def _lowerCamelCase ( self : int ): raise NotImplementedError()
434
1
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _snake_case = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex _snake_case = 10 _snake_case = 256 def _UpperCamelCase ( snake_case__ ) -> Optional[MinHash]: if len(_UpperCAmelCase ) < MIN_NUM_TOKENS: return None __UpperCAmelCase : int = MinHash(num_perm=_UpperCAmelCase ) for token in set(_UpperCAmelCase ): min_hash.update(token.encode() ) return min_hash def _UpperCamelCase ( snake_case__ ) -> Set[str]: return {t for t in NON_ALPHA.split(_UpperCAmelCase ) if len(t.strip() ) > 0} class _snake_case : def __init__( self: Tuple , *, __lowerCamelCase: Dict = 0.85 , ) -> Dict: __UpperCAmelCase : List[str] = duplication_jaccard_threshold __UpperCAmelCase : Optional[Any] = NUM_PERM __UpperCAmelCase : Optional[int] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __UpperCAmelCase : int = defaultdict(UpperCAmelCase__ ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: List[str] ) -> None: __UpperCAmelCase : Optional[int] = self._index.query(UpperCAmelCase__ ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(UpperCAmelCase__ , UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(UpperCAmelCase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(UpperCAmelCase__ ) def _lowerCamelCase ( self: List[str] ) -> List[List[Dict]]: __UpperCAmelCase : int = [] for base, duplicates in self._duplicate_clusters.items(): __UpperCAmelCase : Optional[Any] = [base] + list(UpperCAmelCase__ ) # reformat the cluster to be a list of dict __UpperCAmelCase : str = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(UpperCAmelCase__ ) return duplicate_clusters def _lowerCamelCase ( self: Any , __lowerCamelCase: Tuple ) -> None: __UpperCAmelCase : List[Any] = self.get_duplicate_clusters() with open(UpperCAmelCase__ , "w" ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) def _UpperCamelCase ( snake_case__ ) -> str: __UpperCAmelCase , __UpperCAmelCase : List[Any] = element __UpperCAmelCase : int = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _UpperCamelCase ( snake_case__ ) -> Optional[int]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash, ThreadedIterator(_UpperCAmelCase, max_queue_size=1_0000 ), chunksize=100, ): if data is not None: yield data def _UpperCamelCase ( snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : str = DuplicationIndex(duplication_jaccard_threshold=_UpperCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_UpperCAmelCase ) ), max_queue_size=100 ) ): di.add(_UpperCAmelCase, _UpperCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _UpperCamelCase ( snake_case__, snake_case__ ) -> float: __UpperCAmelCase : List[Any] = get_tokens(_UpperCAmelCase ) __UpperCAmelCase : List[str] = get_tokens(_UpperCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _snake_case = None def _UpperCamelCase ( snake_case__, snake_case__ ) -> int: __UpperCAmelCase : str = [] for elementa in cluster: __UpperCAmelCase : Optional[int] = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: __UpperCAmelCase : Dict = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(_UpperCAmelCase, _UpperCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: __UpperCAmelCase : List[str] = 1 extremes.append(_UpperCAmelCase ) return extremes def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> str: global _shared_dataset __UpperCAmelCase : int = dataset __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Optional[int] = partial(_find_cluster_extremes_shared, jaccard_threshold=_UpperCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _UpperCAmelCase, _UpperCAmelCase, ), total=len(_UpperCAmelCase ), ): extremes_list.append(_UpperCAmelCase ) return extremes_list def _UpperCamelCase ( snake_case__, snake_case__ = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: __UpperCAmelCase : Dict = make_duplicate_clusters(_UpperCAmelCase, _UpperCAmelCase ) __UpperCAmelCase : int = {x["base_index"] for cluster in duplicate_clusters for x in cluster} __UpperCAmelCase : Dict = {} __UpperCAmelCase : Any = find_extremes(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) for extremes in extremes_clusters: for element in extremes: __UpperCAmelCase : Any = element __UpperCAmelCase : Dict = duplicate_indices - set(extreme_dict.keys() ) __UpperCAmelCase : Tuple = dataset.filter(lambda snake_case__, snake_case__ : idx not in remove_indices, with_indices=_UpperCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __UpperCAmelCase : Optional[Any] = element["base_index"] in extreme_dict if element["is_extreme"]: __UpperCAmelCase : List[str] = extreme_dict[element["base_index"]]["copies"] print(f'''Original dataset size: {len(_UpperCAmelCase )}''' ) print(f'''Number of duplicate clusters: {len(_UpperCAmelCase )}''' ) print(f'''Files in duplicate cluster: {len(_UpperCAmelCase )}''' ) print(f'''Unique files in duplicate cluster: {len(_UpperCAmelCase )}''' ) print(f'''Filtered dataset size: {len(_UpperCAmelCase )}''' ) return ds_filter, duplicate_clusters
382
'''simple docstring''' def a ( _UpperCAmelCase = 5_0 ) -> int: """simple docstring""" a_ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
697
0
from __future__ import annotations import math import random from typing import Any class __UpperCAmelCase : """simple docstring""" def __init__( self ): __a = [] __a = 0 __a = 0 def snake_case_ ( self ): return self.head == self.tail def snake_case_ ( self , __A ): self.data.append(__A ) __a = self.tail + 1 def snake_case_ ( self ): __a = self.data[self.head] __a = self.head + 1 return ret def snake_case_ ( self ): return self.tail - self.head def snake_case_ ( self ): print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class __UpperCAmelCase : """simple docstring""" def __init__( self , __A ): __a = data __a = None __a = None __a = 1 def snake_case_ ( self ): return self.data def snake_case_ ( self ): return self.left def snake_case_ ( self ): return self.right def snake_case_ ( self ): return self.height def snake_case_ ( self , __A ): __a = data def snake_case_ ( self , __A ): __a = node def snake_case_ ( self , __A ): __a = node def snake_case_ ( self , __A ): __a = height def a (lowerCAmelCase__ ): if node is None: return 0 return node.get_height() def a (lowerCAmelCase__ , lowerCAmelCase__ ): if a > b: return a return b def a (lowerCAmelCase__ ): print("""left rotation node:""" , node.get_data() ) __a = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowerCAmelCase__ ) __a = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) __a = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCAmelCase__ ) return ret def a (lowerCAmelCase__ ): print("""right rotation node:""" , node.get_data() ) __a = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowerCAmelCase__ ) __a = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) __a = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCAmelCase__ ) return ret def a (lowerCAmelCase__ ): __a = node.get_left() assert left_child is not None node.set_left(left_rotation(lowerCAmelCase__ ) ) return right_rotation(lowerCAmelCase__ ) def a (lowerCAmelCase__ ): __a = node.get_right() assert right_child is not None node.set_right(right_rotation(lowerCAmelCase__ ) ) return left_rotation(lowerCAmelCase__ ) def a (lowerCAmelCase__ , lowerCAmelCase__ ): if node is None: return MyNode(lowerCAmelCase__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowerCAmelCase__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __a = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __a = right_rotation(lowerCAmelCase__ ) else: __a = lr_rotation(lowerCAmelCase__ ) else: node.set_right(insert_node(node.get_right() , lowerCAmelCase__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __a = node.get_right() assert right_child is not None if data < right_child.get_data(): __a = rl_rotation(lowerCAmelCase__ ) else: __a = left_rotation(lowerCAmelCase__ ) __a = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) return node def a (lowerCAmelCase__ ): while True: __a = root.get_right() if right_child is None: break __a = right_child return root.get_data() def a (lowerCAmelCase__ ): while True: __a = root.get_left() if left_child is None: break __a = left_child return root.get_data() def a (lowerCAmelCase__ , lowerCAmelCase__ ): __a = root.get_left() __a = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __a = get_left_most(lowerCAmelCase__ ) root.set_data(lowerCAmelCase__ ) root.set_right(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) elif left_child is not None: __a = left_child elif right_child is not None: __a = right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) if get_height(lowerCAmelCase__ ) - get_height(lowerCAmelCase__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __a = left_rotation(lowerCAmelCase__ ) else: __a = rl_rotation(lowerCAmelCase__ ) elif get_height(lowerCAmelCase__ ) - get_height(lowerCAmelCase__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __a = right_rotation(lowerCAmelCase__ ) else: __a = lr_rotation(lowerCAmelCase__ ) __a = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowerCAmelCase__ ) return root class __UpperCAmelCase : """simple docstring""" def __init__( self ): __a = None def snake_case_ ( self ): return get_height(self.root ) def snake_case_ ( self , __A ): print("""insert:""" + str(__A ) ) __a = insert_node(self.root , __A ) def snake_case_ ( self , __A ): print("""delete:""" + str(__A ) ) if self.root is None: print("""Tree is empty!""" ) return __a = del_node(self.root , __A ) def __str__( self , ): # a level traversale, gives a more intuitive look on the tree __a = """""" __a = MyQueue() q.push(self.root ) __a = self.get_height() if layer == 0: return output __a = 0 while not q.is_empty(): __a = q.pop() __a = """ """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(__A ) q.push(__A ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space __a = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , __A ) - 1: __a = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def a (): import doctest doctest.testmod() if __name__ == "__main__": _test() SCREAMING_SNAKE_CASE = AVLtree() SCREAMING_SNAKE_CASE = list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
708
from math import pow def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count __a = int(pow(lowerCAmelCase__ , lowerCAmelCase__ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n __a , __a = backtrack( lowerCAmelCase__ , lowerCAmelCase__ , current_number + 1 , lowerCAmelCase__ , lowerCAmelCase__ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. __a , __a = backtrack( lowerCAmelCase__ , lowerCAmelCase__ , current_number + 1 , lowerCAmelCase__ , lowerCAmelCase__ ) return current_sum, solutions_count def a (lowerCAmelCase__ , lowerCAmelCase__ ): if not (1 <= needed_sum <= 1_000 and 2 <= power <= 10): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(lowerCAmelCase__ , lowerCAmelCase__ , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
209
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : List[Any] = "fnet" def __init__( self , lowercase_=3_2_0_0_0 , lowercase_=7_6_8 , lowercase_=1_2 , lowercase_=3_0_7_2 , lowercase_="gelu_new" , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=4 , lowercase_=0.0_2 , lowercase_=1E-12 , lowercase_=False , lowercase_=5_1_2 , lowercase_=3 , lowercase_=1 , lowercase_=2 , **lowercase_ , ) -> int: super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = type_vocab_size UpperCAmelCase = layer_norm_eps UpperCAmelCase = use_tpu_fourier_optimizations UpperCAmelCase = tpu_short_seq_length
373
"""simple docstring""" import math def lowercase__ ( lowerCAmelCase : str , lowerCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowerCAmelCase ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. SCREAMING_SNAKE_CASE_ = '''Enter the base and the power separated by a comma: ''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = map(int, input(prompt).split(''',''')) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. SCREAMING_SNAKE_CASE_ = res(xa, ya) SCREAMING_SNAKE_CASE_ = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
373
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _snake_case ( __snake_case ): """simple docstring""" a = "megatron-bert" def __init__( self : Optional[int] , _A : Any=2_9_0_5_6 , _A : Union[str, Any]=1_0_2_4 , _A : Union[str, Any]=2_4 , _A : Optional[Any]=1_6 , _A : Union[str, Any]=4_0_9_6 , _A : List[Any]="gelu" , _A : Tuple=0.1 , _A : int=0.1 , _A : str=5_1_2 , _A : Dict=2 , _A : Any=0.02 , _A : List[str]=1e-12 , _A : List[str]=0 , _A : Dict="absolute" , _A : Tuple=True , **_A : Union[str, Any] , ): """simple docstring""" super().__init__(pad_token_id=_A , **_A) _SCREAMING_SNAKE_CASE : List[Any] = vocab_size _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size _SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers _SCREAMING_SNAKE_CASE : Dict = num_attention_heads _SCREAMING_SNAKE_CASE : List[Any] = hidden_act _SCREAMING_SNAKE_CASE : List[str] = intermediate_size _SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : str = max_position_embeddings _SCREAMING_SNAKE_CASE : List[str] = type_vocab_size _SCREAMING_SNAKE_CASE : str = initializer_range _SCREAMING_SNAKE_CASE : int = layer_norm_eps _SCREAMING_SNAKE_CASE : int = position_embedding_type _SCREAMING_SNAKE_CASE : str = use_cache
635
"""simple docstring""" import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 16 )-> str: _SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = DatasetDict( { """train""": dataset["""train"""].select(__SCREAMING_SNAKE_CASE ), """validation""": dataset["""train"""].select(__SCREAMING_SNAKE_CASE ), """test""": dataset["""validation"""], } ) def tokenize_function(__SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _SCREAMING_SNAKE_CASE : str = datasets.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _SCREAMING_SNAKE_CASE : Any = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. _SCREAMING_SNAKE_CASE : Any = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _SCREAMING_SNAKE_CASE : Optional[Any] = 16 elif accelerator.mixed_precision != "no": _SCREAMING_SNAKE_CASE : Any = 8 else: _SCREAMING_SNAKE_CASE : Optional[int] = None return tokenizer.pad( __SCREAMING_SNAKE_CASE , padding="""longest""" , max_length=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" , ) # Instantiate dataloaders. _SCREAMING_SNAKE_CASE : int = DataLoader( tokenized_datasets["""train"""] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Optional[int] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader, test_dataloader def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Dict: # New Code # _SCREAMING_SNAKE_CASE : Union[str, Any] = [] # Download the dataset _SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset("""glue""" , """mrpc""" ) # Create our splits _SCREAMING_SNAKE_CASE : Dict = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _SCREAMING_SNAKE_CASE : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _SCREAMING_SNAKE_CASE : Tuple = config["""lr"""] _SCREAMING_SNAKE_CASE : Tuple = int(config["""num_epochs"""] ) _SCREAMING_SNAKE_CASE : int = int(config["""seed"""] ) _SCREAMING_SNAKE_CASE : int = int(config["""batch_size"""] ) _SCREAMING_SNAKE_CASE : List[str] = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _SCREAMING_SNAKE_CASE : Any = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _SCREAMING_SNAKE_CASE : List[str] = batch_size // MAX_GPU_BATCH_SIZE _SCREAMING_SNAKE_CASE : List[str] = MAX_GPU_BATCH_SIZE set_seed(__SCREAMING_SNAKE_CASE ) # New Code # # Create our folds: _SCREAMING_SNAKE_CASE : List[str] = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _SCREAMING_SNAKE_CASE : Optional[Any] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = get_fold_dataloaders( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _SCREAMING_SNAKE_CASE : Any = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _SCREAMING_SNAKE_CASE : Tuple = model.to(accelerator.device ) # Instantiate optimizer _SCREAMING_SNAKE_CASE : int = AdamW(params=model.parameters() , lr=__SCREAMING_SNAKE_CASE ) # Instantiate scheduler _SCREAMING_SNAKE_CASE : int = get_linear_schedule_with_warmup( optimizer=__SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(__SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(__SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _SCREAMING_SNAKE_CASE : Optional[Any] = model(**__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Dict = outputs.loss _SCREAMING_SNAKE_CASE : List[Any] = loss / gradient_accumulation_steps accelerator.backward(__SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : List[str] = model(**__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : str = outputs.logits.argmax(dim=-1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE , ) _SCREAMING_SNAKE_CASE : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , __SCREAMING_SNAKE_CASE ) # New Code # # We also run predictions on the test set at the very end _SCREAMING_SNAKE_CASE : str = [] for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : List[str] = model(**__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : List[Any] = outputs.logits _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(__SCREAMING_SNAKE_CASE , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _SCREAMING_SNAKE_CASE : Optional[int] = torch.cat(__SCREAMING_SNAKE_CASE , dim=0 ) _SCREAMING_SNAKE_CASE : List[str] = torch.stack(__SCREAMING_SNAKE_CASE , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _SCREAMING_SNAKE_CASE : int = metric.compute(predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE ) accelerator.print("""Average test metrics from all folds:""" , __SCREAMING_SNAKE_CASE ) def lowerCamelCase_()-> Optional[Any]: _SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=__SCREAMING_SNAKE_CASE , default=3 , help="""The number of splits to perform across the dataset""" ) _SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() _SCREAMING_SNAKE_CASE : Optional[int] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
635
1
'''simple docstring''' def _A ( A__ , A__ ): """simple docstring""" __lowercase = [1] for i in range(2 , A__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __lowercase = [] __lowercase = list(range(A__ ) ) # Find permutation while factorials: __lowercase = factorials.pop() __lowercase , __lowercase = divmod(A__ , A__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
41
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _UpperCAmelCase : int = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _UpperCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="utf-8" , check=UpperCAmelCase__ , ) assert hasattr(self , "env" ) def lowerCAmelCase__ ( self , UpperCAmelCase__=1 ): # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'''{self.env.base_job_name}-single''' , instance_count=UpperCAmelCase__ , instance_type=self.instance_type , debugger_hook_config=UpperCAmelCase__ , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def lowerCAmelCase__ ( self , UpperCAmelCase__ ): TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) def lowerCAmelCase__ ( self ): # create estimator SCREAMING_SNAKE_CASE__ = self.create_estimator() # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) SCREAMING_SNAKE_CASE__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , UpperCAmelCase__ )
700
"""simple docstring""" import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets _lowerCamelCase = datasets.logging.get_logger(__name__) _lowerCamelCase = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' _lowerCamelCase = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' _lowerCamelCase = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' _lowerCamelCase = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): """simple docstring""" def lowerCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/google-research/bleurt" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/bleurt"] , reference_urls=["https://github.com/google-research/bleurt", "https://arxiv.org/abs/2004.04696"] , ) def lowerCAmelCase__ ( self , UpperCAmelCase__ ): # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( "Using default BLEURT-Base checkpoint for sequence maximum length 128. " "You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512')." ) SCREAMING_SNAKE_CASE__ = "bleurt-base-128" if self.config_name.lower() in CHECKPOINT_URLS: SCREAMING_SNAKE_CASE__ = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: SCREAMING_SNAKE_CASE__ = self.config_name.upper() else: raise KeyError( f'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''' ) # download the model checkpoint specified by self.config_name and set up the scorer SCREAMING_SNAKE_CASE__ = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) SCREAMING_SNAKE_CASE__ = score.BleurtScorer(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ = self.scorer.score(references=UpperCAmelCase__ , candidates=UpperCAmelCase__ ) return {"scores": scores}
112
0
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : str = ConsistencyModelPipeline snake_case__ : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case__ : Dict = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt snake_case__ : Union[str, Any] = frozenset( [ "num_inference_steps", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ]) @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet" , ) return unet @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , ) return unet def UpperCAmelCase_ ( self : List[str] , UpperCAmelCase__ : Any=False ) -> Dict: if class_cond: __SCREAMING_SNAKE_CASE = self.dummy_cond_unet else: __SCREAMING_SNAKE_CASE = self.dummy_uncond_unet # Default to CM multistep sampler __SCREAMING_SNAKE_CASE = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) __SCREAMING_SNAKE_CASE = { "unet": unet, "scheduler": scheduler, } return components def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any]=0 ) -> Union[str, Any]: if str(UpperCAmelCase__ ).startswith("mps" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { "batch_size": 1, "num_inference_steps": None, "timesteps": [2_2, 0], "generator": generator, "output_type": "np", } return inputs def UpperCAmelCase_ ( self : str ) -> Any: __SCREAMING_SNAKE_CASE = "cpu" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = ConsistencyModelPipeline(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase__ ).images assert image.shape == (1, 3_2, 3_2, 3) __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = "cpu" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components(class_cond=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = ConsistencyModelPipeline(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase__ ).images assert image.shape == (1, 3_2, 3_2, 3) __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase_ ( self : List[Any] ) -> Any: __SCREAMING_SNAKE_CASE = "cpu" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = ConsistencyModelPipeline(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase__ ).images assert image.shape == (1, 3_2, 3_2, 3) __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase_ ( self : Optional[int] ) -> str: __SCREAMING_SNAKE_CASE = "cpu" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components(class_cond=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = ConsistencyModelPipeline(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase__ ).images assert image.shape == (1, 3_2, 3_2, 3) __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : int="cpu" , UpperCAmelCase__ : Optional[Any]=torch.floataa , UpperCAmelCase__ : Optional[Any]=(1, 3, 6_4, 6_4) ) -> Tuple: __SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { "num_inference_steps": None, "timesteps": [2_2, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: __SCREAMING_SNAKE_CASE = self.get_fixed_latents(seed=UpperCAmelCase__ , device=UpperCAmelCase__ , dtype=UpperCAmelCase__ , shape=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = latents return inputs def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : str=0 , UpperCAmelCase__ : str="cpu" , UpperCAmelCase__ : Dict=torch.floataa , UpperCAmelCase__ : Union[str, Any]=(1, 3, 6_4, 6_4) ) -> List[Any]: if type(UpperCAmelCase__ ) == str: __SCREAMING_SNAKE_CASE = torch.device(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) return latents def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) __SCREAMING_SNAKE_CASE = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) __SCREAMING_SNAKE_CASE = ConsistencyModelPipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(torch_device=UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_inputs() __SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase__ ).images assert image.shape == (1, 6_4, 6_4, 3) __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = np.array([0.0_888, 0.0_881, 0.0_666, 0.0_479, 0.0_292, 0.0_195, 0.0_201, 0.0_163, 0.0_254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: __SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) __SCREAMING_SNAKE_CASE = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) __SCREAMING_SNAKE_CASE = ConsistencyModelPipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(torch_device=UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_inputs() __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase__ ).images assert image.shape == (1, 6_4, 6_4, 3) __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = np.array([0.0_340, 0.0_152, 0.0_063, 0.0_267, 0.0_221, 0.0_107, 0.0_416, 0.0_186, 0.0_217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) __SCREAMING_SNAKE_CASE = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) __SCREAMING_SNAKE_CASE = ConsistencyModelPipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(torch_device=UpperCAmelCase__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_inputs(get_fixed_latents=UpperCAmelCase__ , device=UpperCAmelCase__ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCAmelCase__ , enable_math=UpperCAmelCase__ , enable_mem_efficient=UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase__ ).images assert image.shape == (1, 6_4, 6_4, 3) __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = np.array([0.1_875, 0.1_428, 0.1_289, 0.2_151, 0.2_092, 0.1_477, 0.1_877, 0.1_641, 0.1_353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def UpperCAmelCase_ ( self : str ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) __SCREAMING_SNAKE_CASE = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) __SCREAMING_SNAKE_CASE = ConsistencyModelPipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(torch_device=UpperCAmelCase__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_inputs(get_fixed_latents=UpperCAmelCase__ , device=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCAmelCase__ , enable_math=UpperCAmelCase__ , enable_mem_efficient=UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase__ ).images assert image.shape == (1, 6_4, 6_4, 3) __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = np.array([0.1_663, 0.1_948, 0.2_275, 0.1_680, 0.1_204, 0.1_245, 0.1_858, 0.1_338, 0.2_095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
682
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 1.5 __SCREAMING_SNAKE_CASE = int(factor * num_class_images ) __SCREAMING_SNAKE_CASE = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=lowerCAmelCase_ , aesthetic_weight=0.1 ) os.makedirs(f"""{class_data_dir}/images""" , exist_ok=lowerCAmelCase_ ) if len(list(Path(f"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: __SCREAMING_SNAKE_CASE = client.query(text=lowerCAmelCase_ ) if len(lowerCAmelCase_ ) >= factor * num_class_images or num_images > 1E4: break else: __SCREAMING_SNAKE_CASE = int(factor * num_images ) __SCREAMING_SNAKE_CASE = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=lowerCAmelCase_ , aesthetic_weight=0.1 , ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = tqdm(desc="downloading real regularization images" , total=lowerCAmelCase_ ) with open(f"""{class_data_dir}/caption.txt""" , "w" ) as fa, open(f"""{class_data_dir}/urls.txt""" , "w" ) as fa, open( f"""{class_data_dir}/images.txt""" , "w" ) as fa: while total < num_class_images: __SCREAMING_SNAKE_CASE = class_images[count] count += 1 try: __SCREAMING_SNAKE_CASE = requests.get(images["url"] ) if img.status_code == 200: __SCREAMING_SNAKE_CASE = Image.open(BytesIO(img.content ) ) with open(f"""{class_data_dir}/images/{total}.jpg""" , "wb" ) as f: f.write(img.content ) fa.write(images["caption"] + "\n" ) fa.write(images["url"] + "\n" ) fa.write(f"""{class_data_dir}/images/{total}.jpg""" + "\n" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = argparse.ArgumentParser("" , add_help=lowerCAmelCase_ ) parser.add_argument("--class_prompt" , help="text prompt to retrieve images" , required=lowerCAmelCase_ , type=lowerCAmelCase_ ) parser.add_argument("--class_data_dir" , help="path to save images" , required=lowerCAmelCase_ , type=lowerCAmelCase_ ) parser.add_argument("--num_class_images" , help="number of images to download" , default=200 , type=lowerCAmelCase_ ) return parser.parse_args() if __name__ == "__main__": a__ : Optional[Any] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
682
1
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __A : Optional[int] = HUGGINGFACE_HUB_CACHE __A : int = "config.json" __A : int = "diffusion_pytorch_model.bin" __A : Tuple = "diffusion_flax_model.msgpack" __A : Union[str, Any] = "model.onnx" __A : Tuple = "diffusion_pytorch_model.safetensors" __A : int = "weights.pb" __A : Tuple = "https://huggingface.co" __A : str = default_cache_path __A : List[str] = "diffusers_modules" __A : Dict = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) __A : str = ["fp16", "non-ema"] __A : Dict = ".self_attn"
701
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : Dict = "http://www.mocksite.com/file1.txt" __A : List[str] = "\"text\": [\"foo\", \"foo\"]" __A : int = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class __snake_case : """simple docstring""" lowercase = 2_00 lowercase = {'Content-Length': '100'} lowercase = {} def __lowercase ( self : Union[str, Any] , **lowerCamelCase : Optional[int] ) -> str: return [bytes(lowerCamelCase , """utf-8""" )] def UpperCamelCase_ ( *A__ : List[str] , **A__ : Union[str, Any] ): '''simple docstring''' return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def UpperCamelCase_ ( A__ : List[Any] , A__ : List[Any] , A__ : str ): '''simple docstring''' import requests monkeypatch.setattr(A__ , """request""" , A__ ) lowerCAmelCase_ : Tuple = URL if issubclass(A__ , A__ ): lowerCAmelCase_ : Optional[Any] = url elif issubclass(A__ , A__ ): lowerCAmelCase_ : Dict = [url] elif issubclass(A__ , A__ ): lowerCAmelCase_ : Tuple = {"""train""": url} lowerCAmelCase_ : List[Any] = """dummy""" lowerCAmelCase_ : str = """downloads""" lowerCAmelCase_ : Dict = tmp_path lowerCAmelCase_ : Any = DownloadConfig( cache_dir=os.path.join(A__ , A__ ) , use_etag=A__ , ) lowerCAmelCase_ : List[Any] = DownloadManager(dataset_name=A__ , download_config=A__ ) lowerCAmelCase_ : int = dl_manager.download(A__ ) lowerCAmelCase_ : Any = urls for downloaded_paths in [downloaded_paths]: if isinstance(A__ , A__ ): lowerCAmelCase_ : str = [downloaded_paths] lowerCAmelCase_ : Any = [urls] elif isinstance(A__ , A__ ): assert "train" in downloaded_paths.keys() lowerCAmelCase_ : Union[str, Any] = downloaded_paths.values() lowerCAmelCase_ : Optional[Any] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(A__ , A__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowerCAmelCase_ : Tuple = Path(A__ ) lowerCAmelCase_ : List[Any] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowerCAmelCase_ : Optional[Any] = downloaded_path.read_text() assert content == CONTENT lowerCAmelCase_ : Tuple = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() lowerCAmelCase_ : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def UpperCamelCase_ ( A__ : Union[str, Any] , A__ : List[Any] , A__ : List[str] ): '''simple docstring''' lowerCAmelCase_ : int = str(A__ ) if issubclass(A__ , A__ ): lowerCAmelCase_ : int = filename elif issubclass(A__ , A__ ): lowerCAmelCase_ : List[str] = [filename] elif issubclass(A__ , A__ ): lowerCAmelCase_ : Union[str, Any] = {"""train""": filename} lowerCAmelCase_ : Optional[int] = """dummy""" lowerCAmelCase_ : str = xz_file.parent lowerCAmelCase_ : List[str] = """extracted""" lowerCAmelCase_ : Union[str, Any] = DownloadConfig( cache_dir=A__ , use_etag=A__ , ) lowerCAmelCase_ : str = DownloadManager(dataset_name=A__ , download_config=A__ ) lowerCAmelCase_ : Union[str, Any] = dl_manager.extract(A__ ) lowerCAmelCase_ : List[Any] = paths for extracted_paths in [extracted_paths]: if isinstance(A__ , A__ ): lowerCAmelCase_ : List[str] = [extracted_paths] lowerCAmelCase_ : Union[str, Any] = [paths] elif isinstance(A__ , A__ ): assert "train" in extracted_paths.keys() lowerCAmelCase_ : Union[str, Any] = extracted_paths.values() lowerCAmelCase_ : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(A__ , A__ ): assert extracted_path == dl_manager.extracted_paths[input_path] lowerCAmelCase_ : int = Path(A__ ) lowerCAmelCase_ : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(A__ , etag=A__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowerCAmelCase_ : Any = extracted_path.read_text() lowerCAmelCase_ : Optional[Any] = text_file.read_text() assert extracted_file_content == expected_file_content def UpperCamelCase_ ( A__ : Dict , A__ : Any ): '''simple docstring''' assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(A__ , start=1 ): lowerCAmelCase_ : int = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def UpperCamelCase_ ( A__ : Optional[Any] , A__ : List[Any] ): '''simple docstring''' lowerCAmelCase_ : List[str] = request.getfixturevalue(A__ ) lowerCAmelCase_ : List[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(A__ ) , start=1 ): _test_jsonl(A__ , A__ ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def UpperCamelCase_ ( A__ : str , A__ : int ): '''simple docstring''' lowerCAmelCase_ : Tuple = request.getfixturevalue(A__ ) lowerCAmelCase_ : str = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(A__ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(A__ ) , start=1 ): _test_jsonl(A__ , A__ ) assert num_tar == 1 assert num_jsonl == 2 def UpperCamelCase_ ( A__ : Tuple ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(A__ ) , start=1 ): assert os.path.basename(A__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
398
0
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging A : Optional[int] = logging.get_logger(__name__) A : List[str] = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : int ="""mvp""" __UpperCAmelCase : str =["""past_key_values"""] __UpperCAmelCase : Dict ={"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __a=5_02_67 , __a=10_24 , __a=12 , __a=40_96 , __a=16 , __a=12 , __a=40_96 , __a=16 , __a=0.0 , __a=0.0 , __a="gelu" , __a=10_24 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.0_2 , __a=0.0 , __a=False , __a=True , __a=1 , __a=0 , __a=2 , __a=True , __a=2 , __a=2 , __a=False , __a=1_00 , __a=8_00 , **__a , ): __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = d_model __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = encoder_layers __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = classifier_dropout __lowerCAmelCase = use_cache __lowerCAmelCase = encoder_layers __lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase = use_prompt __lowerCAmelCase = prompt_length __lowerCAmelCase = prompt_mid_dim super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , forced_eos_token_id=__a , **__a , ) if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , __a ): __lowerCAmelCase = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " "The config can simply be saved and uploaded again to be fixed." )
636
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase__ ) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str =field(default="""image-classification""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) __UpperCAmelCase : ClassVar[Features] =Features({"""image""": Image()} ) __UpperCAmelCase : ClassVar[Features] =Features({"""labels""": ClassLabel} ) __UpperCAmelCase : str ="image" __UpperCAmelCase : str ="labels" def snake_case ( self , __a ): if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , __a ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) __lowerCAmelCase = copy.deepcopy(self ) __lowerCAmelCase = self.label_schema.copy() __lowerCAmelCase = features[self.label_column] __lowerCAmelCase = label_schema return task_template @property def snake_case ( self ): return { self.image_column: "image", self.label_column: "labels", }
636
1
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : str , __lowerCamelCase : NestedDataStructureLike[PathLike] , __lowerCamelCase : Optional[NamedSplit] = None , __lowerCamelCase : Optional[Features] = None , __lowerCamelCase : str = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[int] = None , **__lowerCamelCase : Tuple , ) -> Union[str, Any]: super().__init__( __lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = field SCREAMING_SNAKE_CASE__ = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE__ = Json( cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , field=__lowerCamelCase , **__lowerCamelCase , ) def lowercase_ ( self : List[str] ) -> Dict: # Build iterable dataset if self.streaming: SCREAMING_SNAKE_CASE__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE__ = self.builder.as_dataset( split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset class UpperCAmelCase__ : """simple docstring""" def __init__( self : str , __lowerCamelCase : Dataset , __lowerCamelCase : Union[PathLike, BinaryIO] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , **__lowerCamelCase : Optional[int] , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) SCREAMING_SNAKE_CASE__ = dataset SCREAMING_SNAKE_CASE__ = path_or_buf SCREAMING_SNAKE_CASE__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE SCREAMING_SNAKE_CASE__ = num_proc SCREAMING_SNAKE_CASE__ = '''utf-8''' SCREAMING_SNAKE_CASE__ = to_json_kwargs def lowercase_ ( self : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.to_json_kwargs.pop('''path_or_buf''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.to_json_kwargs.pop('''orient''' , '''records''' ) SCREAMING_SNAKE_CASE__ = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) SCREAMING_SNAKE_CASE__ = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) SCREAMING_SNAKE_CASE__ = self.to_json_kwargs.pop('''compression''' , __lowerCamelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=__lowerCamelCase ) as buffer: SCREAMING_SNAKE_CASE__ = self._write(file_obj=__lowerCamelCase , orient=__lowerCamelCase , lines=__lowerCamelCase , index=__lowerCamelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' ''' was passed. Please provide a local path instead.''' ) SCREAMING_SNAKE_CASE__ = self._write( file_obj=self.path_or_buf , orient=__lowerCamelCase , lines=__lowerCamelCase , index=__lowerCamelCase , **self.to_json_kwargs ) return written def lowercase_ ( self : Any , __lowerCamelCase : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = args SCREAMING_SNAKE_CASE__ = query_table( table=self.dataset.data , key=slice(__lowerCamelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) SCREAMING_SNAKE_CASE__ = batch.to_pandas().to_json( path_or_buf=__lowerCamelCase , orient=__lowerCamelCase , lines=__lowerCamelCase , index=__lowerCamelCase , **__lowerCamelCase ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def lowercase_ ( self : str , __lowerCamelCase : BinaryIO , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str , **__lowerCamelCase : Any , ) -> int: SCREAMING_SNAKE_CASE__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): SCREAMING_SNAKE_CASE__ = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __lowerCamelCase , __lowerCamelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(__lowerCamelCase ) return written
706
import doctest from collections import deque import numpy as np class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] ) -> None: SCREAMING_SNAKE_CASE__ = [2, 1, 2, -1] SCREAMING_SNAKE_CASE__ = [1, 2, 3, 4] def lowercase_ ( self : List[str] ) -> list[float]: SCREAMING_SNAKE_CASE__ = len(self.first_signal ) SCREAMING_SNAKE_CASE__ = len(self.second_signal ) SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , __lowerCamelCase ) # create a zero matrix of max_length x max_length SCREAMING_SNAKE_CASE__ = [[0] * max_length for i in range(__lowerCamelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = deque(self.second_signal ) rotated_signal.rotate(__lowerCamelCase ) for j, item in enumerate(__lowerCamelCase ): matrix[i][j] += item # multiply the matrix with the first signal SCREAMING_SNAKE_CASE__ = np.matmul(np.transpose(__lowerCamelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__lowerCamelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
472
0
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __A : Union[str, Any] = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' __A : int = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' __A : int = r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def a__ ( self :List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""string""" ), """references""": datasets.Value("""string""" ), } ) ,homepage="""https://github.com/hendrycks/math""" ,codebase_urls=["""https://github.com/hendrycks/math"""] ,) def a__ ( self :Any ,_UpperCamelCase :str ,_UpperCamelCase :Any ): snake_case_ : Dict = 0.0 for i, j in zip(_UpperCAmelCase ,_UpperCAmelCase ): n_correct += 1.0 if math_equivalence.is_equiv(_UpperCAmelCase ,_UpperCAmelCase ) else 0.0 snake_case_ : str = n_correct / len(_UpperCAmelCase ) return { "accuracy": accuracy, }
334
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = """ylacombe/bark-small""" lowercase__ = tempfile.mkdtemp() lowercase__ = """en_speaker_1""" lowercase__ = """This is a test string""" lowercase__ = """speaker_embeddings_path.json""" lowercase__ = """speaker_embeddings""" def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase__ = 35 lowercase__ = 2 lowercase__ = 8 lowercase__ = { """semantic_prompt""": np.ones(_UpperCAmelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase__ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) lowercase__ = processor(text=self.input_string ) lowercase__ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
15
0
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowerCAmelCase__ : List[str] = HfApi() lowerCAmelCase__ : str = {} # fmt: off lowerCAmelCase__ : int = torch.tensor([ -0.75_15, -1.68_83, 0.24_20, 0.03_00, 0.63_47, 1.34_33, -1.17_43, -3.74_67, 1.23_42, -2.24_85, 0.46_36, 0.80_76, -0.79_91, 0.39_69, 0.84_98, 0.91_89, -1.88_87, -3.35_22, 0.76_39, 0.20_40, 0.62_71, -2.71_48, -1.63_16, 3.08_39, 0.31_86, 0.27_21, -0.97_59, -1.24_61, 2.62_57, 1.35_57 ]) lowerCAmelCase__ : Dict = torch.tensor([ -2.36_39, -2.53_44, 0.00_54, -0.66_74, 1.59_90, 1.01_58, 0.31_24, -2.14_36, 1.87_95, -2.54_29, -0.15_66, -0.39_73, 1.24_90, 2.64_47, 1.22_83, -0.52_08, -2.81_54, -3.51_19, 2.38_38, 1.20_33, 1.72_01, -2.12_56, -1.45_76, 2.79_48, 2.42_04, -0.97_52, -1.25_46, 0.80_27, 3.27_58, 3.13_65 ]) lowerCAmelCase__ : Dict = torch.tensor([ -0.65_31, -0.68_91, -0.31_72, -0.53_75, -0.91_40, -0.53_67, -0.11_75, -0.78_69, -0.38_08, -0.45_13, -0.20_98, -0.00_83, 0.31_83, 0.51_40, 0.22_47, -0.13_04, -0.13_02, -0.28_02, -0.20_84, -0.20_25, -0.49_67, -0.48_73, -0.08_61, 0.69_25, 0.02_50, 0.12_90, -0.15_43, 0.63_16, 1.04_60, 1.49_43 ]) lowerCAmelCase__ : List[str] = torch.tensor([ 0.09_11, 0.11_07, 0.01_82, 0.04_35, -0.08_05, -0.06_08, 0.03_81, 0.21_72, -0.02_80, 0.13_27, -0.02_99, -0.02_55, -0.00_50, -0.11_70, -0.10_46, 0.03_09, 0.13_67, 0.17_28, -0.05_33, -0.07_48, -0.05_34, 0.16_24, 0.03_84, -0.18_05, -0.07_07, 0.06_42, 0.02_20, -0.01_34, -0.13_33, -0.15_05 ]) lowerCAmelCase__ : Union[str, Any] = torch.tensor([ 0.13_21, 0.13_37, 0.04_40, 0.06_22, -0.05_91, -0.03_70, 0.05_03, 0.21_33, -0.01_77, 0.14_15, -0.01_16, -0.01_12, 0.00_44, -0.09_80, -0.07_89, 0.03_95, 0.15_02, 0.17_85, -0.04_88, -0.05_14, -0.04_04, 0.15_39, 0.04_54, -0.15_59, -0.06_65, 0.06_59, 0.03_83, -0.00_05, -0.12_66, -0.13_86 ]) lowerCAmelCase__ : List[Any] = torch.tensor([ 0.11_54, 0.12_18, 0.03_07, 0.05_26, -0.07_11, -0.05_41, 0.03_66, 0.20_78, -0.02_67, 0.13_17, -0.02_26, -0.01_93, -0.00_14, -0.10_55, -0.09_02, 0.03_30, 0.13_91, 0.17_09, -0.05_62, -0.06_93, -0.05_60, 0.14_82, 0.03_81, -0.16_83, -0.06_81, 0.06_61, 0.03_31, -0.00_46, -0.12_68, -0.14_31 ]) lowerCAmelCase__ : Optional[Any] = torch.tensor([ 0.11_92, 0.12_40, 0.04_14, 0.06_06, -0.05_57, -0.04_12, 0.04_30, 0.20_42, -0.02_00, 0.13_85, -0.01_15, -0.01_32, 0.00_17, -0.09_65, -0.08_02, 0.03_98, 0.14_33, 0.17_47, -0.04_58, -0.05_33, -0.04_07, 0.15_45, 0.04_19, -0.15_74, -0.06_45, 0.06_26, 0.03_41, -0.00_10, -0.11_99, -0.13_90 ]) lowerCAmelCase__ : List[str] = torch.tensor([ 0.10_75, 0.10_74, 0.02_05, 0.04_31, -0.07_74, -0.06_07, 0.02_98, 0.20_42, -0.03_20, 0.12_67, -0.02_81, -0.02_50, -0.00_64, -0.10_91, -0.09_46, 0.02_90, 0.13_28, 0.16_50, -0.05_80, -0.07_38, -0.05_86, 0.14_40, 0.03_37, -0.17_46, -0.07_12, 0.06_05, 0.02_50, -0.00_99, -0.13_16, -0.14_73 ]) lowerCAmelCase__ : List[str] = torch.tensor([ -1.45_72, -2.04_81, -0.04_14, -0.60_05, 1.41_36, 0.58_48, 0.40_28, -2.73_30, 1.22_12, -2.12_28, 0.21_55, 0.40_39, 0.76_62, 2.05_35, 0.74_77, -0.32_43, -2.17_58, -2.76_48, 1.69_47, 0.70_26, 1.23_38, -1.60_78, -0.86_82, 2.28_10, 1.85_74, -0.57_18, -0.55_86, -0.01_86, 2.34_15, 2.12_51]) lowerCAmelCase__ : List[Any] = torch.tensor([ -1.36_90, -1.97_20, -0.40_90, -0.69_66, 1.46_60, 0.99_38, -0.13_85, -2.73_24, 0.77_36, -1.89_17, 0.29_23, 0.42_93, 0.16_93, 1.41_12, 1.18_87, -0.31_81, -2.21_60, -2.63_81, 1.31_70, 0.81_63, 0.92_40, -1.65_44, -0.60_99, 2.52_59, 1.64_30, -0.90_90, -0.93_92, -0.01_26, 2.42_68, 2.32_66 ]) lowerCAmelCase__ : Tuple = torch.tensor([ -1.35_25, -1.96_28, -0.39_56, -0.68_60, 1.46_64, 1.00_14, -0.12_59, -2.72_12, 0.77_72, -1.88_11, 0.29_96, 0.43_88, 0.17_04, 1.40_29, 1.17_01, -0.30_27, -2.20_53, -2.62_87, 1.33_50, 0.81_31, 0.92_74, -1.62_92, -0.60_98, 2.51_31, 1.65_05, -0.89_58, -0.92_98, -0.01_51, 2.42_57, 2.33_55 ]) lowerCAmelCase__ : List[str] = torch.tensor([ -2.05_85, -2.78_97, -0.28_50, -0.89_40, 1.90_52, 0.57_02, 0.63_45, -3.89_59, 1.59_32, -3.23_19, 0.19_74, 0.02_87, 1.75_66, 2.65_43, 0.83_87, -0.53_51, -3.27_36, -4.33_75, 2.90_29, 1.63_90, 1.46_40, -2.17_01, -1.90_13, 2.93_41, 3.49_81, -0.62_55, -1.16_44, -0.15_91, 3.70_97, 3.20_66 ]) lowerCAmelCase__ : Dict = torch.tensor([ -2.31_39, -2.55_94, -0.01_97, -0.67_85, 1.70_01, 1.16_06, 0.30_75, -2.17_40, 1.80_71, -2.56_30, -0.09_26, -0.38_11, 1.21_16, 2.62_46, 1.27_31, -0.53_98, -2.81_53, -3.61_40, 2.38_93, 1.32_62, 1.62_58, -2.18_56, -1.32_67, 2.83_95, 2.37_79, -1.06_23, -1.24_68, 0.89_59, 3.33_67, 3.22_43 ]) lowerCAmelCase__ : Dict = torch.tensor([ -2.06_28, -2.76_67, -0.20_89, -0.82_63, 2.05_39, 0.59_92, 0.64_95, -3.83_36, 1.60_25, -3.28_17, 0.17_21, -0.06_33, 1.75_16, 2.70_39, 0.81_00, -0.59_08, -3.21_13, -4.43_43, 2.92_57, 1.36_32, 1.55_62, -2.14_89, -1.98_94, 3.05_60, 3.33_96, -0.73_28, -1.04_17, 0.03_83, 3.70_93, 3.23_43 ]) lowerCAmelCase__ : Any = torch.tensor([ -1.45_74, -2.05_69, -0.04_73, -0.61_17, 1.40_18, 0.57_69, 0.41_29, -2.73_44, 1.22_41, -2.13_97, 0.20_00, 0.39_37, 0.76_16, 2.04_53, 0.73_24, -0.33_91, -2.17_46, -2.77_44, 1.69_63, 0.69_21, 1.21_87, -1.61_72, -0.88_77, 2.24_39, 1.84_71, -0.58_39, -0.56_05, -0.04_64, 2.32_50, 2.12_19 ]) # fmt: on lowerCAmelCase__ : Any = api.list_models(filter='''diffusers''') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowerCAmelCase__ : List[str] = '''/home/patrick/google_checkpoints/''' + mod.modelId.split('''/''')[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith('''CompVis'''): lowerCAmelCase__ : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder='''unet''') else: lowerCAmelCase__ : str = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowerCAmelCase__ : Any = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowerCAmelCase__ : List[str] = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowerCAmelCase__ : int = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['''_'''.join('''_'''.join(mod.modelId.split('''/''')).split('''-'''))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
714
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCAmelCase__ : List[Any] = datasets.utils.logging.get_logger(__name__) class __snake_case ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCamelCase = None __lowerCamelCase = None class __snake_case ( folder_based_builder.FolderBasedBuilder ): __lowerCamelCase = datasets.Audio() __lowerCamelCase = """audio""" __lowerCamelCase = AudioFolderConfig __lowerCamelCase = 42 # definition at the bottom of the script __lowerCamelCase = AudioClassification(audio_column="""audio""" ,label_column="""label""" ) lowerCAmelCase__ : Tuple = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] lowerCAmelCase__ : List[Any] = AUDIO_EXTENSIONS
699
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np snake_case__ : Union[str, Any] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 snake_case__ : Any = typing.Union[np.floataa, int, float] # noqa: UP007 def _snake_case (__lowercase , __lowercase): return np.sqrt(np.sum((np.asarray(__lowercase) - np.asarray(__lowercase)) ** 2)) def _snake_case (__lowercase , __lowercase): return sum((va - va) ** 2 for va, va in zip(__lowercase , __lowercase)) ** (1 / 2) if __name__ == "__main__": def _snake_case (): from timeit import timeit print('Without Numpy') print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , )) print('With Numpy') print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , )) benchmark()
23
import numpy as np def _snake_case (__lowercase): return 1 / (1 + np.exp(-vector)) def _snake_case (__lowercase): return vector * sigmoid(__lowercase) if __name__ == "__main__": import doctest doctest.testmod()
23
1
'''simple docstring''' def lowercase (_A , _A , _A ): """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowercase_ ) ) def lowercase (_A , _A , _A , _A ): """simple docstring""" if index == len(lowercase_ ): return True # Recursive Step for i in range(lowercase_ ): if valid_coloring(graph[index] , lowercase_ , lowercase_ ): # Color current vertex _lowerCAmelCase : Optional[Any] = i # Validate coloring if util_color(lowercase_ , lowercase_ , lowercase_ , index + 1 ): return True # Backtrack _lowerCAmelCase : str = -1 return False def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Dict = [-1] * len(lowercase_ ) if util_color(lowercase_ , lowercase_ , lowercase_ , 0 ): return colored_vertices return []
720
'''simple docstring''' from collections import Counter from timeit import timeit def lowercase (_A = "" , ): """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def lowercase (_A = "" ): """simple docstring""" if len(_A ) == 0: return True _lowerCAmelCase : Union[str, Any] = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _lowerCAmelCase : dict[str, int] = {} for character in lower_case_input_str: _lowerCAmelCase : Union[str, Any] = character_freq_dict.get(_A , 0 ) + 1 _lowerCAmelCase : List[Any] = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def lowercase (_A = "" ): """simple docstring""" print('\nFor string = ' , _A , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_A ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_A ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": lowerCAmelCase : Tuple = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) lowerCAmelCase : Optional[Any] = can_string_be_rearranged_as_palindrome_counter(check_str) print(F'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
630
0
'''simple docstring''' from ....utils import logging lowerCamelCase :List[str] = logging.get_logger(__name__) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__(self , lowercase , lowercase=None , lowercase=2048 ): A_ : Dict = config.__dict__ A_ : Tuple = modal_hidden_size if num_labels: A_ : Union[str, Any] = num_labels
667
'''simple docstring''' from math import pi, sqrt, tan def UpperCamelCase ( lowercase_ : float ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def UpperCamelCase ( lowercase_ : float , lowercase_ : float , lowercase_ : float ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCamelCase ( lowercase_ : float ) -> float: '''simple docstring''' if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def UpperCamelCase ( lowercase_ : float ) -> float: '''simple docstring''' if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def UpperCamelCase ( lowercase_ : float , lowercase_ : float ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCamelCase ( lowercase_ : float , lowercase_ : float , lowercase_ : float ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) lowercase =(height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCamelCase ( lowercase_ : float , lowercase_ : float ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def UpperCamelCase ( lowercase_ : float , lowercase_ : float ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(lowercase_ , 2 ) * torus_radius * tube_radius def UpperCamelCase ( lowercase_ : float , lowercase_ : float ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def UpperCamelCase ( lowercase_ : float ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def UpperCamelCase ( lowercase_ : float , lowercase_ : float ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def UpperCamelCase ( lowercase_ : float , lowercase_ : float , lowercase_ : float ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) lowercase =(sidea + sidea + sidea) / 2 lowercase =sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCamelCase ( lowercase_ : float , lowercase_ : float ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def UpperCamelCase ( lowercase_ : float , lowercase_ : float , lowercase_ : float ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def UpperCamelCase ( lowercase_ : float ) -> float: '''simple docstring''' if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def UpperCamelCase ( lowercase_ : float , lowercase_ : float ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def UpperCamelCase ( lowercase_ : float , lowercase_ : float ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCamelCase ( lowercase_ : int , lowercase_ : float ) -> float: '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F"""Rectangle: {area_rectangle(10, 20) = }""") print(F"""Square: {area_square(10) = }""") print(F"""Triangle: {area_triangle(10, 10) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(F"""Parallelogram: {area_parallelogram(10, 20) = }""") print(F"""Rhombus: {area_rhombus(10, 20) = }""") print(F"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(F"""Circle: {area_circle(20) = }""") print(F"""Ellipse: {area_ellipse(10, 20) = }""") print('''\nSurface Areas of various geometric shapes: \n''') print(F"""Cube: {surface_area_cube(20) = }""") print(F"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(F"""Sphere: {surface_area_sphere(20) = }""") print(F"""Hemisphere: {surface_area_hemisphere(20) = }""") print(F"""Cone: {surface_area_cone(10, 20) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(F"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(F"""Torus: {surface_area_torus(20, 10) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(F"""Square: {area_reg_polygon(4, 10) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
72
0
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Namespace ) -> Optional[int]: """simple docstring""" return ConvertCommand( args.model_type ,args.tf_checkpoint ,args.pytorch_dump_output ,args.config ,args.finetuning_task_name ) __SCREAMING_SNAKE_CASE = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class lowerCAmelCase_ ( __lowerCAmelCase ): '''simple docstring''' @staticmethod def __lowerCamelCase ( __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : int =parser.add_parser( 'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , ) train_parser.add_argument('--model_type' , type=lowerCamelCase__ , required=lowerCamelCase__ , help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint' , type=lowerCamelCase__ , required=lowerCamelCase__ , help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output' , type=lowerCamelCase__ , required=lowerCamelCase__ , help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config' , type=lowerCamelCase__ , default='' , help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name' , type=lowerCamelCase__ , default=lowerCamelCase__ , help='Optional fine-tuning task name if the TF model was a finetuned model.' , ) train_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : List[Any] =logging.get_logger('transformers-cli/converting' ) self._logger.info(F"""Loading model {model_type}""" ) SCREAMING_SNAKE_CASE_ : List[str] =model_type SCREAMING_SNAKE_CASE_ : Optional[int] =tf_checkpoint SCREAMING_SNAKE_CASE_ : List[Any] =pytorch_dump_output SCREAMING_SNAKE_CASE_ : List[Any] =config SCREAMING_SNAKE_CASE_ : Any =finetuning_task_name def __lowerCamelCase ( self ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(lowerCamelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase__ ) if "ckpt" in self._tf_checkpoint.lower(): SCREAMING_SNAKE_CASE_ : str =self._tf_checkpoint SCREAMING_SNAKE_CASE_ : List[Any] ='''''' else: SCREAMING_SNAKE_CASE_ : Any =self._tf_checkpoint SCREAMING_SNAKE_CASE_ : List[Any] ='''''' convert_transfo_xl_checkpoint_to_pytorch( lowerCamelCase__ , self._config , self._pytorch_dump_output , lowerCamelCase__ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase__ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCamelCase__ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
718
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = IMAGENET_DEFAULT_MEAN , __UpperCAmelCase = IMAGENET_DEFAULT_STD , **__UpperCAmelCase , ): super().__init__(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple =size if size is not None else {'shortest_edge': 224} SCREAMING_SNAKE_CASE_ : List[Any] =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] =crop_size if crop_size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE_ : Union[str, Any] =get_size_dict(__UpperCAmelCase , param_name='crop_size' ) SCREAMING_SNAKE_CASE_ : Tuple =do_resize SCREAMING_SNAKE_CASE_ : Dict =size SCREAMING_SNAKE_CASE_ : Tuple =resample SCREAMING_SNAKE_CASE_ : List[str] =do_center_crop SCREAMING_SNAKE_CASE_ : Optional[int] =crop_size SCREAMING_SNAKE_CASE_ : int =do_rescale SCREAMING_SNAKE_CASE_ : List[Any] =rescale_factor SCREAMING_SNAKE_CASE_ : Any =do_normalize SCREAMING_SNAKE_CASE_ : Tuple =image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN SCREAMING_SNAKE_CASE_ : Tuple =image_std if image_std is not None else IMAGENET_DEFAULT_STD def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : Optional[Any] =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: SCREAMING_SNAKE_CASE_ : List[str] =int((256 / 224) * size['shortest_edge'] ) SCREAMING_SNAKE_CASE_ : Optional[Any] =get_resize_output_image_size(__UpperCAmelCase , size=__UpperCAmelCase , default_to_square=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple ={'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( __UpperCAmelCase , size=(size_dict['height'], size_dict['width']) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : List[Any] =get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(__UpperCAmelCase , size=(size['height'], size['width']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : Optional[int] =do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ : List[str] =resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ : Tuple =do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_ : Union[str, Any] =do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ : Tuple =rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ : Tuple =do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ : int =image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ : List[Any] =image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ : List[str] =size if size is not None else self.size SCREAMING_SNAKE_CASE_ : Any =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] =crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_ : Optional[Any] =get_size_dict(__UpperCAmelCase , param_name='crop_size' ) SCREAMING_SNAKE_CASE_ : Optional[Any] =make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ : Any =[to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ : Dict =[self.resize(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE_ : Any =[self.center_crop(__UpperCAmelCase , __UpperCAmelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_ : List[Any] =[self.rescale(__UpperCAmelCase , __UpperCAmelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ : List[str] =[self.normalize(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_ : Tuple =[to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_ : Tuple ={'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
153
0
'''simple docstring''' import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = "▁" _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): __lowerCamelCase : Dict = BigBirdTokenizer __lowerCamelCase : Optional[Any] = BigBirdTokenizerFast __lowerCamelCase : Any = True __lowerCamelCase : Union[str, Any] = True def _snake_case ( self ) -> Any: super().setUp() _lowerCAmelCase = self.tokenizer_class(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = "<s>" _lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(_lowerCAmelCase ) , 1004 ) def _snake_case ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _snake_case ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = "I was born in 92000, and this is falsé." _lowerCAmelCase = tokenizer.tokenize(_lowerCAmelCase ) _lowerCAmelCase = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = tokenizer.encode(_lowerCAmelCase ) _lowerCAmelCase = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> int: _lowerCAmelCase = BigBirdTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(_lowerCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [285, 46, 10, 170, 382] , ) _lowerCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _lowerCAmelCase = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowerCAmelCase = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _snake_case ( self ) -> Any: return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def _snake_case ( self ) -> Tuple: _lowerCAmelCase = "Hello World!" _lowerCAmelCase = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowerCAmelCase , self.big_tokenizer.encode(_lowerCAmelCase ) ) @slow def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off _lowerCAmelCase = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowerCAmelCase , self.big_tokenizer.encode(_lowerCAmelCase ) ) @require_torch @slow def _snake_case ( self ) -> Any: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _lowerCAmelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _lowerCAmelCase = " ".join(_lowerCAmelCase ) _lowerCAmelCase = self.big_tokenizer.encode_plus(_lowerCAmelCase , return_tensors="pt" , return_token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = BigBirdConfig(attention_type="original_full" ) _lowerCAmelCase = BigBirdModel(_lowerCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowerCAmelCase ) model(**_lowerCAmelCase ) @slow def _snake_case ( self ) -> int: _lowerCAmelCase = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) _lowerCAmelCase = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def _snake_case ( self ) -> Any: # fmt: off _lowerCAmelCase = {"input_ids": [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
18
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = CustomTokenizer pass
59
0
from __future__ import annotations from collections.abc import Generator def lowerCAmelCase__ ( )-> Generator[int, None, None]: A__ = {} A__ = 2 while True: A__ = factor_map.pop(UpperCamelCase_ , UpperCamelCase_ ) if factor: A__ = factor + prime while x in factor_map: x += factor A__ = factor else: A__ = prime yield prime prime += 1 def lowerCAmelCase__ ( UpperCamelCase_ : float = 1E10 )-> int: A__ = sieve() A__ = 1 while True: A__ = next(UpperCamelCase_ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(UpperCamelCase_ ) n += 2 if __name__ == "__main__": print(solution())
526
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( )-> str: A__ = 1_0 A__ = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''' ) ), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), '''id''': datasets.Value('''int64''' ), } ) A__ = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [9_7], '''text''': ['''1976''']}] * 1_0, '''id''': list(range(UpperCamelCase_ ) ), } , features=UpperCamelCase_ , ) return dataset @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int )-> Optional[Any]: A__ = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' ) dataset.map(cache_file_name=UpperCamelCase_ ) return filename # FILE_CONTENT + files _lowercase = "\\n Text data.\n Second line of data." @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : str )-> List[Any]: A__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt''' A__ = FILE_CONTENT with open(UpperCamelCase_ , '''w''' ) as f: f.write(UpperCamelCase_ ) return filename @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Optional[int] )-> Optional[Any]: import bza A__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.bz2''' A__ = bytes(UpperCamelCase_ , '''utf-8''' ) with bza.open(UpperCamelCase_ , '''wb''' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Optional[Any] )-> int: import gzip A__ = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' ) A__ = bytes(UpperCamelCase_ , '''utf-8''' ) with gzip.open(UpperCamelCase_ , '''wb''' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : str )-> Any: if datasets.config.LZ4_AVAILABLE: import lza.frame A__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.lz4''' A__ = bytes(UpperCamelCase_ , '''utf-8''' ) with lza.frame.open(UpperCamelCase_ , '''wb''' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple )-> int: if datasets.config.PY7ZR_AVAILABLE: import pyazr A__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.7z''' with pyazr.SevenZipFile(UpperCamelCase_ , '''w''' ) as archive: archive.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Tuple , UpperCamelCase_ : int )-> Optional[Any]: import tarfile A__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.tar''' with tarfile.TarFile(UpperCamelCase_ , '''w''' ) as f: f.add(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Optional[int] )-> str: import lzma A__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.xz''' A__ = bytes(UpperCamelCase_ , '''utf-8''' ) with lzma.open(UpperCamelCase_ , '''wb''' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] )-> List[str]: import zipfile A__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zip''' with zipfile.ZipFile(UpperCamelCase_ , '''w''' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Tuple )-> str: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd A__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zst''' A__ = bytes(UpperCamelCase_ , '''utf-8''' ) with zstd.open(UpperCamelCase_ , '''wb''' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Optional[int] )-> int: A__ = tmp_path_factory.mktemp('''data''' ) / '''file.xml''' A__ = textwrap.dedent( '''\ <?xml version="1.0" encoding="UTF-8" ?> <tmx version="1.4"> <header segtype="sentence" srclang="ca" /> <body> <tu> <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv> <tuv xml:lang="en"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv> <tuv xml:lang="en"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv> <tuv xml:lang="en"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv> <tuv xml:lang="en"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv> <tuv xml:lang="en"><seg>Content 5</seg></tuv> </tu> </body> </tmx>''' ) with open(UpperCamelCase_ , '''w''' ) as f: f.write(UpperCamelCase_ ) return filename _lowercase = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] _lowercase = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] _lowercase = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } _lowercase = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] _lowercase = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( )-> str: return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : List[Any] )-> List[str]: A__ = datasets.Dataset.from_dict(UpperCamelCase_ ) A__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' ) dataset.map(cache_file_name=UpperCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Dict )-> List[str]: A__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' ) with contextlib.closing(sqlitea.connect(UpperCamelCase_ ) ) as con: A__ = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' ) for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Union[str, Any] )-> Tuple: A__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' ) with open(UpperCamelCase_ , '''w''' , newline='''''' ) as f: A__ = csv.DictWriter(UpperCamelCase_ , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(UpperCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Dict )-> List[Any]: A__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' ) with open(UpperCamelCase_ , '''w''' , newline='''''' ) as f: A__ = csv.DictWriter(UpperCamelCase_ , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(UpperCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] )-> List[str]: import bza A__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.bz2''' with open(UpperCamelCase_ , '''rb''' ) as f: A__ = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(UpperCamelCase_ , '''wb''' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] )-> str: A__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(UpperCamelCase_ , '''w''' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : Any )-> List[Any]: A__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(UpperCamelCase_ , '''w''' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename(csv_path.replace('''.csv''' , '''.CSV''' ) ) ) f.write(UpperCamelCase_ , arcname=os.path.basename(csva_path.replace('''.csv''' , '''.CSV''' ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] )-> Tuple: A__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(UpperCamelCase_ , '''w''' ) as f: f.write(UpperCamelCase_ , arcname=os.path.join('''main_dir''' , os.path.basename(UpperCamelCase_ ) ) ) f.write(UpperCamelCase_ , arcname=os.path.join('''main_dir''' , os.path.basename(UpperCamelCase_ ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Dict )-> Optional[int]: A__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' ) A__ = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), } ) with open(UpperCamelCase_ , '''wb''' ) as f: A__ = pq.ParquetWriter(UpperCamelCase_ , schema=UpperCamelCase_ ) A__ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(UpperCamelCase_ ) )] for k in DATA[0]} , schema=UpperCamelCase_ ) writer.write_table(UpperCamelCase_ ) writer.close() return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Optional[int] )-> str: A__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) A__ = {'''data''': DATA} with open(UpperCamelCase_ , '''w''' ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Optional[int] )-> Optional[Any]: A__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) A__ = {'''data''': DATA_DICT_OF_LISTS} with open(UpperCamelCase_ , '''w''' ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Dict )-> List[Any]: A__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' ) with open(UpperCamelCase_ , '''w''' ) as f: for item in DATA: f.write(json.dumps(UpperCamelCase_ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : str )-> Tuple: A__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' ) with open(UpperCamelCase_ , '''w''' ) as f: for item in DATA: f.write(json.dumps(UpperCamelCase_ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : int )-> Optional[int]: A__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' ) with open(UpperCamelCase_ , '''w''' ) as f: for item in DATA_312: f.write(json.dumps(UpperCamelCase_ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : int )-> Union[str, Any]: A__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' ) with open(UpperCamelCase_ , '''w''' ) as f: for item in DATA_STR: f.write(json.dumps(UpperCamelCase_ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str )-> List[str]: import gzip A__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' ) with open(UpperCamelCase_ , '''rb''' ) as orig_file: with gzip.open(UpperCamelCase_ , '''wb''' ) as zipped_file: zipped_file.writelines(UpperCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any] )-> List[Any]: import gzip A__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' ) with open(UpperCamelCase_ , '''rb''' ) as orig_file: with gzip.open(UpperCamelCase_ , '''wb''' ) as zipped_file: zipped_file.writelines(UpperCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] )-> Optional[int]: A__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(UpperCamelCase_ , '''w''' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] )-> Union[str, Any]: A__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(UpperCamelCase_ , '''w''' ) as f: f.write(UpperCamelCase_ , arcname=os.path.join('''nested''' , os.path.basename(UpperCamelCase_ ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any )-> Any: A__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(UpperCamelCase_ , '''w''' ) as f: f.write(UpperCamelCase_ , arcname=os.path.join('''main_dir''' , os.path.basename(UpperCamelCase_ ) ) ) f.write(UpperCamelCase_ , arcname=os.path.join('''main_dir''' , os.path.basename(UpperCamelCase_ ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : str )-> Tuple: A__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(UpperCamelCase_ , '''w''' ) as f: f.add(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) f.add(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] )-> str: A__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(UpperCamelCase_ , '''w''' ) as f: f.add(UpperCamelCase_ , arcname=os.path.join('''nested''' , os.path.basename(UpperCamelCase_ ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Any )-> List[str]: A__ = ['''0''', '''1''', '''2''', '''3'''] A__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' ) with open(UpperCamelCase_ , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : int )-> Dict: A__ = ['''0''', '''1''', '''2''', '''3'''] A__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' ) with open(UpperCamelCase_ , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Union[str, Any] )-> Union[str, Any]: A__ = ['''0''', '''1''', '''2''', '''3'''] A__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.abc''' with open(UpperCamelCase_ , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any] )-> List[str]: A__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.text.zip''' with zipfile.ZipFile(UpperCamelCase_ , '''w''' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] )-> Tuple: A__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(UpperCamelCase_ , '''w''' ) as f: f.write(UpperCamelCase_ , arcname=os.path.join('''main_dir''' , os.path.basename(UpperCamelCase_ ) ) ) f.write(UpperCamelCase_ , arcname=os.path.join('''main_dir''' , os.path.basename(UpperCamelCase_ ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple )-> Any: A__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.ext.zip''' with zipfile.ZipFile(UpperCamelCase_ , '''w''' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename('''unsupported.ext''' ) ) f.write(UpperCamelCase_ , arcname=os.path.basename('''unsupported_2.ext''' ) ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Dict )-> Any: A__ = '''\n'''.join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] ) A__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( )-> Tuple: return os.path.join('''tests''' , '''features''' , '''data''' , '''test_image_rgb.jpg''' ) @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( )-> Dict: return os.path.join('''tests''' , '''features''' , '''data''' , '''test_audio_44100.wav''' ) @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] )-> List[Any]: A__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.img.zip''' with zipfile.ZipFile(UpperCamelCase_ , '''w''' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ).replace('''.jpg''' , '''2.jpg''' ) ) return path @pytest.fixture(scope='''session''' ) def lowerCAmelCase__ ( UpperCamelCase_ : Optional[Any] )-> str: A__ = tmp_path_factory.mktemp('''data_dir''' ) (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 1_0 ) with open(data_dir / '''subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 1_0 ) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 1_0 ) with open(data_dir / '''.subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 1_0 ) return data_dir
526
1
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__(self , A , A=1_3 , A=3_0 , A=2 , A=3 , A=True , A=True , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=1_0 , A=0.02 , A=3 , A=0.6 , A=None , ): lowerCamelCase_ : Optional[int] = parent lowerCamelCase_ : Dict = batch_size lowerCamelCase_ : int = image_size lowerCamelCase_ : Union[str, Any] = patch_size lowerCamelCase_ : Dict = num_channels lowerCamelCase_ : Any = is_training lowerCamelCase_ : Tuple = use_labels lowerCamelCase_ : List[str] = hidden_size lowerCamelCase_ : Tuple = num_hidden_layers lowerCamelCase_ : int = num_attention_heads lowerCamelCase_ : Optional[Any] = intermediate_size lowerCamelCase_ : Optional[int] = hidden_act lowerCamelCase_ : Union[str, Any] = hidden_dropout_prob lowerCamelCase_ : List[Any] = attention_probs_dropout_prob lowerCamelCase_ : Union[str, Any] = type_sequence_label_size lowerCamelCase_ : int = initializer_range lowerCamelCase_ : int = mask_ratio lowerCamelCase_ : Tuple = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCamelCase_ : Union[str, Any] = (image_size // patch_size) ** 2 lowerCamelCase_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ : Union[str, Any] = None if self.use_labels: lowerCamelCase_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ : Tuple = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ (self ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase__ (self , A , A , A ): lowerCamelCase_ : int = ViTMAEModel(config=A ) model.to(A ) model.eval() lowerCamelCase_ : Any = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ (self , A , A , A ): lowerCamelCase_ : List[str] = ViTMAEForPreTraining(A ) model.to(A ) model.eval() lowerCamelCase_ : Dict = model(A ) lowerCamelCase_ : Dict = (self.image_size // self.patch_size) ** 2 lowerCamelCase_ : Tuple = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCamelCase_ : Tuple = 1 lowerCamelCase_ : Optional[Any] = ViTMAEForPreTraining(A ) model.to(A ) model.eval() lowerCamelCase_ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ : Optional[Any] = model(A ) lowerCamelCase_ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = self.prepare_config_and_inputs() lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[str] = config_and_inputs lowerCamelCase_ : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowercase ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase : Tuple = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCamelCase : Any = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} lowerCamelCase : Dict = False lowerCamelCase : List[Any] = False lowerCamelCase : Optional[Any] = False lowerCamelCase : Any = False def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = ViTMAEModelTester(self ) lowerCamelCase_ : Optional[int] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=3_7 ) def UpperCAmelCase__ (self ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def UpperCAmelCase__ (self ): pass def UpperCAmelCase__ (self ): lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : Tuple = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def UpperCAmelCase__ (self ): lowerCamelCase_, lowerCamelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : Any = model_class(A ) lowerCamelCase_ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ : Optional[int] = [*signature.parameters.keys()] lowerCamelCase_ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A ) def UpperCAmelCase__ (self , A , A , A ): # make masks reproducible np.random.seed(2 ) lowerCamelCase_ : Any = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) lowerCamelCase_ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCamelCase_ : int = torch.from_numpy(A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCamelCase_ : str = pt_noise super().check_pt_tf_models(A , A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_, lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : str = model_class(A ) model.to(A ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCamelCase_ : Dict = model(**self._prepare_for_class(A , A ) ) lowerCamelCase_ : Dict = outputs[0].cpu().numpy() lowerCamelCase_ : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) lowerCamelCase_ : int = model_class.from_pretrained(A ) model.to(A ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCamelCase_ : Dict = model(**self._prepare_for_class(A , A ) ) # Make sure we don't have nans lowerCamelCase_ : List[str] = after_outputs[0].cpu().numpy() lowerCamelCase_ : List[str] = 0 lowerCamelCase_ : List[str] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(A , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase__ (self ): pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase__ (self ): pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase__ (self ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def UpperCAmelCase__ (self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__ (self ): pass @slow def UpperCAmelCase__ (self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ : List[Any] = ViTMAEModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase_ ( ) -> int: '''simple docstring''' lowerCamelCase_ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): @cached_property def UpperCAmelCase__ (self ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def UpperCAmelCase__ (self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowerCamelCase_ : Tuple = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(A ) lowerCamelCase_ : Optional[int] = self.default_image_processor lowerCamelCase_ : Union[str, Any] = prepare_img() lowerCamelCase_ : Optional[Any] = image_processor(images=A , return_tensors='''pt''' ).to(A ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCamelCase_ : int = ViTMAEConfig() lowerCamelCase_ : Dict = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCamelCase_ : Dict = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): lowerCamelCase_ : Union[str, Any] = model(**A , noise=torch.from_numpy(A ).to(device=A ) ) # verify the logits lowerCamelCase_ : int = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape , A ) lowerCamelCase_ : Optional[int] = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(A ) , atol=1E-4 ) )
422
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Any = { '''configuration_albert''': ['''ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AlbertConfig''', '''AlbertOnnxConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : str = ['''AlbertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = ['''AlbertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = [ '''ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AlbertForMaskedLM''', '''AlbertForMultipleChoice''', '''AlbertForPreTraining''', '''AlbertForQuestionAnswering''', '''AlbertForSequenceClassification''', '''AlbertForTokenClassification''', '''AlbertModel''', '''AlbertPreTrainedModel''', '''load_tf_weights_in_albert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[int] = [ '''TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAlbertForMaskedLM''', '''TFAlbertForMultipleChoice''', '''TFAlbertForPreTraining''', '''TFAlbertForQuestionAnswering''', '''TFAlbertForSequenceClassification''', '''TFAlbertForTokenClassification''', '''TFAlbertMainLayer''', '''TFAlbertModel''', '''TFAlbertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[Any] = [ '''FlaxAlbertForMaskedLM''', '''FlaxAlbertForMultipleChoice''', '''FlaxAlbertForPreTraining''', '''FlaxAlbertForQuestionAnswering''', '''FlaxAlbertForSequenceClassification''', '''FlaxAlbertForTokenClassification''', '''FlaxAlbertModel''', '''FlaxAlbertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys __lowercase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
422
1
from random import randint, random def A ( _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 5 , ) -> list: '''simple docstring''' _UpperCAmelCase = [[-1] * number_of_cells] # Create a highway without any car _UpperCAmelCase = 0 _UpperCAmelCase = max(_A , 0 ) while i < number_of_cells: _UpperCAmelCase = ( randint(0 , _A ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def A ( _UpperCAmelCase : list , _UpperCAmelCase : int ) -> int: '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = highway_now[car_index + 1 :] for cell in range(len(_A ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(_A , -1 ) def A ( _UpperCAmelCase : list , _UpperCAmelCase : float , _UpperCAmelCase : int ) -> list: '''simple docstring''' _UpperCAmelCase = len(_A ) # Beforce calculations, the highway is empty _UpperCAmelCase = [-1] * number_of_cells for car_index in range(_A ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _UpperCAmelCase = min(highway_now[car_index] + 1 , _A ) # Number of empty cell before the next car _UpperCAmelCase = get_distance(_A , _A ) - 1 # We can't have the car causing an accident _UpperCAmelCase = min(next_highway[car_index] , _A ) if random() < probability: # Randomly, a driver will slow down _UpperCAmelCase = max(next_highway[car_index] - 1 , 0 ) return next_highway def A ( _UpperCAmelCase : list , _UpperCAmelCase : int , _UpperCAmelCase : float , _UpperCAmelCase : int ) -> list: '''simple docstring''' _UpperCAmelCase = len(highway[0] ) for i in range(_A ): _UpperCAmelCase = update(highway[i] , _A , _A ) _UpperCAmelCase = [-1] * number_of_cells for car_index in range(_A ): _UpperCAmelCase = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _UpperCAmelCase = (car_index + speed) % number_of_cells # Commit the change of position _UpperCAmelCase = speed highway.append(_A ) return highway if __name__ == "__main__": import doctest doctest.testmod()
709
def A ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
639
0
import math import flax.linen as nn import jax.numpy as jnp def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , _UpperCAmelCase = 1 , _UpperCAmelCase = 1.0e4 , _UpperCAmelCase = False , _UpperCAmelCase = 1.0 , ) -> jnp.ndarray: assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f"""Embedding dimension {embedding_dim} should be even""" _a = float(embedding_dim // 2 ) _a = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) _a = min_timescale * jnp.exp(jnp.arange(_UpperCAmelCase , dtype=jnp.floataa ) * -log_timescale_increment ) _a = jnp.expand_dims(_UpperCAmelCase , 1 ) * jnp.expand_dims(_UpperCAmelCase , 0 ) # scale embeddings _a = scale * emb if flip_sin_to_cos: _a = jnp.concatenate([jnp.cos(_UpperCAmelCase ), jnp.sin(_UpperCAmelCase )] , axis=1 ) else: _a = jnp.concatenate([jnp.sin(_UpperCAmelCase ), jnp.cos(_UpperCAmelCase )] , axis=1 ) _a = jnp.reshape(_UpperCAmelCase , [jnp.shape(_UpperCAmelCase )[0], embedding_dim] ) return signal class _UpperCamelCase ( nn.Module ): '''simple docstring''' _A = 3_2 _A = jnp.floataa @nn.compact def __call__( self : List[str] , SCREAMING_SNAKE_CASE_ : Dict ): _a = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(SCREAMING_SNAKE_CASE_ ) _a = nn.silu(SCREAMING_SNAKE_CASE_ ) _a = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(SCREAMING_SNAKE_CASE_ ) return temb class _UpperCamelCase ( nn.Module ): '''simple docstring''' _A = 3_2 _A = False _A = 1 @nn.compact def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): return get_sinusoidal_embeddings( SCREAMING_SNAKE_CASE_ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
562
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) lowercase_ = { 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[int]: _a = {} state_dict.pop('pixel_mean' , _UpperCAmelCase ) state_dict.pop('pixel_std' , _UpperCAmelCase ) _a = R'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _a = key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): _a = int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(2 ) ) if layer_nb == 0: _a = key.replace('layers.0' , 'proj_in' ) elif layer_nb == 1: _a = key.replace('layers.1' , 'layers.0' ) elif layer_nb == 2: _a = key.replace('layers.2' , 'proj_out' ) _a = value _a = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="ybelkada/segment-anything" ) -> Optional[Any]: _a = hf_hub_download(_UpperCAmelCase , f"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: _a = SamConfig() elif "sam_vit_l" in model_name: _a = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) _a = SamConfig( vision_config=_UpperCAmelCase , ) elif "sam_vit_h" in model_name: _a = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) _a = SamConfig( vision_config=_UpperCAmelCase , ) _a = torch.load(_UpperCAmelCase , map_location='cpu' ) _a = replace_keys(_UpperCAmelCase ) _a = SamImageProcessor() _a = SamProcessor(image_processor=_UpperCAmelCase ) _a = SamModel(_UpperCAmelCase ) hf_model.load_state_dict(_UpperCAmelCase ) _a = hf_model.to('cuda' ) _a = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' _a = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) _a = [[[400, 650]]] _a = [[1]] _a = processor(images=np.array(_UpperCAmelCase ) , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _a = hf_model(**_UpperCAmelCase ) _a = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579890251159668 _a = processor( images=np.array(_UpperCAmelCase ) , input_points=_UpperCAmelCase , input_labels=_UpperCAmelCase , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _a = hf_model(**_UpperCAmelCase ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712603092193604 _a = ((75, 275, 1725, 850),) _a = processor(images=np.array(_UpperCAmelCase ) , input_boxes=_UpperCAmelCase , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _a = hf_model(**_UpperCAmelCase ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686015605926514 # Test with 2 points and 1 image. _a = [[[400, 650], [800, 650]]] _a = [[1, 1]] _a = processor( images=np.array(_UpperCAmelCase ) , input_points=_UpperCAmelCase , input_labels=_UpperCAmelCase , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _a = hf_model(**_UpperCAmelCase ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936047792434692 if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() lowercase_ = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) lowercase_ = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
562
1
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class lowercase( yaml.SafeLoader ): '''simple docstring''' def UpperCamelCase_ ( self: Union[str, Any], a_: Any ): '''simple docstring''' _snake_case : str = [self.constructed_objects[key_node] for key_node, _ in node.value] _snake_case : Any = [tuple(a_ ) if isinstance(a_, a_ ) else key for key in keys] _snake_case : Optional[int] = Counter(a_ ) _snake_case : Dict = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"Got duplicate yaml keys: {duplicate_keys}" ) def UpperCamelCase_ ( self: Any, a_: List[Any], a_: List[str]=False ): '''simple docstring''' _snake_case : Any = super().construct_mapping(a_, deep=a_ ) self._check_no_duplicates_on_constructed_node(a_ ) return mapping def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : List[str] = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: _snake_case : List[Any] = full_content[1:].index("""---""" ) + 1 _snake_case : Dict = """\n""".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(snake_case__ ) class lowercase( __a ): '''simple docstring''' lowercase__ = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def UpperCamelCase_ ( cls: List[Any], a_: Path ): '''simple docstring''' with open(a_, encoding="""utf-8""" ) as readme_file: _snake_case , _snake_case : List[Any] = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(a_ ) else: return cls() def UpperCamelCase_ ( self: Tuple, a_: Path ): '''simple docstring''' if path.exists(): with open(a_, encoding="""utf-8""" ) as readme_file: _snake_case : List[str] = readme_file.read() else: _snake_case : Dict = None _snake_case : List[str] = self._to_readme(a_ ) with open(a_, """w""", encoding="""utf-8""" ) as readme_file: readme_file.write(a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: Optional[str] = None ): '''simple docstring''' if readme_content is not None: _snake_case , _snake_case : Union[str, Any] = _split_yaml_from_readme(a_ ) _snake_case : str = """---\n""" + self.to_yaml_string() + """---\n""" + content else: _snake_case : Any = """---\n""" + self.to_yaml_string() + """---\n""" return full_content @classmethod def UpperCamelCase_ ( cls: Dict, a_: str ): '''simple docstring''' _snake_case : int = yaml.load(a_, Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields _snake_case : Tuple = { (key.replace("""-""", """_""" ) if key.replace("""-""", """_""" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' return yaml.safe_dump( { (key.replace("""_""", """-""" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() }, sort_keys=a_, allow_unicode=a_, encoding="""utf-8""", ).decode("""utf-8""" ) A_ = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser A_ = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') A_ = ap.parse_args() A_ = Path(args.readme_filepath) A_ = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
28
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ = '''pt''' elif is_tf_available(): A_ = '''tf''' else: A_ = '''jax''' class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ByTaTokenizer lowercase__ = False def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' super().setUp() _snake_case : List[str] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def UpperCamelCase_ ( self: List[Any], **a_: int ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: Optional[Any], a_: List[Any]=False, a_: int=20, a_: Union[str, Any]=5 ): '''simple docstring''' _snake_case : List[Any] = [] for i in range(len(a_ ) ): try: _snake_case : Optional[Any] = tokenizer.decode([i], clean_up_tokenization_spaces=a_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _snake_case : str = list(filter(lambda a_ : re.match(r"""^[ a-zA-Z]+$""", t[1] ), a_ ) ) _snake_case : List[Any] = list(filter(lambda a_ : [t[0]] == tokenizer.encode(t[1], add_special_tokens=a_ ), a_ ) ) if max_length is not None and len(a_ ) > max_length: _snake_case : Tuple = toks[:max_length] if min_length is not None and len(a_ ) < min_length and len(a_ ) > 0: while len(a_ ) < min_length: _snake_case : List[str] = toks + toks # toks_str = [t[1] for t in toks] _snake_case : Tuple = [t[0] for t in toks] # Ensure consistency _snake_case : Optional[Any] = tokenizer.decode(a_, clean_up_tokenization_spaces=a_ ) if " " not in output_txt and len(a_ ) > 1: _snake_case : Dict = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=a_ ) + """ """ + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=a_ ) ) if with_prefix_space: _snake_case : Union[str, Any] = """ """ + output_txt _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) return output_txt, output_ids def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[int] = self.ta_base_tokenizer _snake_case : Optional[Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) _snake_case : int = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""], batch_without_eos_added["""input_ids"""] ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = self.ta_base_tokenizer _snake_case : Tuple = """Unicode €.""" _snake_case : List[Any] = tokenizer(a_ ) _snake_case : Tuple = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""], a_ ) # decoding _snake_case : Tuple = tokenizer.decode(a_ ) self.assertEqual(a_, """Unicode €.</s>""" ) _snake_case : Tuple = tokenizer("""e è é ê ë""" ) _snake_case : List[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""], a_ ) # decoding _snake_case : int = tokenizer.decode(a_ ) self.assertEqual(a_, """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ), """e è é ê ë</s>""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Dict = self.ta_base_tokenizer _snake_case : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off _snake_case : Union[str, Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _snake_case : int = tokenizer(a_, padding=a_, return_tensors=a_ ) self.assertIsInstance(a_, a_ ) if FRAMEWORK != "jax": _snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: _snake_case : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(a_, a_ ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.ta_base_tokenizer _snake_case : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _snake_case : Tuple = tokenizer(a_, padding=a_, return_tensors=a_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""", a_ ) self.assertIn("""attention_mask""", a_ ) self.assertNotIn("""decoder_input_ids""", a_ ) self.assertNotIn("""decoder_attention_mask""", a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = self.ta_base_tokenizer _snake_case : Dict = [ """Summary of the text.""", """Another summary.""", ] _snake_case : Optional[int] = tokenizer( text_target=a_, max_length=32, padding="""max_length""", truncation=a_, return_tensors=a_ ) self.assertEqual(32, targets["""input_ids"""].shape[1] ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : int = self.ta_base_tokenizer _snake_case : Optional[int] = ["""A long paragraph for summarization. </s>"""] _snake_case : Dict = ["""Summary of the text. </s>"""] # fmt: off _snake_case : Optional[int] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _snake_case : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _snake_case : Optional[Any] = tokenizer(a_, text_target=a_ ) self.assertEqual(a_, batch["""input_ids"""][0] ) self.assertEqual(a_, batch["""labels"""][0] ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test _snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case : List[str] = tempfile.mkdtemp() _snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) _snake_case : List[Any] = tokenizer.__class__.from_pretrained(a_ ) _snake_case : Dict = after_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) shutil.rmtree(a_ ) _snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _snake_case : Union[str, Any] = tempfile.mkdtemp() _snake_case : List[Any] = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) _snake_case : Optional[Any] = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) _snake_case : Any = tokenizer.encode(a_, add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) _snake_case : Optional[Any] = tokenizer.__class__.from_pretrained(a_ ) _snake_case : str = after_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) self.assertIn("""new_additional_special_token""", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) _snake_case : Optional[int] = tokenizer.__class__.from_pretrained(a_, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) with open(os.path.join(a_, """special_tokens_map.json""" ), encoding="""utf-8""" ) as json_file: _snake_case : Union[str, Any] = json.load(a_ ) with open(os.path.join(a_, """tokenizer_config.json""" ), encoding="""utf-8""" ) as json_file: _snake_case : List[Any] = json.load(a_ ) _snake_case : int = [f"<extra_id_{i}>" for i in range(125 )] _snake_case : Optional[int] = added_tokens_extra_ids + [ """an_additional_special_token""" ] _snake_case : Dict = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(a_, """special_tokens_map.json""" ), """w""", encoding="""utf-8""" ) as outfile: json.dump(a_, a_ ) with open(os.path.join(a_, """tokenizer_config.json""" ), """w""", encoding="""utf-8""" ) as outfile: json.dump(a_, a_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case : Optional[int] = tokenizer_class.from_pretrained( a_, ) self.assertIn( """an_additional_special_token""", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case : Union[str, Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""", lstrip=a_ )] _snake_case : List[Any] = tokenizer_class.from_pretrained( a_, additional_special_tokens=a_, ) self.assertIn("""a_new_additional_special_token""", tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ), ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) _snake_case : Optional[Any] = tokenizer_class.from_pretrained(a_ ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_tokenizers(fast=a_, do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Dict = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] _snake_case : List[Any] = tokenizer.convert_tokens_to_string(a_ ) self.assertIsInstance(a_, a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Optional[int] = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _snake_case : Any = 0 _snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens( a_, skip_special_tokens=a_ ) for attr in attributes_list: setattr(a_, attr + """_id""", a_ ) self.assertEqual(getattr(a_, a_ ), a_ ) self.assertEqual(getattr(a_, attr + """_id""" ), a_ ) setattr(a_, attr + """_id""", a_ ) self.assertEqual(getattr(a_, a_ ), a_ ) self.assertEqual(getattr(a_, attr + """_id""" ), a_ ) setattr(a_, """additional_special_tokens_ids""", [] ) self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [] ) self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [] ) setattr(a_, """additional_special_tokens_ids""", [token_id_to_test_setters] ) self.assertListEqual(getattr(a_, """additional_special_tokens""" ), [token_to_test_setters] ) self.assertListEqual(getattr(a_, """additional_special_tokens_ids""" ), [token_id_to_test_setters] )
28
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_: Dict = logging.get_logger(__name__) lowercase_: Optional[int] = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class lowercase__ (__snake_case ): """simple docstring""" __UpperCamelCase : int = 'glpn' def __init__( self : Union[str, Any] , __a : Optional[Any]=3 , __a : Tuple=4 , __a : Dict=[2, 2, 2, 2] , __a : List[Any]=[8, 4, 2, 1] , __a : Union[str, Any]=[3_2, 6_4, 1_6_0, 2_5_6] , __a : Tuple=[7, 3, 3, 3] , __a : Optional[int]=[4, 2, 2, 2] , __a : Optional[int]=[1, 2, 5, 8] , __a : Tuple=[4, 4, 4, 4] , __a : Optional[int]="gelu" , __a : List[str]=0.0 , __a : List[Any]=0.0 , __a : str=0.02 , __a : int=0.1 , __a : Dict=1e-6 , __a : List[str]=6_4 , __a : Dict=1_0 , __a : Tuple=-1 , **__a : Optional[Any] , ): super().__init__(**__a ) snake_case__ : int = num_channels snake_case__ : List[str] = num_encoder_blocks snake_case__ : Dict = depths snake_case__ : int = sr_ratios snake_case__ : List[str] = hidden_sizes snake_case__ : Tuple = patch_sizes snake_case__ : int = strides snake_case__ : Optional[Any] = mlp_ratios snake_case__ : Any = num_attention_heads snake_case__ : Any = hidden_act snake_case__ : Tuple = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : str = initializer_range snake_case__ : Any = drop_path_rate snake_case__ : str = layer_norm_eps snake_case__ : List[str] = decoder_hidden_size snake_case__ : str = max_depth snake_case__ : Union[str, Any] = head_in_index
648
import math from datetime import datetime, timedelta def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : Union[str, Any] = year % 19 snake_case__ : Tuple = year % 4 snake_case__ : Any = year % 7 snake_case__ : Any = math.floor(year / 100) snake_case__ : str = math.floor((13 + 8 * leap_day_inhibits) / 25) snake_case__ : Any = leap_day_inhibits / 4 snake_case__ : str = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 snake_case__ : Tuple = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 snake_case__ : Tuple = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon snake_case__ : Any = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase_ , 4 , 19) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase_ , 4 , 18) else: return datetime(UpperCAmelCase_ , 3 , 22) + timedelta( days=int(days_to_add + days_from_phm_to_sunday)) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): lowercase_: str = 'will be' if year > datetime.now().year else 'was' print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
648
1
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def UpperCamelCase( lowercase_ ) -> List[Any]: '''simple docstring''' random.seed(lowercase_ ) np.random.seed(lowercase_ ) torch.manual_seed(lowercase_ ) torch.cuda.manual_seed_all(lowercase_ ) # ^^ safe to call this function even if cuda is not available class __lowerCamelCase : def __init__( self , lowerCamelCase , lowerCamelCase = 0.9999 , lowerCamelCase = 0.0 , lowerCamelCase = 0 , lowerCamelCase = False , lowerCamelCase = 1.0 , lowerCamelCase = 2 / 3 , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ) -> Optional[Any]: if isinstance(lowerCamelCase , torch.nn.Module ): snake_case_ = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCamelCase , standard_warn=lowerCamelCase , ) snake_case_ = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility snake_case_ = True if kwargs.get("""max_value""" , lowerCamelCase ) is not None: snake_case_ = """The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , lowerCamelCase , standard_warn=lowerCamelCase ) snake_case_ = kwargs["""max_value"""] if kwargs.get("""min_value""" , lowerCamelCase ) is not None: snake_case_ = """The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , lowerCamelCase , standard_warn=lowerCamelCase ) snake_case_ = kwargs["""min_value"""] snake_case_ = list(lowerCamelCase ) snake_case_ = [p.clone().detach() for p in parameters] if kwargs.get("""device""" , lowerCamelCase ) is not None: snake_case_ = """The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , lowerCamelCase , standard_warn=lowerCamelCase ) self.to(device=kwargs["""device"""] ) snake_case_ = None snake_case_ = decay snake_case_ = min_decay snake_case_ = update_after_step snake_case_ = use_ema_warmup snake_case_ = inv_gamma snake_case_ = power snake_case_ = 0 snake_case_ = None # set in `step()` snake_case_ = model_cls snake_case_ = model_config @classmethod def lowerCAmelCase_ ( cls , lowerCamelCase , lowerCamelCase ) -> "EMAModel": snake_case_ , snake_case_ = model_cls.load_config(lowerCamelCase , return_unused_kwargs=lowerCamelCase ) snake_case_ = model_cls.from_pretrained(lowerCamelCase ) snake_case_ = cls(model.parameters() , model_cls=lowerCamelCase , model_config=model.config ) ema_model.load_state_dict(lowerCamelCase ) return ema_model def lowerCAmelCase_ ( self , lowerCamelCase ) -> List[str]: if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) snake_case_ = self.model_cls.from_config(self.model_config ) snake_case_ = self.state_dict() state_dict.pop("""shadow_params""" , lowerCamelCase ) model.register_to_config(**lowerCamelCase ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase ) -> float: snake_case_ = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: snake_case_ = 1 - (1 + step / self.inv_gamma) ** -self.power else: snake_case_ = (1 + step) / (10 + step) snake_case_ = min(lowerCamelCase , self.decay ) # make sure decay is not smaller than min_decay snake_case_ = max(lowerCamelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCAmelCase_ ( self , lowerCamelCase ) -> Tuple: if isinstance(lowerCamelCase , torch.nn.Module ): snake_case_ = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCamelCase , standard_warn=lowerCamelCase , ) snake_case_ = parameters.parameters() snake_case_ = list(lowerCamelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. snake_case_ = self.get_decay(self.optimization_step ) snake_case_ = decay snake_case_ = 1 - decay snake_case_ = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCamelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): snake_case_ = deepspeed.zero.GatheredParameters(lowerCamelCase , modifier_rank=lowerCamelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase ) -> None: snake_case_ = list(lowerCamelCase ) for s_param, param in zip(self.shadow_params , lowerCamelCase ): param.data.copy_(s_param.to(param.device ).data ) def lowerCAmelCase_ ( self , lowerCamelCase=None , lowerCamelCase=None ) -> None: snake_case_ = [ p.to(device=lowerCamelCase , dtype=lowerCamelCase ) if p.is_floating_point() else p.to(device=lowerCamelCase ) for p in self.shadow_params ] def lowerCAmelCase_ ( self ) -> dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCAmelCase_ ( self , lowerCamelCase ) -> None: snake_case_ = [param.detach().cpu().clone() for param in parameters] def lowerCAmelCase_ ( self , lowerCamelCase ) -> None: if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , lowerCamelCase ): param.data.copy_(c_param.data ) # Better memory-wise. snake_case_ = None def lowerCAmelCase_ ( self , lowerCamelCase ) -> None: snake_case_ = copy.deepcopy(lowerCamelCase ) snake_case_ = state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) snake_case_ = state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , lowerCamelCase ): raise ValueError("""Invalid min_decay""" ) snake_case_ = state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , lowerCamelCase ): raise ValueError("""Invalid optimization_step""" ) snake_case_ = state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , lowerCamelCase ): raise ValueError("""Invalid update_after_step""" ) snake_case_ = state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCamelCase ): raise ValueError("""Invalid use_ema_warmup""" ) snake_case_ = state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) snake_case_ = state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) snake_case_ = state_dict.get("""shadow_params""" , lowerCamelCase ) if shadow_params is not None: snake_case_ = shadow_params if not isinstance(self.shadow_params , lowerCamelCase ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(lowerCamelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
161
from typing import Any def UpperCamelCase( lowercase_ ) -> list[Any]: '''simple docstring''' if not input_list: return [] snake_case_ = [input_list.count(lowercase_ ) for value in input_list] snake_case_ = max(lowercase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
161
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' lowercase_ = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowercase_ = Features({"""audio""": Audio()} ) lowercase_ = Features({"""labels""": ClassLabel} ) lowercase_ = "audio" lowercase_ = "labels" def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase__ ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __A =copy.deepcopy(self ) __A =self.label_schema.copy() __A =features[self.label_column] __A =label_schema return task_template @property def __UpperCamelCase ( self ): '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
184
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available _lowerCamelCase : int = { '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = ['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
184
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class lowercase__ (unittest.TestCase ): """simple docstring""" def lowercase ( self : Dict , __a : Any ): snake_case__ : int = 3 snake_case__ : Any = 2_5_0 snake_case__ : Optional[Any] = ids_tensor((batch_size, length) , __a ) snake_case__ : Optional[int] = torch.ones((batch_size, length) , device=__a , dtype=torch.float ) / length return input_ids, scores def lowercase ( self : List[str] ): snake_case__ , snake_case__ : str = self._get_tensors(5 ) snake_case__ : List[Any] = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(__a , __a ) ) snake_case__ , snake_case__ : Tuple = self._get_tensors(9 ) self.assertFalse(criteria(__a , __a ) ) snake_case__ , snake_case__ : List[Any] = self._get_tensors(1_0 ) self.assertTrue(criteria(__a , __a ) ) def lowercase ( self : List[Any] ): snake_case__ : Dict = MaxLengthCriteria(max_length=1_0 ) snake_case__ , snake_case__ : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(__a , __a ) ) snake_case__ , snake_case__ : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(__a , __a ) ) snake_case__ , snake_case__ : Optional[Any] = self._get_tensors(1_0 ) self.assertTrue(criteria(__a , __a ) ) def lowercase ( self : List[Any] ): snake_case__ : str = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) snake_case__ , snake_case__ : Any = self._get_tensors(5 ) self.assertFalse(criteria(__a , __a ) ) snake_case__ , snake_case__ : Dict = self._get_tensors(9 ) self.assertFalse(criteria(__a , __a ) ) snake_case__ , snake_case__ : Optional[Any] = self._get_tensors(1_0 ) self.assertTrue(criteria(__a , __a ) ) snake_case__ : Optional[Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 1_0 ) def lowercase ( self : List[str] ): snake_case__ , snake_case__ : Any = self._get_tensors(5 ) snake_case__ : Union[str, Any] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(__a , __a ) ) snake_case__ : Tuple = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(__a , __a ) ) def lowercase ( self : Optional[int] ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 ) with self.assertWarns(__a ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 ) snake_case__ : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 1_1 ) self.assertEqual(len(__a ) , 1 )
127
import argparse import os import re import packaging.version lowercase_: str = 'examples/' lowercase_: Any = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } lowercase_: List[str] = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } lowercase_: List[str] = 'README.md' def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" with open(UpperCAmelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""") as f: snake_case__ : List[Any] = f.read() snake_case__ , snake_case__ : Any = REPLACE_PATTERNS[pattern] snake_case__ : Any = replace.replace("""VERSION""" , UpperCAmelCase_) snake_case__ : List[Any] = re_pattern.sub(UpperCAmelCase_ , UpperCAmelCase_) with open(UpperCAmelCase_ , """w""" , encoding="""utf-8""" , newline="""\n""") as f: f.write(UpperCAmelCase_) def _lowercase ( UpperCAmelCase_): """simple docstring""" for folder, directories, fnames in os.walk(UpperCAmelCase_): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""") if "legacy" in directories: directories.remove("""legacy""") for fname in fnames: if fname.endswith(""".py"""): update_version_in_file(os.path.join(UpperCAmelCase_ , UpperCAmelCase_) , UpperCAmelCase_ , pattern="""examples""") def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_=False): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) if not patch: update_version_in_examples(UpperCAmelCase_) def _lowercase ( ): """simple docstring""" snake_case__ : Any = """🤗 Transformers currently provides the following architectures""" snake_case__ : Optional[int] = """1. Want to contribute a new model?""" with open(UpperCAmelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""") as f: snake_case__ : Union[str, Any] = f.readlines() # Find the start of the list. snake_case__ : List[str] = 0 while not lines[start_index].startswith(_start_prompt): start_index += 1 start_index += 1 snake_case__ : Tuple = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt): if lines[index].startswith("""1."""): snake_case__ : str = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(UpperCAmelCase_ , """w""" , encoding="""utf-8""" , newline="""\n""") as f: f.writelines(UpperCAmelCase_) def _lowercase ( ): """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""") as f: snake_case__ : str = f.read() snake_case__ : Dict = REPLACE_PATTERNS["""init"""][0].search(UpperCAmelCase_).groups()[0] return packaging.version.parse(UpperCAmelCase_) def _lowercase ( UpperCAmelCase_=False): """simple docstring""" snake_case__ : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""") if default_version.is_devrelease: snake_case__ : Any = default_version.base_version elif patch: snake_case__ : Optional[Any] = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: snake_case__ : Dict = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. snake_case__ : Optional[int] = input(F'Which version are you releasing? [{default_version}]') if len(UpperCAmelCase_) == 0: snake_case__ : List[str] = default_version print(F'Updating version to {version}.') global_version_update(UpperCAmelCase_ , patch=UpperCAmelCase_) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""") clean_main_ref_in_model_list() def _lowercase ( ): """simple docstring""" snake_case__ : List[str] = get_version() snake_case__ : Any = F'{current_version.major}.{current_version.minor + 1}.0.dev0' snake_case__ : List[str] = current_version.base_version # Check with the user we got that right. snake_case__ : Dict = input(F'Which version are we developing now? [{dev_version}]') if len(UpperCAmelCase_) == 0: snake_case__ : Optional[int] = dev_version print(F'Updating version to {version}.') global_version_update(UpperCAmelCase_) print("""Cleaning main README, don't forget to run `make fix-copies`.""") clean_main_ref_in_model_list() if __name__ == "__main__": lowercase_: Dict = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') lowercase_: str = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
127
1
from math import factorial lowerCamelCase__ : dict[str, int] = {str(digit): factorial(digit) for digit in range(1_0)} def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(lowercase_ ) ) def UpperCamelCase ( lowercase_ = 60 , lowercase_ = 1_00_00_00 ) -> int: '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ) or not isinstance(lowercase_ , lowercase_ ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length lowercase__ : str = 0 # the cached sizes of the previous chains lowercase__ : dict[int, int] = {} for start_chain_element in range(1 , lowercase_ ): # The temporary set will contain the elements of the chain lowercase__ : Dict = set() lowercase__ : Dict = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowercase__ : Optional[Any] = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(lowercase_ ) chain_set_length += 1 lowercase__ : Any = digit_factorial_sum(lowercase_ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowercase__ : Union[str, Any] = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
12
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = RoCBertTokenizer __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : str = False __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Optional[int] = filter_non_english def lowercase__ ( self): '''simple docstring''' super().setUp() lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] lowercase__ : Dict = {} lowercase__ : Tuple = {} for i, value in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = i lowercase__ : Any = i lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""]) lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""]) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] lowercase__ : Optional[int] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = i lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""]) self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""]) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_whitespace(""" """)) self.assertTrue(_is_whitespace("""\t""")) self.assertTrue(_is_whitespace("""\r""")) self.assertTrue(_is_whitespace("""\n""")) self.assertTrue(_is_whitespace("""\u00A0""")) self.assertFalse(_is_whitespace("""A""")) self.assertFalse(_is_whitespace("""-""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_control("""\u0005""")) self.assertFalse(_is_control("""A""")) self.assertFalse(_is_control(""" """)) self.assertFalse(_is_control("""\t""")) self.assertFalse(_is_control("""\r""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_punctuation("""-""")) self.assertTrue(_is_punctuation("""$""")) self.assertTrue(_is_punctuation("""`""")) self.assertTrue(_is_punctuation(""".""")) self.assertFalse(_is_punctuation("""A""")) self.assertFalse(_is_punctuation(""" """)) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) if self.test_rust_tokenizer: lowercase__ : int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) def lowercase__ ( self): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowercase__ : List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False lowercase__ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""])) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = ["""的""", """人""", """有"""] lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : Union[str, Any] = True lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = False lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that only the first Chinese character is not preceded by "##". lowercase__ : Any = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_) ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}'): lowercase__ : Optional[int] = """你好,你是谁""" lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
12
1
from __future__ import annotations from random import random class a_ : """simple docstring""" def __init__( self : Union[str, Any] ,snake_case : int | None = None ): SCREAMING_SNAKE_CASE =value SCREAMING_SNAKE_CASE =random() SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None def __repr__( self : str ): from pprint import pformat if self.left is None and self.right is None: return f'\'{self.value}: {self.prior:.5}\'' else: return pformat( {f'{self.value}: {self.prior:.5}': (self.left, self.right)} ,indent=1 ) def __str__( self : List[Any] ): SCREAMING_SNAKE_CASE =str(self.value ) + ' ' SCREAMING_SNAKE_CASE =str(self.left or '' ) SCREAMING_SNAKE_CASE =str(self.right or '' ) return value + left + right def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =split(root.left, lowerCAmelCase_ ) return left, root else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =split(root.right, lowerCAmelCase_ ) return root, right def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: SCREAMING_SNAKE_CASE =merge(left.right, lowerCAmelCase_ ) return left else: SCREAMING_SNAKE_CASE =merge(lowerCAmelCase_, right.left ) return right def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =Node(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =split(lowerCAmelCase_, lowerCAmelCase_ ) return merge(merge(lowerCAmelCase_, lowerCAmelCase_ ), lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =split(lowerCAmelCase_, value - 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =split(lowerCAmelCase_, lowerCAmelCase_ ) return merge(lowerCAmelCase_, lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" if not root: # None return else: inorder(root.left ) print(root.value, end=',' ) inorder(root.right ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" for arg in args.split(): if arg[0] == "+": SCREAMING_SNAKE_CASE =insert(lowerCAmelCase_, int(arg[1:] ) ) elif arg[0] == "-": SCREAMING_SNAKE_CASE =erase(lowerCAmelCase_, int(arg[1:] ) ) else: print('Unknown command' ) return root def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) SCREAMING_SNAKE_CASE =input() while args != "q": SCREAMING_SNAKE_CASE =interact_treap(lowerCAmelCase_, lowerCAmelCase_ ) print(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
252
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if not len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =equationa SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =equationa # Calculate the determinants of the matrices SCREAMING_SNAKE_CASE =aa * ba - aa * ba SCREAMING_SNAKE_CASE =ca * ba - ca * ba SCREAMING_SNAKE_CASE =aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: SCREAMING_SNAKE_CASE =determinant_x / determinant SCREAMING_SNAKE_CASE =determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
252
1
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCAmelCase__ = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCAmelCase__ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def __lowercase ( _UpperCAmelCase ) -> str: '''simple docstring''' if "://" in dataset_path: __lowercase = dataset_path.split("://" )[1] return dataset_path def __lowercase ( _UpperCAmelCase ) -> bool: '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = not is_remote_filesystem(_lowerCAmelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(_lowerCAmelCase ) , fs._strip_protocol(_lowerCAmelCase ) ) else: fs.mv(_lowerCAmelCase , _lowerCAmelCase , recursive=_lowerCAmelCase ) def __lowercase ( ) -> None: '''simple docstring''' if hasattr(fsspec.asyn , "reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __lowercase = None __lowercase = None __lowercase = threading.Lock()
321
import math class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , __UpperCamelCase : List[Any]=0 ): # a graph with Node 0,1,...,N-1 _UpperCAmelCase = n _UpperCAmelCase = [ [math.inf for j in range(0 , __UpperCamelCase )] for i in range(0 , __UpperCamelCase ) ] # adjacency matrix for weight _UpperCAmelCase = [ [math.inf for j in range(0 , __UpperCamelCase )] for i in range(0 , __UpperCamelCase ) ] # dp[i][j] stores minimum distance from i to j def UpperCAmelCase__ ( self : str , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] ): _UpperCAmelCase = w def UpperCAmelCase__ ( self : Dict ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCAmelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any ): return self.dp[u][v] if __name__ == "__main__": __lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
684
0
"""simple docstring""" from importlib import import_module from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) class lowerCAmelCase : def __init__( self , a__ , a__=None ): _UpperCAmelCase = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__' ): setattr(self , a__ , getattr(a__ , a__ ) ) _UpperCAmelCase = module._original_module if isinstance(a__ , _PatchedModuleObj ) else module class lowerCAmelCase : lowerCAmelCase__ = [] def __init__( self , a__ , a__ , a__ , a__=None ): _UpperCAmelCase = obj _UpperCAmelCase = target _UpperCAmelCase = new _UpperCAmelCase = target.split('.' )[0] _UpperCAmelCase = {} _UpperCAmelCase = attrs or [] def __enter__( self ): *_UpperCAmelCase , _UpperCAmelCase = self.target.split('.' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(a__ ) ): try: _UpperCAmelCase = import_module('.'.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase = getattr(self.obj , a__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(a__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase = obj_attr # patch at top level setattr(self.obj , a__ , _PatchedModuleObj(a__ , attrs=self.attrs ) ) _UpperCAmelCase = getattr(self.obj , a__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(a__ , a__ , _PatchedModuleObj(getattr(a__ , a__ , a__ ) , attrs=self.attrs ) ) _UpperCAmelCase = getattr(a__ , a__ ) # finally set the target attribute setattr(a__ , a__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase = getattr(import_module('.'.join(a__ ) ) , a__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , a__ ) is attr_value: _UpperCAmelCase = getattr(self.obj , a__ ) setattr(self.obj , a__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase = globals()['__builtins__'][target_attr] setattr(self.obj , a__ , self.new ) else: raise RuntimeError(f"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self , *a__ ): for attr in list(self.original ): setattr(self.obj , a__ , self.original.pop(a__ ) ) def __A ( self ): self.__enter__() self._active_patches.append(self ) def __A ( self ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
494
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class lowerCAmelCase ( unittest.TestCase ): def __A ( self ): _UpperCAmelCase = tf.convert_to_tensor( [ [ 8.2_220_991, # 3rd highest value; idx. 0 -0.5_620_044, 5.23_229_752, 4.0_386_393, -6.8_798_378, -0.54_785_802, -3.2_012_153, 2.92_777_176, 1.88_171_953, 7.35_341_276, # 5th highest value; idx. 9 8.43_207_833, # 2nd highest value; idx. 10 -9.85_711_836, -5.96_209_236, -1.13_039_161, -7.1_115_294, -0.8_369_633, -5.3_186_408, 7.06_427_407, 0.81_369_344, -0.82_023_817, -5.9_179_796, 0.58_813_443, -6.99_778_438, 4.71_551_189, -0.18_771_637, 7.44_020_759, # 4th highest value; idx. 25 9.38_450_987, # 1st highest value; idx. 26 2.12_662_941, -9.32_562_038, 2.35_652_522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_425_518, 4.53_139_238, -5.57_510_464, -6.28_030_699, -7.19_529_503, -4.02_122_551, 1.39_337_037, -6.06_707_057, 1.59_480_517, -9.643_119, 0.03_907_799, 0.67_231_762, -8.88_206_726, 6.27_115_922, # 4th highest value; idx. 13 2.28_520_723, 4.82_767_506, 4.30_421_368, 8.8_275_313, # 2nd highest value; idx. 17 5.44_029_958, # 5th highest value; idx. 18 -4.4_735_794, 7.38_579_536, # 3rd highest value; idx. 20 -2.91_051_663, 2.61_946_077, -2.5_674_762, -9.48_959_302, -4.02_922_645, -1.35_416_918, 9.67_702_323, # 1st highest value; idx. 27 -5.89_478_553, 1.85_370_467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) _UpperCAmelCase = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above _UpperCAmelCase = tf.convert_to_tensor( [8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above _UpperCAmelCase = tf_top_k_top_p_filtering(a__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) _UpperCAmelCase = output[output != -float('inf' )] _UpperCAmelCase = tf.cast( tf.where(tf.not_equal(a__ , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(a__ , a__ , rtol=1E-12 ) tf.debugging.assert_equal(a__ , a__ ) @require_tf class lowerCAmelCase ( unittest.TestCase , snake_case ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowerCAmelCase__ = { """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def __A ( self ): # TF-only test: tf.saved_model export _UpperCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _UpperCAmelCase = 2 _UpperCAmelCase = 2 class lowerCAmelCase ( tf.Module ): def __init__( self , a__ ): super(a__ , self ).__init__() _UpperCAmelCase = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ), tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ), ) , jit_compile=a__ , ) def __A ( self , a__ , a__ ): _UpperCAmelCase = self.model.generate( input_ids=a__ , attention_mask=a__ , max_new_tokens=a__ , return_dict_in_generate=a__ , ) return {"sequences": outputs["sequences"]} _UpperCAmelCase = [[2, 0], [1_02, 1_03]] _UpperCAmelCase = [[1, 0], [1, 1]] _UpperCAmelCase = DummyModel(model=a__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a__ , a__ , signatures={'serving_default': dummy_model.serving} ) _UpperCAmelCase = tf.saved_model.load(a__ ).signatures['serving_default'] for batch_size in range(1 , len(a__ ) + 1 ): _UpperCAmelCase = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } _UpperCAmelCase = serving_func(**a__ )['sequences'] _UpperCAmelCase = test_model.generate(**a__ , max_new_tokens=a__ ) tf.debugging.assert_equal(a__ , a__ ) @slow def __A ( self ): # TF-only test: tf.saved_model export _UpperCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _UpperCAmelCase = 1 _UpperCAmelCase = 2 class lowerCAmelCase ( tf.Module ): def __init__( self , a__ ): super(a__ , self ).__init__() _UpperCAmelCase = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ), ) , jit_compile=a__ , ) def __A ( self , a__ , a__ ): _UpperCAmelCase = self.model.generate( input_ids=a__ , attention_mask=a__ , max_new_tokens=a__ , return_dict_in_generate=a__ , ) return {"sequences": outputs["sequences"]} _UpperCAmelCase = [[2], [1_02, 1_03]] _UpperCAmelCase = [[1], [1, 1]] _UpperCAmelCase = DummyModel(model=a__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a__ , a__ , signatures={'serving_default': dummy_model.serving} ) _UpperCAmelCase = tf.saved_model.load(a__ ).signatures['serving_default'] for input_row in range(len(a__ ) ): _UpperCAmelCase = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } _UpperCAmelCase = serving_func(**a__ )['sequences'] _UpperCAmelCase = test_model.generate(**a__ , max_new_tokens=a__ ) tf.debugging.assert_equal(a__ , a__ ) @slow @require_tensorflow_text def __A ( self ): # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=a__ ) class lowerCAmelCase ( tf.keras.layers.Layer ): def __init__( self ): super().__init__() _UpperCAmelCase = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(a__ , 'spiece.model' ) , 'rb' ).read() ) _UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def __A ( self , a__ , *a__ , **a__ ): _UpperCAmelCase = self.tokenizer.tokenize(a__ ) _UpperCAmelCase , _UpperCAmelCase = text.pad_model_inputs( a__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) _UpperCAmelCase = self.model.generate(input_ids=a__ , attention_mask=a__ ) return self.tokenizer.detokenize(a__ ) _UpperCAmelCase = CompleteSentenceTransformer() _UpperCAmelCase = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' ) _UpperCAmelCase = complete_model(a__ ) _UpperCAmelCase = tf.keras.Model(a__ , a__ ) keras_model.save(a__ ) def __A ( self ): # Has PT equivalent: this test relies on random sampling _UpperCAmelCase = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } _UpperCAmelCase = 14 _UpperCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _UpperCAmelCase = 'Hello, my dog is cute and' _UpperCAmelCase = tokenizer(a__ , return_tensors='tf' ) _UpperCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _UpperCAmelCase = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) _UpperCAmelCase = model.generate(**a__ , eos_token_id=a__ , **a__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) _UpperCAmelCase = [6_38, 1_98] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) _UpperCAmelCase = model.generate(**a__ , eos_token_id=a__ , **a__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def __A ( self ): # Has PT equivalent: ample use of framework-specific code _UpperCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) _UpperCAmelCase = 'Hugging Face is a technology company based in New York and Paris.' _UpperCAmelCase = bart_tokenizer(a__ , return_tensors='tf' ).input_ids _UpperCAmelCase = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) _UpperCAmelCase = bart_model.generate(a__ ).numpy() class lowerCAmelCase ( snake_case ): def __A ( self , a__ , a__=None , **a__ ): return super().call(a__ , **a__ ) _UpperCAmelCase = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) _UpperCAmelCase = bart_model.generate(a__ , foo='bar' ).numpy() self.assertTrue(np.array_equal(a__ , a__ ) ) class lowerCAmelCase ( bart_model.model.encoder.__class__ ): def __A ( self , a__ , **a__ ): return super().call(a__ , **a__ ) _UpperCAmelCase = FakeEncoder(bart_model.config , bart_model.model.shared ) _UpperCAmelCase = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) _UpperCAmelCase = bart_model.generate(a__ ).numpy() with self.assertRaises(a__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(a__ , foo='bar' )
494
1
'''simple docstring''' def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ ) ->Dict: if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError('String lengths must match!' ) snake_case__ = 0 for chara, chara in zip(UpperCAmelCase_ , UpperCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
368
'''simple docstring''' def __snake_case ( ): lowerCamelCase_ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] lowerCamelCase_ = 6 lowerCamelCase_ = 1 lowerCamelCase_ = 1901 lowerCamelCase_ = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 lowerCamelCase_ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 lowerCamelCase_ = day - 29 else: if day > days_per_month[month - 1]: month += 1 lowerCamelCase_ = day - days_per_month[month - 2] if month > 12: year += 1 lowerCamelCase_ = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
675
0
"""simple docstring""" import functools from typing import Any def snake_case ( A__ ,A__ ): # Validation if not isinstance(A__ ,A__ ) or len(A__ ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(A__ ,A__ ) or not all( isinstance(A__ ,A__ ) and len(A__ ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie UpperCAmelCase_ : dict[str, Any] = {} UpperCAmelCase_ : Tuple = "WORD_KEEPER" for word in words: UpperCAmelCase_ : List[str] = trie for c in word: if c not in trie_node: UpperCAmelCase_ : int = {} UpperCAmelCase_ : List[str] = trie_node[c] UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : Optional[int] = len(A__ ) # Dynamic programming method @functools.cache def is_breakable(A__ ) -> bool: if index == len_string: return True UpperCAmelCase_ : str = trie for i in range(A__ ,A__ ): UpperCAmelCase_ : Optional[Any] = trie_node.get(string[i] ,A__ ) if trie_node is None: return False if trie_node.get(A__ ,A__ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
463
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ (__A ): __magic_name__ = '''levit''' def __init__( self : List[str] , lowerCAmelCase_ : int=224 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=16 , lowerCAmelCase_ : Tuple=[128, 256, 384] , lowerCAmelCase_ : Optional[int]=[4, 8, 12] , lowerCAmelCase_ : str=[4, 4, 4] , lowerCAmelCase_ : Dict=[16, 16, 16] , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : Optional[int]=[2, 2, 2] , lowerCAmelCase_ : Any=[2, 2, 2] , lowerCAmelCase_ : int=0.0_2 , **lowerCAmelCase_ : List[Any] , ) -> List[str]: super().__init__(**lowerCAmelCase_ ) UpperCAmelCase_ : int = image_size UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : str = kernel_size UpperCAmelCase_ : List[Any] = stride UpperCAmelCase_ : List[str] = padding UpperCAmelCase_ : Any = hidden_sizes UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : List[str] = depths UpperCAmelCase_ : int = key_dim UpperCAmelCase_ : List[str] = drop_path_rate UpperCAmelCase_ : str = patch_size UpperCAmelCase_ : Tuple = attention_ratio UpperCAmelCase_ : Optional[int] = mlp_ratio UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : List[Any] = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ (__A ): __magic_name__ = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : int ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> float: return 1e-4
463
1
"""simple docstring""" from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Any ): lowerCAmelCase = k_size // 2 lowerCAmelCase ,lowerCAmelCase = mgrid[0 - center : k_size - center, 0 - center : k_size - center] lowerCAmelCase = 1 / (2 * pi * sigma) * exp(-(square(_UpperCAmelCase ) + square(_UpperCAmelCase )) / (2 * square(_UpperCAmelCase )) ) return g def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] ): lowerCAmelCase ,lowerCAmelCase = image.shape[0], image.shape[1] # dst image height and width lowerCAmelCase = height - k_size + 1 lowerCAmelCase = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows lowerCAmelCase = zeros((dst_height * dst_width, k_size * k_size) ) lowerCAmelCase = 0 for i, j in product(range(_UpperCAmelCase ) , range(_UpperCAmelCase ) ): lowerCAmelCase = ravel(image[i : i + k_size, j : j + k_size] ) lowerCAmelCase = window row += 1 # turn the kernel into shape(k*k, 1) lowerCAmelCase = gen_gaussian_kernel(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = ravel(_UpperCAmelCase ) # reshape and get the dst image lowerCAmelCase = dot(_UpperCAmelCase , _UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ).astype(_UpperCAmelCase ) return dst if __name__ == "__main__": # read original image __UpperCamelCase : Tuple = imread(R'''../image_data/lena.jpg''') # turn image in gray scale value __UpperCamelCase : int = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __UpperCamelCase : Optional[Any] = gaussian_filter(gray, 3, sigma=1) __UpperCamelCase : Tuple = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
4
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCamelCase : Optional[int] = pytest.mark.integration @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_snake_case ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() lowerCAmelCase = dset.map( lambda _snake_case , _snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_snake_case , keep_in_memory=_snake_case ) lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch lowerCAmelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCAmelCase = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_snake_case ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertRaises(_snake_case , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1] lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) self.assertRaises(_snake_case , index.search_batch , queries[0] ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCAmelCase = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_snake_case ): lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = faiss.IndexFlat(5 ) lowerCAmelCase = FaissIndex(custom_index=_snake_case ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCAmelCase = 'index.faiss' lowerCAmelCase = F'mock://{index_name}' index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = Elasticsearch() lowerCAmelCase = {'acknowledged': True} lowerCAmelCase = ElasticSearchIndex(es_client=_snake_case ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case ) # batched queries with timeout lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case , request_timeout=30 ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case )
4
1
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> Optional[Any]: UpperCamelCase = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } UpperCamelCase ,UpperCamelCase = input_paths_and_base_extractors[compression_format] if input_path is None: UpperCamelCase = F"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__UpperCamelCase ) assert base_extractor.is_extractable(__UpperCamelCase ) UpperCamelCase = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(__UpperCamelCase , __UpperCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCamelCase = file_path.read_text(encoding="""utf-8""" ) else: UpperCamelCase = output_path.read_text(encoding="""utf-8""" ) UpperCamelCase = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> Union[str, Any]: UpperCamelCase = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } UpperCamelCase = input_paths[compression_format] if input_path is None: UpperCamelCase = F"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__UpperCamelCase ) UpperCamelCase = Extractor.infer_extractor_format(__UpperCamelCase ) assert extractor_format is not None UpperCamelCase = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCamelCase = file_path.read_text(encoding="""utf-8""" ) else: UpperCamelCase = output_path.read_text(encoding="""utf-8""" ) UpperCamelCase = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> int: import tarfile UpperCamelCase = tmp_path / """data_dot_dot""" directory.mkdir() UpperCamelCase = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def lowercase__ ( __UpperCamelCase )-> List[Any]: import tarfile UpperCamelCase = tmp_path / """data_sym_link""" directory.mkdir() UpperCamelCase = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=__UpperCamelCase ) with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> int: UpperCamelCase = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } UpperCamelCase = insecure_tar_files[insecure_tar_file] UpperCamelCase = tmp_path / """extracted""" TarExtractor.extract(__UpperCamelCase , __UpperCamelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowercase__ ( __UpperCamelCase )-> Any: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number UpperCamelCase = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 UpperCamelCase = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(__UpperCamelCase ) assert zipfile.is_zipfile(str(__UpperCamelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__UpperCamelCase ) # but we're right
35
'''simple docstring''' from __future__ import annotations def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
35
1
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Dict = CanineTokenizer lowerCAmelCase_ : Optional[Any] = False def lowercase__ ( self : Optional[Any] ): super().setUp() lowerCAmelCase : int = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Any ): return CanineTokenizer.from_pretrained('google/canine-s' ) def lowercase__ ( self : str , **UpperCAmelCase_ : List[str] ): lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) lowerCAmelCase : int = 1024 return tokenizer @require_torch def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : str = self.canine_tokenizer lowerCAmelCase : List[Any] = ['Life is like a box of chocolates.', 'You never know what you\'re gonna get.'] # fmt: off lowerCAmelCase : Any = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] # fmt: on lowerCAmelCase : Optional[int] = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = list(batch.input_ids.numpy()[0] ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowercase__ ( self : str ): lowerCAmelCase : Any = self.canine_tokenizer lowerCAmelCase : Union[str, Any] = ['Once there was a man.', 'He wrote a test in HuggingFace Tranformers.'] lowerCAmelCase : Dict = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors='pt' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('input_ids' , UpperCAmelCase_ ) self.assertIn('attention_mask' , UpperCAmelCase_ ) self.assertIn('token_type_ids' , UpperCAmelCase_ ) @require_torch def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.canine_tokenizer lowerCAmelCase : List[Any] = [ 'What\'s the weater?', 'It\'s about 25 degrees.', ] lowerCAmelCase : List[Any] = tokenizer( text_target=UpperCAmelCase_ , max_length=32 , padding='max_length' , truncation=UpperCAmelCase_ , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase__ ( self : Dict ): # safety check on max_len default value so we are sure the test works lowerCAmelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase : Tuple = tempfile.mkdtemp() lowerCAmelCase : Tuple = ' He is very happy, UNwant\u00E9d,running' lowerCAmelCase : Dict = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) tokenizer.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.__class__.from_pretrained(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = after_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) shutil.rmtree(UpperCAmelCase_ ) lowerCAmelCase : List[str] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase : Tuple = tempfile.mkdtemp() lowerCAmelCase : Dict = ' He is very happy, UNwant\u00E9d,running' lowerCAmelCase : List[Any] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: lowerCAmelCase : List[Any] = chr(0xe_007 ) additional_special_tokens.append(UpperCAmelCase_ ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCAmelCase : Optional[Any] = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) tokenizer.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : str = tokenizer.__class__.from_pretrained(UpperCAmelCase_ ) lowerCAmelCase : int = after_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertIn(UpperCAmelCase_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCAmelCase : str = tokenizer.__class__.from_pretrained(UpperCAmelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCAmelCase_ ) def lowercase__ ( self : Any ): lowerCAmelCase : str = self.get_tokenizers(do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCAmelCase , lowerCAmelCase : int = self.get_clean_sequence(UpperCAmelCase_ ) # a special token for Canine can be defined as follows: lowerCAmelCase : Any = 0xe_005 lowerCAmelCase : Optional[int] = chr(UpperCAmelCase_ ) tokenizer.add_special_tokens({'cls_token': special_token} ) lowerCAmelCase : Any = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertEqual(len(UpperCAmelCase_ ) , 1 ) lowerCAmelCase : int = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=UpperCAmelCase_ ) lowerCAmelCase : Any = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) lowerCAmelCase : Dict = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) lowerCAmelCase : Dict = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , input_encoded + special_token_id ) lowerCAmelCase : Tuple = tokenizer.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCAmelCase : List[Any] = chr(0xe_005 ) lowerCAmelCase : Tuple = chr(0xe_006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=UpperCAmelCase_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'additional_special_tokens': [SPECIAL_TOKEN_2]} ) lowerCAmelCase : Union[str, Any] = tokenizer.tokenize(UpperCAmelCase_ ) lowerCAmelCase : str = tokenizer.tokenize(UpperCAmelCase_ ) self.assertEqual(len(UpperCAmelCase_ ) , 1 ) self.assertEqual(len(UpperCAmelCase_ ) , 1 ) self.assertEqual(token_a[0] , UpperCAmelCase_ ) self.assertEqual(token_a[0] , UpperCAmelCase_ ) @require_tokenizers def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.get_tokenizers(do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # a special token for Canine can be defined as follows: lowerCAmelCase : Dict = 0xe_006 lowerCAmelCase : Dict = chr(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ ) tokenizer.add_special_tokens({'additional_special_tokens': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(UpperCAmelCase_ ) tokenizer.from_pretrained(UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: lowerCAmelCase : Tuple = json.load(UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: lowerCAmelCase : Tuple = json.load(UpperCAmelCase_ ) # a special token for Canine can be defined as follows: lowerCAmelCase : Optional[Any] = 0xe_006 lowerCAmelCase : Optional[int] = chr(UpperCAmelCase_ ) lowerCAmelCase : str = [new_token_a] lowerCAmelCase : Any = [new_token_a] with open(os.path.join(UpperCAmelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase : str = tokenizer_class.from_pretrained(UpperCAmelCase_ , extra_ids=0 ) self.assertIn(UpperCAmelCase_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) lowerCAmelCase : Dict = 0xe_007 lowerCAmelCase : Optional[Any] = chr(UpperCAmelCase_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase : List[Any] = [AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ )] lowerCAmelCase : Optional[Any] = tokenizer_class.from_pretrained( UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , extra_ids=0 ) self.assertIn(UpperCAmelCase_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCAmelCase : Dict = 'hello world' if self.space_between_special_tokens: lowerCAmelCase : str = '[CLS] hello world [SEP]' else: lowerCAmelCase : Optional[Any] = input lowerCAmelCase : int = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.decode(UpperCAmelCase_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(UpperCAmelCase_ , [output, output.lower()] ) def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCAmelCase : int = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] lowerCAmelCase : List[str] = 'a' lowerCAmelCase : List[Any] = ord(UpperCAmelCase_ ) for attr in attributes_list: setattr(UpperCAmelCase_ , attr + '_id' , UpperCAmelCase_ ) self.assertEqual(getattr(UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(getattr(UpperCAmelCase_ , attr + '_id' ) , UpperCAmelCase_ ) setattr(UpperCAmelCase_ , attr + '_id' , UpperCAmelCase_ ) self.assertEqual(getattr(UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(getattr(UpperCAmelCase_ , attr + '_id' ) , UpperCAmelCase_ ) setattr(UpperCAmelCase_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(UpperCAmelCase_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(UpperCAmelCase_ , 'additional_special_tokens_ids' ) , [] ) lowerCAmelCase : Dict = 0xe_006 lowerCAmelCase : Optional[int] = chr(UpperCAmelCase_ ) setattr(UpperCAmelCase_ , 'additional_special_tokens_ids' , [additional_special_token_id] ) self.assertListEqual(getattr(UpperCAmelCase_ , 'additional_special_tokens' ) , [additional_special_token] ) self.assertListEqual(getattr(UpperCAmelCase_ , 'additional_special_tokens_ids' ) , [additional_special_token_id] ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : Union[str, Any] ): pass def lowercase__ ( self : str ): pass def lowercase__ ( self : Tuple ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : Dict ): pass def lowercase__ ( self : int ): pass def lowercase__ ( self : str ): pass
343
class __A : def __init__( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[Any] = name lowerCAmelCase : int = val def __str__( self : str ): return f"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : Union[str, Any] , UpperCAmelCase_ : Dict ): return self.val < other.val class __A : def __init__( self : Union[str, Any] , UpperCAmelCase_ : str ): lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = {} lowerCAmelCase : Optional[Any] = self.build_heap(UpperCAmelCase_ ) def __getitem__( self : Union[str, Any] , UpperCAmelCase_ : str ): return self.get_value(UpperCAmelCase_ ) def lowercase__ ( self : int , UpperCAmelCase_ : Any ): return (idx - 1) // 2 def lowercase__ ( self : int , UpperCAmelCase_ : str ): return idx * 2 + 1 def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Any ): return idx * 2 + 2 def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[Any] ): return self.heap_dict[key] def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Optional[Any] = len(UpperCAmelCase_ ) - 1 lowerCAmelCase : Union[str, Any] = self.get_parent_idx(UpperCAmelCase_ ) for idx, i in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Any = idx lowerCAmelCase : Union[str, Any] = i.val for i in range(UpperCAmelCase_ , -1 , -1 ): self.sift_down(UpperCAmelCase_ , UpperCAmelCase_ ) return array def lowercase__ ( self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): while True: lowerCAmelCase : Optional[int] = self.get_left_child_idx(UpperCAmelCase_ ) # noqa: E741 lowerCAmelCase : Union[str, Any] = self.get_right_child_idx(UpperCAmelCase_ ) lowerCAmelCase : Any = idx if l < len(UpperCAmelCase_ ) and array[l] < array[idx]: lowerCAmelCase : Tuple = l if r < len(UpperCAmelCase_ ) and array[r] < array[smallest]: lowerCAmelCase : Any = r if smallest != idx: lowerCAmelCase , lowerCAmelCase : Union[str, Any] = array[smallest], array[idx] ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : List[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowerCAmelCase : List[str] = smallest else: break def lowercase__ ( self : Any , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Optional[Any] = self.get_parent_idx(UpperCAmelCase_ ) while p >= 0 and self.heap[p] > self.heap[idx]: lowerCAmelCase , lowerCAmelCase : Optional[int] = self.heap[idx], self.heap[p] lowerCAmelCase , lowerCAmelCase : Union[str, Any] = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowerCAmelCase : Dict = p lowerCAmelCase : Optional[Any] = self.get_parent_idx(UpperCAmelCase_ ) def lowercase__ ( self : str ): return self.heap[0] def lowercase__ ( self : int ): lowerCAmelCase , lowerCAmelCase : str = self.heap[-1], self.heap[0] lowerCAmelCase , lowerCAmelCase : Dict = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowerCAmelCase : Any = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def lowercase__ ( self : Any , UpperCAmelCase_ : Any ): self.heap.append(UpperCAmelCase_ ) lowerCAmelCase : str = len(self.heap ) - 1 lowerCAmelCase : List[Any] = node.val self.sift_up(len(self.heap ) - 1 ) def lowercase__ ( self : Optional[int] ): return len(self.heap ) == 0 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowerCAmelCase : Optional[int] = new_value lowerCAmelCase : str = new_value self.sift_up(self.idx_of_element[node] ) __A : Tuple = Node('''R''', -1) __A : int = Node('''B''', 6) __A : int = Node('''A''', 3) __A : Optional[Any] = Node('''X''', 1) __A : List[str] = Node('''E''', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __A : Optional[int] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('''Min Heap - before decrease key''') for i in my_min_heap.heap: print(i) print('''Min Heap - After decrease key of node [B -> -17]''') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
343
1
from __future__ import annotations def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , [] , SCREAMING_SNAKE_CASE ) return result def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE , level - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) current_list.pop() def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' for i in total_list: print(*SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = 4 __lowercase = 2 __lowercase = generate_all_combinations(n, k) print_all_state(total_list)
452
import requests from bsa import BeautifulSoup def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE , params=SCREAMING_SNAKE_CASE ).content , '''html.parser''' ) __UpperCamelCase :int = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) __UpperCamelCase :Union[str, Any] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": __lowercase = { '''title''': ( '''Precisely geometry controlled microsupercapacitors for ultrahigh areal ''' '''capacitance, volumetric capacitance, and energy density''' ), '''journal''': '''Chem. Mater.''', '''volume''': 30, '''pages''': '''3979-3990''', '''year''': 2018, '''hl''': '''en''', } print(get_citation('''https://scholar.google.com/scholar_lookup''', params=params))
452
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __magic_name__ : Tuple = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class lowercase__ ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): """simple docstring""" def _a ( self ): '''simple docstring''' UpperCamelCase : Dict = load_tool("""text-question-answering""" ) self.tool.setup() UpperCamelCase : Dict = load_tool("""text-question-answering""" , remote=_A ) def _a ( self ): '''simple docstring''' UpperCamelCase : Tuple = self.tool(_A , """What did Hugging Face do in April 2021?""" ) self.assertEqual(_A , """launched the BigScience Research Workshop""" ) def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.remote_tool(_A , """What did Hugging Face do in April 2021?""" ) self.assertEqual(_A , """launched the BigScience Research Workshop""" ) def _a ( self ): '''simple docstring''' UpperCamelCase : List[str] = self.tool(text=_A , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(_A , """launched the BigScience Research Workshop""" ) def _a ( self ): '''simple docstring''' UpperCamelCase : Tuple = self.remote_tool(text=_A , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(_A , """launched the BigScience Research Workshop""" )
102
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer snake_case : Optional[Any] = logging.get_logger(__name__) snake_case : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case : List[Any] = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } snake_case : Tuple = {"""mobilebert-uncased""": 5_1_2} snake_case : List[str] = {} class UpperCamelCase__ ( a_): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = MobileBertTokenizer def __init__( self : Optional[int] , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : Any="[UNK]" , UpperCamelCase_ : str="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Dict="[CLS]" , UpperCamelCase_ : str="[MASK]" , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Dict=None , **UpperCamelCase_ : Dict , ): '''simple docstring''' super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) __magic_name__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase_ ) != tokenize_chinese_chars ): __magic_name__ = getattr(UpperCamelCase_ , normalizer_state.pop('type' ) ) __magic_name__ = do_lower_case __magic_name__ = strip_accents __magic_name__ = tokenize_chinese_chars __magic_name__ = normalizer_class(**UpperCamelCase_ ) __magic_name__ = do_lower_case def a__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any]=None ): '''simple docstring''' __magic_name__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' __magic_name__ = [self.sep_token_id] __magic_name__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): '''simple docstring''' __magic_name__ = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
545
0
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __magic_name__ = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __magic_name__ = parser.parse_args() __magic_name__ = '''cpu''' __magic_name__ = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __magic_name__ = '''path-to-your-trained-model''' __magic_name__ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __magic_name__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __magic_name__ = pipe.to(device) # to channels last __magic_name__ = pipe.unet.to(memory_format=torch.channels_last) __magic_name__ = pipe.vae.to(memory_format=torch.channels_last) __magic_name__ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __magic_name__ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __magic_name__ = torch.randn(2, 4, 64, 64) __magic_name__ = torch.rand(1) * 999 __magic_name__ = torch.randn(2, 77, 768) __magic_name__ = (sample, timestep, encoder_hidden_status) try: __magic_name__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __magic_name__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __magic_name__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __magic_name__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __magic_name__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __magic_name__ = 666 __magic_name__ = torch.Generator(device).manual_seed(seed) __magic_name__ = {'''generator''': generator} if args.steps is not None: __magic_name__ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __magic_name__ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
721
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a__ ( _snake_case ): """simple docstring""" def __init__( self :Union[str, Any] , lowercase__ :NestedDataStructureLike[PathLike] , lowercase__ :Optional[NamedSplit] = None , lowercase__ :Optional[Features] = None , lowercase__ :str = None , lowercase__ :bool = False , lowercase__ :bool = False , lowercase__ :Optional[int] = None , **lowercase__ :Any , ): super().__init__( lowercase__ , split=lowercase__ , features=lowercase__ , cache_dir=lowercase__ , keep_in_memory=lowercase__ , streaming=lowercase__ , num_proc=lowercase__ , **lowercase__ , ) lowercase = path_or_paths if isinstance(lowercase__ , lowercase__ ) else {self.split: path_or_paths} lowercase = Text( cache_dir=lowercase__ , data_files=lowercase__ , features=lowercase__ , **lowercase__ , ) def __UpperCAmelCase ( self :Any ): # Build iterable dataset if self.streaming: lowercase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase = None lowercase = None lowercase = None lowercase = None self.builder.download_and_prepare( download_config=lowercase__ , download_mode=lowercase__ , verification_mode=lowercase__ , base_path=lowercase__ , num_proc=self.num_proc , ) lowercase = self.builder.as_dataset( split=self.split , verification_mode=lowercase__ , in_memory=self.keep_in_memory ) return dataset
314
0
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ =["""audio_values""", """audio_mask"""] def __init__( self, _a=20_48, _a=1, _a=[16, 16], _a=1_28, _a=4_41_00, _a=86, _a=20_48, _a=0.0, **_a, ) -> str: super().__init__( feature_size=_a, sampling_rate=_a, padding_value=_a, **_a, ) __SCREAMING_SNAKE_CASE = spectrogram_length __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = feature_size // self.patch_size[1] __SCREAMING_SNAKE_CASE = n_fft __SCREAMING_SNAKE_CASE = sampling_rate // hop_length_to_sampling_rate __SCREAMING_SNAKE_CASE = sampling_rate __SCREAMING_SNAKE_CASE = padding_value __SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=_a, min_frequency=0.0, max_frequency=2_2050.0, sampling_rate=_a, norm="slaney", mel_scale="slaney", ).T def __lowerCAmelCase ( self, _a ) -> np.ndarray: __SCREAMING_SNAKE_CASE = spectrogram( _a, window_function(self.n_fft, "hann" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, ) __SCREAMING_SNAKE_CASE = log_spec[:, :-1] __SCREAMING_SNAKE_CASE = log_spec - 20.0 __SCREAMING_SNAKE_CASE = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, _a, _a = None, _a = True, _a = None, _a = False, _a = False, **_a, ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" f''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' f''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) __SCREAMING_SNAKE_CASE = isinstance(_a, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __SCREAMING_SNAKE_CASE = is_batched_numpy or ( isinstance(_a, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: __SCREAMING_SNAKE_CASE = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_a, np.ndarray ): __SCREAMING_SNAKE_CASE = np.asarray(_a, dtype=np.floataa ) elif isinstance(_a, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __SCREAMING_SNAKE_CASE = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __SCREAMING_SNAKE_CASE = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], _a ): __SCREAMING_SNAKE_CASE = [np.asarray(_a, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __SCREAMING_SNAKE_CASE = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __SCREAMING_SNAKE_CASE = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __SCREAMING_SNAKE_CASE = np.array(_a ).astype(np.floataa ) # convert into correct format for padding __SCREAMING_SNAKE_CASE = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __SCREAMING_SNAKE_CASE = np.ones([len(_a ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = padded_audio_features * self.padding_value for i in range(len(_a ) ): __SCREAMING_SNAKE_CASE = audio_features[i] __SCREAMING_SNAKE_CASE = feature # return as BatchFeature if return_attention_mask: __SCREAMING_SNAKE_CASE = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: __SCREAMING_SNAKE_CASE = {"audio_values": padded_audio_features} __SCREAMING_SNAKE_CASE = BatchFeature(data=_a, tensor_type=_a ) return encoded_inputs
693
def _A ( __snake_case :int , __snake_case :float , __snake_case :float ) -> float: """simple docstring""" return round(float(moles / volume ) * nfactor ) def _A ( __snake_case :float , __snake_case :float , __snake_case :float ) -> float: """simple docstring""" return round(float((moles * 0.0_8_2_1 * temperature) / (volume) ) ) def _A ( __snake_case :float , __snake_case :float , __snake_case :float ) -> float: """simple docstring""" return round(float((moles * 0.0_8_2_1 * temperature) / (pressure) ) ) def _A ( __snake_case :float , __snake_case :float , __snake_case :float ) -> float: """simple docstring""" return round(float((pressure * volume) / (0.0_8_2_1 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
693
1
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore _lowerCAmelCase = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" _lowerCAmelCase = [file for file in filepaths if file != file.lower()] if upper_files: print(F'{len(upper_files)} files contain uppercase characters:') print('\n'.join(upper_files) + '\n') _lowerCAmelCase = [file for file in filepaths if ' ' in file] if space_files: print(F'{len(space_files)} files contain space characters:') print('\n'.join(space_files) + '\n') _lowerCAmelCase = [file for file in filepaths if '-' in file] if hyphen_files: print(F'{len(hyphen_files)} files contain hyphen characters:') print('\n'.join(hyphen_files) + '\n') _lowerCAmelCase = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'{len(nodir_files)} files are not in a directory:') print('\n'.join(nodir_files) + '\n') _lowerCAmelCase = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
348
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase (__snake_case ): _SCREAMING_SNAKE_CASE : Optional[int] = (PNDMScheduler,) _SCREAMING_SNAKE_CASE : Optional[int] = (("""num_inference_steps""", 50),) def __snake_case ( self :int , **__magic_name__ :List[str] ) ->str: lowercase : Dict = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**__magic_name__ ) return config def __snake_case ( self :Any , __magic_name__ :Any=0 , **__magic_name__ :List[Any] ) ->Optional[int]: lowercase : List[Any] = dict(self.forward_default_kwargs ) lowercase : str = kwargs.pop("""num_inference_steps""" , __magic_name__ ) lowercase : Any = self.dummy_sample lowercase : Optional[Any] = 0.1 * sample lowercase : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase : int = self.get_scheduler_config(**__magic_name__ ) lowercase : int = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(__magic_name__ ) # copy over dummy past residuals lowercase : str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__magic_name__ ) lowercase : Union[str, Any] = scheduler_class.from_pretrained(__magic_name__ ) new_scheduler.set_timesteps(__magic_name__ ) # copy over dummy past residuals lowercase : Dict = dummy_past_residuals[:] lowercase : Optional[int] = scheduler.step_prk(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample lowercase : Dict = new_scheduler.step_prk(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase : Union[str, Any] = scheduler.step_plms(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample lowercase : int = new_scheduler.step_plms(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __snake_case ( self :Optional[Any] ) ->Tuple: pass def __snake_case ( self :List[str] , __magic_name__ :str=0 , **__magic_name__ :Tuple ) ->Any: lowercase : List[str] = dict(self.forward_default_kwargs ) lowercase : Optional[Any] = kwargs.pop("""num_inference_steps""" , __magic_name__ ) lowercase : Any = self.dummy_sample lowercase : Optional[Any] = 0.1 * sample lowercase : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase : List[str] = self.get_scheduler_config() lowercase : Optional[Any] = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(__magic_name__ ) # copy over dummy past residuals (must be after setting timesteps) lowercase : Optional[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__magic_name__ ) lowercase : Dict = scheduler_class.from_pretrained(__magic_name__ ) # copy over dummy past residuals new_scheduler.set_timesteps(__magic_name__ ) # copy over dummy past residual (must be after setting timesteps) lowercase : int = dummy_past_residuals[:] lowercase : List[str] = scheduler.step_prk(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample lowercase : Any = new_scheduler.step_prk(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase : Any = scheduler.step_plms(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample lowercase : int = new_scheduler.step_plms(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __snake_case ( self :List[Any] , **__magic_name__ :Optional[int] ) ->int: lowercase : Any = self.scheduler_classes[0] lowercase : Optional[int] = self.get_scheduler_config(**__magic_name__ ) lowercase : List[Any] = scheduler_class(**__magic_name__ ) lowercase : int = 10 lowercase : Union[str, Any] = self.dummy_model() lowercase : Dict = self.dummy_sample_deter scheduler.set_timesteps(__magic_name__ ) for i, t in enumerate(scheduler.prk_timesteps ): lowercase : Any = model(__magic_name__ , __magic_name__ ) lowercase : Union[str, Any] = scheduler.step_prk(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowercase : str = model(__magic_name__ , __magic_name__ ) lowercase : int = scheduler.step_plms(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample return sample def __snake_case ( self :List[Any] ) ->List[Any]: lowercase : str = dict(self.forward_default_kwargs ) lowercase : Dict = kwargs.pop("""num_inference_steps""" , __magic_name__ ) for scheduler_class in self.scheduler_classes: lowercase : str = self.get_scheduler_config() lowercase : str = scheduler_class(**__magic_name__ ) lowercase : List[Any] = self.dummy_sample lowercase : Dict = 0.1 * sample if num_inference_steps is not None and hasattr(__magic_name__ , """set_timesteps""" ): scheduler.set_timesteps(__magic_name__ ) elif num_inference_steps is not None and not hasattr(__magic_name__ , """set_timesteps""" ): lowercase : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase : Union[str, Any] = dummy_past_residuals[:] lowercase : Any = scheduler.step_prk(__magic_name__ , 0 , __magic_name__ , **__magic_name__ ).prev_sample lowercase : Union[str, Any] = scheduler.step_prk(__magic_name__ , 1 , __magic_name__ , **__magic_name__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowercase : List[Any] = scheduler.step_plms(__magic_name__ , 0 , __magic_name__ , **__magic_name__ ).prev_sample lowercase : Optional[int] = scheduler.step_plms(__magic_name__ , 1 , __magic_name__ , **__magic_name__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __snake_case ( self :Optional[Any] ) ->Optional[Any]: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=__magic_name__ ) def __snake_case ( self :int ) ->Tuple: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__magic_name__ ) lowercase : Optional[int] = self.scheduler_classes[0] lowercase : int = self.get_scheduler_config(steps_offset=1 ) lowercase : str = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def __snake_case ( self :int ) ->int: for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=__magic_name__ , beta_end=__magic_name__ ) def __snake_case ( self :Tuple ) ->Union[str, Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__magic_name__ ) def __snake_case ( self :Optional[int] ) ->Tuple: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__magic_name__ ) def __snake_case ( self :Optional[int] ) ->Any: for t in [1, 5, 10]: self.check_over_forward(time_step=__magic_name__ ) def __snake_case ( self :List[Any] ) ->Any: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__magic_name__ ) def __snake_case ( self :Optional[Any] ) ->int: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 lowercase : List[Any] = 27 for scheduler_class in self.scheduler_classes: lowercase : List[Any] = self.dummy_sample lowercase : Tuple = 0.1 * sample lowercase : int = self.get_scheduler_config() lowercase : str = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(__magic_name__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowercase : int = scheduler.step_prk(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample def __snake_case ( self :int ) ->Dict: with self.assertRaises(__magic_name__ ): lowercase : Optional[int] = self.scheduler_classes[0] lowercase : List[Any] = self.get_scheduler_config() lowercase : Dict = scheduler_class(**__magic_name__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __snake_case ( self :List[str] ) ->List[str]: lowercase : Tuple = self.full_loop() lowercase : Optional[Any] = torch.sum(torch.abs(__magic_name__ ) ) lowercase : Tuple = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def __snake_case ( self :str ) ->Union[str, Any]: lowercase : Tuple = self.full_loop(prediction_type="""v_prediction""" ) lowercase : Dict = torch.sum(torch.abs(__magic_name__ ) ) lowercase : Any = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def __snake_case ( self :List[Any] ) ->List[str]: # We specify different beta, so that the first alpha is 0.99 lowercase : Tuple = self.full_loop(set_alpha_to_one=__magic_name__ , beta_start=0.01 ) lowercase : Optional[int] = torch.sum(torch.abs(__magic_name__ ) ) lowercase : int = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def __snake_case ( self :Optional[int] ) ->Tuple: # We specify different beta, so that the first alpha is 0.99 lowercase : str = self.full_loop(set_alpha_to_one=__magic_name__ , beta_start=0.01 ) lowercase : int = torch.sum(torch.abs(__magic_name__ ) ) lowercase : Optional[Any] = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
348
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
94
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def lowercase_ ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
94
1
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __A = logging.get_logger(__name__) def __A ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' def constraint_to_multiple_of(_lowercase , _lowercase , _lowercase=0 , _lowercase=None ): _A = round(val / multiple ) * multiple if max_val is not None and x > max_val: _A = math.floor(val / multiple ) * multiple if x < min_val: _A = math.ceil(val / multiple ) * multiple return x _A = (output_size, output_size) if isinstance(_lowercase , _lowercase ) else output_size _A ,_A = get_image_size(_lowercase ) _A ,_A = output_size # determine new height and width _A = output_height / input_height _A = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _A = scale_width else: # fit height _A = scale_height _A = constraint_to_multiple_of(scale_height * input_height , multiple=_lowercase ) _A = constraint_to_multiple_of(scale_width * input_width , multiple=_lowercase ) return (new_height, new_width) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = ["pixel_values"] def __init__( self: int , __A: bool = True , __A: Dict[str, int] = None , __A: PILImageResampling = PILImageResampling.BILINEAR , __A: bool = False , __A: int = 1 , __A: bool = True , __A: Union[int, float] = 1 / 2_55 , __A: bool = True , __A: Optional[Union[float, List[float]]] = None , __A: Optional[Union[float, List[float]]] = None , **__A: Optional[int] , ) -> None: super().__init__(**__A ) _A = size if size is not None else {'''height''': 3_84, '''width''': 3_84} _A = get_size_dict(__A ) _A = do_resize _A = size _A = keep_aspect_ratio _A = ensure_multiple_of _A = resample _A = do_rescale _A = rescale_factor _A = do_normalize _A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _A = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self: Dict , __A: np.ndarray , __A: Dict[str, int] , __A: bool = False , __A: int = 1 , __A: PILImageResampling = PILImageResampling.BICUBIC , __A: Optional[Union[str, ChannelDimension]] = None , **__A: Union[str, Any] , ) -> np.ndarray: _A = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _A = get_resize_output_image_size( __A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=__A , multiple=__A , ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def __A ( self: Optional[int] , __A: np.ndarray , __A: Union[int, float] , __A: Optional[Union[str, ChannelDimension]] = None , **__A: List[str] , ) -> Optional[int]: return rescale(__A , scale=__A , data_format=__A , **__A ) def __A ( self: Optional[int] , __A: np.ndarray , __A: Union[float, List[float]] , __A: Union[float, List[float]] , __A: Optional[Union[str, ChannelDimension]] = None , **__A: Optional[Any] , ) -> np.ndarray: return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def __A ( self: Any , __A: ImageInput , __A: bool = None , __A: int = None , __A: bool = None , __A: int = None , __A: PILImageResampling = None , __A: bool = None , __A: float = None , __A: bool = None , __A: Optional[Union[float, List[float]]] = None , __A: Optional[Union[float, List[float]]] = None , __A: Optional[Union[str, TensorType]] = None , __A: ChannelDimension = ChannelDimension.FIRST , **__A: Tuple , ) -> PIL.Image.Image: _A = do_resize if do_resize is not None else self.do_resize _A = size if size is not None else self.size _A = get_size_dict(__A ) _A = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _A = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _A = resample if resample is not None else self.resample _A = do_rescale if do_rescale is not None else self.do_rescale _A = rescale_factor if rescale_factor is not None else self.rescale_factor _A = do_normalize if do_normalize is not None else self.do_normalize _A = image_mean if image_mean is not None else self.image_mean _A = image_std if image_std is not None else self.image_std _A = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _A = [to_numpy_array(__A ) for image in images] if do_resize: _A = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_rescale: _A = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: _A = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] _A = [to_channel_dimension_format(__A , __A ) for image in images] _A = {'''pixel_values''': images} return BatchFeature(data=__A , tensor_type=__A ) def __A ( self: Union[str, Any] , __A: int , __A: List[Tuple] = None ) -> str: _A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__A ) != len(__A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(__A ): _A = target_sizes.numpy() _A = [] for idx in range(len(__A ) ): _A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__A ) _A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__A ) else: _A = logits.argmax(dim=1 ) _A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
62
def __A ( _lowercase ): '''simple docstring''' _A = [0] * len(_lowercase ) _A = [] _A = [] _A = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_lowercase ) ): if indegree[i] == 0: queue.append(_lowercase ) while queue: _A = queue.pop(0 ) cnt += 1 topo.append(_lowercase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_lowercase ) if cnt != len(_lowercase ): print('''Cycle exists''' ) else: print(_lowercase ) # Adjacency List of Graph __A = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
62
1
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any]=13 , lowerCamelCase__ :List[str]=7 , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Tuple=True , lowerCamelCase__ :Any=99 , lowerCamelCase__ :int=32 , lowerCamelCase__ :Union[str, Any]=5 , lowerCamelCase__ :Optional[int]=4 , lowerCamelCase__ :List[str]=37 , lowerCamelCase__ :Any="gelu" , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :Optional[Any]=0.1 , lowerCamelCase__ :str=50 , lowerCamelCase__ :int=0.02 , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :List[str]=None , ): UpperCamelCase__ :Dict = parent UpperCamelCase__ :Optional[Any] = batch_size UpperCamelCase__ :Tuple = seq_length UpperCamelCase__ :Union[str, Any] = is_training UpperCamelCase__ :str = use_input_mask UpperCamelCase__ :Any = vocab_size UpperCamelCase__ :str = hidden_size UpperCamelCase__ :int = num_hidden_layers UpperCamelCase__ :Dict = num_attention_heads UpperCamelCase__ :Union[str, Any] = intermediate_size UpperCamelCase__ :Optional[int] = hidden_act UpperCamelCase__ :Optional[int] = hidden_dropout_prob UpperCamelCase__ :List[Any] = attention_probs_dropout_prob UpperCamelCase__ :List[Any] = max_position_embeddings UpperCamelCase__ :Optional[int] = initializer_range UpperCamelCase__ :str = use_labels UpperCamelCase__ :Union[str, Any] = scope def __a ( self :Optional[Any] ): UpperCamelCase__ :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Union[str, Any] = None if self.use_input_mask: UpperCamelCase__ :str = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: UpperCamelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Dict = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self :Optional[int] ): return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) def __a ( self :Any ): ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :int = self.prepare_config_and_inputs() UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def __a ( self :Dict , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :List[Any] , **lowerCamelCase__ :str , ): UpperCamelCase__ :Dict = BertGenerationEncoder(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ :Tuple = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :str , lowerCamelCase__ :List[Any] , lowerCamelCase__ :str , **lowerCamelCase__ :Union[str, Any] , ): UpperCamelCase__ :List[str] = True UpperCamelCase__ :List[str] = BertGenerationEncoder(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Union[str, Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , ) UpperCamelCase__ :Any = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :Any , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , **lowerCamelCase__ :Optional[Any] , ): UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :int = True UpperCamelCase__ :List[str] = BertGenerationDecoder(config=lowerCamelCase__ ).to(lowerCamelCase__ ).eval() # first forward pass UpperCamelCase__ :List[str] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ , ) UpperCamelCase__ :List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ :List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ :List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ :Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ :Dict = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ :List[str] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["""hidden_states"""][0] UpperCamelCase__ :Optional[int] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )["""hidden_states"""][0] # select random slice UpperCamelCase__ :Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ :int = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ :Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) def __a ( self :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :str , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Tuple , *lowerCamelCase__ :str , ): UpperCamelCase__ :List[Any] = BertGenerationDecoder(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Optional[Any] ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase__ :Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () _snake_case : Any = (BertGenerationDecoder,) if is_torch_available() else () _snake_case : Optional[int] = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def __a ( self :List[Any] ): UpperCamelCase__ :int = BertGenerationEncoderTester(self ) UpperCamelCase__ :Union[str, Any] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Any ): self.config_tester.run_common_tests() def __a ( self :Union[str, Any] ): UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def __a ( self :Tuple ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ :Optional[Any] = """bert""" self.model_tester.create_and_check_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[str] ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowerCamelCase__ ) def __a ( self :Dict ): # This regression test was failing with PyTorch < 1.3 ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :int = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase__ :Optional[int] = None self.model_tester.create_and_check_model_as_decoder( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) def __a ( self :str ): UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase__ ) @slow def __a ( self :Tuple ): UpperCamelCase__ :Any = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) self.assertIsNotNone(lowerCamelCase__ ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) UpperCamelCase__ :List[str] = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] ) with torch.no_grad(): UpperCamelCase__ :str = model(lowerCamelCase__ )[0] UpperCamelCase__ :Optional[int] = torch.Size([1, 8, 10_24] ) self.assertEqual(output.shape , lowerCamelCase__ ) UpperCamelCase__ :Tuple = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self :int ): UpperCamelCase__ :str = BertGenerationDecoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) UpperCamelCase__ :Optional[Any] = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] ) with torch.no_grad(): UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ )[0] UpperCamelCase__ :str = torch.Size([1, 8, 5_03_58] ) self.assertEqual(output.shape , lowerCamelCase__ ) UpperCamelCase__ :Dict = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
45
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase : str = { "configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"], "tokenization_perceiver": ["PerceiverTokenizer"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[Any] = ["PerceiverFeatureExtractor"] _UpperCamelCase : Optional[int] = ["PerceiverImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[str] = [ "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST", "PerceiverForImageClassificationConvProcessing", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationLearned", "PerceiverForMaskedLM", "PerceiverForMultimodalAutoencoding", "PerceiverForOpticalFlow", "PerceiverForSequenceClassification", "PerceiverLayer", "PerceiverModel", "PerceiverPreTrainedModel", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _UpperCamelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
599
0
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _A = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex _A = 10 _A = 2_56 def lowerCamelCase__ ( __lowerCAmelCase : List[str] ): """simple docstring""" if len(__lowerCAmelCase ) < MIN_NUM_TOKENS: return None lowerCAmelCase_ = MinHash(num_perm=__lowerCAmelCase ) for token in set(__lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def lowerCamelCase__ ( __lowerCAmelCase : str ): """simple docstring""" return {t for t in NON_ALPHA.split(__lowerCAmelCase ) if len(t.strip() ) > 0} class _lowerCAmelCase : def __init__( self , *, _UpperCamelCase = 0.85 , ) -> Dict: lowerCAmelCase_ = duplication_jaccard_threshold lowerCAmelCase_ = NUM_PERM lowerCAmelCase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowerCAmelCase_ = defaultdict(_UpperCamelCase ) def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> None: lowerCAmelCase_ = self._index.query(_UpperCamelCase ) if code_key in self._index.keys: print(f"""Duplicate key {code_key}""" ) return self._index.insert(_UpperCamelCase , _UpperCamelCase ) if len(_UpperCamelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_UpperCamelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_UpperCamelCase ) def __a ( self ) -> List[List[Dict]]: lowerCAmelCase_ = [] for base, duplicates in self._duplicate_clusters.items(): lowerCAmelCase_ = [base] + list(_UpperCamelCase ) # reformat the cluster to be a list of dict lowerCAmelCase_ = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(_UpperCamelCase ) return duplicate_clusters def __a ( self , _UpperCamelCase ) -> None: lowerCAmelCase_ = self.get_duplicate_clusters() with open(_UpperCamelCase , "w" ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) def lowerCamelCase__ ( __lowerCAmelCase : Tuple ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = element lowerCAmelCase_ = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCamelCase__ ( __lowerCAmelCase : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__lowerCAmelCase , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def lowerCamelCase__ ( __lowerCAmelCase : Type[Dataset] , __lowerCAmelCase : float ): """simple docstring""" lowerCAmelCase_ = DuplicationIndex(duplication_jaccard_threshold=__lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowerCAmelCase ) ) , max_queue_size=100 ) ): di.add(__lowerCAmelCase , __lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = get_tokens(__lowerCAmelCase ) lowerCAmelCase_ = get_tokens(__lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _A = None def lowerCamelCase__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : int ): """simple docstring""" lowerCAmelCase_ = [] for elementa in cluster: lowerCAmelCase_ = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: lowerCAmelCase_ = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(__lowerCAmelCase , __lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowerCAmelCase_ = 1 extremes.append(__lowerCAmelCase ) return extremes def lowerCamelCase__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" global _shared_dataset lowerCAmelCase_ = dataset lowerCAmelCase_ = [] lowerCAmelCase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __lowerCAmelCase , __lowerCAmelCase , ) , total=len(__lowerCAmelCase ) , ): extremes_list.append(__lowerCAmelCase ) return extremes_list def lowerCamelCase__ ( __lowerCAmelCase : Type[Dataset] , __lowerCAmelCase : float = 0.85 ): """simple docstring""" lowerCAmelCase_ = make_duplicate_clusters(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase_ = {x["base_index"] for cluster in duplicate_clusters for x in cluster} lowerCAmelCase_ = {} lowerCAmelCase_ = find_extremes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: lowerCAmelCase_ = element lowerCAmelCase_ = duplicate_indices - set(extreme_dict.keys() ) lowerCAmelCase_ = dataset.filter(lambda __lowerCAmelCase , __lowerCAmelCase : idx not in remove_indices , with_indices=__lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowerCAmelCase_ = element["base_index"] in extreme_dict if element["is_extreme"]: lowerCAmelCase_ = extreme_dict[element["base_index"]]["copies"] print(F"""Original dataset size: {len(__lowerCAmelCase )}""" ) print(F"""Number of duplicate clusters: {len(__lowerCAmelCase )}""" ) print(F"""Files in duplicate cluster: {len(__lowerCAmelCase )}""" ) print(F"""Unique files in duplicate cluster: {len(__lowerCAmelCase )}""" ) print(F"""Filtered dataset size: {len(__lowerCAmelCase )}""" ) return ds_filter, duplicate_clusters
279
import math class _lowerCAmelCase : def __init__( self , _UpperCamelCase=0 ) -> Tuple: # a graph with Node 0,1,...,N-1 lowerCAmelCase_ = n lowerCAmelCase_ = [ [math.inf for j in range(0 , _UpperCamelCase )] for i in range(0 , _UpperCamelCase ) ] # adjacency matrix for weight lowerCAmelCase_ = [ [math.inf for j in range(0 , _UpperCamelCase )] for i in range(0 , _UpperCamelCase ) ] # dp[i][j] stores minimum distance from i to j def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: lowerCAmelCase_ = w def __a ( self ) -> List[str]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowerCAmelCase_ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> Dict: return self.dp[u][v] if __name__ == "__main__": _A = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
279
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github UpperCAmelCase_ = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def SCREAMING_SNAKE_CASE ( ): __a = Github(os.environ['GITHUB_TOKEN'] ) __a = g.get_repo('huggingface/diffusers' ) __a = repo.get_issues(state='open' ) for issue in open_issues: __a = sorted(issue.get_comments() , key=lambda a_ : i.created_at , reverse=a_ ) __a = comments[0] if len(a_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
539
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def SCREAMING_SNAKE_CASE ( a_ : Tuple , a_ : Dict ): __a = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) __a = DatasetInfosDict.from_directory(a_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def SCREAMING_SNAKE_CASE ( a_ : Optional[int] , a_ : DatasetInfo ): __a = str(a_ ) dataset_info.write_to_directory(a_ ) __a = DatasetInfo.from_directory(a_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a_ , 'dataset_info.json' ) ) def SCREAMING_SNAKE_CASE ( ): __a = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) __a = dataset_info._to_yaml_dict() assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) __a = yaml.safe_dump(a_ ) __a = yaml.safe_load(a_ ) assert dataset_info_yaml_dict == reloaded def SCREAMING_SNAKE_CASE ( ): __a = DatasetInfo() __a = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def SCREAMING_SNAKE_CASE ( a_ : List[str] , a_ : DatasetInfosDict ): __a = str(a_ ) dataset_infos_dict.write_to_directory(a_ ) __a = DatasetInfosDict.from_directory(a_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): __a = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml __a = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a_ , 'README.md' ) )
539
1
UpperCamelCase__ = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_02_17_66_34e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.35_58_18, } def _UpperCamelCase (a__ :str , a__ :str , a__ :float ): """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCamelCase__ = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {", ".join(a__ )}""" ) raise ValueError(a__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
548
from argparse import ArgumentParser from .env import EnvironmentCommand def _UpperCamelCase (): """simple docstring""" UpperCamelCase__ = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) UpperCamelCase__ = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(a__ ) # Let's go UpperCamelCase__ = parser.parse_args() if not hasattr(a__ , """func""" ): parser.print_help() exit(1 ) # Run UpperCamelCase__ = args.func(a__ ) service.run() if __name__ == "__main__": main()
548
1
"""simple docstring""" import operator def __UpperCAmelCase ( snake_case_ : list , snake_case_ : bool = False , snake_case_ : list | None = None ) -> list: """simple docstring""" _lowerCAmelCase = operator.lt if reverse else operator.gt _lowerCAmelCase = solution or [] if not arr: return solution _lowerCAmelCase = [arr.pop(0 )] for i, item in enumerate(snake_case_ ): if _operator(snake_case_ , sublist[-1] ): sublist.append(snake_case_ ) arr.pop(snake_case_ ) # merging sublist into solution list if not solution: solution.extend(snake_case_ ) else: while sublist: _lowerCAmelCase = sublist.pop(0 ) for i, xx in enumerate(snake_case_ ): if not _operator(snake_case_ , snake_case_ ): solution.insert(snake_case_ , snake_case_ ) break else: solution.append(snake_case_ ) strand_sort(snake_case_ , snake_case_ , snake_case_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
156
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = PhobertTokenizer __UpperCamelCase = False def A__ (self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase = ["""T@@""", """i""", """I""", """R@@""", """r""", """e@@"""] _lowerCAmelCase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) _lowerCAmelCase = ["""#version: 0.2""", """l à</w>"""] _lowerCAmelCase = {"""unk_token""": """<unk>"""} _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase ) ) def A__ (self , **lowerCamelCase ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = """Tôi là VinAI Research""" _lowerCAmelCase = """T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>""" return input_text, output_text def A__ (self ): '''simple docstring''' _lowerCAmelCase = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase = """Tôi là VinAI Research""" _lowerCAmelCase = """T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h""".split() _lowerCAmelCase = tokenizer.tokenize(lowerCamelCase ) print(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = tokens + [tokenizer.unk_token] _lowerCAmelCase = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , lowerCamelCase )
156
1
import pytest import datasets # Import fixture modules as plugins __snake_case : Optional[int] = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=SCREAMING_SNAKE_CASE ) def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :List[str] = tmp_path_factory.getbasetemp() / 'cache' UpperCAmelCase__ :List[Any] = test_hf_cache_home / 'datasets' UpperCAmelCase__ :str = test_hf_cache_home / 'metrics' UpperCAmelCase__ :Optional[int] = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(SCREAMING_SNAKE_CASE ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(SCREAMING_SNAKE_CASE ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(SCREAMING_SNAKE_CASE ) ) UpperCAmelCase__ :Any = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(SCREAMING_SNAKE_CASE ) ) UpperCAmelCase__ :Union[str, Any] = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(SCREAMING_SNAKE_CASE ) ) @pytest.fixture(autouse=SCREAMING_SNAKE_CASE , scope='session' ) def A ( ): """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=SCREAMING_SNAKE_CASE ) def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , SCREAMING_SNAKE_CASE ) @pytest.fixture def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , SCREAMING_SNAKE_CASE )
703
from math import isqrt def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :str = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCAmelCase__ :List[Any] = False return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]] def A ( SCREAMING_SNAKE_CASE = 10**8 ): """simple docstring""" UpperCAmelCase__ :Any = calculate_prime_numbers(max_number // 2 ) UpperCAmelCase__ :Optional[Any] = 0 UpperCAmelCase__ :List[str] = 0 UpperCAmelCase__ :Dict = len(SCREAMING_SNAKE_CASE ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
433
0
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowercase_ = open # noqa: we just need to have a builtin inside this module to test it properly
235
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: # load base model lowercase__ = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowercase__ = load_file(_SCREAMING_SNAKE_CASE ) lowercase__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowercase__ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) lowercase__ = pipeline.text_encoder else: lowercase__ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) lowercase__ = pipeline.unet # find the target layer lowercase__ = layer_infos.pop(0 ) while len(_SCREAMING_SNAKE_CASE ) > -1: try: lowercase__ = curr_layer.__getattr__(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: lowercase__ = layer_infos.pop(0 ) elif len(_SCREAMING_SNAKE_CASE ) == 0: break except Exception: if len(_SCREAMING_SNAKE_CASE ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowercase__ = layer_infos.pop(0 ) lowercase__ = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(_SCREAMING_SNAKE_CASE ) else: pair_keys.append(_SCREAMING_SNAKE_CASE ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowercase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).unsqueeze(2 ).unsqueeze(3 ) else: lowercase__ = state_dict[pair_keys[0]].to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # update visited list for item in pair_keys: visited.append(_SCREAMING_SNAKE_CASE ) return pipeline if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") lowercase_ = parser.parse_args() lowercase_ = args.base_model_path lowercase_ = args.checkpoint_path lowercase_ = args.dump_path lowercase_ = args.lora_prefix_unet lowercase_ = args.lora_prefix_text_encoder lowercase_ = args.alpha lowercase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowercase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
235
1
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def snake_case__ ( __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=False ): """simple docstring""" lowerCamelCase__ : int =OmegaConf.load(__UpperCAmelCase ) if display: print(yaml.dump(OmegaConf.to_container(__UpperCAmelCase ) ) ) return config def snake_case__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[str]=None ): """simple docstring""" if conf_path is None: lowerCamelCase__ : List[Any] ='''./model_checkpoints/vqgan_only.yaml''' lowerCamelCase__ : List[str] =load_config(__UpperCAmelCase , display=__UpperCAmelCase ) lowerCamelCase__ : Tuple =VQModel(**config.model.params ) if ckpt_path is None: lowerCamelCase__ : Dict ='''./model_checkpoints/vqgan_only.pt''' lowerCamelCase__ : int =torch.load(__UpperCAmelCase , map_location=__UpperCAmelCase ) if ".ckpt" in ckpt_path: lowerCamelCase__ : Any =sd['''state_dict'''] model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) model.to(__UpperCAmelCase ) del sd return model def snake_case__ ( __lowerCamelCase : str , __lowerCamelCase : Optional[int] ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] =model.encode(__UpperCAmelCase ) print(f'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) lowerCamelCase__ : Optional[int] =model.decode(__UpperCAmelCase ) return xrec def snake_case__ ( __lowerCamelCase : Dict , __lowerCamelCase : Dict=False ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Any =string.rsplit('''.''' , 1 ) if reload: lowerCamelCase__ : List[str] =importlib.import_module(__UpperCAmelCase ) importlib.reload(__UpperCAmelCase ) return getattr(importlib.import_module(__UpperCAmelCase , package=__UpperCAmelCase ) , cls ) def snake_case__ ( __lowerCamelCase : List[str] ): """simple docstring""" if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def snake_case__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[str]=True , __lowerCamelCase : List[str]=True ): """simple docstring""" lowerCamelCase__ : Any =instantiate_from_config(__UpperCAmelCase ) if sd is not None: model.load_state_dict(__UpperCAmelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] ): """simple docstring""" if ckpt: lowerCamelCase__ : List[Any] =torch.load(__UpperCAmelCase , map_location='''cpu''' ) lowerCamelCase__ : Optional[int] =pl_sd['''global_step'''] print(f'''loaded model from global step {global_step}.''' ) else: lowerCamelCase__ : Dict ={'''state_dict''': None} lowerCamelCase__ : Optional[Any] =None lowerCamelCase__ : Optional[Any] =load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=__UpperCAmelCase , eval_mode=__UpperCAmelCase )['''model'''] return model, global_step
713
"""simple docstring""" import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def snake_case__ ( __lowerCamelCase : Optional[Any] ): """simple docstring""" lowerCamelCase__ : str =VideoMAEConfig() set_architecture_configs(__lowerCamelCase , __lowerCamelCase ) if "finetuned" not in model_name: lowerCamelCase__ : int =False if "finetuned" in model_name: lowerCamelCase__ : str ='''huggingface/label-files''' if "kinetics" in model_name: lowerCamelCase__ : List[Any] =400 lowerCamelCase__ : Optional[int] ='''kinetics400-id2label.json''' elif "ssv2" in model_name: lowerCamelCase__ : Tuple =174 lowerCamelCase__ : Optional[Any] ='''something-something-v2-id2label.json''' else: raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''' ) lowerCamelCase__ : Optional[int] =json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase__ : List[Any] ={int(__lowerCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Dict =idalabel lowerCamelCase__ : Any ={v: k for k, v in idalabel.items()} return config def snake_case__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] ): """simple docstring""" if "small" in model_name: lowerCamelCase__ : Optional[Any] =384 lowerCamelCase__ : List[Any] =1536 lowerCamelCase__ : int =12 lowerCamelCase__ : Dict =16 lowerCamelCase__ : List[Any] =12 lowerCamelCase__ : Optional[Any] =3 lowerCamelCase__ : Union[str, Any] =192 lowerCamelCase__ : str =768 elif "large" in model_name: lowerCamelCase__ : Union[str, Any] =1024 lowerCamelCase__ : str =4096 lowerCamelCase__ : int =24 lowerCamelCase__ : Dict =16 lowerCamelCase__ : Union[str, Any] =12 lowerCamelCase__ : List[Any] =8 lowerCamelCase__ : int =512 lowerCamelCase__ : Optional[Any] =2048 elif "huge" in model_name: lowerCamelCase__ : Optional[int] =1280 lowerCamelCase__ : Optional[int] =5120 lowerCamelCase__ : List[Any] =32 lowerCamelCase__ : List[Any] =16 lowerCamelCase__ : Optional[Any] =12 lowerCamelCase__ : Dict =8 lowerCamelCase__ : List[Any] =640 lowerCamelCase__ : Any =2560 elif "base" not in model_name: raise ValueError('''Model name should include either "small", "base", "large", or "huge"''' ) def snake_case__ ( __lowerCamelCase : Any ): """simple docstring""" if "encoder." in name: lowerCamelCase__ : Optional[int] =name.replace('''encoder.''' , '''''' ) if "cls_token" in name: lowerCamelCase__ : List[Any] =name.replace('''cls_token''' , '''videomae.embeddings.cls_token''' ) if "decoder_pos_embed" in name: lowerCamelCase__ : Tuple =name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: lowerCamelCase__ : Any =name.replace('''pos_embed''' , '''videomae.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: lowerCamelCase__ : Optional[Any] =name.replace('''patch_embed.proj''' , '''videomae.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase__ : List[Any] =name.replace('''patch_embed.norm''' , '''videomae.embeddings.norm''' ) if "decoder.blocks" in name: lowerCamelCase__ : Tuple =name.replace('''decoder.blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: lowerCamelCase__ : Dict =name.replace('''blocks''' , '''videomae.encoder.layer''' ) if "attn.proj" in name: lowerCamelCase__ : Union[str, Any] =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "bias" not in name: lowerCamelCase__ : List[str] =name.replace('''attn''' , '''attention.self''' ) if "attn" in name: lowerCamelCase__ : Union[str, Any] =name.replace('''attn''' , '''attention.attention''' ) if "norm1" in name: lowerCamelCase__ : Tuple =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCamelCase__ : Optional[int] =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCamelCase__ : List[Any] =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCamelCase__ : int =name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: lowerCamelCase__ : Any =name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: lowerCamelCase__ : Optional[Any] =name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: lowerCamelCase__ : Any =name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: lowerCamelCase__ : str =name.replace('''norm.weight''' , '''videomae.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: lowerCamelCase__ : Optional[int] =name.replace('''norm.bias''' , '''videomae.layernorm.bias''' ) if "head" in name and "decoder" not in name: lowerCamelCase__ : List[str] =name.replace('''head''' , '''classifier''' ) return name def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__ : Dict =orig_state_dict.pop(__lowerCamelCase ) if key.startswith('''encoder.''' ): lowerCamelCase__ : Optional[int] =key.replace('''encoder.''' , '''''' ) if "qkv" in key: lowerCamelCase__ : Any =key.split('''.''' ) if key.startswith('''decoder.blocks''' ): lowerCamelCase__ : Tuple =config.decoder_hidden_size lowerCamelCase__ : str =int(key_split[2] ) lowerCamelCase__ : Any ='''decoder.decoder_layers.''' if "weight" in key: lowerCamelCase__ : List[Any] =val[:dim, :] lowerCamelCase__ : Any =val[dim : dim * 2, :] lowerCamelCase__ : Dict =val[-dim:, :] else: lowerCamelCase__ : Optional[Any] =config.hidden_size lowerCamelCase__ : Optional[Any] =int(key_split[1] ) lowerCamelCase__ : str ='''videomae.encoder.layer.''' if "weight" in key: lowerCamelCase__ : int =val[:dim, :] lowerCamelCase__ : Tuple =val[dim : dim * 2, :] lowerCamelCase__ : List[Any] =val[-dim:, :] else: lowerCamelCase__ : int =val return orig_state_dict def snake_case__ ( ): """simple docstring""" lowerCamelCase__ : List[Any] =hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) lowerCamelCase__ : Optional[Any] =np.load(__lowerCamelCase ) return list(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ): """simple docstring""" lowerCamelCase__ : str =get_videomae_config(__lowerCamelCase ) if "finetuned" in model_name: lowerCamelCase__ : Tuple =VideoMAEForVideoClassification(__lowerCamelCase ) else: lowerCamelCase__ : int =VideoMAEForPreTraining(__lowerCamelCase ) # download original checkpoint, hosted on Google Drive lowerCamelCase__ : Union[str, Any] ='''pytorch_model.bin''' gdown.cached_download(__lowerCamelCase , __lowerCamelCase , quiet=__lowerCamelCase ) lowerCamelCase__ : Optional[Any] =torch.load(__lowerCamelCase , map_location='''cpu''' ) if "model" in files: lowerCamelCase__ : Dict =files['''model'''] else: lowerCamelCase__ : str =files['''module'''] lowerCamelCase__ : Optional[Any] =convert_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # verify model on basic input lowerCamelCase__ : Dict =VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) lowerCamelCase__ : int =prepare_video() lowerCamelCase__ : Tuple =image_processor(__lowerCamelCase , return_tensors='''pt''' ) if "finetuned" not in model_name: lowerCamelCase__ : Tuple =hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) lowerCamelCase__ : Union[str, Any] =torch.load(__lowerCamelCase ) lowerCamelCase__ : int =model(**__lowerCamelCase ) lowerCamelCase__ : Dict =outputs.logits lowerCamelCase__ : List[str] =[ '''videomae-small-finetuned-kinetics''', '''videomae-small-finetuned-ssv2''', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) '''videomae-base-short''', '''videomae-base-short-finetuned-kinetics''', '''videomae-base''', '''videomae-base-finetuned-kinetics''', '''videomae-large''', '''videomae-large-finetuned-kinetics''', '''videomae-huge-finetuned-kinetics''', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) '''videomae-base-short-ssv2''', '''videomae-base-short-finetuned-ssv2''', '''videomae-base-ssv2''', '''videomae-base-finetuned-ssv2''', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": lowerCamelCase__ : Union[str, Any] =torch.Size([1, 400] ) lowerCamelCase__ : str =torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": lowerCamelCase__ : int =torch.Size([1, 174] ) lowerCamelCase__ : Dict =torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": lowerCamelCase__ : List[str] =torch.Size([1, 1408, 1536] ) lowerCamelCase__ : Dict =torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": lowerCamelCase__ : List[Any] =torch.Size([1, 1408, 1536] ) lowerCamelCase__ : List[str] =torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one lowerCamelCase__ : str =torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": lowerCamelCase__ : Union[str, Any] =torch.Size([1, 1408, 1536] ) lowerCamelCase__ : List[Any] =torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": lowerCamelCase__ : Any =torch.Size([1, 400] ) lowerCamelCase__ : str =torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": lowerCamelCase__ : Any =torch.Size([1, 400] ) lowerCamelCase__ : Optional[int] =torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": lowerCamelCase__ : List[str] =torch.Size([1, 400] ) lowerCamelCase__ : Dict =torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": lowerCamelCase__ : str =torch.Size([1, 400] ) lowerCamelCase__ : Any =torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": lowerCamelCase__ : Tuple =torch.Size([1, 1408, 1536] ) lowerCamelCase__ : Dict =torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": lowerCamelCase__ : Optional[int] =torch.Size([1, 174] ) lowerCamelCase__ : Any =torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": lowerCamelCase__ : Dict =torch.Size([1, 1408, 1536] ) lowerCamelCase__ : str =torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": lowerCamelCase__ : str =torch.Size([1, 174] ) lowerCamelCase__ : int =torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , __lowerCamelCase , atol=1e-4 ) else: print('''Logits:''' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print('''Logits ok!''' ) # verify loss, if applicable if model_name == "videomae-base-short": lowerCamelCase__ : str =outputs.loss assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-4 ) print('''Loss ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if push_to_hub: print('''Pushing to the hub...''' ) model.push_to_hub(__lowerCamelCase , organization='''nielsr''' ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4", type=str, help=( "URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct" " download link." ), ) parser.add_argument( "--pytorch_dump_folder_path", default="/Users/nielsrogge/Documents/VideoMAE/Test", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--model_name", default="videomae-base", type=str, help="Name of the model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowercase : Union[str, Any] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
625
0
from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE : Union[str, Any] = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ SCREAMING_SNAKE_CASE : List[Any] = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ SCREAMING_SNAKE_CASE : Optional[Any] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def _UpperCAmelCase ( self : Union[str, Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def _UpperCAmelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str]=False ): if return_pvalue: __a = pearsonr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )[0] )}
197
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict SCREAMING_SNAKE_CASE : Union[str, Any] = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def __A ( _A , _A ): """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __A ( _A ): """simple docstring""" __a = _TestCommandArgs(dataset=_A , all_configs=_A , save_infos=_A ) __a = TestCommand(*_A ) test_command.run() __a = os.path.join(_A , "README.md" ) assert os.path.exists(_A ) __a = DatasetInfosDict.from_directory(_A ) __a = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string" ) ), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ), "langs": Sequence(Value("string" ) ), "spans": Sequence(Value("string" ) ), } ) , splits=[ { "name": "train", "num_bytes": 235_1563, "num_examples": 1_0000, }, { "name": "validation", "num_bytes": 23_8418, "num_examples": 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: __a , __a = getattr(dataset_infos["default"] , _A ), getattr(expected_dataset_infos["default"] , _A ) if key == "num_bytes": assert is_apercent_close(_A , _A ) elif key == "splits": assert list(_A ) == list(_A ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
197
1
'''simple docstring''' from typing import Any class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = data UpperCAmelCase_ : Optional[Any] = None def __repr__( self ): '''simple docstring''' return F'''Node({self.data})''' class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self ): '''simple docstring''' UpperCAmelCase_ : List[str] = None def __iter__( self ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.head while node: yield node.data UpperCAmelCase_ : List[Any] = node.next def __len__( self ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self ): '''simple docstring''' return "->".join([str(snake_case_ ) for item in self] ) def __getitem__( self , snake_case_ ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case_ , snake_case_ ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) UpperCAmelCase_ : Any = self.head for _ in range(snake_case_ ): UpperCAmelCase_ : Optional[int] = current.next UpperCAmelCase_ : Optional[int] = data def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' self.insert_nth(len(self ) , snake_case_ ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' self.insert_nth(0 , snake_case_ ) def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) UpperCAmelCase_ : Any = Node(snake_case_ ) if self.head is None: UpperCAmelCase_ : Optional[Any] = new_node elif index == 0: UpperCAmelCase_ : Dict = self.head # link new_node to head UpperCAmelCase_ : Tuple = new_node else: UpperCAmelCase_ : str = self.head for _ in range(index - 1 ): UpperCAmelCase_ : int = temp.next UpperCAmelCase_ : Union[str, Any] = temp.next UpperCAmelCase_ : int = new_node def _UpperCamelCase ( self ): # print every node data '''simple docstring''' print(self ) def _UpperCamelCase ( self ): '''simple docstring''' return self.delete_nth(0 ) def _UpperCamelCase ( self ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def _UpperCamelCase ( self , snake_case_ = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) UpperCAmelCase_ : List[str] = self.head # default first node if index == 0: UpperCAmelCase_ : List[str] = self.head.next else: UpperCAmelCase_ : Optional[Any] = self.head for _ in range(index - 1 ): UpperCAmelCase_ : List[Any] = temp.next UpperCAmelCase_ : Optional[int] = temp.next UpperCAmelCase_ : Optional[int] = temp.next.next return delete_node.data def _UpperCamelCase ( self ): '''simple docstring''' return self.head is None def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = self.head while current: # Store the current node's next node. UpperCAmelCase_ : int = current.next # Make the current node's next point backwards UpperCAmelCase_ : Dict = prev # Make the previous node be the current node UpperCAmelCase_ : Union[str, Any] = current # Make the current node the next node (to progress iteration) UpperCAmelCase_ : List[Any] = next_node # Return prev in order to put the head at the end UpperCAmelCase_ : str = prev def _lowerCamelCase ( ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = LinkedList() assert linked_list.is_empty() is True assert str(lowerCamelCase_ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(lowerCamelCase_ ) == i linked_list.insert_nth(lowerCamelCase_ , i + 1 ) assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(lowerCamelCase_ ) == 9 assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): UpperCAmelCase_ : List[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(-8 , 1 ) ) def _lowerCamelCase ( ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [ -9, 100, Node(77345112 ), 'dlrow olleH', 7, 5555, 0, -192.5_5555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] UpperCAmelCase_ : List[str] = LinkedList() for i in test_input: linked_list.insert_tail(lowerCamelCase_ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(lowerCamelCase_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head UpperCAmelCase_ : Optional[int] = linked_list.delete_head() assert result == -9 assert ( str(lowerCamelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail UpperCAmelCase_ : Union[str, Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(lowerCamelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list UpperCAmelCase_ : int = linked_list.delete_nth(10 ) assert result is None assert ( str(lowerCamelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(lowerCamelCase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(lowerCamelCase_ ) assert ( str(lowerCamelCase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(lowerCamelCase_ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _lowerCamelCase ( ): """simple docstring""" from doctest import testmod testmod() UpperCAmelCase_ : Tuple = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(lowerCamelCase_ ) print('\nReading/changing Node data using indexing:' ) print(F'''Element at Position 1: {linked_list[1]}''' ) UpperCAmelCase_ : Dict = input('Enter New Value: ' ).strip() print('New list:' ) print(lowerCamelCase_ ) print(F'''length of linked_list is : {len(lowerCamelCase_ )}''' ) if __name__ == "__main__": main()
715
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Any = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('xlm-roberta-base' ) UpperCAmelCase_ : Tuple = 'The dog is cute and lives in the garden house' UpperCAmelCase_ : Dict = jnp.array([tokenizer.encode(snake_case_ )] ) UpperCAmelCase_ : str = (1, 1_2, 7_6_8) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ : List[str] = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) UpperCAmelCase_ : str = model(snake_case_ )['last_hidden_state'] self.assertEqual(output.shape , snake_case_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , snake_case_ , atol=1E-3 ) )
389
0
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class __a ( _snake_case ): __UpperCamelCase : Optional[int] = 'autoformer' __UpperCamelCase : int = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Optional[int] ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : str = "student_t" ,lowerCamelCase : str = "nll" ,lowerCamelCase : int = 1 ,lowerCamelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] ,lowerCamelCase : bool = True ,lowerCamelCase : int = 0 ,lowerCamelCase : int = 0 ,lowerCamelCase : int = 0 ,lowerCamelCase : int = 0 ,lowerCamelCase : Optional[List[int]] = None ,lowerCamelCase : Optional[List[int]] = None ,lowerCamelCase : int = 64 ,lowerCamelCase : int = 2 ,lowerCamelCase : int = 2 ,lowerCamelCase : int = 2 ,lowerCamelCase : int = 2 ,lowerCamelCase : int = 32 ,lowerCamelCase : int = 32 ,lowerCamelCase : str = "gelu" ,lowerCamelCase : float = 0.1 ,lowerCamelCase : float = 0.1 ,lowerCamelCase : float = 0.1 ,lowerCamelCase : float = 0.1 ,lowerCamelCase : float = 0.1 ,lowerCamelCase : int = 100 ,lowerCamelCase : float = 0.02 ,lowerCamelCase : bool = True ,lowerCamelCase : str=True ,lowerCamelCase : int = 10 ,lowerCamelCase : int = 25 ,lowerCamelCase : int = 3 ,**lowerCamelCase : Dict ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = prediction_length __SCREAMING_SNAKE_CASE = context_length if context_length is not None else prediction_length __SCREAMING_SNAKE_CASE = distribution_output __SCREAMING_SNAKE_CASE = loss __SCREAMING_SNAKE_CASE = input_size __SCREAMING_SNAKE_CASE = num_time_features __SCREAMING_SNAKE_CASE = lags_sequence __SCREAMING_SNAKE_CASE = scaling __SCREAMING_SNAKE_CASE = num_dynamic_real_features __SCREAMING_SNAKE_CASE = num_static_real_features __SCREAMING_SNAKE_CASE = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowerCamelCase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) __SCREAMING_SNAKE_CASE = cardinality else: __SCREAMING_SNAKE_CASE = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowerCamelCase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) __SCREAMING_SNAKE_CASE = embedding_dimension else: __SCREAMING_SNAKE_CASE = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality] __SCREAMING_SNAKE_CASE = num_parallel_samples # Transformer architecture configuration __SCREAMING_SNAKE_CASE = input_size * len(self.lags_sequence ) + self._number_of_features __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = decoder_layerdrop __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = use_cache # Autoformer __SCREAMING_SNAKE_CASE = label_length __SCREAMING_SNAKE_CASE = moving_average __SCREAMING_SNAKE_CASE = autocorrelation_factor super().__init__(is_encoder_decoder=lowerCamelCase ,**lowerCamelCase ) @property def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
109
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ ="""pegasus""" a_ =["""past_key_values"""] a_ ={"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Any , _a : int=5_0265 , _a : Tuple=1024 , _a : Optional[Any]=12 , _a : int=4096 , _a : str=16 , _a : Union[str, Any]=12 , _a : Optional[Any]=4096 , _a : Optional[int]=16 , _a : Union[str, Any]=0.0 , _a : str=0.0 , _a : List[Any]=True , _a : Optional[int]=True , _a : Tuple="gelu" , _a : Dict=1024 , _a : int=0.1 , _a : Any=0.0 , _a : Union[str, Any]=0.0 , _a : Any=0.02 , _a : Optional[Any]=0 , _a : str=False , _a : Tuple=0 , _a : Optional[int]=1 , _a : Union[str, Any]=1 , **_a : Optional[int] , ) -> Any: __lowerCamelCase : Union[str, Any] = vocab_size __lowerCamelCase : int = max_position_embeddings __lowerCamelCase : Union[str, Any] = d_model __lowerCamelCase : Union[str, Any] = encoder_ffn_dim __lowerCamelCase : Union[str, Any] = encoder_layers __lowerCamelCase : List[Any] = encoder_attention_heads __lowerCamelCase : Optional[int] = decoder_ffn_dim __lowerCamelCase : int = decoder_layers __lowerCamelCase : Tuple = decoder_attention_heads __lowerCamelCase : Optional[Any] = dropout __lowerCamelCase : Tuple = attention_dropout __lowerCamelCase : int = activation_dropout __lowerCamelCase : Dict = activation_function __lowerCamelCase : List[Any] = init_std __lowerCamelCase : List[str] = encoder_layerdrop __lowerCamelCase : Union[str, Any] = decoder_layerdrop __lowerCamelCase : Union[str, Any] = use_cache __lowerCamelCase : Tuple = encoder_layers __lowerCamelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , decoder_start_token_id=_a , forced_eos_token_id=_a , **_a , ) @property def _lowercase ( self : Optional[int] ) -> int: return self.encoder_attention_heads @property def _lowercase ( self : Any ) -> int: return self.d_model
459
0
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCamelCase_ ( a_ , a_ , a_ , a_ , a_ ) ->str: # load base model A =StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors A =load_file(a_ ) A =[] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: A =key.split("." )[0].split(LORA_PREFIX_TEXT_ENCODER + "_" )[-1].split("_" ) A =pipeline.text_encoder else: A =key.split("." )[0].split(LORA_PREFIX_UNET + "_" )[-1].split("_" ) A =pipeline.unet # find the target layer A =layer_infos.pop(0 ) while len(a_ ) > -1: try: A =curr_layer.__getattr__(a_ ) if len(a_ ) > 0: A =layer_infos.pop(0 ) elif len(a_ ) == 0: break except Exception: if len(a_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: A =layer_infos.pop(0 ) A =[] if "lora_down" in key: pair_keys.append(key.replace("lora_down" , "lora_up" ) ) pair_keys.append(a_ ) else: pair_keys.append(a_ ) pair_keys.append(key.replace("lora_up" , "lora_down" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: A =state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) A =state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ).unsqueeze(2 ).unsqueeze(3 ) else: A =state_dict[pair_keys[0]].to(torch.floataa ) A =state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ , a_ ) # update visited list for item in pair_keys: visited.append(a_ ) return pipeline if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") __a = parser.parse_args() __a = args.base_model_path __a = args.checkpoint_path __a = args.dump_path __a = args.lora_prefix_unet __a = args.lora_prefix_text_encoder __a = args.alpha __a = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __a = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
689
import os import sys import unittest __a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __a = os.path.join(git_repo_path, """src""", """diffusers""") class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A =find_backend(" if not is_torch_available():" ) self.assertEqual(snake_case__ , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") A =find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(snake_case__ , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") A =find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(snake_case__ , "torch_and_transformers_and_onnx" ) def _a ( self : List[Any] ): """simple docstring""" A =read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , snake_case__ ) self.assertIn("torch_and_transformers" , snake_case__ ) self.assertIn("flax_and_transformers" , snake_case__ ) self.assertIn("torch_and_transformers_and_onnx" , snake_case__ ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def _a ( self : Dict ): """simple docstring""" A =create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(snake_case__ , "\nCONSTANT = None\n" ) A =create_dummy_object("function" , "'torch'" ) self.assertEqual( snake_case__ , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) A ="\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" A =create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(snake_case__ , snake_case__ ) def _a ( self : Tuple ): """simple docstring""" A ="# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" A =create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , snake_case__ )
689
1
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCAmelCase = get_logger(__name__) class A_ : '''simple docstring''' _UpperCamelCase : Dict = """dummy_data""" _UpperCamelCase : Optional[int] = """datasets""" _UpperCamelCase : Tuple = False def __init__( self , snake_case , snake_case , snake_case , snake_case = None , snake_case = False , snake_case = True , snake_case = None , ): lowercase = 0 lowercase = dataset_name lowercase = cache_dir lowercase = use_local_dummy_data lowercase = config # download_callbacks take a single url as input lowercase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase = str(snake_case ) # to be downloaded lowercase = None lowercase = None @property def SCREAMING_SNAKE_CASE__ ( self ): if self._dummy_file is None: lowercase = self.download_dummy_data() return self._dummy_file @property def SCREAMING_SNAKE_CASE__ ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def SCREAMING_SNAKE_CASE__ ( self ): return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase = cached_path( snake_case , cache_dir=self.cache_dir , extract_compressed_file=snake_case , force_extract=snake_case ) return os.path.join(snake_case , self.dummy_file_name ) @property def SCREAMING_SNAKE_CASE__ ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def SCREAMING_SNAKE_CASE__ ( self ): if self._bucket_url is None: lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def SCREAMING_SNAKE_CASE__ ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , *snake_case ): if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase = self.dummy_file_name # special case when data_url is a dict if isinstance(snake_case , snake_case ): return self.create_dummy_data_dict(snake_case , snake_case ) elif isinstance(snake_case , (list, tuple) ): return self.create_dummy_data_list(snake_case , snake_case ) else: return self.create_dummy_data_single(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , *snake_case ): return self.download_and_extract(snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): return self.download_and_extract(snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , *snake_case , **snake_case ): return path def SCREAMING_SNAKE_CASE__ ( self ): return {} def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(snake_case , snake_case ): for single_url in single_urls: download_callback(snake_case ) else: lowercase = single_urls download_callback(snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(snake_case , snake_case ): lowercase = [os.path.join(snake_case , urllib.parse.quote_plus(Path(snake_case ).name ) ) for x in single_urls] else: lowercase = single_urls lowercase = os.path.join(snake_case , urllib.parse.quote_plus(Path(snake_case ).name ) ) lowercase = value # make sure that values are unique if all(isinstance(snake_case , snake_case ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , snake_case ) ) for url in data_url ) lowercase = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase = [data_url[0]] * len(snake_case ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase = os.path.join(snake_case , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(snake_case ) return dummy_data_list def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): for download_callback in self.download_callbacks: download_callback(snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase = os.path.join(snake_case , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(snake_case ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self , snake_case ): def _iter_archive_members(snake_case ): # this preserves the order of the members inside the ZIP archive lowercase = Path(self.dummy_file ).parent lowercase = path.relative_to(snake_case ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(snake_case ) lowercase = Path(snake_case ) lowercase = _iter_archive_members(snake_case ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(snake_case ).as_posix(), file_path.open('rb' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if not isinstance(snake_case , snake_case ): lowercase = [paths] for path in paths: if os.path.isfile(snake_case ): if os.path.basename(snake_case ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(snake_case ): if os.path.basename(snake_case ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(snake_case ): if filename.startswith(('.', '__') ): continue yield os.path.join(snake_case , snake_case )
84
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip SCREAMING_SNAKE_CASE = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowerCamelCase__ ( UpperCAmelCase_ )-> Tuple: """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> List[str]: """simple docstring""" return max(metric_fn(UpperCAmelCase_ , UpperCAmelCase_ ) for gt in ground_truths ) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> List[Any]: """simple docstring""" UpperCamelCase = [line.strip() for line in open(UpperCAmelCase_ , "r" ).readlines()] UpperCamelCase = [] if args.gold_data_mode == "qa": UpperCamelCase = pd.read_csv(UpperCAmelCase_ , sep="\t" , header=UpperCAmelCase_ ) for answer_list in data[1]: UpperCamelCase = ast.literal_eval(UpperCAmelCase_ ) answers.append(UpperCAmelCase_ ) else: UpperCamelCase = [line.strip() for line in open(UpperCAmelCase_ , "r" ).readlines()] UpperCamelCase = [[reference] for reference in references] UpperCamelCase = UpperCamelCase = UpperCamelCase = 0 for prediction, ground_truths in zip(UpperCAmelCase_ , UpperCAmelCase_ ): total += 1 em += metric_max_over_ground_truths(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) fa += metric_max_over_ground_truths(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = 100.0 * em / total UpperCamelCase = 100.0 * fa / total logger.info(F"F1: {fa:.2f}" ) logger.info(F"EM: {em:.2f}" ) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> List[Any]: """simple docstring""" UpperCamelCase = args.k UpperCamelCase = [line.strip() for line in open(UpperCAmelCase_ , "r" ).readlines()] UpperCamelCase = [line.strip() for line in open(UpperCAmelCase_ , "r" ).readlines()] UpperCamelCase = UpperCamelCase = 0 for hypo, reference in zip(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCamelCase = set(hypo.split("\t" )[:k] ) UpperCamelCase = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k UpperCamelCase = 100.0 * em / total logger.info(F"Precision@{k}: {em: .2f}" ) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Optional[int]: """simple docstring""" def strip_title(UpperCAmelCase_ ): if title.startswith("\"" ): UpperCamelCase = title[1:] if title.endswith("\"" ): UpperCamelCase = title[:-1] return title UpperCamelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( UpperCAmelCase_ , return_tensors="pt" , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , )["input_ids"].to(args.device ) UpperCamelCase = rag_model.rag.question_encoder(UpperCAmelCase_ ) UpperCamelCase = question_enc_outputs[0] UpperCamelCase = rag_model.retriever( UpperCAmelCase_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) UpperCamelCase = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) UpperCamelCase = [] for docs in all_docs: UpperCamelCase = [strip_title(UpperCAmelCase_ ) for title in docs["title"]] provenance_strings.append("\t".join(UpperCAmelCase_ ) ) return provenance_strings def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Optional[int]: """simple docstring""" with torch.no_grad(): UpperCamelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( UpperCAmelCase_ , return_tensors="pt" , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ ) UpperCamelCase = inputs_dict.input_ids.to(args.device ) UpperCamelCase = inputs_dict.attention_mask.to(args.device ) UpperCamelCase = rag_model.generate( # rag_model overwrites generate UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=UpperCAmelCase_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) UpperCamelCase = rag_model.retriever.generator_tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) if args.print_predictions: for q, a in zip(UpperCAmelCase_ , UpperCAmelCase_ ): logger.info("Q: {} - A: {}".format(UpperCAmelCase_ , UpperCAmelCase_ ) ) return answers def lowerCamelCase__ ( )-> Any: """simple docstring""" UpperCamelCase = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=UpperCAmelCase_ , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=UpperCAmelCase_ , choices=["exact", "compressed", "legacy"] , type=UpperCAmelCase_ , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=UpperCAmelCase_ , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=UpperCAmelCase_ , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=UpperCAmelCase_ , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=UpperCAmelCase_ , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=UpperCAmelCase_ , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=UpperCAmelCase_ , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=UpperCAmelCase_ , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=UpperCAmelCase_ , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=UpperCAmelCase_ , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) UpperCamelCase = parser.parse_args() UpperCamelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def lowerCamelCase__ ( UpperCAmelCase_ )-> List[Any]: """simple docstring""" UpperCamelCase = {} if args.model_type is None: UpperCamelCase = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): UpperCamelCase = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration UpperCamelCase = args.n_docs if args.index_name is not None: UpperCamelCase = args.index_name if args.index_path is not None: UpperCamelCase = args.index_path else: UpperCamelCase = BartForConditionalGeneration UpperCamelCase = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , UpperCAmelCase_ ) UpperCamelCase = get_scores if args.eval_mode == "e2e" else get_precision_at_k UpperCamelCase = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(UpperCAmelCase_ , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(UpperCAmelCase_ ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): UpperCamelCase = RagRetriever.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) UpperCamelCase = model_class.from_pretrained(UpperCAmelCase_ , retriever=UpperCAmelCase_ , **UpperCAmelCase_ ) model.retriever.init_retrieval() else: UpperCamelCase = model_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: UpperCamelCase = [] for line in tqdm(UpperCAmelCase_ ): questions.append(line.strip() ) if len(UpperCAmelCase_ ) == args.eval_batch_size: UpperCamelCase = evaluate_batch_fn(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) preds_file.write("\n".join(UpperCAmelCase_ ) + "\n" ) preds_file.flush() UpperCamelCase = [] if len(UpperCAmelCase_ ) > 0: UpperCamelCase = evaluate_batch_fn(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) preds_file.write("\n".join(UpperCAmelCase_ ) ) preds_file.flush() score_fn(UpperCAmelCase_ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = get_args() main(args)
554
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=64 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_input_mask __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = embedding_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_labels __magic_name__ = num_choices __magic_name__ = scope def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_input_mask: __magic_name__ = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ = None __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[Any]: '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def __A ( self , A , A , A , A , A , A , A ) -> Optional[int]: '''simple docstring''' __magic_name__ = MegatronBertModel(config=A ) model.to(A ) model.eval() __magic_name__ = model(A , attention_mask=A , token_type_ids=A ) __magic_name__ = model(A , token_type_ids=A ) __magic_name__ = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self , A , A , A , A , A , A , A ) -> Optional[Any]: '''simple docstring''' __magic_name__ = MegatronBertForMaskedLM(config=A ) model.to(A ) model.eval() __magic_name__ = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , A , A , A ) -> Any: '''simple docstring''' __magic_name__ = MegatronBertForCausalLM(config=A ) model.to(A ) model.eval() __magic_name__ = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , A , A , A ) -> List[str]: '''simple docstring''' __magic_name__ = MegatronBertForNextSentencePrediction(config=A ) model.to(A ) model.eval() __magic_name__ = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __A ( self , A , A , A , A , A , A , A ) -> Any: '''simple docstring''' __magic_name__ = MegatronBertForPreTraining(config=A ) model.to(A ) model.eval() __magic_name__ = model( A , attention_mask=A , token_type_ids=A , labels=A , next_sentence_label=A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __A ( self , A , A , A , A , A , A , A ) -> Any: '''simple docstring''' __magic_name__ = MegatronBertForQuestionAnswering(config=A ) model.to(A ) model.eval() __magic_name__ = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , A , A , A , A , A , A , A ) -> Any: '''simple docstring''' __magic_name__ = self.num_labels __magic_name__ = MegatronBertForSequenceClassification(A ) model.to(A ) model.eval() __magic_name__ = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , A , A , A , A , A , A , A ) -> List[str]: '''simple docstring''' __magic_name__ = self.num_labels __magic_name__ = MegatronBertForTokenClassification(config=A ) model.to(A ) model.eval() __magic_name__ = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , A , A , A , A , A , A , A ) -> List[str]: '''simple docstring''' __magic_name__ = self.num_choices __magic_name__ = MegatronBertForMultipleChoice(config=A ) model.to(A ) model.eval() __magic_name__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _a = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _a = True # test_resize_embeddings = False _a = False def __A ( self , A , A , A=False ) -> List[Any]: '''simple docstring''' __magic_name__ = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class in get_values(A ): __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A ) __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def __A ( self ) -> Any: '''simple docstring''' __magic_name__ = MegatronBertModelTester(self ) __magic_name__ = ConfigTester(self , config_class=A , hidden_size=37 ) def __A ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*A ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*A ) def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*A ) def __A ( self ) -> List[Any]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*A ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*A ) def __A ( self ) -> int: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*A ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): return torch.tensor( snake_case_ , dtype=torch.long , device=snake_case_ , ) a_ : List[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('''Model is not available.''' ) def __A ( self ) -> Any: '''simple docstring''' __magic_name__ = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: __magic_name__ = os.path.join(os.environ['''MYDIR'''] , A ) __magic_name__ = MegatronBertModel.from_pretrained(A ) model.to(A ) model.half() __magic_name__ = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __magic_name__ = model(A )[0] __magic_name__ = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , A ) __magic_name__ = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28] for ii in range(3 ): for jj in range(3 ): __magic_name__ = output[0, ii, jj] __magic_name__ = expected[3 * ii + jj] __magic_name__ = '''ii={} jj={} a={} b={}'''.format(A , A , A , A ) self.assertTrue(math.isclose(A , A , rel_tol=A , abs_tol=A ) , msg=A )
678
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np a_ : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 a_ : List[str] = typing.Union[np.floataa, int, float] # noqa: UP007 def _SCREAMING_SNAKE_CASE ( snake_case_ : Vector , snake_case_ : Vector ): return np.sqrt(np.sum((np.asarray(snake_case_ ) - np.asarray(snake_case_ )) ** 2 ) ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Vector , snake_case_ : Vector ): return sum((va - va) ** 2 for va, va in zip(snake_case_ , snake_case_ ) ) ** (1 / 2) if __name__ == "__main__": def _SCREAMING_SNAKE_CASE ( ): from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_0000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_0000 , globals=globals() , ) ) benchmark()
678
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "deta" lowerCAmelCase_ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__(self , UpperCAmelCase=None , UpperCAmelCase=900 , UpperCAmelCase=2048 , UpperCAmelCase=6 , UpperCAmelCase=2048 , UpperCAmelCase=8 , UpperCAmelCase=6 , UpperCAmelCase=1024 , UpperCAmelCase=8 , UpperCAmelCase=0.0 , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=256 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=1.0 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase="sine" , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase=True , UpperCAmelCase=300 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=1 , UpperCAmelCase=5 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=1 , UpperCAmelCase=5 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.25 , **UpperCAmelCase , ) -> List[Any]: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _snake_case = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(UpperCAmelCase , UpperCAmelCase ): _snake_case = backbone_config.pop("""model_type""" ) _snake_case = CONFIG_MAPPING[backbone_model_type] _snake_case = config_class.from_dict(UpperCAmelCase ) _snake_case = backbone_config _snake_case = num_queries _snake_case = max_position_embeddings _snake_case = d_model _snake_case = encoder_ffn_dim _snake_case = encoder_layers _snake_case = encoder_attention_heads _snake_case = decoder_ffn_dim _snake_case = decoder_layers _snake_case = decoder_attention_heads _snake_case = dropout _snake_case = attention_dropout _snake_case = activation_dropout _snake_case = activation_function _snake_case = init_std _snake_case = init_xavier_std _snake_case = encoder_layerdrop _snake_case = auxiliary_loss _snake_case = position_embedding_type # deformable attributes _snake_case = num_feature_levels _snake_case = encoder_n_points _snake_case = decoder_n_points _snake_case = two_stage _snake_case = two_stage_num_proposals _snake_case = with_box_refine _snake_case = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher _snake_case = class_cost _snake_case = bbox_cost _snake_case = giou_cost # Loss coefficients _snake_case = mask_loss_coefficient _snake_case = dice_loss_coefficient _snake_case = bbox_loss_coefficient _snake_case = giou_loss_coefficient _snake_case = eos_coefficient _snake_case = focal_alpha super().__init__(is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase ) @property def lowercase (self ) -> int: return self.encoder_attention_heads @property def lowercase (self ) -> int: return self.d_model def lowercase (self ) -> List[str]: _snake_case = copy.deepcopy(self.__dict__ ) _snake_case = self.backbone_config.to_dict() _snake_case = self.__class__.model_type return output
585
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowercase (self ) -> Optional[Any]: torch.manual_seed(0 ) _snake_case = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def lowercase (self ) -> Dict: _snake_case = self.dummy_uncond_unet _snake_case = PNDMScheduler() _snake_case = PNDMPipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) pndm.to(UpperCAmelCase ) pndm.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , num_inference_steps=20 , output_type="""numpy""" ).images _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , num_inference_steps=20 , output_type="""numpy""" , return_dict=UpperCAmelCase )[0] _snake_case = image[0, -3:, -3:, -1] _snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: _snake_case = """google/ddpm-cifar10-32""" _snake_case = UNetaDModel.from_pretrained(UpperCAmelCase ) _snake_case = PNDMScheduler() _snake_case = PNDMPipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) pndm.to(UpperCAmelCase ) pndm.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , output_type="""numpy""" ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
585
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): """simple docstring""" _A = StableDiffusionLatentUpscalePipeline _A = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } _A = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} _A = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _A = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _A = frozenset([]) _A = True @property def _a (self ): '''simple docstring''' lowerCamelCase = 1 lowerCamelCase = 4 lowerCamelCase = (16, 16) lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image def _a (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=__a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=__a , only_cross_attention=__a , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) lowerCamelCase = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) lowerCamelCase = EulerDiscreteScheduler(prediction_type="sample" ) lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) lowerCamelCase = CLIPTextModel(__a ) lowerCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _a (self , __a , __a=0 ): '''simple docstring''' if str(__a ).startswith("mps" ): lowerCamelCase = torch.manual_seed(__a ) else: lowerCamelCase = torch.Generator(device=__a ).manual_seed(__a ) lowerCamelCase = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _a (self ): '''simple docstring''' lowerCamelCase = "cpu" lowerCamelCase = self.get_dummy_components() lowerCamelCase = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase = self.get_dummy_inputs(__a ) lowerCamelCase = pipe(**__a ).images lowerCamelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) lowerCamelCase = np.array( [0.4722_2412, 0.4192_1633, 0.4471_7434, 0.4687_4192, 0.4258_8258, 0.4615_0726, 0.467_7534, 0.4558_3832, 0.4857_9055] ) lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__a , 1E-3 ) def _a (self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _a (self ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _a (self ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _a (self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _a (self ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _a (self ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3E-3 ) def _a (self ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _a (self ): '''simple docstring''' lowerCamelCase = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] lowerCamelCase = self.get_dummy_components() lowerCamelCase = self.pipeline_class(**__a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase = self.get_dummy_inputs(__a ) lowerCamelCase = 2 lowerCamelCase = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue lowerCamelCase = getattr(__a , scheduler_enum.name ) lowerCamelCase = scheduler_cls.from_config(pipe.scheduler.config ) lowerCamelCase = pipe(**__a )[0] outputs.append(__a ) assert check_same_shape(__a ) @require_torch_gpu @slow class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def _a (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a (self ): '''simple docstring''' lowerCamelCase = torch.manual_seed(33 ) lowerCamelCase = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) lowerCamelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) lowerCamelCase = "a photo of an astronaut high resolution, unreal engine, ultra realistic" lowerCamelCase = pipe(__a , generator=__a , output_type="latent" ).images lowerCamelCase = upscaler( prompt=__a , image=__a , num_inference_steps=20 , guidance_scale=0 , generator=__a , output_type="np" , ).images[0] lowerCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _a (self ): '''simple docstring''' lowerCamelCase = torch.manual_seed(33 ) lowerCamelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) lowerCamelCase = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" lowerCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) lowerCamelCase = upscaler( prompt=__a , image=__a , num_inference_steps=20 , guidance_scale=0 , generator=__a , output_type="np" , ).images[0] lowerCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
484
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" _A = ['image_processor', 'tokenizer'] _A = 'CLIPImageProcessor' _A = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__(self , __a=None , __a=None , **__a ): '''simple docstring''' lowerCamelCase = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) lowerCamelCase = kwargs.pop("feature_extractor" ) lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) def __call__(self , __a=None , __a=None , __a=None , **__a ): '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: lowerCamelCase = self.tokenizer(__a , return_tensors=__a , **__a ) if images is not None: lowerCamelCase = self.image_processor(__a , return_tensors=__a , **__a ) if text is not None and images is not None: lowerCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__a ) , tensor_type=__a ) def _a (self , *__a , **__a ): '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a ) def _a (self , *__a , **__a ): '''simple docstring''' return self.tokenizer.decode(*__a , **__a ) @property def _a (self ): '''simple docstring''' lowerCamelCase = self.tokenizer.model_input_names lowerCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _a (self ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , ) return self.image_processor_class @property def _a (self ): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , ) return self.image_processor
484
1
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _lowerCamelCase : """simple docstring""" @property def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return self.get_dummy_input() @property def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" ) def UpperCAmelCase ( self , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False , ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = 4 __snake_case : int = 32 __snake_case : str = (32, 32) __snake_case : str = torch.manual_seed(0 ) __snake_case : Optional[Any] = torch.device(UpperCAmelCase ) __snake_case : Optional[int] = (batch_size, num_channels) + sizes __snake_case : List[Any] = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase ) __snake_case : Optional[int] = {"hidden_states": hidden_states} if include_temb: __snake_case : Union[str, Any] = 128 __snake_case : Union[str, Any] = randn_tensor((batch_size, temb_channels) , generator=UpperCAmelCase , device=UpperCAmelCase ) if include_res_hidden_states_tuple: __snake_case : Any = torch.manual_seed(1 ) __snake_case : int = (randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase ),) if include_encoder_hidden_states: __snake_case : Dict = floats_tensor((batch_size, 32, 32) ).to(UpperCAmelCase ) if include_skip_sample: __snake_case : str = randn_tensor(((batch_size, 3) + sizes) , generator=UpperCAmelCase , device=UpperCAmelCase ) return dummy_input def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : str = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": __snake_case : str = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) __snake_case : List[str] = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case , __snake_case : Tuple = self.prepare_init_args_and_inputs_for_common() __snake_case : str = self.block_class(**UpperCAmelCase ) unet_block.to(UpperCAmelCase ) unet_block.eval() with torch.no_grad(): __snake_case : Union[str, Any] = unet_block(**UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): __snake_case : str = output[0] self.assertEqual(output.shape , self.output_shape ) __snake_case : Tuple = output[0, -1, -3:, -3:] __snake_case : Dict = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) assert torch_all_close(output_slice.flatten() , UpperCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case , __snake_case : Dict = self.prepare_init_args_and_inputs_for_common() __snake_case : Any = self.block_class(**UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() __snake_case : str = model(**UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): __snake_case : Dict = output[0] __snake_case : Dict = torch.device(UpperCAmelCase ) __snake_case : str = randn_tensor(output.shape , device=UpperCAmelCase ) __snake_case : Optional[Any] = torch.nn.functional.mse_loss(UpperCAmelCase , UpperCAmelCase ) loss.backward()
243
def lowerCAmelCase__( lowercase : list , lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: if index == number_of_items: return 0 __snake_case : Optional[int] = 0 __snake_case : List[Any] = 0 __snake_case : int = knapsack(lowercase , lowercase , lowercase , lowercase , index + 1 ) if weights[index] <= max_weight: __snake_case : List[str] = values[index] + knapsack( lowercase , lowercase , lowercase , max_weight - weights[index] , index + 1 ) return max(lowercase , lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
243
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _A ( _lowerCAmelCase , _lowerCAmelCase=0.9_99 , _lowerCAmelCase="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCAmelCase ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __lowercase =[] for i in range(_lowerCAmelCase ): __lowercase =i / num_diffusion_timesteps __lowercase =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCAmelCase ) / alpha_bar_fn(_lowerCAmelCase ) , _lowerCAmelCase ) ) return torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) class _UpperCamelCase ( A , A ): '''simple docstring''' lowerCAmelCase__ = [e.name for e in KarrasDiffusionSchedulers] lowerCAmelCase__ = 2 @register_to_config def __init__( self : Optional[int] , _lowerCAmelCase : int = 1_0_0_0 , _lowerCAmelCase : float = 0.0_0085 , _lowerCAmelCase : float = 0.012 , _lowerCAmelCase : str = "linear" , _lowerCAmelCase : Optional[Union[np.ndarray, List[float]]] = None , _lowerCAmelCase : str = "epsilon" , _lowerCAmelCase : str = "linspace" , _lowerCAmelCase : int = 0 , ): '''simple docstring''' if trained_betas is not None: __lowercase =torch.tensor(_lowerCAmelCase , dtype=torch.floataa) elif beta_schedule == "linear": __lowercase =torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowercase =( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowercase =betas_for_alpha_bar(_lowerCAmelCase) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""") __lowercase =1.0 - self.betas __lowercase =torch.cumprod(self.alphas , dim=0) # set all values self.set_timesteps(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int=None): '''simple docstring''' if schedule_timesteps is None: __lowercase =self.timesteps __lowercase =(schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter) == 0: __lowercase =1 if len(_lowerCAmelCase) > 1 else 0 else: __lowercase =timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase) else timestep __lowercase =self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCamelCase ( self : int , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : Union[float, torch.FloatTensor] , ): '''simple docstring''' __lowercase =self.index_for_timestep(_lowerCAmelCase) if self.state_in_first_order: __lowercase =self.sigmas[step_index] else: __lowercase =self.sigmas_interpol[step_index] __lowercase =sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, torch.device] = None , _lowerCAmelCase : Optional[int] = None , ): '''simple docstring''' __lowercase =num_inference_steps __lowercase =num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowercase =np.linspace(0 , num_train_timesteps - 1 , _lowerCAmelCase , dtype=_lowerCAmelCase)[::-1].copy() elif self.config.timestep_spacing == "leading": __lowercase =num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowercase =(np.arange(0 , _lowerCAmelCase) * step_ratio).round()[::-1].copy().astype(_lowerCAmelCase) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowercase =num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowercase =(np.arange(_lowerCAmelCase , 0 , -step_ratio)).round().copy().astype(_lowerCAmelCase) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""") __lowercase =np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) __lowercase =torch.from_numpy(np.log(_lowerCAmelCase)).to(_lowerCAmelCase) __lowercase =np.interp(_lowerCAmelCase , np.arange(0 , len(_lowerCAmelCase)) , _lowerCAmelCase) __lowercase =np.concatenate([sigmas, [0.0]]).astype(np.floataa) __lowercase =torch.from_numpy(_lowerCAmelCase).to(device=_lowerCAmelCase) # interpolate sigmas __lowercase =sigmas.log().lerp(sigmas.roll(1).log() , 0.5).exp() __lowercase =torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]]) __lowercase =torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]]) if str(_lowerCAmelCase).startswith('mps'): # mps does not support float64 __lowercase =torch.from_numpy(_lowerCAmelCase).to(_lowerCAmelCase , dtype=torch.floataa) else: __lowercase =torch.from_numpy(_lowerCAmelCase).to(_lowerCAmelCase) # interpolate timesteps __lowercase =self.sigma_to_t(_lowerCAmelCase).to(_lowerCAmelCase , dtype=timesteps.dtype) __lowercase =torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1).flatten() __lowercase =torch.cat([timesteps[:1], interleaved_timesteps]) __lowercase =None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowercase =defaultdict(_lowerCAmelCase) def __lowerCamelCase ( self : Dict , _lowerCAmelCase : Optional[int]): '''simple docstring''' __lowercase =sigma.log() # get distribution __lowercase =log_sigma - self.log_sigmas[:, None] # get sigmas range __lowercase =dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2) __lowercase =low_idx + 1 __lowercase =self.log_sigmas[low_idx] __lowercase =self.log_sigmas[high_idx] # interpolate sigmas __lowercase =(low - log_sigma) / (low - high) __lowercase =w.clamp(0 , 1) # transform interpolation to time range __lowercase =(1 - w) * low_idx + w * high_idx __lowercase =t.view(sigma.shape) return t @property def __lowerCamelCase ( self : Tuple): '''simple docstring''' return self.sample is None def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : Union[torch.FloatTensor, np.ndarray] , _lowerCAmelCase : Union[float, torch.FloatTensor] , _lowerCAmelCase : Union[torch.FloatTensor, np.ndarray] , _lowerCAmelCase : bool = True , ): '''simple docstring''' __lowercase =self.index_for_timestep(_lowerCAmelCase) # advance index counter by 1 __lowercase =timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowercase =self.sigmas[step_index] __lowercase =self.sigmas_interpol[step_index + 1] __lowercase =self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __lowercase =self.sigmas[step_index - 1] __lowercase =self.sigmas_interpol[step_index] __lowercase =self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowercase =0 __lowercase =sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowercase =sigma_hat if self.state_in_first_order else sigma_interpol __lowercase =sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowercase =sigma_hat if self.state_in_first_order else sigma_interpol __lowercase =model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample') else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""") if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowercase =(sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowercase =sigma_interpol - sigma_hat # store for 2nd order step __lowercase =sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __lowercase =(sample - pred_original_sample) / sigma_interpol # 3. delta timestep __lowercase =sigma_next - sigma_hat __lowercase =self.sample __lowercase =None __lowercase =sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowerCAmelCase) def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : torch.FloatTensor , ): '''simple docstring''' __lowercase =self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(_lowerCAmelCase): # mps does not support float64 __lowercase =self.timesteps.to(original_samples.device , dtype=torch.floataa) __lowercase =timesteps.to(original_samples.device , dtype=torch.floataa) else: __lowercase =self.timesteps.to(original_samples.device) __lowercase =timesteps.to(original_samples.device) __lowercase =[self.index_for_timestep(_lowerCAmelCase , _lowerCAmelCase) for t in timesteps] __lowercase =sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): __lowercase =sigma.unsqueeze(-1) __lowercase =original_samples + noise * sigma return noisy_samples def __len__( self : Tuple): '''simple docstring''' return self.config.num_train_timesteps
454
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) __lowercase =DatasetInfosDict.from_directory(_lowerCAmelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =str(_lowerCAmelCase ) dataset_info.write_to_directory(_lowerCAmelCase ) __lowercase =DatasetInfo.from_directory(_lowerCAmelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_lowerCAmelCase , 'dataset_info.json' ) ) def _A ( ): """simple docstring""" __lowercase =DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1_337 , post_processing_size=442 , dataset_size=1_234 , size_in_bytes=1_337 + 442 + 1_234 , ) __lowercase =dataset_info._to_yaml_dict() assert sorted(_lowerCAmelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) __lowercase =yaml.safe_dump(_lowerCAmelCase ) __lowercase =yaml.safe_load(_lowerCAmelCase ) assert dataset_info_yaml_dict == reloaded def _A ( ): """simple docstring""" __lowercase =DatasetInfo() __lowercase =dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1_337 ), } ), ] , ) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =str(_lowerCAmelCase ) dataset_infos_dict.write_to_directory(_lowerCAmelCase ) __lowercase =DatasetInfosDict.from_directory(_lowerCAmelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): __lowercase =config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml __lowercase =DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_lowerCAmelCase , 'README.md' ) )
454
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github UpperCamelCase__ : List[Any] = [ "good first issue", "feature request", "wip", ] def lowerCAmelCase_ ( ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = Github(os.environ["""GITHUB_TOKEN"""] ) _SCREAMING_SNAKE_CASE = g.get_repo("""huggingface/accelerate""" ) _SCREAMING_SNAKE_CASE = repo.get_issues(state="""open""" ) for issue in open_issues: _SCREAMING_SNAKE_CASE = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE_ : i.created_at , reverse=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = comments[0] if len(SCREAMING_SNAKE_CASE_ ) > 0 else None _SCREAMING_SNAKE_CASE = dt.utcnow() _SCREAMING_SNAKE_CASE = (current_time - issue.updated_at).days _SCREAMING_SNAKE_CASE = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="""closed""" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
591
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy UpperCamelCase__ : Optional[Any] = logging.getLogger(__name__) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = bnb_quantization_config.load_in_abit _SCREAMING_SNAKE_CASE = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) _SCREAMING_SNAKE_CASE = [] # custom device map if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(device_map.keys() ) > 1: _SCREAMING_SNAKE_CASE = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: _SCREAMING_SNAKE_CASE = get_keys_to_not_convert(SCREAMING_SNAKE_CASE_ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(SCREAMING_SNAKE_CASE_ ) # compatibility with peft _SCREAMING_SNAKE_CASE = load_in_abit _SCREAMING_SNAKE_CASE = load_in_abit _SCREAMING_SNAKE_CASE = get_parameter_device(SCREAMING_SNAKE_CASE_ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) _SCREAMING_SNAKE_CASE = replace_with_bnb_layers(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , modules_to_not_convert=SCREAMING_SNAKE_CASE_ ) # convert param to the right dtype _SCREAMING_SNAKE_CASE = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: _SCREAMING_SNAKE_CASE = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) _SCREAMING_SNAKE_CASE = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(SCREAMING_SNAKE_CASE_ ): param.to(SCREAMING_SNAKE_CASE_ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( F"The model device type is {model_device.type}. However, cuda is needed for quantization." """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( F"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} " ) else: with init_empty_weights(): _SCREAMING_SNAKE_CASE = replace_with_bnb_layers( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , modules_to_not_convert=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = get_quantized_model_device_map( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , max_memory=SCREAMING_SNAKE_CASE_ , no_split_module_classes=SCREAMING_SNAKE_CASE_ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dtype=bnb_quantization_config.torch_dtype , offload_folder=SCREAMING_SNAKE_CASE_ , offload_state_dict=SCREAMING_SNAKE_CASE_ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(SCREAMING_SNAKE_CASE_ , device_map=SCREAMING_SNAKE_CASE_ , offload_dir=SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> List[str]: """simple docstring""" if device_map is None: if torch.cuda.is_available(): _SCREAMING_SNAKE_CASE = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) _SCREAMING_SNAKE_CASE = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = special_dtypes _SCREAMING_SNAKE_CASE = no_split_module_classes _SCREAMING_SNAKE_CASE = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": _SCREAMING_SNAKE_CASE = get_balanced_memory( SCREAMING_SNAKE_CASE_ , low_zero=(device_map == """balanced_low_0""") , max_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) _SCREAMING_SNAKE_CASE = max_memory _SCREAMING_SNAKE_CASE = infer_auto_device_map(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # check if don't have any quantized module on the cpu _SCREAMING_SNAKE_CASE = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules _SCREAMING_SNAKE_CASE = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> Optional[Any]: """simple docstring""" if modules_to_not_convert is None: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = False for name, module in model.named_children(): if current_key_name is None: _SCREAMING_SNAKE_CASE = [] current_key_name.append(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` _SCREAMING_SNAKE_CASE = """.""".join(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: _SCREAMING_SNAKE_CASE = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: _SCREAMING_SNAKE_CASE = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=SCREAMING_SNAKE_CASE_ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: _SCREAMING_SNAKE_CASE = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) _SCREAMING_SNAKE_CASE = module.weight.data if module.bias is not None: _SCREAMING_SNAKE_CASE = module.bias.data bnb_module.requires_grad_(SCREAMING_SNAKE_CASE_ ) setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = True if len(list(module.children() ) ) > 0: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" # Create a copy of the model with init_empty_weights(): _SCREAMING_SNAKE_CASE = deepcopy(SCREAMING_SNAKE_CASE_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` _SCREAMING_SNAKE_CASE = find_tied_parameters(SCREAMING_SNAKE_CASE_ ) # For compatibility with Accelerate < 0.18 if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _SCREAMING_SNAKE_CASE = sum(SCREAMING_SNAKE_CASE_ , [] ) _SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) > 0 # Check if it is a base model _SCREAMING_SNAKE_CASE = False if hasattr(SCREAMING_SNAKE_CASE_ , """base_model_prefix""" ): _SCREAMING_SNAKE_CASE = not hasattr(SCREAMING_SNAKE_CASE_ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _SCREAMING_SNAKE_CASE = list(model.named_children() ) _SCREAMING_SNAKE_CASE = [list_modules[-1][0]] # add last module together with tied weights _SCREAMING_SNAKE_CASE = set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = list(set(SCREAMING_SNAKE_CASE_ ) ) + list(SCREAMING_SNAKE_CASE_ ) # remove ".weight" from the keys _SCREAMING_SNAKE_CASE = [""".weight""", """.bias"""] _SCREAMING_SNAKE_CASE = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _SCREAMING_SNAKE_CASE = name.replace(SCREAMING_SNAKE_CASE_ , """""" ) filtered_module_names.append(SCREAMING_SNAKE_CASE_ ) return filtered_module_names def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" for m in model.modules(): if isinstance(SCREAMING_SNAKE_CASE_ , bnb.nn.Linearabit ): return True return False def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: """simple docstring""" return next(parameter.parameters() ).device def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 0 , dtype=SCREAMING_SNAKE_CASE_ , value=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = param_name _SCREAMING_SNAKE_CASE = model if "." in tensor_name: _SCREAMING_SNAKE_CASE = tensor_name.split(""".""" ) for split in splits[:-1]: _SCREAMING_SNAKE_CASE = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if new_module is None: raise ValueError(F"{module} has no attribute {split}." ) _SCREAMING_SNAKE_CASE = new_module _SCREAMING_SNAKE_CASE = splits[-1] # offload weights _SCREAMING_SNAKE_CASE = False offload_weight(module._parameters[tensor_name] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , index=SCREAMING_SNAKE_CASE_ ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , SCREAMING_SNAKE_CASE_ , index=SCREAMING_SNAKE_CASE_ , ) else: offload_weight(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , index=SCREAMING_SNAKE_CASE_ ) offload_weight(SCREAMING_SNAKE_CASE_ , param_name.replace("""weight""" , """SCB""" ) , SCREAMING_SNAKE_CASE_ , index=SCREAMING_SNAKE_CASE_ ) set_module_tensor_to_device(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """meta""" , dtype=SCREAMING_SNAKE_CASE_ , value=torch.empty(*param.size() ) )
591
1
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class a__ ( datasets.BeamBasedBuilder ): """simple docstring""" def _snake_case (self ): return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=UpperCamelCase__ , ) def _snake_case (self , __lowercase , __lowercase ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def _snake_case (self , __lowercase , __lowercase ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(UpperCamelCase__ ) class a__ ( datasets.BeamBasedBuilder ): """simple docstring""" def _snake_case (self ): return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=UpperCamelCase__ , ) def _snake_case (self , __lowercase , __lowercase ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def _snake_case (self , __lowercase , __lowercase ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(UpperCamelCase__ ) def __magic_name__( ): return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''])] def __magic_name__( ): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''])] class a__ ( lowercase_ ): """simple docstring""" @require_beam def _snake_case (self ): __lowerCAmelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __lowerCAmelCase = DummyBeamDataset(cache_dir=UpperCamelCase__ , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(UpperCamelCase__ , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) __lowerCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , UpperCamelCase__ ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , UpperCamelCase__ ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(UpperCamelCase__ , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def _snake_case (self ): import apache_beam as beam __lowerCAmelCase = beam.io.parquetio.WriteToParquet __lowerCAmelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __lowerCAmelCase = DummyBeamDataset(cache_dir=UpperCamelCase__ , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: __lowerCAmelCase = partial(UpperCamelCase__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( UpperCamelCase__ , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( UpperCamelCase__ , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) __lowerCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , UpperCamelCase__ ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , UpperCamelCase__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(UpperCamelCase__ , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def _snake_case (self ): with tempfile.TemporaryDirectory() as tmp_cache_dir: __lowerCAmelCase = DummyBeamDataset(cache_dir=UpperCamelCase__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _snake_case (self ): __lowerCAmelCase = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __lowerCAmelCase = NestedBeamDataset(cache_dir=UpperCamelCase__ , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(UpperCamelCase__ , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) __lowerCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , UpperCamelCase__ ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , UpperCamelCase__ ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(UpperCamelCase__ , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
711
'''simple docstring''' def __magic_name__( ): return [ a * b * (1_0_0_0 - a - b) for a in range(1, 9_9_9) for b in range(lowerCamelCase, 9_9_9) if (a * a + b * b == (1_0_0_0 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"""{solution() = }""")
474
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Optional[int] = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
385
import numpy as np def A__ ( _a : np.array ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
385
1
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { """cola""": 2, """mnli""": 3, """mrpc""": 2, """sst-2""": 2, """sts-b""": 1, """qqp""": 2, """qnli""": 2, """rte""": 2, """wnli""": 2, } logging.set_verbosity_info() def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ): # Initialise PyTorch model lowercase__ = XLNetConfig.from_json_file(__magic_name__ ) lowercase__ = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) lowercase__ = finetuning_task lowercase__ = GLUE_TASKS_NUM_LABELS[finetuning_task] lowercase__ = XLNetForSequenceClassification(__magic_name__ ) elif "squad" in finetuning_task: lowercase__ = finetuning_task lowercase__ = XLNetForQuestionAnswering(__magic_name__ ) else: lowercase__ = XLNetLMHeadModel(__magic_name__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model lowercase__ = os.path.join(__magic_name__ , __magic_name__ ) lowercase__ = os.path.join(__magic_name__ , __magic_name__ ) print(f'''Save PyTorch model to {os.path.abspath(__magic_name__ )}''' ) torch.save(model.state_dict() , __magic_name__ ) print(f'''Save configuration file to {os.path.abspath(__magic_name__ )}''' ) with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--xlnet_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained XLNet model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--finetuning_task""", default=None, type=str, help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
713
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _snake_case = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def _A ( __magic_name__ , __magic_name__ , __magic_name__=None ): if rng is None: lowercase__ = random.Random() lowercase__ = 1 for dim in shape: total_dims *= dim lowercase__ = [] for _ in range(__magic_name__ ): values.append(rng.randint(0 , vocab_size - 1 ) ) lowercase__ = np.array(__magic_name__ , dtype=jnp.intaa ).reshape(__magic_name__ ) return output def _A ( __magic_name__ , __magic_name__=None ): lowercase__ = ids_tensor(__magic_name__ , vocab_size=2 , rng=__magic_name__ ) # make sure that at least one token is attended to for each batch lowercase__ = 1 return attn_mask @require_flax class lowerCAmelCase : __lowerCamelCase = None __lowerCamelCase = () def UpperCAmelCase ( self :List[str] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 lowercase__ = 2 lowercase__ = inputs["input_ids"].shape[-1] // 2 lowercase__ = inputs["input_ids"][:max_batch_size, :sequence_length] lowercase__ = jnp.ones_like(_lowercase ) lowercase__ = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens lowercase__ = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` lowercase__ = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def UpperCAmelCase ( self :List[str] ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() lowercase__ = False lowercase__ = max_length lowercase__ = 0 for model_class in self.all_generative_model_classes: lowercase__ = model_class(_lowercase ) lowercase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ = getattr(_lowercase , _lowercase ) lowercase__ = pt_model_class(_lowercase ).eval() lowercase__ = load_flax_weights_in_pytorch_model(_lowercase , flax_model.params ) lowercase__ = flax_model.generate(_lowercase ).sequences lowercase__ = pt_model.generate(torch.tensor(_lowercase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: lowercase__ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def UpperCAmelCase ( self :List[str] ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() lowercase__ = False lowercase__ = max_length for model_class in self.all_generative_model_classes: lowercase__ = model_class(_lowercase ) lowercase__ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowercase ) lowercase__ = jit(model.generate ) lowercase__ = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() lowercase__ = True lowercase__ = max_length for model_class in self.all_generative_model_classes: lowercase__ = model_class(_lowercase ) lowercase__ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowercase ) lowercase__ = jit(model.generate ) lowercase__ = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() lowercase__ = False lowercase__ = max_length lowercase__ = 2 for model_class in self.all_generative_model_classes: lowercase__ = model_class(_lowercase ) lowercase__ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowercase ) lowercase__ = jit(model.generate ) lowercase__ = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() lowercase__ = False lowercase__ = max_length lowercase__ = 2 lowercase__ = 2 for model_class in self.all_generative_model_classes: lowercase__ = model_class(_lowercase ) lowercase__ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() lowercase__ = True lowercase__ = max_length lowercase__ = 0.8 lowercase__ = 10 lowercase__ = 0.3 lowercase__ = 1 lowercase__ = 8 lowercase__ = 9 for model_class in self.all_generative_model_classes: lowercase__ = model_class(_lowercase ) lowercase__ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowercase ) lowercase__ = jit(model.generate ) lowercase__ = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() lowercase__ = max_length lowercase__ = 1 lowercase__ = 8 lowercase__ = 9 for model_class in self.all_generative_model_classes: lowercase__ = model_class(_lowercase ) lowercase__ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowercase ) lowercase__ = jit(model.generate ) lowercase__ = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() lowercase__ = max_length lowercase__ = 2 lowercase__ = 1 lowercase__ = 8 lowercase__ = 9 for model_class in self.all_generative_model_classes: lowercase__ = model_class(_lowercase ) lowercase__ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowercase ) lowercase__ = jit(model.generate ) lowercase__ = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() # pad attention mask on the left lowercase__ = attention_mask.at[(0, 0)].set(0 ) lowercase__ = False lowercase__ = max_length for model_class in self.all_generative_model_classes: lowercase__ = model_class(_lowercase ) lowercase__ = model.generate(_lowercase , attention_mask=_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowercase ) lowercase__ = jit(model.generate ) lowercase__ = jit_generate(_lowercase , attention_mask=_lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() # pad attention mask on the left lowercase__ = attention_mask.at[(0, 0)].set(0 ) lowercase__ = True lowercase__ = max_length for model_class in self.all_generative_model_classes: lowercase__ = model_class(_lowercase ) lowercase__ = model.generate(_lowercase , attention_mask=_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowercase ) lowercase__ = jit(model.generate ) lowercase__ = jit_generate(_lowercase , attention_mask=_lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() # pad attention mask on the left lowercase__ = attention_mask.at[(0, 0)].set(0 ) lowercase__ = 2 lowercase__ = max_length for model_class in self.all_generative_model_classes: lowercase__ = model_class(_lowercase ) lowercase__ = model.generate(_lowercase , attention_mask=_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowercase ) lowercase__ = jit(model.generate ) lowercase__ = jit_generate(_lowercase , attention_mask=_lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) lowercase__ = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) lowercase__ = "Hello world" lowercase__ = tokenizer(_lowercase , return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(_lowercase , "do_samples" ): model.generate(_lowercase , do_samples=_lowercase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(_lowercase , "foo" ): lowercase__ = {"foo": "bar"} model.generate(_lowercase , **_lowercase )
611
0
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _UpperCamelCase ( lowerCAmelCase__: List[str] ,lowerCAmelCase__: List[Any] ,lowerCAmelCase__: List[Any] ,lowerCAmelCase__: str ,lowerCAmelCase__: int ) -> Tuple: # load base model SCREAMING_SNAKE_CASE_ = StableDiffusionPipeline.from_pretrained(lowerCAmelCase__ ,torch_dtype=torch.floataa ) # load LoRA weight from .safetensors SCREAMING_SNAKE_CASE_ = load_file(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: SCREAMING_SNAKE_CASE_ = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) SCREAMING_SNAKE_CASE_ = pipeline.text_encoder else: SCREAMING_SNAKE_CASE_ = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) SCREAMING_SNAKE_CASE_ = pipeline.unet # find the target layer SCREAMING_SNAKE_CASE_ = layer_infos.pop(0 ) while len(lowerCAmelCase__ ) > -1: try: SCREAMING_SNAKE_CASE_ = curr_layer.__getattr__(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: SCREAMING_SNAKE_CASE_ = layer_infos.pop(0 ) elif len(lowerCAmelCase__ ) == 0: break except Exception: if len(lowerCAmelCase__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: SCREAMING_SNAKE_CASE_ = layer_infos.pop(0 ) SCREAMING_SNAKE_CASE_ = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' ,'lora_up' ) ) pair_keys.append(lowerCAmelCase__ ) else: pair_keys.append(lowerCAmelCase__ ) pair_keys.append(key.replace('lora_up' ,'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: SCREAMING_SNAKE_CASE_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) SCREAMING_SNAKE_CASE_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowerCAmelCase__ ,lowerCAmelCase__ ).unsqueeze(2 ).unsqueeze(3 ) else: SCREAMING_SNAKE_CASE_ = state_dict[pair_keys[0]].to(torch.floataa ) SCREAMING_SNAKE_CASE_ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowerCAmelCase__ ,lowerCAmelCase__ ) # update visited list for item in pair_keys: visited.append(lowerCAmelCase__ ) return pipeline if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format." ) parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors" ) parser.add_argument( "--lora_prefix_text_encoder", default="lora_te", type=str, help="The prefix of text encoder weight in safetensors", ) parser.add_argument("--alpha", default=0.7_5, type=float, help="The merging ratio in W = W0 + alpha * deltaW") parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not." ) parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() SCREAMING_SNAKE_CASE : Dict = args.base_model_path SCREAMING_SNAKE_CASE : Optional[Any] = args.checkpoint_path SCREAMING_SNAKE_CASE : Union[str, Any] = args.dump_path SCREAMING_SNAKE_CASE : Union[str, Any] = args.lora_prefix_unet SCREAMING_SNAKE_CASE : Tuple = args.lora_prefix_text_encoder SCREAMING_SNAKE_CASE : Tuple = args.alpha SCREAMING_SNAKE_CASE : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) SCREAMING_SNAKE_CASE : List[str] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
294
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case ( lowercase_ ): """simple docstring""" def __init__( self, _lowercase, _lowercase, _lowercase ) -> List[Any]: super().__init__() self.register_modules(vqvae=_lowercase, unet=_lowercase, scheduler=_lowercase ) @torch.no_grad() def __call__( self, _lowercase = 1, _lowercase = None, _lowercase = 0.0, _lowercase = 50, _lowercase = "pil", _lowercase = True, **_lowercase, ) -> Union[Tuple, ImagePipelineOutput]: SCREAMING_SNAKE_CASE_ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=_lowercase, ) SCREAMING_SNAKE_CASE_ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler SCREAMING_SNAKE_CASE_ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_lowercase ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature SCREAMING_SNAKE_CASE_ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) SCREAMING_SNAKE_CASE_ = {} if accepts_eta: SCREAMING_SNAKE_CASE_ = eta for t in self.progress_bar(self.scheduler.timesteps ): SCREAMING_SNAKE_CASE_ = self.scheduler.scale_model_input(_lowercase, _lowercase ) # predict the noise residual SCREAMING_SNAKE_CASE_ = self.unet(_lowercase, _lowercase ).sample # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(_lowercase, _lowercase, _lowercase, **_lowercase ).prev_sample # decode the image latents with the VAE SCREAMING_SNAKE_CASE_ = self.vqvae.decode(_lowercase ).sample SCREAMING_SNAKE_CASE_ = (image / 2 + 0.5).clamp(0, 1 ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
294
1
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class a__ : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=64 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.0_2 , _a=3 , _a=4 , _a=None , ): lowercase : int = parent lowercase : Optional[Any] = batch_size lowercase : Tuple = seq_length lowercase : Optional[int] = is_training lowercase : Optional[int] = use_input_mask lowercase : Tuple = use_token_type_ids lowercase : Tuple = use_labels lowercase : List[str] = vocab_size lowercase : Optional[int] = hidden_size lowercase : Union[str, Any] = embedding_size lowercase : List[str] = num_hidden_layers lowercase : int = num_attention_heads lowercase : Union[str, Any] = intermediate_size lowercase : Optional[Any] = hidden_act lowercase : Optional[int] = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : str = max_position_embeddings lowercase : Union[str, Any] = type_vocab_size lowercase : str = type_sequence_label_size lowercase : Any = initializer_range lowercase : Any = num_labels lowercase : Any = num_choices lowercase : Union[str, Any] = scope def __magic_name__ ( self ): lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str = None if self.use_input_mask: lowercase : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_token_type_ids: lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : int = None lowercase : Any = None lowercase : Dict = None if self.use_labels: lowercase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a ): lowercase : Optional[Any] = MobileBertModel(config=_a ) model.to(_a ) model.eval() lowercase : Tuple = model(_a , attention_mask=_a , token_type_ids=_a ) lowercase : List[Any] = model(_a , token_type_ids=_a ) lowercase : Tuple = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a ): lowercase : List[Any] = MobileBertForMaskedLM(config=_a ) model.to(_a ) model.eval() lowercase : Tuple = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a ): lowercase : Optional[int] = MobileBertForNextSentencePrediction(config=_a ) model.to(_a ) model.eval() lowercase : Any = model( _a , attention_mask=_a , token_type_ids=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a ): lowercase : str = MobileBertForPreTraining(config=_a ) model.to(_a ) model.eval() lowercase : Union[str, Any] = model( _a , attention_mask=_a , token_type_ids=_a , labels=_a , next_sentence_label=_a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a ): lowercase : List[str] = MobileBertForQuestionAnswering(config=_a ) model.to(_a ) model.eval() lowercase : List[str] = model( _a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a ): lowercase : Optional[Any] = self.num_labels lowercase : str = MobileBertForSequenceClassification(_a ) model.to(_a ) model.eval() lowercase : List[Any] = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a ): lowercase : Tuple = self.num_labels lowercase : Any = MobileBertForTokenClassification(config=_a ) model.to(_a ) model.eval() lowercase : int = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a ): lowercase : List[str] = self.num_choices lowercase : str = MobileBertForMultipleChoice(config=_a ) model.to(_a ) model.eval() lowercase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Union[str, Any] = model( _a , attention_mask=_a , token_type_ids=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ): lowercase : Dict = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : List[Any] = config_and_inputs lowercase : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a__ ( a_, a_, unittest.TestCase ): __lowerCAmelCase = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) __lowerCAmelCase = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = True def __magic_name__ ( self , _a , _a , _a=False ): lowercase : Optional[Any] = super()._prepare_for_class(_a , _a , return_labels=_a ) if return_labels: if model_class in get_values(_a ): lowercase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_a ) lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_a ) return inputs_dict def __magic_name__ ( self ): lowercase : List[Any] = MobileBertModelTester(self ) lowercase : str = ConfigTester(self , config_class=_a , hidden_size=37 ) def __magic_name__ ( self ): self.config_tester.run_common_tests() def __magic_name__ ( self ): lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_a ) def __magic_name__ ( self ): lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_a ) def __magic_name__ ( self ): lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_a ) def __magic_name__ ( self ): lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_a ) def __magic_name__ ( self ): lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_a ) def __magic_name__ ( self ): lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_a ) def __magic_name__ ( self ): lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_a ) def __magic_name__ ( self ): lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_a ) def __magic_name__ ( __snake_case : List[Any] ) -> Dict: return torch.tensor( __snake_case , dtype=torch.long , device=__snake_case , ) _A : Union[str, Any] = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): @slow def __magic_name__ ( self ): lowercase : List[Any] = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(_a ) lowercase : Optional[Any] = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): lowercase : Union[str, Any] = model(_a )[0] lowercase : List[str] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , _a ) lowercase : Dict = torch.tensor( [ [ [-2.4736526E07, 8.2691656E04, 1.6521838E05], [-5.7541704E-01, 3.9056022E00, 4.4011507E00], [2.6047359E00, 1.5677652E00, -1.7324188E-01], ] ] , device=_a , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowercase : Optional[Any] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowercase : Tuple = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
518
"""simple docstring""" # flake8: noqa # Lint as: python3 _A : Dict = [ """VerificationMode""", """Version""", """disable_progress_bar""", """enable_progress_bar""", """is_progress_bar_enabled""", """experimental""", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
518
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _lowerCAmelCase ( __lowerCAmelCase ) -> None: """simple docstring""" snake_case__ , snake_case__ : Optional[int] = analyze_text(__lowerCAmelCase ) snake_case__ : List[str] = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. snake_case__ : Union[str, Any] = sum(single_char_strings.values() ) # one length string snake_case__ : Optional[int] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: snake_case__ : Any = single_char_strings[ch] snake_case__ : Dict = my_str / all_sum my_fir_sum += prob * math.loga(__lowerCAmelCase ) # entropy formula. # print entropy print(f"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string snake_case__ : Any = sum(two_char_strings.values() ) snake_case__ : Union[str, Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: snake_case__ : Optional[Any] = cha + cha if sequence in two_char_strings: snake_case__ : Union[str, Any] = two_char_strings[sequence] snake_case__ : Union[str, Any] = int(__lowerCAmelCase ) / all_sum my_sec_sum += prob * math.loga(__lowerCAmelCase ) # print second entropy print(f"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def _lowerCAmelCase ( __lowerCAmelCase ) -> tuple[dict, dict]: """simple docstring""" snake_case__ : List[str] = Counter() # type: ignore snake_case__ : Union[str, Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__lowerCAmelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _lowerCAmelCase ( ) -> int: """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
252
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin A__ = ''' Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] ''' class a ( unittest.TestCase , __lowerCamelCase ): def __lowerCamelCase ( self :str ): snake_case__ : Union[str, Any] = load_tool('''text-question-answering''' ) self.tool.setup() snake_case__ : int = load_tool('''text-question-answering''' ,remote=__lowercase ) def __lowerCamelCase ( self :List[Any] ): snake_case__ : int = self.tool(__lowercase ,'''What did Hugging Face do in April 2021?''' ) self.assertEqual(__lowercase ,'''launched the BigScience Research Workshop''' ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : int = self.remote_tool(__lowercase ,'''What did Hugging Face do in April 2021?''' ) self.assertEqual(__lowercase ,'''launched the BigScience Research Workshop''' ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : int = self.tool(text=__lowercase ,question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(__lowercase ,'''launched the BigScience Research Workshop''' ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Optional[Any] = self.remote_tool(text=__lowercase ,question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(__lowercase ,'''launched the BigScience Research Workshop''' )
252
1
import sys import turtle def A__ ( _a : tuple[float, float] , _a : tuple[float, float] ): '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def A__ ( _a : tuple[float, float] , _a : tuple[float, float] , _a : tuple[float, float] , _a : int , ): '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) __lowerCamelCase : str = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") __lowerCamelCase : Optional[int] = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
711
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowercase ( unittest.TestCase ): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=True , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=4 , ): snake_case__ : Any =parent snake_case__ : Dict =batch_size snake_case__ : List[Any] =seq_length snake_case__ : str =is_training snake_case__ : Union[str, Any] =use_attention_mask snake_case__ : str =use_token_type_ids snake_case__ : int =use_labels snake_case__ : Tuple =vocab_size snake_case__ : List[str] =hidden_size snake_case__ : Dict =num_hidden_layers snake_case__ : Optional[Any] =num_attention_heads snake_case__ : List[str] =intermediate_size snake_case__ : str =hidden_act snake_case__ : Union[str, Any] =hidden_dropout_prob snake_case__ : Tuple =attention_probs_dropout_prob snake_case__ : Tuple =max_position_embeddings snake_case__ : str =type_vocab_size snake_case__ : Optional[Any] =type_sequence_label_size snake_case__ : str =initializer_range snake_case__ : List[Any] =num_choices def lowercase__ ( self ): snake_case__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Tuple =None if self.use_attention_mask: snake_case__ : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] =None if self.use_token_type_ids: snake_case__ : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Tuple =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self ): snake_case__ : Optional[int] =self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[Any] =config_and_inputs snake_case__ : Dict ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowercase ( _A , unittest.TestCase ): _a : str = True _a : Optional[Any] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowercase__ ( self ): snake_case__ : Optional[Any] =FlaxRoFormerModelTester(self ) @slow def lowercase__ ( self ): for model_class_name in self.all_model_classes: snake_case__ : Tuple =model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=a ) snake_case__ : List[Any] =model(np.ones((1, 1) ) ) self.assertIsNotNone(a ) @require_flax class _lowercase ( unittest.TestCase ): @slow def lowercase__ ( self ): snake_case__ : Optional[int] =FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case__ : Tuple =jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case__ : str =model(a )[0] snake_case__ : List[str] =5_0_0_0_0 snake_case__ : str =(1, 6, vocab_size) self.assertEqual(output.shape , a ) snake_case__ : Optional[int] =jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , a , atol=1e-4 ) )
448
0
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[str] , snake_case__ :Union[str, Any] , snake_case__ :int=1024 , snake_case__ :List[str]=1024 , snake_case__ :int=False , **snake_case__ :Tuple ) -> Tuple: _lowercase = AutoTokenizer.from_pretrained(snake_case__ ) _lowercase = SeqaSeqDataset(snake_case__ , snake_case__ , snake_case__ , snake_case__ , type_path='train' , **snake_case__ ) _lowercase = tok.pad_token_id def get_lens(snake_case__ :Optional[Any] ): _lowercase = tqdm( DataLoader(snake_case__ , batch_size=512 , num_workers=8 , shuffle=snake_case__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _lowercase = [] for batch in dl: _lowercase = batch['input_ids'].ne(snake_case__ ).sum(1 ).tolist() _lowercase = batch['labels'].ne(snake_case__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(snake_case__ , snake_case__ ): max_lens.append(max(snake_case__ , snake_case__ ) ) else: max_lens.extend(snake_case__ ) return max_lens _lowercase = get_lens(snake_case__ ) _lowercase = SeqaSeqDataset(snake_case__ , snake_case__ , snake_case__ , snake_case__ , type_path='val' , **snake_case__ ) _lowercase = get_lens(snake_case__ ) pickle_save(snake_case__ , train_ds.len_file ) pickle_save(snake_case__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
67
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
0
def lowerCAmelCase_ ( lowerCamelCase = 3 , lowerCamelCase = 7 , lowerCamelCase = 1000000 ): __magic_name__ : List[Any] =0 __magic_name__ : str =1 for current_denominator in range(1 , limit + 1 ): __magic_name__ : List[Any] =current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __magic_name__ : List[Any] =current_numerator __magic_name__ : str =current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1000000))
367
from math import pow, sqrt def lowerCAmelCase_ ( *lowerCamelCase ): __magic_name__ : Tuple =len(lowerCamelCase ) > 0 and all(value > 0.0 for value in values ) return result def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCamelCase , lowerCamelCase ) else ValueError("""Input Error: Molar mass values must greater than 0.""" ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) )
367
1
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore a : List[str] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" a : Optional[int] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print("""\n""".join(upper_files) + """\n""") a : List[Any] = [file for file in filepaths if """ """ in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print("""\n""".join(space_files) + """\n""") a : Optional[int] = [file for file in filepaths if """-""" in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print("""\n""".join(hyphen_files) + """\n""") a : List[str] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print("""\n""".join(nodir_files) + """\n""") a : Tuple = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
218
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer a : List[Any] = logging.get_logger(__name__) a : Union[str, Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a : Dict = [ """small""", """small-base""", """medium""", """medium-base""", """intermediate""", """intermediate-base""", """large""", """large-base""", """xlarge""", """xlarge-base""", ] a : List[Any] = { """vocab_file""": { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt""", """funnel-transformer/medium-base""": ( """https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json""", """funnel-transformer/small-base""": ( """https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json""" ), """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json""", """funnel-transformer/medium-base""": ( """https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json""", """funnel-transformer/large-base""": ( """https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json""" ), """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json""" ), }, } a : Dict = {F"""funnel-transformer/{name}""": 512 for name in _model_names} a : List[Any] = {F"""funnel-transformer/{name}""": {"""do_lower_case""": True} for name in _model_names} class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = FunnelTokenizer __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = 2 def __init__( self , snake_case__=None , snake_case__=None , snake_case__=True , snake_case__="<unk>" , snake_case__="<sep>" , snake_case__="<pad>" , snake_case__="<cls>" , snake_case__="<mask>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__=True , snake_case__=True , snake_case__=None , snake_case__="##" , **snake_case__ , ): '''simple docstring''' super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , clean_text=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , wordpieces_prefix=snake_case__ , **snake_case__ , ) lowercase__ : Union[str, Any]= json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , snake_case__ ) != do_lower_case or normalizer_state.get("strip_accents" , snake_case__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , snake_case__ ) != tokenize_chinese_chars ): lowercase__ : Any= getattr(snake_case__ , normalizer_state.pop("type" ) ) lowercase__ : Optional[Any]= do_lower_case lowercase__ : Optional[Any]= strip_accents lowercase__ : Optional[int]= tokenize_chinese_chars lowercase__ : Optional[int]= normalizer_class(**snake_case__ ) lowercase__ : Optional[int]= do_lower_case def UpperCAmelCase_ ( self , snake_case__ , snake_case__=None ): '''simple docstring''' lowercase__ : str= [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' lowercase__ : int= [self.sep_token_id] lowercase__ : List[str]= [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' lowercase__ : List[str]= self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
218
1
def lowerCAmelCase_ ( lowercase: int = 100 ) -> int: '''simple docstring''' _UpperCamelCase: Optional[int] = 0 _UpperCamelCase: Optional[int] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
264
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowerCAmelCase_ ( lowercase: Optional[int] , lowercase: Any , lowercase: str , lowercase: List[str] , lowercase: Optional[int] ) -> int: '''simple docstring''' # load base model _UpperCamelCase: Optional[int] = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors _UpperCamelCase: List[str] = load_file(lowercase ) _UpperCamelCase: Optional[int] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: _UpperCamelCase: int = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) _UpperCamelCase: str = pipeline.text_encoder else: _UpperCamelCase: Optional[Any] = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) _UpperCamelCase: Any = pipeline.unet # find the target layer _UpperCamelCase: Union[str, Any] = layer_infos.pop(0 ) while len(lowercase ) > -1: try: _UpperCamelCase: Union[str, Any] = curr_layer.__getattr__(lowercase ) if len(lowercase ) > 0: _UpperCamelCase: Tuple = layer_infos.pop(0 ) elif len(lowercase ) == 0: break except Exception: if len(lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: _UpperCamelCase: List[Any] = layer_infos.pop(0 ) _UpperCamelCase: Any = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(lowercase ) else: pair_keys.append(lowercase ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: _UpperCamelCase: str = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) _UpperCamelCase: Optional[int] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: _UpperCamelCase: str = state_dict[pair_keys[0]].to(torch.floataa ) _UpperCamelCase: Dict = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ) # update visited list for item in pair_keys: visited.append(lowercase ) return pipeline if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.7_5, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = args.base_model_path UpperCAmelCase_ = args.checkpoint_path UpperCAmelCase_ = args.dump_path UpperCAmelCase_ = args.lora_prefix_unet UpperCAmelCase_ = args.lora_prefix_text_encoder UpperCAmelCase_ = args.alpha UpperCAmelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) UpperCAmelCase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
264
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() a_ : Optional[Any] = logging.get_logger(__name__) def __lowercase( UpperCAmelCase__ ): """simple docstring""" if "resnet-50" in model_name: lowerCamelCase = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: lowerCamelCase = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) lowerCamelCase = DetrConfig(use_timm_backbone=__lowerCAmelCase , backbone_config=__lowerCAmelCase ) # set label attributes lowerCamelCase = "panoptic" in model_name if is_panoptic: lowerCamelCase = 250 else: lowerCamelCase = 91 lowerCamelCase = "huggingface/label-files" lowerCamelCase = "coco-detection-id2label.json" lowerCamelCase = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) , "r" ) ) lowerCamelCase = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase = idalabel lowerCamelCase = {v: k for k, v in idalabel.items()} return config, is_panoptic def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = state_dict.pop(__lowerCAmelCase ) lowerCamelCase = val def __lowercase( UpperCAmelCase__ , UpperCAmelCase__=False ): """simple docstring""" lowerCamelCase = "" if is_panoptic: lowerCamelCase = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) lowerCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase = in_proj_weight[:256, :] lowerCamelCase = in_proj_bias[:256] lowerCamelCase = in_proj_weight[256:512, :] lowerCamelCase = in_proj_bias[256:512] lowerCamelCase = in_proj_weight[-256:, :] lowerCamelCase = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowerCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) lowerCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase = in_proj_weight[:256, :] lowerCamelCase = in_proj_bias[:256] lowerCamelCase = in_proj_weight[256:512, :] lowerCamelCase = in_proj_bias[256:512] lowerCamelCase = in_proj_weight[-256:, :] lowerCamelCase = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention lowerCamelCase = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) lowerCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowerCamelCase = in_proj_weight_cross_attn[:256, :] lowerCamelCase = in_proj_bias_cross_attn[:256] lowerCamelCase = in_proj_weight_cross_attn[256:512, :] lowerCamelCase = in_proj_bias_cross_attn[256:512] lowerCamelCase = in_proj_weight_cross_attn[-256:, :] lowerCamelCase = in_proj_bias_cross_attn[-256:] def __lowercase( ): """simple docstring""" lowerCamelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def __lowercase( UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=False ): """simple docstring""" lowerCamelCase , lowerCamelCase = get_detr_config(__lowerCAmelCase ) # load original model from torch hub lowerCamelCase = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(F"""Converting model {model_name}...""" ) lowerCamelCase = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=__lowerCAmelCase ).eval() lowerCamelCase = detr.state_dict() # rename keys for src, dest in create_rename_keys(__lowerCAmelCase ): if is_panoptic: lowerCamelCase = "detr." + src rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__lowerCAmelCase , is_panoptic=__lowerCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCamelCase = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): lowerCamelCase = state_dict.pop(__lowerCAmelCase ) lowerCamelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCamelCase = state_dict.pop(__lowerCAmelCase ) lowerCamelCase = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: lowerCamelCase = state_dict.pop(__lowerCAmelCase ) lowerCamelCase = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): lowerCamelCase = state_dict.pop(__lowerCAmelCase ) lowerCamelCase = val # finally, create HuggingFace model and load state dict lowerCamelCase = DetrForSegmentation(__lowerCAmelCase ) if is_panoptic else DetrForObjectDetection(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # verify our conversion on an image lowerCamelCase = "coco_panoptic" if is_panoptic else "coco_detection" lowerCamelCase = DetrImageProcessor(format=__lowerCAmelCase ) lowerCamelCase = processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase = encoding["pixel_values"] lowerCamelCase = detr(__lowerCAmelCase ) lowerCamelCase = model(__lowerCAmelCase ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(F"""nielsr/{model_name}""" ) processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') a_ : Union[str, Any] = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
623
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = "Hello world! cécé herlolip" def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : bool ) -> Optional[int]: __lowerCamelCase = FairseqRobertaModel.from_pretrained(__lowerCAmelCase ) roberta.eval() # disable dropout __lowerCamelCase = roberta.model.encoder.sentence_encoder __lowerCamelCase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: __lowerCamelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , __lowerCAmelCase ) __lowerCamelCase = XLMRobertaXLForSequenceClassification(__lowerCAmelCase ) if classification_head else XLMRobertaXLForMaskedLM(__lowerCAmelCase ) model.eval() # Now let's copy all the weights. # Embeddings __lowerCamelCase = roberta_sent_encoder.embed_tokens.weight __lowerCamelCase = roberta_sent_encoder.embed_positions.weight __lowerCamelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. __lowerCamelCase = roberta_sent_encoder.layer_norm.weight __lowerCamelCase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowerCamelCase = model.roberta.encoder.layer[i] __lowerCamelCase = roberta_sent_encoder.layers[i] __lowerCamelCase = layer.attention __lowerCamelCase = roberta_layer.self_attn_layer_norm.weight __lowerCamelCase = roberta_layer.self_attn_layer_norm.bias # self attention __lowerCamelCase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) __lowerCamelCase = roberta_layer.self_attn.q_proj.weight __lowerCamelCase = roberta_layer.self_attn.q_proj.bias __lowerCamelCase = roberta_layer.self_attn.k_proj.weight __lowerCamelCase = roberta_layer.self_attn.k_proj.bias __lowerCamelCase = roberta_layer.self_attn.v_proj.weight __lowerCamelCase = roberta_layer.self_attn.v_proj.bias # self-attention output __lowerCamelCase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape __lowerCamelCase = roberta_layer.self_attn.out_proj.weight __lowerCamelCase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm __lowerCamelCase = roberta_layer.final_layer_norm.weight __lowerCamelCase = roberta_layer.final_layer_norm.bias # intermediate __lowerCamelCase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape __lowerCamelCase = roberta_layer.fca.weight __lowerCamelCase = roberta_layer.fca.bias # output __lowerCamelCase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape __lowerCamelCase = roberta_layer.fca.weight __lowerCamelCase = roberta_layer.fca.bias # end of layer if classification_head: __lowerCamelCase = roberta.model.classification_heads['''mnli'''].dense.weight __lowerCamelCase = roberta.model.classification_heads['''mnli'''].dense.bias __lowerCamelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight __lowerCamelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head __lowerCamelCase = roberta.model.encoder.lm_head.dense.weight __lowerCamelCase = roberta.model.encoder.lm_head.dense.bias __lowerCamelCase = roberta.model.encoder.lm_head.layer_norm.weight __lowerCamelCase = roberta.model.encoder.lm_head.layer_norm.bias __lowerCamelCase = roberta.model.encoder.lm_head.weight __lowerCamelCase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. __lowerCamelCase = roberta.encode(__lowerCAmelCase ).unsqueeze(0 ) # batch of size 1 __lowerCamelCase = model(__lowerCAmelCase )[0] if classification_head: __lowerCamelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(__lowerCAmelCase ) ) else: __lowerCamelCase = roberta.model(__lowerCAmelCase )[0] print(our_output.shape , their_output.shape ) __lowerCamelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 __lowerCamelCase = torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(__lowerCAmelCase ).mkdir(parents=__lowerCAmelCase , exist_ok=__lowerCAmelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) SCREAMING_SNAKE_CASE__ : Optional[Any] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
298
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": UpperCAmelCase_ =input("""Enter image url: """).strip() print(F'''Downloading image from {url} ...''') UpperCAmelCase_ =BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image UpperCAmelCase_ =soup.find("""meta""", {"""property""": """og:image"""})["""content"""] UpperCAmelCase_ =requests.get(image_url).content UpperCAmelCase_ =F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, """wb""") as fp: fp.write(image_data) print(F'''Done. Image saved to disk as {file_name}.''')
718
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __UpperCamelCase ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __a : Any =1 @register_to_config def __init__( self , UpperCAmelCase_=20_00 , UpperCAmelCase_=0.1 , UpperCAmelCase_=20 , UpperCAmelCase_=1E-3 ): lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None def __snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): lowerCAmelCase = torch.linspace(1 , self.config.sampling_eps , UpperCAmelCase_ , device=UpperCAmelCase_ ) def __snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ): if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score lowerCAmelCase = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) lowerCAmelCase = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) lowerCAmelCase = std.flatten() while len(std.shape ) < len(score.shape ): lowerCAmelCase = std.unsqueeze(-1 ) lowerCAmelCase = -score / std # compute lowerCAmelCase = -1.0 / len(self.timesteps ) lowerCAmelCase = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) lowerCAmelCase = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): lowerCAmelCase = beta_t.unsqueeze(-1 ) lowerCAmelCase = -0.5 * beta_t * x lowerCAmelCase = torch.sqrt(UpperCAmelCase_ ) lowerCAmelCase = drift - diffusion**2 * score lowerCAmelCase = x + drift * dt # add noise lowerCAmelCase = randn_tensor(x.shape , layout=x.layout , generator=UpperCAmelCase_ , device=x.device , dtype=x.dtype ) lowerCAmelCase = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ): return self.config.num_train_timesteps
33
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __lowerCAmelCase : Any ={'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple =['DPTFeatureExtractor'] __lowerCAmelCase : List[Any] =['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
696
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = StableDiffusionInstructPixaPixPipeline SCREAMING_SNAKE_CASE__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} SCREAMING_SNAKE_CASE__ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __magic_name__( self :int ) -> Optional[int]: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __SCREAMING_SNAKE_CASE : str = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __magic_name__( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any]=0 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE : List[Any] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('''RGB''' ) if str(lowerCAmelCase__ ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def __magic_name__( self :Union[str, Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : int = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = '''french fries''' __SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(**lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = output.images __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Dict ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = [inputs['''prompt''']] * 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array(inputs['''image'''] ).astype(np.floataa ) / 255.0 __SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image / 2 + 0.5 __SCREAMING_SNAKE_CASE : Optional[Any] = image.permute(0 , 3 , 1 , 2 ) __SCREAMING_SNAKE_CASE : Any = image.repeat(2 , 1 , 1 , 1 ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Dict = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) __SCREAMING_SNAKE_CASE : Tuple = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Union[str, Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Union[str, Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : List[str] = [round(lowerCAmelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(lowerCAmelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Tuple ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __magic_name__( self :str ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = VaeImageProcessor(do_resize=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase__ , input_image_type='''pt''' ) )[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = components['''vae'''] __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs_by_type(lowerCAmelCase__ , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __SCREAMING_SNAKE_CASE : Optional[int] = vae.encode(inputs[image_param] ).latent_dist.mode() __SCREAMING_SNAKE_CASE : Dict = pipe(**lowerCAmelCase__ )[0] __SCREAMING_SNAKE_CASE : List[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase__ , 1E-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__( self :int , lowerCAmelCase__ :Dict=0 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) __SCREAMING_SNAKE_CASE : Dict = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __magic_name__( self :Dict ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Dict = self.get_inputs() __SCREAMING_SNAKE_CASE : str = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Any = self.get_inputs() __SCREAMING_SNAKE_CASE : int = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : Dict = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Optional[int] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : str = self.get_inputs() __SCREAMING_SNAKE_CASE : Optional[int] = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Dict ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = 0 def callback_fn(lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :torch.FloatTensor ) -> None: __SCREAMING_SNAKE_CASE : Dict = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __SCREAMING_SNAKE_CASE : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE : Tuple = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: __SCREAMING_SNAKE_CASE : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE : List[str] = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() pipe(**lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __magic_name__( self :List[str] ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __SCREAMING_SNAKE_CASE : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __SCREAMING_SNAKE_CASE : Dict = self.get_inputs() __SCREAMING_SNAKE_CASE : List[Any] = pipe(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __magic_name__( self :int ) -> Tuple: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __SCREAMING_SNAKE_CASE : int = inputs['''image'''].resize((504, 504) ) __SCREAMING_SNAKE_CASE : Optional[int] = '''timbrooks/instruct-pix2pix''' __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Any = pipe(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = output.images[0] __SCREAMING_SNAKE_CASE : str = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) __SCREAMING_SNAKE_CASE : str = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
696
1
from __future__ import annotations from decimal import Decimal from numpy import array def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :Any = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_lowerCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase__ :Any = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase__ :int = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase__ , UpperCAmelCase__ :Union[str, Any] = matrix[1][1], matrix[0][0] UpperCAmelCase__ , UpperCAmelCase__ :Optional[Any] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_lowerCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_lowerCamelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase__ :Tuple = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix UpperCAmelCase__ :List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase__ :Optional[Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase__ :Any = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase__ :Optional[Any] = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase__ :Optional[int] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase__ :Union[str, Any] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase__ :int = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase__ :Union[str, Any] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase__ :List[str] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase__ :List[str] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase__ :Optional[int] = array(_lowerCamelCase ) for i in range(3 ): for j in range(3 ): UpperCAmelCase__ :Union[str, Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase__ :Union[str, Any] = array(_lowerCamelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_lowerCamelCase ) # Calculate the inverse of the matrix return [[float(d(_lowerCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
700
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __snake_case : Optional[Any] = '\\n\n' __snake_case : List[Any] = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' __snake_case : Tuple = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCamelCase__ ( datasets.Metric): '''simple docstring''' def A__ ( self ) ->int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , ) def A__ ( self , A , A , A = 16 , A = True , A=None ) ->Tuple: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCAmelCase__ :Union[str, Any] = 'cuda' else: UpperCAmelCase__ :Optional[int] = 'cuda' if torch.cuda.is_available() else 'cpu' UpperCAmelCase__ :Optional[int] = AutoModelForCausalLM.from_pretrained(A ) UpperCAmelCase__ :Any = model.to(A ) UpperCAmelCase__ :Optional[int] = AutoTokenizer.from_pretrained(A ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCAmelCase__ :str = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(A ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCAmelCase__ :List[Any] = model.config.max_length - 1 else: UpperCAmelCase__ :List[Any] = model.config.max_length UpperCAmelCase__ :Tuple = tokenizer( A , add_special_tokens=A , padding=A , truncation=A , max_length=A , return_tensors='pt' , return_attention_mask=A , ).to(A ) UpperCAmelCase__ :List[Any] = encodings['input_ids'] UpperCAmelCase__ :str = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCAmelCase__ :Union[str, Any] = [] UpperCAmelCase__ :int = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 , len(A ) , A ) ): UpperCAmelCase__ :int = min(start_index + batch_size , len(A ) ) UpperCAmelCase__ :str = encoded_texts[start_index:end_index] UpperCAmelCase__ :List[Any] = attn_masks[start_index:end_index] if add_start_token: UpperCAmelCase__ :List[Any] = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(A ) UpperCAmelCase__ :Any = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCAmelCase__ :Optional[int] = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(A ), attn_mask] , dim=1 ) UpperCAmelCase__ :int = encoded_batch with torch.no_grad(): UpperCAmelCase__ :Optional[Any] = model(A , attention_mask=A ).logits UpperCAmelCase__ :str = out_logits[..., :-1, :].contiguous() UpperCAmelCase__ :Dict = labels[..., 1:].contiguous() UpperCAmelCase__ :Any = attn_mask[..., 1:].contiguous() UpperCAmelCase__ :int = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , A ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(A )}
433
0
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def _a (lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : int , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : Tuple , lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : List[str] , lowercase__ : Any , ) -> Union[str, Any]: """simple docstring""" __snake_case = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } __snake_case , __snake_case = input_paths_and_base_extractors[compression_format] if input_path is None: __snake_case = f'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowercase__ ) assert base_extractor.is_extractable(lowercase__ ) __snake_case = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(lowercase__ , lowercase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case = file_path.read_text(encoding='utf-8' ) else: __snake_case = output_path.read_text(encoding='utf-8' ) __snake_case = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def _a (lowercase__ : Optional[Any] , lowercase__ : str , lowercase__ : Dict , lowercase__ : int , lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , ) -> Dict: """simple docstring""" __snake_case = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } __snake_case = input_paths[compression_format] if input_path is None: __snake_case = f'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowercase__ ) __snake_case = Extractor.infer_extractor_format(lowercase__ ) assert extractor_format is not None __snake_case = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(lowercase__ , lowercase__ , lowercase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case = file_path.read_text(encoding='utf-8' ) else: __snake_case = output_path.read_text(encoding='utf-8' ) __snake_case = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def _a (lowercase__ : List[str] , lowercase__ : Union[str, Any] ) -> Any: """simple docstring""" import tarfile __snake_case = tmp_path / 'data_dot_dot' directory.mkdir() __snake_case = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.join('..' , text_file.name ) ) return path @pytest.fixture def _a (lowercase__ : str ) -> Dict: """simple docstring""" import tarfile __snake_case = tmp_path / 'data_sym_link' directory.mkdir() __snake_case = directory / 'tar_file_with_sym_link.tar' os.symlink('..' , directory / 'subdir' , target_is_directory=lowercase__ ) with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , ) def _a (lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Optional[Any] , lowercase__ : List[Any] ) -> str: """simple docstring""" __snake_case = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } __snake_case = insecure_tar_files[insecure_tar_file] __snake_case = tmp_path / 'extracted' TarExtractor.extract(lowercase__ , lowercase__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _a (lowercase__ : Dict ) -> Union[str, Any]: """simple docstring""" # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __snake_case = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 __snake_case = ( B'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' B'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' B'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' B'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(lowercase__ ) assert zipfile.is_zipfile(str(lowercase__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(lowercase__ ) # but we're right
56
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Dict = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : int = "timesformer" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : List[str]=224 , SCREAMING_SNAKE_CASE_ : List[str]=16 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : int=8 , SCREAMING_SNAKE_CASE_ : Tuple=768 , SCREAMING_SNAKE_CASE_ : int=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : Any=1e-6 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]="divided_space_time" , SCREAMING_SNAKE_CASE_ : int=0 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = num_frames __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = qkv_bias __snake_case = attention_type __snake_case = drop_path_rate
56
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class snake_case : def __init__( self :List[str] , _lowerCamelCase :List[str] , _lowerCamelCase :str=1_3 , _lowerCamelCase :Union[str, Any]=7 , _lowerCamelCase :Optional[int]=True , _lowerCamelCase :Optional[int]=True , _lowerCamelCase :List[str]=True , _lowerCamelCase :str=True , _lowerCamelCase :List[str]=9_9 , _lowerCamelCase :List[str]=6_4 , _lowerCamelCase :List[str]=5 , _lowerCamelCase :Optional[Any]=4 , _lowerCamelCase :Union[str, Any]=3_7 , _lowerCamelCase :Tuple="gelu" , _lowerCamelCase :Dict=0.1 , _lowerCamelCase :Dict=0.1 , _lowerCamelCase :Optional[int]=5_1_2 , _lowerCamelCase :List[str]=1_6 , _lowerCamelCase :Tuple=2 , _lowerCamelCase :Tuple=0.0_2 , _lowerCamelCase :List[str]=3 , _lowerCamelCase :List[str]=4 , _lowerCamelCase :str=None , ): __SCREAMING_SNAKE_CASE : Any = parent __SCREAMING_SNAKE_CASE : int = batch_size __SCREAMING_SNAKE_CASE : Optional[Any] = seq_length __SCREAMING_SNAKE_CASE : Tuple = is_training __SCREAMING_SNAKE_CASE : Optional[int] = use_input_mask __SCREAMING_SNAKE_CASE : int = use_token_type_ids __SCREAMING_SNAKE_CASE : Optional[int] = use_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size __SCREAMING_SNAKE_CASE : str = hidden_size __SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size __SCREAMING_SNAKE_CASE : Dict = hidden_act __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings __SCREAMING_SNAKE_CASE : str = type_vocab_size __SCREAMING_SNAKE_CASE : Optional[int] = type_sequence_label_size __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : int = num_labels __SCREAMING_SNAKE_CASE : Dict = num_choices __SCREAMING_SNAKE_CASE : Tuple = scope __SCREAMING_SNAKE_CASE : Optional[int] = vocab_size - 1 def SCREAMING_SNAKE_CASE_ ( self :Dict ): __SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_input_mask: __SCREAMING_SNAKE_CASE : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE : int = None if self.use_labels: __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Dict = self.get_config() return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE_ ( self :Tuple ): return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE : Tuple = True return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE_ ( self :Any , _lowerCamelCase :Tuple , _lowerCamelCase :Optional[int] , _lowerCamelCase :str ): __SCREAMING_SNAKE_CASE : Dict = GPTNeoXModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self :int , _lowerCamelCase :str , _lowerCamelCase :Optional[int] , _lowerCamelCase :Tuple ): __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : Union[str, Any] = GPTNeoXModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __SCREAMING_SNAKE_CASE : Optional[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , _lowerCamelCase :Optional[int] , _lowerCamelCase :int , _lowerCamelCase :Any , _lowerCamelCase :List[str] ): __SCREAMING_SNAKE_CASE : str = GPTNeoXForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self :Any , _lowerCamelCase :List[Any] , _lowerCamelCase :Tuple , _lowerCamelCase :Any , _lowerCamelCase :Union[str, Any] ): __SCREAMING_SNAKE_CASE : Any = self.num_labels __SCREAMING_SNAKE_CASE : List[Any] = GPTNeoXForQuestionAnswering(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __SCREAMING_SNAKE_CASE : str = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self :int , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :Optional[Any] , _lowerCamelCase :Dict ): __SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels __SCREAMING_SNAKE_CASE : Any = GPTNeoXForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : str = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] , _lowerCamelCase :str , _lowerCamelCase :Dict , _lowerCamelCase :List[str] , _lowerCamelCase :Optional[Any] ): __SCREAMING_SNAKE_CASE : Any = self.num_labels __SCREAMING_SNAKE_CASE : Optional[Any] = GPTNeoXForTokenClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] , _lowerCamelCase :Tuple , _lowerCamelCase :str , _lowerCamelCase :Union[str, Any] ): __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : Any = GPTNeoXForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() # first forward pass __SCREAMING_SNAKE_CASE : str = model(_lowerCamelCase , attention_mask=_lowerCamelCase , use_cache=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __SCREAMING_SNAKE_CASE : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) __SCREAMING_SNAKE_CASE : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __SCREAMING_SNAKE_CASE : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase , attention_mask=_lowerCamelCase , output_hidden_states=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = output_from_no_past['''hidden_states'''][0] __SCREAMING_SNAKE_CASE : Optional[Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , output_hidden_states=_lowerCamelCase , )['''hidden_states'''][0] # select random slice __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE : int = output_from_no_past[:, -3:, random_slice_idx].detach() __SCREAMING_SNAKE_CASE : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE_ ( self :int ): __SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs __SCREAMING_SNAKE_CASE : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowerCamelCase__ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase__ = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): __SCREAMING_SNAKE_CASE : Optional[int] = GPTNeoXModelTester(self ) __SCREAMING_SNAKE_CASE : str = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=6_4 , num_attention_heads=8 ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :str ): # This regression test was failing with PyTorch < 1.3 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_decoder() __SCREAMING_SNAKE_CASE : Optional[int] = None self.model_tester.create_and_check_model_as_decoder(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :int ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :int ): __SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] , _lowerCamelCase :Any ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([1, 1_0] , config.vocab_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights __SCREAMING_SNAKE_CASE : List[Any] = GPTNeoXModel(_lowerCamelCase ) original_model.to(_lowerCamelCase ) original_model.eval() __SCREAMING_SNAKE_CASE : str = original_model(_lowerCamelCase ).last_hidden_state __SCREAMING_SNAKE_CASE : List[str] = original_model(_lowerCamelCase ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights __SCREAMING_SNAKE_CASE : List[Any] = {'''type''': scaling_type, '''factor''': 1_0.0} __SCREAMING_SNAKE_CASE : int = GPTNeoXModel(_lowerCamelCase ) scaled_model.to(_lowerCamelCase ) scaled_model.eval() __SCREAMING_SNAKE_CASE : List[str] = scaled_model(_lowerCamelCase ).last_hidden_state __SCREAMING_SNAKE_CASE : List[str] = scaled_model(_lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5 ) ) @require_torch class snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): __SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: __SCREAMING_SNAKE_CASE : Union[str, Any] = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(_lowerCamelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 __SCREAMING_SNAKE_CASE : List[Any] = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' __SCREAMING_SNAKE_CASE : Union[str, Any] = model.generate(**_lowerCamelCase , do_sample=_lowerCamelCase , max_new_tokens=2_0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.batch_decode(_lowerCamelCase )[0] self.assertEqual(_lowerCamelCase , _lowerCamelCase )
401
"""simple docstring""" def lowerCAmelCase_ ( lowercase_ : int , lowercase_ : int , lowercase_ : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[Any] = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def lowerCAmelCase_ ( ): '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
401
1
import argparse import os import re __UpperCamelCase: Any = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __UpperCamelCase: Dict = re.compile(r"""[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict""") # re pattern that matches identifiers in mappings __UpperCamelCase: List[str] = re.compile(r"""\s*\(\s*\"(\S[^\"]+)\"""") def SCREAMING_SNAKE_CASE__ ( _lowercase : int , _lowercase : bool = False ) -> List[str]: '''simple docstring''' with open(_lowercase , 'r' , encoding='utf-8' ) as f: lowercase__ : Union[str, Any] = f.read() lowercase__ : Optional[Any] = content.split('\n' ) lowercase__ : Optional[int] = [] lowercase__ : int = 0 while line_idx < len(_lowercase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: lowercase__ : Tuple = len(re.search(r'^(\s*)\S' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(' ' * indent + '(' ): new_lines.append(lines[line_idx] ) line_idx += 1 lowercase__ : Tuple = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": lowercase__ : Any = line_idx while not lines[line_idx].startswith(' ' * indent + ')' ): line_idx += 1 blocks.append('\n'.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers lowercase__ : List[str] = sorted(_lowercase , key=lambda _lowercase : _re_identifier.search(_lowercase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_lowercase , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(_lowercase ) ) elif "\n".join(_lowercase ) != content: return True def SCREAMING_SNAKE_CASE__ ( _lowercase : bool = False ) -> List[Any]: '''simple docstring''' lowercase__ : List[Any] = [os.path.join(_lowercase , _lowercase ) for f in os.listdir(_lowercase ) if f.endswith('.py' )] lowercase__ : str = [sort_auto_mapping(_lowercase , overwrite=_lowercase ) for fname in fnames] if not overwrite and any(_lowercase ): lowercase__ : List[Any] = [f for f, d in zip(_lowercase , _lowercase ) if d] raise ValueError( f"""The following files have auto mappings that need sorting: {", ".join(_lowercase )}. Run `make style` to fix""" ' this.' ) if __name__ == "__main__": __UpperCamelCase: Tuple = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") __UpperCamelCase: List[Any] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
266
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __lowerCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' _A = PriorTransformer _A = "hidden_states" @property def snake_case__( self: Union[str, Any] ): lowercase__ : List[Any] = 4 lowercase__ : Optional[int] = 8 lowercase__ : List[str] = 7 lowercase__ : Optional[Any] = floats_tensor((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : Union[str, Any] = floats_tensor((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : Any = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__( self: int, lowerCamelCase_: Dict=0 ): torch.manual_seed(lowerCamelCase_ ) lowercase__ : Tuple = 4 lowercase__ : List[Any] = 8 lowercase__ : List[str] = 7 lowercase__ : Union[str, Any] = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : Optional[int] = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : List[str] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def snake_case__( self: str ): return (4, 8) @property def snake_case__( self: List[str] ): return (4, 8) def snake_case__( self: Dict ): lowercase__ : int = { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } lowercase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def snake_case__( self: int ): lowercase__ , lowercase__ : Dict = PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy', output_loading_info=lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertEqual(len(loading_info['missing_keys'] ), 0 ) model.to(lowerCamelCase_ ) lowercase__ : Tuple = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def snake_case__( self: str ): lowercase__ , lowercase__ : List[Any] = self.prepare_init_args_and_inputs_for_common() lowercase__ : Optional[int] = self.model_class(**lowerCamelCase_ ) lowercase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Dict = [*signature.parameters.keys()] lowercase__ : List[str] = ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2], lowerCamelCase_ ) def snake_case__( self: Union[str, Any] ): lowercase__ : str = PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) lowercase__ : Optional[int] = model.to(lowerCamelCase_ ) if hasattr(lowerCamelCase_, 'set_default_attn_processor' ): model.set_default_attn_processor() lowercase__ : List[str] = self.get_dummy_seed_input() with torch.no_grad(): lowercase__ : str = model(**lowerCamelCase_ )[0] lowercase__ : int = output[0, :5].flatten().cpu() print(lowerCamelCase_ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase__ : List[str] = torch.tensor([-1.3_4_3_6, -0.2_8_7_0, 0.7_5_3_8, 0.4_3_6_8, -0.0_2_3_9] ) self.assertTrue(torch_all_close(lowerCamelCase_, lowerCamelCase_, rtol=1E-2 ) ) @slow class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def snake_case__( self: Tuple, lowerCamelCase_: Union[str, Any]=1, lowerCamelCase_: Tuple=768, lowerCamelCase_: Dict=77, lowerCamelCase_: Union[str, Any]=0 ): torch.manual_seed(lowerCamelCase_ ) lowercase__ : Dict = batch_size lowercase__ : Dict = embedding_dim lowercase__ : Dict = num_embeddings lowercase__ : int = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : str = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : List[str] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__( self: str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_8_6_1, 0.1_2_8_3, -0.0_9_3_1, 0.0_8_8_2, 0.4_4_7_6, 0.1_3_2_9, -0.0_4_9_8, 0.0_6_4_0]], [37, [-0.4_9_1_3, 0.0_1_1_0, -0.0_4_8_3, 0.0_5_4_1, 0.4_9_5_4, -0.0_1_7_0, 0.0_3_5_4, 0.1_6_5_1]], # fmt: on ] ) def snake_case__( self: Optional[Any], lowerCamelCase_: List[str], lowerCamelCase_: str ): lowercase__ : List[Any] = PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior', subfolder='prior' ) model.to(lowerCamelCase_ ) lowercase__ : Optional[int] = self.get_dummy_seed_input(seed=lowerCamelCase_ ) with torch.no_grad(): lowercase__ : List[str] = model(**lowerCamelCase_ )[0] assert list(sample.shape ) == [1, 768] lowercase__ : Union[str, Any] = sample[0, :8].flatten().cpu() print(lowerCamelCase_ ) lowercase__ : Optional[Any] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_, lowerCamelCase_, atol=1E-3 )
266
1
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging lowerCAmelCase_ = logging.get_logger(__name__) def A__ ( ): '''simple docstring''' UpperCamelCase : Optional[int] = os.getenv("SM_HP_MP_PARAMETERS" , "{}") try: # Parse it and check the field "partitions" is included, it is required for model parallel. UpperCamelCase : List[Any] = json.loads(A) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. UpperCamelCase : Optional[Any] = os.getenv("SM_FRAMEWORK_PARAMS" , "{}") try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". UpperCamelCase : int = json.loads(A) if not mpi_options.get("sagemaker_mpi_enabled" , A): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed") is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , lowerCamelCase , ) @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> "torch.device": '''simple docstring''' logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: UpperCamelCase : Dict = torch.device("cpu" ) UpperCamelCase : str = 0 elif is_sagemaker_model_parallel_available(): UpperCamelCase : List[str] = smp.local_rank() UpperCamelCase : Any = torch.device("cuda" , lowerCamelCase ) UpperCamelCase : Optional[Any] = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) UpperCamelCase : Any = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) UpperCamelCase : Tuple = torch.device("cuda" , self.local_rank ) UpperCamelCase : Optional[Any] = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 UpperCamelCase : List[Any] = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. UpperCamelCase : Tuple = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) UpperCamelCase : Tuple = torch.device("cuda" , self.local_rank ) UpperCamelCase : List[str] = 1 if device.type == "cuda": torch.cuda.set_device(lowerCamelCase ) return device @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' return not is_sagemaker_model_parallel_available() @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' return False
714
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A__ ( A : int): '''simple docstring''' UpperCamelCase : int = int(number**0.5) return number == sq * sq def A__ ( A : int , A : int , A : int , A : int , A : int , A : int): '''simple docstring''' UpperCamelCase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCamelCase : int = x_den * y_den * z_den UpperCamelCase : int = gcd(A , A) top //= hcf bottom //= hcf return top, bottom def A__ ( A : int = 35): '''simple docstring''' UpperCamelCase : set = set() UpperCamelCase : int UpperCamelCase : Fraction = Fraction(0) UpperCamelCase : tuple[int, int] for x_num in range(1 , order + 1): for x_den in range(x_num + 1 , order + 1): for y_num in range(1 , order + 1): for y_den in range(y_num + 1 , order + 1): # n=1 UpperCamelCase : Optional[int] = x_num * y_den + x_den * y_num UpperCamelCase : str = x_den * y_den UpperCamelCase : Dict = gcd(A , A) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase : Dict = add_three( A , A , A , A , A , A) unique_s.add(A) # n=2 UpperCamelCase : Optional[Any] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCamelCase : List[str] = x_den * x_den * y_den * y_den if is_sq(A) and is_sq(A): UpperCamelCase : Dict = int(sqrt(A)) UpperCamelCase : Union[str, Any] = int(sqrt(A)) UpperCamelCase : Union[str, Any] = gcd(A , A) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase : List[str] = add_three( A , A , A , A , A , A) unique_s.add(A) # n=-1 UpperCamelCase : Union[str, Any] = x_num * y_num UpperCamelCase : List[str] = x_den * y_num + x_num * y_den UpperCamelCase : List[str] = gcd(A , A) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase : List[str] = add_three( A , A , A , A , A , A) unique_s.add(A) # n=2 UpperCamelCase : int = x_num * x_num * y_num * y_num UpperCamelCase : Any = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(A) and is_sq(A): UpperCamelCase : Optional[int] = int(sqrt(A)) UpperCamelCase : Union[str, Any] = int(sqrt(A)) UpperCamelCase : str = gcd(A , A) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase : Union[str, Any] = add_three( A , A , A , A , A , A) unique_s.add(A) for num, den in unique_s: total += Fraction(A , A) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
435
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
267
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class snake_case__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE__ = MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE__ = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase : Optional[int] = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="pt" ) # Using `do_sample=False` to force deterministic output UpperCAmelCase : int = text_generator("This is a test" , do_sample=lowercase ) self.assertEqual( lowercase , [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ] , ) UpperCAmelCase : List[Any] = text_generator(["This is a test", "This is a second test"] ) self.assertEqual( lowercase , [ [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], [ { "generated_text": ( "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy" " oscope. oscope. FiliFili@@" ) } ], ] , ) UpperCAmelCase : Any = text_generator("This is a test" , do_sample=lowercase , num_return_sequences=2 , return_tensors=lowercase ) self.assertEqual( lowercase , [ {"generated_token_ids": ANY(lowercase )}, {"generated_token_ids": ANY(lowercase )}, ] , ) UpperCAmelCase : Dict = text_generator.model.config.eos_token_id UpperCAmelCase : List[str] = "<pad>" UpperCAmelCase : List[str] = text_generator( ["This is a test", "This is a second test"] , do_sample=lowercase , num_return_sequences=2 , batch_size=2 , return_tensors=lowercase , ) self.assertEqual( lowercase , [ [ {"generated_token_ids": ANY(lowercase )}, {"generated_token_ids": ANY(lowercase )}, ], [ {"generated_token_ids": ANY(lowercase )}, {"generated_token_ids": ANY(lowercase )}, ], ] , ) @require_tf def __lowerCAmelCase ( self : str ): '''simple docstring''' UpperCAmelCase : Tuple = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="tf" ) # Using `do_sample=False` to force deterministic output UpperCAmelCase : Union[str, Any] = text_generator("This is a test" , do_sample=lowercase ) self.assertEqual( lowercase , [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ] , ) UpperCAmelCase : List[str] = text_generator(["This is a test", "This is a second test"] , do_sample=lowercase ) self.assertEqual( lowercase , [ [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], [ { "generated_text": ( "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes" " Cannes 閲閲Cannes Cannes Cannes 攵 please," ) } ], ] , ) def __lowerCAmelCase ( self : str , lowercase : str , lowercase : str , lowercase : str ): '''simple docstring''' UpperCAmelCase : Optional[int] = TextGenerationPipeline(model=lowercase , tokenizer=lowercase ) return text_generator, ["This is a test", "Another test"] def __lowerCAmelCase ( self : int ): '''simple docstring''' UpperCAmelCase : Tuple = "Hello I believe in" UpperCAmelCase : Dict = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) UpperCAmelCase : Union[str, Any] = text_generator(lowercase ) self.assertEqual( lowercase , [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}] , ) UpperCAmelCase : Optional[int] = text_generator(lowercase , stop_sequence=" fe" ) self.assertEqual(lowercase , [{"generated_text": "Hello I believe in fe"}] ) def __lowerCAmelCase ( self : str , lowercase : int , lowercase : str ): '''simple docstring''' UpperCAmelCase : Optional[int] = text_generator.model UpperCAmelCase : Tuple = text_generator.tokenizer UpperCAmelCase : Tuple = text_generator("This is a test" ) self.assertEqual(lowercase , [{"generated_text": ANY(lowercase )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) UpperCAmelCase : int = text_generator("This is a test" , return_full_text=lowercase ) self.assertEqual(lowercase , [{"generated_text": ANY(lowercase )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) UpperCAmelCase : Tuple = pipeline(task="text-generation" , model=lowercase , tokenizer=lowercase , return_full_text=lowercase ) UpperCAmelCase : Any = text_generator("This is a test" ) self.assertEqual(lowercase , [{"generated_text": ANY(lowercase )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) UpperCAmelCase : int = text_generator("This is a test" , return_full_text=lowercase ) self.assertEqual(lowercase , [{"generated_text": ANY(lowercase )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) UpperCAmelCase : Union[str, Any] = text_generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowercase ) self.assertEqual( lowercase , [ [{"generated_text": ANY(lowercase )}, {"generated_text": ANY(lowercase )}], [{"generated_text": ANY(lowercase )}, {"generated_text": ANY(lowercase )}], ] , ) if text_generator.tokenizer.pad_token is not None: UpperCAmelCase : int = text_generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowercase ) self.assertEqual( lowercase , [ [{"generated_text": ANY(lowercase )}, {"generated_text": ANY(lowercase )}], [{"generated_text": ANY(lowercase )}, {"generated_text": ANY(lowercase )}], ] , ) with self.assertRaises(lowercase ): UpperCAmelCase : Optional[int] = text_generator("test" , return_full_text=lowercase , return_text=lowercase ) with self.assertRaises(lowercase ): UpperCAmelCase : Tuple = text_generator("test" , return_full_text=lowercase , return_tensors=lowercase ) with self.assertRaises(lowercase ): UpperCAmelCase : List[Any] = text_generator("test" , return_text=lowercase , return_tensors=lowercase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): UpperCAmelCase : List[str] = text_generator("" ) self.assertEqual(lowercase , [{"generated_text": ANY(lowercase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): UpperCAmelCase : Dict = text_generator("" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. UpperCAmelCase : Union[str, Any] = ["RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM"] if ( tokenizer.model_max_length < 1_00_00 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("This is a test" * 5_00 , max_new_tokens=20 ) UpperCAmelCase : Tuple = text_generator("This is a test" * 5_00 , handle_long_generation="hole" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(lowercase ): text_generator( "This is a test" * 5_00 , handle_long_generation="hole" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' import torch # Classic `model_kwargs` UpperCAmelCase : List[Any] = pipeline( model="hf-internal-testing/tiny-random-bloom" , model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCAmelCase : Union[str, Any] = pipe("This is a test" ) self.assertEqual( lowercase , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) UpperCAmelCase : List[Any] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCAmelCase : Optional[int] = pipe("This is a test" ) self.assertEqual( lowercase , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 UpperCAmelCase : List[str] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) UpperCAmelCase : List[Any] = pipe("This is a test" ) self.assertEqual( lowercase , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) @require_torch @require_torch_gpu def __lowerCAmelCase ( self : str ): '''simple docstring''' import torch UpperCAmelCase : Tuple = pipeline(model="hf-internal-testing/tiny-random-bloom" , device=0 , torch_dtype=torch.floataa ) pipe("This is a test" ) @require_torch @require_accelerate @require_torch_gpu def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' import torch UpperCAmelCase : Any = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.floataa ) pipe("This is a test" , do_sample=lowercase , top_p=0.5 ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = "Hello world" UpperCAmelCase : Optional[int] = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) if text_generator.model.framework == "tf": UpperCAmelCase : Optional[int] = logging.get_logger("transformers.generation.tf_utils" ) else: UpperCAmelCase : List[str] = logging.get_logger("transformers.generation.utils" ) UpperCAmelCase : List[Any] = "Both `max_new_tokens`" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(lowercase ) as cl: UpperCAmelCase : str = text_generator(lowercase , max_length=10 , max_new_tokens=1 ) self.assertIn(lowercase , cl.out ) # The user only sets one -> no warning with CaptureLogger(lowercase ) as cl: UpperCAmelCase : List[str] = text_generator(lowercase , max_new_tokens=1 ) self.assertNotIn(lowercase , cl.out ) with CaptureLogger(lowercase ) as cl: UpperCAmelCase : int = text_generator(lowercase , max_length=10 ) self.assertNotIn(lowercase , cl.out )
595
0
from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = list(lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE : Tuple = list(lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(len(lowerCAmelCase__ ) ): if lista[i] != lista[i]: count += 1 _SCREAMING_SNAKE_CASE : Dict = '_' if count > 1: return False else: return "".join(lowerCAmelCase__ ) def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = [] while True: _SCREAMING_SNAKE_CASE : List[Any] = ['$'] * len(lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE : int = [] for i in range(len(lowerCAmelCase__ ) ): for j in range(i + 1, len(lowerCAmelCase__ ) ): _SCREAMING_SNAKE_CASE : Optional[Any] = compare_string(binary[i], binary[j] ) if k is False: _SCREAMING_SNAKE_CASE : Union[str, Any] = '*' _SCREAMING_SNAKE_CASE : Any = '*' temp.append("X" ) for i in range(len(lowerCAmelCase__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowerCAmelCase__ ) == 0: return pi _SCREAMING_SNAKE_CASE : List[str] = list(set(lowerCAmelCase__ ) ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = [] for minterm in minterms: _SCREAMING_SNAKE_CASE : Any = '' for _ in range(lowerCAmelCase__ ): _SCREAMING_SNAKE_CASE : List[str] = str(minterm % 2 ) + string minterm //= 2 temp.append(lowerCAmelCase__ ) return temp def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[Any] = list(lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE : Any = list(lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE : List[str] = 0 for i in range(len(lowerCAmelCase__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = [] _SCREAMING_SNAKE_CASE : str = [0] * len(lowerCAmelCase__ ) for i in range(len(chart[0] ) ): _SCREAMING_SNAKE_CASE : Optional[int] = 0 _SCREAMING_SNAKE_CASE : Optional[int] = -1 for j in range(len(lowerCAmelCase__ ) ): if chart[j][i] == 1: count += 1 _SCREAMING_SNAKE_CASE : Tuple = j if count == 1: _SCREAMING_SNAKE_CASE : Optional[int] = 1 for i in range(len(lowerCAmelCase__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowerCAmelCase__ ) ): _SCREAMING_SNAKE_CASE : List[str] = 0 temp.append(prime_implicants[i] ) while True: _SCREAMING_SNAKE_CASE : Optional[Any] = 0 _SCREAMING_SNAKE_CASE : List[str] = -1 _SCREAMING_SNAKE_CASE : Tuple = 0 for i in range(len(lowerCAmelCase__ ) ): _SCREAMING_SNAKE_CASE : Optional[int] = chart[i].count(1 ) if count_n > max_n: _SCREAMING_SNAKE_CASE : str = count_n _SCREAMING_SNAKE_CASE : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowerCAmelCase__ ) ): _SCREAMING_SNAKE_CASE : str = 0 def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = [[0 for x in range(len(lowerCAmelCase__ ) )] for x in range(len(lowerCAmelCase__ ) )] for i in range(len(lowerCAmelCase__ ) ): _SCREAMING_SNAKE_CASE : List[Any] = prime_implicants[i].count("_" ) for j in range(len(lowerCAmelCase__ ) ): if is_for_table(prime_implicants[i], binary[j], lowerCAmelCase__ ): _SCREAMING_SNAKE_CASE : Optional[int] = 1 return chart def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Any = int(input("Enter the no. of variables\n" ) ) _SCREAMING_SNAKE_CASE : str = [ float(lowerCAmelCase__ ) for x in input( "Enter the decimal representation of Minterms \'Spaces Separated\'\n" ).split() ] _SCREAMING_SNAKE_CASE : str = decimal_to_binary(lowerCAmelCase__, lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE : List[Any] = check(lowerCAmelCase__ ) print("Prime Implicants are:" ) print(lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE : Dict = prime_implicant_chart(lowerCAmelCase__, lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = selection(lowerCAmelCase__, lowerCAmelCase__ ) print("Essential Prime Implicants are:" ) print(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
709
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'align_text_model' def __init__( self , __lowerCamelCase=3_0_5_2_2 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-12 , __lowerCamelCase=0 , __lowerCamelCase="absolute" , __lowerCamelCase=True , **__lowerCamelCase , ) -> List[Any]: super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = vocab_size _SCREAMING_SNAKE_CASE : Optional[int] = hidden_size _SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers _SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads _SCREAMING_SNAKE_CASE : int = hidden_act _SCREAMING_SNAKE_CASE : Any = intermediate_size _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Dict = max_position_embeddings _SCREAMING_SNAKE_CASE : Optional[Any] = type_vocab_size _SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range _SCREAMING_SNAKE_CASE : Dict = layer_norm_eps _SCREAMING_SNAKE_CASE : str = position_embedding_type _SCREAMING_SNAKE_CASE : Dict = use_cache _SCREAMING_SNAKE_CASE : List[str] = pad_token_id @classmethod def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": _SCREAMING_SNAKE_CASE : Union[str, Any] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'align_vision_model' def __init__( self , __lowerCamelCase = 3 , __lowerCamelCase = 6_0_0 , __lowerCamelCase = 2.0 , __lowerCamelCase = 3.1 , __lowerCamelCase = 8 , __lowerCamelCase = [3, 3, 5, 3, 5, 5, 3] , __lowerCamelCase = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __lowerCamelCase = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __lowerCamelCase = [] , __lowerCamelCase = [1, 2, 2, 2, 1, 2, 1] , __lowerCamelCase = [1, 2, 2, 3, 3, 4, 1] , __lowerCamelCase = [1, 6, 6, 6, 6, 6, 6] , __lowerCamelCase = 0.25 , __lowerCamelCase = "swish" , __lowerCamelCase = 2_5_6_0 , __lowerCamelCase = "mean" , __lowerCamelCase = 0.02 , __lowerCamelCase = 0.001 , __lowerCamelCase = 0.99 , __lowerCamelCase = 0.2 , **__lowerCamelCase , ) -> Dict: super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = num_channels _SCREAMING_SNAKE_CASE : List[Any] = image_size _SCREAMING_SNAKE_CASE : Dict = width_coefficient _SCREAMING_SNAKE_CASE : str = depth_coefficient _SCREAMING_SNAKE_CASE : Union[str, Any] = depth_divisor _SCREAMING_SNAKE_CASE : List[Any] = kernel_sizes _SCREAMING_SNAKE_CASE : Tuple = in_channels _SCREAMING_SNAKE_CASE : Optional[int] = out_channels _SCREAMING_SNAKE_CASE : List[Any] = depthwise_padding _SCREAMING_SNAKE_CASE : str = strides _SCREAMING_SNAKE_CASE : List[str] = num_block_repeats _SCREAMING_SNAKE_CASE : Tuple = expand_ratios _SCREAMING_SNAKE_CASE : int = squeeze_expansion_ratio _SCREAMING_SNAKE_CASE : List[Any] = hidden_act _SCREAMING_SNAKE_CASE : Optional[int] = hidden_dim _SCREAMING_SNAKE_CASE : Dict = pooling_type _SCREAMING_SNAKE_CASE : List[Any] = initializer_range _SCREAMING_SNAKE_CASE : List[Any] = batch_norm_eps _SCREAMING_SNAKE_CASE : Union[str, Any] = batch_norm_momentum _SCREAMING_SNAKE_CASE : int = drop_connect_rate _SCREAMING_SNAKE_CASE : Tuple = sum(__lowerCamelCase ) * 4 @classmethod def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": _SCREAMING_SNAKE_CASE : int = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'align' __snake_case = True def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=6_4_0 , __lowerCamelCase=1.0 , __lowerCamelCase=0.02 , **__lowerCamelCase , ) -> List[Any]: super().__init__(**__lowerCamelCase ) if text_config is None: _SCREAMING_SNAKE_CASE : List[Any] = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: _SCREAMING_SNAKE_CASE : List[str] = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) _SCREAMING_SNAKE_CASE : Dict = AlignTextConfig(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = AlignVisionConfig(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = projection_dim _SCREAMING_SNAKE_CASE : List[str] = temperature_init_value _SCREAMING_SNAKE_CASE : Any = initializer_range @classmethod def UpperCamelCase_ ( cls , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) -> List[str]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE : Any = self.text_config.to_dict() _SCREAMING_SNAKE_CASE : Optional[int] = self.vision_config.to_dict() _SCREAMING_SNAKE_CASE : Dict = self.__class__.model_type return output
381
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] = 100_0000 ): lowercase = limit + 1 lowercase = [0] * limit for first_term in range(1 , UpperCamelCase__ ): for n in range(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): lowercase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowercase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f'''{solution() = }''')
588
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _SCREAMING_SNAKE_CASE : List[Any] = Lock() def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __magic_name__ : Dict = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __magic_name__ : int = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __magic_name__ : Optional[Any] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __magic_name__ : List[str] = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" __magic_name__ : int = [] __magic_name__ : Union[str, Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __magic_name__ : Union[str, Any] = Pipe() __magic_name__ : List[str] = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __magic_name__ : int = temp_rs __magic_name__ : List[str] = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): __magic_name__ : Optional[int] = Pipe() __magic_name__ : Optional[int] = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __magic_name__ : int = temp_rs __magic_name__ : Union[str, Any] = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): __magic_name__ : str = result_pipe[p][0].recv() process_array_[p].join() return arr def _UpperCamelCase ( ): """simple docstring""" __magic_name__ : int = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*UpperCamelCase__ ) __magic_name__ : Tuple = odd_even_transposition(UpperCamelCase__ ) print("Sorted List\n" ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
436
0
'''simple docstring''' from __future__ import annotations lowerCAmelCase : Tuple = 10 def A_( A : list[int]): UpperCamelCase = 1 UpperCamelCase = max(A) while placement <= max_digit: # declare and initialize empty buckets UpperCamelCase = [[] for _ in range(A)] # split list_of_ints between the buckets for i in list_of_ints: UpperCamelCase = int((i / placement) % RADIX) buckets[tmp].append(A) # put each buckets' contents into list_of_ints UpperCamelCase = 0 for b in range(A): for i in buckets[b]: UpperCamelCase = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
432
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCAmelCase : Any = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( snake_case_): def UpperCAmelCase_ ( self , A_ )-> Any: '''simple docstring''' if isinstance(A_ , A_ ): UpperCamelCase = [label.strip() for label in labels.split(',' ) if label.strip()] return labels def __call__( self , A_ , A_ , A_ )-> List[str]: '''simple docstring''' if len(A_ ) == 0 or len(A_ ) == 0: raise ValueError('You must include at least one label and at least one sequence.' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' 'Make sure the passed template includes formatting syntax such as {{}} where the label should go.' ).format(A_ ) ) if isinstance(A_ , A_ ): UpperCamelCase = [sequences] UpperCamelCase = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A_ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_=ZeroShotClassificationArgumentHandler() , *A_ , **A_ )-> Tuple: '''simple docstring''' UpperCamelCase = args_parser super().__init__(*A_ , **A_ ) if self.entailment_id == -1: logger.warning( 'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ' '-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.' ) @property def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('entail' ): return ind return -1 def UpperCAmelCase_ ( self , A_ , A_=True , A_=True , A_=TruncationStrategy.ONLY_FIRST , **A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( 'Tokenizer was not supporting padding necessary for zero-shot, attempting to use ' ' `pad_token=eos_token`' ) UpperCamelCase = self.tokenizer.eos_token try: UpperCamelCase = self.tokenizer( A_ , add_special_tokens=A_ , return_tensors=A_ , padding=A_ , truncation=A_ , ) except Exception as e: if "too short" in str(A_ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCamelCase = self.tokenizer( A_ , add_special_tokens=A_ , return_tensors=A_ , padding=A_ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def UpperCAmelCase_ ( self , **A_ )-> str: '''simple docstring''' if kwargs.get('multi_class' , A_ ) is not None: UpperCamelCase = kwargs['multi_class'] logger.warning( 'The `multi_class` argument has been deprecated and renamed to `multi_label`. ' '`multi_class` will be removed in a future version of Transformers.' ) UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = self._args_parser._parse_labels(kwargs['candidate_labels'] ) if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['hypothesis_template'] UpperCamelCase = {} if "multi_label" in kwargs: UpperCamelCase = kwargs['multi_label'] return preprocess_params, {}, postprocess_params def __call__( self , A_ , *A_ , **A_ , )-> int: '''simple docstring''' if len(A_ ) == 0: pass elif len(A_ ) == 1 and "candidate_labels" not in kwargs: UpperCamelCase = args[0] else: raise ValueError(F'''Unable to understand extra arguments {args}''' ) return super().__call__(A_ , **A_ ) def UpperCAmelCase_ ( self , A_ , A_=None , A_="This example is {}." )-> List[str]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self._args_parser(A_ , A_ , A_ ) for i, (candidate_label, sequence_pair) in enumerate(zip(A_ , A_ ) ): UpperCamelCase = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A_ ) - 1, **model_input, } def UpperCAmelCase_ ( self , A_ )-> int: '''simple docstring''' UpperCamelCase = inputs['candidate_label'] UpperCamelCase = inputs['sequence'] UpperCamelCase = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCamelCase = self.model(**A_ ) UpperCamelCase = { 'candidate_label': candidate_label, 'sequence': sequence, 'is_last': inputs['is_last'], **outputs, } return model_outputs def UpperCAmelCase_ ( self , A_ , A_=False )-> List[str]: '''simple docstring''' UpperCamelCase = [outputs['candidate_label'] for outputs in model_outputs] UpperCamelCase = [outputs['sequence'] for outputs in model_outputs] UpperCamelCase = np.concatenate([output['logits'].numpy() for output in model_outputs] ) UpperCamelCase = logits.shape[0] UpperCamelCase = len(A_ ) UpperCamelCase = N // n UpperCamelCase = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A_ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCamelCase = self.entailment_id UpperCamelCase = -1 if entailment_id == 0 else 0 UpperCamelCase = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCamelCase = np.exp(A_ ) / np.exp(A_ ).sum(-1 , keepdims=A_ ) UpperCamelCase = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCamelCase = reshaped_outputs[..., self.entailment_id] UpperCamelCase = np.exp(A_ ) / np.exp(A_ ).sum(-1 , keepdims=A_ ) UpperCamelCase = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
432
1
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a : Union[str, Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a : Optional[int] = { # fairseq: '''wmt19-ru-en''': {'''length_penalty''': 1.1}, '''wmt19-en-ru''': {'''length_penalty''': 1.15}, '''wmt19-en-de''': {'''length_penalty''': 1.0}, '''wmt19-de-en''': {'''length_penalty''': 1.1}, # allenai: '''wmt16-en-de-dist-12-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-dist-6-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-12-1''': {'''length_penalty''': 0.8}, '''wmt19-de-en-6-6-base''': {'''length_penalty''': 0.6}, '''wmt19-de-en-6-6-big''': {'''length_penalty''': 0.6}, } # this remaps the different models to their organization names a : Dict = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a : str = '''facebook''' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a : List[str] = '''allenai''' def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] ) ->str: '''simple docstring''' a : List[str] = dict((re.sub(R"@@$" , "" , SCREAMING_SNAKE_CASE_ ), v) if k.endswith("@@" ) else (re.sub(R"$" , "</w>" , SCREAMING_SNAKE_CASE_ ), v) for k, v in d.items() ) a : Union[str, Any] = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] a : List[str] = d[k] # restore return da def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : Optional[Any] ) ->int: '''simple docstring''' assert os.path.exists(SCREAMING_SNAKE_CASE_ ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models a : Tuple = basename(SCREAMING_SNAKE_CASE_ ) a : Any = dirname(SCREAMING_SNAKE_CASE_ ) a : List[Any] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel a : str = cls.hub_models() a : int = {"bpe": "fastbpe", "tokenizer": "moses"} a : List[str] = "." # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F"""using checkpoint {checkpoint_file}""" ) a : Optional[Any] = hub_utils.from_pretrained( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , archive_map=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) a : Any = vars(chkpt["args"]["model"] ) a : Optional[Any] = args["source_lang"] a : Optional[int] = args["target_lang"] a : Optional[int] = dirname(SCREAMING_SNAKE_CASE_ ) a : str = basename(SCREAMING_SNAKE_CASE_ ) # dicts a : Tuple = os.path.join(SCREAMING_SNAKE_CASE_ , F"""dict.{src_lang}.txt""" ) a : List[str] = os.path.join(SCREAMING_SNAKE_CASE_ , F"""dict.{tgt_lang}.txt""" ) a : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE_ ) a : Any = rewrite_dict_keys(src_dict.indices ) a : int = len(SCREAMING_SNAKE_CASE_ ) a : int = os.path.join(SCREAMING_SNAKE_CASE_ , "vocab-src.json" ) print(F"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ , indent=SCREAMING_SNAKE_CASE_ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab a : Any = True for k in src_vocab.keys(): if not k.islower(): a : int = False break a : Tuple = Dictionary.load(SCREAMING_SNAKE_CASE_ ) a : Any = rewrite_dict_keys(tgt_dict.indices ) a : str = len(SCREAMING_SNAKE_CASE_ ) a : Tuple = os.path.join(SCREAMING_SNAKE_CASE_ , "vocab-tgt.json" ) print(F"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ , indent=SCREAMING_SNAKE_CASE_ ) ) # merges_file (bpecodes) a : List[Any] = os.path.join(SCREAMING_SNAKE_CASE_ , VOCAB_FILES_NAMES["merges_file"] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" a : int = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if os.path.exists(SCREAMING_SNAKE_CASE_ ): break with open(SCREAMING_SNAKE_CASE_ , encoding="utf-8" ) as fin: a : Optional[int] = fin.read() a : Union[str, Any] = re.sub(R" \d+$" , "" , SCREAMING_SNAKE_CASE_ , 0 , re.M ) # remove frequency number print(F"""Generating {merges_file}""" ) with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as fout: fout.write(SCREAMING_SNAKE_CASE_ ) # model config a : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE_ , "config.json" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F"""need to extend tokenizer to support bpe={args['bpe']}""" assert args["tokenizer"] == "moses", F"""need to extend tokenizer to support bpe={args['tokenizer']}""" a : Optional[int] = { "architectures": ["FSMTForConditionalGeneration"], "model_type": "fsmt", "activation_dropout": args["activation_dropout"], "activation_function": "relu", "attention_dropout": args["attention_dropout"], "d_model": args["decoder_embed_dim"], "dropout": args["dropout"], "init_std": 0.02, "max_position_embeddings": args["max_source_positions"], "num_hidden_layers": args["encoder_layers"], "src_vocab_size": src_vocab_size, "tgt_vocab_size": tgt_vocab_size, "langs": [src_lang, tgt_lang], "encoder_attention_heads": args["encoder_attention_heads"], "encoder_ffn_dim": args["encoder_ffn_embed_dim"], "encoder_layerdrop": args["encoder_layerdrop"], "encoder_layers": args["encoder_layers"], "decoder_attention_heads": args["decoder_attention_heads"], "decoder_ffn_dim": args["decoder_ffn_embed_dim"], "decoder_layerdrop": args["decoder_layerdrop"], "decoder_layers": args["decoder_layers"], "bos_token_id": 0, "pad_token_id": 1, "eos_token_id": 2, "is_encoder_decoder": True, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_all_embeddings"], } # good hparam defaults to start with a : Union[str, Any] = 5 a : Dict = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: a : List[Any] = best_score_hparams[model_dir]["length_penalty"] else: a : Optional[int] = 1.0 print(F"""Generating {fsmt_model_config_file}""" ) with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ , indent=SCREAMING_SNAKE_CASE_ ) ) # tokenizer config a : Tuple = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) a : int = { "langs": [src_lang, tgt_lang], "model_max_length": 1024, "do_lower_case": do_lower_case, } print(F"""Generating {fsmt_tokenizer_config_file}""" ) with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ , indent=SCREAMING_SNAKE_CASE_ ) ) # model a : Any = chkpt["models"][0] a : List[Any] = model.state_dict() # rename keys to start with 'model.' a : Union[str, Any] = OrderedDict(("model." + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys a : int = [ "model.model", "model.encoder.version", "model.decoder.version", "model.encoder_embed_tokens.weight", "model.decoder_embed_tokens.weight", "model.encoder.embed_positions._float_tensor", "model.decoder.embed_positions._float_tensor", ] for k in ignore_keys: model_state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) a : Any = FSMTConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) a : str = FSMTForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) # check that it loads ok model_new.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) # save a : List[Any] = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print("Conversion is done!" ) print("\nLast step is to upload the files to s3" ) print(F"""cd {data_root}""" ) print(F"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fsmt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a : List[Any] = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
633
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _snake_case = logging.get_logger(__name__) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: lowerCamelCase : Any = os.path.abspath(SCREAMING_SNAKE_CASE_ ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) lowerCamelCase : Optional[int] = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) lowerCamelCase : List[str] = convert_pytorch_state_dict_to_flax(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowerCamelCase : Dict = convert_pytorch_sharded_state_dict_to_flax(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return flax_state_dict def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' def is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ) -> bool: return len(set(SCREAMING_SNAKE_CASE_ ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowerCamelCase : Optional[Any] = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowerCamelCase : Tuple = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowerCamelCase : Any = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): return renamed_pt_tuple_key, pt_tensor # embedding lowerCamelCase : List[str] = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase : int = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : int = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase : str = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Any = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase : Optional[int] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase : str = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowerCamelCase : Optional[int] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowerCamelCase : Optional[Any] = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowerCamelCase : List[Any] = pt_tuple_key[-2] + "_v" if name is not None: lowerCamelCase : str = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Union[str, Any] = {k: v.numpy() for k, v in pt_state_dict.items()} lowerCamelCase : Optional[int] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowerCamelCase : Union[str, Any] = flax_model.params["params"] else: lowerCamelCase : int = flax_model.params lowerCamelCase : List[str] = flatten_dict(SCREAMING_SNAKE_CASE_ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowerCamelCase : Any = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Optional[Any] = {} lowerCamelCase : Optional[int] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) lowerCamelCase : Optional[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase : List[Any] = tuple(pt_key.split("." ) ) # remove base model prefix if necessary lowerCamelCase : List[str] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowerCamelCase : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters lowerCamelCase , lowerCamelCase : List[str] = rename_key_and_reshape_tensor( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # add model prefix if necessary lowerCamelCase : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowerCamelCase : Union[str, Any] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowerCamelCase : Tuple = jnp.asarray(SCREAMING_SNAKE_CASE_ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue # also add unexpected weight so that warning is thrown lowerCamelCase : List[Any] = jnp.asarray(SCREAMING_SNAKE_CASE_ ) else: # also add unexpected weight so that warning is thrown lowerCamelCase : List[Any] = jnp.asarray(SCREAMING_SNAKE_CASE_ ) return unflatten_dict(SCREAMING_SNAKE_CASE_ ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' import torch # Load the index lowerCamelCase : str = {} for shard_file in shard_filenames: # load using msgpack utils lowerCamelCase : str = torch.load(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Tuple = {k: v.numpy() for k, v in pt_state_dict.items()} lowerCamelCase : str = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowerCamelCase : Optional[int] = flax_model.params["params"] lowerCamelCase : Any = flatten_dict(SCREAMING_SNAKE_CASE_ ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: lowerCamelCase : Optional[Any] = flax_model.params lowerCamelCase : Tuple = flatten_dict(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Any = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) lowerCamelCase : Union[str, Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase : List[Any] = tuple(pt_key.split("." ) ) # remove base model prefix if necessary lowerCamelCase : Optional[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowerCamelCase : int = pt_tuple_key[1:] # Correctly rename weight parameters lowerCamelCase , lowerCamelCase : str = rename_key_and_reshape_tensor( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # add model prefix if necessary lowerCamelCase : Optional[int] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowerCamelCase : List[str] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowerCamelCase : str = jnp.asarray(SCREAMING_SNAKE_CASE_ ) continue if "var" in flax_key[-1]: lowerCamelCase : Dict = jnp.asarray(SCREAMING_SNAKE_CASE_ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue # also add unexpected weight so that warning is thrown lowerCamelCase : Optional[Any] = jnp.asarray(SCREAMING_SNAKE_CASE_ ) else: # also add unexpected weight so that warning is thrown lowerCamelCase : Optional[int] = jnp.asarray(SCREAMING_SNAKE_CASE_ ) return unflatten_dict(SCREAMING_SNAKE_CASE_ ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : List[str] = os.path.abspath(SCREAMING_SNAKE_CASE_ ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class lowerCamelCase : str = getattr(SCREAMING_SNAKE_CASE_ , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(SCREAMING_SNAKE_CASE_ , "rb" ) as state_f: try: lowerCamelCase : Any = from_bytes(SCREAMING_SNAKE_CASE_ , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights lowerCamelCase : Union[str, Any] = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE_ : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE_ ) ).values() if any(SCREAMING_SNAKE_CASE_ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) lowerCamelCase : List[str] = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE_ ) lowerCamelCase : int = flatten_dict(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict = pt_model.state_dict() lowerCamelCase : Optional[Any] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) lowerCamelCase : Any = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowerCamelCase : Optional[int] = [] lowerCamelCase : Tuple = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCamelCase : Optional[int] = flax_key_tuple[0] == pt_model.base_model_prefix lowerCamelCase : Tuple = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowerCamelCase : Dict = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowerCamelCase : List[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(SCREAMING_SNAKE_CASE_ ) not in pt_model_dict: # conv layer lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) lowerCamelCase : Tuple = jnp.transpose(SCREAMING_SNAKE_CASE_ , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(SCREAMING_SNAKE_CASE_ ) not in pt_model_dict: # linear layer lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) lowerCamelCase : Union[str, Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowerCamelCase : str = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: lowerCamelCase : List[str] = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowerCamelCase : Any = ".".join(SCREAMING_SNAKE_CASE_ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowerCamelCase : Tuple = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowerCamelCase : Any = key.split("." ) lowerCamelCase : str = None if key_components[-3::2] == ["parametrizations", "original0"]: lowerCamelCase : Any = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: lowerCamelCase : Tuple = key_components[-2] + "_v" if name is not None: lowerCamelCase : Any = key_components[:-3] + [name] lowerCamelCase : Any = ".".join(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Optional[int] = key if flax_key in special_pt_names: lowerCamelCase : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowerCamelCase : Optional[Any] = np.asarray(SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) else flax_tensor lowerCamelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE_ ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # re-transform missing_keys to list lowerCamelCase : List[Any] = list(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(SCREAMING_SNAKE_CASE_ ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" " use it for predictions and inference." ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" "If your task is similar to the task the model of the checkpoint was trained on, " f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
340
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): @property def _UpperCamelCase ( self ) -> int: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase :int =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _UpperCamelCase ( self ) -> Any: """simple docstring""" _UpperCamelCase :List[Any] =self.dummy_uncond_unet _UpperCamelCase :List[Any] =ScoreSdeVeScheduler() _UpperCamelCase :int =ScoreSdeVePipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) sde_ve.to(lowerCAmelCase__ ) sde_ve.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase :Union[str, Any] =torch.manual_seed(0 ) _UpperCamelCase :Dict =sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=lowerCAmelCase__ ).images _UpperCamelCase :Optional[int] =torch.manual_seed(0 ) _UpperCamelCase :List[Any] =sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )[ 0 ] _UpperCamelCase :str =image[0, -3:, -3:, -1] _UpperCamelCase :Optional[Any] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase :List[str] =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCamelCase__ ( unittest.TestCase ): def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase :List[Any] ="""google/ncsnpp-church-256""" _UpperCamelCase :Tuple =UNetaDModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase :int =ScoreSdeVeScheduler.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase :List[Any] =ScoreSdeVePipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) sde_ve.to(lowerCAmelCase__ ) sde_ve.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase :Tuple =torch.manual_seed(0 ) _UpperCamelCase :Optional[int] =sde_ve(num_inference_steps=10 , output_type="""numpy""" , generator=lowerCAmelCase__ ).images _UpperCamelCase :Any =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _UpperCamelCase :List[str] =np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
701
'''simple docstring''' _lowerCamelCase : Union[str, Any] = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
512
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : torch.FloatTensor _UpperCAmelCase : torch.FloatTensor class A_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Dict = 1 @register_to_config def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : int = 2_0_0_0 ,SCREAMING_SNAKE_CASE__ : float = 0.15 ,SCREAMING_SNAKE_CASE__ : float = 0.01 ,SCREAMING_SNAKE_CASE__ : float = 1348.0 ,SCREAMING_SNAKE_CASE__ : float = 1E-5 ,SCREAMING_SNAKE_CASE__ : int = 1 ,): # standard deviation of the initial noise distribution __lowerCamelCase : int = sigma_max # setable values __lowerCamelCase : List[str] = None self.set_sigmas(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : torch.FloatTensor ,SCREAMING_SNAKE_CASE__ : Optional[int] = None): return sample def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : Union[str, torch.device] = None): __lowerCamelCase : Dict = sampling_eps if sampling_eps is not None else self.config.sampling_eps __lowerCamelCase : Optional[int] = torch.linspace(1 ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,device=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : float = None): __lowerCamelCase : Optional[int] = sigma_min if sigma_min is not None else self.config.sigma_min __lowerCamelCase : Optional[int] = sigma_max if sigma_max is not None else self.config.sigma_max __lowerCamelCase : Any = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __lowerCamelCase : Optional[Any] = torch.exp(torch.linspace(math.log(SCREAMING_SNAKE_CASE__) ,math.log(SCREAMING_SNAKE_CASE__) ,SCREAMING_SNAKE_CASE__)) __lowerCamelCase : str = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : List[str]): return torch.where( timesteps == 0 ,torch.zeros_like(t.to(timesteps.device)) ,self.discrete_sigmas[timesteps - 1].to(timesteps.device) ,) def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : torch.FloatTensor ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : torch.FloatTensor ,SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None ,SCREAMING_SNAKE_CASE__ : bool = True ,): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler') __lowerCamelCase : List[str] = timestep * torch.ones( sample.shape[0] ,device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) __lowerCamelCase : str = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __lowerCamelCase : Dict = timesteps.to(self.discrete_sigmas.device) __lowerCamelCase : Optional[Any] = self.discrete_sigmas[timesteps].to(sample.device) __lowerCamelCase : Optional[Any] = self.get_adjacent_sigma(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__).to(sample.device) __lowerCamelCase : int = torch.zeros_like(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __lowerCamelCase : int = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): __lowerCamelCase : List[Any] = diffusion.unsqueeze(-1) __lowerCamelCase : Any = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __lowerCamelCase : int = randn_tensor( sample.shape ,layout=sample.layout ,generator=SCREAMING_SNAKE_CASE__ ,device=sample.device ,dtype=sample.dtype) __lowerCamelCase : Optional[int] = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __lowerCamelCase : Union[str, Any] = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=SCREAMING_SNAKE_CASE__ ,prev_sample_mean=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : torch.FloatTensor ,SCREAMING_SNAKE_CASE__ : torch.FloatTensor ,SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None ,SCREAMING_SNAKE_CASE__ : bool = True ,): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler') # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __lowerCamelCase : Optional[int] = randn_tensor(sample.shape ,layout=sample.layout ,generator=SCREAMING_SNAKE_CASE__).to(sample.device) # compute step size from the model_output, the noise, and the snr __lowerCamelCase : str = torch.norm(model_output.reshape(model_output.shape[0] ,-1) ,dim=-1).mean() __lowerCamelCase : Tuple = torch.norm(noise.reshape(noise.shape[0] ,-1) ,dim=-1).mean() __lowerCamelCase : Tuple = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __lowerCamelCase : Optional[int] = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __lowerCamelCase : Union[str, Any] = step_size.flatten() while len(step_size.shape) < len(sample.shape): __lowerCamelCase : List[str] = step_size.unsqueeze(-1) __lowerCamelCase : str = sample + step_size * model_output __lowerCamelCase : Any = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : torch.FloatTensor ,SCREAMING_SNAKE_CASE__ : torch.FloatTensor ,SCREAMING_SNAKE_CASE__ : torch.FloatTensor ,): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowerCamelCase : int = timesteps.to(original_samples.device) __lowerCamelCase : Any = self.discrete_sigmas.to(original_samples.device)[timesteps] __lowerCamelCase : Optional[Any] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(SCREAMING_SNAKE_CASE__) * sigmas[:, None, None, None] ) __lowerCamelCase : str = noise + original_samples return noisy_samples def __len__( self : Optional[int]): return self.config.num_train_timesteps
652
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Union[List[PIL.Image.Image], np.ndarray] _UpperCAmelCase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
652
1
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def UpperCamelCase () -> Any: A__ : List[str] = argparse.ArgumentParser() parser.add_argument( """-m""" , """--pretrained_model_name_or_path""" , type=lowercase_ , default=lowercase_ , required=lowercase_ , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , ) parser.add_argument( """-c""" , """--caption""" , type=lowercase_ , default="""robotic cat with wings""" , help="""Text used to generate images.""" , ) parser.add_argument( """-n""" , """--images_num""" , type=lowercase_ , default=4 , help="""How much images to generate.""" , ) parser.add_argument( """-s""" , """--seed""" , type=lowercase_ , default=42 , help="""Seed for random process.""" , ) parser.add_argument( """-ci""" , """--cuda_id""" , type=lowercase_ , default=0 , help="""cuda_id.""" , ) A__ : Optional[int] = parser.parse_args() return args def UpperCamelCase (lowercase_: Union[str, Any] , lowercase_: int , lowercase_: Union[str, Any] ) -> Tuple: if not len(lowercase_ ) == rows * cols: raise ValueError("""The specified number of rows and columns are not correct.""" ) A__ , A__ : Union[str, Any] = imgs[0].size A__ : Optional[int] = Image.new("""RGB""" , size=(cols * w, rows * h) ) A__ , A__ : Tuple = grid.size for i, img in enumerate(lowercase_ ): grid.paste(lowercase_ , box=(i % cols * w, i // cols * h) ) return grid def UpperCamelCase (lowercase_: str , lowercase_: Optional[Any]="robotic cat with wings" , lowercase_: Tuple=7.5 , lowercase_: Dict=50 , lowercase_: Optional[Any]=1 , lowercase_: Dict=42 , ) -> int: A__ : List[str] = torch.Generator(pipeline.device ).manual_seed(lowercase_ ) A__ : int = pipeline( lowercase_ , guidance_scale=lowercase_ , num_inference_steps=lowercase_ , generator=lowercase_ , num_images_per_prompt=lowercase_ , ).images A__ : Dict = int(math.sqrt(lowercase_ ) ) A__ : Optional[int] = image_grid(lowercase_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images A_ : List[str] = parse_args() # Load models and create wrapper for stable diffusion A_ : List[str] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') A_ : List[str] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') A_ : Dict = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') A_ : int = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') A_ : Dict = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) A_ : str = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): A_ : int = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: A_ : Union[str, Any] = unet.to(torch.device('cuda', args.cuda_id)) A_ : int = pipeline.to(unet.device) A_ , A_ : List[str] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) A_ : Optional[Any] = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
64
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin A_ : Dict = random.Random() if is_torch_available(): import torch def UpperCamelCase (lowercase_: Tuple , lowercase_: Tuple=1.0 , lowercase_: Dict=None , lowercase_: int=None ) -> str: if rng is None: A__ : Optional[Any] = global_rng A__ : List[str] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _a (unittest.TestCase ): '''simple docstring''' def __init__( self , A__ , A__=7 , A__=400 , A__=2000 , A__=1 , A__=0.0 , A__=1_6000 , A__=True , A__=True , ): A__ : Any = parent A__ : Optional[int] = batch_size A__ : Union[str, Any] = min_seq_length A__ : Dict = max_seq_length A__ : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ : str = feature_size A__ : Optional[int] = padding_value A__ : List[str] = sampling_rate A__ : List[str] = return_attention_mask A__ : int = do_normalize def __A ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __A ( self , A__=False , A__=False ): def _flatten(A__ ): return list(itertools.chain(*A__ ) ) if equal_length: A__ : Dict = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size A__ : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A__ : Optional[int] = [np.asarray(A__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _a (__magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: int = ASTFeatureExtractor def __A ( self ): A__ : Optional[Any] = ASTFeatureExtractionTester(self ) def __A ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus A__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A__ : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ : Optional[Any] = [np.asarray(A__ ) for speech_input in speech_inputs] # Test not batched input A__ : Tuple = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values A__ : Tuple = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(A__ , A__ , atol=1e-3 ) ) # Test batched A__ : Tuple = feat_extract(A__ , padding=A__ , return_tensors="""np""" ).input_values A__ : Tuple = feat_extract(A__ , padding=A__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(A__ , A__ ): self.assertTrue(np.allclose(A__ , A__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. A__ : int = [floats_list((1, x) )[0] for x in (800, 800, 800)] A__ : List[str] = np.asarray(A__ ) A__ : Union[str, Any] = feat_extract(A__ , return_tensors="""np""" ).input_values A__ : Optional[Any] = feat_extract(A__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(A__ , A__ ): self.assertTrue(np.allclose(A__ , A__ , atol=1e-3 ) ) @require_torch def __A ( self ): import torch A__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ : Tuple = np.random.rand(100 ).astype(np.floataa ) A__ : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A__ : List[str] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) A__ : Any = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __A ( self , A__ ): from datasets import load_dataset A__ : str = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech A__ : str = ds.sort("""id""" ).select(range(A__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] @require_torch def __A ( self ): # fmt: off A__ : Optional[Any] = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on A__ : Any = self._load_datasamples(1 ) A__ : Tuple = ASTFeatureExtractor() A__ : Dict = feature_extractor(A__ , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , A__ , atol=1e-4 ) )
64
1