code
stringlengths 82
53.2k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
TextToVideoSDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class a ( __lowerCAmelCase , unittest.TestCase ):
_snake_case : List[str] = TextToVideoSDPipeline
_snake_case : List[str] = TEXT_TO_IMAGE_PARAMS
_snake_case : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS
# No `output_type`.
_snake_case : int = frozenset(
[
'num_inference_steps',
'generator',
'latents',
'return_dict',
'callback',
'callback_steps',
] )
def lowerCAmelCase_ ( self : int ):
torch.manual_seed(0 )
_UpperCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , )
_UpperCAmelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_SCREAMING_SNAKE_CASE , set_alpha_to_one=_SCREAMING_SNAKE_CASE , )
torch.manual_seed(0 )
_UpperCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
_UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , )
_UpperCAmelCase = CLIPTextModel(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_UpperCAmelCase = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict=0 ):
if str(_SCREAMING_SNAKE_CASE ).startswith("""mps""" ):
_UpperCAmelCase = torch.manual_seed(_SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """pt""",
}
return inputs
def lowerCAmelCase_ ( self : Dict ):
_UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase = self.get_dummy_components()
_UpperCAmelCase = TextToVideoSDPipeline(**_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = sd_pipe.to(_SCREAMING_SNAKE_CASE )
sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = """np"""
_UpperCAmelCase = sd_pipe(**_SCREAMING_SNAKE_CASE ).frames
_UpperCAmelCase = frames[0][-3:, -3:, -1]
assert frames[0].shape == (64, 64, 3)
_UpperCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowerCAmelCase_ ( self : List[Any] ):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=3e-3 )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def lowerCAmelCase_ ( self : Dict ):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-2 )
@unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" )
def lowerCAmelCase_ ( self : Dict ):
pass
@unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" )
def lowerCAmelCase_ ( self : int ):
pass
@unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" )
def lowerCAmelCase_ ( self : int ):
pass
def lowerCAmelCase_ ( self : Optional[Any] ):
return super().test_progress_bar()
@slow
@skip_mps
class a ( unittest.TestCase ):
def lowerCAmelCase_ ( self : List[str] ):
_UpperCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" )
_UpperCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" )
_UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
_UpperCAmelCase = pipe.to("""cuda""" )
_UpperCAmelCase = """Spiderman is surfing"""
_UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 )
_UpperCAmelCase = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type="""pt""" ).frames
_UpperCAmelCase = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
def lowerCAmelCase_ ( self : List[str] ):
_UpperCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" )
_UpperCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" )
_UpperCAmelCase = pipe.to("""cuda""" )
_UpperCAmelCase = """Spiderman is surfing"""
_UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 )
_UpperCAmelCase = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="""pt""" ).frames
_UpperCAmelCase = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
| 277 |
'''simple docstring'''
from pathlib import Path
from typing import List
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import get_tests_dir, is_tool_test
from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
UpperCamelCase_ : int = ['''text''', '''image''', '''audio''']
def __a ( _UpperCamelCase: List[str] ) -> Dict:
"""simple docstring"""
_snake_case = []
for input_type in input_types:
if input_type == "text":
inputs.append("Text input" )
elif input_type == "image":
inputs.append(
Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) )
elif input_type == "audio":
inputs.append(torch.ones(3_000 ) )
elif isinstance(_UpperCamelCase , _UpperCamelCase ):
inputs.append(create_inputs(_UpperCamelCase ) )
else:
raise ValueError(F"""Invalid type requested: {input_type}""" )
return inputs
def __a ( _UpperCamelCase: List ) -> Dict:
"""simple docstring"""
_snake_case = []
for output in outputs:
if isinstance(_UpperCamelCase , (str, AgentText) ):
output_types.append("text" )
elif isinstance(_UpperCamelCase , (Image.Image, AgentImage) ):
output_types.append("image" )
elif isinstance(_UpperCamelCase , (torch.Tensor, AgentAudio) ):
output_types.append("audio" )
else:
raise ValueError(F"""Invalid output: {output}""" )
return output_types
@is_tool_test
class _a :
def _lowercase ( self ) -> Any:
self.assertTrue(hasattr(self.tool ,"inputs" ) )
self.assertTrue(hasattr(self.tool ,"outputs" ) )
_snake_case = self.tool.inputs
for _input in inputs:
if isinstance(_input ,_SCREAMING_SNAKE_CASE ):
for __input in _input:
self.assertTrue(__input in authorized_types )
else:
self.assertTrue(_input in authorized_types )
_snake_case = self.tool.outputs
for _output in outputs:
self.assertTrue(_output in authorized_types )
def _lowercase ( self ) -> Any:
_snake_case = create_inputs(self.tool.inputs )
_snake_case = self.tool(*_SCREAMING_SNAKE_CASE )
# There is a single output
if len(self.tool.outputs ) == 1:
_snake_case = [outputs]
self.assertListEqual(output_types(_SCREAMING_SNAKE_CASE ) ,self.tool.outputs )
def _lowercase ( self ) -> str:
self.assertTrue(hasattr(self.tool ,"description" ) )
self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) )
self.assertTrue(self.tool.description.startswith("This is a tool that" ) )
def _lowercase ( self ) -> Tuple:
_snake_case = create_inputs(self.tool.inputs )
_snake_case = self.tool(*_SCREAMING_SNAKE_CASE )
if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ):
_snake_case = [outputs]
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,len(self.tool.outputs ) )
for output, output_type in zip(_SCREAMING_SNAKE_CASE ,self.tool.outputs ):
_snake_case = AGENT_TYPE_MAPPING[output_type]
self.assertTrue(isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) )
def _lowercase ( self ) -> Optional[Any]:
_snake_case = create_inputs(self.tool.inputs )
_snake_case = []
for _input, input_type in zip(_SCREAMING_SNAKE_CASE ,self.tool.inputs ):
if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ):
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] )
else:
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) )
# Should not raise an error
_snake_case = self.tool(*_SCREAMING_SNAKE_CASE )
if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ):
_snake_case = [outputs]
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,len(self.tool.outputs ) )
| 185 | 0 |
from __future__ import annotations
import requests
def __lowercase ( __lowerCAmelCase : str ):
a__ = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty'
return requests.get(__lowerCAmelCase ).json()
def __lowercase ( __lowerCAmelCase : int = 1_0 ):
a__ = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty'
a__ = requests.get(__lowerCAmelCase ).json()[:max_stories]
return [get_hackernews_story(__lowerCAmelCase ) for story_id in story_ids]
def __lowercase ( __lowerCAmelCase : int = 1_0 ):
a__ = hackernews_top_stories(__lowerCAmelCase )
return "\n".join('* [{title}]({url})'.format(**__lowerCAmelCase ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 657 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
snake_case : Any = {
'''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case : Union[str, Any] = ['''MobileViTFeatureExtractor''']
snake_case : int = ['''MobileViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case : Dict = [
'''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MobileViTForImageClassification''',
'''MobileViTForSemanticSegmentation''',
'''MobileViTModel''',
'''MobileViTPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case : Tuple = [
'''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFMobileViTForImageClassification''',
'''TFMobileViTForSemanticSegmentation''',
'''TFMobileViTModel''',
'''TFMobileViTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
snake_case : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 657 | 1 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class UpperCamelCase :
lowercase = 42
lowercase = 42
class UpperCamelCase :
def __init__( self ,__UpperCamelCase ) -> Dict:
'''simple docstring'''
lowercase_ : list[list[Edge]] = [[] for _ in range(__UpperCamelCase )]
lowercase_ : Optional[Any] = size
def __getitem__( self ,__UpperCamelCase ) -> Iterator[Edge]:
'''simple docstring'''
return iter(self._graph[vertex] )
@property
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return self._size
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
if weight not in (0, 1):
raise ValueError('Edge weight must be either 0 or 1.' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('Vertex indexes must be in [0; size).' )
self._graph[from_vertex].append(Edge(__UpperCamelCase ,__UpperCamelCase ) )
def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> int | None:
'''simple docstring'''
lowercase_ : Union[str, Any] = deque([start_vertex] )
lowercase_ : list[int | None] = [None] * self.size
lowercase_ : Union[str, Any] = 0
while queue:
lowercase_ : int = queue.popleft()
lowercase_ : Optional[Any] = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
lowercase_ : List[Any] = current_distance + edge.weight
lowercase_ : int = distances[edge.destination_vertex]
if (
isinstance(__UpperCamelCase ,__UpperCamelCase )
and new_distance >= dest_vertex_distance
):
continue
lowercase_ : Any = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('No path from start_vertex to finish_vertex.' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 425 | """simple docstring"""
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str ):
# Initialise PyTorch model
lowercase_ : Any = FunnelConfig.from_json_file(__SCREAMING_SNAKE_CASE )
print(F'''Building PyTorch model from configuration: {config}''' )
lowercase_ : int = FunnelBaseModel(__SCREAMING_SNAKE_CASE ) if base_model else FunnelModel(__SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
load_tf_weights_in_funnel(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not."
)
__SCREAMING_SNAKE_CASE =parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
)
| 425 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class snake_case ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=False , ) -> Optional[Any]:
"""simple docstring"""
snake_case__ : Optional[Any] = size if size is not None else {'''height''': 20, '''width''': 20}
snake_case__ : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
snake_case__ : str = parent
snake_case__ : Optional[Any] = batch_size
snake_case__ : str = num_channels
snake_case__ : Union[str, Any] = image_size
snake_case__ : Tuple = min_resolution
snake_case__ : str = max_resolution
snake_case__ : Optional[Any] = do_resize
snake_case__ : List[str] = size
snake_case__ : Optional[Any] = do_center_crop
snake_case__ : Tuple = crop_size
snake_case__ : Any = do_normalize
snake_case__ : int = image_mean
snake_case__ : Union[str, Any] = image_std
snake_case__ : List[Any] = do_reduce_labels
def lowercase__ ( self ) -> Tuple:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def _A ( ):
snake_case__ : Any = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
snake_case__ : List[Any] = Image.open(dataset[0]['''file'''] )
snake_case__ : Optional[int] = Image.open(dataset[1]['''file'''] )
return image, map
def _A ( ):
snake_case__ : List[Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
snake_case__ : Union[str, Any] = Image.open(ds[0]['''file'''] )
snake_case__ : Union[str, Any] = Image.open(ds[1]['''file'''] )
snake_case__ : Dict = Image.open(ds[2]['''file'''] )
snake_case__ : Optional[int] = Image.open(ds[3]['''file'''] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class snake_case ( __lowerCamelCase , unittest.TestCase ):
"""simple docstring"""
_lowerCAmelCase = BeitImageProcessor if is_vision_available() else None
def lowercase__ ( self ) -> Optional[Any]:
"""simple docstring"""
snake_case__ : Optional[int] = BeitImageProcessingTester(self )
@property
def lowercase__ ( self ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self ) -> Any:
"""simple docstring"""
snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCamelCase , '''size''' ) )
self.assertTrue(hasattr(lowerCamelCase , '''do_center_crop''' ) )
self.assertTrue(hasattr(lowerCamelCase , '''center_crop''' ) )
self.assertTrue(hasattr(lowerCamelCase , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCamelCase , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCamelCase , '''image_std''' ) )
def lowercase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
snake_case__ : int = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
self.assertEqual(image_processor.do_reduce_labels , lowerCamelCase )
snake_case__ : Any = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowerCamelCase )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
self.assertEqual(image_processor.do_reduce_labels , lowerCamelCase )
def lowercase__ ( self ) -> List[str]:
"""simple docstring"""
pass
def lowercase__ ( self ) -> Tuple:
"""simple docstring"""
snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase , Image.Image )
# Test not batched input
snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
snake_case__ : List[str] = image_processing(lowerCamelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def lowercase__ ( self ) -> Optional[Any]:
"""simple docstring"""
snake_case__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase , np.ndarray )
# Test not batched input
snake_case__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
snake_case__ : Dict = image_processing(lowerCamelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def lowercase__ ( self ) -> int:
"""simple docstring"""
snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase , torch.Tensor )
# Test not batched input
snake_case__ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
snake_case__ : Optional[int] = image_processing(lowerCamelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def lowercase__ ( self ) -> List[str]:
"""simple docstring"""
snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase )
snake_case__ : List[str] = []
for image in image_inputs:
self.assertIsInstance(lowerCamelCase , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
snake_case__ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
1,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 255 )
# Test batched
snake_case__ : Tuple = image_processing(lowerCamelCase , lowerCamelCase , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 255 )
# Test not batched input (PIL images)
snake_case__ ,snake_case__ : List[Any] = prepare_semantic_single_inputs()
snake_case__ : Any = image_processing(lowerCamelCase , lowerCamelCase , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
1,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 255 )
# Test batched input (PIL images)
snake_case__ ,snake_case__ : Union[str, Any] = prepare_semantic_batch_inputs()
snake_case__ : Dict = image_processing(lowerCamelCase , lowerCamelCase , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
2,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 255 )
def lowercase__ ( self ) -> Optional[int]:
"""simple docstring"""
snake_case__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
snake_case__ ,snake_case__ : Optional[int] = prepare_semantic_single_inputs()
snake_case__ : Optional[int] = image_processing(lowerCamelCase , lowerCamelCase , return_tensors='''pt''' )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 150 )
snake_case__ : List[str] = True
snake_case__ : Tuple = image_processing(lowerCamelCase , lowerCamelCase , return_tensors='''pt''' )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 255 )
| 694 |
'''simple docstring'''
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class snake_case ( __lowerCamelCase ):
"""simple docstring"""
def __init__( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=0 ) -> Tuple:
"""simple docstring"""
snake_case__ : Optional[Any] = 1.0 if scale is None else scale
snake_case__ : Dict = 0.0 if loc is None else loc
super().__init__(lowerCamelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase )] )
@property
def lowercase__ ( self ) -> Dict:
"""simple docstring"""
return self.base_dist.mean * self.scale + self.loc
@property
def lowercase__ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.base_dist.variance * self.scale**2
@property
def lowercase__ ( self ) -> List[str]:
"""simple docstring"""
return self.variance.sqrt()
class snake_case ( nn.Module ):
"""simple docstring"""
def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> None:
"""simple docstring"""
super().__init__(**lowerCamelCase )
snake_case__ : Tuple = args_dim
snake_case__ : str = nn.ModuleList([nn.Linear(lowerCamelCase , lowerCamelCase ) for dim in args_dim.values()] )
snake_case__ : Optional[int] = domain_map
def lowercase__ ( self , lowerCamelCase ) -> Tuple[torch.Tensor]:
"""simple docstring"""
snake_case__ : Any = [proj(lowerCamelCase ) for proj in self.proj]
return self.domain_map(*lowerCamelCase )
class snake_case ( nn.Module ):
"""simple docstring"""
def __init__( self , lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
snake_case__ : Tuple = function
def lowercase__ ( self , lowerCamelCase , *lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
return self.function(lowerCamelCase , *lowerCamelCase )
class snake_case :
"""simple docstring"""
_lowerCAmelCase = 42
_lowerCAmelCase = 42
_lowerCAmelCase = 42
def __init__( self , lowerCamelCase = 1 ) -> None:
"""simple docstring"""
snake_case__ : Optional[Any] = dim
snake_case__ : Tuple = {k: dim * self.args_dim[k] for k in self.args_dim}
def lowercase__ ( self , lowerCamelCase ) -> int:
"""simple docstring"""
if self.dim == 1:
return self.distribution_class(*lowerCamelCase )
else:
return Independent(self.distribution_class(*lowerCamelCase ) , 1 )
def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , ) -> Distribution:
"""simple docstring"""
snake_case__ : List[Any] = self._base_distribution(lowerCamelCase )
if loc is None and scale is None:
return distr
else:
return AffineTransformed(lowerCamelCase , loc=lowerCamelCase , scale=lowerCamelCase , event_dim=self.event_dim )
@property
def lowercase__ ( self ) -> Tuple:
"""simple docstring"""
return () if self.dim == 1 else (self.dim,)
@property
def lowercase__ ( self ) -> int:
"""simple docstring"""
return len(self.event_shape )
@property
def lowercase__ ( self ) -> float:
"""simple docstring"""
return 0.0
def lowercase__ ( self , lowerCamelCase ) -> nn.Module:
"""simple docstring"""
return ParameterProjection(
in_features=lowerCamelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , )
def lowercase__ ( self , *lowerCamelCase ) -> Any:
"""simple docstring"""
raise NotImplementedError()
@staticmethod
def lowercase__ ( lowerCamelCase ) -> torch.Tensor:
"""simple docstring"""
return (x + torch.sqrt(torch.square(lowerCamelCase ) + 4.0 )) / 2.0
class snake_case ( __lowerCamelCase ):
"""simple docstring"""
_lowerCAmelCase = {"df": 1, "loc": 1, "scale": 1}
_lowerCAmelCase = StudentT
@classmethod
def lowercase__ ( cls , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int:
"""simple docstring"""
snake_case__ : Tuple = cls.squareplus(lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps )
snake_case__ : Optional[int] = 2.0 + cls.squareplus(lowerCamelCase )
return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 )
class snake_case ( __lowerCamelCase ):
"""simple docstring"""
_lowerCAmelCase = {"loc": 1, "scale": 1}
_lowerCAmelCase = Normal
@classmethod
def lowercase__ ( cls , lowerCamelCase , lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
snake_case__ : List[str] = cls.squareplus(lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps )
return loc.squeeze(-1 ), scale.squeeze(-1 )
class snake_case ( __lowerCamelCase ):
"""simple docstring"""
_lowerCAmelCase = {"total_count": 1, "logits": 1}
_lowerCAmelCase = NegativeBinomial
@classmethod
def lowercase__ ( cls , lowerCamelCase , lowerCamelCase ) -> Dict:
"""simple docstring"""
snake_case__ : List[str] = cls.squareplus(lowerCamelCase )
return total_count.squeeze(-1 ), logits.squeeze(-1 )
def lowercase__ ( self , lowerCamelCase ) -> Distribution:
"""simple docstring"""
snake_case__ ,snake_case__ : str = distr_args
if self.dim == 1:
return self.distribution_class(total_count=lowerCamelCase , logits=lowerCamelCase )
else:
return Independent(self.distribution_class(total_count=lowerCamelCase , logits=lowerCamelCase ) , 1 )
def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None ) -> Distribution:
"""simple docstring"""
snake_case__ ,snake_case__ : Optional[Any] = distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits) )
| 694 | 1 |
from ..utils import is_flax_available, is_torch_available
if is_torch_available():
from .autoencoder_kl import AutoencoderKL
from .controlnet import ControlNetModel
from .dual_transformer_ad import DualTransformeraDModel
from .modeling_utils import ModelMixin
from .prior_transformer import PriorTransformer
from .ta_film_transformer import TaFilmDecoder
from .transformer_ad import TransformeraDModel
from .unet_ad import UNetaDModel
from .unet_ad import UNetaDModel
from .unet_ad_condition import UNetaDConditionModel
from .unet_ad_condition import UNetaDConditionModel
from .vq_model import VQModel
if is_flax_available():
from .controlnet_flax import FlaxControlNetModel
from .unet_ad_condition_flax import FlaxUNetaDConditionModel
from .vae_flax import FlaxAutoencoderKL
| 10 |
"""simple docstring"""
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __a ( _lowerCAmelCase , unittest.TestCase ):
UpperCamelCase_ : Optional[int] = LongformerTokenizer
UpperCamelCase_ : str = True
UpperCamelCase_ : Tuple = LongformerTokenizerFast
UpperCamelCase_ : List[str] = True
def _SCREAMING_SNAKE_CASE ( self : Dict )-> Any:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCamelCase = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
UpperCamelCase = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) )
UpperCamelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
UpperCamelCase = {"unk_token": "<unk>"}
UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(UpperCAmelCase_ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(UpperCAmelCase_ ) )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **UpperCAmelCase_ : Dict )-> int:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : str , **UpperCAmelCase_ : Optional[Any] )-> Optional[int]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase_ : Dict )-> List[Any]:
"""simple docstring"""
UpperCamelCase = "lower newer"
UpperCamelCase = "lower newer"
return input_text, output_text
def _SCREAMING_SNAKE_CASE ( self : Tuple )-> Optional[Any]:
"""simple docstring"""
UpperCamelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCamelCase = "lower newer"
UpperCamelCase = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"]
UpperCamelCase = tokenizer.tokenize(UpperCAmelCase_ ) # , add_prefix_space=True)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
UpperCamelCase = tokens + [tokenizer.unk_token]
UpperCamelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Tuple:
"""simple docstring"""
UpperCamelCase = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=UpperCAmelCase_ ) , [0, 31_414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=UpperCAmelCase_ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , )
@slow
def _SCREAMING_SNAKE_CASE ( self : int )-> int:
"""simple docstring"""
UpperCamelCase = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" )
UpperCamelCase = tokenizer.encode("sequence builders" , add_special_tokens=UpperCAmelCase_ )
UpperCamelCase = tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCAmelCase_ )
UpperCamelCase = tokenizer.encode(
"sequence builders" , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ )
UpperCamelCase = tokenizer.encode(
"sequence builders" , "multi-sequence build" , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ )
UpperCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ )
UpperCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Optional[Any]:
"""simple docstring"""
UpperCamelCase = self.get_tokenizer()
UpperCamelCase = "Encode this sequence."
UpperCamelCase = tokenizer.byte_encoder[" ".encode("utf-8" )[0]]
# Testing encoder arguments
UpperCamelCase = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ )
UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(UpperCAmelCase_ , UpperCAmelCase_ )
UpperCamelCase = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ )
UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ )
tokenizer.add_special_tokens({"bos_token": "<s>"} )
UpperCamelCase = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ )
UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(UpperCAmelCase_ , UpperCAmelCase_ )
# Testing spaces after special tokens
UpperCamelCase = "<mask>"
tokenizer.add_special_tokens(
{"mask_token": AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ )} ) # mask token has a left space
UpperCamelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ )
UpperCamelCase = "Encode <mask> sequence"
UpperCamelCase = "Encode <mask>sequence"
UpperCamelCase = tokenizer.encode(UpperCAmelCase_ )
UpperCamelCase = encoded.index(UpperCAmelCase_ )
UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ )
UpperCamelCase = tokenizer.encode(UpperCAmelCase_ )
UpperCamelCase = encoded.index(UpperCAmelCase_ )
UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(UpperCAmelCase_ , UpperCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> List[str]:
"""simple docstring"""
pass
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> Tuple:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ )
UpperCamelCase = self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ )
UpperCamelCase = "A, <mask> AllenNLP sentence."
UpperCamelCase = tokenizer_r.encode_plus(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ )
UpperCamelCase = tokenizer_p.encode_plus(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , )
UpperCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] )
UpperCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
UpperCAmelCase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
self.assertSequenceEqual(
UpperCAmelCase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
def _SCREAMING_SNAKE_CASE ( self : Any )-> Dict:
"""simple docstring"""
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ )
UpperCamelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
UpperCamelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state["add_prefix_space"] , UpperCAmelCase_ )
self.assertEqual(post_processor_state["add_prefix_space"] , UpperCAmelCase_ )
self.assertEqual(post_processor_state["trim_offsets"] , UpperCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Union[str, Any]:
"""simple docstring"""
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCamelCase = "hello" # `hello` is a token in the vocabulary of `pretrained_name`
UpperCamelCase = f"{text_of_1_token} {text_of_1_token}"
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ )
UpperCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(UpperCAmelCase_ ) + 1, len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , )
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ )
UpperCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(UpperCAmelCase_ ) + 1, len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , )
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ )
UpperCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(UpperCAmelCase_ ), len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , )
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ )
UpperCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(UpperCAmelCase_ ), len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , )
UpperCamelCase = f" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ )
UpperCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCAmelCase_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(UpperCAmelCase_ ) + 1, 1 + len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , )
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ )
UpperCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(UpperCAmelCase_ ), 1 + len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , )
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ )
UpperCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(UpperCAmelCase_ ), 1 + len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , )
| 554 | 0 |
"""simple docstring"""
def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ):
"""simple docstring"""
_enforce_args(UpperCamelCase__ , UpperCamelCase__ )
if n == 0:
return 0
A__ = float('-inf' )
for i in range(1 , n + 1 ):
A__ = max(
UpperCamelCase__ , prices[i - 1] + naive_cut_rod_recursive(n - i , UpperCamelCase__ ) )
return max_revue
def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ):
"""simple docstring"""
_enforce_args(UpperCamelCase__ , UpperCamelCase__ )
A__ = [float('-inf' ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
"""simple docstring"""
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
A__ = float('-inf' )
for i in range(1 , n + 1 ):
A__ = max(
UpperCamelCase__ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , UpperCamelCase__ , UpperCamelCase__ ) , )
A__ = max_revenue
return max_rev[n]
def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ):
"""simple docstring"""
_enforce_args(UpperCamelCase__ , UpperCamelCase__ )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
A__ = [float('-inf' ) for _ in range(n + 1 )]
A__ = 0
for i in range(1 , n + 1 ):
A__ = max_rev[i]
for j in range(1 , i + 1 ):
A__ = max(UpperCamelCase__ , prices[j - 1] + max_rev[i - j] )
A__ = max_revenue_i
return max_rev[n]
def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ):
"""simple docstring"""
if n < 0:
A__ = F'''n must be greater than or equal to 0. Got n = {n}'''
raise ValueError(UpperCamelCase__ )
if n > len(UpperCamelCase__ ):
A__ = (
'Each integral piece of rod must have a corresponding price. '
F'''Got n = {n} but length of prices = {len(UpperCamelCase__ )}'''
)
raise ValueError(UpperCamelCase__ )
def UpperCAmelCase ( ):
"""simple docstring"""
A__ = [6, 10, 12, 15, 20, 23]
A__ = len(UpperCamelCase__ )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
A__ = 36
A__ = top_down_cut_rod(UpperCamelCase__ , UpperCamelCase__ )
A__ = bottom_up_cut_rod(UpperCamelCase__ , UpperCamelCase__ )
A__ = naive_cut_rod_recursive(UpperCamelCase__ , UpperCamelCase__ )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 536 | """simple docstring"""
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class UpperCamelCase__( unittest.TestCase ):
def snake_case__ ( self ) -> str:
A__ = get_activation('swish' )
self.assertIsInstance(__UpperCAmelCase ,nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 ,dtype=torch.floataa ) ).item() ,0 )
self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 )
self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 )
self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 )
def snake_case__ ( self ) -> Optional[Any]:
A__ = get_activation('silu' )
self.assertIsInstance(__UpperCAmelCase ,nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 ,dtype=torch.floataa ) ).item() ,0 )
self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 )
self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 )
self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 )
def snake_case__ ( self ) -> List[str]:
A__ = get_activation('mish' )
self.assertIsInstance(__UpperCAmelCase ,nn.Mish )
self.assertEqual(act(torch.tensor(-2_00 ,dtype=torch.floataa ) ).item() ,0 )
self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 )
self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 )
self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 )
def snake_case__ ( self ) -> List[str]:
A__ = get_activation('gelu' )
self.assertIsInstance(__UpperCAmelCase ,nn.GELU )
self.assertEqual(act(torch.tensor(-1_00 ,dtype=torch.floataa ) ).item() ,0 )
self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 )
self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 )
self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 )
| 536 | 1 |
"""simple docstring"""
from .data_collator import (
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForSeqaSeq,
DataCollatorForSOP,
DataCollatorForTokenClassification,
DataCollatorForWholeWordMask,
DataCollatorWithPadding,
DefaultDataCollator,
default_data_collator,
)
from .metrics import glue_compute_metrics, xnli_compute_metrics
from .processors import (
DataProcessor,
InputExample,
InputFeatures,
SingleSentenceClassificationProcessor,
SquadExample,
SquadFeatures,
SquadVaProcessor,
SquadVaProcessor,
glue_convert_examples_to_features,
glue_output_modes,
glue_processors,
glue_tasks_num_labels,
squad_convert_examples_to_features,
xnli_output_modes,
xnli_processors,
xnli_tasks_num_labels,
)
| 49 |
"""simple docstring"""
def lowercase__ ( snake_case_ :Dict ): # noqa: E741
__UpperCAmelCase = len(snake_case_ )
__UpperCAmelCase = 0
__UpperCAmelCase = [0] * n
__UpperCAmelCase = [False] * n
__UpperCAmelCase = [False] * n
def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ):
if parent == root:
out_edge_count += 1
__UpperCAmelCase = True
__UpperCAmelCase = at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
__UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
__UpperCAmelCase = min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
__UpperCAmelCase = True
# AP found via cycle
if at == low[to]:
__UpperCAmelCase = True
else:
__UpperCAmelCase = min(low[at] , snake_case_ )
return out_edge_count
for i in range(snake_case_ ):
if not visited[i]:
__UpperCAmelCase = 0
__UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ )
__UpperCAmelCase = out_edge_count > 1
for x in range(len(snake_case_ ) ):
if is_art[x] is True:
print(snake_case_ )
# Adjacency list of graph
_lowercase : Optional[Any] = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data)
| 49 | 1 |
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels
from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor
from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
| 456 |
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : Optional[int] , snake_case_ : int , snake_case_ : Optional[Any]=13 , snake_case_ : List[str]=7 , snake_case_ : Tuple=True , snake_case_ : Optional[Any]=True , snake_case_ : Optional[Any]=True , snake_case_ : str=True , snake_case_ : Optional[Any]=True , snake_case_ : List[Any]=False , snake_case_ : str=False , snake_case_ : List[str]=False , snake_case_ : List[Any]=2 , snake_case_ : List[Any]=99 , snake_case_ : Tuple=0 , snake_case_ : Optional[int]=32 , snake_case_ : Union[str, Any]=5 , snake_case_ : Any=4 , snake_case_ : str=0.1 , snake_case_ : List[Any]=0.1 , snake_case_ : Optional[Any]=5_12 , snake_case_ : str=2 , snake_case_ : List[str]=0.0_2 , snake_case_ : Optional[int]=2 , snake_case_ : Union[str, Any]=4 , snake_case_ : str="last" , snake_case_ : Union[str, Any]=True , snake_case_ : int=None , snake_case_ : Any=0 , )-> Tuple:
__lowerCAmelCase =parent
__lowerCAmelCase =batch_size
__lowerCAmelCase =seq_length
__lowerCAmelCase =is_training
__lowerCAmelCase =use_input_lengths
__lowerCAmelCase =use_token_type_ids
__lowerCAmelCase =use_labels
__lowerCAmelCase =gelu_activation
__lowerCAmelCase =sinusoidal_embeddings
__lowerCAmelCase =causal
__lowerCAmelCase =asm
__lowerCAmelCase =n_langs
__lowerCAmelCase =vocab_size
__lowerCAmelCase =n_special
__lowerCAmelCase =hidden_size
__lowerCAmelCase =num_hidden_layers
__lowerCAmelCase =num_attention_heads
__lowerCAmelCase =hidden_dropout_prob
__lowerCAmelCase =attention_probs_dropout_prob
__lowerCAmelCase =max_position_embeddings
__lowerCAmelCase =type_sequence_label_size
__lowerCAmelCase =initializer_range
__lowerCAmelCase =num_labels
__lowerCAmelCase =num_choices
__lowerCAmelCase =summary_type
__lowerCAmelCase =use_proj
__lowerCAmelCase =scope
__lowerCAmelCase =bos_token_id
def UpperCamelCase ( self : Tuple)-> int:
__lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length])
__lowerCAmelCase =None
if self.use_input_lengths:
__lowerCAmelCase =(
ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2
) # small variation of seq_length
__lowerCAmelCase =None
if self.use_token_type_ids:
__lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.n_langs)
__lowerCAmelCase =None
__lowerCAmelCase =None
__lowerCAmelCase =None
if self.use_labels:
__lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size)
__lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
__lowerCAmelCase =ids_tensor([self.batch_size] , 2).float()
__lowerCAmelCase =ids_tensor([self.batch_size] , self.num_choices)
__lowerCAmelCase =self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def UpperCamelCase ( self : Tuple)-> Union[str, Any]:
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def UpperCamelCase ( self : Any , snake_case_ : List[str] , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : List[Any] , )-> Tuple:
__lowerCAmelCase =XLMModel(config=snake_case_)
model.to(snake_case_)
model.eval()
__lowerCAmelCase =model(snake_case_ , lengths=snake_case_ , langs=snake_case_)
__lowerCAmelCase =model(snake_case_ , langs=snake_case_)
__lowerCAmelCase =model(snake_case_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def UpperCamelCase ( self : str , snake_case_ : str , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : int , )-> Dict:
__lowerCAmelCase =XLMWithLMHeadModel(snake_case_)
model.to(snake_case_)
model.eval()
__lowerCAmelCase =model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_)
self.parent.assertEqual(result.loss.shape , ())
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def UpperCamelCase ( self : Any , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Any , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : Tuple , )-> Dict:
__lowerCAmelCase =XLMForQuestionAnsweringSimple(snake_case_)
model.to(snake_case_)
model.eval()
__lowerCAmelCase =model(snake_case_)
__lowerCAmelCase =model(snake_case_ , start_positions=snake_case_ , end_positions=snake_case_)
__lowerCAmelCase =outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def UpperCamelCase ( self : Tuple , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : int , snake_case_ : str , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Tuple , )-> Optional[int]:
__lowerCAmelCase =XLMForQuestionAnswering(snake_case_)
model.to(snake_case_)
model.eval()
__lowerCAmelCase =model(snake_case_)
__lowerCAmelCase =model(
snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , cls_index=snake_case_ , is_impossible=snake_case_ , p_mask=snake_case_ , )
__lowerCAmelCase =model(
snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , cls_index=snake_case_ , is_impossible=snake_case_ , )
((__lowerCAmelCase) , ) =result_with_labels.to_tuple()
__lowerCAmelCase =model(snake_case_ , start_positions=snake_case_ , end_positions=snake_case_)
((__lowerCAmelCase) , ) =result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , ())
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top))
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top))
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top))
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top))
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,))
def UpperCamelCase ( self : Tuple , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : int , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Optional[Any] , )-> int:
__lowerCAmelCase =XLMForSequenceClassification(snake_case_)
model.to(snake_case_)
model.eval()
__lowerCAmelCase =model(snake_case_)
__lowerCAmelCase =model(snake_case_ , labels=snake_case_)
self.parent.assertEqual(result.loss.shape , ())
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def UpperCamelCase ( self : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : str , snake_case_ : List[str] , snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : List[str] , snake_case_ : Union[str, Any] , )-> Optional[Any]:
__lowerCAmelCase =self.num_labels
__lowerCAmelCase =XLMForTokenClassification(snake_case_)
model.to(snake_case_)
model.eval()
__lowerCAmelCase =model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def UpperCamelCase ( self : Union[str, Any] , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : Tuple , )-> List[Any]:
__lowerCAmelCase =self.num_choices
__lowerCAmelCase =XLMForMultipleChoice(config=snake_case_)
model.to(snake_case_)
model.eval()
__lowerCAmelCase =input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
__lowerCAmelCase =token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
__lowerCAmelCase =input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
__lowerCAmelCase =model(
snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def UpperCamelCase ( self : Optional[Any])-> List[Any]:
__lowerCAmelCase =self.prepare_config_and_inputs()
(
(
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) , (
__lowerCAmelCase
) ,
) =config_and_inputs
__lowerCAmelCase ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths}
return config, inputs_dict
@require_torch
class __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
SCREAMING_SNAKE_CASE = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
SCREAMING_SNAKE_CASE = (
{
"feature-extraction": XLMModel,
"fill-mask": XLMWithLMHeadModel,
"question-answering": XLMForQuestionAnsweringSimple,
"text-classification": XLMForSequenceClassification,
"text-generation": XLMWithLMHeadModel,
"token-classification": XLMForTokenClassification,
"zero-shot": XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def UpperCamelCase ( self : List[str] , snake_case_ : str , snake_case_ : str , snake_case_ : str , snake_case_ : int , snake_case_ : str)-> Tuple:
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""")
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def UpperCamelCase ( self : int , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : str=False)-> str:
__lowerCAmelCase =super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_)
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
__lowerCAmelCase =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=snake_case_)
__lowerCAmelCase =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=snake_case_)
return inputs_dict
def UpperCamelCase ( self : int)-> List[Any]:
__lowerCAmelCase =XLMModelTester(self)
__lowerCAmelCase =ConfigTester(self , config_class=snake_case_ , emb_dim=37)
def UpperCamelCase ( self : List[str])-> Any:
self.config_tester.run_common_tests()
def UpperCamelCase ( self : Optional[int])-> Union[str, Any]:
__lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*snake_case_)
def UpperCamelCase ( self : Any)-> int:
__lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*snake_case_)
def UpperCamelCase ( self : Dict)-> str:
__lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*snake_case_)
def UpperCamelCase ( self : List[Any])-> Union[str, Any]:
__lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*snake_case_)
def UpperCamelCase ( self : List[str])-> Dict:
__lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*snake_case_)
def UpperCamelCase ( self : List[Any])-> int:
__lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*snake_case_)
def UpperCamelCase ( self : str)-> str:
__lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*snake_case_)
def UpperCamelCase ( self : Union[str, Any] , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : int , snake_case_ : Optional[int]=False , snake_case_ : List[Any]=1)-> Optional[Any]:
self.assertIsInstance(snake_case_ , snake_case_)
self.assertListEqual(
[isinstance(snake_case_ , snake_case_) for iter_attentions in attentions] , [True] * len(snake_case_))
self.assertEqual(len(snake_case_) , (max_length - min_length) * num_beam_groups)
for idx, iter_attentions in enumerate(snake_case_):
# adds PAD dummy token
__lowerCAmelCase =min_length + idx + 1
__lowerCAmelCase =min_length + idx + 1
__lowerCAmelCase =(
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(snake_case_))
def UpperCamelCase ( self : List[Any] , snake_case_ : Any , snake_case_ : str , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : List[str]=False , snake_case_ : Any=1)-> Any:
self.assertIsInstance(snake_case_ , snake_case_)
self.assertListEqual(
[isinstance(snake_case_ , snake_case_) for iter_hidden_states in hidden_states] , [True] * len(snake_case_) , )
self.assertEqual(len(snake_case_) , (max_length - min_length) * num_beam_groups)
for idx, iter_hidden_states in enumerate(snake_case_):
# adds PAD dummy token
__lowerCAmelCase =min_length + idx + 1
__lowerCAmelCase =(batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(snake_case_) , )
pass
@slow
def UpperCamelCase ( self : Any)-> List[str]:
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCAmelCase =XLMModel.from_pretrained(snake_case_)
self.assertIsNotNone(snake_case_)
@require_torch
class __a ( unittest.TestCase ):
@slow
def UpperCamelCase ( self : int)-> List[str]:
__lowerCAmelCase =XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""")
model.to(snake_case_)
__lowerCAmelCase =torch.tensor([[14, 4_47]] , dtype=torch.long , device=snake_case_) # the president
__lowerCAmelCase =[
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
__lowerCAmelCase =model.generate(snake_case_ , do_sample=snake_case_)
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , snake_case_)
| 456 | 1 |
"""simple docstring"""
import argparse
import os
import re
import tensorflow as tf
import torch
from transformers import BertConfig, BertModel
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
def _lowerCamelCase ( UpperCAmelCase_ : str, UpperCAmelCase_ : Dict, UpperCAmelCase_ : str ) -> List[str]:
"""simple docstring"""
A__ = os.path.abspath(UpperCAmelCase_ )
logger.info(F"""Converting TensorFlow checkpoint from {tf_path}""" )
# Load weights from TF model
A__ = tf.train.list_variables(UpperCAmelCase_ )
A__ = []
A__ = []
A__ = []
for full_name, shape in init_vars:
# logger.info(f"Loading TF weight {name} with shape {shape}")
A__ = full_name.split("/" )
if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]:
logger.info(F"""Skipping non-model layer {full_name}""" )
continue
if "optimizer" in full_name:
logger.info(F"""Skipping optimization layer {full_name}""" )
continue
if name[0] == "model":
# ignore initial 'model'
A__ = name[1:]
# figure out how many levels deep the name is
A__ = 0
for _name in name:
if _name.startswith("layer_with_weights" ):
depth += 1
else:
break
layer_depth.append(UpperCAmelCase_ )
# read data
A__ = tf.train.load_variable(UpperCAmelCase_, UpperCAmelCase_ )
names.append("/".join(UpperCAmelCase_ ) )
arrays.append(UpperCAmelCase_ )
logger.info(F"""Read a total of {len(UpperCAmelCase_ ):,} layers""" )
# Sanity check
if len(set(UpperCAmelCase_ ) ) != 1:
raise ValueError(F"""Found layer names with different depths (layer depth {list(set(UpperCAmelCase_ ) )})""" )
A__ = list(set(UpperCAmelCase_ ) )[0]
if layer_depth != 1:
raise ValueError(
"The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP"
" heads." )
# convert layers
logger.info("Converting weights..." )
for full_name, array in zip(UpperCAmelCase_, UpperCAmelCase_ ):
A__ = full_name.split("/" )
A__ = model
A__ = []
for i, m_name in enumerate(UpperCAmelCase_ ):
if m_name == ".ATTRIBUTES":
# variable names end with .ATTRIBUTES/VARIABLE_VALUE
break
if m_name.startswith("layer_with_weights" ):
A__ = int(m_name.split("-" )[-1] )
if layer_num <= 2:
# embedding layers
# layer_num 0: word_embeddings
# layer_num 1: position_embeddings
# layer_num 2: token_type_embeddings
continue
elif layer_num == 3:
# embedding LayerNorm
trace.extend(["embeddings", "LayerNorm"] )
A__ = getattr(UpperCAmelCase_, "embeddings" )
A__ = getattr(UpperCAmelCase_, "LayerNorm" )
elif layer_num > 3 and layer_num < config.num_hidden_layers + 4:
# encoder layers
trace.extend(["encoder", "layer", str(layer_num - 4 )] )
A__ = getattr(UpperCAmelCase_, "encoder" )
A__ = getattr(UpperCAmelCase_, "layer" )
A__ = pointer[layer_num - 4]
elif layer_num == config.num_hidden_layers + 4:
# pooler layer
trace.extend(["pooler", "dense"] )
A__ = getattr(UpperCAmelCase_, "pooler" )
A__ = getattr(UpperCAmelCase_, "dense" )
elif m_name == "embeddings":
trace.append("embeddings" )
A__ = getattr(UpperCAmelCase_, "embeddings" )
if layer_num == 0:
trace.append("word_embeddings" )
A__ = getattr(UpperCAmelCase_, "word_embeddings" )
elif layer_num == 1:
trace.append("position_embeddings" )
A__ = getattr(UpperCAmelCase_, "position_embeddings" )
elif layer_num == 2:
trace.append("token_type_embeddings" )
A__ = getattr(UpperCAmelCase_, "token_type_embeddings" )
else:
raise ValueError(F"""Unknown embedding layer with name {full_name}""" )
trace.append("weight" )
A__ = getattr(UpperCAmelCase_, "weight" )
elif m_name == "_attention_layer":
# self-attention layer
trace.extend(["attention", "self"] )
A__ = getattr(UpperCAmelCase_, "attention" )
A__ = getattr(UpperCAmelCase_, "self" )
elif m_name == "_attention_layer_norm":
# output attention norm
trace.extend(["attention", "output", "LayerNorm"] )
A__ = getattr(UpperCAmelCase_, "attention" )
A__ = getattr(UpperCAmelCase_, "output" )
A__ = getattr(UpperCAmelCase_, "LayerNorm" )
elif m_name == "_attention_output_dense":
# output attention dense
trace.extend(["attention", "output", "dense"] )
A__ = getattr(UpperCAmelCase_, "attention" )
A__ = getattr(UpperCAmelCase_, "output" )
A__ = getattr(UpperCAmelCase_, "dense" )
elif m_name == "_output_dense":
# output dense
trace.extend(["output", "dense"] )
A__ = getattr(UpperCAmelCase_, "output" )
A__ = getattr(UpperCAmelCase_, "dense" )
elif m_name == "_output_layer_norm":
# output dense
trace.extend(["output", "LayerNorm"] )
A__ = getattr(UpperCAmelCase_, "output" )
A__ = getattr(UpperCAmelCase_, "LayerNorm" )
elif m_name == "_key_dense":
# attention key
trace.append("key" )
A__ = getattr(UpperCAmelCase_, "key" )
elif m_name == "_query_dense":
# attention query
trace.append("query" )
A__ = getattr(UpperCAmelCase_, "query" )
elif m_name == "_value_dense":
# attention value
trace.append("value" )
A__ = getattr(UpperCAmelCase_, "value" )
elif m_name == "_intermediate_dense":
# attention intermediate dense
trace.extend(["intermediate", "dense"] )
A__ = getattr(UpperCAmelCase_, "intermediate" )
A__ = getattr(UpperCAmelCase_, "dense" )
elif m_name == "_output_layer_norm":
# output layer norm
trace.append("output" )
A__ = getattr(UpperCAmelCase_, "output" )
# weights & biases
elif m_name in ["bias", "beta"]:
trace.append("bias" )
A__ = getattr(UpperCAmelCase_, "bias" )
elif m_name in ["kernel", "gamma"]:
trace.append("weight" )
A__ = getattr(UpperCAmelCase_, "weight" )
else:
logger.warning(F"""Ignored {m_name}""" )
# for certain layers reshape is necessary
A__ = ".".join(UpperCAmelCase_ )
if re.match(r"(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)", UpperCAmelCase_ ) or re.match(
r"(\S+)\.attention\.output\.dense\.weight", UpperCAmelCase_ ):
A__ = array.reshape(pointer.data.shape )
if "kernel" in full_name:
A__ = array.transpose()
if pointer.shape == array.shape:
A__ = torch.from_numpy(UpperCAmelCase_ )
else:
raise ValueError(
F"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:"""
F""" {array.shape}""" )
logger.info(F"""Successfully set variable {full_name} to PyTorch layer {trace}""" )
return model
def _lowerCamelCase ( UpperCAmelCase_ : Any, UpperCAmelCase_ : Union[str, Any], UpperCAmelCase_ : Any ) -> List[str]:
"""simple docstring"""
logger.info(F"""Loading model based on config from {config_path}...""" )
A__ = BertConfig.from_json_file(UpperCAmelCase_ )
A__ = BertModel(UpperCAmelCase_ )
# Load weights from checkpoint
logger.info(F"""Loading weights from checkpoint {tf_checkpoint_path}...""" )
load_tfa_weights_in_bert(UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ )
# Save pytorch-model
logger.info(F"""Saving PyTorch model to {pytorch_dump_path}...""" )
torch.save(model.state_dict(), UpperCAmelCase_ )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
parser.add_argument(
"""--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path."""
)
parser.add_argument(
"""--bert_config_file""",
type=str,
required=True,
help="""The config json file corresponding to the BERT model. This specifies the model architecture.""",
)
parser.add_argument(
"""--pytorch_dump_path""",
type=str,
required=True,
help="""Path to the output PyTorch model (must include filename).""",
)
UpperCamelCase = parser.parse_args()
convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 104 |
from typing import List
from .keymap import KEYMAP, get_character
def lowercase__ ( A_: str ) -> str:
"""simple docstring"""
def decorator(A_: int ):
__UpperCAmelCase =getattr(A_ , """handle_key""" , [] )
handle += [key]
setattr(A_ , """handle_key""" , A_ )
return func
return decorator
def lowercase__ ( *A_: List[str] ) -> Optional[int]:
"""simple docstring"""
def decorator(A_: Tuple ):
__UpperCAmelCase =getattr(A_ , """handle_key""" , [] )
handle += keys
setattr(A_ , """handle_key""" , A_ )
return func
return decorator
class _A ( UpperCamelCase ):
"""simple docstring"""
def __new__( cls : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] ) -> int:
__UpperCAmelCase =super().__new__(cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if not hasattr(__SCREAMING_SNAKE_CASE , """key_handler""" ):
setattr(__SCREAMING_SNAKE_CASE , """key_handler""" , {} )
setattr(__SCREAMING_SNAKE_CASE , """handle_input""" , KeyHandler.handle_input )
for value in attrs.values():
__UpperCAmelCase =getattr(__SCREAMING_SNAKE_CASE , """handle_key""" , [] )
for key in handled_keys:
__UpperCAmelCase =value
return new_cls
@staticmethod
def _a ( cls : Dict ) -> List[Any]:
__UpperCAmelCase =get_character()
if char != KEYMAP["undefined"]:
__UpperCAmelCase =ord(__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =cls.key_handler.get(__SCREAMING_SNAKE_CASE )
if handler:
__UpperCAmelCase =char
return handler(cls )
else:
return None
def lowercase__ ( cls: str ) -> int:
"""simple docstring"""
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 68 | 0 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def lowerCamelCase__ ( __lowerCAmelCase : Dict ):
"""simple docstring"""
lowerCAmelCase_ = 384
if "tiny" in model_name:
lowerCAmelCase_ = [3, 3, 9, 3]
lowerCAmelCase_ = [96, 192, 384, 768]
if "small" in model_name:
lowerCAmelCase_ = [3, 3, 27, 3]
lowerCAmelCase_ = [96, 192, 384, 768]
if "base" in model_name:
lowerCAmelCase_ = [3, 3, 27, 3]
lowerCAmelCase_ = [128, 256, 512, 1024]
lowerCAmelCase_ = 512
if "large" in model_name:
lowerCAmelCase_ = [3, 3, 27, 3]
lowerCAmelCase_ = [192, 384, 768, 1536]
lowerCAmelCase_ = 768
if "xlarge" in model_name:
lowerCAmelCase_ = [3, 3, 27, 3]
lowerCAmelCase_ = [256, 512, 1024, 2048]
lowerCAmelCase_ = 1024
# set label information
lowerCAmelCase_ = 150
lowerCAmelCase_ = "huggingface/label-files"
lowerCAmelCase_ = "ade20k-id2label.json"
lowerCAmelCase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) , "r" ) )
lowerCAmelCase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
lowerCAmelCase_ = {v: k for k, v in idalabel.items()}
lowerCAmelCase_ = ConvNextConfig(
depths=__lowerCAmelCase , hidden_sizes=__lowerCAmelCase , out_features=["stage1", "stage2", "stage3", "stage4"] )
lowerCAmelCase_ = UperNetConfig(
backbone_config=__lowerCAmelCase , auxiliary_in_channels=__lowerCAmelCase , num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase , )
return config
def lowerCamelCase__ ( __lowerCAmelCase : Dict ):
"""simple docstring"""
lowerCAmelCase_ = []
# fmt: off
# stem
rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") )
rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") )
rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") )
rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F"""backbone.stages.{i}.{j}.gamma""", F"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.norm.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.norm.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") )
if i > 0:
rename_keys.append((F"""backbone.downsample_layers.{i}.0.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") )
rename_keys.append((F"""backbone.downsample_layers.{i}.0.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") )
rename_keys.append((F"""backbone.downsample_layers.{i}.1.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") )
rename_keys.append((F"""backbone.downsample_layers.{i}.1.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") )
rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") )
rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") )
# decode head
rename_keys.extend(
[
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
] )
# fmt: on
return rename_keys
def lowerCamelCase__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] ):
"""simple docstring"""
lowerCAmelCase_ = dct.pop(__lowerCAmelCase )
lowerCAmelCase_ = val
def lowerCamelCase__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase_ = {
"upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth",
"upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth",
"upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth",
"upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth",
"upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth",
}
lowerCAmelCase_ = model_name_to_url[model_name]
lowerCAmelCase_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="cpu" )["state_dict"]
lowerCAmelCase_ = get_upernet_config(__lowerCAmelCase )
lowerCAmelCase_ = UperNetForSemanticSegmentation(__lowerCAmelCase )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
lowerCAmelCase_ = state_dict.pop(__lowerCAmelCase )
if "bn" in key:
lowerCAmelCase_ = key.replace("bn" , "batch_norm" )
lowerCAmelCase_ = val
# rename keys
lowerCAmelCase_ = create_rename_keys(__lowerCAmelCase )
for src, dest in rename_keys:
rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
model.load_state_dict(__lowerCAmelCase )
# verify on image
lowerCAmelCase_ = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
lowerCAmelCase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert("RGB" )
lowerCAmelCase_ = SegformerImageProcessor()
lowerCAmelCase_ = processor(__lowerCAmelCase , return_tensors="pt" ).pixel_values
with torch.no_grad():
lowerCAmelCase_ = model(__lowerCAmelCase )
if model_name == "upernet-convnext-tiny":
lowerCAmelCase_ = torch.tensor(
[[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] )
elif model_name == "upernet-convnext-small":
lowerCAmelCase_ = torch.tensor(
[[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] )
elif model_name == "upernet-convnext-base":
lowerCAmelCase_ = torch.tensor(
[[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] )
elif model_name == "upernet-convnext-large":
lowerCAmelCase_ = torch.tensor(
[[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] )
elif model_name == "upernet-convnext-xlarge":
lowerCAmelCase_ = torch.tensor(
[[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] )
print("Logits:" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCAmelCase , atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCAmelCase )
print(F"""Saving processor to {pytorch_dump_folder_path}""" )
processor.save_pretrained(__lowerCAmelCase )
if push_to_hub:
print(F"""Pushing model and processor for {model_name} to hub""" )
model.push_to_hub(F"""openmmlab/{model_name}""" )
processor.push_to_hub(F"""openmmlab/{model_name}""" )
if __name__ == "__main__":
_A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="upernet-convnext-tiny",
type=str,
choices=[f"""upernet-convnext-{size}""" for size in ["tiny", "small", "base", "large", "xlarge"]],
help="Name of the ConvNext UperNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
_A = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 705 |
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
_A = get_logger(__name__)
_A = R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n"
class _lowerCAmelCase :
@add_start_docstrings(_UpperCamelCase )
def __call__( self , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray:
raise NotImplementedError(
f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
class _lowerCAmelCase :
@add_start_docstrings(_UpperCamelCase )
def __call__( self , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray:
raise NotImplementedError(
f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
class _lowerCAmelCase ( __a ):
@add_start_docstrings(_UpperCamelCase )
def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) -> jnp.ndarray:
for processor in self:
lowerCAmelCase_ = inspect.signature(processor.__call__ ).parameters
if len(_UpperCamelCase ) > 3:
if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ):
raise ValueError(
f"""Make sure that all the required parameters: {list(function_args.keys() )} for """
f"""{processor.__class__} are passed to the logits processor.""" )
lowerCAmelCase_ = processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase )
else:
lowerCAmelCase_ = processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
return scores
class _lowerCAmelCase ( __a ):
def __init__( self , _UpperCamelCase ) -> Tuple:
if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not (temperature > 0):
raise ValueError(f"""`temperature` has to be a strictly positive float, but is {temperature}""" )
lowerCAmelCase_ = temperature
def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray:
lowerCAmelCase_ = scores / self.temperature
return scores
class _lowerCAmelCase ( __a ):
def __init__( self , _UpperCamelCase , _UpperCamelCase = -float("Inf" ) , _UpperCamelCase = 1 ) -> Union[str, Any]:
if not isinstance(_UpperCamelCase , _UpperCamelCase ) or (top_p < 0 or top_p > 1.0):
raise ValueError(f"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" )
if not isinstance(_UpperCamelCase , _UpperCamelCase ) or (min_tokens_to_keep < 1):
raise ValueError(f"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" )
lowerCAmelCase_ = top_p
lowerCAmelCase_ = filter_value
lowerCAmelCase_ = min_tokens_to_keep
def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray:
lowerCAmelCase_ , lowerCAmelCase_ = lax.top_k(_UpperCamelCase , scores.shape[-1] )
lowerCAmelCase_ = jnp.full_like(_UpperCamelCase , self.filter_value )
lowerCAmelCase_ = jax.nn.softmax(_UpperCamelCase , axis=-1 ).cumsum(axis=-1 )
lowerCAmelCase_ = cumulative_probs < self.top_p
# include the token that is higher than top_p as well
lowerCAmelCase_ = jnp.roll(_UpperCamelCase , 1 )
score_mask |= score_mask.at[:, 0].set(_UpperCamelCase )
# min tokens to keep
lowerCAmelCase_ = score_mask.at[:, : self.min_tokens_to_keep].set(_UpperCamelCase )
lowerCAmelCase_ = jnp.where(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
lowerCAmelCase_ = jax.lax.sort_key_val(_UpperCamelCase , _UpperCamelCase )[-1]
return next_scores
class _lowerCAmelCase ( __a ):
def __init__( self , _UpperCamelCase , _UpperCamelCase = -float("Inf" ) , _UpperCamelCase = 1 ) -> List[Any]:
if not isinstance(_UpperCamelCase , _UpperCamelCase ) or top_k <= 0:
raise ValueError(f"""`top_k` has to be a strictly positive integer, but is {top_k}""" )
lowerCAmelCase_ = max(_UpperCamelCase , _UpperCamelCase )
lowerCAmelCase_ = filter_value
def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray:
lowerCAmelCase_ , lowerCAmelCase_ = scores.shape
lowerCAmelCase_ = jnp.full(batch_size * vocab_size , self.filter_value )
lowerCAmelCase_ = min(self.top_k , scores.shape[-1] ) # Safety check
lowerCAmelCase_ , lowerCAmelCase_ = lax.top_k(_UpperCamelCase , _UpperCamelCase )
lowerCAmelCase_ = jnp.broadcast_to((jnp.arange(_UpperCamelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten()
lowerCAmelCase_ = topk_scores.flatten()
lowerCAmelCase_ = topk_indices.flatten() + shift
lowerCAmelCase_ = next_scores_flat.at[topk_indices_flat].set(_UpperCamelCase )
lowerCAmelCase_ = next_scores_flat.reshape(_UpperCamelCase , _UpperCamelCase )
return next_scores
class _lowerCAmelCase ( __a ):
def __init__( self , _UpperCamelCase ) -> Any:
lowerCAmelCase_ = bos_token_id
def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray:
lowerCAmelCase_ = jnp.full(scores.shape , -float("inf" ) )
lowerCAmelCase_ = 1 - jnp.bool_(cur_len - 1 )
lowerCAmelCase_ = jnp.where(_UpperCamelCase , new_scores.at[:, self.bos_token_id].set(0 ) , _UpperCamelCase )
return scores
class _lowerCAmelCase ( __a ):
def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> List[str]:
lowerCAmelCase_ = max_length
lowerCAmelCase_ = eos_token_id
def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray:
lowerCAmelCase_ = jnp.full(scores.shape , -float("inf" ) )
lowerCAmelCase_ = 1 - jnp.bool_(cur_len - self.max_length + 1 )
lowerCAmelCase_ = jnp.where(_UpperCamelCase , new_scores.at[:, self.eos_token_id].set(0 ) , _UpperCamelCase )
return scores
class _lowerCAmelCase ( __a ):
def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]:
if not isinstance(_UpperCamelCase , _UpperCamelCase ) or min_length < 0:
raise ValueError(f"""`min_length` has to be a positive integer, but is {min_length}""" )
if not isinstance(_UpperCamelCase , _UpperCamelCase ) or eos_token_id < 0:
raise ValueError(f"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" )
lowerCAmelCase_ = min_length
lowerCAmelCase_ = eos_token_id
def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray:
# create boolean flag to decide if min length penalty should be applied
lowerCAmelCase_ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 )
lowerCAmelCase_ = jnp.where(_UpperCamelCase , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , _UpperCamelCase )
return scores
class _lowerCAmelCase ( __a ):
def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> int:
lowerCAmelCase_ = list(_UpperCamelCase )
lowerCAmelCase_ = begin_index
def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int:
lowerCAmelCase_ = 1 - jnp.bool_(cur_len - self.begin_index )
lowerCAmelCase_ = jnp.where(_UpperCamelCase , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , _UpperCamelCase )
return scores
class _lowerCAmelCase ( __a ):
def __init__( self , _UpperCamelCase ) -> Optional[Any]:
lowerCAmelCase_ = list(_UpperCamelCase )
def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray:
lowerCAmelCase_ = scores.at[..., self.suppress_tokens].set(-float("inf" ) )
return scores
class _lowerCAmelCase ( __a ):
def __init__( self , _UpperCamelCase ) -> List[Any]:
lowerCAmelCase_ = dict(_UpperCamelCase )
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
lowerCAmelCase_ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1
for index, token in force_token_map.items():
if token is not None:
lowerCAmelCase_ = force_token_array.at[index].set(_UpperCamelCase )
lowerCAmelCase_ = jnp.intaa(_UpperCamelCase )
def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray:
def _force_token(_UpperCamelCase ):
lowerCAmelCase_ = scores.shape[0]
lowerCAmelCase_ = self.force_token_array[generation_idx]
lowerCAmelCase_ = jnp.ones_like(_UpperCamelCase , dtype=scores.dtype ) * -float("inf" )
lowerCAmelCase_ = jnp.zeros((batch_size, 1) , dtype=scores.dtype )
lowerCAmelCase_ = lax.dynamic_update_slice(_UpperCamelCase , _UpperCamelCase , (0, current_token) )
return new_scores
lowerCAmelCase_ = lax.cond(
cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond(
self.force_token_array[cur_len] >= 0 , lambda: _force_token(_UpperCamelCase ) , lambda: scores , ) , )
return scores
class _lowerCAmelCase ( __a ):
def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple:
lowerCAmelCase_ = generate_config.eos_token_id
lowerCAmelCase_ = generate_config.no_timestamps_token_id
lowerCAmelCase_ = generate_config.no_timestamps_token_id + 1
lowerCAmelCase_ = decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(_UpperCamelCase , "max_initial_timestamp_index" ):
lowerCAmelCase_ = generate_config.max_initial_timestamp_index
else:
lowerCAmelCase_ = model_config.vocab_size
if self.max_initial_timestamp_index is None:
lowerCAmelCase_ = model_config.vocab_size
def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]:
# suppress <|notimestamps|> which is handled by without_timestamps
lowerCAmelCase_ = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) )
def handle_pairs(_UpperCamelCase , _UpperCamelCase ):
lowerCAmelCase_ = jnp.where((cur_len - self.begin_index) >= 1 , _UpperCamelCase , _UpperCamelCase )
lowerCAmelCase_ = jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _UpperCamelCase , )
lowerCAmelCase_ = jnp.where((cur_len - self.begin_index) < 2 , _UpperCamelCase , _UpperCamelCase )
lowerCAmelCase_ = jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin , _UpperCamelCase , _UpperCamelCase , )
return jnp.where(
_UpperCamelCase , jnp.where(
penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , _UpperCamelCase , )
lowerCAmelCase_ = jax.vmap(_UpperCamelCase )(_UpperCamelCase , _UpperCamelCase )
lowerCAmelCase_ = jnp.where(cur_len == self.begin_index , _UpperCamelCase , _UpperCamelCase )
lowerCAmelCase_ = jnp.where(
self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _UpperCamelCase , )
lowerCAmelCase_ = self.timestamp_begin + self.max_initial_timestamp_index
lowerCAmelCase_ = jnp.where(
_UpperCamelCase , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , _UpperCamelCase , )
# if sum of probability over timestamps is above any other token, sample timestamp
lowerCAmelCase_ = jax.nn.log_softmax(_UpperCamelCase , axis=-1 )
def handle_cumulative_probs(_UpperCamelCase , _UpperCamelCase ):
lowerCAmelCase_ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 )
lowerCAmelCase_ = jnp.max(logprobs_k[: self.timestamp_begin] )
return jnp.where(
timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , _UpperCamelCase , )
lowerCAmelCase_ = jax.vmap(_UpperCamelCase )(_UpperCamelCase , _UpperCamelCase )
return scores
| 279 | 0 |
"""simple docstring"""
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetaImageProcessor
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[str] , UpperCamelCase : str , UpperCamelCase : int=7 , UpperCamelCase : Dict=3 , UpperCamelCase : Optional[Any]=30 , UpperCamelCase : Tuple=400 , UpperCamelCase : str=True , UpperCamelCase : int=None , UpperCamelCase : Tuple=True , UpperCamelCase : Tuple=[0.5, 0.5, 0.5] , UpperCamelCase : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]=1 / 255 , UpperCamelCase : Optional[int]=True , ):
'''simple docstring'''
__UpperCAmelCase : int = size if size is not None else {"shortest_edge": 18, "longest_edge": 1_333}
__UpperCAmelCase : Optional[int] = parent
__UpperCAmelCase : List[Any] = batch_size
__UpperCAmelCase : Union[str, Any] = num_channels
__UpperCAmelCase : Tuple = min_resolution
__UpperCAmelCase : List[Any] = max_resolution
__UpperCAmelCase : Any = do_resize
__UpperCAmelCase : Optional[Any] = size
__UpperCAmelCase : str = do_normalize
__UpperCAmelCase : Tuple = image_mean
__UpperCAmelCase : Dict = image_std
__UpperCAmelCase : Optional[int] = do_rescale
__UpperCAmelCase : int = rescale_factor
__UpperCAmelCase : Optional[int] = do_pad
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def lowerCamelCase__ ( self : Any , UpperCamelCase : Any , UpperCamelCase : str=False ):
'''simple docstring'''
if not batched:
__UpperCAmelCase : Any = image_inputs[0]
if isinstance(__lowerCamelCase , Image.Image ):
__UpperCAmelCase : Optional[int] = image.size
else:
__UpperCAmelCase : Optional[int] = image.shape[1], image.shape[2]
if w < h:
__UpperCAmelCase : Optional[int] = int(self.size["""shortest_edge"""] * h / w )
__UpperCAmelCase : Any = self.size["shortest_edge"]
elif w > h:
__UpperCAmelCase : Optional[int] = self.size["shortest_edge"]
__UpperCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h )
else:
__UpperCAmelCase : Dict = self.size["shortest_edge"]
__UpperCAmelCase : Optional[Any] = self.size["shortest_edge"]
else:
__UpperCAmelCase : Tuple = []
for image in image_inputs:
__UpperCAmelCase : Optional[int] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__UpperCAmelCase : str = max(__lowerCamelCase , key=lambda UpperCamelCase : item[0] )[0]
__UpperCAmelCase : List[Any] = max(__lowerCamelCase , key=lambda UpperCamelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
__a = DetaImageProcessor if is_vision_available() else None
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Any = DetaImageProcessingTester(self )
@property
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowerCamelCase , """image_mean""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """image_std""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """do_normalize""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """do_resize""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """do_rescale""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """do_pad""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """size""" ) )
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1_333} )
self.assertEqual(image_processor.do_pad , __lowerCamelCase )
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , Image.Image )
# Test not batched input
__UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__UpperCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__UpperCAmelCase : Tuple = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase )
__UpperCAmelCase : List[Any] = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , np.ndarray )
# Test not batched input
__UpperCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__UpperCAmelCase : Optional[Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__UpperCAmelCase : Union[str, Any] = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values
__UpperCAmelCase : Any = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , torch.Tensor )
# Test not batched input
__UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__UpperCAmelCase : int = self.image_processor_tester.get_expected_values(__lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__UpperCAmelCase : Any = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values
__UpperCAmelCase : Any = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f:
__UpperCAmelCase : Optional[int] = json.loads(f.read() )
__UpperCAmelCase : Optional[Any] = {"image_id": 39_769, "annotations": target}
# encode them
__UpperCAmelCase : Any = DetaImageProcessor()
__UpperCAmelCase : List[Any] = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors="""pt""" )
# verify pixel values
__UpperCAmelCase : Optional[int] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding["""pixel_values"""].shape , __lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) )
# verify area
__UpperCAmelCase : List[Any] = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __lowerCamelCase ) )
# verify boxes
__UpperCAmelCase : Tuple = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __lowerCamelCase )
__UpperCAmelCase : List[Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __lowerCamelCase , atol=1e-3 ) )
# verify image_id
__UpperCAmelCase : List[str] = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __lowerCamelCase ) )
# verify is_crowd
__UpperCAmelCase : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __lowerCamelCase ) )
# verify class_labels
__UpperCAmelCase : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __lowerCamelCase ) )
# verify orig_size
__UpperCAmelCase : List[str] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __lowerCamelCase ) )
# verify size
__UpperCAmelCase : Union[str, Any] = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __lowerCamelCase ) )
@slow
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f:
__UpperCAmelCase : Any = json.loads(f.read() )
__UpperCAmelCase : Optional[Any] = {"file_name": "000000039769.png", "image_id": 39_769, "segments_info": target}
__UpperCAmelCase : Dict = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" )
# encode them
__UpperCAmelCase : str = DetaImageProcessor(format="""coco_panoptic""" )
__UpperCAmelCase : Optional[int] = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors="""pt""" )
# verify pixel values
__UpperCAmelCase : Any = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding["""pixel_values"""].shape , __lowerCamelCase )
__UpperCAmelCase : str = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) )
# verify area
__UpperCAmelCase : List[str] = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __lowerCamelCase ) )
# verify boxes
__UpperCAmelCase : List[Any] = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __lowerCamelCase )
__UpperCAmelCase : List[str] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __lowerCamelCase , atol=1e-3 ) )
# verify image_id
__UpperCAmelCase : Optional[int] = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __lowerCamelCase ) )
# verify is_crowd
__UpperCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __lowerCamelCase ) )
# verify class_labels
__UpperCAmelCase : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __lowerCamelCase ) )
# verify masks
__UpperCAmelCase : Dict = 822_873
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __lowerCamelCase )
# verify orig_size
__UpperCAmelCase : Union[str, Any] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __lowerCamelCase ) )
# verify size
__UpperCAmelCase : str = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __lowerCamelCase ) )
| 139 |
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class lowerCAmelCase__ :
'''simple docstring'''
@property
def _lowerCamelCase ( self) -> Tuple:
return self.get_dummy_input()
@property
def _lowerCamelCase ( self) -> List[Any]:
if self.block_type == "down":
return (4, 3_2, 1_6, 1_6)
elif self.block_type == "mid":
return (4, 3_2, 3_2, 3_2)
elif self.block_type == "up":
return (4, 3_2, 6_4, 6_4)
raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.")
def _lowerCamelCase ( self , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=False , ) -> Dict:
_A : Tuple = 4
_A : Optional[Any] = 3_2
_A : Optional[int] = (3_2, 3_2)
_A : Dict = torch.manual_seed(0)
_A : List[Any] = torch.device(__lowerCamelCase)
_A : Union[str, Any] = (batch_size, num_channels) + sizes
_A : int = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase)
_A : Optional[int] = {"hidden_states": hidden_states}
if include_temb:
_A : Dict = 1_2_8
_A : Any = randn_tensor((batch_size, temb_channels) , generator=__lowerCamelCase , device=__lowerCamelCase)
if include_res_hidden_states_tuple:
_A : str = torch.manual_seed(1)
_A : str = (randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase),)
if include_encoder_hidden_states:
_A : Any = floats_tensor((batch_size, 3_2, 3_2)).to(__lowerCamelCase)
if include_skip_sample:
_A : List[Any] = randn_tensor(((batch_size, 3) + sizes) , generator=__lowerCamelCase , device=__lowerCamelCase)
return dummy_input
def _lowerCamelCase ( self) -> Optional[Any]:
_A : int = {
"in_channels": 3_2,
"out_channels": 3_2,
"temb_channels": 1_2_8,
}
if self.block_type == "up":
_A : Optional[Any] = 3_2
if self.block_type == "mid":
init_dict.pop("out_channels")
_A : Optional[Any] = self.dummy_input
return init_dict, inputs_dict
def _lowerCamelCase ( self , __lowerCamelCase) -> Dict:
_A , _A : Optional[int] = self.prepare_init_args_and_inputs_for_common()
_A : int = self.block_class(**__lowerCamelCase)
unet_block.to(__lowerCamelCase)
unet_block.eval()
with torch.no_grad():
_A : Any = unet_block(**__lowerCamelCase)
if isinstance(__lowerCamelCase , __lowerCamelCase):
_A : Optional[Any] = output[0]
self.assertEqual(output.shape , self.output_shape)
_A : Optional[int] = output[0, -1, -3:, -3:]
_A : Dict = torch.tensor(__lowerCamelCase).to(__lowerCamelCase)
assert torch_all_close(output_slice.flatten() , __lowerCamelCase , atol=5e-3)
@unittest.skipIf(torch_device == "mps" , "Training is not supported in mps")
def _lowerCamelCase ( self) -> Dict:
_A , _A : Optional[int] = self.prepare_init_args_and_inputs_for_common()
_A : Optional[int] = self.block_class(**__lowerCamelCase)
model.to(__lowerCamelCase)
model.train()
_A : Tuple = model(**__lowerCamelCase)
if isinstance(__lowerCamelCase , __lowerCamelCase):
_A : List[Any] = output[0]
_A : Any = torch.device(__lowerCamelCase)
_A : Any = randn_tensor(output.shape , device=__lowerCamelCase)
_A : Optional[int] = torch.nn.functional.mse_loss(__lowerCamelCase , __lowerCamelCase)
loss.backward()
| 503 | 0 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowerCAmelCase__ ( UpperCAmelCase__ ):
lowerCAmelCase : int = ["image_processor", "tokenizer"]
lowerCAmelCase : Optional[int] = "FlavaImageProcessor"
lowerCAmelCase : Tuple = ("BertTokenizer", "BertTokenizerFast")
def __init__( self : str , lowerCamelCase__ : Dict=None , lowerCamelCase__ : List[str]=None , **lowerCamelCase__ : Tuple ) ->str:
'''simple docstring'''
_UpperCAmelCase : str = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __A , )
_UpperCAmelCase : Tuple = kwargs.pop("feature_extractor" )
_UpperCAmelCase : Tuple = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(__A , __A )
_UpperCAmelCase : int = self.image_processor
def __call__( self : Any , lowerCamelCase__ : Optional[ImageInput] = None , lowerCamelCase__ : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , lowerCamelCase__ : bool = True , lowerCamelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase__ : Union[bool, str, TruncationStrategy] = False , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : int = 0 , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , **lowerCamelCase__ : List[Any] , ) ->Any:
'''simple docstring'''
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
_UpperCAmelCase : Dict = self.tokenizer(
text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_token_type_ids=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , )
if images is not None:
_UpperCAmelCase : Any = self.image_processor(
__A , return_image_mask=__A , return_codebook_pixels=__A , return_tensors=__A , **__A , )
if text is not None and images is not None:
encoding.update(__A )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__A ) , tensor_type=__A )
def lowerCAmelCase__ ( self : int , *lowerCamelCase__ : Dict , **lowerCamelCase__ : Union[str, Any] ) ->str:
'''simple docstring'''
return self.tokenizer.batch_decode(*__A , **__A )
def lowerCAmelCase__ ( self : Union[str, Any] , *lowerCamelCase__ : Optional[Any] , **lowerCamelCase__ : Tuple ) ->Union[str, Any]:
'''simple docstring'''
return self.tokenizer.decode(*__A , **__A )
@property
def lowerCAmelCase__ ( self : Union[str, Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase : str = self.tokenizer.model_input_names
_UpperCAmelCase : Any = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[int]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __A , )
return self.image_processor_class
@property
def lowerCAmelCase__ ( self : Optional[int] ) ->Union[str, Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __A , )
return self.image_processor
| 717 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class lowerCAmelCase__ ( unittest.TestCase ):
def __init__( self : int , lowerCamelCase__ : str , lowerCamelCase__ : str=13 , lowerCamelCase__ : Dict=7 , lowerCamelCase__ : str=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Dict=True , lowerCamelCase__ : int=True , lowerCamelCase__ : Tuple=99 , lowerCamelCase__ : Optional[int]=32 , lowerCamelCase__ : str=5 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Any=37 , lowerCamelCase__ : List[Any]="gelu" , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : Tuple=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Any=16 , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : Optional[Any]=0.0_2 , lowerCamelCase__ : Optional[int]=4 , ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase : str = parent
_UpperCAmelCase : Optional[int] = batch_size
_UpperCAmelCase : List[Any] = seq_length
_UpperCAmelCase : Dict = is_training
_UpperCAmelCase : int = use_attention_mask
_UpperCAmelCase : List[Any] = use_token_type_ids
_UpperCAmelCase : int = use_labels
_UpperCAmelCase : str = vocab_size
_UpperCAmelCase : Tuple = hidden_size
_UpperCAmelCase : Dict = num_hidden_layers
_UpperCAmelCase : List[Any] = num_attention_heads
_UpperCAmelCase : Tuple = intermediate_size
_UpperCAmelCase : List[Any] = hidden_act
_UpperCAmelCase : Union[str, Any] = hidden_dropout_prob
_UpperCAmelCase : List[str] = attention_probs_dropout_prob
_UpperCAmelCase : Optional[int] = max_position_embeddings
_UpperCAmelCase : Tuple = type_vocab_size
_UpperCAmelCase : int = type_sequence_label_size
_UpperCAmelCase : List[str] = initializer_range
_UpperCAmelCase : Union[str, Any] = num_choices
def lowerCAmelCase__ ( self : int ) ->Any:
'''simple docstring'''
_UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase : Any = None
if self.use_attention_mask:
_UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : int = None
if self.use_token_type_ids:
_UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCAmelCase : Tuple = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCAmelCase__ ( self : Dict ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = config_and_inputs
_UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
def lowerCAmelCase__ ( self : int ) ->Dict:
'''simple docstring'''
_UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = config_and_inputs
_UpperCAmelCase : List[Any] = True
_UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
lowerCAmelCase : Tuple = True
lowerCAmelCase : Tuple = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCAmelCase__ ( self : Tuple ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase : str = FlaxRobertaPreLayerNormModelTester(self )
@slow
def lowerCAmelCase__ ( self : Optional[int] ) ->int:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCAmelCase : Any = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=lowerCamelCase__ )
_UpperCAmelCase : Tuple = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCamelCase__ )
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def lowerCAmelCase__ ( self : Tuple ) ->str:
'''simple docstring'''
_UpperCAmelCase : Optional[int] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=lowerCamelCase__ )
_UpperCAmelCase : str = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa )
_UpperCAmelCase : Tuple = model(lowerCamelCase__ )[0]
_UpperCAmelCase : int = [1, 11, 5_02_65]
self.assertEqual(list(output.shape ) , lowerCamelCase__ )
# compare the actual values for a slice.
_UpperCAmelCase : int = np.array(
[[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1E-4 ) )
@slow
def lowerCAmelCase__ ( self : Optional[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase : Any = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=lowerCamelCase__ )
_UpperCAmelCase : List[Any] = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa )
_UpperCAmelCase : Optional[Any] = model(lowerCamelCase__ )[0]
# compare the actual values for a slice.
_UpperCAmelCase : str = np.array(
[[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1E-4 ) )
| 40 | 0 |
"""simple docstring"""
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
lowerCamelCase__ = logging.getLogger(__name__)
lowerCamelCase__ = {"facebook/bart-base": BartForConditionalGeneration}
lowerCamelCase__ = {"facebook/bart-base": BartTokenizer}
def lowercase__ ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : List[Any] = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." )
parser.add_argument(
"--validation_file" ,type=lowercase_ ,default=lowercase_ ,help="A csv or a json file containing the validation data." )
parser.add_argument(
"--max_length" ,type=lowercase_ ,default=5 ,help="The maximum total input sequence length after tokenization." ,)
parser.add_argument(
"--num_beams" ,type=lowercase_ ,default=lowercase_ ,help=(
"Number of beams to use for evaluation. This argument will be "
"passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."
) ,)
parser.add_argument(
"--model_name_or_path" ,type=lowercase_ ,help="Path to pretrained model or model identifier from huggingface.co/models." ,required=lowercase_ ,)
parser.add_argument(
"--config_name" ,type=lowercase_ ,default=lowercase_ ,help="Pretrained config name or path if not the same as model_name" ,)
parser.add_argument(
"--device" ,type=lowercase_ ,default="cpu" ,help="Device where the model will be run" ,)
parser.add_argument("--output_file_path" ,type=lowercase_ ,default=lowercase_ ,help="Where to store the final ONNX file." )
_UpperCamelCase : Optional[int] = parser.parse_args()
return args
def lowercase__ ( lowercase_ ,lowercase_="cpu" ) -> Any:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = model_dict[model_name].from_pretrained(lowercase_ ).to(lowercase_ )
_UpperCamelCase : Dict = tokenizer_dict[model_name].from_pretrained(lowercase_ )
if model_name in ["facebook/bart-base"]:
_UpperCamelCase : Dict = 0
_UpperCamelCase : Dict = None
_UpperCamelCase : List[str] = 0
return huggingface_model, tokenizer
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> List[Any]:
"""simple docstring"""
model.eval()
_UpperCamelCase : List[Any] = None
_UpperCamelCase : Optional[int] = torch.jit.script(BARTBeamSearchGenerator(lowercase_ ) )
with torch.no_grad():
_UpperCamelCase : Optional[Any] = "My friends are cool but they eat too many carbs."
_UpperCamelCase : Any = tokenizer([ARTICLE_TO_SUMMARIZE] ,max_length=1_024 ,return_tensors="pt" ).to(model.device )
_UpperCamelCase : Optional[int] = model.generate(
inputs["input_ids"] ,attention_mask=inputs["attention_mask"] ,num_beams=lowercase_ ,max_length=lowercase_ ,early_stopping=lowercase_ ,decoder_start_token_id=model.config.decoder_start_token_id ,)
torch.onnx.export(
lowercase_ ,(
inputs["input_ids"],
inputs["attention_mask"],
num_beams,
max_length,
model.config.decoder_start_token_id,
) ,lowercase_ ,opset_version=14 ,input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] ,output_names=["output_ids"] ,dynamic_axes={
"input_ids": {0: "batch", 1: "seq"},
"output_ids": {0: "batch", 1: "seq_out"},
} ,example_outputs=lowercase_ ,)
logger.info("Model exported to {}".format(lowercase_ ) )
_UpperCamelCase : str = remove_dup_initializers(os.path.abspath(lowercase_ ) )
logger.info("Deduplicated and optimized model written to {}".format(lowercase_ ) )
_UpperCamelCase : Union[str, Any] = onnxruntime.InferenceSession(lowercase_ )
_UpperCamelCase : Optional[Any] = ort_sess.run(
lowercase_ ,{
"input_ids": inputs["input_ids"].cpu().numpy(),
"attention_mask": inputs["attention_mask"].cpu().numpy(),
"num_beams": np.array(lowercase_ ),
"max_length": np.array(lowercase_ ),
"decoder_start_token_id": np.array(model.config.decoder_start_token_id ),
} ,)
np.testing.assert_allclose(summary_ids.cpu().numpy() ,ort_out[0] ,rtol=1e-3 ,atol=1e-3 )
logger.info("Model outputs from torch and ONNX Runtime are similar." )
logger.info("Success." )
def lowercase__ ( ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase : str = parse_args()
_UpperCamelCase : Union[str, Any] = 5
_UpperCamelCase : List[str] = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,level=logging.INFO ,)
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
_UpperCamelCase : Optional[int] = torch.device(args.device )
_UpperCamelCase, _UpperCamelCase : Optional[int] = load_model_tokenizer(args.model_name_or_path ,lowercase_ )
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" )
model.to(lowercase_ )
if args.max_length:
_UpperCamelCase : Any = args.max_length
if args.num_beams:
_UpperCamelCase : List[Any] = args.num_beams
if args.output_file_path:
_UpperCamelCase : int = args.output_file_path
else:
_UpperCamelCase : int = "BART.onnx"
logger.info("Exporting model to ONNX" )
export_and_validate_model(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ )
if __name__ == "__main__":
main()
| 624 |
"""simple docstring"""
import collections
import os
import re
from pathlib import Path
lowerCamelCase__ = "src/transformers"
# Matches is_xxx_available()
lowerCamelCase__ = re.compile(R"is\_([a-z_]*)_available()")
# Catches a one-line _import_struct = {xxx}
lowerCamelCase__ = re.compile(R"^_import_structure\s+=\s+\{([^\}]+)\}")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
lowerCamelCase__ = re.compile(R"\s+\"\S*\":\s+\[([^\]]*)\]")
# Catches a line if not is_foo_available
lowerCamelCase__ = re.compile(R"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)")
# Catches a line _import_struct["bla"].append("foo")
lowerCamelCase__ = re.compile(R"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
lowerCamelCase__ = re.compile(R"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]")
# Catches a line with an object between quotes and a comma: "MyModel",
lowerCamelCase__ = re.compile(R"^\s+\"([^\"]+)\",")
# Catches a line with objects between brackets only: ["foo", "bar"],
lowerCamelCase__ = re.compile(R"^\s+\[([^\]]+)\]")
# Catches a line with from foo import bar, bla, boo
lowerCamelCase__ = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
# Catches a line with try:
lowerCamelCase__ = re.compile(R"^\s*try:")
# Catches a line with else:
lowerCamelCase__ = re.compile(R"^\s*else:")
def lowercase__ ( lowercase_ ) -> Optional[int]:
"""simple docstring"""
if _re_test_backend.search(lowercase_ ) is None:
return None
_UpperCamelCase : Optional[Any] = [b[0] for b in _re_backend.findall(lowercase_ )]
backends.sort()
return "_and_".join(lowercase_ )
def lowercase__ ( lowercase_ ) -> Dict:
"""simple docstring"""
with open(lowercase_ ,"r" ,encoding="utf-8" ,newline="\n" ) as f:
_UpperCamelCase : Optional[Any] = f.readlines()
_UpperCamelCase : str = 0
while line_index < len(lowercase_ ) and not lines[line_index].startswith("_import_structure = {" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lowercase_ ):
return None
# First grab the objects without a specific backend in _import_structure
_UpperCamelCase : str = []
while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None:
_UpperCamelCase : Any = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(lowercase_ ):
_UpperCamelCase : Tuple = _re_one_line_import_struct.search(lowercase_ ).groups()[0]
_UpperCamelCase : Any = re.findall(r"\[([^\]]+)\]" ,lowercase_ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(", " )] )
line_index += 1
continue
_UpperCamelCase : str = _re_import_struct_key_value.search(lowercase_ )
if single_line_import_search is not None:
_UpperCamelCase : List[Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(lowercase_ ) > 0]
objects.extend(lowercase_ )
elif line.startswith(" " * 8 + "\"" ):
objects.append(line[9:-3] )
line_index += 1
_UpperCamelCase : str = {"none": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("if TYPE_CHECKING" ):
# If the line is an if not is_backend_available, we grab all objects associated.
_UpperCamelCase : Dict = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
_UpperCamelCase : int = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
_UpperCamelCase : Dict = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ):
_UpperCamelCase : Dict = lines[line_index]
if _re_import_struct_add_one.search(lowercase_ ) is not None:
objects.append(_re_import_struct_add_one.search(lowercase_ ).groups()[0] )
elif _re_import_struct_add_many.search(lowercase_ ) is not None:
_UpperCamelCase : int = _re_import_struct_add_many.search(lowercase_ ).groups()[0].split(", " )
_UpperCamelCase : str = [obj[1:-1] for obj in imports if len(lowercase_ ) > 0]
objects.extend(lowercase_ )
elif _re_between_brackets.search(lowercase_ ) is not None:
_UpperCamelCase : Optional[Any] = _re_between_brackets.search(lowercase_ ).groups()[0].split(", " )
_UpperCamelCase : Any = [obj[1:-1] for obj in imports if len(lowercase_ ) > 0]
objects.extend(lowercase_ )
elif _re_quote_object.search(lowercase_ ) is not None:
objects.append(_re_quote_object.search(lowercase_ ).groups()[0] )
elif line.startswith(" " * 8 + "\"" ):
objects.append(line[9:-3] )
elif line.startswith(" " * 12 + "\"" ):
objects.append(line[13:-3] )
line_index += 1
_UpperCamelCase : List[str] = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
_UpperCamelCase : Optional[Any] = []
while (
line_index < len(lowercase_ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("else" )
):
_UpperCamelCase : List[Any] = lines[line_index]
_UpperCamelCase : Union[str, Any] = _re_import.search(lowercase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
_UpperCamelCase : List[str] = {"none": objects}
# Let's continue with backend-specific objects
while line_index < len(lowercase_ ):
# If the line is an if is_backend_available, we grab all objects associated.
_UpperCamelCase : Any = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
_UpperCamelCase : List[Any] = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
_UpperCamelCase : Any = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ):
_UpperCamelCase : str = lines[line_index]
_UpperCamelCase : Optional[int] = _re_import.search(lowercase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 12 ):
objects.append(line[12:-2] )
line_index += 1
_UpperCamelCase : Dict = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
def find_duplicates(lowercase_ ):
return [k for k, v in collections.Counter(lowercase_ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
_UpperCamelCase : Optional[Any] = []
for key in import_dict_objects.keys():
_UpperCamelCase : Optional[int] = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' )
_UpperCamelCase : int = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
_UpperCamelCase : Tuple = "base imports" if key == "none" else F'''{key} backend'''
errors.append(F'''Differences for {name}:''' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' )
return errors
def lowercase__ ( ) -> str:
"""simple docstring"""
_UpperCamelCase : Tuple = []
for root, _, files in os.walk(lowercase_ ):
if "__init__.py" in files:
_UpperCamelCase : Dict = os.path.join(lowercase_ ,"__init__.py" )
_UpperCamelCase : str = parse_init(lowercase_ )
if objects is not None:
_UpperCamelCase : Optional[Any] = analyze_results(*lowercase_ )
if len(lowercase_ ) > 0:
_UpperCamelCase : Tuple = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'''
failures.append("\n".join(lowercase_ ) )
if len(lowercase_ ) > 0:
raise ValueError("\n\n".join(lowercase_ ) )
def lowercase__ ( ) -> Dict:
"""simple docstring"""
_UpperCamelCase : str = []
for path, directories, files in os.walk(lowercase_ ):
for folder in directories:
# Ignore private modules
if folder.startswith("_" ):
directories.remove(lowercase_ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(lowercase_ ) / folder).glob("*.py" ) ) ) == 0:
continue
_UpperCamelCase : str = str((Path(lowercase_ ) / folder).relative_to(lowercase_ ) )
_UpperCamelCase : int = short_path.replace(os.path.sep ,"." )
submodules.append(lowercase_ )
for fname in files:
if fname == "__init__.py":
continue
_UpperCamelCase : List[Any] = str((Path(lowercase_ ) / fname).relative_to(lowercase_ ) )
_UpperCamelCase : Optional[int] = short_path.replace(".py" ,"" ).replace(os.path.sep ,"." )
if len(submodule.split("." ) ) == 1:
submodules.append(lowercase_ )
return submodules
lowerCamelCase__ = [
"convert_pytorch_checkpoint_to_tf2",
"modeling_flax_pytorch_utils",
"models.esm.openfold_utils",
]
def lowercase__ ( ) -> Tuple:
"""simple docstring"""
from transformers.utils import direct_transformers_import
_UpperCamelCase : List[str] = direct_transformers_import(lowercase_ )
_UpperCamelCase : Any = set(transformers._import_structure.keys() )
# This contains all the base keys of the _import_structure object defined in the init, but if the user is missing
# some optional dependencies, they may not have all of them. Thus we read the init to read all additions and
# (potentiall re-) add them.
with open(os.path.join(lowercase_ ,"__init__.py" ) ,"r" ) as f:
_UpperCamelCase : Union[str, Any] = f.read()
import_structure_keys.update(set(re.findall(r"import_structure\[\"([^\"]*)\"\]" ,lowercase_ ) ) )
_UpperCamelCase : Optional[Any] = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in import_structure_keys
]
if len(lowercase_ ) > 0:
_UpperCamelCase : List[str] = "\n".join(F'''- {module}''' for module in module_not_registered )
raise ValueError(
"The following submodules are not properly registed in the main init of Transformers:\n"
F'''{list_of_modules}\n'''
"Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 624 | 1 |
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
_lowerCamelCase : Optional[Any] = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow("", "|", "|"),
datarow=DataRow("", "|", "|"),
padding=1,
with_header_hide=None,
)
_lowerCamelCase : Optional[int] = []
_lowerCamelCase : Tuple = []
_lowerCamelCase : List[str] = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}}
_lowerCamelCase : Optional[Any] = [
{
"type": "header",
"text": {
"type": "plain_text",
"text": F'''🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results''',
"emoji": True,
},
}
]
_lowerCamelCase : str = 0
for log in Path().glob("*.log"):
_lowerCamelCase : str = 0
with open(log, "r") as f:
for line in f:
_lowerCamelCase : Optional[Any] = json.loads(line)
if line.get("nodeid", "") != "":
_lowerCamelCase : str = line["nodeid"]
if line.get("duration", None) is not None:
_lowerCamelCase : str = F'''{line['duration']:.4f}'''
if line.get("outcome", "") == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split("_")[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
_lowerCamelCase : Optional[int] = []
log.unlink()
_lowerCamelCase : str = ""
_lowerCamelCase : Optional[Any] = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += F"*{name[1:]}: {num_failed} failed test*\n"
else:
message += F"*{name[1:]}: {num_failed} failed tests*\n"
_lowerCamelCase : Any = []
_lowerCamelCase : Dict = {}
for test in failed_tests:
_lowerCamelCase : Union[str, Any] = test[0].split("::")
_lowerCamelCase : str = data[0].split("/")[-1]
if data[0] not in filesafailed:
_lowerCamelCase : List[str] = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
_lowerCamelCase : List[Any] = [test[0] for test in failed_table]
_lowerCamelCase : Optional[Any] = list(set(files))
# Count number of instances in failed_tests
_lowerCamelCase : Union[str, Any] = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
_lowerCamelCase : Optional[Any] = tabulate(
table,
headers=["Test Location", "Num Failed"],
tablefmt=hf_table_format,
stralign="right",
)
message += F"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3_0_0_0:
_lowerCamelCase : List[str] = "Too many failed tests, please see the full report in the Action results."
_lowerCamelCase : Tuple = len(err) + 1_0
_lowerCamelCase : Union[str, Any] = message[: 3_0_0_0 - offset] + F'''\n...\n```\n{err}'''
print(F'''### {message}''')
else:
_lowerCamelCase : List[str] = "No failed tests! 🤗"
print(F'''## {message}''')
payload.append(no_error_payload)
if os.environ.get("TEST_TYPE", "") != "":
from slack_sdk import WebClient
_lowerCamelCase : Optional[int] = WebClient(token=os.environ["SLACK_API_TOKEN"])
if message != "No failed tests! 🤗":
_lowerCamelCase : int = {
"type": "section",
"text": {
"type": "mrkdwn",
"text": message,
},
}
payload.append(md_report)
_lowerCamelCase : List[Any] = {
"type": "section",
"text": {
"type": "mrkdwn",
"text": "*For more details:*",
},
"accessory": {
"type": "button",
"text": {
"type": "plain_text",
"text": "Check Action results",
"emoji": True,
},
"url": F'''https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}''',
},
}
payload.append(action_button)
_lowerCamelCase : Union[str, Any] = {
"type": "context",
"elements": [
{
"type": "plain_text",
"text": F'''Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}''',
}
],
}
payload.append(date_report)
_lowerCamelCase : int = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload)
_lowerCamelCase : List[Any] = response.data["ts"]
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
_lowerCamelCase : Dict = ""
for i, row in enumerate(test_failures):
if row[0] != test_class:
_lowerCamelCase : Optional[int] = row[0]
else:
_lowerCamelCase : List[str] = ""
_lowerCamelCase : int = {
"type": "section",
"text": {
"type": "mrkdwn",
"text": F'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```''',
},
}
client.chat_postMessage(
channel="#accelerate-ci-daily",
thread_ts=ts,
blocks=[payload],
)
| 196 |
import cva
import numpy as np
class __snake_case :
def __init__( self : List[str] , _UpperCAmelCase : float , _UpperCAmelCase : int ) -> int:
'''simple docstring'''
if k in (0.04, 0.06):
_lowerCAmelCase : str = k
_lowerCAmelCase : Optional[Any] = window_size
else:
raise ValueError("""invalid k value""" )
def __str__( self : int ) -> str:
'''simple docstring'''
return str(self.k )
def SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCAmelCase : str ) -> tuple[cva.Mat, list[list[int]]]:
'''simple docstring'''
_lowerCAmelCase : Tuple = cva.imread(_UpperCAmelCase , 0 )
_lowerCAmelCase , _lowerCAmelCase : Tuple = img.shape
_lowerCAmelCase : list[list[int]] = []
_lowerCAmelCase : int = img.copy()
_lowerCAmelCase : str = cva.cvtColor(_UpperCAmelCase , cva.COLOR_GRAY2RGB )
_lowerCAmelCase , _lowerCAmelCase : int = np.gradient(_UpperCAmelCase )
_lowerCAmelCase : Any = dx**2
_lowerCAmelCase : Optional[int] = dy**2
_lowerCAmelCase : Optional[Any] = dx * dy
_lowerCAmelCase : Dict = 0.04
_lowerCAmelCase : Tuple = self.window_size // 2
for y in range(_UpperCAmelCase , h - offset ):
for x in range(_UpperCAmelCase , w - offset ):
_lowerCAmelCase : Optional[int] = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
_lowerCAmelCase : int = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
_lowerCAmelCase : Any = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
_lowerCAmelCase : Dict = (wxx * wyy) - (wxy**2)
_lowerCAmelCase : Union[str, Any] = wxx + wyy
_lowerCAmelCase : int = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 255 )
return color_img, corner_list
if __name__ == "__main__":
_lowerCamelCase : int = HarrisCorner(0.0_4, 3)
_lowerCamelCase , _lowerCamelCase : Any = edge_detect.detect("path_to_image")
cva.imwrite("detect.png", color_img)
| 196 | 1 |
import math
def UpperCAmelCase_ ( UpperCAmelCase__ ):
return math.sqrt(SCREAMING_SNAKE_CASE_ ) * math.sqrt(SCREAMING_SNAKE_CASE_ ) == num
def UpperCAmelCase_ ( UpperCAmelCase__ ):
lowercase_ = 0
lowercase_ = n
while left <= right:
lowercase_ = (left + right) // 2
if mid**2 == n:
return True
elif mid**2 > n:
lowercase_ = mid - 1
else:
lowercase_ = mid + 1
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 412 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Any = "falcon"
__lowerCamelCase : List[str] = ["past_key_values"]
def __init__( self , _lowerCAmelCase=65024 , _lowerCAmelCase=4544 , _lowerCAmelCase=32 , _lowerCAmelCase=71 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=11 , _lowerCAmelCase=11 , **_lowerCAmelCase , ) -> Union[str, Any]:
_lowerCAmelCase = vocab_size
# Backward compatibility with n_embed kwarg
_lowerCAmelCase = kwargs.pop("n_embed" , _lowerCAmelCase )
_lowerCAmelCase = hidden_size if n_embed is None else n_embed
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = layer_norm_epsilon
_lowerCAmelCase = initializer_range
_lowerCAmelCase = use_cache
_lowerCAmelCase = hidden_dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = eos_token_id
_lowerCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads
_lowerCAmelCase = alibi
_lowerCAmelCase = new_decoder_architecture
_lowerCAmelCase = multi_query # Ignored when new_decoder_architecture is True
_lowerCAmelCase = parallel_attn
_lowerCAmelCase = bias
super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
@property
def _snake_case ( self ) -> Optional[Any]:
return self.hidden_size // self.num_attention_heads
@property
def _snake_case ( self ) -> Optional[Any]:
return not self.alibi
| 18 | 0 |
'''simple docstring'''
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers import is_faiss_available
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch
if is_faiss_available():
import faiss
@require_faiss
class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ):
def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict:
a_ : Union[str, Any] = tempfile.mkdtemp()
a_ : Union[str, Any] = 8
# DPR tok
a_ : Dict = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
a_ : str = os.path.join(self.tmpdirname , '''dpr_tokenizer''' )
os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE )
a_ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
# BART tok
a_ : Union[str, Any] = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
a_ : int = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) )
a_ : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
a_ : Optional[int] = {'''unk_token''': '''<unk>'''}
a_ : List[str] = os.path.join(self.tmpdirname , '''bart_tokenizer''' )
os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE )
a_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''vocab_file'''] )
a_ : int = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) )
def SCREAMING_SNAKE_CASE ( self : Tuple ) -> DPRQuestionEncoderTokenizer:
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) )
def SCREAMING_SNAKE_CASE ( self : str ) -> DPRContextEncoderTokenizer:
return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> BartTokenizer:
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) )
def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]:
a_ : str = Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''text''': ['''foo''', '''bar'''],
'''title''': ['''Foo''', '''Bar'''],
'''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )],
} )
dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT )
return dataset
def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple:
a_ : List[str] = self.get_dummy_dataset()
a_ : Tuple = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , )
with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset:
a_ : Tuple = dataset
a_ : Any = RagRetriever(
__SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
return retriever
def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : bool ) -> Dict:
a_ : Dict = self.get_dummy_dataset()
a_ : Dict = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , )
if from_disk:
a_ : Optional[int] = os.path.join(self.tmpdirname , '''dataset''' )
a_ : str = os.path.join(self.tmpdirname , '''index.faiss''' )
dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) )
dataset.drop_index('''embeddings''' )
dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) )
del dataset
a_ : int = RagRetriever(
__SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
else:
a_ : Optional[Any] = RagRetriever(
__SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __SCREAMING_SNAKE_CASE ) , )
return retriever
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]:
a_ : str = Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''text''': ['''foo''', '''bar'''],
'''title''': ['''Foo''', '''Bar'''],
'''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )],
} )
dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT )
a_ : Optional[int] = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' )
dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' )
pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) )
a_ : Union[str, Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' )
a_ : Dict = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset}
pickle.dump(__SCREAMING_SNAKE_CASE , open(__SCREAMING_SNAKE_CASE , '''wb''' ) )
a_ : Optional[Any] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , )
a_ : int = RagRetriever(
__SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() )
return retriever
def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict:
a_ : Optional[Any] = 1
a_ : Dict = self.get_dummy_canonical_hf_index_retriever()
a_ : Tuple = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
a_ , a_ , a_ : str = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict:
a_ : str = self.get_dummy_canonical_hf_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset:
a_ : List[str] = self.get_dummy_dataset()
retriever.save_pretrained(__SCREAMING_SNAKE_CASE )
a_ : Optional[Any] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
a_ : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
a_ : List[str] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 )
self.assertTrue(out is not None )
def SCREAMING_SNAKE_CASE ( self : Dict ) -> int:
a_ : Union[str, Any] = 1
a_ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE )
a_ : List[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]:
a_ : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(__SCREAMING_SNAKE_CASE )
a_ : List[str] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
a_ : Tuple = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 )
self.assertTrue(out is not None )
def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]:
a_ : Union[str, Any] = 1
a_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE )
a_ : Optional[int] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
a_ , a_ , a_ : Tuple = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def SCREAMING_SNAKE_CASE ( self : int ) -> Dict:
a_ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(__SCREAMING_SNAKE_CASE )
a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
a_ : Tuple = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 )
self.assertTrue(out is not None )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any:
a_ : str = 1
a_ : Tuple = self.get_dummy_legacy_index_retriever()
a_ : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''text'''] ) , __SCREAMING_SNAKE_CASE )
self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]:
a_ : List[str] = self.get_dummy_legacy_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(__SCREAMING_SNAKE_CASE )
a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
a_ : List[str] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
a_ : Optional[Any] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 )
self.assertTrue(out is not None )
@require_torch
@require_tokenizers
@require_sentencepiece
def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]:
import torch
a_ : Any = 1
a_ : List[Any] = self.get_dummy_canonical_hf_index_retriever()
a_ : Union[str, Any] = [[5, 7], [10, 11]]
a_ : Optional[int] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
a_ : str = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE )
a_ , a_ , a_ : List[str] = (
out['''context_input_ids'''],
out['''context_attention_mask'''],
out['''retrieved_doc_embeds'''],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray )
a_ : Any = retriever(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , )
a_ , a_ , a_ , a_ : str = ( # noqa: F841
out['''context_input_ids'''],
out['''context_attention_mask'''],
out['''retrieved_doc_embeds'''],
out['''doc_ids'''],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor )
@require_torch
@require_tokenizers
@require_sentencepiece
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any:
a_ : str = self.get_dpr_ctx_encoder_tokenizer()
a_ : Tuple = 1
a_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE )
retriever.set_ctx_encoder_tokenizer(__SCREAMING_SNAKE_CASE )
a_ : Dict = [[5, 7], [10, 11]]
a_ : List[str] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
a_ : List[Any] = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE )
self.assertEqual(
len(__SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs
self.assertEqual(
all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
| 666 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class SCREAMING_SNAKE_CASE :
snake_case__ = 42
snake_case__ = None
# Automatically constructed
snake_case__ = "dict"
snake_case__ = None
snake_case__ = field(default="Translation" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ )
def __call__( self : Dict ) -> Tuple:
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
from .features import Value
return {k: Value('''string''' ) for k in sorted(self.languages )}
@dataclass
class SCREAMING_SNAKE_CASE :
snake_case__ = None
snake_case__ = None
snake_case__ = None
# Automatically constructed
snake_case__ = "dict"
snake_case__ = None
snake_case__ = field(default="TranslationVariableLanguages" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ )
def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict:
a_ : List[str] = sorted(set(self.languages ) ) if self.languages else None
a_ : Optional[Any] = len(self.languages ) if self.languages else None
def __call__( self : Any ) -> Optional[Any]:
return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} )
def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]:
a_ : str = set(self.languages )
if self.languages and set(__SCREAMING_SNAKE_CASE ) - lang_set:
raise ValueError(
f'Some languages in example ({", ".join(sorted(set(__SCREAMING_SNAKE_CASE ) - lang_set ) )}) are not in valid set ({", ".join(__SCREAMING_SNAKE_CASE )}).' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
a_ : int = []
for lang, text in translation_dict.items():
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
a_ , a_ : List[Any] = zip(*sorted(__SCREAMING_SNAKE_CASE ) )
return {"language": languages, "translation": translations}
def SCREAMING_SNAKE_CASE ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
from .features import Sequence, Value
return {
"language": Sequence(Value('''string''' ) ),
"translation": Sequence(Value('''string''' ) ),
}
| 666 | 1 |
'''simple docstring'''
from .imports import is_tqdm_available
if is_tqdm_available():
from tqdm.auto import tqdm as _tqdm
from ..state import PartialState
def a_ ( UpperCamelCase_ = True , *UpperCamelCase_ , **UpperCamelCase_ ):
if not is_tqdm_available():
raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`." )
A_ = False
if main_process_only:
A_ = PartialState().local_process_index == 0
return _tqdm(*UpperCamelCase_ , **UpperCamelCase_ , disable=UpperCamelCase_ )
| 452 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
__SCREAMING_SNAKE_CASE : str = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
__SCREAMING_SNAKE_CASE : Any = TaTokenizerFast
__SCREAMING_SNAKE_CASE : Tuple = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : List[Any] = [
'''MT5EncoderModel''',
'''MT5ForConditionalGeneration''',
'''MT5ForQuestionAnswering''',
'''MT5Model''',
'''MT5PreTrainedModel''',
'''MT5Stack''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : str = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : List[str] = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model''']
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
__SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(
__name__,
globals()['''__file__'''],
_import_structure,
extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast},
module_spec=__spec__,
)
| 452 | 1 |
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Tuple ) -> None:
"""simple docstring"""
__lowercase = {} # Mapping from char to TrieNode
__lowercase = False
def snake_case__ ( self : Tuple , lowercase : list[str] ) -> None:
"""simple docstring"""
for word in words:
self.insert(lowercase )
def snake_case__ ( self : List[str] , lowercase : str ) -> None:
"""simple docstring"""
__lowercase = self
for char in word:
if char not in curr.nodes:
__lowercase = TrieNode()
__lowercase = curr.nodes[char]
__lowercase = True
def snake_case__ ( self : Optional[int] , lowercase : str ) -> bool:
"""simple docstring"""
__lowercase = self
for char in word:
if char not in curr.nodes:
return False
__lowercase = curr.nodes[char]
return curr.is_leaf
def snake_case__ ( self : Any , lowercase : str ) -> None:
"""simple docstring"""
def _delete(lowercase : TrieNode , lowercase : str , lowercase : int ) -> bool:
if index == len(lowercase ):
# If word does not exist
if not curr.is_leaf:
return False
__lowercase = False
return len(curr.nodes ) == 0
__lowercase = word[index]
__lowercase = curr.nodes.get(lowercase )
# If char not in current trie node
if not char_node:
return False
# Flag to check if node can be deleted
__lowercase = _delete(lowercase , lowercase , index + 1 )
if delete_curr:
del curr.nodes[char]
return len(curr.nodes ) == 0
return delete_curr
_delete(self , lowercase , 0 )
def UpperCAmelCase__ ( lowercase__ , lowercase__ ) -> None:
if node.is_leaf:
print(lowercase__ , end=""" """ )
for key, value in node.nodes.items():
print_words(lowercase__ , word + key )
def UpperCAmelCase__ ( ) -> bool:
__lowercase = """banana bananas bandana band apple all beast""".split()
__lowercase = TrieNode()
root.insert_many(lowercase__ )
# print_words(root, "")
assert all(root.find(lowercase__ ) for word in words )
assert root.find("""banana""" )
assert not root.find("""bandanas""" )
assert not root.find("""apps""" )
assert root.find("""apple""" )
assert root.find("""all""" )
root.delete("""all""" )
assert not root.find("""all""" )
root.delete("""banana""" )
assert not root.find("""banana""" )
assert root.find("""bananas""" )
return True
def UpperCAmelCase__ ( lowercase__ , lowercase__ ) -> None:
print(str(lowercase__ ) , """works!""" if passes else """doesn't work :(""" )
def UpperCAmelCase__ ( ) -> None:
assert test_trie()
def UpperCAmelCase__ ( ) -> None:
print_results("""Testing trie functionality""" , test_trie() )
if __name__ == "__main__":
main()
| 634 |
from __future__ import annotations
from collections.abc import Callable
UpperCamelCase__ = list[list[float | int]]
def UpperCAmelCase__ ( lowercase__ , lowercase__ ) -> Matrix:
__lowercase = len(lowercase__ )
__lowercase = [[0 for _ in range(size + 1 )] for _ in range(lowercase__ )]
__lowercase = 42
__lowercase = 42
__lowercase = 42
__lowercase = 42
__lowercase = 42
__lowercase = 42
for row in range(lowercase__ ):
for col in range(lowercase__ ):
__lowercase = matrix[row][col]
__lowercase = vector[row][0]
__lowercase = 0
__lowercase = 0
while row < size and col < size:
# pivoting
__lowercase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowercase__ , lowercase__ ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
__lowercase , __lowercase = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , lowercase__ ):
__lowercase = augmented[rowa][col] / augmented[row][col]
__lowercase = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , lowercase__ ):
for row in range(lowercase__ ):
__lowercase = augmented[row][col] / augmented[col][col]
for cola in range(lowercase__ , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(lowercase__ )
]
def UpperCAmelCase__ ( lowercase__ ) -> Callable[[int], int]:
__lowercase = len(lowercase__ )
__lowercase = [[0 for _ in range(lowercase__ )] for _ in range(lowercase__ )]
__lowercase = [[0] for _ in range(lowercase__ )]
__lowercase = 42
__lowercase = 42
__lowercase = 42
__lowercase = 42
for x_val, y_val in enumerate(lowercase__ ):
for col in range(lowercase__ ):
__lowercase = (x_val + 1) ** (size - col - 1)
__lowercase = y_val
__lowercase = solve(lowercase__ , lowercase__ )
def interpolated_func(lowercase__ ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(lowercase__ ) )
return interpolated_func
def UpperCAmelCase__ ( lowercase__ ) -> int:
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def UpperCAmelCase__ ( lowercase__ = question_function , lowercase__ = 10 ) -> int:
__lowercase = [func(lowercase__ ) for x_val in range(1 , order + 1 )]
__lowercase = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
__lowercase = 0
__lowercase = 42
__lowercase = 42
for poly in polynomials:
__lowercase = 1
while func(lowercase__ ) == poly(lowercase__ ):
x_val += 1
ret += poly(lowercase__ )
return ret
if __name__ == "__main__":
print(F"""{solution() = }""")
| 634 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
class __A ( A ):
'''simple docstring'''
__lowerCamelCase : Any = 'bert-generation'
def __init__(self , A=50_358 , A=1_024 , A=24 , A=16 , A=4_096 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=0.02 , A=1E-12 , A=0 , A=2 , A=1 , A="absolute" , A=True , **A , ) -> int:
"""simple docstring"""
super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A )
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = hidden_act
_a = intermediate_size
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = initializer_range
_a = layer_norm_eps
_a = position_embedding_type
_a = use_cache
| 11 |
"""simple docstring"""
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
__snake_case = None
try:
import msvcrt
except ImportError:
__snake_case = None
try:
import fcntl
except ImportError:
__snake_case = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
__snake_case = OSError
# Data
# ------------------------------------------------
__snake_case = [
'Timeout',
'BaseFileLock',
'WindowsFileLock',
'UnixFileLock',
'SoftFileLock',
'FileLock',
]
__snake_case = '3.0.12'
__snake_case = None
def _lowerCamelCase ( ):
global _logger
lowercase__ : Tuple = _logger or logging.getLogger(__name__ )
return _logger
class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ ) -> Optional[int]:
lowercase__ : Union[str, Any] = lock_file
return None
def __str__( self ) -> List[Any]:
lowercase__ : Tuple = F'''The file lock \'{self.lock_file}\' could not be acquired.'''
return temp
class _SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self , lowerCamelCase__ ) -> Optional[Any]:
lowercase__ : str = lock
return None
def __enter__( self ) -> List[Any]:
return self.lock
def __exit__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any:
self.lock.release()
return None
class _SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=-1 , lowerCamelCase__=None ) -> Optional[Any]:
lowercase__ : List[Any] = max_filename_length if max_filename_length is not None else 255
# Hash the filename if it's too long
lowercase__ : Union[str, Any] = self.hash_filename_if_too_long(lowerCamelCase__ , lowerCamelCase__ )
# The path to the lock file.
lowercase__ : int = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
lowercase__ : Dict = None
# The default timeout value.
lowercase__ : Optional[Any] = timeout
# We use this lock primarily for the lock counter.
lowercase__ : Optional[int] = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
lowercase__ : Union[str, Any] = 0
return None
@property
def UpperCAmelCase__( self ) -> List[str]:
return self._lock_file
@property
def UpperCAmelCase__( self ) -> Union[str, Any]:
return self._timeout
@timeout.setter
def UpperCAmelCase__( self , lowerCamelCase__ ) -> Optional[Any]:
lowercase__ : Union[str, Any] = float(lowerCamelCase__ )
return None
def UpperCAmelCase__( self ) -> Tuple:
raise NotImplementedError()
def UpperCAmelCase__( self ) -> Tuple:
raise NotImplementedError()
@property
def UpperCAmelCase__( self ) -> str:
return self._lock_file_fd is not None
def UpperCAmelCase__( self , lowerCamelCase__=None , lowerCamelCase__=0.05 ) -> List[str]:
# Use the default timeout, if no timeout is provided.
if timeout is None:
lowercase__ : int = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
lowercase__ : Tuple = id(self )
lowercase__ : Any = self._lock_file
lowercase__ : Union[str, Any] = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(F'''Attempting to acquire lock {lock_id} on {lock_filename}''' )
self._acquire()
if self.is_locked:
logger().debug(F'''Lock {lock_id} acquired on {lock_filename}''' )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(F'''Timeout on acquiring lock {lock_id} on {lock_filename}''' )
raise Timeout(self._lock_file )
else:
logger().debug(
F'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' )
time.sleep(lowerCamelCase__ )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
lowercase__ : Any = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def UpperCAmelCase__( self , lowerCamelCase__=False ) -> int:
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
lowercase__ : Tuple = id(self )
lowercase__ : int = self._lock_file
logger().debug(F'''Attempting to release lock {lock_id} on {lock_filename}''' )
self._release()
lowercase__ : str = 0
logger().debug(F'''Lock {lock_id} released on {lock_filename}''' )
return None
def __enter__( self ) -> Dict:
self.acquire()
return self
def __exit__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict:
self.release()
return None
def __del__( self ) -> int:
self.release(force=lowerCamelCase__ )
return None
def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ ) -> str:
lowercase__ : Optional[int] = os.path.basename(lowerCamelCase__ )
if len(lowerCamelCase__ ) > max_length and max_length > 0:
lowercase__ : Union[str, Any] = os.path.dirname(lowerCamelCase__ )
lowercase__ : List[Any] = str(hash(lowerCamelCase__ ) )
lowercase__ : Optional[int] = filename[: max_length - len(lowerCamelCase__ ) - 8] + """...""" + hashed_filename + """.lock"""
return os.path.join(lowerCamelCase__ , lowerCamelCase__ )
else:
return path
class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=-1 , lowerCamelCase__=None ) -> Tuple:
from .file_utils import relative_to_absolute_path
super().__init__(lowerCamelCase__ , timeout=lowerCamelCase__ , max_filename_length=lowerCamelCase__ )
lowercase__ : List[Any] = """\\\\?\\""" + relative_to_absolute_path(self.lock_file )
def UpperCAmelCase__( self ) -> Tuple:
lowercase__ : Union[str, Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
lowercase__ : Dict = os.open(self._lock_file , lowerCamelCase__ )
except OSError:
pass
else:
try:
msvcrt.locking(lowerCamelCase__ , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(lowerCamelCase__ )
else:
lowercase__ : Optional[Any] = fd
return None
def UpperCAmelCase__( self ) -> List[Any]:
lowercase__ : int = self._lock_file_fd
lowercase__ : Any = None
msvcrt.locking(lowerCamelCase__ , msvcrt.LK_UNLCK , 1 )
os.close(lowerCamelCase__ )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=-1 , lowerCamelCase__=None ) -> List[str]:
lowercase__ : Optional[Any] = os.statvfs(os.path.dirname(lowerCamelCase__ ) ).f_namemax
super().__init__(lowerCamelCase__ , timeout=lowerCamelCase__ , max_filename_length=lowerCamelCase__ )
def UpperCAmelCase__( self ) -> str:
lowercase__ : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC
lowercase__ : List[Any] = os.open(self._lock_file , lowerCamelCase__ )
try:
fcntl.flock(lowerCamelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(lowerCamelCase__ )
else:
lowercase__ : Any = fd
return None
def UpperCAmelCase__( self ) -> str:
# Do not remove the lockfile:
#
# https://github.com/benediktschmitt/py-filelock/issues/31
# https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition
lowercase__ : Optional[int] = self._lock_file_fd
lowercase__ : Optional[Any] = None
fcntl.flock(lowerCamelCase__ , fcntl.LOCK_UN )
os.close(lowerCamelCase__ )
return None
class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ):
"""simple docstring"""
def UpperCAmelCase__( self ) -> List[str]:
lowercase__ : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
lowercase__ : Any = os.open(self._lock_file , lowerCamelCase__ )
except OSError:
pass
else:
lowercase__ : Union[str, Any] = fd
return None
def UpperCAmelCase__( self ) -> Tuple:
os.close(self._lock_file_fd )
lowercase__ : Optional[Any] = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
__snake_case = None
if msvcrt:
__snake_case = WindowsFileLock
elif fcntl:
__snake_case = UnixFileLock
else:
__snake_case = SoftFileLock
if warnings is not None:
warnings.warn('only soft file lock is available') | 200 | 0 |
"""simple docstring"""
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from transformers import TvltFeatureExtractor, is_datasets_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
if is_datasets_available():
from datasets import load_dataset
SCREAMING_SNAKE_CASE_ = random.Random()
def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__=1.0, SCREAMING_SNAKE_CASE__=None, SCREAMING_SNAKE_CASE__=None ) -> Tuple:
if rng is None:
a_ : Any = global_rng
a_ : Dict = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class snake_case_ ( unittest.TestCase ):
def __init__( self , a_ , a_=7 , a_=4_0_0 , a_=2_0_0_0 , a_=2_0_4_8 , a_=1_2_8 , a_=1 , a_=5_1_2 , a_=3_0 , a_=4_4_1_0_0 , ):
a_ : Optional[Any] = parent
a_ : Tuple = batch_size
a_ : Union[str, Any] = min_seq_length
a_ : Dict = max_seq_length
a_ : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
a_ : int = spectrogram_length
a_ : Optional[Any] = feature_size
a_ : Optional[int] = num_audio_channels
a_ : List[str] = hop_length
a_ : Optional[int] = chunk_length
a_ : List[str] = sampling_rate
def snake_case_ ( self ):
return {
"spectrogram_length": self.spectrogram_length,
"feature_size": self.feature_size,
"num_audio_channels": self.num_audio_channels,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"sampling_rate": self.sampling_rate,
}
def snake_case_ ( self , a_=False , a_=False ):
def _flatten(a_ ):
return list(itertools.chain(*a_ ) )
if equal_length:
a_ : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
a_ : Optional[Any] = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
a_ : Tuple = [np.asarray(a_ ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class snake_case_ ( a_ ,unittest.TestCase ):
__lowerCAmelCase = TvltFeatureExtractor
def snake_case_ ( self ):
a_ : Dict = TvltFeatureExtractionTester(self )
def snake_case_ ( self ):
a_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(a_ , "spectrogram_length" ) )
self.assertTrue(hasattr(a_ , "feature_size" ) )
self.assertTrue(hasattr(a_ , "num_audio_channels" ) )
self.assertTrue(hasattr(a_ , "hop_length" ) )
self.assertTrue(hasattr(a_ , "chunk_length" ) )
self.assertTrue(hasattr(a_ , "sampling_rate" ) )
def snake_case_ ( self ):
a_ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
a_ : List[Any] = feat_extract_first.save_pretrained(a_ )[0]
check_json_file_has_correct_format(a_ )
a_ : Tuple = self.feature_extraction_class.from_pretrained(a_ )
a_ : Dict = feat_extract_first.to_dict()
a_ : List[str] = feat_extract_second.to_dict()
a_ : List[Any] = dict_first.pop("mel_filters" )
a_ : str = dict_second.pop("mel_filters" )
self.assertTrue(np.allclose(a_ , a_ ) )
self.assertEqual(a_ , a_ )
def snake_case_ ( self ):
a_ : List[str] = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
a_ : Dict = os.path.join(a_ , "feat_extract.json" )
feat_extract_first.to_json_file(a_ )
a_ : str = self.feature_extraction_class.from_json_file(a_ )
a_ : Dict = feat_extract_first.to_dict()
a_ : str = feat_extract_second.to_dict()
a_ : int = dict_first.pop("mel_filters" )
a_ : List[Any] = dict_second.pop("mel_filters" )
self.assertTrue(np.allclose(a_ , a_ ) )
self.assertEqual(a_ , a_ )
def snake_case_ ( self ):
# Initialize feature_extractor
a_ : str = self.feature_extraction_class(**self.feat_extract_dict )
# create three inputs of length 800, 1000, and 1200
a_ : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )]
a_ : Union[str, Any] = [np.asarray(a_ ) for speech_input in speech_inputs]
# Test not batched input
a_ : Dict = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test batched
a_ : int = feature_extractor(a_ , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test audio masking
a_ : Optional[int] = feature_extractor(
a_ , return_tensors="np" , sampling_rate=4_4_1_0_0 , mask_audio=a_ ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test 2-D numpy arrays are batched.
a_ : List[str] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)]
a_ : Union[str, Any] = np.asarray(a_ )
a_ : Dict = feature_extractor(a_ , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
def snake_case_ ( self , a_ ):
a_ : Optional[int] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" )
# automatic decoding with librispeech
a_ : List[str] = ds.sort("id" ).select(range(a_ ) )[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def snake_case_ ( self ):
a_ : List[str] = self._load_datasamples(1 )
a_ : Any = TvltFeatureExtractor()
a_ : Union[str, Any] = feature_extractor(a_ , return_tensors="pt" ).audio_values
self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) )
a_ : Dict = torch.tensor([[-0.3_032, -0.2_708], [-0.4_434, -0.4_007]] )
self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , a_ , atol=1e-4 ) ) | 370 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class snake_case_ ( a_ ):
__lowerCAmelCase = "blenderbot-small"
__lowerCAmelCase = ["past_key_values"]
__lowerCAmelCase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , a_=5_0_2_6_5 , a_=5_1_2 , a_=8 , a_=2_0_4_8 , a_=1_6 , a_=8 , a_=2_0_4_8 , a_=1_6 , a_=0.0 , a_=0.0 , a_=True , a_=True , a_="gelu" , a_=5_1_2 , a_=0.1 , a_=0.0 , a_=0.0 , a_=0.02 , a_=1 , a_=False , a_=0 , a_=1 , a_=2 , a_=2 , **a_ , ):
a_ : int = vocab_size
a_ : Any = max_position_embeddings
a_ : Optional[int] = d_model
a_ : Tuple = encoder_ffn_dim
a_ : List[Any] = encoder_layers
a_ : Optional[int] = encoder_attention_heads
a_ : Optional[int] = decoder_ffn_dim
a_ : List[str] = decoder_layers
a_ : Dict = decoder_attention_heads
a_ : List[str] = dropout
a_ : List[Any] = attention_dropout
a_ : List[str] = activation_dropout
a_ : Optional[Any] = activation_function
a_ : List[Any] = init_std
a_ : int = encoder_layerdrop
a_ : Optional[int] = decoder_layerdrop
a_ : List[str] = use_cache
a_ : Optional[int] = encoder_layers
a_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , is_encoder_decoder=a_ , decoder_start_token_id=a_ , forced_eos_token_id=a_ , **a_ , )
class snake_case_ ( a_ ):
@property
def snake_case_ ( self ):
if self.task in ["default", "seq2seq-lm"]:
a_ : Optional[int] = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
a_ : Tuple = {0: "batch"}
a_ : int = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
a_ : List[str] = {0: "batch", 1: "decoder_sequence"}
a_ : Optional[int] = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(a_ , direction="inputs" )
elif self.task == "causal-lm":
# TODO: figure this case out.
a_ : Dict = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
a_ , a_ : Optional[int] = self.num_layers
for i in range(a_ ):
a_ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"}
a_ : List[Any] = {0: "batch", 2: "past_sequence + sequence"}
else:
a_ : List[str] = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
] )
return common_inputs
@property
def snake_case_ ( self ):
if self.task in ["default", "seq2seq-lm"]:
a_ : List[Any] = super().outputs
else:
a_ : Tuple = super(a_ , self ).outputs
if self.use_past:
a_ , a_ : Dict = self.num_layers
for i in range(a_ ):
a_ : List[Any] = {0: "batch", 2: "past_sequence + sequence"}
a_ : List[Any] = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def snake_case_ ( self , a_ , a_ = -1 , a_ = -1 , a_ = False , a_ = None , ):
a_ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
a_ , a_ , a_ , a_ , a_ )
# Generate decoder inputs
a_ : Optional[int] = seq_length if not self.use_past else 1
a_ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
a_ , a_ , a_ , a_ , a_ )
a_ : int = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()}
a_ : Tuple = dict(**a_ , **a_ )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
a_ , a_ : Optional[int] = common_inputs["input_ids"].shape
a_ : str = common_inputs["decoder_input_ids"].shape[1]
a_ , a_ : Dict = self.num_attention_heads
a_ : List[str] = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
a_ : Optional[Any] = decoder_seq_length + 3
a_ : str = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
a_ : Dict = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(a_ , a_ )] , dim=1 )
a_ : Optional[int] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
a_ , a_ : Tuple = self.num_layers
a_ : str = min(a_ , a_ )
a_ : Dict = max(a_ , a_ ) - min_num_layers
a_ : Union[str, Any] = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(a_ ):
common_inputs["past_key_values"].append(
(
torch.zeros(a_ ),
torch.zeros(a_ ),
torch.zeros(a_ ),
torch.zeros(a_ ),
) )
# TODO: test this.
a_ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(a_ , a_ ):
common_inputs["past_key_values"].append((torch.zeros(a_ ), torch.zeros(a_ )) )
return common_inputs
def snake_case_ ( self , a_ , a_ = -1 , a_ = -1 , a_ = False , a_ = None , ):
a_ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
a_ , a_ , a_ , a_ , a_ )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
a_ , a_ : Dict = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
a_ : int = seqlen + 2
a_ , a_ : Optional[int] = self.num_layers
a_ , a_ : Optional[int] = self.num_attention_heads
a_ : Optional[Any] = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
a_ : str = common_inputs["attention_mask"].dtype
a_ : Tuple = torch.cat(
[common_inputs["attention_mask"], torch.ones(a_ , a_ , dtype=a_ )] , dim=1 )
a_ : Optional[int] = [
(torch.zeros(a_ ), torch.zeros(a_ )) for _ in range(a_ )
]
return common_inputs
def snake_case_ ( self , a_ , a_ = -1 , a_ = -1 , a_ = False , a_ = None , ):
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
a_ : Optional[Any] = compute_effective_axis_dimension(
a_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
a_ : Tuple = tokenizer.num_special_tokens_to_add(a_ )
a_ : Union[str, Any] = compute_effective_axis_dimension(
a_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a_ )
# Generate dummy inputs according to compute batch and sequence
a_ : Union[str, Any] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size
a_ : str = dict(tokenizer(a_ , return_tensors=a_ ) )
return common_inputs
def snake_case_ ( self , a_ , a_ = -1 , a_ = -1 , a_ = False , a_ = None , ):
if self.task in ["default", "seq2seq-lm"]:
a_ : List[str] = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ )
elif self.task == "causal-lm":
a_ : List[Any] = self._generate_dummy_inputs_for_causal_lm(
a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ )
else:
a_ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ )
return common_inputs
def snake_case_ ( self , a_ , a_ , a_ , a_ ):
if self.task in ["default", "seq2seq-lm"]:
a_ : Optional[int] = super()._flatten_past_key_values_(a_ , a_ , a_ , a_ )
else:
a_ : int = super(a_ , self )._flatten_past_key_values_(
a_ , a_ , a_ , a_ ) | 370 | 1 |
import unicodedata
from dataclasses import dataclass
from typing import Optional, Union
import numpy as np
from transformers.data.data_collator import DataCollatorMixin
from transformers.file_utils import PaddingStrategy
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase ):
"""simple docstring"""
if isinstance(lowercase , lowercase ):
__lowercase = np.full((len(lowercase ), sequence_length, 2) , lowercase )
else:
__lowercase = np.full((len(lowercase ), sequence_length) , lowercase )
for i, tensor in enumerate(lowercase ):
if padding_side == "right":
if isinstance(lowercase , lowercase ):
__lowercase = tensor[:sequence_length]
else:
__lowercase = tensor[:sequence_length]
else:
if isinstance(lowercase , lowercase ):
__lowercase = tensor[:sequence_length]
else:
__lowercase = tensor[:sequence_length]
return out_tensor.tolist()
def UpperCAmelCase ( lowercase ):
"""simple docstring"""
__lowercase = ord(lowercase )
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
__lowercase = unicodedata.category(lowercase )
if cat.startswith('''P''' ):
return True
return False
@dataclass
class _UpperCamelCase ( _UpperCAmelCase ):
"""simple docstring"""
__a : PreTrainedTokenizerBase
__a : Union[bool, str, PaddingStrategy] = True
__a : Optional[int] = None
__a : Optional[int] = None
__a : int = -100
__a : str = "pt"
def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> List[str]:
'''simple docstring'''
import torch
__lowercase = '''label''' if '''label''' in features[0].keys() else '''labels'''
__lowercase = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
__lowercase = self.tokenizer.pad(
lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , )
if labels is None:
return batch
__lowercase = torch.tensor(batch['''entity_ids'''] ).shape[1]
__lowercase = self.tokenizer.padding_side
if padding_side == "right":
__lowercase = [
list(lowerCAmelCase__ ) + [self.label_pad_token_id] * (sequence_length - len(lowerCAmelCase__ )) for label in labels
]
else:
__lowercase = [
[self.label_pad_token_id] * (sequence_length - len(lowerCAmelCase__ )) + list(lowerCAmelCase__ ) for label in labels
]
__lowercase = [feature['''ner_tags'''] for feature in features]
__lowercase = padding_tensor(lowerCAmelCase__ , -1 , lowerCAmelCase__ , lowerCAmelCase__ )
__lowercase = [feature['''original_entity_spans'''] for feature in features]
__lowercase = padding_tensor(lowerCAmelCase__ , (-1, -1) , lowerCAmelCase__ , lowerCAmelCase__ )
__lowercase = {k: torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) for k, v in batch.items()}
return batch | 534 | import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class _UpperCamelCase ( _UpperCAmelCase ,_UpperCAmelCase ):
"""simple docstring"""
@register_to_config
def __init__( self , *,
lowerCAmelCase__ = 4 , lowerCAmelCase__ = 7_68 , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Dict:
'''simple docstring'''
super().__init__()
__lowercase = nn.Parameter(torch.zeros(lowerCAmelCase__ ) )
# parameters for additional clip time embeddings
__lowercase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ )
__lowercase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ )
# parameters for encoder hidden states
__lowercase = clip_extra_context_tokens
__lowercase = nn.Linear(
lowerCAmelCase__ , self.clip_extra_context_tokens * cross_attention_dim )
__lowercase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ )
__lowercase = nn.LayerNorm(lowerCAmelCase__ )
def _SCREAMING_SNAKE_CASE ( self , *, lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]:
'''simple docstring'''
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
__lowercase = image_embeddings.shape[0]
__lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
__lowercase = classifier_free_guidance_embeddings.expand(
lowerCAmelCase__ , -1 )
__lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
__lowercase = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
__lowercase = self.embedding_proj(lowerCAmelCase__ )
__lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCAmelCase__ )
__lowercase = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
__lowercase = self.clip_extra_context_tokens_proj(lowerCAmelCase__ )
__lowercase = clip_extra_context_tokens.reshape(lowerCAmelCase__ , -1 , self.clip_extra_context_tokens )
__lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 )
__lowercase = self.encoder_hidden_states_proj(lowerCAmelCase__ )
__lowercase = self.text_encoder_hidden_states_norm(lowerCAmelCase__ )
__lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings | 534 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A: Optional[int] = logging.get_logger(__name__)
A: Any = {
"SCUT-DLVCLab/lilt-roberta-en-base": (
"https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json"
),
}
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ):
__lowerCAmelCase : str = 'lilt'
def __init__( self , _SCREAMING_SNAKE_CASE=30522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=1024 , **_SCREAMING_SNAKE_CASE , ) -> int:
'''simple docstring'''
super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
UpperCAmelCase : int = vocab_size
UpperCAmelCase : Any = hidden_size
UpperCAmelCase : Optional[Any] = num_hidden_layers
UpperCAmelCase : int = num_attention_heads
UpperCAmelCase : Tuple = hidden_act
UpperCAmelCase : List[str] = intermediate_size
UpperCAmelCase : Optional[int] = hidden_dropout_prob
UpperCAmelCase : Dict = attention_probs_dropout_prob
UpperCAmelCase : Dict = max_position_embeddings
UpperCAmelCase : str = type_vocab_size
UpperCAmelCase : Tuple = initializer_range
UpperCAmelCase : Tuple = layer_norm_eps
UpperCAmelCase : Union[str, Any] = position_embedding_type
UpperCAmelCase : List[Any] = classifier_dropout
UpperCAmelCase : Dict = channel_shrink_ratio
UpperCAmelCase : Tuple = max_ad_position_embeddings
| 721 |
"""simple docstring"""
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ ):
@register_to_config
def __init__( self , _SCREAMING_SNAKE_CASE = 128 , _SCREAMING_SNAKE_CASE = 256 , _SCREAMING_SNAKE_CASE = 2000.0 , _SCREAMING_SNAKE_CASE = 768 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 64 , _SCREAMING_SNAKE_CASE = 2048 , _SCREAMING_SNAKE_CASE = 0.1 , ) -> int:
'''simple docstring'''
super().__init__()
UpperCAmelCase : Tuple = nn.Sequential(
nn.Linear(_SCREAMING_SNAKE_CASE , d_model * 4 , bias=_SCREAMING_SNAKE_CASE ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_SCREAMING_SNAKE_CASE ) , nn.SiLU() , )
UpperCAmelCase : Tuple = nn.Embedding(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase : List[Any] = False
UpperCAmelCase : Optional[Any] = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE )
UpperCAmelCase : str = nn.Dropout(p=_SCREAMING_SNAKE_CASE )
UpperCAmelCase : str = nn.ModuleList()
for lyr_num in range(_SCREAMING_SNAKE_CASE ):
# FiLM conditional T5 decoder
UpperCAmelCase : List[Any] = DecoderLayer(d_model=_SCREAMING_SNAKE_CASE , d_kv=_SCREAMING_SNAKE_CASE , num_heads=_SCREAMING_SNAKE_CASE , d_ff=_SCREAMING_SNAKE_CASE , dropout_rate=_SCREAMING_SNAKE_CASE )
self.decoders.append(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : str = TaLayerNorm(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Optional[int] = nn.Dropout(p=_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Optional[Any] = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
'''simple docstring'''
UpperCAmelCase : str = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
UpperCAmelCase : Union[str, Any] = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype )
UpperCAmelCase : Any = self.conditioning_emb(_SCREAMING_SNAKE_CASE ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
UpperCAmelCase : Dict = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
UpperCAmelCase : int = torch.broadcast_to(
torch.arange(_SCREAMING_SNAKE_CASE , device=decoder_input_tokens.device ) , (batch, seq_length) , )
UpperCAmelCase : List[str] = self.position_encoding(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Dict = self.continuous_inputs_projection(_SCREAMING_SNAKE_CASE )
inputs += position_encodings
UpperCAmelCase : List[str] = self.dropout(_SCREAMING_SNAKE_CASE )
# decoder: No padding present.
UpperCAmelCase : Dict = torch.ones(
decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
UpperCAmelCase : Optional[int] = [(x, self.encoder_decoder_mask(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
UpperCAmelCase : Optional[Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 )
UpperCAmelCase : Union[str, Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 )
for lyr in self.decoders:
UpperCAmelCase : List[Any] = lyr(
_SCREAMING_SNAKE_CASE , conditioning_emb=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , )[0]
UpperCAmelCase : List[Any] = self.decoder_norm(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : int = self.post_dropout(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Tuple = self.spec_out(_SCREAMING_SNAKE_CASE )
return spec_out
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1E-6 ) -> List[str]:
'''simple docstring'''
super().__init__()
UpperCAmelCase : List[Any] = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=_SCREAMING_SNAKE_CASE , d_kv=_SCREAMING_SNAKE_CASE , num_heads=_SCREAMING_SNAKE_CASE , dropout_rate=_SCREAMING_SNAKE_CASE ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=_SCREAMING_SNAKE_CASE , d_kv=_SCREAMING_SNAKE_CASE , num_heads=_SCREAMING_SNAKE_CASE , dropout_rate=_SCREAMING_SNAKE_CASE , layer_norm_epsilon=_SCREAMING_SNAKE_CASE , ) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=_SCREAMING_SNAKE_CASE , d_ff=_SCREAMING_SNAKE_CASE , dropout_rate=_SCREAMING_SNAKE_CASE , layer_norm_epsilon=_SCREAMING_SNAKE_CASE ) )
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : Any = self.layer[0](
_SCREAMING_SNAKE_CASE , conditioning_emb=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , )
if encoder_hidden_states is not None:
UpperCAmelCase : Tuple = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to(
encoder_hidden_states.dtype )
UpperCAmelCase : List[Any] = self.layer[1](
_SCREAMING_SNAKE_CASE , key_value_states=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , )
# Apply Film Conditional Feed Forward layer
UpperCAmelCase : Dict = self.layer[-1](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return (hidden_states,)
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
'''simple docstring'''
super().__init__()
UpperCAmelCase : Union[str, Any] = TaLayerNorm(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Dict = TaFiLMLayer(in_features=d_model * 4 , out_features=_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Optional[Any] = Attention(query_dim=_SCREAMING_SNAKE_CASE , heads=_SCREAMING_SNAKE_CASE , dim_head=_SCREAMING_SNAKE_CASE , out_bias=_SCREAMING_SNAKE_CASE , scale_qk=_SCREAMING_SNAKE_CASE )
UpperCAmelCase : List[Any] = nn.Dropout(_SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Optional[int] = self.layer_norm(_SCREAMING_SNAKE_CASE )
if conditioning_emb is not None:
UpperCAmelCase : str = self.FiLMLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Self-attention block
UpperCAmelCase : List[Any] = self.attention(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Optional[int] = hidden_states + self.dropout(_SCREAMING_SNAKE_CASE )
return hidden_states
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
UpperCAmelCase : List[str] = Attention(query_dim=_SCREAMING_SNAKE_CASE , heads=_SCREAMING_SNAKE_CASE , dim_head=_SCREAMING_SNAKE_CASE , out_bias=_SCREAMING_SNAKE_CASE , scale_qk=_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Dict = TaLayerNorm(_SCREAMING_SNAKE_CASE , eps=_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Dict = nn.Dropout(_SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Tuple = self.layer_norm(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : int = self.attention(
_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , attention_mask=attention_mask.squeeze(1 ) , )
UpperCAmelCase : Dict = hidden_states + self.dropout(_SCREAMING_SNAKE_CASE )
return layer_output
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
'''simple docstring'''
super().__init__()
UpperCAmelCase : int = TaDenseGatedActDense(d_model=_SCREAMING_SNAKE_CASE , d_ff=_SCREAMING_SNAKE_CASE , dropout_rate=_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 , out_features=_SCREAMING_SNAKE_CASE )
UpperCAmelCase : List[str] = TaLayerNorm(_SCREAMING_SNAKE_CASE , eps=_SCREAMING_SNAKE_CASE )
UpperCAmelCase : int = nn.Dropout(_SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Any:
'''simple docstring'''
UpperCAmelCase : List[str] = self.layer_norm(_SCREAMING_SNAKE_CASE )
if conditioning_emb is not None:
UpperCAmelCase : Union[str, Any] = self.film(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase : Tuple = self.DenseReluDense(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : List[str] = hidden_states + self.dropout(_SCREAMING_SNAKE_CASE )
return hidden_states
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
'''simple docstring'''
super().__init__()
UpperCAmelCase : Any = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Optional[Any] = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE )
UpperCAmelCase : List[Any] = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Tuple = nn.Dropout(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : str = NewGELUActivation()
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> str:
'''simple docstring'''
UpperCAmelCase : Optional[Any] = self.act(self.wi_a(_SCREAMING_SNAKE_CASE ) )
UpperCAmelCase : Optional[Any] = self.wi_a(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear
UpperCAmelCase : int = self.dropout(_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Optional[int] = self.wo(_SCREAMING_SNAKE_CASE )
return hidden_states
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1E-6 ) -> List[str]:
'''simple docstring'''
super().__init__()
UpperCAmelCase : List[str] = nn.Parameter(torch.ones(_SCREAMING_SNAKE_CASE ) )
UpperCAmelCase : Optional[Any] = eps
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=_SCREAMING_SNAKE_CASE )
UpperCAmelCase : Dict = hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
UpperCAmelCase : str = hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> torch.Tensor:
'''simple docstring'''
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(_SCREAMING_SNAKE_CASE , 3.0 )) ))
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
'''simple docstring'''
super().__init__()
UpperCAmelCase : Union[str, Any] = nn.Linear(_SCREAMING_SNAKE_CASE , out_features * 2 , bias=_SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
'''simple docstring'''
UpperCAmelCase : int = self.scale_bias(_SCREAMING_SNAKE_CASE )
UpperCAmelCase , UpperCAmelCase : Optional[int] = torch.chunk(_SCREAMING_SNAKE_CASE , 2 , -1 )
UpperCAmelCase : Optional[int] = x * (1 + scale) + shift
return x
| 359 | 0 |
'''simple docstring'''
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
__A =numpy.array([0, 0])
__A =numpy.array([0.5, 0.8_6_6_0_2_5_4])
__A =numpy.array([1, 0])
__A =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ):
UpperCAmelCase__ : Any = initial_vectors
for _ in range(UpperCamelCase__ ):
UpperCAmelCase__ : str = iteration_step(UpperCamelCase__ )
return vectors
def _UpperCamelCase ( UpperCamelCase__ ):
UpperCAmelCase__ : Optional[Any] = []
for i, start_vector in enumerate(vectors[:-1] ):
UpperCAmelCase__ : Union[str, Any] = vectors[i + 1]
new_vectors.append(UpperCamelCase__ )
UpperCAmelCase__ : List[str] = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ):
UpperCAmelCase__ : Union[str, Any] = numpy.radians(UpperCamelCase__ )
UpperCAmelCase__ , UpperCAmelCase__ : Dict = numpy.cos(UpperCamelCase__ ), numpy.sin(UpperCamelCase__ )
UpperCAmelCase__ : Optional[int] = numpy.array(((c, -s), (s, c)) )
return numpy.dot(UpperCamelCase__ , UpperCamelCase__ )
def _UpperCamelCase ( UpperCamelCase__ ):
UpperCAmelCase__ : Dict = plt.gca()
axes.set_aspect("""equal""" )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = zip(*UpperCamelCase__ )
plt.plot(UpperCamelCase__ , UpperCamelCase__ )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
__A =iterate(INITIAL_VECTORS, 5)
plot(processed_vectors) | 407 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class _snake_case ( unittest.TestCase ):
def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=True , _lowerCamelCase=1 / 255 , _lowerCamelCase=True , ):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
UpperCAmelCase__ : List[str] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333}
UpperCAmelCase__ : List[Any] = parent
UpperCAmelCase__ : str = batch_size
UpperCAmelCase__ : List[Any] = num_channels
UpperCAmelCase__ : List[str] = min_resolution
UpperCAmelCase__ : Optional[Any] = max_resolution
UpperCAmelCase__ : List[str] = do_resize
UpperCAmelCase__ : Optional[int] = size
UpperCAmelCase__ : Dict = do_normalize
UpperCAmelCase__ : int = image_mean
UpperCAmelCase__ : Dict = image_std
UpperCAmelCase__ : Any = do_rescale
UpperCAmelCase__ : str = rescale_factor
UpperCAmelCase__ : List[str] = do_pad
def snake_case__ ( self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=False):
if not batched:
UpperCAmelCase__ : List[Any] = image_inputs[0]
if isinstance(_lowerCamelCase , Image.Image):
UpperCAmelCase__ , UpperCAmelCase__ : str = image.size
else:
UpperCAmelCase__ , UpperCAmelCase__ : List[str] = image.shape[1], image.shape[2]
if w < h:
UpperCAmelCase__ : List[Any] = int(self.size["""shortest_edge"""] * h / w)
UpperCAmelCase__ : List[str] = self.size["""shortest_edge"""]
elif w > h:
UpperCAmelCase__ : List[str] = self.size["""shortest_edge"""]
UpperCAmelCase__ : Optional[int] = int(self.size["""shortest_edge"""] * w / h)
else:
UpperCAmelCase__ : List[str] = self.size["""shortest_edge"""]
UpperCAmelCase__ : int = self.size["""shortest_edge"""]
else:
UpperCAmelCase__ : str = []
for image in image_inputs:
UpperCAmelCase__ , UpperCAmelCase__ : Any = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
UpperCAmelCase__ : Any = max(_lowerCamelCase , key=lambda _lowerCamelCase: item[0])[0]
UpperCAmelCase__ : List[Any] = max(_lowerCamelCase , key=lambda _lowerCamelCase: item[1])[1]
return expected_height, expected_width
@require_torch
@require_vision
class _snake_case ( a__ , unittest.TestCase ):
lowerCAmelCase :Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None
def snake_case__ ( self):
UpperCAmelCase__ : Optional[Any] = DeformableDetrImageProcessingTester(self)
@property
def snake_case__ ( self):
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self):
UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(_lowerCamelCase , """image_mean"""))
self.assertTrue(hasattr(_lowerCamelCase , """image_std"""))
self.assertTrue(hasattr(_lowerCamelCase , """do_normalize"""))
self.assertTrue(hasattr(_lowerCamelCase , """do_resize"""))
self.assertTrue(hasattr(_lowerCamelCase , """do_rescale"""))
self.assertTrue(hasattr(_lowerCamelCase , """do_pad"""))
self.assertTrue(hasattr(_lowerCamelCase , """size"""))
def snake_case__ ( self):
UpperCAmelCase__ : int = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333})
self.assertEqual(image_processor.do_pad , _lowerCamelCase)
UpperCAmelCase__ : Optional[Any] = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowerCamelCase)
self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84})
self.assertEqual(image_processor.do_pad , _lowerCamelCase)
def snake_case__ ( self):
pass
def snake_case__ ( self):
# Initialize image_processing
UpperCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase)
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , Image.Image)
# Test not batched input
UpperCAmelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(_lowerCamelCase)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase)
UpperCAmelCase__ : Optional[int] = image_processing(_lowerCamelCase , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self):
# Initialize image_processing
UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
UpperCAmelCase__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase)
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , np.ndarray)
# Test not batched input
UpperCAmelCase__ : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase__ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""").pixel_values
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self):
# Initialize image_processing
UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
UpperCAmelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase)
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , torch.Tensor)
# Test not batched input
UpperCAmelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(_lowerCamelCase)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase__ : int = image_processing(_lowerCamelCase , return_tensors="""pt""").pixel_values
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def snake_case__ ( self):
# prepare image and target
UpperCAmelCase__ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""")
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""") as f:
UpperCAmelCase__ : Dict = json.loads(f.read())
UpperCAmelCase__ : int = {"""image_id""": 3_9769, """annotations""": target}
# encode them
UpperCAmelCase__ : Dict = DeformableDetrImageProcessor()
UpperCAmelCase__ : int = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , return_tensors="""pt""")
# verify pixel values
UpperCAmelCase__ : Tuple = torch.Size([1, 3, 800, 1066])
self.assertEqual(encoding["""pixel_values"""].shape , _lowerCamelCase)
UpperCAmelCase__ : Any = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4))
# verify area
UpperCAmelCase__ : List[Any] = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowerCamelCase))
# verify boxes
UpperCAmelCase__ : Union[str, Any] = torch.Size([6, 4])
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowerCamelCase)
UpperCAmelCase__ : Dict = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowerCamelCase , atol=1e-3))
# verify image_id
UpperCAmelCase__ : Optional[int] = torch.tensor([3_9769])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowerCamelCase))
# verify is_crowd
UpperCAmelCase__ : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowerCamelCase))
# verify class_labels
UpperCAmelCase__ : Any = torch.tensor([75, 75, 63, 65, 17, 17])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowerCamelCase))
# verify orig_size
UpperCAmelCase__ : int = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowerCamelCase))
# verify size
UpperCAmelCase__ : List[Any] = torch.tensor([800, 1066])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowerCamelCase))
@slow
def snake_case__ ( self):
# prepare image, target and masks_path
UpperCAmelCase__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""")
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""") as f:
UpperCAmelCase__ : Optional[int] = json.loads(f.read())
UpperCAmelCase__ : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target}
UpperCAmelCase__ : Tuple = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""")
# encode them
UpperCAmelCase__ : List[str] = DeformableDetrImageProcessor(format="""coco_panoptic""")
UpperCAmelCase__ : Tuple = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , masks_path=_lowerCamelCase , return_tensors="""pt""")
# verify pixel values
UpperCAmelCase__ : str = torch.Size([1, 3, 800, 1066])
self.assertEqual(encoding["""pixel_values"""].shape , _lowerCamelCase)
UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4))
# verify area
UpperCAmelCase__ : str = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowerCamelCase))
# verify boxes
UpperCAmelCase__ : List[str] = torch.Size([6, 4])
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowerCamelCase)
UpperCAmelCase__ : Dict = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowerCamelCase , atol=1e-3))
# verify image_id
UpperCAmelCase__ : Tuple = torch.tensor([3_9769])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowerCamelCase))
# verify is_crowd
UpperCAmelCase__ : List[str] = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowerCamelCase))
# verify class_labels
UpperCAmelCase__ : List[Any] = torch.tensor([17, 17, 63, 75, 75, 93])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowerCamelCase))
# verify masks
UpperCAmelCase__ : Dict = 82_2873
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , _lowerCamelCase)
# verify orig_size
UpperCAmelCase__ : Any = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowerCamelCase))
# verify size
UpperCAmelCase__ : int = torch.tensor([800, 1066])
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowerCamelCase)) | 407 | 1 |
"""simple docstring"""
import functools
def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : list[int] ):
'''simple docstring'''
if not isinstance(a_ , a_ ) or not all(isinstance(a_ , a_ ) for day in days ):
raise ValueError('''The parameter days should be a list of integers''' )
if len(a_ ) != 3 or not all(isinstance(a_ , a_ ) for cost in costs ):
raise ValueError('''The parameter costs should be a list of three integers''' )
if len(a_ ) == 0:
return 0
if min(a_ ) <= 0:
raise ValueError('''All days elements should be greater than 0''' )
if max(a_ ) >= 366:
raise ValueError('''All days elements should be less than 366''' )
__lowerCamelCase : Any =set(a_ )
@functools.cache
def dynamic_programming(SCREAMING_SNAKE_CASE : int ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 705 |
"""simple docstring"""
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
_UpperCamelCase = logging.get_logger(__name__)
# General docstring
_UpperCamelCase = 'RegNetConfig'
# Base docstring
_UpperCamelCase = 'facebook/regnet-y-040'
_UpperCamelCase = [1, 1088, 7, 7]
# Image classification docstring
_UpperCamelCase = 'facebook/regnet-y-040'
_UpperCamelCase = 'tabby, tabby cat'
_UpperCamelCase = [
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self :Dict , __lowercase :int , __lowercase :int = 3 , __lowercase :int = 1 , __lowercase :int = 1 , __lowercase :Optional[str] = "relu" , **__lowercase :int , ):
super().__init__(**__lowercase )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
__lowerCamelCase : int =tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
__lowerCamelCase : str =tf.keras.layers.ConvaD(
filters=__lowercase , kernel_size=__lowercase , strides=__lowercase , padding='''VALID''' , groups=__lowercase , use_bias=__lowercase , name='''convolution''' , )
__lowerCamelCase : str =tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' )
__lowerCamelCase : Optional[int] =ACTaFN[activation] if activation is not None else tf.identity
def __lowercase ( self :Optional[int] , __lowercase :Any ):
__lowerCamelCase : str =self.convolution(self.padding(__lowercase ) )
__lowerCamelCase : Optional[int] =self.normalization(__lowercase )
__lowerCamelCase : Any =self.activation(__lowercase )
return hidden_state
class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self :Union[str, Any] , __lowercase :RegNetConfig , **__lowercase :Any ):
super().__init__(**__lowercase )
__lowerCamelCase : Tuple =config.num_channels
__lowerCamelCase : Union[str, Any] =TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , )
def __lowercase ( self :int , __lowercase :List[str] ):
__lowerCamelCase : int =shape_list(__lowercase )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
__lowerCamelCase : Union[str, Any] =tf.transpose(__lowercase , perm=(0, 2, 3, 1) )
__lowerCamelCase : Optional[int] =self.embedder(__lowercase )
return hidden_state
class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self :List[Any] , __lowercase :int , __lowercase :int = 2 , **__lowercase :Optional[int] ):
super().__init__(**__lowercase )
__lowerCamelCase : int =tf.keras.layers.ConvaD(
filters=__lowercase , kernel_size=1 , strides=__lowercase , use_bias=__lowercase , name='''convolution''' )
__lowerCamelCase : List[str] =tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' )
def __lowercase ( self :Optional[Any] , __lowercase :tf.Tensor , __lowercase :bool = False ):
return self.normalization(self.convolution(__lowercase ) , training=__lowercase )
class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self :Dict , __lowercase :int , __lowercase :int , **__lowercase :List[str] ):
super().__init__(**__lowercase )
__lowerCamelCase : int =tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowercase , name='''pooler''' )
__lowerCamelCase : int =[
tf.keras.layers.ConvaD(filters=__lowercase , kernel_size=1 , activation='''relu''' , name='''attention.0''' ),
tf.keras.layers.ConvaD(filters=__lowercase , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ),
]
def __lowercase ( self :Dict , __lowercase :Union[str, Any] ):
# [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels]
__lowerCamelCase : Any =self.pooler(__lowercase )
for layer_module in self.attention:
__lowerCamelCase : Any =layer_module(__lowercase )
__lowerCamelCase : Dict =hidden_state * pooled
return hidden_state
class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self :Optional[int] , __lowercase :RegNetConfig , __lowercase :int , __lowercase :int , __lowercase :int = 1 , **__lowercase :str ):
super().__init__(**__lowercase )
__lowerCamelCase : Dict =in_channels != out_channels or stride != 1
__lowerCamelCase : int =max(1 , out_channels // config.groups_width )
__lowerCamelCase : List[str] =(
TFRegNetShortCut(__lowercase , stride=__lowercase , name='''shortcut''' )
if should_apply_shortcut
else tf.keras.layers.Activation('''linear''' , name='''shortcut''' )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
__lowerCamelCase : str =[
TFRegNetConvLayer(__lowercase , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ),
TFRegNetConvLayer(
__lowercase , stride=__lowercase , groups=__lowercase , activation=config.hidden_act , name='''layer.1''' ),
TFRegNetConvLayer(__lowercase , kernel_size=1 , activation=__lowercase , name='''layer.2''' ),
]
__lowerCamelCase : Optional[int] =ACTaFN[config.hidden_act]
def __lowercase ( self :int , __lowercase :Optional[int] ):
__lowerCamelCase : List[Any] =hidden_state
for layer_module in self.layers:
__lowerCamelCase : str =layer_module(__lowercase )
__lowerCamelCase : List[Any] =self.shortcut(__lowercase )
hidden_state += residual
__lowerCamelCase : Optional[int] =self.activation(__lowercase )
return hidden_state
class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self :Union[str, Any] , __lowercase :RegNetConfig , __lowercase :int , __lowercase :int , __lowercase :int = 1 , **__lowercase :List[str] ):
super().__init__(**__lowercase )
__lowerCamelCase : Optional[Any] =in_channels != out_channels or stride != 1
__lowerCamelCase : Optional[Any] =max(1 , out_channels // config.groups_width )
__lowerCamelCase : Dict =(
TFRegNetShortCut(__lowercase , stride=__lowercase , name='''shortcut''' )
if should_apply_shortcut
else tf.keras.layers.Activation('''linear''' , name='''shortcut''' )
)
__lowerCamelCase : Union[str, Any] =[
TFRegNetConvLayer(__lowercase , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ),
TFRegNetConvLayer(
__lowercase , stride=__lowercase , groups=__lowercase , activation=config.hidden_act , name='''layer.1''' ),
TFRegNetSELayer(__lowercase , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ),
TFRegNetConvLayer(__lowercase , kernel_size=1 , activation=__lowercase , name='''layer.3''' ),
]
__lowerCamelCase : Tuple =ACTaFN[config.hidden_act]
def __lowercase ( self :Tuple , __lowercase :Tuple ):
__lowerCamelCase : List[Any] =hidden_state
for layer_module in self.layers:
__lowerCamelCase : int =layer_module(__lowercase )
__lowerCamelCase : List[str] =self.shortcut(__lowercase )
hidden_state += residual
__lowerCamelCase : List[str] =self.activation(__lowercase )
return hidden_state
class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self :int , __lowercase :RegNetConfig , __lowercase :int , __lowercase :int , __lowercase :int = 2 , __lowercase :int = 2 , **__lowercase :Union[str, Any] ):
super().__init__(**__lowercase )
__lowerCamelCase : List[str] =TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer
__lowerCamelCase : List[Any] =[
# downsampling is done in the first layer with stride of 2
layer(__lowercase , __lowercase , __lowercase , stride=__lowercase , name='''layers.0''' ),
*[layer(__lowercase , __lowercase , __lowercase , name=f'layers.{i+1}' ) for i in range(depth - 1 )],
]
def __lowercase ( self :int , __lowercase :List[str] ):
for layer_module in self.layers:
__lowerCamelCase : int =layer_module(__lowercase )
return hidden_state
class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self :List[Any] , __lowercase :RegNetConfig , **__lowercase :List[str] ):
super().__init__(**__lowercase )
__lowerCamelCase : Optional[int] =[]
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
__lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) )
__lowerCamelCase : Any =zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowercase , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(__lowercase , __lowercase , __lowercase , depth=__lowercase , name=f'stages.{i+1}' ) )
def __lowercase ( self :str , __lowercase :tf.Tensor , __lowercase :bool = False , __lowercase :bool = True ):
__lowerCamelCase : Optional[Any] =() if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__lowerCamelCase : Dict =hidden_states + (hidden_state,)
__lowerCamelCase : List[Any] =stage_module(__lowercase )
if output_hidden_states:
__lowerCamelCase : Union[str, Any] =hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowercase , hidden_states=__lowercase )
@keras_serializable
class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ):
"""simple docstring"""
__snake_case : Optional[int] = RegNetConfig
def __init__( self :List[Any] , __lowercase :Dict , **__lowercase :Union[str, Any] ):
super().__init__(**__lowercase )
__lowerCamelCase : int =config
__lowerCamelCase : List[str] =TFRegNetEmbeddings(__lowercase , name='''embedder''' )
__lowerCamelCase : List[str] =TFRegNetEncoder(__lowercase , name='''encoder''' )
__lowerCamelCase : List[Any] =tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowercase , name='''pooler''' )
@unpack_inputs
def __lowercase ( self :List[Any] , __lowercase :tf.Tensor , __lowercase :Optional[bool] = None , __lowercase :Optional[bool] = None , __lowercase :bool = False , ):
__lowerCamelCase : Union[str, Any] =(
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowerCamelCase : Tuple =return_dict if return_dict is not None else self.config.use_return_dict
__lowerCamelCase : Tuple =self.embedder(__lowercase , training=__lowercase )
__lowerCamelCase : Optional[Any] =self.encoder(
__lowercase , output_hidden_states=__lowercase , return_dict=__lowercase , training=__lowercase )
__lowerCamelCase : str =encoder_outputs[0]
__lowerCamelCase : Tuple =self.pooler(__lowercase )
# Change to NCHW output format have uniformity in the modules
__lowerCamelCase : int =tf.transpose(__lowercase , perm=(0, 3, 1, 2) )
__lowerCamelCase : Any =tf.transpose(__lowercase , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
__lowerCamelCase : str =tuple([tf.transpose(__lowercase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__lowercase , pooler_output=__lowercase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class SCREAMING_SNAKE_CASE_ ( snake_case__ ):
"""simple docstring"""
__snake_case : Optional[int] = RegNetConfig
__snake_case : int = """regnet"""
__snake_case : int = """pixel_values"""
@property
def __lowercase ( self :List[str] ):
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )}
_UpperCamelCase = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n'
_UpperCamelCase = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"""The bare RegNet model outputting raw features without any specific head on top.""" , snake_case__ , )
class SCREAMING_SNAKE_CASE_ ( snake_case__ ):
"""simple docstring"""
def __init__( self :Union[str, Any] , __lowercase :RegNetConfig , *__lowercase :List[str] , **__lowercase :int ):
super().__init__(__lowercase , *__lowercase , **__lowercase )
__lowerCamelCase : Tuple =TFRegNetMainLayer(__lowercase , name='''regnet''' )
@unpack_inputs
@add_start_docstrings_to_model_forward(__lowercase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def __lowercase ( self :Optional[Any] , __lowercase :tf.Tensor , __lowercase :Optional[bool] = None , __lowercase :Optional[bool] = None , __lowercase :Optional[int]=False , ):
__lowerCamelCase : List[Any] =(
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowerCamelCase : Optional[int] =return_dict if return_dict is not None else self.config.use_return_dict
__lowerCamelCase : Dict =self.regnet(
pixel_values=__lowercase , output_hidden_states=__lowercase , return_dict=__lowercase , training=__lowercase , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" , snake_case__ , )
class SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ):
"""simple docstring"""
def __init__( self :Union[str, Any] , __lowercase :RegNetConfig , *__lowercase :List[Any] , **__lowercase :Dict ):
super().__init__(__lowercase , *__lowercase , **__lowercase )
__lowerCamelCase : Optional[int] =config.num_labels
__lowerCamelCase : Optional[int] =TFRegNetMainLayer(__lowercase , name='''regnet''' )
# classification head
__lowerCamelCase : Union[str, Any] =[
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(__lowercase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def __lowercase ( self :List[Any] , __lowercase :tf.Tensor = None , __lowercase :tf.Tensor = None , __lowercase :bool = None , __lowercase :bool = None , __lowercase :int=False , ):
__lowerCamelCase : str =(
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowerCamelCase : Optional[int] =return_dict if return_dict is not None else self.config.use_return_dict
__lowerCamelCase : str =self.regnet(
__lowercase , output_hidden_states=__lowercase , return_dict=__lowercase , training=__lowercase )
__lowerCamelCase : Any =outputs.pooler_output if return_dict else outputs[1]
__lowerCamelCase : List[str] =self.classifier[0](__lowercase )
__lowerCamelCase : str =self.classifier[1](__lowercase )
__lowerCamelCase : str =None if labels is None else self.hf_compute_loss(labels=__lowercase , logits=__lowercase )
if not return_dict:
__lowerCamelCase : Optional[int] =(logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=__lowercase , logits=__lowercase , hidden_states=outputs.hidden_states )
| 363 | 0 |
import torch
def UpperCAmelCase__ ( ):
if torch.cuda.is_available():
__a : str = torch.cuda.device_count()
else:
__a : List[str] = 0
print(f'''Successfully ran on {num_gpus} GPUs''' )
if __name__ == "__main__":
main()
| 47 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
SCREAMING_SNAKE_CASE__ = {
'''configuration_bridgetower''': [
'''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''BridgeTowerConfig''',
'''BridgeTowerTextConfig''',
'''BridgeTowerVisionConfig''',
],
'''processing_bridgetower''': ['''BridgeTowerProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ['''BridgeTowerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
'''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BridgeTowerForContrastiveLearning''',
'''BridgeTowerForImageAndTextRetrieval''',
'''BridgeTowerForMaskedLM''',
'''BridgeTowerModel''',
'''BridgeTowerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_bridgetower import (
BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP,
BridgeTowerConfig,
BridgeTowerTextConfig,
BridgeTowerVisionConfig,
)
from .processing_bridgetower import BridgeTowerProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_bridgetower import BridgeTowerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bridgetower import (
BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST,
BridgeTowerForContrastiveLearning,
BridgeTowerForImageAndTextRetrieval,
BridgeTowerForMaskedLM,
BridgeTowerModel,
BridgeTowerPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 47 | 1 |
import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
__lowerCamelCase = logging.getLogger(__name__)
class snake_case_ (lowercase__ ):
"""simple docstring"""
_lowerCamelCase = """token-classification"""
def __init__( self ,lowercase):
"""simple docstring"""
if type(lowercase) == dict:
UpperCAmelCase_ : List[str] = Namespace(**lowercase)
UpperCAmelCase_ : List[Any] = import_module("tasks")
try:
UpperCAmelCase_ : Dict = getattr(lowercase ,hparams.task_type)
UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
F"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """
F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""")
UpperCAmelCase_ : List[Any] = self.token_classification_task.get_labels(hparams.labels)
UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index
super().__init__(lowercase ,len(self.labels) ,self.mode)
def A_ ( self ,**lowercase):
"""simple docstring"""
return self.model(**lowercase)
def A_ ( self ,lowercase ,lowercase):
"""simple docstring"""
UpperCAmelCase_ : Any = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
UpperCAmelCase_ : Optional[Any] = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
UpperCAmelCase_ : Optional[int] = self(**lowercase)
UpperCAmelCase_ : Dict = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def A_ ( self):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.hparams
for mode in ["train", "dev", "test"]:
UpperCAmelCase_ : Tuple = self._feature_file(lowercase)
if os.path.exists(lowercase) and not args.overwrite_cache:
logger.info("Loading features from cached file %s" ,lowercase)
UpperCAmelCase_ : str = torch.load(lowercase)
else:
logger.info("Creating features from dataset file at %s" ,args.data_dir)
UpperCAmelCase_ : Tuple = self.token_classification_task.read_examples_from_file(args.data_dir ,lowercase)
UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features(
lowercase ,self.labels ,args.max_seq_length ,self.tokenizer ,cls_token_at_end=bool(self.config.model_type in ["xlnet"]) ,cls_token=self.tokenizer.cls_token ,cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 ,sep_token=self.tokenizer.sep_token ,sep_token_extra=lowercase ,pad_on_left=bool(self.config.model_type in ["xlnet"]) ,pad_token=self.tokenizer.pad_token_id ,pad_token_segment_id=self.tokenizer.pad_token_type_id ,pad_token_label_id=self.pad_token_label_id ,)
logger.info("Saving features into cached file %s" ,lowercase)
torch.save(lowercase ,lowercase)
def A_ ( self ,lowercase ,lowercase ,lowercase = False):
"""simple docstring"""
UpperCAmelCase_ : Dict = self._feature_file(lowercase)
logger.info("Loading features from cached file %s" ,lowercase)
UpperCAmelCase_ : Union[str, Any] = torch.load(lowercase)
UpperCAmelCase_ : List[Any] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long)
UpperCAmelCase_ : Any = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long)
if features[0].token_type_ids is not None:
UpperCAmelCase_ : List[Any] = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long)
else:
UpperCAmelCase_ : Union[str, Any] = torch.tensor([0 for f in features] ,dtype=torch.long)
# HACK(we will not use this anymore soon)
UpperCAmelCase_ : Tuple = torch.tensor([f.label_ids for f in features] ,dtype=torch.long)
return DataLoader(
TensorDataset(lowercase ,lowercase ,lowercase ,lowercase) ,batch_size=lowercase)
def A_ ( self ,lowercase ,lowercase):
"""simple docstring"""
"""Compute validation""" ""
UpperCAmelCase_ : Optional[Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
UpperCAmelCase_ : Optional[Any] = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
UpperCAmelCase_ : Optional[int] = self(**lowercase)
UpperCAmelCase_ : Dict = outputs[:2]
UpperCAmelCase_ : List[str] = logits.detach().cpu().numpy()
UpperCAmelCase_ : Dict = inputs["labels"].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def A_ ( self ,lowercase):
"""simple docstring"""
UpperCAmelCase_ : Tuple = torch.stack([x["val_loss"] for x in outputs]).mean()
UpperCAmelCase_ : Dict = np.concatenate([x["pred"] for x in outputs] ,axis=0)
UpperCAmelCase_ : Optional[Any] = np.argmax(lowercase ,axis=2)
UpperCAmelCase_ : List[str] = np.concatenate([x["target"] for x in outputs] ,axis=0)
UpperCAmelCase_ : Optional[int] = dict(enumerate(self.labels))
UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0])]
UpperCAmelCase_ : Any = [[] for _ in range(out_label_ids.shape[0])]
for i in range(out_label_ids.shape[0]):
for j in range(out_label_ids.shape[1]):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]])
preds_list[i].append(label_map[preds[i][j]])
UpperCAmelCase_ : List[Any] = {
"val_loss": val_loss_mean,
"accuracy_score": accuracy_score(lowercase ,lowercase),
"precision": precision_score(lowercase ,lowercase),
"recall": recall_score(lowercase ,lowercase),
"f1": fa_score(lowercase ,lowercase),
}
UpperCAmelCase_ : int = dict(results.items())
UpperCAmelCase_ : Optional[Any] = results
return ret, preds_list, out_label_list
def A_ ( self ,lowercase):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self._eval_end(lowercase)
UpperCAmelCase_ : int = ret["log"]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def A_ ( self ,lowercase):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self._eval_end(lowercase)
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
UpperCAmelCase_ : int = ret["log"]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def A_ ( lowercase ,lowercase):
"""simple docstring"""
BaseTransformer.add_model_specific_args(lowercase ,lowercase)
parser.add_argument(
"--task_type" ,default="NER" ,type=lowercase ,help="Task type to fine tune in training (e.g. NER, POS, etc)")
parser.add_argument(
"--max_seq_length" ,default=128 ,type=lowercase ,help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) ,)
parser.add_argument(
"--labels" ,default="" ,type=lowercase ,help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." ,)
parser.add_argument(
"--gpus" ,default=0 ,type=lowercase ,help="The number of GPUs allocated for this, it is by default 0 meaning none" ,)
parser.add_argument(
"--overwrite_cache" ,action="store_true" ,help="Overwrite the cached training and evaluation sets")
return parser
if __name__ == "__main__":
__lowerCamelCase = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
__lowerCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd())
__lowerCamelCase = parser.parse_args()
__lowerCamelCase = NERTransformer(args)
__lowerCamelCase = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
__lowerCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True))
__lowerCamelCase = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
| 701 |
def _snake_case ( __snake_case , __snake_case ) -> int:
'''simple docstring'''
return int((input_a, input_a).count(0 ) != 0 )
def _snake_case ( ) -> None:
'''simple docstring'''
assert nand_gate(0 , 0 ) == 1
assert nand_gate(0 , 1 ) == 1
assert nand_gate(1 , 0 ) == 1
assert nand_gate(1 , 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 455 | 0 |
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
snake_case__ : Any = logging.get_logger(__name__)
snake_case__ : Any = {"""vocab_file""": """vocab.txt"""}
snake_case__ : int = {
"""vocab_file""": {
"""openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""",
},
}
snake_case__ : int = {
"""openbmb/cpm-ant-10b""": 1_0_2_4,
}
def _snake_case (__lowercase):
UpperCamelCase_ = collections.OrderedDict()
with open(__lowercase , 'r' , encoding='utf-8') as reader:
UpperCamelCase_ = reader.readlines()
for index, token in enumerate(__lowercase):
UpperCamelCase_ = token.rstrip('\n')
UpperCamelCase_ = index
return vocab
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase="<unk>" , _UpperCAmelCase=200 ) -> Any:
UpperCamelCase_ = vocab
UpperCamelCase_ = unk_token
UpperCamelCase_ = max_input_chars_per_word
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple:
UpperCamelCase_ = list(_UpperCAmelCase )
if len(_UpperCAmelCase ) > self.max_input_chars_per_word:
return [self.unk_token]
UpperCamelCase_ = 0
UpperCamelCase_ = []
while start < len(_UpperCAmelCase ):
UpperCamelCase_ = len(_UpperCAmelCase )
UpperCamelCase_ = None
while start < end:
UpperCamelCase_ = ''.join(chars[start:end] )
if substr in self.vocab:
UpperCamelCase_ = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token )
start += 1
else:
sub_tokens.append(_UpperCAmelCase )
UpperCamelCase_ = end
return sub_tokens
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = VOCAB_FILES_NAMES
A_ = PRETRAINED_VOCAB_FILES_MAP
A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ = ["""input_ids""", """attention_mask"""]
A_ = False
def __init__( self , _UpperCAmelCase , _UpperCAmelCase="<d>" , _UpperCAmelCase="</d>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="</n>" , _UpperCAmelCase="</_>" , _UpperCAmelCase="left" , **_UpperCAmelCase , ) -> List[Any]:
requires_backends(self , ['jieba'] )
super().__init__(
bod_token=_UpperCAmelCase , eod_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , line_token=_UpperCAmelCase , space_token=_UpperCAmelCase , padding_side=_UpperCAmelCase , **_UpperCAmelCase , )
UpperCamelCase_ = bod_token
UpperCamelCase_ = eod_token
UpperCamelCase_ = load_vocab(_UpperCAmelCase )
UpperCamelCase_ = self.encoder[space_token]
UpperCamelCase_ = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
UpperCamelCase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _UpperCAmelCase : x[1] ) )
UpperCamelCase_ = {v: k for k, v in self.encoder.items()}
UpperCamelCase_ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token )
@property
def _UpperCAmelCase ( self ) -> Optional[Any]:
return self.encoder[self.bod_token]
@property
def _UpperCAmelCase ( self ) -> List[Any]:
return self.encoder[self.eod_token]
@property
def _UpperCAmelCase ( self ) -> Any:
return self.encoder["\n"]
@property
def _UpperCAmelCase ( self ) -> int:
return len(self.encoder )
def _UpperCAmelCase ( self ) -> str:
return dict(self.encoder , **self.added_tokens_encoder )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Optional[int]:
UpperCamelCase_ = []
for x in jieba.cut(_UpperCAmelCase , cut_all=_UpperCAmelCase ):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(_UpperCAmelCase ) )
return output_tokens
def _UpperCAmelCase ( self , _UpperCAmelCase , **_UpperCAmelCase ) -> Optional[int]:
UpperCamelCase_ = [i for i in token_ids if i >= 0]
UpperCamelCase_ = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(_UpperCAmelCase , **_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> str:
return token in self.encoder
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> str:
return "".join(_UpperCAmelCase )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> int:
return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Optional[Any]:
return self.decoder.get(_UpperCAmelCase , self.unk_token )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> Tuple[str]:
if os.path.isdir(_UpperCAmelCase ):
UpperCamelCase_ = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
else:
UpperCamelCase_ = (filename_prefix + '-' if filename_prefix else '') + save_directory
UpperCamelCase_ = 0
if " " in self.encoder:
UpperCamelCase_ = self.encoder[' ']
del self.encoder[" "]
if "\n" in self.encoder:
UpperCamelCase_ = self.encoder['\n']
del self.encoder["\n"]
UpperCamelCase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _UpperCAmelCase : x[1] ) )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
' Please check that the vocabulary is not corrupted!' )
UpperCamelCase_ = token_index
writer.write(token + '\n' )
index += 1
return (vocab_file,)
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return [self.bos_token_id] + token_ids_a
return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is not None:
return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase ))
return [1] + ([0] * len(_UpperCAmelCase ))
| 23 |
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class _lowerCAmelCase ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : List[Any] ):
'''simple docstring'''
_snake_case : Any = []
def UpperCamelCase_ ( self : int , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : int , **UpperCamelCase : Any ):
'''simple docstring'''
self.events.append('on_init_end' )
def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , **UpperCamelCase : List[Any] ):
'''simple docstring'''
self.events.append('on_train_begin' )
def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : List[str] , **UpperCamelCase : Any ):
'''simple docstring'''
self.events.append('on_train_end' )
def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : str , **UpperCamelCase : str ):
'''simple docstring'''
self.events.append('on_epoch_begin' )
def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : int , UpperCamelCase : List[Any] , UpperCamelCase : str , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
self.events.append('on_epoch_end' )
def UpperCamelCase_ ( self : Any , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
self.events.append('on_step_begin' )
def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ):
'''simple docstring'''
self.events.append('on_step_end' )
def UpperCamelCase_ ( self : str , UpperCamelCase : Any , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , **UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
self.events.append('on_evaluate' )
def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : str , **UpperCamelCase : List[Any] ):
'''simple docstring'''
self.events.append('on_predict' )
def UpperCamelCase_ ( self : int , UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : int , **UpperCamelCase : Optional[int] ):
'''simple docstring'''
self.events.append('on_save' )
def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
self.events.append('on_log' )
def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Any , UpperCamelCase : str , **UpperCamelCase : Dict ):
'''simple docstring'''
self.events.append('on_prediction_step' )
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
_snake_case : str = tempfile.mkdtemp()
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
shutil.rmtree(self.output_dir )
def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Tuple=0 , UpperCamelCase : str=0 , UpperCamelCase : str=64 , UpperCamelCase : str=64 , UpperCamelCase : List[Any]=None , UpperCamelCase : Union[str, Any]=False , **UpperCamelCase : List[str] ):
'''simple docstring'''
_snake_case : Tuple = RegressionDataset(length=UpperCamelCase )
_snake_case : int = RegressionDataset(length=UpperCamelCase )
_snake_case : Tuple = RegressionModelConfig(a=UpperCamelCase , b=UpperCamelCase )
_snake_case : Union[str, Any] = RegressionPreTrainedModel(UpperCamelCase )
_snake_case : Optional[Any] = TrainingArguments(self.output_dir , disable_tqdm=UpperCamelCase , report_to=[] , **UpperCamelCase )
return Trainer(
UpperCamelCase , UpperCamelCase , train_dataset=UpperCamelCase , eval_dataset=UpperCamelCase , callbacks=UpperCamelCase , )
def UpperCamelCase_ ( self : Tuple , UpperCamelCase : int , UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) )
# Order doesn't matter
_snake_case : Optional[Any] = sorted(UpperCamelCase , key=lambda UpperCamelCase : cb.__name__ if isinstance(UpperCamelCase , UpperCamelCase ) else cb.__class__.__name__ )
_snake_case : Dict = sorted(UpperCamelCase , key=lambda UpperCamelCase : cb.__name__ if isinstance(UpperCamelCase , UpperCamelCase ) else cb.__class__.__name__ )
for cba, cba in zip(UpperCamelCase , UpperCamelCase ):
if isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ):
self.assertEqual(UpperCamelCase , UpperCamelCase )
elif isinstance(UpperCamelCase , UpperCamelCase ) and not isinstance(UpperCamelCase , UpperCamelCase ):
self.assertEqual(UpperCamelCase , cba.__class__ )
elif not isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ):
self.assertEqual(cba.__class__ , UpperCamelCase )
else:
self.assertEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase_ ( self : Dict , UpperCamelCase : Dict ):
'''simple docstring'''
_snake_case : Dict = ['on_init_end', 'on_train_begin']
_snake_case : List[str] = 0
_snake_case : str = len(trainer.get_eval_dataloader() )
_snake_case : str = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate']
for _ in range(trainer.state.num_train_epochs ):
expected_events.append('on_epoch_begin' )
for _ in range(UpperCamelCase ):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append('on_log' )
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append('on_save' )
expected_events.append('on_epoch_end' )
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
_snake_case : int = self.get_trainer()
_snake_case : List[Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase )
# Callbacks passed at init are added to the default callbacks
_snake_case : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] )
expected_callbacks.append(UpperCamelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase )
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
_snake_case : Tuple = self.get_trainer(disable_tqdm=UpperCamelCase )
_snake_case : Optional[int] = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase )
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
_snake_case : Tuple = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
_snake_case : List[Any] = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(UpperCamelCase )
expected_callbacks.remove(UpperCamelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase )
_snake_case : Optional[Any] = self.get_trainer()
_snake_case : Dict = trainer.pop_callback(UpperCamelCase )
self.assertEqual(cb.__class__ , UpperCamelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase )
trainer.add_callback(UpperCamelCase )
expected_callbacks.insert(0 , UpperCamelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase )
# We can also add, pop, or remove by instance
_snake_case : Optional[Any] = self.get_trainer()
_snake_case : Optional[int] = trainer.callback_handler.callbacks[0]
trainer.remove_callback(UpperCamelCase )
expected_callbacks.remove(UpperCamelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase )
_snake_case : int = self.get_trainer()
_snake_case : int = trainer.callback_handler.callbacks[0]
_snake_case : int = trainer.pop_callback(UpperCamelCase )
self.assertEqual(UpperCamelCase , UpperCamelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase )
trainer.add_callback(UpperCamelCase )
expected_callbacks.insert(0 , UpperCamelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase )
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action='ignore' , category=UpperCamelCase )
_snake_case : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] )
trainer.train()
_snake_case : List[str] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(UpperCamelCase , self.get_expected_events(UpperCamelCase ) )
# Independent log/save/eval
_snake_case : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 )
trainer.train()
_snake_case : List[Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(UpperCamelCase , self.get_expected_events(UpperCamelCase ) )
_snake_case : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 )
trainer.train()
_snake_case : Dict = trainer.callback_handler.callbacks[-2].events
self.assertEqual(UpperCamelCase , self.get_expected_events(UpperCamelCase ) )
_snake_case : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' )
trainer.train()
_snake_case : Union[str, Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(UpperCamelCase , self.get_expected_events(UpperCamelCase ) )
_snake_case : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' )
trainer.train()
_snake_case : str = trainer.callback_handler.callbacks[-2].events
self.assertEqual(UpperCamelCase , self.get_expected_events(UpperCamelCase ) )
# A bit of everything
_snake_case : int = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='steps' , )
trainer.train()
_snake_case : Tuple = trainer.callback_handler.callbacks[-2].events
self.assertEqual(UpperCamelCase , self.get_expected_events(UpperCamelCase ) )
# warning should be emitted for duplicated callbacks
with patch('transformers.trainer_callback.logger.warning' ) as warn_mock:
_snake_case : Dict = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(UpperCamelCase ) in warn_mock.call_args[0][0]
| 411 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCAmelCase__ = logging.get_logger(__name__)
class _a ( lowerCamelCase_ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE = ['pixel_values']
def __init__( self , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = PIL.Image.BICUBIC , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = 1 / 255 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = None , **lowerCAmelCase_ , ):
super().__init__(**lowerCAmelCase_ )
_lowercase =size if size is not None else {"height": 256, "width": 256}
_lowercase =get_size_dict(lowerCAmelCase_ )
_lowercase =crop_size if crop_size is not None else {"height": 224, "width": 224}
_lowercase =get_size_dict(lowerCAmelCase_ , param_name="crop_size" )
_lowercase =do_resize
_lowercase =size
_lowercase =resample
_lowercase =do_center_crop
_lowercase =crop_size
_lowercase =do_rescale
_lowercase =rescale_factor
_lowercase =do_normalize
_lowercase =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_lowercase =image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = PIL.Image.BICUBIC , lowerCAmelCase_ = None , **lowerCAmelCase_ , ):
_lowercase =get_size_dict(lowerCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return resize(
lowerCAmelCase_ , size=(size["height"], size["width"]) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ):
_lowercase =get_size_dict(lowerCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return center_crop(lowerCAmelCase_ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ):
return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ):
return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , **lowerCAmelCase_ , ):
_lowercase =do_resize if do_resize is not None else self.do_resize
_lowercase =resample if resample is not None else self.resample
_lowercase =do_center_crop if do_center_crop is not None else self.do_center_crop
_lowercase =do_rescale if do_rescale is not None else self.do_rescale
_lowercase =rescale_factor if rescale_factor is not None else self.rescale_factor
_lowercase =do_normalize if do_normalize is not None else self.do_normalize
_lowercase =image_mean if image_mean is not None else self.image_mean
_lowercase =image_std if image_std is not None else self.image_std
_lowercase =size if size is not None else self.size
_lowercase =get_size_dict(lowerCAmelCase_ )
_lowercase =crop_size if crop_size is not None else self.crop_size
_lowercase =get_size_dict(lowerCAmelCase_ , param_name="crop_size" )
_lowercase =make_list_of_images(lowerCAmelCase_ )
if not valid_images(lowerCAmelCase_ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
_lowercase =[to_numpy_array(lowerCAmelCase_ ) for image in images]
if do_resize:
_lowercase =[self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images]
if do_center_crop:
_lowercase =[self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images]
if do_rescale:
_lowercase =[self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images]
if do_normalize:
_lowercase =[self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images]
_lowercase =[to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images]
_lowercase ={"pixel_values": images}
return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
| 594 | from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class _a ( lowerCamelCase_ ):
"""simple docstring"""
def __lowerCAmelCase ( self , lowerCAmelCase_ ):
return 0.0
def __lowerCamelCase ( __a : np.ndarray , __a : int ) -> tuple[int | float, int | float]:
_lowercase =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
_lowercase =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def __lowerCamelCase ( __a : FilterType , __a : int ) -> None:
_lowercase =512
_lowercase =[1] + [0] * (size - 1)
_lowercase =[filter_type.process(__a ) for item in inputs]
_lowercase =[0] * (samplerate - size) # zero-padding
outputs += filler
_lowercase =np.abs(np.fft.fft(__a ) )
_lowercase =20 * np.logaa(__a )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("Frequency (Hz)" )
plt.xscale("log" )
# Display within reasonable bounds
_lowercase =get_bounds(__a , __a )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel("Gain (dB)" )
plt.plot(__a )
plt.show()
def __lowerCamelCase ( __a : FilterType , __a : int ) -> None:
_lowercase =512
_lowercase =[1] + [0] * (size - 1)
_lowercase =[filter_type.process(__a ) for item in inputs]
_lowercase =[0] * (samplerate - size) # zero-padding
outputs += filler
_lowercase =np.angle(np.fft.fft(__a ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("Frequency (Hz)" )
plt.xscale("log" )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel("Phase shift (Radians)" )
plt.plot(np.unwrap(__a , -2 * pi ) )
plt.show()
| 594 | 1 |
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def lowercase_ ( SCREAMING_SNAKE_CASE : ndarray ):
"""simple docstring"""
return np.dot(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self , *,
__SCREAMING_SNAKE_CASE = np.inf , __SCREAMING_SNAKE_CASE = "linear" , __SCREAMING_SNAKE_CASE = 0.0 , ) -> None:
"""simple docstring"""
snake_case__ : int =regularization
snake_case__ : Tuple =gamma
if kernel == "linear":
snake_case__ : str =self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError('''rbf kernel requires gamma''' )
if not isinstance(self.gamma , (float, int) ):
raise ValueError('''gamma must be float or int''' )
if not self.gamma > 0:
raise ValueError('''gamma must be > 0''' )
snake_case__ : Dict =self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
snake_case__ : Optional[int] =f'''Unknown kernel: {kernel}'''
raise ValueError(__SCREAMING_SNAKE_CASE )
def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
return np.dot(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
snake_case__ : Optional[Any] =observations
snake_case__ : Union[str, Any] =classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((snake_case__), ) : Dict =np.shape(__SCREAMING_SNAKE_CASE )
def to_minimize(__SCREAMING_SNAKE_CASE ) -> float:
snake_case__ : List[str] =0
((snake_case__), ) : int =np.shape(__SCREAMING_SNAKE_CASE )
for i in range(__SCREAMING_SNAKE_CASE ):
for j in range(__SCREAMING_SNAKE_CASE ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] =LinearConstraint(__SCREAMING_SNAKE_CASE , 0 , 0 )
snake_case__ : int =Bounds(0 , self.regularization )
snake_case__ : Union[str, Any] =minimize(
__SCREAMING_SNAKE_CASE , np.ones(__SCREAMING_SNAKE_CASE ) , bounds=__SCREAMING_SNAKE_CASE , constraints=[ly_contraint] ).x
snake_case__ : Optional[int] =l_star
# calculating mean offset of separation plane to points
snake_case__ : Optional[Any] =0
for i in range(__SCREAMING_SNAKE_CASE ):
for j in range(__SCREAMING_SNAKE_CASE ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
snake_case__ : int =s / n
def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
snake_case__ : int =sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , __SCREAMING_SNAKE_CASE )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 381 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def lowercase_ ( SCREAMING_SNAKE_CASE : Dataset , SCREAMING_SNAKE_CASE : Dict[str, str] ):
"""simple docstring"""
snake_case__ : str =args.log_outputs
snake_case__ : str ='''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
snake_case__ : Dict =load_metric('''wer''' )
snake_case__ : str =load_metric('''cer''' )
# compute metrics
snake_case__ : int =wer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
snake_case__ : Optional[int] =cer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
# print & log results
snake_case__ : Optional[Any] =F'''WER: {wer_result}\nCER: {cer_result}'''
print(SCREAMING_SNAKE_CASE )
with open(F'''{dataset_id}_eval_results.txt''' , '''w''' ) as f:
f.write(SCREAMING_SNAKE_CASE )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
snake_case__ : Union[str, Any] =F'''log_{dataset_id}_predictions.txt'''
snake_case__ : Union[str, Any] =F'''log_{dataset_id}_targets.txt'''
with open(SCREAMING_SNAKE_CASE , '''w''' ) as p, open(SCREAMING_SNAKE_CASE , '''w''' ) as t:
# mapping function to write output
def write_to_file(SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict ):
p.write(F'''{i}''' + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(F'''{i}''' + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(SCREAMING_SNAKE_CASE , with_indices=SCREAMING_SNAKE_CASE )
def lowercase_ ( SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
snake_case__ : int ='''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
snake_case__ : str =re.sub(SCREAMING_SNAKE_CASE , '''''' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
snake_case__ : Dict =['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
snake_case__ : List[Any] =''' '''.join(text.split(SCREAMING_SNAKE_CASE ) )
return text
def lowercase_ ( SCREAMING_SNAKE_CASE : Dict ):
"""simple docstring"""
# load dataset
snake_case__ : Optional[Any] =load_dataset(args.dataset , args.config , split=args.split , use_auth_token=SCREAMING_SNAKE_CASE )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
snake_case__ : Optional[Any] =AutoFeatureExtractor.from_pretrained(args.model_id )
snake_case__ : int =feature_extractor.sampling_rate
# resample audio
snake_case__ : Tuple =dataset.cast_column('''audio''' , Audio(sampling_rate=SCREAMING_SNAKE_CASE ) )
# load eval pipeline
if args.device is None:
snake_case__ : Dict =0 if torch.cuda.is_available() else -1
snake_case__ : Optional[Any] =pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(SCREAMING_SNAKE_CASE : str ):
snake_case__ : List[Any] =asr(
batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
snake_case__ : List[Any] =prediction['''text''']
snake_case__ : int =normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
snake_case__ : Optional[int] =dataset.map(SCREAMING_SNAKE_CASE , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument(
'''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers'''
)
parser.add_argument(
'''--dataset''',
type=str,
required=True,
help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''',
)
parser.add_argument(
'''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice'''
)
parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''')
parser.add_argument(
'''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.'''
)
parser.add_argument(
'''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.'''
)
parser.add_argument(
'''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.'''
)
parser.add_argument(
'''--device''',
type=int,
default=None,
help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''',
)
lowerCamelCase__ = parser.parse_args()
main(args)
| 381 | 1 |
'''simple docstring'''
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
a : Any = logging.get_logger(__name__)
class UpperCamelCase__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str
SCREAMING_SNAKE_CASE__ : str = None
@staticmethod
def A_ ( ):
'''simple docstring'''
raise NotImplementedError
def A_ ( self , snake_case , snake_case , snake_case , **snake_case ):
'''simple docstring'''
raise NotImplementedError
def A_ ( self , snake_case ):
'''simple docstring'''
raise NotImplementedError
def A_ ( self ):
'''simple docstring'''
if not self.is_available():
raise RuntimeError(
f"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." )
@classmethod
def A_ ( cls ):
'''simple docstring'''
return f"`pip install {cls.pip_package or cls.name}`"
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = "optuna"
@staticmethod
def A_ ( ):
'''simple docstring'''
return is_optuna_available()
def A_ ( self , snake_case , snake_case , snake_case , **snake_case ):
'''simple docstring'''
return run_hp_search_optuna(snake_case , snake_case , snake_case , **snake_case )
def A_ ( self , snake_case ):
'''simple docstring'''
return default_hp_space_optuna(snake_case )
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = "ray"
SCREAMING_SNAKE_CASE__ : Union[str, Any] = "'ray[tune]'"
@staticmethod
def A_ ( ):
'''simple docstring'''
return is_ray_available()
def A_ ( self , snake_case , snake_case , snake_case , **snake_case ):
'''simple docstring'''
return run_hp_search_ray(snake_case , snake_case , snake_case , **snake_case )
def A_ ( self , snake_case ):
'''simple docstring'''
return default_hp_space_ray(snake_case )
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = "sigopt"
@staticmethod
def A_ ( ):
'''simple docstring'''
return is_sigopt_available()
def A_ ( self , snake_case , snake_case , snake_case , **snake_case ):
'''simple docstring'''
return run_hp_search_sigopt(snake_case , snake_case , snake_case , **snake_case )
def A_ ( self , snake_case ):
'''simple docstring'''
return default_hp_space_sigopt(snake_case )
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = "wandb"
@staticmethod
def A_ ( ):
'''simple docstring'''
return is_wandb_available()
def A_ ( self , snake_case , snake_case , snake_case , **snake_case ):
'''simple docstring'''
return run_hp_search_wandb(snake_case , snake_case , snake_case , **snake_case )
def A_ ( self , snake_case ):
'''simple docstring'''
return default_hp_space_wandb(snake_case )
a : Optional[Any] = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(__magic_name__ ) > 0:
UpperCAmelCase : List[str] = available_backends[0].name
if len(__magic_name__ ) > 1:
logger.info(
F"{len(__magic_name__ )} hyperparameter search backends available. Using {name} as the default." )
return name
raise RuntimeError(
"No hyperparameter search backend available.\n"
+ "\n".join(
F" - To install {backend.name} run {backend.pip_install()}"
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 609 |
'''simple docstring'''
from argparse import ArgumentParser
from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand
a : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
def lowercase ( __magic_name__ ):
'''simple docstring'''
if not path:
return "pipe"
for ext in PipelineDataFormat.SUPPORTED_FORMATS:
if path.endswith(__magic_name__ ):
return ext
raise Exception(
F"Unable to determine file format from file extension {path}. "
F"Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}" )
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = pipeline(
task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , )
UpperCAmelCase : Any = try_infer_format_from_ext(args.input ) if args.format == "infer" else args.format
UpperCAmelCase : Tuple = PipelineDataFormat.from_str(
format=__magic_name__ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , )
return RunCommand(__magic_name__ , __magic_name__ )
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
def __init__( self , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Dict = nlp
UpperCAmelCase : str = reader
@staticmethod
def A_ ( snake_case ):
'''simple docstring'''
UpperCAmelCase : str = parser.add_parser("run" , help="Run a pipeline through the CLI" )
run_parser.add_argument("--task" , choices=get_supported_tasks() , help="Task to run" )
run_parser.add_argument("--input" , type=snake_case , help="Path to the file to use for inference" )
run_parser.add_argument("--output" , type=snake_case , help="Path to the file that will be used post to write results." )
run_parser.add_argument("--model" , type=snake_case , help="Name or path to the model to instantiate." )
run_parser.add_argument("--config" , type=snake_case , help="Name or path to the model's config to instantiate." )
run_parser.add_argument(
"--tokenizer" , type=snake_case , help="Name of the tokenizer to use. (default: same as the model name)" )
run_parser.add_argument(
"--column" , type=snake_case , help="Name of the column to use as input. (For multi columns input as QA use column1,columns2)" , )
run_parser.add_argument(
"--format" , type=snake_case , default="infer" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="Input format to read from" , )
run_parser.add_argument(
"--device" , type=snake_case , default=-1 , help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" , )
run_parser.add_argument("--overwrite" , action="store_true" , help="Allow overwriting the output file." )
run_parser.set_defaults(func=snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self._nlp, []
for entry in self._reader:
UpperCAmelCase : Dict = nlp(**snake_case ) if self._reader.is_multi_columns else nlp(snake_case )
if isinstance(snake_case , snake_case ):
outputs.append(snake_case )
else:
outputs += output
# Saving data
if self._nlp.binary_output:
UpperCAmelCase : str = self._reader.save_binary(snake_case )
logger.warning(f"Current pipeline requires output to be in binary format, saving at {binary_path}" )
else:
self._reader.save(snake_case )
| 609 | 1 |
'''simple docstring'''
def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Optional[Any] = """"""
for word_or_phrase in separated:
if not isinstance(A_ , A_ ):
raise Exception("""join() accepts only strings to be joined""" )
joined += word_or_phrase + separator
return joined.strip(A_ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 533 | '''simple docstring'''
import argparse
import os
import torch
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
__snake_case : List[Any] = {
'''sample_size''': 32,
'''in_channels''': 3,
'''out_channels''': 3,
'''layers_per_block''': 2,
'''num_class_embeds''': 10_00,
'''block_out_channels''': [32, 64],
'''attention_head_dim''': 8,
'''down_block_types''': [
'''ResnetDownsampleBlock2D''',
'''AttnDownBlock2D''',
],
'''up_block_types''': [
'''AttnUpBlock2D''',
'''ResnetUpsampleBlock2D''',
],
'''resnet_time_scale_shift''': '''scale_shift''',
'''upsample_type''': '''resnet''',
'''downsample_type''': '''resnet''',
}
__snake_case : Optional[int] = {
'''sample_size''': 64,
'''in_channels''': 3,
'''out_channels''': 3,
'''layers_per_block''': 3,
'''num_class_embeds''': 10_00,
'''block_out_channels''': [1_92, 1_92 * 2, 1_92 * 3, 1_92 * 4],
'''attention_head_dim''': 64,
'''down_block_types''': [
'''ResnetDownsampleBlock2D''',
'''AttnDownBlock2D''',
'''AttnDownBlock2D''',
'''AttnDownBlock2D''',
],
'''up_block_types''': [
'''AttnUpBlock2D''',
'''AttnUpBlock2D''',
'''AttnUpBlock2D''',
'''ResnetUpsampleBlock2D''',
],
'''resnet_time_scale_shift''': '''scale_shift''',
'''upsample_type''': '''resnet''',
'''downsample_type''': '''resnet''',
}
__snake_case : int = {
'''sample_size''': 2_56,
'''in_channels''': 3,
'''out_channels''': 3,
'''layers_per_block''': 2,
'''num_class_embeds''': None,
'''block_out_channels''': [2_56, 2_56, 2_56 * 2, 2_56 * 2, 2_56 * 4, 2_56 * 4],
'''attention_head_dim''': 64,
'''down_block_types''': [
'''ResnetDownsampleBlock2D''',
'''ResnetDownsampleBlock2D''',
'''ResnetDownsampleBlock2D''',
'''AttnDownBlock2D''',
'''AttnDownBlock2D''',
'''AttnDownBlock2D''',
],
'''up_block_types''': [
'''AttnUpBlock2D''',
'''AttnUpBlock2D''',
'''AttnUpBlock2D''',
'''ResnetUpsampleBlock2D''',
'''ResnetUpsampleBlock2D''',
'''ResnetUpsampleBlock2D''',
],
'''resnet_time_scale_shift''': '''default''',
'''upsample_type''': '''resnet''',
'''downsample_type''': '''resnet''',
}
__snake_case : Dict = {
'''num_train_timesteps''': 40,
'''sigma_min''': 0.002,
'''sigma_max''': 80.0,
}
__snake_case : Tuple = {
'''num_train_timesteps''': 2_01,
'''sigma_min''': 0.002,
'''sigma_max''': 80.0,
}
__snake_case : str = {
'''num_train_timesteps''': 1_51,
'''sigma_min''': 0.002,
'''sigma_max''': 80.0,
}
def lowerCamelCase__ ( A_ ):
if isinstance(A_ , A_ ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("boolean value expected" )
def lowerCamelCase__ ( A_ , A_ , A_ , A_ , A_=False ):
UpperCAmelCase_ = checkpoint[F"""{old_prefix}.in_layers.0.weight"""]
UpperCAmelCase_ = checkpoint[F"""{old_prefix}.in_layers.0.bias"""]
UpperCAmelCase_ = checkpoint[F"""{old_prefix}.in_layers.2.weight"""]
UpperCAmelCase_ = checkpoint[F"""{old_prefix}.in_layers.2.bias"""]
UpperCAmelCase_ = checkpoint[F"""{old_prefix}.emb_layers.1.weight"""]
UpperCAmelCase_ = checkpoint[F"""{old_prefix}.emb_layers.1.bias"""]
UpperCAmelCase_ = checkpoint[F"""{old_prefix}.out_layers.0.weight"""]
UpperCAmelCase_ = checkpoint[F"""{old_prefix}.out_layers.0.bias"""]
UpperCAmelCase_ = checkpoint[F"""{old_prefix}.out_layers.3.weight"""]
UpperCAmelCase_ = checkpoint[F"""{old_prefix}.out_layers.3.bias"""]
if has_skip:
UpperCAmelCase_ = checkpoint[F"""{old_prefix}.skip_connection.weight"""]
UpperCAmelCase_ = checkpoint[F"""{old_prefix}.skip_connection.bias"""]
return new_checkpoint
def lowerCamelCase__ ( A_ , A_ , A_ , A_ , A_=None ):
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = checkpoint[F"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = checkpoint[F"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 )
UpperCAmelCase_ = checkpoint[F"""{old_prefix}.norm.weight"""]
UpperCAmelCase_ = checkpoint[F"""{old_prefix}.norm.bias"""]
UpperCAmelCase_ = weight_q.squeeze(-1 ).squeeze(-1 )
UpperCAmelCase_ = bias_q.squeeze(-1 ).squeeze(-1 )
UpperCAmelCase_ = weight_k.squeeze(-1 ).squeeze(-1 )
UpperCAmelCase_ = bias_k.squeeze(-1 ).squeeze(-1 )
UpperCAmelCase_ = weight_v.squeeze(-1 ).squeeze(-1 )
UpperCAmelCase_ = bias_v.squeeze(-1 ).squeeze(-1 )
UpperCAmelCase_ = (
checkpoint[F"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 )
)
UpperCAmelCase_ = checkpoint[F"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 )
return new_checkpoint
def lowerCamelCase__ ( A_ , A_ ):
UpperCAmelCase_ = torch.load(A_ , map_location="cpu" )
UpperCAmelCase_ = {}
UpperCAmelCase_ = checkpoint["time_embed.0.weight"]
UpperCAmelCase_ = checkpoint["time_embed.0.bias"]
UpperCAmelCase_ = checkpoint["time_embed.2.weight"]
UpperCAmelCase_ = checkpoint["time_embed.2.bias"]
if unet_config["num_class_embeds"] is not None:
UpperCAmelCase_ = checkpoint["label_emb.weight"]
UpperCAmelCase_ = checkpoint["input_blocks.0.0.weight"]
UpperCAmelCase_ = checkpoint["input_blocks.0.0.bias"]
UpperCAmelCase_ = unet_config["down_block_types"]
UpperCAmelCase_ = unet_config["layers_per_block"]
UpperCAmelCase_ = unet_config["attention_head_dim"]
UpperCAmelCase_ = unet_config["block_out_channels"]
UpperCAmelCase_ = 1
UpperCAmelCase_ = channels_list[0]
for i, layer_type in enumerate(A_ ):
UpperCAmelCase_ = channels_list[i]
UpperCAmelCase_ = current_channels != prev_channels
if layer_type == "ResnetDownsampleBlock2D":
for j in range(A_ ):
UpperCAmelCase_ = F"""down_blocks.{i}.resnets.{j}"""
UpperCAmelCase_ = F"""input_blocks.{current_layer}.0"""
UpperCAmelCase_ = True if j == 0 and downsample_block_has_skip else False
UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ , has_skip=A_ )
current_layer += 1
elif layer_type == "AttnDownBlock2D":
for j in range(A_ ):
UpperCAmelCase_ = F"""down_blocks.{i}.resnets.{j}"""
UpperCAmelCase_ = F"""input_blocks.{current_layer}.0"""
UpperCAmelCase_ = True if j == 0 and downsample_block_has_skip else False
UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ , has_skip=A_ )
UpperCAmelCase_ = F"""down_blocks.{i}.attentions.{j}"""
UpperCAmelCase_ = F"""input_blocks.{current_layer}.1"""
UpperCAmelCase_ = convert_attention(
A_ , A_ , A_ , A_ , A_ )
current_layer += 1
if i != len(A_ ) - 1:
UpperCAmelCase_ = F"""down_blocks.{i}.downsamplers.0"""
UpperCAmelCase_ = F"""input_blocks.{current_layer}.0"""
UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ )
current_layer += 1
UpperCAmelCase_ = current_channels
# hardcoded the mid-block for now
UpperCAmelCase_ = "mid_block.resnets.0"
UpperCAmelCase_ = "middle_block.0"
UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ )
UpperCAmelCase_ = "mid_block.attentions.0"
UpperCAmelCase_ = "middle_block.1"
UpperCAmelCase_ = convert_attention(A_ , A_ , A_ , A_ , A_ )
UpperCAmelCase_ = "mid_block.resnets.1"
UpperCAmelCase_ = "middle_block.2"
UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ )
UpperCAmelCase_ = 0
UpperCAmelCase_ = unet_config["up_block_types"]
for i, layer_type in enumerate(A_ ):
if layer_type == "ResnetUpsampleBlock2D":
for j in range(layers_per_block + 1 ):
UpperCAmelCase_ = F"""up_blocks.{i}.resnets.{j}"""
UpperCAmelCase_ = F"""output_blocks.{current_layer}.0"""
UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ , has_skip=A_ )
current_layer += 1
if i != len(A_ ) - 1:
UpperCAmelCase_ = F"""up_blocks.{i}.upsamplers.0"""
UpperCAmelCase_ = F"""output_blocks.{current_layer-1}.1"""
UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ )
elif layer_type == "AttnUpBlock2D":
for j in range(layers_per_block + 1 ):
UpperCAmelCase_ = F"""up_blocks.{i}.resnets.{j}"""
UpperCAmelCase_ = F"""output_blocks.{current_layer}.0"""
UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ , has_skip=A_ )
UpperCAmelCase_ = F"""up_blocks.{i}.attentions.{j}"""
UpperCAmelCase_ = F"""output_blocks.{current_layer}.1"""
UpperCAmelCase_ = convert_attention(
A_ , A_ , A_ , A_ , A_ )
current_layer += 1
if i != len(A_ ) - 1:
UpperCAmelCase_ = F"""up_blocks.{i}.upsamplers.0"""
UpperCAmelCase_ = F"""output_blocks.{current_layer-1}.2"""
UpperCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ )
UpperCAmelCase_ = checkpoint["out.0.weight"]
UpperCAmelCase_ = checkpoint["out.0.bias"]
UpperCAmelCase_ = checkpoint["out.2.weight"]
UpperCAmelCase_ = checkpoint["out.2.bias"]
return new_checkpoint
if __name__ == "__main__":
__snake_case : List[str] = argparse.ArgumentParser()
parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''')
parser.add_argument(
'''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.'''
)
parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''')
__snake_case : List[str] = parser.parse_args()
__snake_case : Any = strabool(args.class_cond)
__snake_case : List[str] = os.path.basename(args.unet_path)
print(F'''Checkpoint: {ckpt_name}''')
# Get U-Net config
if "imagenet64" in ckpt_name:
__snake_case : Optional[int] = IMAGENET_64_UNET_CONFIG
elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
__snake_case : Union[str, Any] = LSUN_256_UNET_CONFIG
elif "test" in ckpt_name:
__snake_case : List[str] = TEST_UNET_CONFIG
else:
raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''')
if not args.class_cond:
__snake_case : Optional[Any] = None
__snake_case : Optional[int] = con_pt_to_diffuser(args.unet_path, unet_config)
__snake_case : str = UNetaDModel(**unet_config)
image_unet.load_state_dict(converted_unet_ckpt)
# Get scheduler config
if "cd" in ckpt_name or "test" in ckpt_name:
__snake_case : Tuple = CD_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "imagenet64" in ckpt_name:
__snake_case : Optional[int] = CT_IMAGENET_64_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
__snake_case : Union[str, Any] = CT_LSUN_256_SCHEDULER_CONFIG
else:
raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''')
__snake_case : Optional[Any] = CMStochasticIterativeScheduler(**scheduler_config)
__snake_case : Dict = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler)
consistency_model.save_pretrained(args.dump_path)
| 660 | 0 |
import argparse
import os.path as osp
import re
import torch
from safetensors.torch import load_file, save_file
# =================#
# UNet Conversion #
# =================#
a_ : List[Any] = [
# (stable-diffusion, HF Diffusers)
("time_embed.0.weight", "time_embedding.linear_1.weight"),
("time_embed.0.bias", "time_embedding.linear_1.bias"),
("time_embed.2.weight", "time_embedding.linear_2.weight"),
("time_embed.2.bias", "time_embedding.linear_2.bias"),
("input_blocks.0.0.weight", "conv_in.weight"),
("input_blocks.0.0.bias", "conv_in.bias"),
("out.0.weight", "conv_norm_out.weight"),
("out.0.bias", "conv_norm_out.bias"),
("out.2.weight", "conv_out.weight"),
("out.2.bias", "conv_out.bias"),
]
a_ : Optional[Any] = [
# (stable-diffusion, HF Diffusers)
("in_layers.0", "norm1"),
("in_layers.2", "conv1"),
("out_layers.0", "norm2"),
("out_layers.3", "conv2"),
("emb_layers.1", "time_emb_proj"),
("skip_connection", "conv_shortcut"),
]
a_ : List[Any] = []
# hardcoded number of downblocks and resnets/attentions...
# would need smarter logic for other networks.
for i in range(4):
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
a_ : Tuple = F"""down_blocks.{i}.resnets.{j}."""
a_ : Dict = F"""input_blocks.{3*i + j + 1}.0."""
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
a_ : Dict = F"""down_blocks.{i}.attentions.{j}."""
a_ : Optional[int] = F"""input_blocks.{3*i + j + 1}.1."""
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
a_ : Any = F"""up_blocks.{i}.resnets.{j}."""
a_ : List[str] = F"""output_blocks.{3*i + j}.0."""
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
if i > 0:
# no attention layers in up_blocks.0
a_ : List[Any] = F"""up_blocks.{i}.attentions.{j}."""
a_ : Union[str, Any] = F"""output_blocks.{3*i + j}.1."""
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
a_ : int = F"""down_blocks.{i}.downsamplers.0.conv."""
a_ : str = F"""input_blocks.{3*(i+1)}.0.op."""
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
a_ : Dict = F"""up_blocks.{i}.upsamplers.0."""
a_ : Optional[Any] = F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}."""
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
a_ : Dict = "mid_block.attentions.0."
a_ : Any = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
a_ : Union[str, Any] = F"""mid_block.resnets.{j}."""
a_ : List[str] = F"""middle_block.{2*j}."""
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
def __lowerCAmelCase ( _UpperCamelCase : List[str] ) -> str:
'''simple docstring'''
SCREAMING_SNAKE_CASE = {k: k for k in unet_state_dict.keys()}
for sd_name, hf_name in unet_conversion_map:
SCREAMING_SNAKE_CASE = sd_name
for k, v in mapping.items():
if "resnets" in k:
for sd_part, hf_part in unet_conversion_map_resnet:
SCREAMING_SNAKE_CASE = v.replace(_UpperCamelCase , _UpperCamelCase )
SCREAMING_SNAKE_CASE = v
for k, v in mapping.items():
for sd_part, hf_part in unet_conversion_map_layer:
SCREAMING_SNAKE_CASE = v.replace(_UpperCamelCase , _UpperCamelCase )
SCREAMING_SNAKE_CASE = v
SCREAMING_SNAKE_CASE = {v: unet_state_dict[k] for k, v in mapping.items()}
return new_state_dict
# ================#
# VAE Conversion #
# ================#
a_ : Any = [
# (stable-diffusion, HF Diffusers)
("nin_shortcut", "conv_shortcut"),
("norm_out", "conv_norm_out"),
("mid.attn_1.", "mid_block.attentions.0."),
]
for i in range(4):
# down_blocks have two resnets
for j in range(2):
a_ : str = F"""encoder.down_blocks.{i}.resnets.{j}."""
a_ : Optional[Any] = F"""encoder.down.{i}.block.{j}."""
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
if i < 3:
a_ : int = F"""down_blocks.{i}.downsamplers.0."""
a_ : Tuple = F"""down.{i}.downsample."""
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
a_ : Optional[int] = F"""up_blocks.{i}.upsamplers.0."""
a_ : Optional[Any] = F"""up.{3-i}.upsample."""
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
# up_blocks have three resnets
# also, up blocks in hf are numbered in reverse from sd
for j in range(3):
a_ : List[Any] = F"""decoder.up_blocks.{i}.resnets.{j}."""
a_ : Any = F"""decoder.up.{3-i}.block.{j}."""
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
# this part accounts for mid blocks in both the encoder and the decoder
for i in range(2):
a_ : Union[str, Any] = F"""mid_block.resnets.{i}."""
a_ : List[Any] = F"""mid.block_{i+1}."""
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
a_ : int = [
# (stable-diffusion, HF Diffusers)
("norm.", "group_norm."),
("q.", "query."),
("k.", "key."),
("v.", "value."),
("proj_out.", "proj_attn."),
]
def __lowerCAmelCase ( _UpperCamelCase : Tuple ) -> List[Any]:
'''simple docstring'''
return w.reshape(*w.shape , 1 , 1 )
def __lowerCAmelCase ( _UpperCamelCase : Dict ) -> int:
'''simple docstring'''
SCREAMING_SNAKE_CASE = {k: k for k in vae_state_dict.keys()}
for k, v in mapping.items():
for sd_part, hf_part in vae_conversion_map:
SCREAMING_SNAKE_CASE = v.replace(_UpperCamelCase , _UpperCamelCase )
SCREAMING_SNAKE_CASE = v
for k, v in mapping.items():
if "attentions" in k:
for sd_part, hf_part in vae_conversion_map_attn:
SCREAMING_SNAKE_CASE = v.replace(_UpperCamelCase , _UpperCamelCase )
SCREAMING_SNAKE_CASE = v
SCREAMING_SNAKE_CASE = {v: vae_state_dict[k] for k, v in mapping.items()}
SCREAMING_SNAKE_CASE = ['q', 'k', 'v', 'proj_out']
for k, v in new_state_dict.items():
for weight_name in weights_to_convert:
if f"""mid.attn_1.{weight_name}.weight""" in k:
print(f"""Reshaping {k} for SD format""" )
SCREAMING_SNAKE_CASE = reshape_weight_for_sd(_UpperCamelCase )
return new_state_dict
# =========================#
# Text Encoder Conversion #
# =========================#
a_ : Optional[int] = [
# (stable-diffusion, HF Diffusers)
("resblocks.", "text_model.encoder.layers."),
("ln_1", "layer_norm1"),
("ln_2", "layer_norm2"),
(".c_fc.", ".fc1."),
(".c_proj.", ".fc2."),
(".attn", ".self_attn"),
("ln_final.", "transformer.text_model.final_layer_norm."),
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
]
a_ : List[Any] = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
a_ : Any = re.compile("|".join(protected.keys()))
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
a_ : int = {"q": 0, "k": 1, "v": 2}
def __lowerCAmelCase ( _UpperCamelCase : Tuple ) -> Tuple:
'''simple docstring'''
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = {}
for k, v in text_enc_dict.items():
if (
k.endswith('.self_attn.q_proj.weight' )
or k.endswith('.self_attn.k_proj.weight' )
or k.endswith('.self_attn.v_proj.weight' )
):
SCREAMING_SNAKE_CASE = k[: -len('.q_proj.weight' )]
SCREAMING_SNAKE_CASE = k[-len('q_proj.weight' )]
if k_pre not in capture_qkv_weight:
SCREAMING_SNAKE_CASE = [None, None, None]
SCREAMING_SNAKE_CASE = v
continue
if (
k.endswith('.self_attn.q_proj.bias' )
or k.endswith('.self_attn.k_proj.bias' )
or k.endswith('.self_attn.v_proj.bias' )
):
SCREAMING_SNAKE_CASE = k[: -len('.q_proj.bias' )]
SCREAMING_SNAKE_CASE = k[-len('q_proj.bias' )]
if k_pre not in capture_qkv_bias:
SCREAMING_SNAKE_CASE = [None, None, None]
SCREAMING_SNAKE_CASE = v
continue
SCREAMING_SNAKE_CASE = textenc_pattern.sub(lambda _UpperCamelCase : protected[re.escape(m.group(0 ) )] , _UpperCamelCase )
SCREAMING_SNAKE_CASE = v
for k_pre, tensors in capture_qkv_weight.items():
if None in tensors:
raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' )
SCREAMING_SNAKE_CASE = textenc_pattern.sub(lambda _UpperCamelCase : protected[re.escape(m.group(0 ) )] , _UpperCamelCase )
SCREAMING_SNAKE_CASE = torch.cat(_UpperCamelCase )
for k_pre, tensors in capture_qkv_bias.items():
if None in tensors:
raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' )
SCREAMING_SNAKE_CASE = textenc_pattern.sub(lambda _UpperCamelCase : protected[re.escape(m.group(0 ) )] , _UpperCamelCase )
SCREAMING_SNAKE_CASE = torch.cat(_UpperCamelCase )
return new_state_dict
def __lowerCAmelCase ( _UpperCamelCase : List[str] ) -> List[Any]:
'''simple docstring'''
return text_enc_dict
if __name__ == "__main__":
a_ : Any = argparse.ArgumentParser()
parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.")
parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
parser.add_argument(
"--use_safetensors", action="store_true", help="Save weights use safetensors, default is ckpt."
)
a_ : Any = parser.parse_args()
assert args.model_path is not None, "Must provide a model path!"
assert args.checkpoint_path is not None, "Must provide a checkpoint path!"
# Path for safetensors
a_ : List[str] = osp.join(args.model_path, "unet", "diffusion_pytorch_model.safetensors")
a_ : Dict = osp.join(args.model_path, "vae", "diffusion_pytorch_model.safetensors")
a_ : Tuple = osp.join(args.model_path, "text_encoder", "model.safetensors")
# Load models from safetensors if it exists, if it doesn't pytorch
if osp.exists(unet_path):
a_ : Optional[Any] = load_file(unet_path, device="cpu")
else:
a_ : List[Any] = osp.join(args.model_path, "unet", "diffusion_pytorch_model.bin")
a_ : Dict = torch.load(unet_path, map_location="cpu")
if osp.exists(vae_path):
a_ : Tuple = load_file(vae_path, device="cpu")
else:
a_ : Tuple = osp.join(args.model_path, "vae", "diffusion_pytorch_model.bin")
a_ : int = torch.load(vae_path, map_location="cpu")
if osp.exists(text_enc_path):
a_ : Tuple = load_file(text_enc_path, device="cpu")
else:
a_ : str = osp.join(args.model_path, "text_encoder", "pytorch_model.bin")
a_ : List[str] = torch.load(text_enc_path, map_location="cpu")
# Convert the UNet model
a_ : str = convert_unet_state_dict(unet_state_dict)
a_ : Any = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
# Convert the VAE model
a_ : Dict = convert_vae_state_dict(vae_state_dict)
a_ : str = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
a_ : Union[str, Any] = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
if is_vaa_model:
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
a_ : Union[str, Any] = {"transformer." + k: v for k, v in text_enc_dict.items()}
a_ : Dict = convert_text_enc_state_dict_vaa(text_enc_dict)
a_ : List[Any] = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
else:
a_ : Optional[int] = convert_text_enc_state_dict(text_enc_dict)
a_ : Optional[int] = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
# Put together new checkpoint
a_ : List[str] = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
if args.half:
a_ : Any = {k: v.half() for k, v in state_dict.items()}
if args.use_safetensors:
save_file(state_dict, args.checkpoint_path)
else:
a_ : Optional[int] = {"state_dict": state_dict}
torch.save(state_dict, args.checkpoint_path)
| 673 |
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def __lowerCAmelCase ( *_UpperCamelCase : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
with open(_UpperCamelCase , 'r' ) as fh:
fcntl.flock(_UpperCamelCase , fcntl.LOCK_EX )
try:
print(*_UpperCamelCase )
finally:
fcntl.flock(_UpperCamelCase , fcntl.LOCK_UN )
a_ : int = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
a_ : str = torch.device("cuda", local_rank)
a_ : Optional[int] = socket.gethostname()
a_ : Union[str, Any] = F"""[{hostname}-{local_rank}]"""
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
a_ : Dict = dist.get_rank()
a_ : Any = dist.get_world_size()
printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""")
dist.barrier()
if rank == 0:
printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""")
except Exception:
printflock(F"""{gpu} is broken""")
raise
| 673 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase_ = logging.get_logger(__name__)
def _lowerCAmelCase ( __magic_name__ : Dict ) -> List[Any]:
lowercase : Union[str, Any] ='''huggingface/label-files'''
lowercase : Optional[int] ='''imagenet-1k-id2label.json'''
lowercase : Optional[Any] =json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type='''dataset''' ) , '''r''' ) )
lowercase : List[Any] ={int(__magic_name__ ): v for k, v in idalabel.items()}
lowercase : Any ={v: k for k, v in idalabel.items()}
lowercase : Union[str, Any] ='''std_conv''' if '''bit''' in model_name else False
# note that when using BiT as backbone for ViT-hybrid checkpoints,
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
# config.conv_layer = "std_conv_same"
lowercase : Any =BitConfig(
conv_layer=__magic_name__ , num_labels=1000 , idalabel=__magic_name__ , labelaid=__magic_name__ , )
return config
def _lowerCAmelCase ( __magic_name__ : Optional[Any] ) -> List[str]:
if "stem.conv" in name:
lowercase : Tuple =name.replace('''stem.conv''' , '''bit.embedder.convolution''' )
if "blocks" in name:
lowercase : Union[str, Any] =name.replace('''blocks''' , '''layers''' )
if "head.fc" in name:
lowercase : Tuple =name.replace('''head.fc''' , '''classifier.1''' )
if name.startswith('''norm''' ):
lowercase : Tuple ='''bit.''' + name
if "bit" not in name and "classifier" not in name:
lowercase : Optional[int] ='''bit.encoder.''' + name
return name
def _lowerCAmelCase ( ) -> Tuple:
lowercase : int ='''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowercase : Any =Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw )
return im
@torch.no_grad()
def _lowerCAmelCase ( __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : List[Any]=False ) -> Tuple:
lowercase : Optional[Any] =get_config(__magic_name__ )
# load original model from timm
lowercase : Dict =create_model(__magic_name__ , pretrained=__magic_name__ )
timm_model.eval()
# load state_dict of original model
lowercase : List[str] =timm_model.state_dict()
for key in state_dict.copy().keys():
lowercase : Union[str, Any] =state_dict.pop(__magic_name__ )
lowercase : List[Any] =val.squeeze() if '''head''' in key else val
# load HuggingFace model
lowercase : str =BitForImageClassification(__magic_name__ )
model.eval()
model.load_state_dict(__magic_name__ )
# create image processor
lowercase : str =create_transform(**resolve_data_config({} , model=__magic_name__ ) )
lowercase : int =transform.transforms
lowercase : Union[str, Any] ={
'''bilinear''': PILImageResampling.BILINEAR,
'''bicubic''': PILImageResampling.BICUBIC,
'''nearest''': PILImageResampling.NEAREST,
}
lowercase : Optional[Any] =BitImageProcessor(
do_resize=__magic_name__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__magic_name__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=__magic_name__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
lowercase : Optional[Any] =prepare_img()
lowercase : Optional[Any] =transform(__magic_name__ ).unsqueeze(0 )
lowercase : Optional[Any] =processor(__magic_name__ , return_tensors='''pt''' ).pixel_values
# verify pixel values
assert torch.allclose(__magic_name__ , __magic_name__ )
# verify logits
with torch.no_grad():
lowercase : List[str] =model(__magic_name__ )
lowercase : Any =outputs.logits
print('''Logits:''' , logits[0, :3] )
print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1 ).item()] )
lowercase : List[str] =timm_model(__magic_name__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__magic_name__ , outputs.logits , atol=1E-3 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(__magic_name__ )
processor.save_pretrained(__magic_name__ )
if push_to_hub:
print(f'''Pushing model {model_name} and processor to the hub''' )
model.push_to_hub(f'''ybelkada/{model_name}''' )
processor.push_to_hub(f'''ybelkada/{model_name}''' )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""resnetv2_50x1_bitm""",
type=str,
help="""Name of the BiT timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model to the hub.""",
)
UpperCamelCase_ = parser.parse_args()
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 92 |
from typing import TYPE_CHECKING
from ...utils import _LazyModule
__UpperCAmelCase = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 651 | 0 |
"""simple docstring"""
import argparse
import re
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SamConfig,
SamImageProcessor,
SamModel,
SamProcessor,
SamVisionConfig,
)
__lowercase = {
"iou_prediction_head.layers.0": "iou_prediction_head.proj_in",
"iou_prediction_head.layers.1": "iou_prediction_head.layers.0",
"iou_prediction_head.layers.2": "iou_prediction_head.proj_out",
"mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1",
"mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm",
"mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2",
"mask_downscaling.0": "mask_embed.conv1",
"mask_downscaling.1": "mask_embed.layer_norm1",
"mask_downscaling.3": "mask_embed.conv2",
"mask_downscaling.4": "mask_embed.layer_norm2",
"mask_downscaling.6": "mask_embed.conv3",
"point_embeddings": "point_embed",
"pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding",
"image_encoder": "vision_encoder",
"neck.0": "neck.conv1",
"neck.1": "neck.layer_norm1",
"neck.2": "neck.conv2",
"neck.3": "neck.layer_norm2",
"patch_embed.proj": "patch_embed.projection",
".norm": ".layer_norm",
"blocks": "layers",
}
def lowerCAmelCase (__UpperCamelCase : Any ):
"""simple docstring"""
__UpperCamelCase ={}
state_dict.pop('''pixel_mean''' , UpperCamelCase__ )
state_dict.pop('''pixel_std''' , UpperCamelCase__ )
__UpperCamelCase =r'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*'''
for key, value in state_dict.items():
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
__UpperCamelCase =key.replace(UpperCamelCase__ , UpperCamelCase__ )
if re.match(UpperCamelCase__ , UpperCamelCase__ ):
__UpperCamelCase =int(re.match(UpperCamelCase__ , UpperCamelCase__ ).group(2 ) )
if layer_nb == 0:
__UpperCamelCase =key.replace('''layers.0''' , '''proj_in''' )
elif layer_nb == 1:
__UpperCamelCase =key.replace('''layers.1''' , '''layers.0''' )
elif layer_nb == 2:
__UpperCamelCase =key.replace('''layers.2''' , '''proj_out''' )
__UpperCamelCase =value
__UpperCamelCase =model_state_dict[
'''prompt_encoder.shared_embedding.positional_embedding'''
]
return model_state_dict
def lowerCAmelCase (__UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : int="ybelkada/segment-anything" ):
"""simple docstring"""
__UpperCamelCase =hf_hub_download(UpperCamelCase__ , F"""checkpoints/{model_name}.pth""" )
if "sam_vit_b" in model_name:
__UpperCamelCase =SamConfig()
elif "sam_vit_l" in model_name:
__UpperCamelCase =SamVisionConfig(
hidden_size=1_0_2_4 , num_hidden_layers=2_4 , num_attention_heads=1_6 , global_attn_indexes=[5, 1_1, 1_7, 2_3] , )
__UpperCamelCase =SamConfig(
vision_config=UpperCamelCase__ , )
elif "sam_vit_h" in model_name:
__UpperCamelCase =SamVisionConfig(
hidden_size=1_2_8_0 , num_hidden_layers=3_2 , num_attention_heads=1_6 , global_attn_indexes=[7, 1_5, 2_3, 3_1] , )
__UpperCamelCase =SamConfig(
vision_config=UpperCamelCase__ , )
__UpperCamelCase =torch.load(UpperCamelCase__ , map_location='''cpu''' )
__UpperCamelCase =replace_keys(UpperCamelCase__ )
__UpperCamelCase =SamImageProcessor()
__UpperCamelCase =SamProcessor(image_processor=UpperCamelCase__ )
__UpperCamelCase =SamModel(UpperCamelCase__ )
hf_model.load_state_dict(UpperCamelCase__ )
__UpperCamelCase =hf_model.to('''cuda''' )
__UpperCamelCase ='''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png'''
__UpperCamelCase =Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' )
__UpperCamelCase =[[[4_0_0, 6_5_0]]]
__UpperCamelCase =[[1]]
__UpperCamelCase =processor(images=np.array(UpperCamelCase__ ) , return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
__UpperCamelCase =hf_model(**UpperCamelCase__ )
__UpperCamelCase =output.iou_scores.squeeze()
if model_name == "sam_vit_h_4b8939":
assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8
__UpperCamelCase =processor(
images=np.array(UpperCamelCase__ ) , input_points=UpperCamelCase__ , input_labels=UpperCamelCase__ , return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
__UpperCamelCase =hf_model(**UpperCamelCase__ )
__UpperCamelCase =output.iou_scores.squeeze()
assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4
__UpperCamelCase =((7_5, 2_7_5, 1_7_2_5, 8_5_0),)
__UpperCamelCase =processor(images=np.array(UpperCamelCase__ ) , input_boxes=UpperCamelCase__ , return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
__UpperCamelCase =hf_model(**UpperCamelCase__ )
__UpperCamelCase =output.iou_scores.squeeze()
assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4
# Test with 2 points and 1 image.
__UpperCamelCase =[[[4_0_0, 6_5_0], [8_0_0, 6_5_0]]]
__UpperCamelCase =[[1, 1]]
__UpperCamelCase =processor(
images=np.array(UpperCamelCase__ ) , input_points=UpperCamelCase__ , input_labels=UpperCamelCase__ , return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
__UpperCamelCase =hf_model(**UpperCamelCase__ )
__UpperCamelCase =output.iou_scores.squeeze()
assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2
if __name__ == "__main__":
__lowercase = argparse.ArgumentParser()
__lowercase = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"]
parser.add_argument(
'''--model_name''',
default='''sam_vit_h_4b8939''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub after converting''',
)
parser.add_argument(
'''--model_hub_id''',
default='''ybelkada/segment-anything''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
__lowercase = parser.parse_args()
convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
| 703 | """simple docstring"""
import sys
__lowercase = (
'''73167176531330624919225119674426574742355349194934'''
'''96983520312774506326239578318016984801869478851843'''
'''85861560789112949495459501737958331952853208805511'''
'''12540698747158523863050715693290963295227443043557'''
'''66896648950445244523161731856403098711121722383113'''
'''62229893423380308135336276614282806444486645238749'''
'''30358907296290491560440772390713810515859307960866'''
'''70172427121883998797908792274921901699720888093776'''
'''65727333001053367881220235421809751254540594752243'''
'''52584907711670556013604839586446706324415722155397'''
'''53697817977846174064955149290862569321978468622482'''
'''83972241375657056057490261407972968652414535100474'''
'''82166370484403199890008895243450658541227588666881'''
'''16427171479924442928230863465674813919123162824586'''
'''17866458359124566529476545682848912883142607690042'''
'''24219022671055626321111109370544217506941658960408'''
'''07198403850962455444362981230987879927244284909188'''
'''84580156166097919133875499200524063689912560717606'''
'''05886116467109405077541002256983155200055935729725'''
'''71636269561882670428252483600823257530420752963450'''
)
def lowerCAmelCase (__UpperCamelCase : str = N ):
"""simple docstring"""
__UpperCamelCase =-sys.maxsize - 1
for i in range(len(__UpperCamelCase ) - 1_2 ):
__UpperCamelCase =1
for j in range(1_3 ):
product *= int(n[i + j] )
if product > largest_product:
__UpperCamelCase =product
return largest_product
if __name__ == "__main__":
print(f'''{solution() = }''')
| 296 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {}
class _UpperCAmelCase ( _lowerCamelCase ):
a = '''llama'''
a = ['''past_key_values''']
def __init__( self , a__=32000 , a__=4096 , a__=11008 , a__=32 , a__=32 , a__=None , a__="silu" , a__=2048 , a__=0.02 , a__=1E-6 , a__=True , a__=0 , a__=1 , a__=2 , a__=1 , a__=False , a__=None , **a__ , ):
A_ : List[Any] = vocab_size
A_ : Union[str, Any] = max_position_embeddings
A_ : Union[str, Any] = hidden_size
A_ : Any = intermediate_size
A_ : int = num_hidden_layers
A_ : Any = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
A_ : Dict = num_attention_heads
A_ : Dict = num_key_value_heads
A_ : List[Any] = hidden_act
A_ : Optional[Any] = initializer_range
A_ : int = rms_norm_eps
A_ : Tuple = pretraining_tp
A_ : Optional[Any] = use_cache
A_ : Tuple = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , tie_word_embeddings=a__ , **a__ , )
def _lowerCamelCase ( self ):
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , a__ ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
F"""got {self.rope_scaling}""" )
A_ : Optional[int] = self.rope_scaling.get("""type""" , a__ )
A_ : Any = self.rope_scaling.get("""factor""" , a__ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(a__ , a__ ) or rope_scaling_factor <= 1.0:
raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 569 |
import json
import os
import re
import unittest
from transformers import CodeGenTokenizer, CodeGenTokenizerFast
from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ):
a = CodeGenTokenizer
a = CodeGenTokenizerFast
a = True
a = {'''add_prefix_space''': True}
a = False
def _lowerCamelCase ( self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
A_ : Union[str, Any] = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
"""<|endoftext|>""",
]
A_ : Union[str, Any] = dict(zip(a__ , range(len(a__ ) ) ) )
A_ : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
A_ : Tuple = {"""unk_token""": """<unk>"""}
A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
A_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(a__ ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(a__ ) )
def _lowerCamelCase ( self , **a__ ):
kwargs.update(self.special_tokens_map )
return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a__ )
def _lowerCamelCase ( self , **a__ ):
kwargs.update(self.special_tokens_map )
return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a__ )
def _lowerCamelCase ( self , a__ ):
A_ : str = """lower newer"""
A_ : Optional[int] = """lower newer"""
return input_text, output_text
def _lowerCamelCase ( self ):
A_ : List[Any] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
A_ : List[Any] = """lower newer"""
A_ : int = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
A_ : Any = tokenizer.tokenize(a__ , add_prefix_space=a__ )
self.assertListEqual(a__ , a__ )
A_ : int = tokens + [tokenizer.unk_token]
A_ : Tuple = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ )
def _lowerCamelCase ( self ):
if not self.test_rust_tokenizer:
return
A_ : Optional[Any] = self.get_tokenizer()
A_ : Union[str, Any] = self.get_rust_tokenizer(add_prefix_space=a__ )
A_ : Dict = """lower newer"""
# Testing tokenization
A_ : List[str] = tokenizer.tokenize(a__ , add_prefix_space=a__ )
A_ : Dict = rust_tokenizer.tokenize(a__ )
self.assertListEqual(a__ , a__ )
# Testing conversion to ids without special tokens
A_ : int = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ )
A_ : Any = rust_tokenizer.encode(a__ , add_special_tokens=a__ )
self.assertListEqual(a__ , a__ )
# Testing conversion to ids with special tokens
A_ : Any = self.get_rust_tokenizer(add_prefix_space=a__ )
A_ : Dict = tokenizer.encode(a__ , add_prefix_space=a__ )
A_ : Union[str, Any] = rust_tokenizer.encode(a__ )
self.assertListEqual(a__ , a__ )
# Testing the unknown token
A_ : List[Any] = tokens + [rust_tokenizer.unk_token]
A_ : Optional[Any] = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a__ ) , a__ )
def _lowerCamelCase ( self , *a__ , **a__ ):
# It's very difficult to mix/test pretokenization with byte-level
# And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string)
pass
def _lowerCamelCase ( self , a__=15 ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
A_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ )
# Simple input
A_ : str = """This is a simple input"""
A_ : Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""]
A_ : Optional[int] = ("""This is a simple input""", """This is a pair""")
A_ : Optional[int] = [
("""This is a simple input 1""", """This is a simple input 2"""),
("""This is a simple pair 1""", """This is a simple pair 2"""),
]
# Simple input tests
self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" )
# Simple input
self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" )
# Simple input
self.assertRaises(
a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , )
# Pair input
self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" )
# Pair input
self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" )
# Pair input
self.assertRaises(
a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , )
def _lowerCamelCase ( self ):
A_ : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" )
# Simple input
A_ : Optional[int] = """This is a simple input"""
A_ : int = ["""This is a simple input looooooooong""", """This is a simple input"""]
A_ : str = ("""This is a simple input""", """This is a pair""")
A_ : int = [
("""This is a simple input loooooong""", """This is a simple input"""),
("""This is a simple pair loooooong""", """This is a simple pair"""),
]
A_ : Optional[Any] = tokenizer.pad_token_id
A_ : Optional[Any] = tokenizer(a__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" )
A_ : List[Any] = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" )
A_ : str = tokenizer(*a__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" )
A_ : List[Any] = tokenizer(a__ , padding=a__ , truncate=a__ , return_tensors="""np""" )
# s
# test single string max_length padding
self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 )
self.assertTrue(pad_token_id in out_s["""input_ids"""] )
self.assertTrue(0 in out_s["""attention_mask"""] )
# s2
# test automatic padding
self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 )
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] )
self.assertFalse(0 in out_sa["""attention_mask"""][0] )
# short slice does have padding
self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] )
self.assertTrue(0 in out_sa["""attention_mask"""][1] )
# p
# test single pair max_length padding
self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 )
self.assertTrue(pad_token_id in out_p["""input_ids"""] )
self.assertTrue(0 in out_p["""attention_mask"""] )
# p2
# test automatic padding pair
self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 )
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] )
self.assertFalse(0 in out_pa["""attention_mask"""][0] )
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] )
self.assertTrue(0 in out_pa["""attention_mask"""][1] )
def _lowerCamelCase ( self ):
A_ : Tuple = """$$$"""
A_ : int = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a__ , add_bos_token=a__ )
A_ : Optional[int] = """This is a simple input"""
A_ : Optional[Any] = ["""This is a simple input 1""", """This is a simple input 2"""]
A_ : Optional[Any] = tokenizer.bos_token_id
A_ : Optional[int] = tokenizer(a__ )
A_ : Dict = tokenizer(a__ )
self.assertEqual(out_s.input_ids[0] , a__ )
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) )
A_ : int = tokenizer.decode(out_s.input_ids )
A_ : Any = tokenizer.batch_decode(out_sa.input_ids )
self.assertEqual(decode_s.split()[0] , a__ )
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) )
@slow
def _lowerCamelCase ( self ):
A_ : List[str] = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" )
A_ : List[str] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#"""
A_ : Dict = """\nif len_a > len_b: result = a\nelse: result = b"""
A_ : Any = tokenizer.encode(a__ )
A_ : List[str] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""]
A_ : Union[str, Any] = tokenizer.decode(a__ , truncate_before_pattern=a__ )
self.assertEqual(a__ , a__ )
def _lowerCamelCase ( self ):
pass
| 569 | 1 |
from math import pow
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Dict:
if current_sum == needed_sum:
# If the sum of the powers is equal to needed_sum, then we have a solution.
solutions_count += 1
return current_sum, solutions_count
UpperCamelCase_ = int(pow(_lowercase , _lowercase ) )
if current_sum + i_to_n <= needed_sum:
# If the sum of the powers is less than needed_sum, then continue adding powers.
current_sum += i_to_n
UpperCamelCase_ = backtrack(
_lowercase , _lowercase , current_number + 1 , _lowercase , _lowercase )
current_sum -= i_to_n
if i_to_n < needed_sum:
# If the power of i is less than needed_sum, then try with the next power.
UpperCamelCase_ = backtrack(
_lowercase , _lowercase , current_number + 1 , _lowercase , _lowercase )
return current_sum, solutions_count
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]:
if not (1 <= needed_sum <= 1000 and 2 <= power <= 10):
raise ValueError(
"Invalid input\n"
"needed_sum must be between 1 and 1000, power between 2 and 10." )
return backtrack(_lowercase , _lowercase , 1 , 0 , 0 )[1] # Return the solutions_count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 712 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
_UpperCAmelCase = logging.get_logger(__name__)
_UpperCAmelCase = '▁'
_UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'}
_UpperCAmelCase = {
'vocab_file': {
'facebook/nllb-200-distilled-600M': (
'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model'
),
}
}
_UpperCAmelCase = {
'facebook/nllb-200-distilled-600M': 1_0_2_4,
}
# fmt: off
_UpperCAmelCase = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn']
class _UpperCamelCase ( lowerCAmelCase_ ):
_UpperCamelCase : Dict = VOCAB_FILES_NAMES
_UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask''']
_UpperCamelCase : List[int] = []
_UpperCamelCase : List[int] = []
def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str]="<s>" , _SCREAMING_SNAKE_CASE: Optional[int]="</s>" , _SCREAMING_SNAKE_CASE: int="</s>" , _SCREAMING_SNAKE_CASE: Union[str, Any]="<s>" , _SCREAMING_SNAKE_CASE: Any="<unk>" , _SCREAMING_SNAKE_CASE: Union[str, Any]="<pad>" , _SCREAMING_SNAKE_CASE: int="<mask>" , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: int=None , _SCREAMING_SNAKE_CASE: Optional[Dict[str, Any]] = None , _SCREAMING_SNAKE_CASE: int=None , _SCREAMING_SNAKE_CASE: Tuple=False , **_SCREAMING_SNAKE_CASE: List[str] , ) -> Tuple:
"""simple docstring"""
UpperCamelCase_ = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token
UpperCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs
UpperCamelCase_ = legacy_behaviour
super().__init__(
bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , src_lang=_SCREAMING_SNAKE_CASE , tgt_lang=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_SCREAMING_SNAKE_CASE ) )
UpperCamelCase_ = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a'
# spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s'
# Mimic fairseq token-to-id alignment for the first 4 token
UpperCamelCase_ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
UpperCamelCase_ = 1
UpperCamelCase_ = len(self.sp_model )
UpperCamelCase_ = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_SCREAMING_SNAKE_CASE )
}
UpperCamelCase_ = {v: k for k, v in self.lang_code_to_id.items()}
UpperCamelCase_ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
UpperCamelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
UpperCamelCase_ = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
UpperCamelCase_ = src_lang if src_lang is not None else "eng_Latn"
UpperCamelCase_ = self.lang_code_to_id[self._src_lang]
UpperCamelCase_ = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self: Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase_ = self.__dict__.copy()
UpperCamelCase_ = None
UpperCamelCase_ = self.sp_model.serialized_model_proto()
return state
def __setstate__( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> Tuple:
"""simple docstring"""
UpperCamelCase_ = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
UpperCamelCase_ = {}
UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def lowercase ( self: Union[str, Any] ) -> Dict:
"""simple docstring"""
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def lowercase ( self: Union[str, Any] ) -> str:
"""simple docstring"""
return self._src_lang
@src_lang.setter
def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: str ) -> None:
"""simple docstring"""
UpperCamelCase_ = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[int] , _SCREAMING_SNAKE_CASE: Optional[List[int]] = None , _SCREAMING_SNAKE_CASE: bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE )
UpperCamelCase_ = [1] * len(self.prefix_tokens )
UpperCamelCase_ = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones
return prefix_ones + ([0] * len(_SCREAMING_SNAKE_CASE )) + ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones
def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: List[int] , _SCREAMING_SNAKE_CASE: Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List[int] , _SCREAMING_SNAKE_CASE: Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
UpperCamelCase_ = [self.sep_token_id]
UpperCamelCase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] , _SCREAMING_SNAKE_CASE: Optional[str] , **_SCREAMING_SNAKE_CASE: Tuple ) -> int:
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" )
UpperCamelCase_ = src_lang
UpperCamelCase_ = self(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
UpperCamelCase_ = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE )
UpperCamelCase_ = tgt_lang_id
return inputs
def lowercase ( self: Tuple ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase_ = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: str ) -> List[str]:
"""simple docstring"""
return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE )
def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: str ) -> Optional[int]:
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
UpperCamelCase_ = self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Any:
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Optional[int] ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase_ = "".join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , " " ).strip()
return out_string
def lowercase ( self: str , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_SCREAMING_SNAKE_CASE ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCamelCase_ = os.path.join(
_SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(_SCREAMING_SNAKE_CASE , "wb" ) as fi:
UpperCamelCase_ = self.sp_model.serialized_model_proto()
fi.write(_SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: str = "eng_Latn" , _SCREAMING_SNAKE_CASE: Optional[List[str]] = None , _SCREAMING_SNAKE_CASE: str = "fra_Latn" , **_SCREAMING_SNAKE_CASE: List[str] , ) -> BatchEncoding:
"""simple docstring"""
UpperCamelCase_ = src_lang
UpperCamelCase_ = tgt_lang
return super().prepare_seqaseq_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def lowercase ( self: Any ) -> Optional[int]:
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def lowercase ( self: Dict ) -> Optional[int]:
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Any ) -> None:
"""simple docstring"""
UpperCamelCase_ = self.lang_code_to_id[src_lang]
if self.legacy_behaviour:
UpperCamelCase_ = []
UpperCamelCase_ = [self.eos_token_id, self.cur_lang_code]
else:
UpperCamelCase_ = [self.cur_lang_code]
UpperCamelCase_ = [self.eos_token_id]
def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: str ) -> None:
"""simple docstring"""
UpperCamelCase_ = self.lang_code_to_id[lang]
if self.legacy_behaviour:
UpperCamelCase_ = []
UpperCamelCase_ = [self.eos_token_id, self.cur_lang_code]
else:
UpperCamelCase_ = [self.cur_lang_code]
UpperCamelCase_ = [self.eos_token_id]
| 371 | 0 |
"""simple docstring"""
import unittest
from knapsack import knapsack as k
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def a__ ( self ) -> List[str]:
_lowerCamelCase : Optional[int] = 0
_lowerCamelCase : Tuple = [0]
_lowerCamelCase : Union[str, Any] = [0]
_lowerCamelCase : Union[str, Any] = len(_lowercase )
self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 0 )
_lowerCamelCase : Optional[int] = [60]
_lowerCamelCase : int = [10]
_lowerCamelCase : Tuple = len(_lowercase )
self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 0 )
def a__ ( self ) -> Union[str, Any]:
_lowerCamelCase : int = 3
_lowerCamelCase : Tuple = [1, 2, 3]
_lowerCamelCase : str = [3, 2, 1]
_lowerCamelCase : Any = len(_lowercase )
self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 5 )
def a__ ( self ) -> Optional[int]:
_lowerCamelCase : Tuple = 50
_lowerCamelCase : int = [60, 100, 120]
_lowerCamelCase : Any = [10, 20, 30]
_lowerCamelCase : Union[str, Any] = len(_lowercase )
self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 220 )
if __name__ == "__main__":
unittest.main()
| 434 | """simple docstring"""
import argparse
import json
import subprocess
def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Any:
_lowerCamelCase : List[str] = []
_lowerCamelCase : Optional[int] = (
F'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"'''
''' https://api.github.com/repos/huggingface/transformers/actions/runners'''
)
_lowerCamelCase : Optional[int] = subprocess.run(SCREAMING_SNAKE_CASE_ , shell=SCREAMING_SNAKE_CASE_ , stdout=subprocess.PIPE )
_lowerCamelCase : List[str] = output.stdout.decode('''utf-8''' )
_lowerCamelCase : Union[str, Any] = json.loads(SCREAMING_SNAKE_CASE_ )
_lowerCamelCase : Dict = status['''runners''']
for runner in runners:
if runner["name"] in target_runners:
if runner["status"] == "offline":
offline_runners.append(SCREAMING_SNAKE_CASE_ )
# save the result so we can report them on Slack
with open('''offline_runners.txt''' , '''w''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
_lowerCamelCase : Tuple = '''\n'''.join([x['''name'''] for x in offline_runners] )
raise ValueError(F'''The following runners are offline:\n{failed}''' )
if __name__ == "__main__":
def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Union[str, Any]:
return values.split(''',''' )
SCREAMING_SNAKE_CASE__ : str =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--target_runners',
default=None,
type=list_str,
required=True,
help='Comma-separated list of runners to check status.',
)
parser.add_argument(
'--token', default=None, type=str, required=True, help='A token that has actions:read permission.'
)
SCREAMING_SNAKE_CASE__ : Optional[Any] =parser.parse_args()
get_runner_status(args.target_runners, args.token)
| 434 | 1 |
import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class lowercase__( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase ( self) -> Tuple:
"""simple docstring"""
UpperCamelCase__ : Union[str, Any] =["a", "b", "c"]
# Defaults to last layer if both are None
UpperCamelCase__ , UpperCamelCase__ : Any =get_aligned_output_features_output_indices(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
self.assertEqual(__SCREAMING_SNAKE_CASE , ["c"])
self.assertEqual(__SCREAMING_SNAKE_CASE , [2])
# Out indices set to match out features
UpperCamelCase__ , UpperCamelCase__ : Dict =get_aligned_output_features_output_indices(["a", "c"] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
self.assertEqual(__SCREAMING_SNAKE_CASE , ["a", "c"])
self.assertEqual(__SCREAMING_SNAKE_CASE , [0, 2])
# Out features set to match out indices
UpperCamelCase__ , UpperCamelCase__ : Optional[int] =get_aligned_output_features_output_indices(__SCREAMING_SNAKE_CASE , [0, 2] , __SCREAMING_SNAKE_CASE)
self.assertEqual(__SCREAMING_SNAKE_CASE , ["a", "c"])
self.assertEqual(__SCREAMING_SNAKE_CASE , [0, 2])
# Out features selected from negative indices
UpperCamelCase__ , UpperCamelCase__ : List[str] =get_aligned_output_features_output_indices(__SCREAMING_SNAKE_CASE , [-3, -1] , __SCREAMING_SNAKE_CASE)
self.assertEqual(__SCREAMING_SNAKE_CASE , ["a", "c"])
self.assertEqual(__SCREAMING_SNAKE_CASE , [-3, -1])
def UpperCAmelCase ( self) -> Dict:
"""simple docstring"""
with self.assertRaises(__SCREAMING_SNAKE_CASE):
verify_out_features_out_indices(["a", "b"] , (0, 1) , __SCREAMING_SNAKE_CASE)
# Out features must be a list
with self.assertRaises(__SCREAMING_SNAKE_CASE):
verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"])
# Out features must be a subset of stage names
with self.assertRaises(__SCREAMING_SNAKE_CASE):
verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"])
# Out indices must be a list or tuple
with self.assertRaises(__SCREAMING_SNAKE_CASE):
verify_out_features_out_indices(__SCREAMING_SNAKE_CASE , 0 , ["a", "b"])
# Out indices must be a subset of stage names
with self.assertRaises(__SCREAMING_SNAKE_CASE):
verify_out_features_out_indices(__SCREAMING_SNAKE_CASE , (0, 1) , ["a"])
# Out features and out indices must be the same length
with self.assertRaises(__SCREAMING_SNAKE_CASE):
verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"])
# Out features should match out indices
with self.assertRaises(__SCREAMING_SNAKE_CASE):
verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"])
# Out features and out indices should be in order
with self.assertRaises(__SCREAMING_SNAKE_CASE):
verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"])
# Check passes with valid inputs
verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"])
def UpperCAmelCase ( self) -> Any:
"""simple docstring"""
UpperCamelCase__ : Any =BackboneMixin()
UpperCamelCase__ : Optional[int] =["a", "b", "c"]
UpperCamelCase__ : List[Any] =["a", "c"]
UpperCamelCase__ : Union[str, Any] =[0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ["a", "c"])
self.assertEqual(backbone.out_indices , [0, 2])
# Check out features and indices are updated correctly
UpperCamelCase__ : Dict =["a", "b"]
self.assertEqual(backbone.out_features , ["a", "b"])
self.assertEqual(backbone.out_indices , [0, 1])
UpperCamelCase__ : Union[str, Any] =[-3, -1]
self.assertEqual(backbone.out_features , ["a", "c"])
self.assertEqual(backbone.out_indices , [-3, -1])
| 582 |
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def _lowerCamelCase ( ) -> int:
'''simple docstring'''
UpperCamelCase__ : str =ArgumentParser(
description=(
"PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes"
) )
# Optional arguments for the launch helper
parser.add_argument("--num_cores" , type=A_ , default=1 , help="Number of TPU cores to use (1 or 8)." )
# positional
parser.add_argument(
"training_script" , type=A_ , help=(
"The full path to the single TPU training "
"program/script to be launched in parallel, "
"followed by all the arguments for the "
"training script"
) , )
# rest from the training program
parser.add_argument("training_script_args" , nargs=A_ )
return parser.parse_args()
def _lowerCamelCase ( ) -> List[str]:
'''simple docstring'''
UpperCamelCase__ : Dict =parse_args()
# Import training_script as a module.
UpperCamelCase__ : Union[str, Any] =Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
UpperCamelCase__ : Optional[Any] =script_fpath.stem
UpperCamelCase__ : Any =importlib.import_module(A_ )
# Patch sys.argv
UpperCamelCase__ : Optional[Any] =[args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 582 | 1 |
"""simple docstring"""
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
lowerCAmelCase__ =logging.get_logger(__name__)
lowerCAmelCase__ =OrderedDict(
[
# Base model mapping
("albert", "FlaxAlbertModel"),
("bart", "FlaxBartModel"),
("beit", "FlaxBeitModel"),
("bert", "FlaxBertModel"),
("big_bird", "FlaxBigBirdModel"),
("blenderbot", "FlaxBlenderbotModel"),
("blenderbot-small", "FlaxBlenderbotSmallModel"),
("clip", "FlaxCLIPModel"),
("distilbert", "FlaxDistilBertModel"),
("electra", "FlaxElectraModel"),
("gpt-sw3", "FlaxGPT2Model"),
("gpt2", "FlaxGPT2Model"),
("gpt_neo", "FlaxGPTNeoModel"),
("gptj", "FlaxGPTJModel"),
("longt5", "FlaxLongT5Model"),
("marian", "FlaxMarianModel"),
("mbart", "FlaxMBartModel"),
("mt5", "FlaxMT5Model"),
("opt", "FlaxOPTModel"),
("pegasus", "FlaxPegasusModel"),
("regnet", "FlaxRegNetModel"),
("resnet", "FlaxResNetModel"),
("roberta", "FlaxRobertaModel"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"),
("roformer", "FlaxRoFormerModel"),
("t5", "FlaxT5Model"),
("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"),
("vit", "FlaxViTModel"),
("wav2vec2", "FlaxWav2Vec2Model"),
("whisper", "FlaxWhisperModel"),
("xglm", "FlaxXGLMModel"),
("xlm-roberta", "FlaxXLMRobertaModel"),
]
)
lowerCAmelCase__ =OrderedDict(
[
# Model for pre-training mapping
("albert", "FlaxAlbertForPreTraining"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForPreTraining"),
("big_bird", "FlaxBigBirdForPreTraining"),
("electra", "FlaxElectraForPreTraining"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("t5", "FlaxT5ForConditionalGeneration"),
("wav2vec2", "FlaxWav2Vec2ForPreTraining"),
("whisper", "FlaxWhisperForConditionalGeneration"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
lowerCAmelCase__ =OrderedDict(
[
# Model for Masked LM mapping
("albert", "FlaxAlbertForMaskedLM"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForMaskedLM"),
("big_bird", "FlaxBigBirdForMaskedLM"),
("distilbert", "FlaxDistilBertForMaskedLM"),
("electra", "FlaxElectraForMaskedLM"),
("mbart", "FlaxMBartForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
lowerCAmelCase__ =OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
("bart", "FlaxBartForConditionalGeneration"),
("blenderbot", "FlaxBlenderbotForConditionalGeneration"),
("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"),
("encoder-decoder", "FlaxEncoderDecoderModel"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("marian", "FlaxMarianMTModel"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("pegasus", "FlaxPegasusForConditionalGeneration"),
("t5", "FlaxT5ForConditionalGeneration"),
]
)
lowerCAmelCase__ =OrderedDict(
[
# Model for Image-classsification
("beit", "FlaxBeitForImageClassification"),
("regnet", "FlaxRegNetForImageClassification"),
("resnet", "FlaxResNetForImageClassification"),
("vit", "FlaxViTForImageClassification"),
]
)
lowerCAmelCase__ =OrderedDict(
[
("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"),
]
)
lowerCAmelCase__ =OrderedDict(
[
# Model for Causal LM mapping
("bart", "FlaxBartForCausalLM"),
("bert", "FlaxBertForCausalLM"),
("big_bird", "FlaxBigBirdForCausalLM"),
("electra", "FlaxElectraForCausalLM"),
("gpt-sw3", "FlaxGPT2LMHeadModel"),
("gpt2", "FlaxGPT2LMHeadModel"),
("gpt_neo", "FlaxGPTNeoForCausalLM"),
("gptj", "FlaxGPTJForCausalLM"),
("opt", "FlaxOPTForCausalLM"),
("roberta", "FlaxRobertaForCausalLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"),
("xglm", "FlaxXGLMForCausalLM"),
("xlm-roberta", "FlaxXLMRobertaForCausalLM"),
]
)
lowerCAmelCase__ =OrderedDict(
[
# Model for Sequence Classification mapping
("albert", "FlaxAlbertForSequenceClassification"),
("bart", "FlaxBartForSequenceClassification"),
("bert", "FlaxBertForSequenceClassification"),
("big_bird", "FlaxBigBirdForSequenceClassification"),
("distilbert", "FlaxDistilBertForSequenceClassification"),
("electra", "FlaxElectraForSequenceClassification"),
("mbart", "FlaxMBartForSequenceClassification"),
("roberta", "FlaxRobertaForSequenceClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"),
("roformer", "FlaxRoFormerForSequenceClassification"),
("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"),
]
)
lowerCAmelCase__ =OrderedDict(
[
# Model for Question Answering mapping
("albert", "FlaxAlbertForQuestionAnswering"),
("bart", "FlaxBartForQuestionAnswering"),
("bert", "FlaxBertForQuestionAnswering"),
("big_bird", "FlaxBigBirdForQuestionAnswering"),
("distilbert", "FlaxDistilBertForQuestionAnswering"),
("electra", "FlaxElectraForQuestionAnswering"),
("mbart", "FlaxMBartForQuestionAnswering"),
("roberta", "FlaxRobertaForQuestionAnswering"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"),
("roformer", "FlaxRoFormerForQuestionAnswering"),
("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"),
]
)
lowerCAmelCase__ =OrderedDict(
[
# Model for Token Classification mapping
("albert", "FlaxAlbertForTokenClassification"),
("bert", "FlaxBertForTokenClassification"),
("big_bird", "FlaxBigBirdForTokenClassification"),
("distilbert", "FlaxDistilBertForTokenClassification"),
("electra", "FlaxElectraForTokenClassification"),
("roberta", "FlaxRobertaForTokenClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"),
("roformer", "FlaxRoFormerForTokenClassification"),
("xlm-roberta", "FlaxXLMRobertaForTokenClassification"),
]
)
lowerCAmelCase__ =OrderedDict(
[
# Model for Multiple Choice mapping
("albert", "FlaxAlbertForMultipleChoice"),
("bert", "FlaxBertForMultipleChoice"),
("big_bird", "FlaxBigBirdForMultipleChoice"),
("distilbert", "FlaxDistilBertForMultipleChoice"),
("electra", "FlaxElectraForMultipleChoice"),
("roberta", "FlaxRobertaForMultipleChoice"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"),
("roformer", "FlaxRoFormerForMultipleChoice"),
("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"),
]
)
lowerCAmelCase__ =OrderedDict(
[
("bert", "FlaxBertForNextSentencePrediction"),
]
)
lowerCAmelCase__ =OrderedDict(
[
("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"),
("whisper", "FlaxWhisperForConditionalGeneration"),
]
)
lowerCAmelCase__ =OrderedDict(
[
("whisper", "FlaxWhisperForAudioClassification"),
]
)
lowerCAmelCase__ =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
lowerCAmelCase__ =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
lowerCAmelCase__ =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
lowerCAmelCase__ =_LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
lowerCAmelCase__ =_LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
lowerCAmelCase__ =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
lowerCAmelCase__ =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
lowerCAmelCase__ =_LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
lowerCAmelCase__ =_LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
lowerCAmelCase__ =_LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
lowerCAmelCase__ =_LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
lowerCAmelCase__ =_LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
lowerCAmelCase__ =_LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
lowerCAmelCase__ =_LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class A__( _BaseAutoModelClass ):
lowerCAmelCase = FLAX_MODEL_MAPPING
lowerCAmelCase__ =auto_class_update(FlaxAutoModel)
class A__( _BaseAutoModelClass ):
lowerCAmelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING
lowerCAmelCase__ =auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining")
class A__( _BaseAutoModelClass ):
lowerCAmelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
lowerCAmelCase__ =auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling")
class A__( _BaseAutoModelClass ):
lowerCAmelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING
lowerCAmelCase__ =auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling")
class A__( _BaseAutoModelClass ):
lowerCAmelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
lowerCAmelCase__ =auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base"
)
class A__( _BaseAutoModelClass ):
lowerCAmelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
lowerCAmelCase__ =auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc="sequence classification"
)
class A__( _BaseAutoModelClass ):
lowerCAmelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
lowerCAmelCase__ =auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering")
class A__( _BaseAutoModelClass ):
lowerCAmelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
lowerCAmelCase__ =auto_class_update(
FlaxAutoModelForTokenClassification, head_doc="token classification"
)
class A__( _BaseAutoModelClass ):
lowerCAmelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
lowerCAmelCase__ =auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice")
class A__( _BaseAutoModelClass ):
lowerCAmelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
lowerCAmelCase__ =auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction"
)
class A__( _BaseAutoModelClass ):
lowerCAmelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
lowerCAmelCase__ =auto_class_update(
FlaxAutoModelForImageClassification, head_doc="image classification"
)
class A__( _BaseAutoModelClass ):
lowerCAmelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
lowerCAmelCase__ =auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling")
class A__( _BaseAutoModelClass ):
lowerCAmelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
lowerCAmelCase__ =auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling"
)
| 482 |
"""simple docstring"""
import argparse
import os
import re
import packaging.version
lowerCAmelCase__ ="examples/"
lowerCAmelCase__ ={
"examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"),
"init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"),
"setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","),
"doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"),
}
lowerCAmelCase__ ={
"init": "src/transformers/__init__.py",
"setup": "setup.py",
}
lowerCAmelCase__ ="README.md"
def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]:
with open(UpperCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__SCREAMING_SNAKE_CASE = f.read()
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = REPLACE_PATTERNS[pattern]
__SCREAMING_SNAKE_CASE = replace.replace('''VERSION''' , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = re_pattern.sub(UpperCAmelCase__ , UpperCAmelCase__ )
with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(UpperCAmelCase__ )
def _a ( UpperCAmelCase__ ) -> Any:
for folder, directories, fnames in os.walk(UpperCAmelCase__ ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('''research_projects''' )
if "legacy" in directories:
directories.remove('''legacy''' )
for fname in fnames:
if fname.endswith('''.py''' ):
update_version_in_file(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , pattern='''examples''' )
def _a ( UpperCAmelCase__ , UpperCAmelCase__=False ) -> List[Any]:
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
if not patch:
update_version_in_examples(UpperCAmelCase__ )
def _a ( ) -> Dict:
__SCREAMING_SNAKE_CASE = '''🤗 Transformers currently provides the following architectures'''
__SCREAMING_SNAKE_CASE = '''1. Want to contribute a new model?'''
with open(UpperCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__SCREAMING_SNAKE_CASE = f.readlines()
# Find the start of the list.
__SCREAMING_SNAKE_CASE = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
__SCREAMING_SNAKE_CASE = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('''1.''' ):
__SCREAMING_SNAKE_CASE = lines[index].replace(
'''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , )
index += 1
with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(UpperCAmelCase__ )
def _a ( ) -> Tuple:
with open(REPLACE_FILES['''init'''] , '''r''' ) as f:
__SCREAMING_SNAKE_CASE = f.read()
__SCREAMING_SNAKE_CASE = REPLACE_PATTERNS['''init'''][0].search(UpperCAmelCase__ ).groups()[0]
return packaging.version.parse(UpperCAmelCase__ )
def _a ( UpperCAmelCase__=False ) -> Dict:
__SCREAMING_SNAKE_CASE = get_version()
if patch and default_version.is_devrelease:
raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' )
if default_version.is_devrelease:
__SCREAMING_SNAKE_CASE = default_version.base_version
elif patch:
__SCREAMING_SNAKE_CASE = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
__SCREAMING_SNAKE_CASE = f"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
__SCREAMING_SNAKE_CASE = input(f"""Which version are you releasing? [{default_version}]""" )
if len(UpperCAmelCase__ ) == 0:
__SCREAMING_SNAKE_CASE = default_version
print(f"""Updating version to {version}.""" )
global_version_update(UpperCAmelCase__ , patch=UpperCAmelCase__ )
if not patch:
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
def _a ( ) -> Optional[int]:
__SCREAMING_SNAKE_CASE = get_version()
__SCREAMING_SNAKE_CASE = f"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
__SCREAMING_SNAKE_CASE = current_version.base_version
# Check with the user we got that right.
__SCREAMING_SNAKE_CASE = input(f"""Which version are we developing now? [{dev_version}]""" )
if len(UpperCAmelCase__ ) == 0:
__SCREAMING_SNAKE_CASE = dev_version
print(f"""Updating version to {version}.""" )
global_version_update(UpperCAmelCase__ )
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
lowerCAmelCase__ =argparse.ArgumentParser()
parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.")
parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.")
lowerCAmelCase__ =parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("Nothing to do after a patch :-)")
else:
post_release_work()
| 482 | 1 |
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class UpperCAmelCase__ ( __UpperCamelCase ):
'''simple docstring'''
UpperCamelCase = None
UpperCamelCase = None
@property
def snake_case__ ( self : Tuple ):
'''simple docstring'''
return self.feat_extract_tester.prepare_feat_extract_dict()
def snake_case__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(a_ , '''feature_size''' ) )
self.assertTrue(hasattr(a_ , '''sampling_rate''' ) )
self.assertTrue(hasattr(a_ , '''padding_value''' ) )
def snake_case__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common()
__UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_dict )
__UpperCAmelCase : Tuple = feat_extract.model_input_names[0]
__UpperCAmelCase : List[Any] = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(a_ ) == len(a_ ) for x, y in zip(a_ , processed_features[input_name] ) ) )
__UpperCAmelCase : int = self.feat_extract_tester.prepare_inputs_for_common(equal_length=a_ )
__UpperCAmelCase : str = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' )
__UpperCAmelCase : str = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
__UpperCAmelCase : Optional[Any] = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_torch
def snake_case__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : int = self.feat_extract_tester.prepare_inputs_for_common(equal_length=a_ )
__UpperCAmelCase : int = self.feature_extraction_class(**self.feat_extract_dict )
__UpperCAmelCase : List[str] = feat_extract.model_input_names[0]
__UpperCAmelCase : Dict = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' )
__UpperCAmelCase : int = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
__UpperCAmelCase : Optional[int] = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_tf
def snake_case__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Any = self.feat_extract_tester.prepare_inputs_for_common(equal_length=a_ )
__UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_dict )
__UpperCAmelCase : Optional[Any] = feat_extract.model_input_names[0]
__UpperCAmelCase : Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' )
__UpperCAmelCase : Union[str, Any] = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
__UpperCAmelCase : Dict = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
def snake_case__ ( self : str , a_ : Any=False ):
'''simple docstring'''
def _inputs_have_equal_length(a_ : str ):
__UpperCAmelCase : Optional[Any] = len(input[0] )
for input_slice in input[1:]:
if len(a_ ) != length:
return False
return True
def _inputs_are_equal(a_ : Any , a_ : Optional[int] ):
if len(a_ ) != len(a_ ):
return False
for input_slice_a, input_slice_a in zip(a_ , a_ ):
if not np.allclose(np.asarray(a_ ) , np.asarray(a_ ) , atol=1e-3 ):
return False
return True
__UpperCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict )
__UpperCAmelCase : List[str] = self.feat_extract_tester.prepare_inputs_for_common(numpify=a_ )
__UpperCAmelCase : Dict = feat_extract.model_input_names[0]
__UpperCAmelCase : Union[str, Any] = BatchFeature({input_name: speech_inputs} )
__UpperCAmelCase : List[str] = self.feat_extract_tester.seq_length_diff
__UpperCAmelCase : Optional[int] = self.feat_extract_tester.max_seq_length + pad_diff
__UpperCAmelCase : Tuple = self.feat_extract_tester.min_seq_length
__UpperCAmelCase : Optional[Any] = self.feat_extract_tester.batch_size
__UpperCAmelCase : List[str] = self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
__UpperCAmelCase : int = feat_extract.pad(a_ , padding=a_ )
__UpperCAmelCase : str = input_a[input_name]
__UpperCAmelCase : Union[str, Any] = feat_extract.pad(a_ , padding='''longest''' )
__UpperCAmelCase : Optional[int] = input_a[input_name]
__UpperCAmelCase : Optional[int] = feat_extract.pad(a_ , padding='''max_length''' , max_length=len(speech_inputs[-1] ) )
__UpperCAmelCase : Any = input_a[input_name]
__UpperCAmelCase : Optional[Any] = feat_extract.pad(a_ , padding='''longest''' , return_tensors='''np''' )
__UpperCAmelCase : Dict = input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(a_ ):
feat_extract.pad(a_ , padding='''max_length''' )[input_name]
__UpperCAmelCase : str = feat_extract.pad(
a_ , padding='''max_length''' , max_length=a_ , return_tensors='''np''' )
__UpperCAmelCase : Tuple = input_a[input_name]
self.assertFalse(_inputs_have_equal_length(a_ ) )
self.assertTrue(_inputs_have_equal_length(a_ ) )
self.assertTrue(_inputs_have_equal_length(a_ ) )
self.assertTrue(_inputs_are_equal(a_ , a_ ) )
self.assertTrue(len(input_a[0] ) == pad_min_length )
self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff )
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) )
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size )
# test padding for `pad_to_multiple_of` for List[int] + numpy
__UpperCAmelCase : Any = feat_extract.pad(a_ , pad_to_multiple_of=10 )
__UpperCAmelCase : str = input_a[input_name]
__UpperCAmelCase : List[str] = feat_extract.pad(a_ , padding='''longest''' , pad_to_multiple_of=10 )
__UpperCAmelCase : List[Any] = input_a[input_name]
__UpperCAmelCase : Union[str, Any] = feat_extract.pad(
a_ , padding='''max_length''' , pad_to_multiple_of=10 , max_length=a_ )
__UpperCAmelCase : Any = input_a[input_name]
__UpperCAmelCase : Tuple = feat_extract.pad(
a_ , padding='''max_length''' , pad_to_multiple_of=10 , max_length=a_ , return_tensors='''np''' , )
__UpperCAmelCase : List[str] = input_a[input_name]
self.assertTrue(all(len(a_ ) % 10 == 0 for x in input_a ) )
self.assertTrue(_inputs_are_equal(a_ , a_ ) )
__UpperCAmelCase : Dict = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(a_ ) == expected_mult_pad_length for x in input_a ) )
self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size )
# Check padding value is correct
__UpperCAmelCase : Any = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) )
< 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) )
< 1e-3 )
def snake_case__ ( self : Dict , a_ : int=False ):
'''simple docstring'''
def _inputs_have_equal_length(a_ : Dict ):
__UpperCAmelCase : Any = len(input[0] )
for input_slice in input[1:]:
if len(a_ ) != length:
return False
return True
def _inputs_are_equal(a_ : int , a_ : Union[str, Any] ):
if len(a_ ) != len(a_ ):
return False
for input_slice_a, input_slice_a in zip(a_ , a_ ):
if not np.allclose(np.asarray(a_ ) , np.asarray(a_ ) , atol=1e-3 ):
return False
return True
__UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict )
__UpperCAmelCase : Tuple = self.feat_extract_tester.prepare_inputs_for_common(numpify=a_ )
__UpperCAmelCase : int = feat_extract.model_input_names[0]
__UpperCAmelCase : Union[str, Any] = BatchFeature({input_name: speech_inputs} )
# truncate to smallest
__UpperCAmelCase : Optional[Any] = feat_extract.pad(
a_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=a_ )
__UpperCAmelCase : Optional[Any] = input_a[input_name]
__UpperCAmelCase : Optional[int] = feat_extract.pad(a_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) )
__UpperCAmelCase : List[str] = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(a_ ) )
self.assertFalse(_inputs_have_equal_length(a_ ) )
# truncate to smallest with np
__UpperCAmelCase : Optional[Any] = feat_extract.pad(
a_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=a_ , )
__UpperCAmelCase : Optional[Any] = input_a[input_name]
__UpperCAmelCase : List[Any] = feat_extract.pad(
a_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' )
__UpperCAmelCase : str = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(a_ ) )
self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(a_ ) )
# truncate to middle
__UpperCAmelCase : str = feat_extract.pad(
a_ , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=a_ , return_tensors='''np''' , )
__UpperCAmelCase : Optional[int] = input_a[input_name]
__UpperCAmelCase : Optional[Any] = feat_extract.pad(
a_ , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=a_ )
__UpperCAmelCase : int = input_a[input_name]
__UpperCAmelCase : List[str] = feat_extract.pad(
a_ , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' )
__UpperCAmelCase : str = input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) )
self.assertTrue(_inputs_have_equal_length(a_ ) )
self.assertTrue(_inputs_have_equal_length(a_ ) )
self.assertTrue(_inputs_are_equal(a_ , a_ ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(a_ ) )
self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) )
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(a_ ):
feat_extract.pad(a_ , truncation=a_ )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(a_ ):
feat_extract.pad(a_ , padding='''longest''' , truncation=a_ )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(a_ ):
feat_extract.pad(a_ , padding='''longest''' , truncation=a_ )[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(a_ ):
feat_extract.pad(a_ , padding='''max_length''' , truncation=a_ )[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
__UpperCAmelCase : Dict = 12
__UpperCAmelCase : int = feat_extract.pad(
a_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=a_ , truncation=a_ , )
__UpperCAmelCase : Tuple = input_a[input_name]
__UpperCAmelCase : str = feat_extract.pad(
a_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=a_ , )
__UpperCAmelCase : Optional[Any] = input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
__UpperCAmelCase : Optional[int] = len(speech_inputs[0] )
if expected_length % pad_to_multiple_of != 0:
__UpperCAmelCase : List[str] = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0] ) == expected_length )
self.assertTrue(_inputs_have_equal_length(a_ ) )
self.assertFalse(_inputs_have_equal_length(a_ ) )
def snake_case__ ( self : Optional[Any] ):
'''simple docstring'''
self._check_padding(numpify=a_ )
def snake_case__ ( self : Union[str, Any] ):
'''simple docstring'''
self._check_padding(numpify=a_ )
def snake_case__ ( self : int ):
'''simple docstring'''
self._check_truncation(numpify=a_ )
def snake_case__ ( self : str ):
'''simple docstring'''
self._check_truncation(numpify=a_ )
@require_torch
def snake_case__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : int = self.feature_extraction_class(**self.feat_extract_dict )
__UpperCAmelCase : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common()
__UpperCAmelCase : int = feat_extract.model_input_names[0]
__UpperCAmelCase : Optional[int] = BatchFeature({input_name: speech_inputs} )
__UpperCAmelCase : Any = feat_extract.pad(a_ , padding='''longest''' , return_tensors='''np''' )[input_name]
__UpperCAmelCase : str = feat_extract.pad(a_ , padding='''longest''' , return_tensors='''pt''' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 )
@require_tf
def snake_case__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict )
__UpperCAmelCase : str = self.feat_extract_tester.prepare_inputs_for_common()
__UpperCAmelCase : Optional[Any] = feat_extract.model_input_names[0]
__UpperCAmelCase : List[Any] = BatchFeature({input_name: speech_inputs} )
__UpperCAmelCase : str = feat_extract.pad(a_ , padding='''longest''' , return_tensors='''np''' )[input_name]
__UpperCAmelCase : Union[str, Any] = feat_extract.pad(a_ , padding='''longest''' , return_tensors='''tf''' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 )
def snake_case__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : List[str] = self.feat_extract_dict
__UpperCAmelCase : Union[str, Any] = True
__UpperCAmelCase : Any = self.feature_extraction_class(**a_ )
__UpperCAmelCase : List[Any] = self.feat_extract_tester.prepare_inputs_for_common()
__UpperCAmelCase : str = [len(a_ ) for x in speech_inputs]
__UpperCAmelCase : Tuple = feat_extract.model_input_names[0]
__UpperCAmelCase : Optional[int] = BatchFeature({input_name: speech_inputs} )
__UpperCAmelCase : Any = feat_extract.pad(a_ , padding='''longest''' , return_tensors='''np''' )
self.assertIn('''attention_mask''' , a_ )
self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , a_ )
def snake_case__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.feat_extract_dict
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : int = self.feature_extraction_class(**a_ )
__UpperCAmelCase : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common()
__UpperCAmelCase : Any = [len(a_ ) for x in speech_inputs]
__UpperCAmelCase : List[str] = feat_extract.model_input_names[0]
__UpperCAmelCase : int = BatchFeature({input_name: speech_inputs} )
__UpperCAmelCase : List[Any] = min(a_ )
__UpperCAmelCase : str = feat_extract.pad(
a_ , padding='''max_length''' , max_length=a_ , truncation=a_ , return_tensors='''np''' )
self.assertIn('''attention_mask''' , a_ )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
| 241 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def snake_case__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Tuple = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' )
__UpperCAmelCase : Dict = tf.convert_to_tensor(
[[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
__UpperCAmelCase : int = model(a_ )['''last_hidden_state''']
__UpperCAmelCase : Optional[int] = tf.TensorShape((1, 10, 7_68) )
self.assertEqual(output.shape , a_ )
# compare the actual values for a slice.
__UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor(
[[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 241 | 1 |
import inspect
import unittest
from typing import List
import numpy as np
from transformers import EfficientFormerConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
)
from transformers.models.efficientformer.modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_vision_available():
from PIL import Image
from transformers import EfficientFormerImageProcessor
class __lowerCamelCase :
"""simple docstring"""
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int = 13 , SCREAMING_SNAKE_CASE__ : int = 64 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : int = 128 , SCREAMING_SNAKE_CASE__ : int=[16, 32, 64, 128] , SCREAMING_SNAKE_CASE__ : int = 7 , SCREAMING_SNAKE_CASE__ : int = 4 , SCREAMING_SNAKE_CASE__ : int = 37 , SCREAMING_SNAKE_CASE__ : str = "gelu" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : int = 10 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 128 , SCREAMING_SNAKE_CASE__ : List[int] = [2, 2, 2, 2] , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , ) -> Tuple:
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = image_size
lowerCAmelCase__ = patch_size
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = type_sequence_label_size
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = encoder_stride
lowerCAmelCase__ = num_attention_outputs
lowerCAmelCase__ = embed_dim
lowerCAmelCase__ = embed_dim + 1
lowerCAmelCase__ = resolution
lowerCAmelCase__ = depths
lowerCAmelCase__ = hidden_sizes
lowerCAmelCase__ = dim
lowerCAmelCase__ = mlp_expansion_ratio
def a ( self : int ) -> Optional[Any]:
lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase__ = None
if self.use_labels:
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase__ = self.get_config()
return config, pixel_values, labels
def a ( self : int ) -> List[str]:
return EfficientFormerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , )
def a ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any:
lowerCAmelCase__ = TFEfficientFormerModel(config=SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int:
lowerCAmelCase__ = self.type_sequence_label_size
lowerCAmelCase__ = TFEfficientFormerForImageClassification(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowerCAmelCase__ = 1
lowerCAmelCase__ = TFEfficientFormerForImageClassification(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a ( self : Dict ) -> Optional[Any]:
lowerCAmelCase__ = self.prepare_config_and_inputs()
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs
lowerCAmelCase__ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ):
"""simple docstring"""
snake_case__ = (
(
TFEfficientFormerModel,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerForImageClassification,
)
if is_tf_available()
else ()
)
snake_case__ = (
{
"feature-extraction": TFEfficientFormerModel,
"image-classification": (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
),
}
if is_tf_available()
else {}
)
snake_case__ = False
snake_case__ = False
snake_case__ = False
snake_case__ = False
snake_case__ = False
def a ( self : List[str] ) -> int:
lowerCAmelCase__ = TFEfficientFormerModelTester(self )
lowerCAmelCase__ = ConfigTester(
self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=37 )
def a ( self : Any ) -> Union[str, Any]:
self.config_tester.run_common_tests()
@unittest.skip(reason="EfficientFormer does not use inputs_embeds" )
def a ( self : str ) -> Dict:
pass
@unittest.skip(reason="EfficientFormer does not support input and output embeddings" )
def a ( self : Optional[Any] ) -> List[str]:
pass
def a ( self : Union[str, Any] ) -> Union[str, Any]:
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase__ = [*signature.parameters.keys()]
lowerCAmelCase__ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ )
def a ( self : List[str] ) -> Union[str, Any]:
def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ):
lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , training=SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCAmelCase__ = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
if hasattr(self.model_tester , "encoder_seq_length" ):
lowerCAmelCase__ = self.model_tester.encoder_seq_length
if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1:
lowerCAmelCase__ = seq_length * self.model_tester.chunk_length
else:
lowerCAmelCase__ = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
if config.is_encoder_decoder:
lowerCAmelCase__ = outputs.decoder_hidden_states
self.asseretIsInstance(SCREAMING_SNAKE_CASE__ , (list, tuple) )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = getattr(self.model_tester , "seq_length" , SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = getattr(self.model_tester , "decoder_seq_length" , SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , )
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ = True
check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase__ = True
check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=False ) -> Tuple:
lowerCAmelCase__ = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ )
if return_labels:
if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def a ( self : List[Any] ) -> List[Any]:
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ )
@unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" )
def a ( self : List[str] ) -> Union[str, Any]:
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE__ )
def a ( self : str ) -> Any:
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ )
@slow
def a ( self : Optional[Any] ) -> str:
for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase__ = TFEfficientFormerModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
def a ( self : Optional[int] ) -> Optional[Any]:
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase__ = True
lowerCAmelCase__ = getattr(self.model_tester , "seq_length" , SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = getattr(self.model_tester , "encoder_seq_length" , SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = getattr(self.model_tester , "key_length" , SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = getattr(self.model_tester , "chunk_length" , SCREAMING_SNAKE_CASE__ )
if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ):
lowerCAmelCase__ = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
lowerCAmelCase__ = True
lowerCAmelCase__ = False
lowerCAmelCase__ = True
lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , training=SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_attention_outputs )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
lowerCAmelCase__ = True
lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , training=SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_attention_outputs )
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , )
else:
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , )
def a ( self : Union[str, Any] ) -> Any:
# We use a simplified version of this test for EfficientFormer because it requires training=False
# and Keras refuses to let us force that during functional construction
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Prepare our model
lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ )
# These are maximally general inputs for the model, with multiple None dimensions
# Hopefully this will catch any conditionals that fail for flexible shapes
lowerCAmelCase__ = {
key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=SCREAMING_SNAKE_CASE__ )
for key, val in model.input_signature.items()
if key in model.dummy_inputs
}
lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ )
self.assertTrue(outputs_dict is not None )
def _A ( ):
"""simple docstring"""
lowerCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class __lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def a ( self : Dict ) -> Dict:
return (
EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" )
if is_vision_available()
else None
)
@slow
def a ( self : str ) -> Optional[Any]:
lowerCAmelCase__ = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" )
lowerCAmelCase__ = self.default_image_processor
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="tf" )
# forward pass
lowerCAmelCase__ = model(**SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ )
# verify the logits
lowerCAmelCase__ = tf.TensorShape((1, 1_000) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = tf.constant([-0.0_555, 0.4_825, -0.0_852] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
@slow
def a ( self : Tuple ) -> Union[str, Any]:
lowerCAmelCase__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained(
"snap-research/efficientformer-l1-300" )
lowerCAmelCase__ = self.default_image_processor
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="tf" )
# forward pass
lowerCAmelCase__ = model(**SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ )
# verify the logits
lowerCAmelCase__ = tf.TensorShape((1, 1_000) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = tf.constant([-0.1_312, 0.4_353, -1.0_499] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
| 61 |
"""simple docstring"""
def __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
try:
_UpperCAmelCase = float(UpperCamelCase__ )
except ValueError:
raise ValueError("Please enter a valid number" )
_UpperCAmelCase = decimal - int(UpperCamelCase__ )
if fractional_part == 0:
return int(UpperCamelCase__ ), 1
else:
_UpperCAmelCase = len(str(UpperCamelCase__ ).split("." )[1] )
_UpperCAmelCase = int(decimal * (10**number_of_frac_digits) )
_UpperCAmelCase = 10**number_of_frac_digits
_UpperCAmelCase , _UpperCAmelCase = denominator, numerator
while True:
_UpperCAmelCase = dividend % divisor
if remainder == 0:
break
_UpperCAmelCase , _UpperCAmelCase = divisor, remainder
_UpperCAmelCase , _UpperCAmelCase = numerator / divisor, denominator / divisor
return int(UpperCamelCase__ ), int(UpperCamelCase__ )
if __name__ == "__main__":
print(f'''{decimal_to_fraction(2) = }''')
print(f'''{decimal_to_fraction(89.0) = }''')
print(f'''{decimal_to_fraction("67") = }''')
print(f'''{decimal_to_fraction("45.0") = }''')
print(f'''{decimal_to_fraction(1.5) = }''')
print(f'''{decimal_to_fraction("6.25") = }''')
print(f'''{decimal_to_fraction("78td") = }''')
| 657 | 0 |
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def _snake_case ( snake_case__ : List[Any] ):
A = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2]
A = True if 'large' in model_name or 'huge' in model_name else False
A = True if 'large' in model_name or 'huge' in model_name else False
A = True if 'large' in model_name or 'huge' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
A = [3, 3, 3, 3]
A = [5, 5, 5, 5]
elif "fl4" in model_name:
A = [4, 4, 4, 4]
A = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
A = [3, 3, 3, 3]
if "lrf" in model_name:
A = [3, 3, 3, 3]
else:
A = [2, 2, 2, 2]
if "tiny" in model_name:
A = 96
elif "small" in model_name:
A = 96
elif "base" in model_name:
A = 128
elif "large" in model_name:
A = 192
elif "xlarge" in model_name:
A = 256
elif "huge" in model_name:
A = 352
# set label information
A = 'huggingface/label-files'
if "large" in model_name or "huge" in model_name:
A = 'imagenet-22k-id2label.json'
else:
A = 'imagenet-1k-id2label.json'
A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) )
A = {int(snake_case__ ): v for k, v in idalabel.items()}
A = {v: k for k, v in idalabel.items()}
A = FocalNetConfig(
embed_dim=snake_case__ , depths=snake_case__ , focal_levels=snake_case__ , focal_windows=snake_case__ , use_conv_embed=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ , use_post_layernorm=snake_case__ , use_layerscale=snake_case__ , )
return config
def _snake_case ( snake_case__ : int ):
if "patch_embed.proj" in name:
A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
A = name.replace('patch_embed.norm' , 'embeddings.norm' )
if "layers" in name:
A = 'encoder.' + name
if "encoder.layers" in name:
A = name.replace('encoder.layers' , 'encoder.stages' )
if "downsample.proj" in name:
A = name.replace('downsample.proj' , 'downsample.projection' )
if "blocks" in name:
A = name.replace('blocks' , 'layers' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
A = name.replace('modulation.f' , 'modulation.projection_in' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
A = name.replace('modulation.h' , 'modulation.projection_context' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
A = name.replace('modulation.proj' , 'modulation.projection_out' )
if name == "norm.weight":
A = 'layernorm.weight'
if name == "norm.bias":
A = 'layernorm.bias'
if "head" in name:
A = name.replace('head' , 'classifier' )
else:
A = 'focalnet.' + name
return name
def _snake_case ( snake_case__ : str , snake_case__ : Any , snake_case__ : Dict=False ):
# fmt: off
A = {
'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth',
'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth',
'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth',
'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth',
'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth',
'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth',
'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth',
'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth',
'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth',
'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth',
}
# fmt: on
A = model_name_to_url[model_name]
print('Checkpoint URL: ' , snake_case__ )
A = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' )['model']
# rename keys
for key in state_dict.copy().keys():
A = state_dict.pop(snake_case__ )
A = val
A = get_focalnet_config(snake_case__ )
A = FocalNetForImageClassification(snake_case__ )
model.eval()
# load state dict
model.load_state_dict(snake_case__ )
# verify conversion
A = 'http://images.cocodataset.org/val2017/000000039769.jpg'
A = BitImageProcessor(
do_resize=snake_case__ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=snake_case__ , crop_size=224 , do_normalize=snake_case__ , image_mean=snake_case__ , image_std=snake_case__ , )
A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw )
A = processor(images=snake_case__ , return_tensors='pt' )
A = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
A = image_transforms(snake_case__ ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , snake_case__ , atol=1e-4 )
A = model(**snake_case__ )
A = outputs.logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
print('First values of logits:' , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
A = torch.tensor([0.2166, -0.4368, 0.2191] )
elif model_name == "focalnet-tiny-lrf":
A = torch.tensor([1.1669, 0.0125, -0.1695] )
elif model_name == "focalnet-small":
A = torch.tensor([0.4917, -0.0430, 0.1341] )
elif model_name == "focalnet-small-lrf":
A = torch.tensor([-0.2588, -0.5342, -0.2331] )
elif model_name == "focalnet-base":
A = torch.tensor([-0.1655, -0.4090, -0.1730] )
elif model_name == "focalnet-base-lrf":
A = torch.tensor([0.5306, -0.0483, -0.3928] )
assert torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F'Saving model and processor of {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(snake_case__ )
processor.save_pretrained(snake_case__ )
if push_to_hub:
print(F'Pushing model and processor of {model_name} to the hub...' )
model.push_to_hub(F'{model_name}' )
processor.push_to_hub(F'{model_name}' )
if __name__ == "__main__":
_lowercase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''focalnet-tiny''',
type=str,
help='''Name of the FocalNet model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub.''',
)
_lowercase = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) | 710 |
"""simple docstring"""
from math import pi, sqrt
def _snake_case ( snake_case__ : float ):
if num <= 0:
raise ValueError('math domain error' )
if num > 171.5:
raise OverflowError('math range error' )
elif num - int(snake_case__ ) not in (0, 0.5):
raise NotImplementedError('num must be an integer or a half-integer' )
elif num == 0.5:
return sqrt(snake_case__ )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def _snake_case ( ):
assert gamma(0.5 ) == sqrt(snake_case__ )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowercase = 1.0
while num:
_lowercase = float(input('''Gamma of: '''))
print(F"""gamma({num}) = {gamma(num)}""")
print('''\nEnter 0 to exit...''') | 22 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
snake_case_ : List[str] = logging.get_logger(__name__)
snake_case_ : Union[str, Any] = {
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json",
}
# fmt: off
snake_case_ : int = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377,
1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211,
4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786,
11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791,
17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409,
34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361
]
snake_case_ : int = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627,
3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647,
7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793,
14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675,
22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865,
42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362
]
class lowercase__ ( snake_case_ ):
'''simple docstring'''
_snake_case = '''whisper'''
_snake_case = ['''past_key_values''']
_snake_case = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self , lowerCamelCase__=5_1_8_6_5 , lowerCamelCase__=8_0 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=1_5_3_6 , lowerCamelCase__=1_5_3_6 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=5_0_2_5_7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="gelu" , lowerCamelCase__=2_5_6 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=1_5_0_0 , lowerCamelCase__=4_4_8 , lowerCamelCase__=5_0_2_5_6 , lowerCamelCase__=5_0_2_5_6 , lowerCamelCase__=5_0_2_5_6 , lowerCamelCase__=None , lowerCamelCase__=[2_2_0, 5_0_2_5_6] , lowerCamelCase__=False , lowerCamelCase__=2_5_6 , lowerCamelCase__=False , lowerCamelCase__=0.05 , lowerCamelCase__=1_0 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=1_0 , lowerCamelCase__=0 , lowerCamelCase__=7 , **lowerCamelCase__ , ):
'''simple docstring'''
UpperCamelCase = vocab_size
UpperCamelCase = num_mel_bins
UpperCamelCase = d_model
UpperCamelCase = encoder_layers
UpperCamelCase = encoder_attention_heads
UpperCamelCase = decoder_layers
UpperCamelCase = decoder_attention_heads
UpperCamelCase = decoder_ffn_dim
UpperCamelCase = encoder_ffn_dim
UpperCamelCase = dropout
UpperCamelCase = attention_dropout
UpperCamelCase = activation_dropout
UpperCamelCase = activation_function
UpperCamelCase = init_std
UpperCamelCase = encoder_layerdrop
UpperCamelCase = decoder_layerdrop
UpperCamelCase = use_cache
UpperCamelCase = encoder_layers
UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCamelCase = max_source_positions
UpperCamelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
UpperCamelCase = classifier_proj_size
UpperCamelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCamelCase = apply_spec_augment
UpperCamelCase = mask_time_prob
UpperCamelCase = mask_time_length
UpperCamelCase = mask_time_min_masks
UpperCamelCase = mask_feature_prob
UpperCamelCase = mask_feature_length
UpperCamelCase = mask_feature_min_masks
UpperCamelCase = median_filter_width
super().__init__(
pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , is_encoder_decoder=_snake_case , decoder_start_token_id=_snake_case , suppress_tokens=_snake_case , begin_suppress_tokens=_snake_case , **_snake_case , )
class lowercase__ ( snake_case_ ):
'''simple docstring'''
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
UpperCamelCase = OrderedDict(
[
('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}),
] )
if self.use_past:
UpperCamelCase = {0: '''batch'''}
else:
UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(_snake_case , direction='''inputs''' )
return common_inputs
def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 2_2_0_5_0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 2_2_0 , ):
'''simple docstring'''
UpperCamelCase = OrderedDict()
UpperCamelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=_snake_case , framework=_snake_case , sampling_rate=_snake_case , time_duration=_snake_case , frequency=_snake_case , )
UpperCamelCase = encoder_inputs['''input_features'''].shape[2]
UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length
UpperCamelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , _snake_case , _snake_case , _snake_case , _snake_case )
UpperCamelCase = encoder_inputs.pop('''input_features''' )
UpperCamelCase = decoder_inputs.pop('''decoder_input_ids''' )
if "past_key_values" in decoder_inputs:
UpperCamelCase = decoder_inputs.pop('''past_key_values''' )
return dummy_inputs
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
return 1e-3
| 212 |
'''simple docstring'''
import contextlib
import os
import sqlitea
import pytest
from datasets import Dataset, Features, Value
from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy
def lowerCamelCase_ ( A_ , A_ ):
assert isinstance(A_ , A_ )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@require_sqlalchemy
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def lowerCamelCase_ ( A_ , A_ , A_ , A_ ):
__lowerCamelCase = tmp_path / '''cache'''
__lowerCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__lowerCamelCase = SqlDatasetReader(
'''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=A_ , keep_in_memory=A_ ).read()
_check_sql_dataset(A_ , A_ )
@require_sqlalchemy
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def lowerCamelCase_ ( A_ , A_ , A_ , A_ ):
__lowerCamelCase = tmp_path / '''cache'''
__lowerCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__lowerCamelCase = features.copy() if features else default_expected_features
__lowerCamelCase = (
Features({feature: Value(A_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__lowerCamelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=A_ , cache_dir=A_ ).read()
_check_sql_dataset(A_ , A_ )
def lowerCamelCase_ ( A_ ):
with contextlib.closing(sqlitea.connect(A_ ) ) as con:
__lowerCamelCase = con.cursor()
cur.execute('''SELECT * FROM dataset''' )
for row in cur:
yield row
@require_sqlalchemy
def lowerCamelCase_ ( A_ , A_ , A_ ):
__lowerCamelCase = tmp_path / '''cache'''
__lowerCamelCase = os.path.join(A_ , '''tmp.sql''' )
__lowerCamelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=A_ ).read()
SqlDatasetWriter(A_ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write()
__lowerCamelCase = iter_sql_file(A_ )
__lowerCamelCase = iter_sql_file(A_ )
for rowa, rowa in zip(A_ , A_ ):
assert rowa == rowa
@require_sqlalchemy
def lowerCamelCase_ ( A_ , A_ , A_ ):
__lowerCamelCase = tmp_path / '''cache'''
__lowerCamelCase = os.path.join(A_ , '''tmp.sql''' )
__lowerCamelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=A_ ).read()
SqlDatasetWriter(A_ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write()
__lowerCamelCase = iter_sql_file(A_ )
__lowerCamelCase = iter_sql_file(A_ )
for rowa, rowa in zip(A_ , A_ ):
assert rowa == rowa
@require_sqlalchemy
def lowerCamelCase_ ( A_ , A_ , A_ ):
__lowerCamelCase = tmp_path / '''cache'''
__lowerCamelCase = os.path.join(A_ , '''tmp.sql''' )
__lowerCamelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=A_ ).read()
with pytest.raises(A_ ):
SqlDatasetWriter(A_ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
| 316 | 0 |
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
UpperCAmelCase__ : str = logging.get_logger(__name__)
class lowerCAmelCase_ (a__ ):
"""simple docstring"""
__UpperCamelCase : int = ['''input_features''', '''attention_mask''']
def __init__(self , SCREAMING_SNAKE_CASE__=80 , SCREAMING_SNAKE_CASE__=1_60_00 , SCREAMING_SNAKE_CASE__=80 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , **SCREAMING_SNAKE_CASE__ , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(feature_size=SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , padding_value=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Dict = num_mel_bins
SCREAMING_SNAKE_CASE__ : Optional[Any] = do_ceptral_normalize
SCREAMING_SNAKE_CASE__ : Optional[Any] = normalize_means
SCREAMING_SNAKE_CASE__ : int = normalize_vars
SCREAMING_SNAKE_CASE__ : Any = True
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , ) -> np.ndarray:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 )
SCREAMING_SNAKE_CASE__ : Optional[int] = ta_kaldi.fbank(SCREAMING_SNAKE_CASE__ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def __magic_name__ (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = 0.0 , ) -> np.ndarray:
"""simple docstring"""
if normalize_means:
SCREAMING_SNAKE_CASE__ : Dict = x[:input_length].mean(axis=0 )
SCREAMING_SNAKE_CASE__ : List[Any] = np.subtract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if normalize_vars:
SCREAMING_SNAKE_CASE__ : List[str] = x[:input_length].std(axis=0 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.divide(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if input_length < x.shape[0]:
SCREAMING_SNAKE_CASE__ : Tuple = padding_value
# make sure array is in float32
SCREAMING_SNAKE_CASE__ : List[Any] = x.astype(np.floataa )
return x
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[np.ndarray]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.normalize_means , self.normalize_vars , self.padding_value )
for x, n in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
]
def __call__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> BatchFeature:
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'''
F''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
SCREAMING_SNAKE_CASE__ : Any = isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
SCREAMING_SNAKE_CASE__ : List[str] = is_batched_numpy or (
isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
SCREAMING_SNAKE_CASE__ : str = [np.asarray(SCREAMING_SNAKE_CASE__ , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ):
SCREAMING_SNAKE_CASE__ : Dict = np.asarray(SCREAMING_SNAKE_CASE__ , dtype=np.floataa )
elif isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
SCREAMING_SNAKE_CASE__ : List[Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
SCREAMING_SNAKE_CASE__ : List[str] = [raw_speech]
# extract fbank features
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self._extract_fbank_features(SCREAMING_SNAKE_CASE__ ) for waveform in raw_speech]
# convert into correct format for padding
SCREAMING_SNAKE_CASE__ : str = BatchFeature({"""input_features""": features} )
SCREAMING_SNAKE_CASE__ : int = self.pad(
SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
# make sure list is in array format
SCREAMING_SNAKE_CASE__ : Any = padded_inputs.get("""input_features""" )
if isinstance(input_features[0] , SCREAMING_SNAKE_CASE__ ):
SCREAMING_SNAKE_CASE__ : Optional[Any] = [np.asarray(SCREAMING_SNAKE_CASE__ , dtype=np.floataa ) for feature in input_features]
SCREAMING_SNAKE_CASE__ : List[Any] = padded_inputs.get("""attention_mask""" )
if attention_mask is not None:
SCREAMING_SNAKE_CASE__ : Tuple = [np.asarray(SCREAMING_SNAKE_CASE__ , dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
SCREAMING_SNAKE_CASE__ : str = (
np.array(SCREAMING_SNAKE_CASE__ , dtype=np.intaa )
if self._get_padding_strategies(SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) is not PaddingStrategy.DO_NOT_PAD
else None
)
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.normalize(
padded_inputs["""input_features"""] , attention_mask=SCREAMING_SNAKE_CASE__ )
if return_tensors is not None:
SCREAMING_SNAKE_CASE__ : int = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE__ )
return padded_inputs
| 712 |
"""simple docstring"""
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def lowercase_ ( _snake_case ,_snake_case=7 ):
SCREAMING_SNAKE_CASE__ : Dict = None
if token is not None:
SCREAMING_SNAKE_CASE__ : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
# The id of a workflow (not of a workflow run)
SCREAMING_SNAKE_CASE__ : List[str] = """636036"""
SCREAMING_SNAKE_CASE__ : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'''
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'''
SCREAMING_SNAKE_CASE__ : str = requests.get(_snake_case ,headers=_snake_case ).json()
return result["workflow_runs"]
def lowercase_ ( _snake_case ):
SCREAMING_SNAKE_CASE__ : Tuple = get_daily_ci_runs(_snake_case )
SCREAMING_SNAKE_CASE__ : int = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = workflow_run["""id"""]
break
return workflow_run_id
def lowercase_ ( _snake_case ,_snake_case ,_snake_case ):
SCREAMING_SNAKE_CASE__ : Dict = get_last_daily_ci_runs(_snake_case )
if workflow_run_id is not None:
SCREAMING_SNAKE_CASE__ : Tuple = get_artifacts_links(worflow_run_id=_snake_case ,token=_snake_case )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
SCREAMING_SNAKE_CASE__ : Tuple = artifacts_links[artifact_name]
download_artifact(
artifact_name=_snake_case ,artifact_url=_snake_case ,output_dir=_snake_case ,token=_snake_case )
def lowercase_ ( _snake_case ,_snake_case ,_snake_case ):
get_last_daily_ci_artifacts(_snake_case ,_snake_case ,_snake_case )
SCREAMING_SNAKE_CASE__ : List[str] = {}
for artifact_name in artifact_names:
SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(_snake_case ,f'''{artifact_name}.zip''' )
if os.path.isfile(_snake_case ):
SCREAMING_SNAKE_CASE__ : List[Any] = {}
with zipfile.ZipFile(_snake_case ) as z:
for filename in z.namelist():
if not os.path.isdir(_snake_case ):
# read the file
with z.open(_snake_case ) as f:
SCREAMING_SNAKE_CASE__ : List[Any] = f.read().decode("""UTF-8""" )
return results
| 545 | 0 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__lowercase : List[str] = logging.get_logger(__name__)
__lowercase : Optional[int] = {
'''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''',
'''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''',
'''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''',
'''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''',
'''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''',
'''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''',
'''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''',
'''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''',
'''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''',
'''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''',
'''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''',
'''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''',
}
class _A ( snake_case ):
'''simple docstring'''
__lowerCamelCase : List[Any] = '''codegen'''
__lowerCamelCase : List[str] = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self ,SCREAMING_SNAKE_CASE_=50400 ,SCREAMING_SNAKE_CASE_=2048 ,SCREAMING_SNAKE_CASE_=2048 ,SCREAMING_SNAKE_CASE_=4096 ,SCREAMING_SNAKE_CASE_=28 ,SCREAMING_SNAKE_CASE_=16 ,SCREAMING_SNAKE_CASE_=64 ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_="gelu_new" ,SCREAMING_SNAKE_CASE_=0.0 ,SCREAMING_SNAKE_CASE_=0.0 ,SCREAMING_SNAKE_CASE_=0.0 ,SCREAMING_SNAKE_CASE_=1E-5 ,SCREAMING_SNAKE_CASE_=0.02 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=50256 ,SCREAMING_SNAKE_CASE_=50256 ,SCREAMING_SNAKE_CASE_=False ,**SCREAMING_SNAKE_CASE_ ,):
'''simple docstring'''
snake_case : Dict = vocab_size
snake_case : List[str] = n_ctx
snake_case : List[Any] = n_positions
snake_case : Dict = n_embd
snake_case : Union[str, Any] = n_layer
snake_case : Tuple = n_head
snake_case : List[str] = n_inner
snake_case : Union[str, Any] = rotary_dim
snake_case : Optional[Any] = activation_function
snake_case : List[Any] = resid_pdrop
snake_case : Tuple = embd_pdrop
snake_case : int = attn_pdrop
snake_case : str = layer_norm_epsilon
snake_case : Union[str, Any] = initializer_range
snake_case : Dict = use_cache
snake_case : int = bos_token_id
snake_case : str = eos_token_id
super().__init__(
bos_token_id=SCREAMING_SNAKE_CASE_ ,eos_token_id=SCREAMING_SNAKE_CASE_ ,tie_word_embeddings=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ )
class _A ( snake_case ):
'''simple docstring'''
def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = "default" ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = False ,):
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE_ ,task=SCREAMING_SNAKE_CASE_ ,patching_specs=SCREAMING_SNAKE_CASE_ ,use_past=SCREAMING_SNAKE_CASE_ )
if not getattr(self._config ,"""pad_token_id""" ,SCREAMING_SNAKE_CASE_ ):
# TODO: how to do that better?
snake_case : Optional[Any] = 0
@property
def snake_case_ ( self ):
'''simple docstring'''
snake_case : int = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ ,direction="""inputs""" )
snake_case : int = {0: """batch""", 1: """past_sequence + sequence"""}
else:
snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def snake_case_ ( self ):
'''simple docstring'''
return self._config.n_layer
@property
def snake_case_ ( self ):
'''simple docstring'''
return self._config.n_head
def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = -1 ,SCREAMING_SNAKE_CASE_ = -1 ,SCREAMING_SNAKE_CASE_ = False ,SCREAMING_SNAKE_CASE_ = None ,):
'''simple docstring'''
snake_case : Tuple = super(SCREAMING_SNAKE_CASE_ ,self ).generate_dummy_inputs(
SCREAMING_SNAKE_CASE_ ,batch_size=SCREAMING_SNAKE_CASE_ ,seq_length=SCREAMING_SNAKE_CASE_ ,is_pair=SCREAMING_SNAKE_CASE_ ,framework=SCREAMING_SNAKE_CASE_ )
# We need to order the input in the way they appears in the forward()
snake_case : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
snake_case , snake_case : Optional[Any] = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
snake_case : str = seqlen + 2
snake_case : Optional[Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
snake_case : Any = [
(torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) for _ in range(self.num_layers )
]
snake_case : List[str] = common_inputs["""attention_mask"""]
if self.use_past:
snake_case : Tuple = ordered_inputs["""attention_mask"""].dtype
snake_case : Union[str, Any] = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,dtype=SCREAMING_SNAKE_CASE_ )] ,dim=1 )
return ordered_inputs
@property
def snake_case_ ( self ):
'''simple docstring'''
return 13
| 36 |
'''simple docstring'''
import gc
import inspect
import unittest
import torch
from parameterized import parameterized
from diffusers import PriorTransformer
from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin
enable_full_determinism()
class __lowercase ( __magic_name__ , unittest.TestCase ):
_a = PriorTransformer
_a = """hidden_states"""
@property
def UpperCamelCase__ ( self ) -> int:
__a = 4
__a = 8
__a = 7
__a = floats_tensor((batch_size, embedding_dim) ).to(UpperCamelCase )
__a = floats_tensor((batch_size, embedding_dim) ).to(UpperCamelCase )
__a = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(UpperCamelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def UpperCamelCase__ ( self , UpperCamelCase=0 ) -> Union[str, Any]:
torch.manual_seed(UpperCamelCase )
__a = 4
__a = 8
__a = 7
__a = torch.randn((batch_size, embedding_dim) ).to(UpperCamelCase )
__a = torch.randn((batch_size, embedding_dim) ).to(UpperCamelCase )
__a = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCamelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
@property
def UpperCamelCase__ ( self ) -> List[str]:
return (4, 8)
@property
def UpperCamelCase__ ( self ) -> str:
return (4, 8)
def UpperCamelCase__ ( self ) -> Dict:
__a = {
'num_attention_heads': 2,
'attention_head_dim': 4,
'num_layers': 2,
'embedding_dim': 8,
'num_embeddings': 7,
'additional_embeddings': 4,
}
__a = self.dummy_input
return init_dict, inputs_dict
def UpperCamelCase__ ( self ) -> List[Any]:
__a , __a = PriorTransformer.from_pretrained(
'hf-internal-testing/prior-dummy' , output_loading_info=UpperCamelCase )
self.assertIsNotNone(UpperCamelCase )
self.assertEqual(len(loading_info['missing_keys'] ) , 0 )
model.to(UpperCamelCase )
__a = model(**self.dummy_input )[0]
assert hidden_states is not None, "Make sure output is not None"
def UpperCamelCase__ ( self ) -> Optional[Any]:
__a , __a = self.prepare_init_args_and_inputs_for_common()
__a = self.model_class(**UpperCamelCase )
__a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__a = [*signature.parameters.keys()]
__a = ['hidden_states', 'timestep']
self.assertListEqual(arg_names[:2] , UpperCamelCase )
def UpperCamelCase__ ( self ) -> str:
__a = PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' )
__a = model.to(UpperCamelCase )
if hasattr(UpperCamelCase , 'set_default_attn_processor' ):
model.set_default_attn_processor()
__a = self.get_dummy_seed_input()
with torch.no_grad():
__a = model(**UpperCamelCase )[0]
__a = output[0, :5].flatten().cpu()
print(UpperCamelCase )
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
__a = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] )
self.assertTrue(torch_all_close(UpperCamelCase , UpperCamelCase , rtol=1e-2 ) )
@slow
class __lowercase ( unittest.TestCase ):
def UpperCamelCase__ ( self , UpperCamelCase=1 , UpperCamelCase=768 , UpperCamelCase=77 , UpperCamelCase=0 ) -> List[str]:
torch.manual_seed(UpperCamelCase )
__a = batch_size
__a = embedding_dim
__a = num_embeddings
__a = torch.randn((batch_size, embedding_dim) ).to(UpperCamelCase )
__a = torch.randn((batch_size, embedding_dim) ).to(UpperCamelCase )
__a = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCamelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def UpperCamelCase__ ( self ) -> List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@parameterized.expand(
[
# fmt: off
[13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]],
[37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]],
# fmt: on
] )
def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase ) -> Optional[Any]:
__a = PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' )
model.to(UpperCamelCase )
__a = self.get_dummy_seed_input(seed=UpperCamelCase )
with torch.no_grad():
__a = model(**UpperCamelCase )[0]
assert list(sample.shape ) == [1, 768]
__a = sample[0, :8].flatten().cpu()
print(UpperCamelCase )
__a = torch.tensor(UpperCamelCase )
assert torch_all_close(UpperCamelCase , UpperCamelCase , atol=1e-3 )
| 539 | 0 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
__UpperCAmelCase = ""
__UpperCAmelCase = ""
__UpperCAmelCase = ""
__UpperCAmelCase = 1 # (0 is vertical, 1 is horizontal)
def A_ ( ) ->int:
"""simple docstring"""
SCREAMING_SNAKE_CASE = get_dataset(snake_case__ , snake_case__ )
print('Processing...' )
SCREAMING_SNAKE_CASE = update_image_and_anno(snake_case__ , snake_case__ , snake_case__ )
for index, image in enumerate(snake_case__ ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
SCREAMING_SNAKE_CASE = random_chars(3_2 )
SCREAMING_SNAKE_CASE = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0]
SCREAMING_SNAKE_CASE = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}'''
cva.imwrite(f'''/{file_root}.jpg''' , snake_case__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] )
print(f'''Success {index+1}/{len(snake_case__ )} with {file_name}''' )
SCREAMING_SNAKE_CASE = []
for anno in new_annos[index]:
SCREAMING_SNAKE_CASE = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}'''
annos_list.append(snake_case__ )
with open(f'''/{file_root}.txt''' , 'w' ) as outfile:
outfile.write('\n'.join(line for line in annos_list ) )
def A_ ( lowercase_ , lowercase_ ) ->Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
for label_file in glob.glob(os.path.join(snake_case__ , '*.txt' ) ):
SCREAMING_SNAKE_CASE = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0]
with open(snake_case__ ) as in_file:
SCREAMING_SNAKE_CASE = in_file.readlines()
SCREAMING_SNAKE_CASE = os.path.join(snake_case__ , f'''{label_name}.jpg''' )
SCREAMING_SNAKE_CASE = []
for obj_list in obj_lists:
SCREAMING_SNAKE_CASE = obj_list.rstrip('\n' ).split(' ' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(snake_case__ )
labels.append(snake_case__ )
return img_paths, labels
def A_ ( lowercase_ , lowercase_ , lowercase_ = 1 ) ->str:
"""simple docstring"""
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
for idx in range(len(snake_case__ ) ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = img_list[idx]
path_list.append(snake_case__ )
SCREAMING_SNAKE_CASE = anno_list[idx]
SCREAMING_SNAKE_CASE = cva.imread(snake_case__ )
if flip_type == 1:
SCREAMING_SNAKE_CASE = cva.flip(snake_case__ , snake_case__ )
for bbox in img_annos:
SCREAMING_SNAKE_CASE = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
SCREAMING_SNAKE_CASE = cva.flip(snake_case__ , snake_case__ )
for bbox in img_annos:
SCREAMING_SNAKE_CASE = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(snake_case__ )
new_imgs_list.append(snake_case__ )
return new_imgs_list, new_annos_lists, path_list
def A_ ( lowercase_ = 3_2 ) ->str:
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
SCREAMING_SNAKE_CASE = ascii_lowercase + digits
return "".join(random.choice(snake_case__ ) for _ in range(snake_case__ ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 706 |
import argparse
from collections import defaultdict
import yaml
__UpperCAmelCase = "docs/source/en/_toctree.yml"
def A_ ( lowercase_ ) ->Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE = defaultdict(lowercase_ )
for doc in model_doc:
counts[doc["local"]] += 1
SCREAMING_SNAKE_CASE = [key for key, value in counts.items() if value > 1]
SCREAMING_SNAKE_CASE = []
for duplicate_key in duplicates:
SCREAMING_SNAKE_CASE = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} )
if len(lowercase_ ) > 1:
raise ValueError(
f'''{duplicate_key} is present several times in the documentation table of content at '''
'`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the '
'others.' )
# Only add this once
new_doc.append({'local': duplicate_key, 'title': titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] )
# Sort
return sorted(lowercase_ , key=lambda lowercase_ : s["title"].lower() )
def A_ ( lowercase_=False ) ->List[Any]:
"""simple docstring"""
with open(lowercase_ , encoding='utf-8' ) as f:
SCREAMING_SNAKE_CASE = yaml.safe_load(f.read() )
# Get to the API doc
SCREAMING_SNAKE_CASE = 0
while content[api_idx]["title"] != "API":
api_idx += 1
SCREAMING_SNAKE_CASE = content[api_idx]['sections']
# Then to the model doc
SCREAMING_SNAKE_CASE = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
SCREAMING_SNAKE_CASE = api_doc[model_idx]['sections']
SCREAMING_SNAKE_CASE = [(idx, section) for idx, section in enumerate(lowercase_ ) if 'sections' in section]
SCREAMING_SNAKE_CASE = False
for idx, modality_doc in modalities_docs:
SCREAMING_SNAKE_CASE = modality_doc['sections']
SCREAMING_SNAKE_CASE = clean_model_doc_toc(lowercase_ )
if old_modality_doc != new_modality_doc:
SCREAMING_SNAKE_CASE = True
if overwrite:
SCREAMING_SNAKE_CASE = new_modality_doc
if diff:
if overwrite:
SCREAMING_SNAKE_CASE = model_doc
SCREAMING_SNAKE_CASE = api_doc
with open(lowercase_ , 'w' , encoding='utf-8' ) as f:
f.write(yaml.dump(lowercase_ , allow_unicode=lowercase_ ) )
else:
raise ValueError(
'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
__UpperCAmelCase = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 259 | 0 |
import torch
from transformers import AutoModel
class __lowerCAmelCase ( torch.nn.Module ):
"""simple docstring"""
def __init__( self : str , _snake_case : str="sayef/fsner-bert-base-uncased" ):
"""simple docstring"""
super(UpperCAmelCase_ , self ).__init__()
A__ = AutoModel.from_pretrained(UpperCAmelCase_ , return_dict=UpperCAmelCase_ )
A__ = torch.nn.CosineSimilarity(3 , 1E-08 )
A__ = torch.nn.Softmax(dim=1 )
def _a ( self : str , **_snake_case : int ):
"""simple docstring"""
return self.bert(**UpperCAmelCase_ ).last_hidden_state
def _a ( self : Union[str, Any] , _snake_case : Tuple ):
"""simple docstring"""
return token_embeddings.sum(2 , keepdim=UpperCAmelCase_ )
def _a ( self : List[Any] , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Optional[Any]=1 ):
"""simple docstring"""
return self.softmax(T * self.cos(UpperCAmelCase_ , UpperCAmelCase_ ) )
def _a ( self : Any , _snake_case : Optional[Any] , _snake_case : int ):
"""simple docstring"""
A__ = W_supports['sizes'].tolist()
A__ = W_supports['start_token_id'].item()
A__ = W_supports['end_token_id'].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
A__ = self.BERT(**UpperCAmelCase_ )
A__ = self.BERT(**UpperCAmelCase_ )
A__ = None
A__ = None
A__ = W_supports['input_ids'] == start_token_id
A__ = W_supports['input_ids'] == end_token_id
for i, size in enumerate(UpperCAmelCase_ ):
if i == 0:
A__ = 0
else:
A__ = support_sizes[i - 1]
A__ = S[s : s + size][start_token_masks[s : s + size]]
A__ = S[s : s + size][end_token_masks[s : s + size]]
A__ = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 )
A__ = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
A__ = torch.vstack((p_starts, p_start) )
A__ = torch.vstack((p_ends, p_end) )
else:
A__ = p_start
A__ = p_end
return p_starts, p_ends
| 9 |
"""simple docstring"""
def lowerCamelCase__ ( UpperCAmelCase_ = 60_08_51_47_51_43 )-> int:
"""simple docstring"""
try:
UpperCamelCase = int(UpperCAmelCase_ )
except (TypeError, ValueError):
raise TypeError("Parameter n must be int or castable to int." )
if n <= 0:
raise ValueError("Parameter n must be greater than or equal to one." )
UpperCamelCase = 2
UpperCamelCase = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
UpperCamelCase = i
while n % i == 0:
UpperCamelCase = n // i
i += 1
return int(UpperCAmelCase_ )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 554 | 0 |
'''simple docstring'''
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class __UpperCAmelCase ( __A ):
"""simple docstring"""
_lowerCamelCase = (DPMSolverSinglestepScheduler,)
_lowerCamelCase = (("""num_inference_steps""", 25),)
def snake_case_ ( self , **__A ):
__a = {
"""num_train_timesteps""": 1000,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""solver_order""": 2,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
"""sample_max_value""": 1.0,
"""algorithm_type""": """dpmsolver++""",
"""solver_type""": """midpoint""",
"""lambda_min_clipped""": -float("""inf""" ),
"""variance_type""": None,
}
config.update(**__A )
return config
def snake_case_ ( self , __A=0 , **__A ):
__a = dict(self.forward_default_kwargs )
__a = kwargs.pop("""num_inference_steps""" , __A )
__a = self.dummy_sample
__a = 0.1 * sample
__a = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
__a = self.get_scheduler_config(**__A )
__a = scheduler_class(**__A )
scheduler.set_timesteps(__A )
# copy over dummy past residuals
__a = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__A )
__a = scheduler_class.from_pretrained(__A )
new_scheduler.set_timesteps(__A )
# copy over dummy past residuals
__a = dummy_past_residuals[: new_scheduler.config.solver_order]
__a , __a = sample, sample
for t in range(__A , time_step + scheduler.config.solver_order + 1 ):
__a = scheduler.step(__A , __A , __A , **__A ).prev_sample
__a = new_scheduler.step(__A , __A , __A , **__A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case_ ( self ):
pass
def snake_case_ ( self , __A=0 , **__A ):
__a = dict(self.forward_default_kwargs )
__a = kwargs.pop("""num_inference_steps""" , __A )
__a = self.dummy_sample
__a = 0.1 * sample
__a = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
__a = self.get_scheduler_config()
__a = scheduler_class(**__A )
scheduler.set_timesteps(__A )
# copy over dummy past residuals (must be after setting timesteps)
__a = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__A )
__a = scheduler_class.from_pretrained(__A )
# copy over dummy past residuals
new_scheduler.set_timesteps(__A )
# copy over dummy past residual (must be after setting timesteps)
__a = dummy_past_residuals[: new_scheduler.config.solver_order]
__a = scheduler.step(__A , __A , __A , **__A ).prev_sample
__a = new_scheduler.step(__A , __A , __A , **__A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case_ ( self , __A=None , **__A ):
if scheduler is None:
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config(**__A )
__a = scheduler_class(**__A )
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config(**__A )
__a = scheduler_class(**__A )
__a = 10
__a = self.dummy_model()
__a = self.dummy_sample_deter
scheduler.set_timesteps(__A )
for i, t in enumerate(scheduler.timesteps ):
__a = model(__A , __A )
__a = scheduler.step(__A , __A , __A ).prev_sample
return sample
def snake_case_ ( self ):
__a = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
__a = 50
__a = self.dummy_model()
__a = self.dummy_sample_deter
scheduler.set_timesteps(__A )
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:] ):
__a = model(__A , __A )
__a = scheduler.step(__A , __A , __A ).prev_sample
__a = torch.mean(torch.abs(__A ) )
assert abs(result_mean.item() - 0.2574 ) < 1E-3
def snake_case_ ( self ):
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=__A )
def snake_case_ ( self ):
# make sure that iterating over schedulers with same config names gives same results
# for defaults
__a = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
__a = self.full_loop(scheduler=__A )
__a = torch.mean(torch.abs(__A ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
__a = DEISMultistepScheduler.from_config(scheduler.config )
__a = DPMSolverMultistepScheduler.from_config(scheduler.config )
__a = UniPCMultistepScheduler.from_config(scheduler.config )
__a = DPMSolverSinglestepScheduler.from_config(scheduler.config )
__a = self.full_loop(scheduler=__A )
__a = torch.mean(torch.abs(__A ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
def snake_case_ ( self ):
self.check_over_configs(thresholding=__A )
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=__A , prediction_type=__A , sample_max_value=__A , algorithm_type="""dpmsolver++""" , solver_order=__A , solver_type=__A , )
def snake_case_ ( self ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__A )
def snake_case_ ( self ):
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=__A , solver_type=__A , prediction_type=__A , algorithm_type=__A , )
__a = self.full_loop(
solver_order=__A , solver_type=__A , prediction_type=__A , algorithm_type=__A , )
assert not torch.isnan(__A ).any(), "Samples have nan numbers"
def snake_case_ ( self ):
self.check_over_configs(lower_order_final=__A )
self.check_over_configs(lower_order_final=__A )
def snake_case_ ( self ):
self.check_over_configs(lambda_min_clipped=-float("""inf""" ) )
self.check_over_configs(lambda_min_clipped=-5.1 )
def snake_case_ ( self ):
self.check_over_configs(variance_type=__A )
self.check_over_configs(variance_type="""learned_range""" )
def snake_case_ ( self ):
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=__A , time_step=0 )
def snake_case_ ( self ):
__a = self.full_loop()
__a = torch.mean(torch.abs(__A ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
def snake_case_ ( self ):
__a = self.full_loop(use_karras_sigmas=__A )
__a = torch.mean(torch.abs(__A ) )
assert abs(result_mean.item() - 0.2248 ) < 1E-3
def snake_case_ ( self ):
__a = self.full_loop(prediction_type="""v_prediction""" )
__a = torch.mean(torch.abs(__A ) )
assert abs(result_mean.item() - 0.1453 ) < 1E-3
def snake_case_ ( self ):
__a = self.full_loop(prediction_type="""v_prediction""" , use_karras_sigmas=__A )
__a = torch.mean(torch.abs(__A ) )
assert abs(result_mean.item() - 0.0649 ) < 1E-3
def snake_case_ ( self ):
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config(thresholding=__A , dynamic_thresholding_ratio=0 )
__a = scheduler_class(**__A )
__a = 10
__a = self.dummy_model()
__a = self.dummy_sample_deter.half()
scheduler.set_timesteps(__A )
for i, t in enumerate(scheduler.timesteps ):
__a = model(__A , __A )
__a = scheduler.step(__A , __A , __A ).prev_sample
assert sample.dtype == torch.floataa
| 711 |
from __future__ import annotations
from decimal import Decimal
from numpy import array
def a (lowerCAmelCase__ ):
__a = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
__a = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creates a copy of the matrix with swapped positions of the elements
__a = [[0.0, 0.0], [0.0, 0.0]]
__a , __a = matrix[1][1], matrix[0][0]
__a , __a = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(lowerCAmelCase__ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
__a = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creating cofactor matrix
__a = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
__a = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
__a = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
__a = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
__a = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
__a = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
__a = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
__a = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
__a = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
__a = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
__a = array(lowerCAmelCase__ )
for i in range(3 ):
for j in range(3 ):
__a = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
__a = array(lowerCAmelCase__ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(lowerCAmelCase__ )
# Calculate the inverse of the matrix
return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
| 209 | 0 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class __UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def snake_case_ ( self ):
__a = tempfile.mkdtemp()
__a = BlipImageProcessor()
__a = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" )
__a = BlipProcessor(__A , __A )
processor.save_pretrained(self.tmpdirname )
def snake_case_ ( self , **__A ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__A ).tokenizer
def snake_case_ ( self , **__A ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__A ).image_processor
def snake_case_ ( self ):
shutil.rmtree(self.tmpdirname )
def snake_case_ ( self ):
__a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
__a = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def snake_case_ ( self ):
__a = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__a = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__a = self.get_image_processor(do_normalize=__A , padding_value=1.0 )
__a = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__A , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __A )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __A )
def snake_case_ ( self ):
__a = self.get_image_processor()
__a = self.get_tokenizer()
__a = BlipProcessor(tokenizer=__A , image_processor=__A )
__a = self.prepare_image_inputs()
__a = image_processor(__A , return_tensors="""np""" )
__a = processor(images=__A , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def snake_case_ ( self ):
__a = self.get_image_processor()
__a = self.get_tokenizer()
__a = BlipProcessor(tokenizer=__A , image_processor=__A )
__a = """lower newer"""
__a = processor(text=__A )
__a = tokenizer(__A , return_token_type_ids=__A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def snake_case_ ( self ):
__a = self.get_image_processor()
__a = self.get_tokenizer()
__a = BlipProcessor(tokenizer=__A , image_processor=__A )
__a = """lower newer"""
__a = self.prepare_image_inputs()
__a = processor(text=__A , images=__A )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
# test if it raises when no input is passed
with pytest.raises(__A ):
processor()
def snake_case_ ( self ):
__a = self.get_image_processor()
__a = self.get_tokenizer()
__a = BlipProcessor(tokenizer=__A , image_processor=__A )
__a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__a = processor.batch_decode(__A )
__a = tokenizer.batch_decode(__A )
self.assertListEqual(__A , __A )
def snake_case_ ( self ):
__a = self.get_image_processor()
__a = self.get_tokenizer()
__a = BlipProcessor(tokenizer=__A , image_processor=__A )
__a = """lower newer"""
__a = self.prepare_image_inputs()
__a = processor(text=__A , images=__A )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
| 99 |
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
SCREAMING_SNAKE_CASE = getLogger(__name__)
SCREAMING_SNAKE_CASE = 'cuda' if torch.cuda.is_available() else 'cpu'
def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 8 , lowerCAmelCase__ = DEFAULT_DEVICE , lowerCAmelCase__=False , lowerCAmelCase__="summarization" , lowerCAmelCase__=None , **lowerCAmelCase__ , ):
__a = Path(lowerCAmelCase__ ).open("""w""" , encoding="""utf-8""" )
__a = str(lowerCAmelCase__ )
__a = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ ).to(lowerCAmelCase__ )
if fpaa:
__a = model.half()
__a = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type.
__a = time.time()
# update config with task specific params
use_task_specific_params(lowerCAmelCase__ , lowerCAmelCase__ )
if prefix is None:
__a = prefix or getattr(model.config , """prefix""" , """""" ) or """"""
for examples_chunk in tqdm(list(chunks(lowerCAmelCase__ , lowerCAmelCase__ ) ) ):
__a = [prefix + text for text in examples_chunk]
__a = tokenizer(lowerCAmelCase__ , return_tensors="""pt""" , truncation=lowerCAmelCase__ , padding="""longest""" ).to(lowerCAmelCase__ )
__a = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **lowerCAmelCase__ , )
__a = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ )
for hypothesis in dec:
fout.write(hypothesis + """\n""" )
fout.flush()
fout.close()
__a = int(time.time() - start_time ) # seconds
__a = len(lowerCAmelCase__ )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def a ():
return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" )
def a (lowerCAmelCase__=True ):
__a = argparse.ArgumentParser()
parser.add_argument("""model_name""" , type=lowerCAmelCase__ , help="""like facebook/bart-large-cnn,t5-base, etc.""" )
parser.add_argument("""input_path""" , type=lowerCAmelCase__ , help="""like cnn_dm/test.source""" )
parser.add_argument("""save_path""" , type=lowerCAmelCase__ , help="""where to save summaries""" )
parser.add_argument("""--reference_path""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""like cnn_dm/test.target""" )
parser.add_argument("""--score_path""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , default="""metrics.json""" , help="""where to save metrics""" )
parser.add_argument("""--device""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , default=lowerCAmelCase__ , help="""cuda, cuda:1, cpu etc.""" )
parser.add_argument(
"""--prefix""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , default=lowerCAmelCase__ , help="""will be added to the begininng of src examples""" )
parser.add_argument("""--task""" , type=lowerCAmelCase__ , default="""summarization""" , help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""" , type=lowerCAmelCase__ , default=8 , required=lowerCAmelCase__ , help="""batch size""" )
parser.add_argument(
"""--n_obs""" , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help="""How many observations. Defaults to all.""" )
parser.add_argument("""--fp16""" , action="""store_true""" )
parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" )
parser.add_argument(
"""--info""" , nargs="""?""" , type=lowerCAmelCase__ , const=datetime_now() , help=(
"""use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g."""
""" lang=en-ru. If no value is passed, the current datetime string will be used."""
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
__a , __a = parser.parse_known_args()
__a = parse_numeric_n_bool_cl_kwargs(lowerCAmelCase__ )
if parsed_args and verbose:
print(f'''parsed the following generate kwargs: {parsed_args}''' )
__a = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
__a = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=lowerCAmelCase__ )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(f'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError("""Can't mix --fp16 and --device cpu""" )
__a = generate_summaries_or_translations(
lowerCAmelCase__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **lowerCAmelCase__ , )
if args.reference_path is None:
return {}
# Compute scores
__a = calculate_bleu if """translation""" in args.task else calculate_rouge
__a = [x.rstrip() for x in open(args.save_path ).readlines()]
__a = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(lowerCAmelCase__ )]
__a = score_fn(lowerCAmelCase__ , lowerCAmelCase__ )
scores.update(lowerCAmelCase__ )
if args.dump_args:
scores.update(lowerCAmelCase__ )
if args.info:
__a = args.info
if verbose:
print(lowerCAmelCase__ )
if args.score_path is not None:
json.dump(lowerCAmelCase__ , open(args.score_path , """w""" ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 99 | 1 |
"""simple docstring"""
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
"The RoBERTa Model transformer with early exiting (DeeRoBERTa). " , __UpperCAmelCase , )
class snake_case ( __UpperCAmelCase ):
"""simple docstring"""
snake_case__ = RobertaConfig
snake_case__ = "roberta"
def __init__( self : List[str] ,lowerCamelCase__ : Dict ):
super().__init__(lowerCamelCase__ )
UpperCAmelCase__ = RobertaEmbeddings(lowerCamelCase__ )
self.init_weights()
@add_start_docstrings(
"RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " , __UpperCAmelCase , )
class snake_case ( __UpperCAmelCase ):
"""simple docstring"""
snake_case__ = RobertaConfig
snake_case__ = "roberta"
def __init__( self : Union[str, Any] ,lowerCamelCase__ : Optional[int] ):
super().__init__(lowerCamelCase__ )
UpperCAmelCase__ = config.num_labels
UpperCAmelCase__ = config.num_hidden_layers
UpperCAmelCase__ = DeeRobertaModel(lowerCamelCase__ )
UpperCAmelCase__ = nn.Dropout(config.hidden_dropout_prob )
UpperCAmelCase__ = nn.Linear(config.hidden_size ,self.config.num_labels )
@add_start_docstrings_to_model_forward(lowerCamelCase__ )
def __lowerCAmelCase ( self : str ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : List[str]=None ,lowerCamelCase__ : str=None ,lowerCamelCase__ : Tuple=None ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : Tuple=None ,lowerCamelCase__ : int=-1 ,lowerCamelCase__ : Any=False ,):
UpperCAmelCase__ = self.num_layers
try:
UpperCAmelCase__ = self.roberta(
lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,position_ids=lowerCamelCase__ ,head_mask=lowerCamelCase__ ,inputs_embeds=lowerCamelCase__ ,)
UpperCAmelCase__ = outputs[1]
UpperCAmelCase__ = self.dropout(lowerCamelCase__ )
UpperCAmelCase__ = self.classifier(lowerCamelCase__ )
UpperCAmelCase__ = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
UpperCAmelCase__ = e.message
UpperCAmelCase__ = e.exit_layer
UpperCAmelCase__ = outputs[0]
if not self.training:
UpperCAmelCase__ = entropy(lowerCamelCase__ )
UpperCAmelCase__ = []
UpperCAmelCase__ = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
UpperCAmelCase__ = MSELoss()
UpperCAmelCase__ = loss_fct(logits.view(-1 ) ,labels.view(-1 ) )
else:
UpperCAmelCase__ = CrossEntropyLoss()
UpperCAmelCase__ = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) )
# work with highway exits
UpperCAmelCase__ = []
for highway_exit in outputs[-1]:
UpperCAmelCase__ = highway_exit[0]
if not self.training:
highway_logits_all.append(lowerCamelCase__ )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
UpperCAmelCase__ = MSELoss()
UpperCAmelCase__ = loss_fct(highway_logits.view(-1 ) ,labels.view(-1 ) )
else:
UpperCAmelCase__ = CrossEntropyLoss()
UpperCAmelCase__ = loss_fct(highway_logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) )
highway_losses.append(lowerCamelCase__ )
if train_highway:
UpperCAmelCase__ = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
UpperCAmelCase__ = (loss,) + outputs
if not self.training:
UpperCAmelCase__ = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
UpperCAmelCase__ = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 632 | """simple docstring"""
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase__ : Any = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
class snake_case ( __UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
snake_case__ = XLMProphetNetTokenizer
snake_case__ = False
snake_case__ = True
def __lowerCAmelCase ( self : Any ):
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase__ = XLMProphetNetTokenizer(lowerCamelCase__ ,keep_accents=lowerCamelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def __lowerCAmelCase ( self : Dict ):
UpperCAmelCase__ = '[PAD]'
UpperCAmelCase__ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) ,lowerCamelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) ,lowerCamelCase__ )
def __lowerCAmelCase ( self : List[str] ):
UpperCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,'[PAD]' )
self.assertEqual(vocab_keys[1] ,'[CLS]' )
self.assertEqual(vocab_keys[-1] ,'j' )
self.assertEqual(len(lowerCamelCase__ ) ,1_012 )
def __lowerCAmelCase ( self : List[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size ,1_012 )
def __lowerCAmelCase ( self : str ):
UpperCAmelCase__ = XLMProphetNetTokenizer(lowerCamelCase__ ,keep_accents=lowerCamelCase__ )
UpperCAmelCase__ = tokenizer.tokenize('This is a test' )
self.assertListEqual(lowerCamelCase__ ,['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,)
UpperCAmelCase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
lowerCamelCase__ ,[
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] ,)
UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(lowerCamelCase__ )
self.assertListEqual(
lowerCamelCase__ ,[
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] ,)
UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(lowerCamelCase__ )
self.assertListEqual(
lowerCamelCase__ ,[
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'[UNK]',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'[UNK]',
'.',
] ,)
@cached_property
def __lowerCAmelCase ( self : Dict ):
return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' )
@slow
def __lowerCAmelCase ( self : Optional[Any] ):
UpperCAmelCase__ = 'Hello World!'
UpperCAmelCase__ = [35_389, 6_672, 49, 2]
self.assertListEqual(lowerCamelCase__ ,self.big_tokenizer.encode(lowerCamelCase__ ) )
@slow
def __lowerCAmelCase ( self : List[str] ):
# fmt: off
UpperCAmelCase__ = {'input_ids': [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCamelCase__ ,model_name='microsoft/xprophetnet-large-wiki100-cased' ,revision='1acad1643ddd54a44df6a1b797ada8373685d90e' ,)
| 632 | 1 |
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def UpperCamelCase ( snake_case__ : List[Any] ) -> Optional[Any]:
if is_torch_version('<' , '2.0.0' ) or not hasattr(snake_case__ , '_dynamo' ):
return False
return isinstance(snake_case__ , torch._dynamo.eval_frame.OptimizedModule )
def UpperCamelCase ( snake_case__ : str , snake_case__ : bool = True ) -> Tuple:
UpperCamelCase : Tuple = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
UpperCamelCase : Optional[Any] = is_compiled_module(snake_case__ )
if is_compiled:
UpperCamelCase : List[str] = model
UpperCamelCase : Tuple = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(snake_case__ , snake_case__ ):
UpperCamelCase : List[str] = model.module
if not keep_fpaa_wrapper:
UpperCamelCase : Optional[int] = getattr(snake_case__ , 'forward' )
UpperCamelCase : int = model.__dict__.pop('_original_forward' , snake_case__ )
if original_forward is not None:
while hasattr(snake_case__ , '__wrapped__' ):
UpperCamelCase : Any = forward.__wrapped__
if forward == original_forward:
break
UpperCamelCase : Any = forward
if getattr(snake_case__ , '_converted_to_transformer_engine' , snake_case__ ):
convert_model(snake_case__ , to_transformer_engine=snake_case__ )
if is_compiled:
UpperCamelCase : Tuple = model
UpperCamelCase : int = compiled_model
return model
def UpperCamelCase ( ) -> Any:
PartialState().wait_for_everyone()
def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : Dict ) -> int:
if PartialState().distributed_type == DistributedType.TPU:
xm.save(snake_case__ , snake_case__ )
elif PartialState().local_process_index == 0:
torch.save(snake_case__ , snake_case__ )
@contextmanager
def UpperCamelCase ( **snake_case__ : str ) -> str:
for key, value in kwargs.items():
UpperCamelCase : int = str(snake_case__ )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def UpperCamelCase ( snake_case__ : str ) -> Any:
if not hasattr(snake_case__ , '__qualname__' ) and not hasattr(snake_case__ , '__name__' ):
UpperCamelCase : Tuple = getattr(snake_case__ , '__class__' , snake_case__ )
if hasattr(snake_case__ , '__qualname__' ):
return obj.__qualname__
if hasattr(snake_case__ , '__name__' ):
return obj.__name__
return str(snake_case__ )
def UpperCamelCase ( snake_case__ : Any , snake_case__ : Optional[Any] ) -> Tuple:
for key, value in source.items():
if isinstance(snake_case__ , snake_case__ ):
UpperCamelCase : Optional[Any] = destination.setdefault(snake_case__ , {} )
merge_dicts(snake_case__ , snake_case__ )
else:
UpperCamelCase : List[Any] = value
return destination
def UpperCamelCase ( snake_case__ : int = None ) -> bool:
if port is None:
UpperCamelCase : Union[str, Any] = 29500
with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s:
return s.connect_ex(('localhost', port) ) == 0
| 40 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCAmelCase : str =logging.get_logger(__name__)
__lowerCAmelCase : Any ={
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class _lowercase ( A__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[Any] = '''megatron-bert'''
def __init__( self :int , lowerCAmelCase__ :int=29_056 , lowerCAmelCase__ :Dict=1_024 , lowerCAmelCase__ :Optional[int]=24 , lowerCAmelCase__ :str=16 , lowerCAmelCase__ :Optional[int]=4_096 , lowerCAmelCase__ :Optional[Any]="gelu" , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :List[str]=512 , lowerCAmelCase__ :Any=2 , lowerCAmelCase__ :int=0.02 , lowerCAmelCase__ :Tuple=1E-1_2 , lowerCAmelCase__ :Tuple=0 , lowerCAmelCase__ :Optional[int]="absolute" , lowerCAmelCase__ :List[str]=True , **lowerCAmelCase__ :Tuple , ) -> Optional[Any]:
super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : List[str] = vocab_size
__SCREAMING_SNAKE_CASE : List[str] = hidden_size
__SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers
__SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads
__SCREAMING_SNAKE_CASE : Tuple = hidden_act
__SCREAMING_SNAKE_CASE : Any = intermediate_size
__SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob
__SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings
__SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size
__SCREAMING_SNAKE_CASE : str = initializer_range
__SCREAMING_SNAKE_CASE : Dict = layer_norm_eps
__SCREAMING_SNAKE_CASE : Dict = position_embedding_type
__SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache
| 696 | 0 |
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
UpperCamelCase = ["gpt2"]
UpperCamelCase = "gpt2"
if is_tf_available():
class lowerCAmelCase_ ( tf.Module ):
"""simple docstring"""
def __init__( self :Optional[int] , lowerCamelCase__ :Tuple ):
super().__init__()
UpperCamelCase__ :Dict = tokenizer
UpperCamelCase__ :Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ )
UpperCamelCase__ :Tuple = TFGPTaLMHeadModel.from_config(lowerCamelCase__ )
@tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) )
def __a ( self :Dict , lowerCamelCase__ :Any ):
UpperCamelCase__ :Optional[Any] = self.tokenizer(lowerCamelCase__ )
UpperCamelCase__ :Optional[int] = tokenized["""input_ids"""].to_tensor()
UpperCamelCase__ :Optional[int] = tf.cast(input_ids_dense > 0 , tf.intaa )
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
UpperCamelCase__ :Optional[Any] = self.model(input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ )["""logits"""]
return outputs
@require_tf
@require_keras_nlp
class lowerCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def __a ( self :str ):
super().setUp()
UpperCamelCase__ :int = [GPTaTokenizer.from_pretrained(lowerCamelCase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)]
UpperCamelCase__ :Optional[int] = [TFGPTaTokenizer.from_pretrained(lowerCamelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
UpperCamelCase__ :List[str] = [
"""This is a straightforward English test sentence.""",
"""This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""",
"""Now we're going to add some Chinese: 一 二 三 一二三""",
"""And some much more rare Chinese: 齉 堃 齉堃""",
"""Je vais aussi écrire en français pour tester les accents""",
"""Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""",
]
UpperCamelCase__ :Any = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def __a ( self :Dict ):
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in self.test_sentences:
UpperCamelCase__ :Union[str, Any] = tokenizer([test_inputs] , return_tensors="""tf""" )
UpperCamelCase__ :int = tf_tokenizer([test_inputs] )
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
UpperCamelCase__ :List[Any] = python_outputs[key].numpy()
UpperCamelCase__ :List[str] = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )
self.assertTrue(tf.reduce_all(tf.cast(lowerCamelCase__ , tf.intaa ) == tf_outputs_values ) )
@slow
def __a ( self :Any ):
for tf_tokenizer in self.tf_tokenizers:
UpperCamelCase__ :Any = tf.function(lowerCamelCase__ )
for test_inputs in self.test_sentences:
UpperCamelCase__ :Optional[Any] = tf.constant(lowerCamelCase__ )
UpperCamelCase__ :int = compiled_tokenizer(lowerCamelCase__ )
UpperCamelCase__ :Dict = tf_tokenizer(lowerCamelCase__ )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def __a ( self :Dict ):
for tf_tokenizer in self.tf_tokenizers:
UpperCamelCase__ :Tuple = ModelToSave(tokenizer=lowerCamelCase__ )
UpperCamelCase__ :List[Any] = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCamelCase__ :Optional[Any] = model.serving(lowerCamelCase__ ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
UpperCamelCase__ :List[str] = Path(lowerCamelCase__ ) / """saved.model"""
tf.saved_model.save(lowerCamelCase__ , lowerCamelCase__ , signatures={"""serving_default""": model.serving} )
UpperCamelCase__ :List[Any] = tf.saved_model.load(lowerCamelCase__ )
UpperCamelCase__ :List[str] = loaded_model.signatures["""serving_default"""](lowerCamelCase__ )["""output_0"""]
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output ) )
@slow
def __a ( self :Tuple ):
for tf_tokenizer in self.tf_tokenizers:
UpperCamelCase__ :Dict = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCamelCase__ :Dict = tf_tokenizer(lowerCamelCase__ ) # Build model with some sample inputs
UpperCamelCase__ :Union[str, Any] = tf_tokenizer.get_config()
UpperCamelCase__ :List[Any] = TFGPTaTokenizer.from_config(lowerCamelCase__ )
UpperCamelCase__ :str = model_from_config(lowerCamelCase__ )
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )
@slow
def __a ( self :Optional[Any] ):
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
UpperCamelCase__ :Optional[int] = 12_31_23
for max_length in [3, 5, 10_24]:
UpperCamelCase__ :Dict = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCamelCase__ :List[str] = tf_tokenizer(lowerCamelCase__ , max_length=lowerCamelCase__ )
UpperCamelCase__ :List[Any] = out["""input_ids"""].numpy().shape[1]
assert out_length == max_length | 713 |
from manim import *
class lowerCAmelCase_ ( lowercase ):
"""simple docstring"""
def __a ( self :Optional[int] ):
UpperCamelCase__ :Union[str, Any] = Rectangle(height=0.5 , width=0.5 )
UpperCamelCase__ :int = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
UpperCamelCase__ :Dict = [mem.copy() for i in range(6 )]
UpperCamelCase__ :Any = [mem.copy() for i in range(6 )]
UpperCamelCase__ :List[str] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 )
UpperCamelCase__ :Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 )
UpperCamelCase__ :Dict = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 )
UpperCamelCase__ :Union[str, Any] = Text("""CPU""" , font_size=24 )
UpperCamelCase__ :str = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(lowerCamelCase__ )
UpperCamelCase__ :List[str] = [mem.copy() for i in range(1 )]
UpperCamelCase__ :Optional[int] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 )
UpperCamelCase__ :Optional[Any] = Text("""GPU""" , font_size=24 )
UpperCamelCase__ :Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ )
gpu.align_to(lowerCamelCase__ , lowerCamelCase__ )
gpu.set_x(gpu.get_x() - 1 )
self.add(lowerCamelCase__ )
UpperCamelCase__ :Optional[int] = [mem.copy() for i in range(6 )]
UpperCamelCase__ :Optional[Any] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 )
UpperCamelCase__ :str = Text("""Model""" , font_size=24 )
UpperCamelCase__ :Optional[Any] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ )
model.move_to([3, -1.0, 0] )
self.play(
Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , )
UpperCamelCase__ :Tuple = MarkupText(
f"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , )
UpperCamelCase__ :Union[str, Any] = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
UpperCamelCase__ :Tuple = MarkupText(
f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) )
self.add(lowerCamelCase__ )
UpperCamelCase__ :Any = []
UpperCamelCase__ :List[Any] = []
UpperCamelCase__ :int = []
for i, rect in enumerate(lowerCamelCase__ ):
UpperCamelCase__ :int = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 )
cpu_target.move_to(lowerCamelCase__ )
cpu_target.generate_target()
UpperCamelCase__ :Any = 0.46 / 4
UpperCamelCase__ :Optional[Any] = 0.46 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCamelCase__ )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 )
cpu_targs.append(lowerCamelCase__ )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) )
second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) )
self.play(*lowerCamelCase__ )
self.play(*lowerCamelCase__ )
self.wait() | 383 | 0 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = ["image_processor", "tokenizer"]
lowerCamelCase_ = "LayoutLMv3ImageProcessor"
lowerCamelCase_ = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast")
def __init__( self :Dict , __A :Union[str, Any]=None , __A :Union[str, Any]=None , **__A :Any ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __A , )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" )
SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__A , __A )
def __call__( self :Dict , __A :List[str] , __A :Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __A :Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __A :Union[List[List[int]], List[List[List[int]]]] = None , __A :Optional[Union[List[int], List[List[int]]]] = None , __A :bool = True , __A :Union[bool, str, PaddingStrategy] = False , __A :Union[bool, str, TruncationStrategy] = None , __A :Optional[int] = None , __A :int = 0 , __A :Optional[int] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , __A :bool = False , __A :bool = False , __A :bool = False , __A :bool = False , __A :bool = True , __A :Optional[Union[str, TensorType]] = None , **__A :Optional[Any] , ) -> BatchEncoding:
"""simple docstring"""
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"""You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""" )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"""You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" )
# first, apply the image processor
SCREAMING_SNAKE_CASE__ = self.image_processor(images=__A , return_tensors=__A )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(__A , __A ):
SCREAMING_SNAKE_CASE__ = [text] # add batch dimension (as the image processor always adds a batch dimension)
SCREAMING_SNAKE_CASE__ = features["""words"""]
SCREAMING_SNAKE_CASE__ = self.tokenizer(
text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_token_type_ids=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , )
# add pixel values
SCREAMING_SNAKE_CASE__ = features.pop("""pixel_values""" )
if return_overflowing_tokens is True:
SCREAMING_SNAKE_CASE__ = self.get_overflowing_images(__A , encoded_inputs["""overflow_to_sample_mapping"""] )
SCREAMING_SNAKE_CASE__ = images
return encoded_inputs
def _snake_case ( self :str , __A :Optional[int] , __A :int ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(__A ) != len(__A ):
raise ValueError(
"""Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"""
f''' {len(__A )} and {len(__A )}''' )
return images_with_overflow
def _snake_case ( self :List[Any] , *__A :int , **__A :Optional[int] ) -> Any:
"""simple docstring"""
return self.tokenizer.batch_decode(*__A , **__A )
def _snake_case ( self :Tuple , *__A :int , **__A :str ) -> Optional[Any]:
"""simple docstring"""
return self.tokenizer.decode(*__A , **__A )
@property
def _snake_case ( self :str ) -> Tuple:
"""simple docstring"""
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def _snake_case ( self :List[Any] ) -> Optional[Any]:
"""simple docstring"""
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , )
return self.image_processor_class
@property
def _snake_case ( self :Dict ) -> Any:
"""simple docstring"""
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , )
return self.image_processor | 6 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a : Dict = logging.get_logger(__name__)
_a : Union[str, Any] = {
"""google/vivit-b-16x2-kinetics400""": (
"""https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json"""
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class _UpperCAmelCase ( _A ):
"""simple docstring"""
A = '''vivit'''
def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=32 , _lowerCAmelCase=[2, 16, 16] , _lowerCAmelCase=3 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3_072 , _lowerCAmelCase="gelu_fast" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1e-06 , _lowerCAmelCase=True , **_lowerCAmelCase , ):
'''simple docstring'''
lowerCAmelCase__ :Any = hidden_size
lowerCAmelCase__ :Union[str, Any] = num_hidden_layers
lowerCAmelCase__ :Dict = num_attention_heads
lowerCAmelCase__ :int = intermediate_size
lowerCAmelCase__ :List[Any] = hidden_act
lowerCAmelCase__ :str = hidden_dropout_prob
lowerCAmelCase__ :Tuple = attention_probs_dropout_prob
lowerCAmelCase__ :Optional[int] = initializer_range
lowerCAmelCase__ :Optional[int] = layer_norm_eps
lowerCAmelCase__ :Optional[int] = image_size
lowerCAmelCase__ :Any = num_frames
lowerCAmelCase__ :List[str] = tubelet_size
lowerCAmelCase__ :List[str] = num_channels
lowerCAmelCase__ :str = qkv_bias
super().__init__(**_lowerCAmelCase )
| 145 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .attention_processor import AttentionProcessor, AttnProcessor
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
@dataclass
class __a (lowerCamelCase ):
__a : "DiagonalGaussianDistribution"
class __a (lowerCamelCase , lowerCamelCase ):
__a : str = True
@register_to_config
def __init__( self : str , __magic_name__ : int = 3 , __magic_name__ : int = 3 , __magic_name__ : Tuple[str] = ("DownEncoderBlock2D",) , __magic_name__ : Tuple[str] = ("UpDecoderBlock2D",) , __magic_name__ : Tuple[int] = (64,) , __magic_name__ : int = 1 , __magic_name__ : str = "silu" , __magic_name__ : int = 4 , __magic_name__ : int = 32 , __magic_name__ : int = 32 , __magic_name__ : float = 0.1_8_2_1_5 , ) -> int:
"""simple docstring"""
super().__init__()
# pass init params to Encoder
UpperCAmelCase_ : Union[str, Any] = Encoder(
in_channels=__magic_name__ , out_channels=__magic_name__ , down_block_types=__magic_name__ , block_out_channels=__magic_name__ , layers_per_block=__magic_name__ , act_fn=__magic_name__ , norm_num_groups=__magic_name__ , double_z=__magic_name__ , )
# pass init params to Decoder
UpperCAmelCase_ : Dict = Decoder(
in_channels=__magic_name__ , out_channels=__magic_name__ , up_block_types=__magic_name__ , block_out_channels=__magic_name__ , layers_per_block=__magic_name__ , norm_num_groups=__magic_name__ , act_fn=__magic_name__ , )
UpperCAmelCase_ : str = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 )
UpperCAmelCase_ : Optional[Any] = nn.Convad(__magic_name__ , __magic_name__ , 1 )
UpperCAmelCase_ : str = False
UpperCAmelCase_ : List[str] = False
# only relevant if vae tiling is enabled
UpperCAmelCase_ : Dict = self.config.sample_size
UpperCAmelCase_ : List[Any] = (
self.config.sample_size[0]
if isinstance(self.config.sample_size , (list, tuple) )
else self.config.sample_size
)
UpperCAmelCase_ : Dict = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) )
UpperCAmelCase_ : str = 0.2_5
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any]=False ) -> Dict:
"""simple docstring"""
if isinstance(__magic_name__ , (Encoder, Decoder) ):
UpperCAmelCase_ : List[str] = value
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : bool = True ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = use_tiling
def UpperCAmelCase__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
self.enable_tiling(__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = True
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Any = False
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict[str, AttentionProcessor]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = {}
def fn_recursive_add_processors(__magic_name__ : str , __magic_name__ : torch.nn.Module , __magic_name__ : Dict[str, AttentionProcessor] ):
if hasattr(__magic_name__ , '''set_processor''' ):
UpperCAmelCase_ : Any = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F"""{name}.{sub_name}""" , __magic_name__ , __magic_name__ )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(__magic_name__ , __magic_name__ , __magic_name__ )
return processors
def UpperCAmelCase__ ( self : int , __magic_name__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = len(self.attn_processors.keys() )
if isinstance(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) != count:
raise ValueError(
F"""A dict of processors was passed, but the number of processors {len(__magic_name__ )} does not match the"""
F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(__magic_name__ : str , __magic_name__ : torch.nn.Module , __magic_name__ : List[str] ):
if hasattr(__magic_name__ , '''set_processor''' ):
if not isinstance(__magic_name__ , __magic_name__ ):
module.set_processor(__magic_name__ )
else:
module.set_processor(processor.pop(F"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F"""{name}.{sub_name}""" , __magic_name__ , __magic_name__ )
for name, module in self.named_children():
fn_recursive_attn_processor(__magic_name__ , __magic_name__ , __magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
self.set_attn_processor(AttnProcessor() )
@apply_forward_hook
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : torch.FloatTensor , __magic_name__ : bool = True ) -> AutoencoderKLOutput:
"""simple docstring"""
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
return self.tiled_encode(__magic_name__ , return_dict=__magic_name__ )
if self.use_slicing and x.shape[0] > 1:
UpperCAmelCase_ : Optional[int] = [self.encoder(__magic_name__ ) for x_slice in x.split(1 )]
UpperCAmelCase_ : Union[str, Any] = torch.cat(__magic_name__ )
else:
UpperCAmelCase_ : List[str] = self.encoder(__magic_name__ )
UpperCAmelCase_ : Dict = self.quant_conv(__magic_name__ )
UpperCAmelCase_ : Any = DiagonalGaussianDistribution(__magic_name__ )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : torch.FloatTensor , __magic_name__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
return self.tiled_decode(__magic_name__ , return_dict=__magic_name__ )
UpperCAmelCase_ : Tuple = self.post_quant_conv(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = self.decoder(__magic_name__ )
if not return_dict:
return (dec,)
return DecoderOutput(sample=__magic_name__ )
@apply_forward_hook
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : torch.FloatTensor , __magic_name__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
if self.use_slicing and z.shape[0] > 1:
UpperCAmelCase_ : Union[str, Any] = [self._decode(__magic_name__ ).sample for z_slice in z.split(1 )]
UpperCAmelCase_ : Any = torch.cat(__magic_name__ )
else:
UpperCAmelCase_ : Dict = self._decode(__magic_name__ ).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=__magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : int = min(a.shape[2] , b.shape[2] , __magic_name__ )
for y in range(__magic_name__ ):
UpperCAmelCase_ : Optional[int] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
return b
def UpperCAmelCase__ ( self : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : List[Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = min(a.shape[3] , b.shape[3] , __magic_name__ )
for x in range(__magic_name__ ):
UpperCAmelCase_ : Optional[Any] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
return b
def UpperCAmelCase__ ( self : str , __magic_name__ : torch.FloatTensor , __magic_name__ : bool = True ) -> AutoencoderKLOutput:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) )
UpperCAmelCase_ : Union[str, Any] = int(self.tile_latent_min_size * self.tile_overlap_factor )
UpperCAmelCase_ : List[Any] = self.tile_latent_min_size - blend_extent
# Split the image into 512x512 tiles and encode them separately.
UpperCAmelCase_ : Any = []
for i in range(0 , x.shape[2] , __magic_name__ ):
UpperCAmelCase_ : int = []
for j in range(0 , x.shape[3] , __magic_name__ ):
UpperCAmelCase_ : str = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
UpperCAmelCase_ : str = self.encoder(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = self.quant_conv(__magic_name__ )
row.append(__magic_name__ )
rows.append(__magic_name__ )
UpperCAmelCase_ : List[Any] = []
for i, row in enumerate(__magic_name__ ):
UpperCAmelCase_ : Tuple = []
for j, tile in enumerate(__magic_name__ ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
UpperCAmelCase_ : Optional[Any] = self.blend_v(rows[i - 1][j] , __magic_name__ , __magic_name__ )
if j > 0:
UpperCAmelCase_ : Optional[Any] = self.blend_h(row[j - 1] , __magic_name__ , __magic_name__ )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(__magic_name__ , dim=3 ) )
UpperCAmelCase_ : List[str] = torch.cat(__magic_name__ , dim=2 )
UpperCAmelCase_ : List[str] = DiagonalGaussianDistribution(__magic_name__ )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=__magic_name__ )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : torch.FloatTensor , __magic_name__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
UpperCAmelCase_ : Dict = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) )
UpperCAmelCase_ : Union[str, Any] = int(self.tile_sample_min_size * self.tile_overlap_factor )
UpperCAmelCase_ : Dict = self.tile_sample_min_size - blend_extent
# Split z into overlapping 64x64 tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
UpperCAmelCase_ : Union[str, Any] = []
for i in range(0 , z.shape[2] , __magic_name__ ):
UpperCAmelCase_ : int = []
for j in range(0 , z.shape[3] , __magic_name__ ):
UpperCAmelCase_ : Optional[int] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
UpperCAmelCase_ : Union[str, Any] = self.post_quant_conv(__magic_name__ )
UpperCAmelCase_ : Any = self.decoder(__magic_name__ )
row.append(__magic_name__ )
rows.append(__magic_name__ )
UpperCAmelCase_ : Optional[int] = []
for i, row in enumerate(__magic_name__ ):
UpperCAmelCase_ : int = []
for j, tile in enumerate(__magic_name__ ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
UpperCAmelCase_ : Tuple = self.blend_v(rows[i - 1][j] , __magic_name__ , __magic_name__ )
if j > 0:
UpperCAmelCase_ : str = self.blend_h(row[j - 1] , __magic_name__ , __magic_name__ )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(__magic_name__ , dim=3 ) )
UpperCAmelCase_ : List[Any] = torch.cat(__magic_name__ , dim=2 )
if not return_dict:
return (dec,)
return DecoderOutput(sample=__magic_name__ )
def UpperCAmelCase__ ( self : int , __magic_name__ : torch.FloatTensor , __magic_name__ : bool = False , __magic_name__ : bool = True , __magic_name__ : Optional[torch.Generator] = None , ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = sample
UpperCAmelCase_ : Any = self.encode(__magic_name__ ).latent_dist
if sample_posterior:
UpperCAmelCase_ : str = posterior.sample(generator=__magic_name__ )
else:
UpperCAmelCase_ : Tuple = posterior.mode()
UpperCAmelCase_ : str = self.decode(__magic_name__ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=__magic_name__ )
| 644 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class __a (lowerCamelCase , unittest.TestCase ):
__a : List[str] = BlenderbotSmallTokenizer
__a : List[Any] = False
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
UpperCAmelCase_ : Tuple = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__''']
UpperCAmelCase_ : Optional[Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : int = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', '''''']
UpperCAmelCase_ : Optional[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''}
UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__magic_name__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__magic_name__ ) )
def UpperCAmelCase__ ( self : List[Any] , **__magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = '''adapt act apte'''
UpperCAmelCase_ : Tuple = '''adapt act apte'''
return input_text, output_text
def UpperCAmelCase__ ( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCAmelCase_ : List[Any] = '''adapt act apte'''
UpperCAmelCase_ : Dict = ['''adapt''', '''act''', '''ap@@''', '''te''']
UpperCAmelCase_ : Dict = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
UpperCAmelCase_ : Dict = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
assert tok('''sam''' ).input_ids == [13_84]
UpperCAmelCase_ : Optional[int] = '''I am a small frog.'''
UpperCAmelCase_ : List[str] = tok([src_text] , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Dict = tok.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
UpperCAmelCase_ : List[Any] = '''I am a small frog .'''
UpperCAmelCase_ : Any = '''.'''
UpperCAmelCase_ : List[Any] = tok(__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Optional[int] = tok(__magic_name__ )['''input_ids''']
assert encoded[-1] == encoded_dot[0]
| 644 | 1 |
from __future__ import annotations
def _lowerCamelCase ( lowerCamelCase_: list[int] ):
'''simple docstring'''
if len(lowerCamelCase_ ) == 0:
return array
A , A : Tuple = min(lowerCamelCase_ ), max(lowerCamelCase_ )
# Compute the variables
A : List[Any] = _max - _min + 1
A , A : Optional[int] = [0] * holes_range, [0] * holes_range
# Make the sorting.
for i in array:
A : str = i - _min
A : List[str] = i
holes_repeat[index] += 1
# Makes the array back by replacing the numbers.
A : Dict = 0
for i in range(lowerCamelCase_ ):
while holes_repeat[i] > 0:
A : Optional[Any] = holes[i]
index += 1
holes_repeat[i] -= 1
# Returns the sorted array.
return array
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase_ = input("Enter numbers separated by comma:\n")
UpperCamelCase_ = [int(x) for x in user_input.split(",")]
print(pigeon_sort(unsorted)) | 256 |
import os
import sys
import unittest
UpperCamelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
UpperCamelCase_ = os.path.join(git_repo_path, "src", "transformers")
UpperCamelCase_ = "\n{0} = None\n"
UpperCamelCase_ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n"
UpperCamelCase_ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n"
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def _UpperCAmelCase ( self : Union[str, Any] ):
"""simple docstring"""
A : int = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' )
self.assertIsNone(snake_case_ )
A : Any = find_backend(''' if not is_tokenizers_available():''' )
self.assertEqual(snake_case_ , '''tokenizers''' )
A : Optional[Any] = find_backend(''' if not is_tensorflow_text_available():''' )
self.assertEqual(snake_case_ , '''tensorflow_text''' )
A : Dict = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' )
self.assertEqual(snake_case_ , '''sentencepiece_and_tokenizers''' )
A : int = find_backend(
''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' )
self.assertEqual(snake_case_ , '''sentencepiece_and_tensorflow_text''' )
A : List[Any] = find_backend(
''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' )
self.assertEqual(snake_case_ , '''sentencepiece_and_tokenizers_and_vision''' )
def _UpperCAmelCase ( self : int ):
"""simple docstring"""
A : Optional[int] = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn('''torch''' , snake_case_ )
self.assertIn('''tensorflow_text''' , snake_case_ )
self.assertIn('''sentencepiece_and_tokenizers''' , snake_case_ )
# Likewise, we can't assert on the exact content of a key
self.assertIn('''BertModel''' , objects['''torch'''] )
self.assertIn('''TFBertModel''' , objects['''tf'''] )
self.assertIn('''FlaxBertModel''' , objects['''flax'''] )
self.assertIn('''BertModel''' , objects['''torch'''] )
self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] )
self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] )
def _UpperCAmelCase ( self : Dict ):
"""simple docstring"""
A : Optional[Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' )
self.assertEqual(snake_case_ , '''\nCONSTANT = None\n''' )
A : Optional[int] = create_dummy_object('''function''' , '''\'torch\'''' )
self.assertEqual(
snake_case_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' )
A : Optional[int] = '''
class FakeClass(metaclass=DummyObject):
_backends = \'torch\'
def __init__(self, *args, **kwargs):
requires_backends(self, \'torch\')
'''
A : Union[str, Any] = create_dummy_object('''FakeClass''' , '''\'torch\'''' )
self.assertEqual(snake_case_ , snake_case_ )
def _UpperCAmelCase ( self : List[str] ):
"""simple docstring"""
A : Tuple = '''# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, ["torch"])
class FakeClass(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
'''
A : Optional[Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} )
self.assertEqual(dummy_files['''torch'''] , snake_case_ ) | 256 | 1 |
from importlib import import_module
from .logging import get_logger
__lowerCamelCase : List[Any] = get_logger(__name__)
class _lowercase :
def __init__( self , a , a=None ):
snake_case__ : str =attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith("""__""" ):
setattr(self , snake_case_ , getattr(snake_case_ , snake_case_ ) )
snake_case__ : Tuple =module._original_module if isinstance(snake_case_ , _PatchedModuleObj ) else module
class _lowercase :
_a : Any = []
def __init__( self , a , a , a , a=None ):
snake_case__ : List[str] =obj
snake_case__ : int =target
snake_case__ : Dict =new
snake_case__ : Tuple =target.split(""".""" )[0]
snake_case__ : Optional[int] ={}
snake_case__ : Optional[Any] =attrs or []
def __enter__( self ):
*snake_case__ , snake_case__ : List[str] =self.target.split(""".""" )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(snake_case_ ) ):
try:
snake_case__ : Any =import_module(""".""".join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
snake_case__ : Any =getattr(self.obj , snake_case_ )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(snake_case_ , _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
snake_case__ : Optional[int] =obj_attr
# patch at top level
setattr(self.obj , snake_case_ , _PatchedModuleObj(snake_case_ , attrs=self.attrs ) )
snake_case__ : Tuple =getattr(self.obj , snake_case_ )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(snake_case_ , snake_case_ , _PatchedModuleObj(getattr(snake_case_ , snake_case_ , snake_case_ ) , attrs=self.attrs ) )
snake_case__ : Dict =getattr(snake_case_ , snake_case_ )
# finally set the target attribute
setattr(snake_case_ , snake_case_ , self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
snake_case__ : int =getattr(import_module(""".""".join(snake_case_ ) ) , snake_case_ )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj , snake_case_ ) is attr_value:
snake_case__ : List[Any] =getattr(self.obj , snake_case_ )
setattr(self.obj , snake_case_ , self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
snake_case__ : List[Any] =globals()["""__builtins__"""][target_attr]
setattr(self.obj , snake_case_ , self.new )
else:
raise RuntimeError(F"Tried to patch attribute {target_attr} instead of a submodule." )
def __exit__( self , *a ):
for attr in list(self.original ):
setattr(self.obj , snake_case_ , self.original.pop(snake_case_ ) )
def lowercase__ ( self ):
self.__enter__()
self._active_patches.append(self )
def lowercase__ ( self ):
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__()
| 720 |
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
__lowerCamelCase : str = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="""relu""")
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation="""relu"""))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=1_28, activation="""relu"""))
classifier.add(layers.Dense(units=1, activation="""sigmoid"""))
# Compiling the CNN
classifier.compile(
optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""]
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
__lowerCamelCase : Dict = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 2_55, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
__lowerCamelCase : Dict = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_55)
__lowerCamelCase : str = train_datagen.flow_from_directory(
"""dataset/training_set""", target_size=(64, 64), batch_size=32, class_mode="""binary"""
)
__lowerCamelCase : Optional[Any] = test_datagen.flow_from_directory(
"""dataset/test_set""", target_size=(64, 64), batch_size=32, class_mode="""binary"""
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save("""cnn.h5""")
# Part 3 - Making new predictions
__lowerCamelCase : List[str] = tf.keras.preprocessing.image.load_img(
"""dataset/single_prediction/image.png""", target_size=(64, 64)
)
__lowerCamelCase : List[Any] = tf.keras.preprocessing.image.img_to_array(test_image)
__lowerCamelCase : Tuple = np.expand_dims(test_image, axis=0)
__lowerCamelCase : Optional[int] = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
__lowerCamelCase : Dict = """Normal"""
if result[0][0] == 1:
__lowerCamelCase : List[Any] = """Abnormality detected"""
| 448 | 0 |
def _lowerCAmelCase ( __magic_name__ :str , __magic_name__ :Union[str, Any] ):
return price * (1 + tax_rate)
if __name__ == "__main__":
print(f"{price_plus_tax(100, 0.25) = }")
print(f"{price_plus_tax(125.50, 0.05) = }")
| 121 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCAmelCase : str =logging.get_logger(__name__)
__lowerCAmelCase : Any ={
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class _lowercase ( A__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[Any] = '''megatron-bert'''
def __init__( self :int , lowerCAmelCase__ :int=29_056 , lowerCAmelCase__ :Dict=1_024 , lowerCAmelCase__ :Optional[int]=24 , lowerCAmelCase__ :str=16 , lowerCAmelCase__ :Optional[int]=4_096 , lowerCAmelCase__ :Optional[Any]="gelu" , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :List[str]=512 , lowerCAmelCase__ :Any=2 , lowerCAmelCase__ :int=0.02 , lowerCAmelCase__ :Tuple=1E-1_2 , lowerCAmelCase__ :Tuple=0 , lowerCAmelCase__ :Optional[int]="absolute" , lowerCAmelCase__ :List[str]=True , **lowerCAmelCase__ :Tuple , ) -> Optional[Any]:
super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : List[str] = vocab_size
__SCREAMING_SNAKE_CASE : List[str] = hidden_size
__SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers
__SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads
__SCREAMING_SNAKE_CASE : Tuple = hidden_act
__SCREAMING_SNAKE_CASE : Any = intermediate_size
__SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob
__SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings
__SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size
__SCREAMING_SNAKE_CASE : str = initializer_range
__SCREAMING_SNAKE_CASE : Dict = layer_norm_eps
__SCREAMING_SNAKE_CASE : Dict = position_embedding_type
__SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache
| 696 | 0 |
'''simple docstring'''
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( a_ : int , a_ : str , a_ : Any ):
if days_between_payments <= 0:
raise ValueError('days_between_payments must be > 0' )
if daily_interest_rate < 0:
raise ValueError('daily_interest_rate must be >= 0' )
if principal <= 0:
raise ValueError('principal must be > 0' )
return principal * daily_interest_rate * days_between_payments
def SCREAMING_SNAKE_CASE ( a_ : Union[str, Any] , a_ : Any , a_ : Optional[Any] , ):
if number_of_compounding_periods <= 0:
raise ValueError('number_of_compounding_periods must be > 0' )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' )
if principal <= 0:
raise ValueError('principal must be > 0' )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def SCREAMING_SNAKE_CASE ( a_ : Dict , a_ : str , a_ : str , ):
if number_of_years <= 0:
raise ValueError('number_of_years must be > 0' )
if nominal_annual_percentage_rate < 0:
raise ValueError('nominal_annual_percentage_rate must be >= 0' )
if principal <= 0:
raise ValueError('principal must be > 0' )
return compound_interest(
UpperCamelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 720 |
'''simple docstring'''
import os
def SCREAMING_SNAKE_CASE ( ):
with open(os.path.dirname(a_ ) + '/grid.txt' ) as f:
__a = [] # noqa: E741
for _ in range(20 ):
l.append([int(a_ ) for x in f.readline().split()] )
__a = 0
# right
for i in range(20 ):
for j in range(17 ):
__a = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3]
if temp > maximum:
__a = temp
# down
for i in range(17 ):
for j in range(20 ):
__a = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j]
if temp > maximum:
__a = temp
# diagonal 1
for i in range(17 ):
for j in range(17 ):
__a = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3]
if temp > maximum:
__a = temp
# diagonal 2
for i in range(17 ):
for j in range(3 , 20 ):
__a = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3]
if temp > maximum:
__a = temp
return maximum
if __name__ == "__main__":
print(solution())
| 490 | 0 |
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401
from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401
deprecate(
"""stable diffusion controlnet""",
"""0.22.0""",
"""Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""",
standard_warn=False,
stacklevel=3,
)
| 112 |
import pickle
import numpy as np
from matplotlib import pyplot as plt
class __lowerCAmelCase :
def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=0.2 , snake_case=0.2 ) -> Any:
"""simple docstring"""
a__ : List[Any] = bp_numa
a__ : str = bp_numa
a__ : Any = bp_numa
a__ : Tuple = conva_get[:2]
a__ : Optional[int] = conva_get[2]
a__ : Any = size_pa
a__ : Dict = rate_w
a__ : Tuple = rate_t
a__ : int = [
np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
a__ : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
a__ : List[Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
a__ : Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1
a__ : Optional[int] = -2 * np.random.rand(self.num_bpa ) + 1
a__ : int = -2 * np.random.rand(self.num_bpa ) + 1
def _snake_case ( self , snake_case ) -> int:
"""simple docstring"""
a__ : str = {
"num_bp1": self.num_bpa,
"num_bp2": self.num_bpa,
"num_bp3": self.num_bpa,
"conv1": self.conva,
"step_conv1": self.step_conva,
"size_pooling1": self.size_poolinga,
"rate_weight": self.rate_weight,
"rate_thre": self.rate_thre,
"w_conv1": self.w_conva,
"wkj": self.wkj,
"vji": self.vji,
"thre_conv1": self.thre_conva,
"thre_bp2": self.thre_bpa,
"thre_bp3": self.thre_bpa,
}
with open(snake_case , "wb" ) as f:
pickle.dump(snake_case , snake_case )
print(F"""Model saved: {save_path}""" )
@classmethod
def _snake_case ( cls , snake_case ) -> List[Any]:
"""simple docstring"""
with open(snake_case , "rb" ) as f:
a__ : List[str] = pickle.load(snake_case ) # noqa: S301
a__ : int = model_dic.get("conv1" )
conv_get.append(model_dic.get("step_conv1" ) )
a__ : str = model_dic.get("size_pooling1" )
a__ : Tuple = model_dic.get("num_bp1" )
a__ : Optional[int] = model_dic.get("num_bp2" )
a__ : List[str] = model_dic.get("num_bp3" )
a__ : int = model_dic.get("rate_weight" )
a__ : int = model_dic.get("rate_thre" )
# create model instance
a__ : Tuple = CNN(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case )
# modify model parameter
a__ : Tuple = model_dic.get("w_conv1" )
a__ : Union[str, Any] = model_dic.get("wkj" )
a__ : List[str] = model_dic.get("vji" )
a__ : Tuple = model_dic.get("thre_conv1" )
a__ : List[str] = model_dic.get("thre_bp2" )
a__ : Optional[Any] = model_dic.get("thre_bp3" )
return conv_ins
def _snake_case ( self , snake_case ) -> Optional[int]:
"""simple docstring"""
return 1 / (1 + np.exp(-1 * x ))
def _snake_case ( self , snake_case ) -> str:
"""simple docstring"""
return round(snake_case , 3 )
def _snake_case ( self , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Optional[int]:
"""simple docstring"""
a__ : Union[str, Any] = convs[0]
a__ : int = convs[1]
a__ : Optional[int] = np.shape(snake_case )[0]
# get the data slice of original image data, data_focus
a__ : Tuple = []
for i_focus in range(0 , size_data - size_conv + 1 , snake_case ):
for j_focus in range(0 , size_data - size_conv + 1 , snake_case ):
a__ : str = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(snake_case )
# calculate the feature map of every single kernel, and saved as list of matrix
a__ : Tuple = []
a__ : Optional[int] = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(snake_case ):
a__ : List[str] = []
for i_focus in range(len(snake_case ) ):
a__ : Optional[int] = (
np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(snake_case ) )
a__ : Optional[int] = np.asmatrix(snake_case ).reshape(
snake_case , snake_case )
data_featuremap.append(snake_case )
# expanding the data slice to One dimenssion
a__ : int = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(snake_case ) )
a__ : Dict = np.asarray(snake_case )
return focus_list, data_featuremap
def _snake_case ( self , snake_case , snake_case , snake_case="average_pool" ) -> Tuple:
"""simple docstring"""
a__ : Dict = len(featuremaps[0] )
a__ : Optional[int] = int(size_map / size_pooling )
a__ : Any = []
for i_map in range(len(snake_case ) ):
a__ : List[str] = featuremaps[i_map]
a__ : Optional[Any] = []
for i_focus in range(0 , snake_case , snake_case ):
for j_focus in range(0 , snake_case , snake_case ):
a__ : Tuple = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(snake_case ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(snake_case ) )
a__ : Dict = np.asmatrix(snake_case ).reshape(snake_case , snake_case )
featuremap_pooled.append(snake_case )
return featuremap_pooled
def _snake_case ( self , snake_case ) -> Optional[Any]:
"""simple docstring"""
a__ : Optional[Any] = []
for i in range(len(snake_case ) ):
a__ : int = np.shape(data[i] )
a__ : Union[str, Any] = data[i].reshape(1 , shapes[0] * shapes[1] )
a__ : str = data_listed.getA().tolist()[0]
data_expanded.extend(snake_case )
a__ : Any = np.asarray(snake_case )
return data_expanded
def _snake_case ( self , snake_case ) -> str:
"""simple docstring"""
a__ : Dict = np.asarray(snake_case )
a__ : List[Any] = np.shape(snake_case )
a__ : Optional[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] )
return data_expanded
def _snake_case ( self , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Any:
"""simple docstring"""
a__ : Dict = []
a__ : List[Any] = 0
for i_map in range(snake_case ):
a__ : Tuple = np.ones((size_map, size_map) )
for i in range(0 , snake_case , snake_case ):
for j in range(0 , snake_case , snake_case ):
a__ : int = pd_pool[
i_pool
]
a__ : Any = i_pool + 1
a__ : Optional[Any] = np.multiply(
snake_case , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) )
pd_all.append(snake_case )
return pd_all
def _snake_case ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=bool ) -> Optional[int]:
"""simple docstring"""
print("----------------------Start Training-------------------------" )
print((" - - Shape: Train_Data ", np.shape(snake_case )) )
print((" - - Shape: Teach_Data ", np.shape(snake_case )) )
a__ : List[Any] = 0
a__ : Any = []
a__ : Dict = 10_000
while rp < n_repeat and mse >= error_accuracy:
a__ : Optional[Any] = 0
print(F"""-------------Learning Time {rp}--------------""" )
for p in range(len(snake_case ) ):
# print('------------Learning Image: %d--------------'%p)
a__ : Optional[int] = np.asmatrix(datas_train[p] )
a__ : Optional[Any] = np.asarray(datas_teach[p] )
a__ , a__ : Tuple = self.convolute(
snake_case , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
a__ : List[Any] = self.pooling(snake_case , self.size_poolinga )
a__ : str = np.shape(snake_case )
a__ : List[Any] = self._expand(snake_case )
a__ : Union[str, Any] = data_bp_input
a__ : Optional[Any] = np.dot(snake_case , self.vji.T ) - self.thre_bpa
a__ : Optional[int] = self.sig(snake_case )
a__ : Union[str, Any] = np.dot(snake_case , self.wkj.T ) - self.thre_bpa
a__ : Dict = self.sig(snake_case )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
a__ : str = np.multiply(
(data_teach - bp_outa) , np.multiply(snake_case , (1 - bp_outa) ) )
a__ : List[Any] = np.multiply(
np.dot(snake_case , self.wkj ) , np.multiply(snake_case , (1 - bp_outa) ) )
a__ : List[str] = np.dot(snake_case , self.vji )
a__ : List[str] = pd_i_all / (self.size_poolinga * self.size_poolinga)
a__ : Tuple = pd_conva_pooled.T.getA().tolist()
a__ : List[str] = self._calculate_gradient_from_pool(
snake_case , snake_case , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , )
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
a__ : Dict = self._expand_mat(pd_conva_all[k_conv] )
a__ : Optional[int] = self.rate_weight * np.dot(snake_case , snake_case )
a__ : Dict = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
a__ : Any = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
a__ : int = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
a__ : Optional[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight
a__ : List[str] = self.thre_bpa - pd_k_all * self.rate_thre
a__ : int = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
a__ : int = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
a__ : Union[str, Any] = rp + 1
a__ : List[Any] = error_count / patterns
all_mse.append(snake_case )
def draw_error():
a__ : List[Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(snake_case , "+-" )
plt.plot(snake_case , "r--" )
plt.xlabel("Learning Times" )
plt.ylabel("All_mse" )
plt.grid(snake_case , alpha=0.5 )
plt.show()
print("------------------Training Complished---------------------" )
print((" - - Training epoch: ", rp, F""" - - Mse: {mse:.6f}""") )
if draw_e:
draw_error()
return mse
def _snake_case ( self , snake_case ) -> Any:
"""simple docstring"""
a__ : int = []
print("-------------------Start Testing-------------------------" )
print((" - - Shape: Test_Data ", np.shape(snake_case )) )
for p in range(len(snake_case ) ):
a__ : Union[str, Any] = np.asmatrix(datas_test[p] )
a__ , a__ : Union[str, Any] = self.convolute(
snake_case , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
a__ : List[Any] = self.pooling(snake_case , self.size_poolinga )
a__ : List[str] = self._expand(snake_case )
a__ : Union[str, Any] = data_bp_input
a__ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa
a__ : str = self.sig(snake_case )
a__ : Dict = bp_outa * self.wkj.T - self.thre_bpa
a__ : Optional[int] = self.sig(snake_case )
produce_out.extend(bp_outa.getA().tolist() )
a__ : Optional[int] = [list(map(self.do_round , snake_case ) ) for each in produce_out]
return np.asarray(snake_case )
def _snake_case ( self , snake_case ) -> Union[str, Any]:
"""simple docstring"""
a__ : Dict = np.asmatrix(snake_case )
a__ , a__ : Optional[int] = self.convolute(
snake_case , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
a__ : Any = self.pooling(snake_case , self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 112 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
UpperCamelCase : List[str] = logging.get_logger(__name__)
UpperCamelCase : List[str] = {
"""microsoft/table-transformer-detection""": (
"""https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json"""
),
}
class UpperCamelCase ( a_ ):
"""simple docstring"""
A : List[str] = "table-transformer"
A : Tuple = ["past_key_values"]
A : Tuple = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self : Optional[Any] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Optional[Any]=1_0_0 , UpperCAmelCase_ : Union[str, Any]=6 , UpperCAmelCase_ : Union[str, Any]=2_0_4_8 , UpperCAmelCase_ : Optional[Any]=8 , UpperCAmelCase_ : Any=6 , UpperCAmelCase_ : Optional[Any]=2_0_4_8 , UpperCAmelCase_ : List[Any]=8 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : str="relu" , UpperCAmelCase_ : Optional[int]=2_5_6 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : str=1.0 , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[Any]="sine" , UpperCAmelCase_ : Union[str, Any]="resnet50" , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Dict=1 , UpperCAmelCase_ : List[Any]=5 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : List[str]=1 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : List[Any]=0.1 , **UpperCAmelCase_ : List[str] , ):
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.')
if not use_timm_backbone:
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.')
a : List[Any] = CONFIG_MAPPING['resnet'](out_features=['stage4'])
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_):
a : List[Any] = backbone_config.get('model_type')
a : Optional[int] = CONFIG_MAPPING[backbone_model_type]
a : Union[str, Any] = config_class.from_dict(UpperCAmelCase_)
# set timm attributes to None
a : int = None, None, None
a : List[str] = use_timm_backbone
a : Optional[Any] = backbone_config
a : List[str] = num_channels
a : List[str] = num_queries
a : Union[str, Any] = d_model
a : Union[str, Any] = encoder_ffn_dim
a : Any = encoder_layers
a : Optional[Any] = encoder_attention_heads
a : Any = decoder_ffn_dim
a : Dict = decoder_layers
a : Dict = decoder_attention_heads
a : Union[str, Any] = dropout
a : Optional[int] = attention_dropout
a : Dict = activation_dropout
a : Dict = activation_function
a : str = init_std
a : Dict = init_xavier_std
a : Tuple = encoder_layerdrop
a : Any = decoder_layerdrop
a : Tuple = encoder_layers
a : Union[str, Any] = auxiliary_loss
a : Tuple = position_embedding_type
a : List[str] = backbone
a : Union[str, Any] = use_pretrained_backbone
a : List[str] = dilation
# Hungarian matcher
a : Tuple = class_cost
a : Optional[int] = bbox_cost
a : int = giou_cost
# Loss coefficients
a : Any = mask_loss_coefficient
a : Tuple = dice_loss_coefficient
a : Any = bbox_loss_coefficient
a : List[Any] = giou_loss_coefficient
a : List[str] = eos_coefficient
super().__init__(is_encoder_decoder=UpperCAmelCase_ , **UpperCAmelCase_)
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int]):
"""simple docstring"""
return self.encoder_attention_heads
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str]):
"""simple docstring"""
return self.d_model
class UpperCamelCase ( a_ ):
"""simple docstring"""
A : Dict = version.parse("1.11" )
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]):
"""simple docstring"""
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
('pixel_mask', {0: 'batch'}),
])
@property
def SCREAMING_SNAKE_CASE_ ( self : Dict):
"""simple docstring"""
return 1e-5
@property
def SCREAMING_SNAKE_CASE_ ( self : List[Any]):
"""simple docstring"""
return 1_2
| 718 | '''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
UpperCamelCase : Tuple = {
"""hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class UpperCamelCase ( a_ ):
"""simple docstring"""
A : Dict = "yolos"
def __init__( self : str , UpperCAmelCase_ : List[Any]=7_6_8 , UpperCAmelCase_ : str=1_2 , UpperCAmelCase_ : Optional[Any]=1_2 , UpperCAmelCase_ : Dict=3_0_7_2 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : List[str]=1e-12 , UpperCAmelCase_ : Union[str, Any]=[5_1_2, 8_6_4] , UpperCAmelCase_ : str=1_6 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : int=1_0_0 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[Any]=1 , UpperCAmelCase_ : Dict=5 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=5 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , **UpperCAmelCase_ : Optional[Any] , ):
"""simple docstring"""
super().__init__(**UpperCAmelCase_)
a : Union[str, Any] = hidden_size
a : int = num_hidden_layers
a : Dict = num_attention_heads
a : Dict = intermediate_size
a : int = hidden_act
a : Union[str, Any] = hidden_dropout_prob
a : Any = attention_probs_dropout_prob
a : Dict = initializer_range
a : Union[str, Any] = layer_norm_eps
a : str = image_size
a : Any = patch_size
a : Union[str, Any] = num_channels
a : int = qkv_bias
a : Union[str, Any] = num_detection_tokens
a : Optional[int] = use_mid_position_embeddings
a : str = auxiliary_loss
# Hungarian matcher
a : Optional[Any] = class_cost
a : Union[str, Any] = bbox_cost
a : List[str] = giou_cost
# Loss coefficients
a : Any = bbox_loss_coefficient
a : Optional[Any] = giou_loss_coefficient
a : Union[str, Any] = eos_coefficient
class UpperCamelCase ( a_ ):
"""simple docstring"""
A : Optional[int] = version.parse("1.11" )
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple):
"""simple docstring"""
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
])
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]):
"""simple docstring"""
return 1e-4
@property
def SCREAMING_SNAKE_CASE_ ( self : int):
"""simple docstring"""
return 1_2
| 610 | 0 |
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = '▁'
SCREAMING_SNAKE_CASE = {
'vocab_file': 'vocab.json',
'spm_file': 'sentencepiece.bpe.model',
'tokenizer_config_file': 'tokenizer_config.json',
}
SCREAMING_SNAKE_CASE = {
'vocab_file': {
'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json',
'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json',
},
'spm_file': {
'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model',
'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model',
},
'tokenizer_config_file': {
'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json',
'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json',
},
}
SCREAMING_SNAKE_CASE = {
'facebook/m2m100_418M': 1024,
}
# fmt: off
SCREAMING_SNAKE_CASE = {
'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'],
'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de']
}
class A_ ( __lowercase ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE : Optional[int] = ["input_ids", "attention_mask"]
_SCREAMING_SNAKE_CASE : List[int] = []
_SCREAMING_SNAKE_CASE : List[int] = []
def __init__( self , _A , _A , _A=None , _A=None , _A="<s>" , _A="</s>" , _A="</s>" , _A="<pad>" , _A="<unk>" , _A="m2m100" , _A = None , _A=8 , **_A , ) -> None:
"""simple docstring"""
_UpperCAmelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs
_UpperCAmelCase : int = language_codes
_UpperCAmelCase : int = FAIRSEQ_LANGUAGE_CODES[language_codes]
_UpperCAmelCase : Tuple = {lang_code: f'''__{lang_code}__''' for lang_code in fairseq_language_code}
_UpperCAmelCase : Tuple = kwargs.get('''additional_special_tokens''' , [])
kwargs["additional_special_tokens"] += [
self.get_lang_token(_A)
for lang_code in fairseq_language_code
if self.get_lang_token(_A) not in kwargs["additional_special_tokens"]
]
super().__init__(
src_lang=_A , tgt_lang=_A , bos_token=_A , eos_token=_A , sep_token=_A , unk_token=_A , pad_token=_A , language_codes=_A , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=_A , **_A , )
_UpperCAmelCase : Union[str, Any] = vocab_file
_UpperCAmelCase : Dict = load_json(_A)
_UpperCAmelCase : Optional[int] = {v: k for k, v in self.encoder.items()}
_UpperCAmelCase : Optional[Any] = spm_file
_UpperCAmelCase : Any = load_spm(_A , self.sp_model_kwargs)
_UpperCAmelCase : Optional[int] = len(self.encoder)
_UpperCAmelCase : List[Any] = {
self.get_lang_token(_A): self.encoder_size + i for i, lang_code in enumerate(_A)
}
_UpperCAmelCase : Union[str, Any] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(_A)}
_UpperCAmelCase : Optional[int] = {v: k for k, v in self.lang_token_to_id.items()}
_UpperCAmelCase : Union[str, Any] = src_lang if src_lang is not None else '''en'''
_UpperCAmelCase : Dict = tgt_lang
_UpperCAmelCase : str = self.get_lang_id(self._src_lang)
self.set_src_lang_special_tokens(self._src_lang)
_UpperCAmelCase : int = num_madeup_words
@property
def snake_case__ ( self) -> int:
"""simple docstring"""
return len(self.encoder) + len(self.lang_token_to_id)
@property
def snake_case__ ( self) -> str:
"""simple docstring"""
return self._src_lang
@src_lang.setter
def snake_case__ ( self , _A) -> None:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def snake_case__ ( self , _A) -> List[str]:
"""simple docstring"""
return self.sp_model.encode(_A , out_type=_A)
def snake_case__ ( self , _A) -> List[Any]:
"""simple docstring"""
if token in self.lang_token_to_id:
return self.lang_token_to_id[token]
return self.encoder.get(_A , self.encoder[self.unk_token])
def snake_case__ ( self , _A) -> str:
"""simple docstring"""
if index in self.id_to_lang_token:
return self.id_to_lang_token[index]
return self.decoder.get(_A , self.unk_token)
def snake_case__ ( self , _A) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : int = []
_UpperCAmelCase : List[str] = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(_A) + token
_UpperCAmelCase : List[str] = []
else:
current_sub_tokens.append(_A)
out_string += self.sp_model.decode(_A)
return out_string.strip()
def snake_case__ ( self , _A , _A = None , _A = False) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A)
_UpperCAmelCase : Tuple = [1] * len(self.prefix_tokens)
_UpperCAmelCase : List[str] = [1] * len(self.suffix_tokens)
if token_ids_a is None:
return prefix_ones + ([0] * len(_A)) + suffix_ones
return prefix_ones + ([0] * len(_A)) + ([0] * len(_A)) + suffix_ones
def snake_case__ ( self , _A , _A = None) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def snake_case__ ( self) -> Dict:
"""simple docstring"""
_UpperCAmelCase : str = {self.convert_ids_to_tokens(_A): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__( self) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.__dict__.copy()
_UpperCAmelCase : Dict = None
return state
def __setstate__( self , _A) -> None:
"""simple docstring"""
_UpperCAmelCase : Dict = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs'''):
_UpperCAmelCase : str = {}
_UpperCAmelCase : Optional[int] = load_spm(self.spm_file , self.sp_model_kwargs)
def snake_case__ ( self , _A , _A = None) -> Tuple[str]:
"""simple docstring"""
_UpperCAmelCase : Tuple = Path(_A)
if not save_dir.is_dir():
raise OSError(f'''{save_directory} should be a directory''')
_UpperCAmelCase : Dict = save_dir / (
(filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file''']
)
_UpperCAmelCase : Any = save_dir / (
(filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file''']
)
save_json(self.encoder , _A)
if os.path.abspath(self.spm_file) != os.path.abspath(_A) and os.path.isfile(self.spm_file):
copyfile(self.spm_file , _A)
elif not os.path.isfile(self.spm_file):
with open(_A , '''wb''') as fi:
_UpperCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto()
fi.write(_A)
return (str(_A), str(_A))
def snake_case__ ( self , _A , _A = "en" , _A = None , _A = "ro" , **_A , ) -> BatchEncoding:
"""simple docstring"""
_UpperCAmelCase : List[Any] = src_lang
_UpperCAmelCase : int = tgt_lang
self.set_src_lang_special_tokens(self.src_lang)
return super().prepare_seqaseq_batch(_A , _A , **_A)
def snake_case__ ( self , _A , _A , _A , **_A) -> List[Any]:
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''')
_UpperCAmelCase : int = src_lang
_UpperCAmelCase : Any = self(_A , add_special_tokens=_A , **_A)
_UpperCAmelCase : Union[str, Any] = self.get_lang_id(_A)
_UpperCAmelCase : List[Any] = tgt_lang_id
return inputs
def snake_case__ ( self) -> Any:
"""simple docstring"""
self.set_src_lang_special_tokens(self.src_lang)
def snake_case__ ( self) -> List[str]:
"""simple docstring"""
self.set_tgt_lang_special_tokens(self.tgt_lang)
def snake_case__ ( self , _A) -> None:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.get_lang_token(_A)
_UpperCAmelCase : List[Any] = self.lang_token_to_id[lang_token]
_UpperCAmelCase : Tuple = [self.cur_lang_id]
_UpperCAmelCase : List[str] = [self.eos_token_id]
def snake_case__ ( self , _A) -> None:
"""simple docstring"""
_UpperCAmelCase : Dict = self.get_lang_token(_A)
_UpperCAmelCase : Optional[int] = self.lang_token_to_id[lang_token]
_UpperCAmelCase : Tuple = [self.cur_lang_id]
_UpperCAmelCase : Dict = [self.eos_token_id]
def snake_case__ ( self , _A) -> str:
"""simple docstring"""
return self.lang_code_to_token[lang]
def snake_case__ ( self , _A) -> int:
"""simple docstring"""
_UpperCAmelCase : str = self.get_lang_token(_A)
return self.lang_token_to_id[lang_token]
def _lowerCamelCase ( __A : str , __A : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor:
_UpperCAmelCase : List[Any] = sentencepiece.SentencePieceProcessor(**__A )
spm.Load(str(__A ) )
return spm
def _lowerCamelCase ( __A : str ) -> Union[Dict, List]:
with open(__A , '''r''' ) as f:
return json.load(__A )
def _lowerCamelCase ( __A : Optional[Any] , __A : str ) -> None:
with open(__A , '''w''' ) as f:
json.dump(__A , __A , indent=2 )
| 485 |
def _lowerCamelCase ( __A : str ) -> list:
return [
txt[:a] + txt[a].upper() + txt[a + 1 :]
for a in range(len(__A ) )
if txt[a].isalpha()
]
if __name__ == "__main__":
__import__('doctest').testmod()
| 485 | 1 |
'''simple docstring'''
import argparse
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import (
RobertaTokenizer,
TrOCRConfig,
TrOCRForCausalLM,
TrOCRProcessor,
VisionEncoderDecoderModel,
ViTConfig,
ViTImageProcessor,
ViTModel,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase : Tuple = logging.get_logger(__name__)
def snake_case ( snake_case : List[Any] , snake_case : Any ) -> Tuple:
"""simple docstring"""
lowerCAmelCase = []
for i in range(encoder_config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'encoder.deit.blocks.{i}.norm1.weight', F'encoder.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((F'encoder.deit.blocks.{i}.norm1.bias', F'encoder.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append(
(F'encoder.deit.blocks.{i}.attn.proj.weight', F'encoder.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append(
(F'encoder.deit.blocks.{i}.attn.proj.bias', F'encoder.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append(
(F'encoder.deit.blocks.{i}.norm2.weight', F'encoder.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((F'encoder.deit.blocks.{i}.norm2.bias', F'encoder.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append(
(F'encoder.deit.blocks.{i}.mlp.fc1.weight', F'encoder.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append(
(F'encoder.deit.blocks.{i}.mlp.fc1.bias', F'encoder.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append(
(F'encoder.deit.blocks.{i}.mlp.fc2.weight', F'encoder.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((F'encoder.deit.blocks.{i}.mlp.fc2.bias', F'encoder.encoder.layer.{i}.output.dense.bias') )
# cls token, position embeddings and patch embeddings of encoder
rename_keys.extend(
[
('encoder.deit.cls_token', 'encoder.embeddings.cls_token'),
('encoder.deit.pos_embed', 'encoder.embeddings.position_embeddings'),
('encoder.deit.patch_embed.proj.weight', 'encoder.embeddings.patch_embeddings.projection.weight'),
('encoder.deit.patch_embed.proj.bias', 'encoder.embeddings.patch_embeddings.projection.bias'),
('encoder.deit.norm.weight', 'encoder.layernorm.weight'),
('encoder.deit.norm.bias', 'encoder.layernorm.bias'),
] )
return rename_keys
def snake_case ( snake_case : Tuple , snake_case : Any ) -> Any:
"""simple docstring"""
for i in range(encoder_config.num_hidden_layers ):
# queries, keys and values (only weights, no biases)
lowerCAmelCase = state_dict.pop(F'encoder.deit.blocks.{i}.attn.qkv.weight' )
lowerCAmelCase = in_proj_weight[
: encoder_config.hidden_size, :
]
lowerCAmelCase = in_proj_weight[
encoder_config.hidden_size : encoder_config.hidden_size * 2, :
]
lowerCAmelCase = in_proj_weight[
-encoder_config.hidden_size :, :
]
def snake_case ( snake_case : Optional[int] , snake_case : List[Any] , snake_case : int ) -> List[str]:
"""simple docstring"""
lowerCAmelCase = dct.pop(snake_case )
lowerCAmelCase = val
def snake_case ( snake_case : str ) -> List[Any]:
"""simple docstring"""
if "handwritten" in checkpoint_url:
lowerCAmelCase = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' # industry
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" #
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg"
elif "printed" in checkpoint_url or "stage1" in checkpoint_url:
lowerCAmelCase = 'https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg'
lowerCAmelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw ).convert('RGB' )
return im
@torch.no_grad()
def snake_case ( snake_case : int , snake_case : List[Any] ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase = ViTConfig(image_size=384 , qkv_bias=snake_case )
lowerCAmelCase = TrOCRConfig()
# size of the architecture
if "base" in checkpoint_url:
lowerCAmelCase = 768
elif "large" in checkpoint_url:
# use ViT-large encoder
lowerCAmelCase = 1024
lowerCAmelCase = 4096
lowerCAmelCase = 24
lowerCAmelCase = 16
lowerCAmelCase = 1024
else:
raise ValueError('Should either find \'base\' or \'large\' in checkpoint URL' )
# the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards
if "large-printed" in checkpoint_url or "stage1" in checkpoint_url:
lowerCAmelCase = False
lowerCAmelCase = 'relu'
lowerCAmelCase = 1024
lowerCAmelCase = True
lowerCAmelCase = False
lowerCAmelCase = False
# load HuggingFace model
lowerCAmelCase = ViTModel(snake_case , add_pooling_layer=snake_case )
lowerCAmelCase = TrOCRForCausalLM(snake_case )
lowerCAmelCase = VisionEncoderDecoderModel(encoder=snake_case , decoder=snake_case )
model.eval()
# load state_dict of original model, rename some keys
lowerCAmelCase = torch.hub.load_state_dict_from_url(snake_case , map_location='cpu' , check_hash=snake_case )['model']
lowerCAmelCase = create_rename_keys(snake_case , snake_case )
for src, dest in rename_keys:
rename_key(snake_case , snake_case , snake_case )
read_in_q_k_v(snake_case , snake_case )
# remove parameters we don't need
del state_dict["encoder.deit.head.weight"]
del state_dict["encoder.deit.head.bias"]
del state_dict["decoder.version"]
# add prefix to decoder keys
for key, val in state_dict.copy().items():
lowerCAmelCase = state_dict.pop(snake_case )
if key.startswith('decoder' ) and "output_projection" not in key:
lowerCAmelCase = val
else:
lowerCAmelCase = val
# load state dict
model.load_state_dict(snake_case )
# Check outputs on an image
lowerCAmelCase = ViTImageProcessor(size=encoder_config.image_size )
lowerCAmelCase = RobertaTokenizer.from_pretrained('roberta-large' )
lowerCAmelCase = TrOCRProcessor(snake_case , snake_case )
lowerCAmelCase = processor(images=prepare_img(snake_case ) , return_tensors='pt' ).pixel_values
# verify logits
lowerCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] )
lowerCAmelCase = model(pixel_values=snake_case , decoder_input_ids=snake_case )
lowerCAmelCase = outputs.logits
lowerCAmelCase = torch.Size([1, 1, 50265] )
if "trocr-base-handwritten" in checkpoint_url:
lowerCAmelCase = torch.tensor(
[-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] )
elif "trocr-large-handwritten" in checkpoint_url:
lowerCAmelCase = torch.tensor(
[-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] )
elif "trocr-base-printed" in checkpoint_url:
lowerCAmelCase = torch.tensor(
[-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] )
elif "trocr-large-printed" in checkpoint_url:
lowerCAmelCase = torch.tensor(
[-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] )
if "stage1" not in checkpoint_url:
assert logits.shape == expected_shape, "Shape of logits not as expected"
assert torch.allclose(logits[0, 0, :10] , snake_case , atol=1e-3 ), "First elements of logits not as expected"
Path(snake_case ).mkdir(exist_ok=snake_case )
print(F'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(snake_case )
print(F'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(snake_case )
if __name__ == "__main__":
_UpperCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
_UpperCamelCase : int = parser.parse_args()
convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 713 |
'''simple docstring'''
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
_UpperCamelCase : List[Any] = "\\n\n"
_UpperCamelCase : List[Any] = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n"
_UpperCamelCase : Dict = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'input_texts': datasets.Value('string' ),
} ) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , )
def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=None ):
'''simple docstring'''
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
lowerCAmelCase = 'cuda'
else:
lowerCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu'
lowerCAmelCase = AutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE )
lowerCAmelCase = model.to(_SCREAMING_SNAKE_CASE )
lowerCAmelCase = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(_SCREAMING_SNAKE_CASE ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
lowerCAmelCase = model.config.max_length - 1
else:
lowerCAmelCase = model.config.max_length
lowerCAmelCase = tokenizer(
_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_tensors='pt' , return_attention_mask=_SCREAMING_SNAKE_CASE , ).to(_SCREAMING_SNAKE_CASE )
lowerCAmelCase = encodings['input_ids']
lowerCAmelCase = encodings['attention_mask']
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
lowerCAmelCase = []
lowerCAmelCase = CrossEntropyLoss(reduction='none' )
for start_index in logging.tqdm(range(0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ):
lowerCAmelCase = min(start_index + batch_size , len(_SCREAMING_SNAKE_CASE ) )
lowerCAmelCase = encoded_texts[start_index:end_index]
lowerCAmelCase = attn_masks[start_index:end_index]
if add_start_token:
lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
lowerCAmelCase = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_SCREAMING_SNAKE_CASE ), attn_mask] , dim=1 )
lowerCAmelCase = encoded_batch
with torch.no_grad():
lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ).logits
lowerCAmelCase = out_logits[..., :-1, :].contiguous()
lowerCAmelCase = labels[..., 1:].contiguous()
lowerCAmelCase = attn_mask[..., 1:].contiguous()
lowerCAmelCase = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , _SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(_SCREAMING_SNAKE_CASE )}
| 514 | 0 |
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version(""">=""", FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
snake_case__ : List[str] = get_logger(__name__)
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase=0):
os.makedirs(__lowercase , exist_ok=__lowercase)
with FSDP.state_dict_type(
__lowercase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config):
UpperCamelCase_ = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
UpperCamelCase_ = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin"""
UpperCamelCase_ = os.path.join(__lowercase , __lowercase)
if accelerator.process_index == 0:
logger.info(f"""Saving model to {output_model_file}""")
torch.save(__lowercase , __lowercase)
logger.info(f"""Model saved to {output_model_file}""")
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
UpperCamelCase_ = (
f"""{MODEL_NAME}_rank{accelerator.process_index}.bin"""
if model_index == 0
else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"""
)
UpperCamelCase_ = os.path.join(__lowercase , __lowercase)
logger.info(f"""Saving model to {output_model_file}""")
torch.save(__lowercase , __lowercase)
logger.info(f"""Model saved to {output_model_file}""")
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
UpperCamelCase_ = os.path.join(__lowercase , f"""{MODEL_NAME}_{model_index}""")
os.makedirs(__lowercase , exist_ok=__lowercase)
logger.info(f"""Saving model to {ckpt_dir}""")
UpperCamelCase_ = {'model': state_dict}
dist_cp.save_state_dict(
state_dict=__lowercase , storage_writer=dist_cp.FileSystemWriter(__lowercase) , planner=DefaultSavePlanner() , )
logger.info(f"""Model saved to {ckpt_dir}""")
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase=0):
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
__lowercase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(__lowercase) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
'Set the `sync_module_states` flag to `True` so that model states are synced across processes when '
'initializing FSDP object')
return
UpperCamelCase_ = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin"""
UpperCamelCase_ = os.path.join(__lowercase , __lowercase)
logger.info(f"""Loading model from {input_model_file}""")
UpperCamelCase_ = torch.load(__lowercase)
logger.info(f"""Model loaded from {input_model_file}""")
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
UpperCamelCase_ = (
f"""{MODEL_NAME}_rank{accelerator.process_index}.bin"""
if model_index == 0
else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"""
)
UpperCamelCase_ = os.path.join(__lowercase , __lowercase)
logger.info(f"""Loading model from {input_model_file}""")
UpperCamelCase_ = torch.load(__lowercase)
logger.info(f"""Model loaded from {input_model_file}""")
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
UpperCamelCase_ = (
os.path.join(__lowercase , f"""{MODEL_NAME}_{model_index}""")
if f"""{MODEL_NAME}""" not in input_dir
else input_dir
)
logger.info(f"""Loading model from {ckpt_dir}""")
UpperCamelCase_ = {'model': model.state_dict()}
dist_cp.load_state_dict(
state_dict=__lowercase , storage_reader=dist_cp.FileSystemReader(__lowercase) , planner=DefaultLoadPlanner() , )
UpperCamelCase_ = state_dict['model']
logger.info(f"""Model loaded from {ckpt_dir}""")
model.load_state_dict(__lowercase)
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=0):
os.makedirs(__lowercase , exist_ok=__lowercase)
with FSDP.state_dict_type(
__lowercase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config):
UpperCamelCase_ = FSDP.optim_state_dict(__lowercase , __lowercase)
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
UpperCamelCase_ = (
f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin"""
)
UpperCamelCase_ = os.path.join(__lowercase , __lowercase)
logger.info(f"""Saving Optimizer state to {output_optimizer_file}""")
torch.save(__lowercase , __lowercase)
logger.info(f"""Optimizer state saved in {output_optimizer_file}""")
else:
UpperCamelCase_ = os.path.join(__lowercase , f"""{OPTIMIZER_NAME}_{optimizer_index}""")
os.makedirs(__lowercase , exist_ok=__lowercase)
logger.info(f"""Saving Optimizer state to {ckpt_dir}""")
dist_cp.save_state_dict(
state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__lowercase) , planner=DefaultSavePlanner() , )
logger.info(f"""Optimizer state saved in {ckpt_dir}""")
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=0):
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
__lowercase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
UpperCamelCase_ = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
UpperCamelCase_ = (
f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin"""
)
UpperCamelCase_ = os.path.join(__lowercase , __lowercase)
logger.info(f"""Loading Optimizer state from {input_optimizer_file}""")
UpperCamelCase_ = torch.load(__lowercase)
logger.info(f"""Optimizer state loaded from {input_optimizer_file}""")
else:
UpperCamelCase_ = (
os.path.join(__lowercase , f"""{OPTIMIZER_NAME}_{optimizer_index}""")
if f"""{OPTIMIZER_NAME}""" not in input_dir
else input_dir
)
logger.info(f"""Loading Optimizer from {ckpt_dir}""")
UpperCamelCase_ = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__lowercase) , )
UpperCamelCase_ = optim_state['optimizer']
logger.info(f"""Optimizer loaded from {ckpt_dir}""")
UpperCamelCase_ = FSDP.optim_state_dict_to_load(__lowercase , __lowercase , __lowercase)
optimizer.load_state_dict(__lowercase)
| 23 |
import numpy as np
from cva import destroyAllWindows, imread, imshow, waitKey
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
if dst_width < 0 or dst_height < 0:
raise ValueError('Destination width/height should be > 0' )
UpperCAmelCase__ = img
UpperCAmelCase__ = img.shape[1]
UpperCAmelCase__ = img.shape[0]
UpperCAmelCase__ = dst_width
UpperCAmelCase__ = dst_height
UpperCAmelCase__ = self.src_w / self.dst_w
UpperCAmelCase__ = self.src_h / self.dst_h
UpperCAmelCase__ = UpperCAmelCase__ = (
np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255
)
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
for i in range(self.dst_h ):
for j in range(self.dst_w ):
UpperCAmelCase__ = self.img[self.get_y(__a )][self.get_x(__a )]
def UpperCamelCase__ (self , __a ) -> int:
"""simple docstring"""
return int(self.ratio_x * x )
def UpperCamelCase__ (self , __a ) -> int:
"""simple docstring"""
return int(self.ratio_y * y )
if __name__ == "__main__":
_UpperCamelCase , _UpperCamelCase = 800, 600
_UpperCamelCase = imread('''image_data/lena.jpg''', 1)
_UpperCamelCase = NearestNeighbour(im, dst_w, dst_h)
n.process()
imshow(
F"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output
)
waitKey(0)
destroyAllWindows()
| 146 | 0 |
'''simple docstring'''
from __future__ import annotations
def snake_case_ ( _lowerCAmelCase : list , _lowerCAmelCase : int ) -> List[str]:
# Checks if the entire collection has been sorted
if len(_lowerCAmelCase ) <= 1 or n <= 1:
return
insert_next(_lowerCAmelCase , n - 1 )
rec_insertion_sort(_lowerCAmelCase , n - 1 )
def snake_case_ ( _lowerCAmelCase : list , _lowerCAmelCase : int ) -> int:
# Checks order between adjacent elements
if index >= len(_lowerCAmelCase ) or collection[index - 1] <= collection[index]:
return
# Swaps adjacent elements since they are not in ascending order
UpperCAmelCase , UpperCAmelCase : List[str] = (
collection[index],
collection[index - 1],
)
insert_next(_lowerCAmelCase , index + 1 )
if __name__ == "__main__":
UpperCamelCase__: List[str] = input("Enter integers separated by spaces: ")
UpperCamelCase__: list[int] = [int(num) for num in numbers.split()]
rec_insertion_sort(number_list, len(number_list))
print(number_list)
| 528 |
'''simple docstring'''
import contextlib
import os
import sqlitea
import pytest
from datasets import Dataset, Features, Value
from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple ) -> str:
assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@require_sqlalchemy
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ) -> List[str]:
UpperCAmelCase : int = tmp_path / '''cache'''
UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCAmelCase : Any = SqlDatasetReader(
'''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read()
_check_sql_dataset(_lowerCAmelCase , _lowerCAmelCase )
@require_sqlalchemy
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str ) -> Optional[int]:
UpperCAmelCase : Union[str, Any] = tmp_path / '''cache'''
UpperCAmelCase : Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : str = features.copy() if features else default_expected_features
UpperCAmelCase : Optional[Any] = (
Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase : Tuple = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
_check_sql_dataset(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : List[Any] ) -> Dict:
with contextlib.closing(sqlitea.connect(_lowerCAmelCase ) ) as con:
UpperCAmelCase : Any = con.cursor()
cur.execute('''SELECT * FROM dataset''' )
for row in cur:
yield row
@require_sqlalchemy
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Optional[int]:
UpperCAmelCase : Optional[int] = tmp_path / '''cache'''
UpperCAmelCase : int = os.path.join(_lowerCAmelCase , '''tmp.sql''' )
UpperCAmelCase : Any = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_lowerCAmelCase ).read()
SqlDatasetWriter(_lowerCAmelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write()
UpperCAmelCase : List[Any] = iter_sql_file(_lowerCAmelCase )
UpperCAmelCase : List[Any] = iter_sql_file(_lowerCAmelCase )
for rowa, rowa in zip(_lowerCAmelCase , _lowerCAmelCase ):
assert rowa == rowa
@require_sqlalchemy
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] ) -> int:
UpperCAmelCase : Optional[Any] = tmp_path / '''cache'''
UpperCAmelCase : Any = os.path.join(_lowerCAmelCase , '''tmp.sql''' )
UpperCAmelCase : List[str] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_lowerCAmelCase ).read()
SqlDatasetWriter(_lowerCAmelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write()
UpperCAmelCase : List[str] = iter_sql_file(_lowerCAmelCase )
UpperCAmelCase : Any = iter_sql_file(_lowerCAmelCase )
for rowa, rowa in zip(_lowerCAmelCase , _lowerCAmelCase ):
assert rowa == rowa
@require_sqlalchemy
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ) -> List[Any]:
UpperCAmelCase : Union[str, Any] = tmp_path / '''cache'''
UpperCAmelCase : Tuple = os.path.join(_lowerCAmelCase , '''tmp.sql''' )
UpperCAmelCase : Optional[int] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_lowerCAmelCase ).read()
with pytest.raises(_lowerCAmelCase ):
SqlDatasetWriter(_lowerCAmelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
| 528 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class A__ ( _snake_case , unittest.TestCase ):
lowercase = LDMTextToImagePipeline
lowercase = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
lowercase = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
lowercase = TEXT_TO_IMAGE_BATCH_PARAMS
lowercase = False
def snake_case_ ( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
A_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
A_ = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , )
torch.manual_seed(0 )
A_ = AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , )
torch.manual_seed(0 )
A_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
A_ = CLIPTextModel(UpperCamelCase__ )
A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
A_ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vqvae""": vae,
"""bert""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Union[str, Any]:
'''simple docstring'''
if str(UpperCamelCase__ ).startswith("""mps""" ):
A_ = torch.manual_seed(UpperCamelCase__ )
else:
A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ )
A_ = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def snake_case_ ( self ) -> Optional[Any]:
'''simple docstring'''
A_ = """cpu""" # ensure determinism for the device-dependent torch.Generator
A_ = self.get_dummy_components()
A_ = LDMTextToImagePipeline(**UpperCamelCase__ )
pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = self.get_dummy_inputs(UpperCamelCase__ )
A_ = pipe(**UpperCamelCase__ ).images
A_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
A_ = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@slow
@require_torch_gpu
class A__ ( unittest.TestCase ):
def snake_case_ ( self ) -> Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=torch.floataa , UpperCamelCase__=0 ) -> List[str]:
'''simple docstring'''
A_ = torch.manual_seed(UpperCamelCase__ )
A_ = np.random.RandomState(UpperCamelCase__ ).standard_normal((1, 4, 32, 32) )
A_ = torch.from_numpy(UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ )
A_ = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def snake_case_ ( self ) -> Optional[int]:
'''simple docstring'''
A_ = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = self.get_inputs(UpperCamelCase__ )
A_ = pipe(**UpperCamelCase__ ).images
A_ = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
A_ = np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878] )
A_ = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1e-3
@nightly
@require_torch_gpu
class A__ ( unittest.TestCase ):
def snake_case_ ( self ) -> Union[str, Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=torch.floataa , UpperCamelCase__=0 ) -> Optional[int]:
'''simple docstring'''
A_ = torch.manual_seed(UpperCamelCase__ )
A_ = np.random.RandomState(UpperCamelCase__ ).standard_normal((1, 4, 32, 32) )
A_ = torch.from_numpy(UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ )
A_ = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 50,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def snake_case_ ( self ) -> List[Any]:
'''simple docstring'''
A_ = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = self.get_inputs(UpperCamelCase__ )
A_ = pipe(**UpperCamelCase__ ).images[0]
A_ = load_numpy(
"""https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" )
A_ = np.abs(expected_image - image ).max()
assert max_diff < 1e-3
| 288 |
'''simple docstring'''
import os
import sys
import unittest
__lowerCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
__lowerCamelCase = os.path.join(git_repo_path, '''src''', '''transformers''')
__lowerCamelCase = '''
{0} = None
'''
__lowerCamelCase = '''
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
'''
__lowerCamelCase = '''
def {0}(*args, **kwargs):
requires_backends({0}, {1})
'''
class A__ ( unittest.TestCase ):
def snake_case_ ( self ) -> Dict:
'''simple docstring'''
A_ = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" )
self.assertIsNone(UpperCamelCase__ )
A_ = find_backend(""" if not is_tokenizers_available():""" )
self.assertEqual(UpperCamelCase__ , """tokenizers""" )
A_ = find_backend(""" if not is_tensorflow_text_available():""" )
self.assertEqual(UpperCamelCase__ , """tensorflow_text""" )
A_ = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" )
self.assertEqual(UpperCamelCase__ , """sentencepiece_and_tokenizers""" )
A_ = find_backend(
""" if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" )
self.assertEqual(UpperCamelCase__ , """sentencepiece_and_tensorflow_text""" )
A_ = find_backend(
""" if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" )
self.assertEqual(UpperCamelCase__ , """sentencepiece_and_tokenizers_and_vision""" )
def snake_case_ ( self ) -> int:
'''simple docstring'''
A_ = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("""torch""" , UpperCamelCase__ )
self.assertIn("""tensorflow_text""" , UpperCamelCase__ )
self.assertIn("""sentencepiece_and_tokenizers""" , UpperCamelCase__ )
# Likewise, we can't assert on the exact content of a key
self.assertIn("""BertModel""" , objects["""torch"""] )
self.assertIn("""TFBertModel""" , objects["""tf"""] )
self.assertIn("""FlaxBertModel""" , objects["""flax"""] )
self.assertIn("""BertModel""" , objects["""torch"""] )
self.assertIn("""TFBertTokenizer""" , objects["""tensorflow_text"""] )
self.assertIn("""convert_slow_tokenizer""" , objects["""sentencepiece_and_tokenizers"""] )
def snake_case_ ( self ) -> str:
'''simple docstring'''
A_ = create_dummy_object("""CONSTANT""" , """'torch'""" )
self.assertEqual(UpperCamelCase__ , """\nCONSTANT = None\n""" )
A_ = create_dummy_object("""function""" , """'torch'""" )
self.assertEqual(
UpperCamelCase__ , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" )
A_ = """
class FakeClass(metaclass=DummyObject):
_backends = 'torch'
def __init__(self, *args, **kwargs):
requires_backends(self, 'torch')
"""
A_ = create_dummy_object("""FakeClass""" , """'torch'""" )
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
def snake_case_ ( self ) -> str:
'''simple docstring'''
A_ = """# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, [\"torch\"])
class FakeClass(metaclass=DummyObject):
_backends = [\"torch\"]
def __init__(self, *args, **kwargs):
requires_backends(self, [\"torch\"])
"""
A_ = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} )
self.assertEqual(dummy_files["""torch"""] , UpperCamelCase__ )
| 288 | 1 |
"""simple docstring"""
import inspect
import os
import re
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
_lowercase = """src/transformers"""
# This is to make sure the transformers module imported is the one in the repo.
_lowercase = direct_transformers_import(PATH_TO_TRANSFORMERS)
_lowercase = transformers.models.auto.configuration_auto.CONFIG_MAPPING
_lowercase = {
# used to compute the property `self.chunk_length`
"""EncodecConfig""": ["""overlap"""],
# used as `self.bert_model = BertModel(config, ...)`
"""DPRConfig""": True,
# not used in modeling files, but it's an important information
"""FSMTConfig""": ["""langs"""],
# used internally in the configuration class file
"""GPTNeoConfig""": ["""attention_types"""],
# used internally in the configuration class file
"""EsmConfig""": ["""is_folding_model"""],
# used during training (despite we don't have training script for these models yet)
"""Mask2FormerConfig""": ["""ignore_value"""],
# `ignore_value` used during training (despite we don't have training script for these models yet)
# `norm` used in conversion script (despite not using in the modeling file)
"""OneFormerConfig""": ["""ignore_value""", """norm"""],
# used during preprocessing and collation, see `collating_graphormer.py`
"""GraphormerConfig""": ["""spatial_pos_max"""],
# used internally in the configuration class file
"""T5Config""": ["""feed_forward_proj"""],
# used internally in the configuration class file
# `tokenizer_class` get default value `T5Tokenizer` intentionally
"""MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""],
"""UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""],
# used internally in the configuration class file
"""LongT5Config""": ["""feed_forward_proj"""],
# used internally in the configuration class file
"""SwitchTransformersConfig""": ["""feed_forward_proj"""],
# having default values other than `1e-5` - we can't fix them without breaking
"""BioGptConfig""": ["""layer_norm_eps"""],
# having default values other than `1e-5` - we can't fix them without breaking
"""GLPNConfig""": ["""layer_norm_eps"""],
# having default values other than `1e-5` - we can't fix them without breaking
"""SegformerConfig""": ["""layer_norm_eps"""],
# having default values other than `1e-5` - we can't fix them without breaking
"""CvtConfig""": ["""layer_norm_eps"""],
# having default values other than `1e-5` - we can't fix them without breaking
"""PerceiverConfig""": ["""layer_norm_eps"""],
# used internally to calculate the feature size
"""InformerConfig""": ["""num_static_real_features""", """num_time_features"""],
# used internally to calculate the feature size
"""TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""],
# used internally to calculate the feature size
"""AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""],
# used internally to calculate `mlp_dim`
"""SamVisionConfig""": ["""mlp_ratio"""],
# For (head) training, but so far not implemented
"""ClapAudioConfig""": ["""num_classes"""],
# Not used, but providing useful information to users
"""SpeechT5HifiGanConfig""": ["""sampling_rate"""],
}
# TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure
SPECIAL_CASES_TO_ALLOW.update(
{
'''CLIPSegConfig''': True,
'''DeformableDetrConfig''': True,
'''DetaConfig''': True,
'''DinatConfig''': True,
'''DonutSwinConfig''': True,
'''EfficientFormerConfig''': True,
'''FSMTConfig''': True,
'''JukeboxConfig''': True,
'''LayoutLMv2Config''': True,
'''MaskFormerSwinConfig''': True,
'''MT5Config''': True,
'''NatConfig''': True,
'''OneFormerConfig''': True,
'''PerceiverConfig''': True,
'''RagConfig''': True,
'''SpeechT5Config''': True,
'''SwinConfig''': True,
'''Swin2SRConfig''': True,
'''Swinv2Config''': True,
'''SwitchTransformersConfig''': True,
'''TableTransformerConfig''': True,
'''TapasConfig''': True,
'''TransfoXLConfig''': True,
'''UniSpeechConfig''': True,
'''UniSpeechSatConfig''': True,
'''WavLMConfig''': True,
'''WhisperConfig''': True,
# TODO: @Arthur (for `alignment_head` and `alignment_layer`)
'''JukeboxPriorConfig''': True,
# TODO: @Younes (for `is_decoder`)
'''Pix2StructTextConfig''': True,
}
)
def _snake_case ( snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Optional[int] ):
A = False
for attribute in attributes:
for modeling_source in source_strings:
# check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)`
if (
F'config.{attribute}' in modeling_source
or F'getattr(config, "{attribute}"' in modeling_source
or F'getattr(self.config, "{attribute}"' in modeling_source
):
A = True
# Deal with multi-line cases
elif (
re.search(
rF'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , snake_case__ , )
is not None
):
A = True
# `SequenceSummary` is called with `SequenceSummary(config)`
elif attribute in [
"summary_type",
"summary_use_proj",
"summary_activation",
"summary_last_dropout",
"summary_proj_to_labels",
"summary_first_dropout",
]:
if "SequenceSummary" in modeling_source:
A = True
if attribute_used:
break
if attribute_used:
break
# common and important attributes, even if they do not always appear in the modeling files
A = [
"bos_index",
"eos_index",
"pad_index",
"unk_index",
"mask_index",
"image_size",
"use_cache",
"out_features",
"out_indices",
]
A = ["encoder_no_repeat_ngram_size"]
# Special cases to be allowed
A = True
if not attribute_used:
A = False
for attribute in attributes:
# Allow if the default value in the configuration class is different from the one in `PretrainedConfig`
if attribute in ["is_encoder_decoder"] and default_value is True:
A = True
elif attribute in ["tie_word_embeddings"] and default_value is False:
A = True
# Allow cases without checking the default value in the configuration class
elif attribute in attributes_to_allow + attributes_used_in_generation:
A = True
elif attribute.endswith('_token_id' ):
A = True
# configuration class specific cases
if not case_allowed:
A = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] )
A = allowed_cases is True or attribute in allowed_cases
return attribute_used or case_allowed
def _snake_case ( snake_case__ : int ):
A = dict(inspect.signature(config_class.__init__ ).parameters )
A = [x for x in list(signature.keys() ) if x not in ["self", "kwargs"]]
A = [signature[param].default for param in parameter_names]
# If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long
# as one variant is used, the test should pass
A = {}
if len(config_class.attribute_map ) > 0:
A = {v: k for k, v in config_class.attribute_map.items()}
# Get the path to modeling source files
A = inspect.getsourcefile(snake_case__ )
A = os.path.dirname(snake_case__ )
# Let's check against all frameworks: as long as one framework uses an attribute, we are good.
A = [os.path.join(snake_case__ , snake_case__ ) for fn in os.listdir(snake_case__ ) if fn.startswith('modeling_' )]
# Get the source code strings
A = []
for path in modeling_paths:
if os.path.isfile(snake_case__ ):
with open(snake_case__ ) as fp:
modeling_sources.append(fp.read() )
A = []
for config_param, default_value in zip(snake_case__ , snake_case__ ):
# `attributes` here is all the variant names for `config_param`
A = [config_param]
# some configuration classes have non-empty `attribute_map`, and both names could be used in the
# corresponding modeling files. As long as one of them appears, it is fine.
if config_param in reversed_attribute_map:
attributes.append(reversed_attribute_map[config_param] )
if not check_attribute_being_used(snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
unused_attributes.append(attributes[0] )
return sorted(snake_case__ )
def _snake_case ( ):
A = {}
for _config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in _config_class.__module__:
continue
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
A = [
cls
for name, cls in inspect.getmembers(
inspect.getmodule(_config_class ) , lambda snake_case__ : inspect.isclass(snake_case__ )
and issubclass(snake_case__ , snake_case__ )
and inspect.getmodule(snake_case__ ) == inspect.getmodule(_config_class ) , )
]
for config_class in config_classes_in_module:
A = check_config_attributes_being_used(snake_case__ )
if len(snake_case__ ) > 0:
A = unused_attributes
if len(snake_case__ ) > 0:
A = "The following configuration classes contain unused attributes in the corresponding modeling files:\n"
for name, attributes in configs_with_unused_attributes.items():
error += F'{name}: {attributes}\n'
raise ValueError(snake_case__ )
if __name__ == "__main__":
check_config_attributes()
| 718 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : int ,A_ : Tuple ,A_ : str=7 ,A_ : Tuple=3 ,A_ : List[Any]=18 ,A_ : List[str]=30 ,A_ : Optional[Any]=400 ,A_ : Any=True ,A_ : Optional[Any]=None ,A_ : List[str]=True ,) -> str:
A = size if size is not None else {'height': 18, 'width': 18}
A = parent
A = batch_size
A = num_channels
A = image_size
A = min_resolution
A = max_resolution
A = do_resize
A = size
A = do_normalize
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]:
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04],
[-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class lowerCAmelCase_ ( _lowercase , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None
def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any:
A = ImageGPTImageProcessingTester(self )
@property
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]:
A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A_ ,'clusters' ) )
self.assertTrue(hasattr(A_ ,'do_resize' ) )
self.assertTrue(hasattr(A_ ,'size' ) )
self.assertTrue(hasattr(A_ ,'do_normalize' ) )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple:
A = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} )
A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 )
self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} )
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str:
A = self.image_processing_class(**self.image_processor_dict )
A = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(A_ ,obj[key] ) )
else:
self.assertEqual(obj[key] ,A_ )
def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]:
A = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
A = os.path.join(A_ ,'image_processor.json' )
image_processor_first.to_json_file(A_ )
A = self.image_processing_class.from_json_file(A_ ).to_dict()
A = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] ,A_ )
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int:
A = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(A_ )
A = self.image_processing_class.from_pretrained(A_ ).to_dict()
A = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] ,A_ )
@unittest.skip('ImageGPT requires clusters at initialization' )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]:
pass
def _snake_case ( ):
A = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' )
A = Image.open(dataset[4]['file'] )
A = Image.open(dataset[5]['file'] )
A = [imagea, imagea]
return images
@require_vision
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _SCREAMING_SNAKE_CASE ( self : str ) -> int:
A = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' )
A = prepare_images()
# test non-batched
A = image_processing(images[0] ,return_tensors='pt' )
self.assertIsInstance(encoding.input_ids ,torch.LongTensor )
self.assertEqual(encoding.input_ids.shape ,(1, 1024) )
A = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() ,A_ )
# test batched
A = image_processing(A_ ,return_tensors='pt' )
self.assertIsInstance(encoding.input_ids ,torch.LongTensor )
self.assertEqual(encoding.input_ids.shape ,(2, 1024) )
A = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() ,A_ ) | 22 | 0 |
'''simple docstring'''
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE ( lowercase_ ,lowercase_ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = VQModel
SCREAMING_SNAKE_CASE__ : Any = '''sample'''
@property
def __UpperCAmelCase ( self : Dict , snake_case : Optional[int]=(32, 32) ):
"""simple docstring"""
_snake_case : Optional[int] = 4
_snake_case : List[str] = 3
_snake_case : List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case )
return {"sample": image}
@property
def __UpperCAmelCase ( self : Tuple ):
"""simple docstring"""
return (3, 32, 32)
@property
def __UpperCAmelCase ( self : Union[str, Any] ):
"""simple docstring"""
return (3, 32, 32)
def __UpperCAmelCase ( self : Dict ):
"""simple docstring"""
_snake_case : Optional[int] = {
'block_out_channels': [32, 64],
'in_channels': 3,
'out_channels': 3,
'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'],
'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'],
'latent_channels': 3,
}
_snake_case : Any = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self : Tuple ):
"""simple docstring"""
pass
def __UpperCAmelCase ( self : Union[str, Any] ):
"""simple docstring"""
pass
def __UpperCAmelCase ( self : int ):
"""simple docstring"""
_snake_case , _snake_case : Dict = VQModel.from_pretrained('fusing/vqgan-dummy' , output_loading_info=snake_case )
self.assertIsNotNone(snake_case )
self.assertEqual(len(loading_info['missing_keys'] ) , 0 )
model.to(snake_case )
_snake_case : Any = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def __UpperCAmelCase ( self : Optional[Any] ):
"""simple docstring"""
_snake_case : str = VQModel.from_pretrained('fusing/vqgan-dummy' )
model.to(snake_case ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
_snake_case : Tuple = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
_snake_case : Union[str, Any] = image.to(snake_case )
with torch.no_grad():
_snake_case : Tuple = model(snake_case ).sample
_snake_case : List[str] = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
_snake_case : Tuple = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] )
# fmt: on
self.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) )
| 517 |
'''simple docstring'''
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE :
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : str
SCREAMING_SNAKE_CASE__ : str = None
@staticmethod
def __UpperCAmelCase ( ):
"""simple docstring"""
raise NotImplementedError
def __UpperCAmelCase ( self : int , snake_case : Dict , snake_case : int , snake_case : str , **snake_case : Optional[int] ):
"""simple docstring"""
raise NotImplementedError
def __UpperCAmelCase ( self : str , snake_case : Dict ):
"""simple docstring"""
raise NotImplementedError
def __UpperCAmelCase ( self : Any ):
"""simple docstring"""
if not self.is_available():
raise RuntimeError(
F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" )
@classmethod
def __UpperCAmelCase ( cls : Union[str, Any] ):
"""simple docstring"""
return F"""`pip install {cls.pip_package or cls.name}`"""
class SCREAMING_SNAKE_CASE ( lowercase_ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[int] = '''optuna'''
@staticmethod
def __UpperCAmelCase ( ):
"""simple docstring"""
return is_optuna_available()
def __UpperCAmelCase ( self : Any , snake_case : Tuple , snake_case : int , snake_case : str , **snake_case : Optional[int] ):
"""simple docstring"""
return run_hp_search_optuna(snake_case , snake_case , snake_case , **snake_case )
def __UpperCAmelCase ( self : Optional[Any] , snake_case : Dict ):
"""simple docstring"""
return default_hp_space_optuna(snake_case )
class SCREAMING_SNAKE_CASE ( lowercase_ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = '''ray'''
SCREAMING_SNAKE_CASE__ : Optional[Any] = '''\'ray[tune]\''''
@staticmethod
def __UpperCAmelCase ( ):
"""simple docstring"""
return is_ray_available()
def __UpperCAmelCase ( self : List[str] , snake_case : Tuple , snake_case : int , snake_case : str , **snake_case : str ):
"""simple docstring"""
return run_hp_search_ray(snake_case , snake_case , snake_case , **snake_case )
def __UpperCAmelCase ( self : int , snake_case : Optional[Any] ):
"""simple docstring"""
return default_hp_space_ray(snake_case )
class SCREAMING_SNAKE_CASE ( lowercase_ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[str] = '''sigopt'''
@staticmethod
def __UpperCAmelCase ( ):
"""simple docstring"""
return is_sigopt_available()
def __UpperCAmelCase ( self : int , snake_case : Optional[int] , snake_case : int , snake_case : str , **snake_case : Dict ):
"""simple docstring"""
return run_hp_search_sigopt(snake_case , snake_case , snake_case , **snake_case )
def __UpperCAmelCase ( self : int , snake_case : List[Any] ):
"""simple docstring"""
return default_hp_space_sigopt(snake_case )
class SCREAMING_SNAKE_CASE ( lowercase_ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[int] = '''wandb'''
@staticmethod
def __UpperCAmelCase ( ):
"""simple docstring"""
return is_wandb_available()
def __UpperCAmelCase ( self : Dict , snake_case : List[str] , snake_case : int , snake_case : str , **snake_case : Optional[Any] ):
"""simple docstring"""
return run_hp_search_wandb(snake_case , snake_case , snake_case , **snake_case )
def __UpperCAmelCase ( self : Union[str, Any] , snake_case : int ):
"""simple docstring"""
return default_hp_space_wandb(snake_case )
SCREAMING_SNAKE_CASE_ = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def lowerCamelCase__ ( ) -> str:
"""simple docstring"""
_snake_case : Optional[Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(a__) > 0:
_snake_case : Any = available_backends[0].name
if len(a__) > 1:
logger.info(
F"""{len(a__)} hyperparameter search backends available. Using {name} as the default.""")
return name
raise RuntimeError(
'No hyperparameter search backend available.\n'
+ '\n'.join(
F""" - To install {backend.name} run {backend.pip_install()}"""
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values()))
| 517 | 1 |
from math import cos, sin, sqrt, tau
from audio_filters.iir_filter import IIRFilter
def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter:
A__ = tau * frequency / samplerate
A__ = sin(__UpperCamelCase )
A__ = cos(__UpperCamelCase )
A__ = _sin / (2 * q_factor)
A__ = (1 - _cos) / 2
A__ = 1 - _cos
A__ = 1 + alpha
A__ = -2 * _cos
A__ = 1 - alpha
A__ = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter:
A__ = tau * frequency / samplerate
A__ = sin(__UpperCamelCase )
A__ = cos(__UpperCamelCase )
A__ = _sin / (2 * q_factor)
A__ = (1 + _cos) / 2
A__ = -1 - _cos
A__ = 1 + alpha
A__ = -2 * _cos
A__ = 1 - alpha
A__ = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter:
A__ = tau * frequency / samplerate
A__ = sin(__UpperCamelCase )
A__ = cos(__UpperCamelCase )
A__ = _sin / (2 * q_factor)
A__ = _sin / 2
A__ = 0
A__ = -ba
A__ = 1 + alpha
A__ = -2 * _cos
A__ = 1 - alpha
A__ = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter:
A__ = tau * frequency / samplerate
A__ = sin(__UpperCamelCase )
A__ = cos(__UpperCamelCase )
A__ = _sin / (2 * q_factor)
A__ = 1 - alpha
A__ = -2 * _cos
A__ = 1 + alpha
A__ = IIRFilter(2 )
filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] )
return filt
def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter:
A__ = tau * frequency / samplerate
A__ = sin(__UpperCamelCase )
A__ = cos(__UpperCamelCase )
A__ = _sin / (2 * q_factor)
A__ = 10 ** (gain_db / 40)
A__ = 1 + alpha * big_a
A__ = -2 * _cos
A__ = 1 - alpha * big_a
A__ = 1 + alpha / big_a
A__ = -2 * _cos
A__ = 1 - alpha / big_a
A__ = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter:
A__ = tau * frequency / samplerate
A__ = sin(__UpperCamelCase )
A__ = cos(__UpperCamelCase )
A__ = _sin / (2 * q_factor)
A__ = 10 ** (gain_db / 40)
A__ = (big_a + 1) - (big_a - 1) * _cos
A__ = (big_a + 1) + (big_a - 1) * _cos
A__ = (big_a - 1) - (big_a + 1) * _cos
A__ = (big_a - 1) + (big_a + 1) * _cos
A__ = 2 * sqrt(__UpperCamelCase ) * alpha
A__ = big_a * (pmc + aaa)
A__ = 2 * big_a * mpc
A__ = big_a * (pmc - aaa)
A__ = ppmc + aaa
A__ = -2 * pmpc
A__ = ppmc - aaa
A__ = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter:
A__ = tau * frequency / samplerate
A__ = sin(__UpperCamelCase )
A__ = cos(__UpperCamelCase )
A__ = _sin / (2 * q_factor)
A__ = 10 ** (gain_db / 40)
A__ = (big_a + 1) - (big_a - 1) * _cos
A__ = (big_a + 1) + (big_a - 1) * _cos
A__ = (big_a - 1) - (big_a + 1) * _cos
A__ = (big_a - 1) + (big_a + 1) * _cos
A__ = 2 * sqrt(__UpperCamelCase ) * alpha
A__ = big_a * (ppmc + aaa)
A__ = -2 * big_a * pmpc
A__ = big_a * (ppmc - aaa)
A__ = pmc + aaa
A__ = 2 * mpc
A__ = pmc - aaa
A__ = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
| 52 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
SCREAMING_SNAKE_CASE__ = '''sshleifer/bart-tiny-random'''
SCREAMING_SNAKE_CASE__ = '''patrickvonplaten/t5-tiny-random'''
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _a ( self : Optional[int] ):
"""simple docstring"""
return AutoConfig.from_pretrained(_snake_case )
def _a ( self : Optional[Any] ):
"""simple docstring"""
A__ , *A__ = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=1 )
self.assertEqual(student.config.num_hidden_layers , 1 )
def _a ( self : Optional[int] ):
"""simple docstring"""
A__ , *A__ = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=_snake_case )
def _a ( self : int ):
"""simple docstring"""
A__ , *A__ = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=_snake_case )
self.assertEqual(student.config.encoder_layers , 1 )
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers )
def _a ( self : str ):
"""simple docstring"""
A__ , *A__ = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=1 )
self.assertEqual(student.config.encoder_layers , 1 )
self.assertEqual(student.config.decoder_layers , 1 )
def _a ( self : str ):
"""simple docstring"""
with self.assertRaises(_snake_case ):
create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=_snake_case , d=_snake_case )
| 52 | 1 |
'''simple docstring'''
import random
class _lowercase :
@staticmethod
def a ( SCREAMING_SNAKE_CASE_ : str ) -> tuple[list[int], list[int]]:
__snake_case = [ord(SCREAMING_SNAKE_CASE_ ) for i in text]
__snake_case = []
__snake_case = []
for i in plain:
__snake_case = random.randint(1 , 300 )
__snake_case = (i + k) * k
cipher.append(SCREAMING_SNAKE_CASE_ )
key.append(SCREAMING_SNAKE_CASE_ )
return cipher, key
@staticmethod
def a ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : list[int] ) -> str:
__snake_case = []
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
__snake_case = int((cipher[i] - (key[i]) ** 2) / key[i] )
plain.append(chr(SCREAMING_SNAKE_CASE_ ) )
return "".join(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
_a , _a : Optional[Any] = Onepad().encrypt("Hello")
print(c, k)
print(Onepad().decrypt(c, k))
| 56 | import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def lowerCamelCase ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
if (
(cp >= 0X4_e_0_0 and cp <= 0X9_f_f_f)
or (cp >= 0X3_4_0_0 and cp <= 0X4_d_b_f) #
or (cp >= 0X2_0_0_0_0 and cp <= 0X2_a_6_d_f) #
or (cp >= 0X2_a_7_0_0 and cp <= 0X2_b_7_3_f) #
or (cp >= 0X2_b_7_4_0 and cp <= 0X2_b_8_1_f) #
or (cp >= 0X2_b_8_2_0 and cp <= 0X2_c_e_a_f) #
or (cp >= 0Xf_9_0_0 and cp <= 0Xf_a_f_f)
or (cp >= 0X2_f_8_0_0 and cp <= 0X2_f_a_1_f) #
): #
return True
return False
def lowerCamelCase ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
for char in word:
__UpperCamelCase :str = ord(SCREAMING_SNAKE_CASE )
if not _is_chinese_char(SCREAMING_SNAKE_CASE ):
return 0
return 1
def lowerCamelCase ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCamelCase :List[Any] = set()
for token in tokens:
__UpperCamelCase :Tuple = len(SCREAMING_SNAKE_CASE ) > 1 and is_chinese(SCREAMING_SNAKE_CASE )
if chinese_word:
word_set.add(SCREAMING_SNAKE_CASE )
__UpperCamelCase :int = list(SCREAMING_SNAKE_CASE )
return word_list
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
__UpperCamelCase :Dict = max([len(SCREAMING_SNAKE_CASE ) for w in chinese_word_set] )
__UpperCamelCase :str = bert_tokens
__UpperCamelCase , __UpperCamelCase :int = 0, len(SCREAMING_SNAKE_CASE )
while start < end:
__UpperCamelCase :Optional[int] = True
if is_chinese(bert_word[start] ):
__UpperCamelCase :Dict = min(end - start , SCREAMING_SNAKE_CASE )
for i in range(SCREAMING_SNAKE_CASE , 1 , -1 ):
__UpperCamelCase :int = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
__UpperCamelCase :Union[str, Any] = '''##''' + bert_word[j]
__UpperCamelCase :Dict = start + i
__UpperCamelCase :Dict = False
break
if single_word:
start += 1
return bert_word
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCamelCase :Tuple = []
for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 100 ):
__UpperCamelCase :List[str] = ltp_tokenizer.seg(lines[i : i + 100] )[0]
__UpperCamelCase :int = [get_chinese_word(SCREAMING_SNAKE_CASE ) for r in res]
ltp_res.extend(SCREAMING_SNAKE_CASE )
assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE )
__UpperCamelCase :Any = []
for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 100 ):
__UpperCamelCase :List[str] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=512 )
bert_res.extend(res['''input_ids'''] )
assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE )
__UpperCamelCase :List[Any] = []
for input_ids, chinese_word in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__UpperCamelCase :str = []
for id in input_ids:
__UpperCamelCase :Dict = bert_tokenizer._convert_id_to_token(SCREAMING_SNAKE_CASE )
input_tokens.append(SCREAMING_SNAKE_CASE )
__UpperCamelCase :Dict = add_sub_symbol(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__UpperCamelCase :Optional[int] = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(SCREAMING_SNAKE_CASE ):
if token[:2] == "##":
__UpperCamelCase :Union[str, Any] = token[2:]
# save chinese tokens' pos
if len(SCREAMING_SNAKE_CASE ) == 1 and _is_chinese_char(ord(SCREAMING_SNAKE_CASE ) ):
ref_id.append(SCREAMING_SNAKE_CASE )
ref_ids.append(SCREAMING_SNAKE_CASE )
assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE )
return ref_ids
def lowerCamelCase ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f:
__UpperCamelCase :Any = f.readlines()
__UpperCamelCase :str = [line.strip() for line in data if len(SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
__UpperCamelCase :Optional[Any] = LTP(args.ltp ) # faster in GPU device
__UpperCamelCase :Union[str, Any] = BertTokenizer.from_pretrained(args.bert )
__UpperCamelCase :Any = prepare_ref(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f:
__UpperCamelCase :Optional[Any] = [json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' for ref in ref_ids]
f.writelines(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__lowercase = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path'''
)
parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''')
parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''')
__lowercase = parser.parse_args()
main(args)
| 167 | 0 |
'''simple docstring'''
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
a__ : List[Any] = open # noqa: we just need to have a builtin inside this module to test it properly
| 710 |
def snake_case (UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ = 0
lowerCamelCase__ = len(UpperCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , UpperCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def snake_case (UpperCamelCase : Optional[Any] ):
'''simple docstring'''
if len(UpperCamelCase ) <= 1:
return arr, 0
lowerCamelCase__ = len(UpperCamelCase ) // 2
lowerCamelCase__ = arr[0:mid]
lowerCamelCase__ = arr[mid:]
lowerCamelCase__ , lowerCamelCase__ = count_inversions_recursive(UpperCamelCase )
lowerCamelCase__ , lowerCamelCase__ = count_inversions_recursive(UpperCamelCase )
lowerCamelCase__ , lowerCamelCase__ = _count_cross_inversions(UpperCamelCase , UpperCamelCase )
lowerCamelCase__ = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def snake_case (UpperCamelCase : str , UpperCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ = []
lowerCamelCase__ = lowerCamelCase__ = lowerCamelCase__ = 0
while i < len(UpperCamelCase ) and j < len(UpperCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(UpperCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(UpperCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def snake_case ():
'''simple docstring'''
lowerCamelCase__ = [10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
lowerCamelCase__ = count_inversions_bf(UpperCamelCase )
lowerCamelCase__ , lowerCamelCase__ = count_inversions_recursive(UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , UpperCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
lowerCamelCase__ = count_inversions_bf(UpperCamelCase )
lowerCamelCase__ , lowerCamelCase__ = count_inversions_recursive(UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , UpperCamelCase )
# an empty list should also have zero inversions
lowerCamelCase__ = []
lowerCamelCase__ = count_inversions_bf(UpperCamelCase )
lowerCamelCase__ , lowerCamelCase__ = count_inversions_recursive(UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , UpperCamelCase )
if __name__ == "__main__":
main()
| 235 | 0 |
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class _SCREAMING_SNAKE_CASE :
def __init__( self : Optional[int] , snake_case_ : Tuple , snake_case_ : List[Any]=100 , snake_case_ : int=13 , snake_case_ : List[str]=30 , snake_case_ : Dict=2 , snake_case_ : int=3 , snake_case_ : List[str]=True , snake_case_ : str=True , snake_case_ : str=32 , snake_case_ : Optional[int]=4 , snake_case_ : int=4 , snake_case_ : List[str]=37 , snake_case_ : Optional[int]="gelu" , snake_case_ : List[str]=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : str=10 , snake_case_ : Dict=0.02 , snake_case_ : Optional[int]=3 , snake_case_ : List[str]=None , snake_case_ : Any=[0, 1, 2, 3] , ):
"""simple docstring"""
A : Union[str, Any] = parent
A : Optional[int] = 100
A : Optional[Any] = batch_size
A : Optional[Any] = image_size
A : List[str] = patch_size
A : str = num_channels
A : str = is_training
A : List[Any] = use_labels
A : Tuple = hidden_size
A : int = num_hidden_layers
A : int = num_attention_heads
A : int = intermediate_size
A : Optional[Any] = hidden_act
A : List[Any] = hidden_dropout_prob
A : Dict = attention_probs_dropout_prob
A : str = type_sequence_label_size
A : int = initializer_range
A : List[Any] = scope
A : str = out_indices
A : Tuple = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
A : Tuple = (image_size // patch_size) ** 2
A : Tuple = num_patches + 1
def _UpperCAmelCase ( self : Optional[Any] ):
"""simple docstring"""
A : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A : Tuple = None
A : Optional[Any] = None
if self.use_labels:
A : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
A : str = self.get_config()
return config, pixel_values, labels, pixel_labels
def _UpperCAmelCase ( self : Any ):
"""simple docstring"""
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def _UpperCAmelCase ( self : List[Any] , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : int , snake_case_ : Optional[Any] ):
"""simple docstring"""
A : int = BeitModel(config=snake_case_ )
model.to(snake_case_ )
model.eval()
A : Union[str, Any] = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self : Optional[Any] , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : List[str] , snake_case_ : Optional[Any] ):
"""simple docstring"""
A : Tuple = BeitForMaskedImageModeling(config=snake_case_ )
model.to(snake_case_ )
model.eval()
A : str = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def _UpperCAmelCase ( self : Any , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] ):
"""simple docstring"""
A : str = self.type_sequence_label_size
A : str = BeitForImageClassification(snake_case_ )
model.to(snake_case_ )
model.eval()
A : int = model(snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
A : int = 1
A : Tuple = BeitForImageClassification(snake_case_ )
model.to(snake_case_ )
model.eval()
A : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A : List[str] = model(snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _UpperCAmelCase ( self : int , snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : List[str] ):
"""simple docstring"""
A : str = self.num_labels
A : List[Any] = BeitForSemanticSegmentation(snake_case_ )
model.to(snake_case_ )
model.eval()
A : Tuple = model(snake_case_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
A : Optional[int] = model(snake_case_ , labels=snake_case_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def _UpperCAmelCase ( self : Tuple ):
"""simple docstring"""
A : List[Any] = self.prepare_config_and_inputs()
A , A , A , A : Optional[int] = config_and_inputs
A : Union[str, Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class _SCREAMING_SNAKE_CASE ( snake_case, snake_case, unittest.TestCase ):
lowerCamelCase_ = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
lowerCamelCase_ = (
{
'feature-extraction': BeitModel,
'image-classification': BeitForImageClassification,
'image-segmentation': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = False
def _UpperCAmelCase ( self : Dict ):
"""simple docstring"""
A : Any = BeitModelTester(self )
A : Tuple = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 )
def _UpperCAmelCase ( self : str ):
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''BEiT does not use inputs_embeds''' )
def _UpperCAmelCase ( self : Optional[int] ):
"""simple docstring"""
pass
@require_torch_multi_gpu
@unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' )
def _UpperCAmelCase ( self : int ):
"""simple docstring"""
pass
def _UpperCAmelCase ( self : List[str] ):
"""simple docstring"""
A , A : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : int = model_class(snake_case_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
A : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) )
def _UpperCAmelCase ( self : str ):
"""simple docstring"""
A , A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Optional[int] = model_class(snake_case_ )
A : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A : Union[str, Any] = [*signature.parameters.keys()]
A : Dict = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , snake_case_ )
def _UpperCAmelCase ( self : int ):
"""simple docstring"""
A : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def _UpperCAmelCase ( self : Union[str, Any] ):
"""simple docstring"""
A : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case_ )
def _UpperCAmelCase ( self : str ):
"""simple docstring"""
A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case_ )
def _UpperCAmelCase ( self : int ):
"""simple docstring"""
A : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*snake_case_ )
def _UpperCAmelCase ( self : List[Any] ):
"""simple docstring"""
if not self.model_tester.is_training:
return
A , A : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
A : Union[str, Any] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(snake_case_ ), BeitForMaskedImageModeling]:
continue
A : Optional[Any] = model_class(snake_case_ )
model.to(snake_case_ )
model.train()
A : Union[str, Any] = self._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ )
A : Union[str, Any] = model(**snake_case_ ).loss
loss.backward()
def _UpperCAmelCase ( self : Tuple ):
"""simple docstring"""
A , A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
A : List[str] = False
A : List[Any] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(snake_case_ ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
A : Optional[int] = model_class(snake_case_ )
model.gradient_checkpointing_enable()
model.to(snake_case_ )
model.train()
A : List[str] = self._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ )
A : int = model(**snake_case_ ).loss
loss.backward()
def _UpperCAmelCase ( self : Any ):
"""simple docstring"""
A , A : str = self.model_tester.prepare_config_and_inputs_for_common()
A : List[str] = _config_zero_init(snake_case_ )
for model_class in self.all_model_classes:
A : List[str] = model_class(config=snake_case_ )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@slow
def _UpperCAmelCase ( self : Tuple ):
"""simple docstring"""
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A : Any = BeitModel.from_pretrained(snake_case_ )
self.assertIsNotNone(snake_case_ )
def _lowerCamelCase ( ):
'''simple docstring'''
A : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@cached_property
def _UpperCAmelCase ( self : Tuple ):
"""simple docstring"""
return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None
@slow
def _UpperCAmelCase ( self : Optional[Any] ):
"""simple docstring"""
A : Optional[Any] = BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(snake_case_ )
A : Any = self.default_image_processor
A : List[str] = prepare_img()
A : int = image_processor(images=snake_case_ , return_tensors='''pt''' ).pixel_values.to(snake_case_ )
# prepare bool_masked_pos
A : List[Any] = torch.ones((1, 196) , dtype=torch.bool ).to(snake_case_ )
# forward pass
with torch.no_grad():
A : Union[str, Any] = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ )
A : List[str] = outputs.logits
# verify the logits
A : Optional[int] = torch.Size((1, 196, 8192) )
self.assertEqual(logits.shape , snake_case_ )
A : Any = torch.tensor(
[[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ).to(snake_case_ )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) )
@slow
def _UpperCAmelCase ( self : str ):
"""simple docstring"""
A : Dict = BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(snake_case_ )
A : Any = self.default_image_processor
A : int = prepare_img()
A : List[str] = image_processor(images=snake_case_ , return_tensors='''pt''' ).to(snake_case_ )
# forward pass
with torch.no_grad():
A : Dict = model(**snake_case_ )
A : Optional[int] = outputs.logits
# verify the logits
A : Any = torch.Size((1, 1000) )
self.assertEqual(logits.shape , snake_case_ )
A : Dict = torch.tensor([-1.23_85, -1.09_87, -1.01_08] ).to(snake_case_ )
self.assertTrue(torch.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) )
A : Dict = 281
self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
@slow
def _UpperCAmelCase ( self : List[str] ):
"""simple docstring"""
A : Optional[int] = BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to(
snake_case_ )
A : Any = self.default_image_processor
A : Dict = prepare_img()
A : Dict = image_processor(images=snake_case_ , return_tensors='''pt''' ).to(snake_case_ )
# forward pass
with torch.no_grad():
A : Tuple = model(**snake_case_ )
A : int = outputs.logits
# verify the logits
A : Optional[int] = torch.Size((1, 2_1841) )
self.assertEqual(logits.shape , snake_case_ )
A : Optional[int] = torch.tensor([1.68_81, -0.27_87, 0.59_01] ).to(snake_case_ )
self.assertTrue(torch.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) )
A : Any = 2396
self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
@slow
def _UpperCAmelCase ( self : Optional[Any] ):
"""simple docstring"""
A : str = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' )
A : List[Any] = model.to(snake_case_ )
A : List[str] = BeitImageProcessor(do_resize=snake_case_ , size=640 , do_center_crop=snake_case_ )
A : List[Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
A : Optional[Any] = Image.open(ds[0]['''file'''] )
A : List[str] = image_processor(images=snake_case_ , return_tensors='''pt''' ).to(snake_case_ )
# forward pass
with torch.no_grad():
A : List[Any] = model(**snake_case_ )
A : int = outputs.logits
# verify the logits
A : Optional[int] = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape , snake_case_ )
A : Union[str, Any] = version.parse(PIL.__version__ ) < version.parse('''9.0.0''' )
if is_pillow_less_than_a:
A : List[Any] = torch.tensor(
[
[[-4.92_25, -2.39_54, -3.05_22], [-2.88_22, -1.00_46, -1.75_61], [-2.95_49, -1.32_28, -2.13_47]],
[[-5.81_68, -3.41_29, -4.07_78], [-3.86_51, -2.22_14, -3.02_77], [-3.83_56, -2.46_43, -3.35_35]],
[[-0.00_78, 3.99_52, 4.07_54], [2.98_56, 4.69_44, 5.00_35], [3.24_13, 4.78_13, 4.99_69]],
] , device=snake_case_ , )
else:
A : Union[str, Any] = torch.tensor(
[
[[-4.89_60, -2.36_88, -3.03_55], [-2.84_78, -0.98_36, -1.74_18], [-2.94_49, -1.33_32, -2.14_56]],
[[-5.80_81, -3.41_24, -4.10_06], [-3.85_61, -2.20_81, -3.03_23], [-3.83_65, -2.46_01, -3.36_69]],
[[-0.03_09, 3.98_68, 4.05_40], [2.96_40, 4.68_77, 4.99_76], [3.20_81, 4.76_90, 4.99_42]],
] , device=snake_case_ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case_ , atol=1E-4 ) )
@slow
def _UpperCAmelCase ( self : List[Any] ):
"""simple docstring"""
A : List[Any] = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' )
A : List[Any] = model.to(snake_case_ )
A : Optional[Any] = BeitImageProcessor(do_resize=snake_case_ , size=640 , do_center_crop=snake_case_ )
A : List[str] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
A : Any = Image.open(ds[0]['''file'''] )
A : List[str] = image_processor(images=snake_case_ , return_tensors='''pt''' ).to(snake_case_ )
# forward pass
with torch.no_grad():
A : str = model(**snake_case_ )
A : Any = outputs.logits.detach().cpu()
A : List[str] = image_processor.post_process_semantic_segmentation(outputs=snake_case_ , target_sizes=[(500, 300)] )
A : Optional[Any] = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape , snake_case_ )
A : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=snake_case_ )
A : str = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape , snake_case_ ) | 256 |
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def _lowerCamelCase ( ):
'''simple docstring'''
print('''Making key files...''' )
make_key_files('''rsa''' , 1024 )
print('''Key files generation successful.''' )
def _lowerCamelCase ( lowerCamelCase_: int ):
'''simple docstring'''
print('''Generating prime p...''' )
A : Optional[Any] = rabinMiller.generate_large_prime(lowerCamelCase_ )
print('''Generating prime q...''' )
A : Tuple = rabinMiller.generate_large_prime(lowerCamelCase_ )
A : Optional[Any] = p * q
print('''Generating e that is relatively prime to (p - 1) * (q - 1)...''' )
while True:
A : Any = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) )
if cryptoMath.gcd(lowerCamelCase_ , (p - 1) * (q - 1) ) == 1:
break
print('''Calculating d that is mod inverse of e...''' )
A : Optional[Any] = cryptoMath.find_mod_inverse(lowerCamelCase_ , (p - 1) * (q - 1) )
A : List[Any] = (n, e)
A : Optional[Any] = (n, d)
return (public_key, private_key)
def _lowerCamelCase ( lowerCamelCase_: str , lowerCamelCase_: int ):
'''simple docstring'''
if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ):
print('''\nWARNING:''' )
print(
f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n"""
'''Use a different name or delete these files and re-run this program.''' )
sys.exit()
A , A : Union[str, Any] = generate_key(lowerCamelCase_ )
print(f"""\nWriting public key to file {name}_pubkey.txt...""" )
with open(f"""{name}_pubkey.txt""" , '''w''' ) as out_file:
out_file.write(f"""{key_size},{public_key[0]},{public_key[1]}""" )
print(f"""Writing private key to file {name}_privkey.txt...""" )
with open(f"""{name}_privkey.txt""" , '''w''' ) as out_file:
out_file.write(f"""{key_size},{private_key[0]},{private_key[1]}""" )
if __name__ == "__main__":
main() | 256 | 1 |
import copy
import tempfile
import unittest
from transformers import MaMaaaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer
from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder
def A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , ):
if attention_mask is None:
_snake_case : Any = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
_snake_case : List[Any] = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
_snake_case : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ )
if decoder_head_mask is None:
_snake_case : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ )
if cross_attn_head_mask is None:
_snake_case : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class _a:
def __init__( self , __snake_case , __snake_case=1_3 , __snake_case=7 , __snake_case=True , __snake_case=False , __snake_case=9_9 , __snake_case=1_6 , __snake_case=2 , __snake_case=4 , __snake_case=4 , __snake_case="relu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=2_0 , __snake_case=2 , __snake_case=1 , __snake_case=0 , ) -> Any:
'''simple docstring'''
_snake_case : Optional[Any] = parent
_snake_case : List[str] = batch_size
_snake_case : Union[str, Any] = seq_length
_snake_case : Optional[Any] = is_training
_snake_case : List[str] = use_labels
_snake_case : Tuple = vocab_size
_snake_case : Optional[Any] = hidden_size
_snake_case : Union[str, Any] = num_hidden_layers
_snake_case : List[Any] = num_attention_heads
_snake_case : Tuple = intermediate_size
_snake_case : str = hidden_act
_snake_case : Optional[Any] = hidden_dropout_prob
_snake_case : int = attention_probs_dropout_prob
_snake_case : int = encoder_layerdrop
_snake_case : Tuple = decoder_layerdrop
_snake_case : List[str] = max_position_embeddings
_snake_case : Tuple = eos_token_id
_snake_case : Dict = pad_token_id
_snake_case : str = bos_token_id
def lowercase ( self ) -> str:
'''simple docstring'''
_snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_snake_case : Union[str, Any] = self.eos_token_id # Eos Token
_snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for M2M100 the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
_snake_case : int = input_ids.clamp(self.pad_token_id + 1 )
_snake_case : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 )
_snake_case : Union[str, Any] = self.get_config()
_snake_case : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A )
return config, inputs_dict
def lowercase ( self ) -> Any:
'''simple docstring'''
return MaMaaaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , )
def lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
_snake_case : Any = self.prepare_config_and_inputs()
return config, inputs_dict
def lowercase ( self , __snake_case , __snake_case ) -> Optional[Any]:
'''simple docstring'''
_snake_case : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval()
_snake_case : List[Any] = inputs_dict["input_ids"]
_snake_case : Optional[Any] = inputs_dict["attention_mask"]
_snake_case : Union[str, Any] = inputs_dict["head_mask"]
# first forward pass
_snake_case : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A )
_snake_case : Dict = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
_snake_case : int = ids_tensor((self.batch_size, 3) , config.vocab_size )
_snake_case : List[str] = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
_snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
_snake_case : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
_snake_case : Tuple = model(__A , attention_mask=__A )["last_hidden_state"]
_snake_case : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[
"last_hidden_state"
]
# select random slice
_snake_case : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_snake_case : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
_snake_case : Any = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__A , __A , atol=1E-2 ) )
def lowercase ( self , __snake_case , __snake_case ) -> Any:
'''simple docstring'''
_snake_case : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval()
_snake_case : Union[str, Any] = model(**__A )
_snake_case : Tuple = outputs.encoder_last_hidden_state
_snake_case : Union[str, Any] = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
_snake_case : Dict = model.get_encoder()
encoder.save_pretrained(__A )
_snake_case : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A )
_snake_case : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[
0
]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 )
with tempfile.TemporaryDirectory() as tmpdirname:
_snake_case : Dict = model.get_decoder()
decoder.save_pretrained(__A )
_snake_case : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A )
_snake_case : List[str] = decoder(
input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 )
@require_torch
class _a( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
lowerCamelCase__ :List[str] = (
(
MaMaaaModel,
MaMaaaForConditionalGeneration,
)
if is_torch_available()
else ()
)
lowerCamelCase__ :Any = (MaMaaaForConditionalGeneration,) if is_torch_available() else ()
lowerCamelCase__ :Tuple = (
{
'conversational': MaMaaaForConditionalGeneration,
'feature-extraction': MaMaaaModel,
'summarization': MaMaaaForConditionalGeneration,
'text2text-generation': MaMaaaForConditionalGeneration,
'translation': MaMaaaForConditionalGeneration,
}
if is_torch_available()
else {}
)
lowerCamelCase__ :Optional[int] = True
lowerCamelCase__ :str = True
lowerCamelCase__ :str = False
lowerCamelCase__ :Union[str, Any] = False
def lowercase ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Optional[Any]:
'''simple docstring'''
if pipeline_test_casse_name == "TranslationPipelineTests":
# Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`.
# `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer.
return True
return False
def lowercase ( self ) -> int:
'''simple docstring'''
_snake_case : Any = MaMaaaModelTester(self )
_snake_case : Dict = ConfigTester(self , config_class=__A )
def lowercase ( self ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
_snake_case : int = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
_snake_case : int = model_class(__A )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__A )
_snake_case : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A )
self.assertEqual(info["missing_keys"] , [] )
def lowercase ( self ) -> Tuple:
'''simple docstring'''
_snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A )
def lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
_snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*__A )
def lowercase ( self ) -> Tuple:
'''simple docstring'''
_snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration):
_snake_case : str = model_class(__A )
model.to(__A )
model.eval()
_snake_case : str = copy.deepcopy(self._prepare_for_class(__A , __A ) )
if not self.is_encoder_decoder:
_snake_case : Optional[Any] = inputs["input_ids"]
del inputs["input_ids"]
else:
_snake_case : Union[str, Any] = inputs["input_ids"]
_snake_case : List[str] = inputs.get("decoder_input_ids" , __A )
del inputs["input_ids"]
inputs.pop("decoder_input_ids" , __A )
_snake_case : Tuple = model.get_input_embeddings()
if not self.is_encoder_decoder:
_snake_case : List[Any] = wte(__A )
else:
_snake_case : Any = wte(__A )
_snake_case : Optional[int] = wte(__A )
with torch.no_grad():
model(**__A )[0]
def lowercase ( self ) -> Any:
'''simple docstring'''
_snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
_snake_case : Any = input_dict["input_ids"]
_snake_case : int = input_ids.ne(1 ).to(__A )
_snake_case : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A )
if torch_device == "cuda":
model.half()
model.generate(__A , attention_mask=__A )
model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 )
def A ( UpperCAmelCase ):
return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ )
__lowerCAmelCase :Optional[Any] = 1E-4
@require_torch
@require_sentencepiece
@require_tokenizers
@slow
class _a( unittest.TestCase ):
@cached_property
def lowercase ( self ) -> List[str]:
'''simple docstring'''
return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" )
def lowercase ( self ) -> List[str]:
'''simple docstring'''
_snake_case : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A )
_snake_case : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] )
_snake_case : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] )
_snake_case : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A )
with torch.no_grad():
_snake_case : str = model(**__A )[0]
_snake_case : Tuple = torch.Size((1, 1_1, 1_0_2_4) )
self.assertEqual(output.shape , __A )
# change to expected output here
_snake_case : Optional[Any] = torch.tensor(
[[-0.77_80, -0.16_76, 0.10_38], [-6.75_56, -1.39_92, 0.05_67], [-7.53_83, -0.59_20, -0.27_79]] , device=__A )
self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) )
def lowercase ( self ) -> Any:
'''simple docstring'''
_snake_case : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A )
# change to intended input
_snake_case : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] )
_snake_case : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] )
_snake_case : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A )
with torch.no_grad():
_snake_case : Union[str, Any] = model(**__A )[0]
_snake_case : Tuple = torch.Size((1, 1_1, model.config.vocab_size) )
self.assertEqual(output.shape , __A )
# change to expected output here
_snake_case : List[str] = torch.tensor(
[[-1.04_48, -1.04_11, 3.79_92], [-3.21_91, -3.23_86, -1.34_51], [-3.62_10, -3.59_93, 0.49_25]] , device=__A )
self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) )
def lowercase ( self ) -> Any:
'''simple docstring'''
_snake_case : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A )
_snake_case : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" )
_snake_case : List[Any] = [
"L'affaire NSA souligne l'absence totale de débat sur le renseignement",
"Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.",
"Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent"
" Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de"
" l'ampleur de la surveillance américaine sur l'ensemble des communications en France.",
]
# The below article tests that we don't add any hypotheses outside of the top n_beams
_snake_case : str = tokenizer(__A , padding=__A , return_tensors="pt" )
_snake_case : Tuple = model.generate(
input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , )
_snake_case : List[str] = [
"The NSA case highlights the total absence of intelligence debate",
"I think there are two levels of response from the French government.",
"When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S."
" Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all"
" communications in France.",
]
_snake_case : Dict = tokenizer.batch_decode(
hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A )
assert generated == expected_en | 703 |
import argparse
import collections
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="attention" ):
_snake_case : Any = params[F"""{prefix}/layers_{i}/{layer_name}/key/kernel"""]
_snake_case : Tuple = params[F"""{prefix}/layers_{i}/{layer_name}/out/kernel"""]
_snake_case : str = params[F"""{prefix}/layers_{i}/{layer_name}/query/kernel"""]
_snake_case : List[Any] = params[F"""{prefix}/layers_{i}/{layer_name}/value/kernel"""]
return k, o, q, v
def A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ):
if split_mlp_wi:
_snake_case : List[Any] = params[F"""{prefix}/layers_{i}/mlp/wi_0/kernel"""]
_snake_case : Tuple = params[F"""{prefix}/layers_{i}/mlp/wi_1/kernel"""]
_snake_case : Union[str, Any] = (wi_a, wi_a)
else:
_snake_case : Optional[int] = params[F"""{prefix}/layers_{i}/mlp/wi/kernel"""]
_snake_case : List[str] = params[F"""{prefix}/layers_{i}/mlp/wo/kernel"""]
return wi, wo
def A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
return params[F"""{prefix}/layers_{i}/{layer_name}/scale"""]
def A ( UpperCAmelCase , *, UpperCAmelCase , UpperCAmelCase ):
_snake_case : Any = traverse_util.flatten_dict(variables["target"] )
_snake_case : str = {"/".join(UpperCAmelCase ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
_snake_case : Tuple = "encoder/layers_0/mlp/wi_0/kernel" in old
print("Split MLP:" , UpperCAmelCase )
_snake_case : List[Any] = collections.OrderedDict()
# Shared embeddings.
_snake_case : Tuple = old["token_embedder/embedding"]
# Encoder.
for i in range(UpperCAmelCase ):
# Block i, layer 0 (Self Attention).
_snake_case : Optional[Any] = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , "encoder" , "pre_attention_layer_norm" )
_snake_case , _snake_case , _snake_case , _snake_case : Union[str, Any] = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , "encoder" , "attention" )
_snake_case : Optional[Any] = layer_norm
_snake_case : int = k.T
_snake_case : Optional[int] = o.T
_snake_case : Dict = q.T
_snake_case : Any = v.T
# Block i, layer 1 (MLP).
_snake_case : Any = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , "encoder" , "pre_mlp_layer_norm" )
_snake_case , _snake_case : Tuple = tax_mlp_lookup(UpperCAmelCase , UpperCAmelCase , "encoder" , UpperCAmelCase )
_snake_case : Any = layer_norm
if split_mlp_wi:
_snake_case : Union[str, Any] = wi[0].T
_snake_case : List[str] = wi[1].T
else:
_snake_case : List[Any] = wi.T
_snake_case : Dict = wo.T
_snake_case : Dict = old[
"encoder/relpos_bias/rel_embedding"
].T
_snake_case : Dict = old["encoder/encoder_norm/scale"]
if not is_encoder_only:
# Decoder.
for i in range(UpperCAmelCase ):
# Block i, layer 0 (Self Attention).
_snake_case : str = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , "pre_self_attention_layer_norm" )
_snake_case , _snake_case , _snake_case , _snake_case : Optional[Any] = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , "self_attention" )
_snake_case : Optional[Any] = layer_norm
_snake_case : Dict = k.T
_snake_case : List[str] = o.T
_snake_case : List[Any] = q.T
_snake_case : List[Any] = v.T
# Block i, layer 1 (Cross Attention).
_snake_case : Tuple = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , "pre_cross_attention_layer_norm" )
_snake_case , _snake_case , _snake_case , _snake_case : Union[str, Any] = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , "encoder_decoder_attention" )
_snake_case : Tuple = layer_norm
_snake_case : Union[str, Any] = k.T
_snake_case : str = o.T
_snake_case : List[str] = q.T
_snake_case : List[Any] = v.T
# Block i, layer 2 (MLP).
_snake_case : Dict = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , "pre_mlp_layer_norm" )
_snake_case , _snake_case : Union[str, Any] = tax_mlp_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , UpperCAmelCase )
_snake_case : Optional[Any] = layer_norm
if split_mlp_wi:
_snake_case : str = wi[0].T
_snake_case : Union[str, Any] = wi[1].T
else:
_snake_case : Optional[Any] = wi.T
_snake_case : int = wo.T
_snake_case : Optional[int] = old["decoder/decoder_norm/scale"]
_snake_case : int = old[
"decoder/relpos_bias/rel_embedding"
].T
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
_snake_case : Tuple = old["decoder/logits_dense/kernel"].T
return new
def A ( UpperCAmelCase , UpperCAmelCase ):
_snake_case : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
_snake_case : Tuple = state_dict["shared.weight"]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
_snake_case : List[Any] = state_dict["shared.weight"]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("Using shared word embeddings as lm_head." )
_snake_case : Optional[int] = state_dict["shared.weight"]
return state_dict
def A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
_snake_case : List[str] = checkpoints.load_tax_checkpoint(UpperCAmelCase )
_snake_case : Dict = convert_tax_to_pytorch(UpperCAmelCase , num_layers=config.num_layers , is_encoder_only=UpperCAmelCase )
_snake_case : Dict = make_state_dict(UpperCAmelCase , UpperCAmelCase )
model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase )
def A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False ):
_snake_case : str = TaConfig.from_json_file(UpperCAmelCase )
print(F"""Building PyTorch model from configuration: {config}""" )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
_snake_case : List[Any] = TaEncoderModel(UpperCAmelCase )
else:
_snake_case : List[str] = TaForConditionalGeneration(UpperCAmelCase )
# Load weights from tf checkpoint
load_tax_weights_in_ta(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(UpperCAmelCase )
# Verify that we can load the checkpoint.
model.from_pretrained(UpperCAmelCase )
print("Done" )
if __name__ == "__main__":
__lowerCAmelCase :Any = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.')
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False
)
__lowerCAmelCase :Optional[int] = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only
) | 278 | 0 |
import sys
def UpperCamelCase_( snake_case__: Dict ) -> Union[str, Any]:
UpperCAmelCase__ = len(__UpperCamelCase )
UpperCAmelCase__ = [[0 for x in range(__UpperCamelCase )] for x in range(__UpperCamelCase )]
UpperCAmelCase__ = [[0 for x in range(__UpperCamelCase )] for x in range(__UpperCamelCase )]
for chain_length in range(2 , __UpperCamelCase ):
for a in range(1 , n - chain_length + 1 ):
UpperCAmelCase__ = a + chain_length - 1
UpperCAmelCase__ = sys.maxsize
for c in range(__UpperCamelCase , __UpperCamelCase ):
UpperCAmelCase__ = (
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
UpperCAmelCase__ = cost
UpperCAmelCase__ = c
return matrix, sol
def UpperCamelCase_( snake_case__: int , snake_case__: Any , snake_case__: str ) -> List[Any]:
if i == j:
print('A' + str(__UpperCamelCase ) , end=' ' )
else:
print('(' , end=' ' )
print_optiomal_solution(__UpperCamelCase , __UpperCamelCase , optimal_solution[i][j] )
print_optiomal_solution(__UpperCamelCase , optimal_solution[i][j] + 1 , __UpperCamelCase )
print(')' , end=' ' )
def UpperCamelCase_( ) -> Optional[Any]:
UpperCAmelCase__ = [30, 35, 15, 5, 10, 20, 25]
UpperCAmelCase__ = len(__UpperCamelCase )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
UpperCAmelCase__ = matrix_chain_order(__UpperCamelCase )
print('No. of Operation required: ' + str(matrix[1][n - 1] ) )
print_optiomal_solution(__UpperCamelCase , 1 , n - 1 )
if __name__ == "__main__":
main()
| 146 |
"""simple docstring"""
def __lowerCamelCase ( __UpperCamelCase ) -> str:
"""simple docstring"""
return "".join([hex(__UpperCamelCase )[2:].zfill(2 ).upper() for byte in list(__UpperCamelCase )] )
def __lowerCamelCase ( __UpperCamelCase ) -> bytes:
"""simple docstring"""
if (len(__UpperCamelCase ) % 2) != 0:
raise ValueError(
"Base16 encoded data is invalid:\nData does not have an even number of hex digits." )
# Check the character set - the standard base16 alphabet
# is uppercase according to RFC3548 section 6
if not set(__UpperCamelCase ) <= set("0123456789ABCDEF" ):
raise ValueError(
"Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." )
# For every two hexadecimal digits (= a byte), turn it into an integer.
# Then, string the result together into bytes, and return it.
return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(__UpperCamelCase ) , 2 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 610 | 0 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase : Tuple = {
'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json',
}
class __magic_name__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = '''mvp'''
__UpperCamelCase = ['''past_key_values''']
__UpperCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self , _a=50_267 , _a=1_024 , _a=12 , _a=4_096 , _a=16 , _a=12 , _a=4_096 , _a=16 , _a=0.0 , _a=0.0 , _a="gelu" , _a=1_024 , _a=0.1 , _a=0.0 , _a=0.0 , _a=0.02 , _a=0.0 , _a=False , _a=True , _a=1 , _a=0 , _a=2 , _a=True , _a=2 , _a=2 , _a=False , _a=100 , _a=800 , **_a , ):
"""simple docstring"""
lowerCamelCase = vocab_size
lowerCamelCase = max_position_embeddings
lowerCamelCase = d_model
lowerCamelCase = encoder_ffn_dim
lowerCamelCase = encoder_layers
lowerCamelCase = encoder_attention_heads
lowerCamelCase = decoder_ffn_dim
lowerCamelCase = decoder_layers
lowerCamelCase = decoder_attention_heads
lowerCamelCase = dropout
lowerCamelCase = attention_dropout
lowerCamelCase = activation_dropout
lowerCamelCase = activation_function
lowerCamelCase = init_std
lowerCamelCase = encoder_layerdrop
lowerCamelCase = decoder_layerdrop
lowerCamelCase = classifier_dropout
lowerCamelCase = use_cache
lowerCamelCase = encoder_layers
lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True
lowerCamelCase = use_prompt
lowerCamelCase = prompt_length
lowerCamelCase = prompt_mid_dim
super().__init__(
pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , is_encoder_decoder=A__ , decoder_start_token_id=A__ , forced_eos_token_id=A__ , **A__ , )
if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , A__ ):
lowerCamelCase = self.bos_token_id
warnings.warn(
f'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
"""The config can simply be saved and uploaded again to be fixed.""" )
| 720 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __magic_name__ ( unittest.TestCase ):
'''simple docstring'''
@property
def _lowerCAmelCase ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCamelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , )
return model
def _lowerCAmelCase ( self ):
"""simple docstring"""
lowerCamelCase = self.dummy_uncond_unet
lowerCamelCase = ScoreSdeVeScheduler()
lowerCamelCase = ScoreSdeVePipeline(unet=_a , scheduler=_a )
sde_ve.to(_a )
sde_ve.set_progress_bar_config(disable=_a )
lowerCamelCase = torch.manual_seed(0 )
lowerCamelCase = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=_a ).images
lowerCamelCase = torch.manual_seed(0 )
lowerCamelCase = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=_a , return_dict=_a )[
0
]
lowerCamelCase = image[0, -3:, -3:, -1]
lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class __magic_name__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ):
"""simple docstring"""
lowerCamelCase = """google/ncsnpp-church-256"""
lowerCamelCase = UNetaDModel.from_pretrained(_a )
lowerCamelCase = ScoreSdeVeScheduler.from_pretrained(_a )
lowerCamelCase = ScoreSdeVePipeline(unet=_a , scheduler=_a )
sde_ve.to(_a )
sde_ve.set_progress_bar_config(disable=_a )
lowerCamelCase = torch.manual_seed(0 )
lowerCamelCase = sde_ve(num_inference_steps=10 , output_type="""numpy""" , generator=_a ).images
lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
lowerCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 533 | 0 |
import argparse
import json
import os
import torch
from transformers.file_utils import has_file
from diffusers import UNetaDConditionModel, UNetaDModel
lowerCamelCase__ : Union[str, Any] = False
lowerCamelCase__ : List[str] = True
lowerCamelCase__ : Optional[Any] = False
if __name__ == "__main__":
lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
'--repo_path',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
lowerCamelCase__ : Optional[Any] = parser.parse_args()
lowerCamelCase__ : List[Any] = {
'image_size': 'sample_size',
'num_res_blocks': 'layers_per_block',
'block_channels': 'block_out_channels',
'down_blocks': 'down_block_types',
'up_blocks': 'up_block_types',
'downscale_freq_shift': 'freq_shift',
'resnet_num_groups': 'norm_num_groups',
'resnet_act_fn': 'act_fn',
'resnet_eps': 'norm_eps',
'num_head_channels': 'attention_head_dim',
}
lowerCamelCase__ : str = {
'time_steps': 'time_proj',
'mid': 'mid_block',
'downsample_blocks': 'down_blocks',
'upsample_blocks': 'up_blocks',
}
lowerCamelCase__ : str = '' if has_file(args.repo_path, 'config.json') else 'unet'
with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader:
lowerCamelCase__ : Optional[int] = reader.read()
lowerCamelCase__ : Optional[int] = json.loads(text)
if do_only_config:
for key in config_parameters_to_change.keys():
config.pop(key, None)
if has_file(args.repo_path, 'config.json'):
lowerCamelCase__ : Any = UNetaDModel(**config)
else:
lowerCamelCase__ : Optional[Any] = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel
lowerCamelCase__ : Optional[Any] = class_name(**config)
if do_only_config:
model.save_config(os.path.join(args.repo_path, subfolder))
lowerCamelCase__ : Optional[Any] = dict(model.config)
if do_only_renaming:
for key, value in config_parameters_to_change.items():
if key in config:
lowerCamelCase__ : List[str] = config[key]
del config[key]
lowerCamelCase__ : str = [k.replace('UNetRes', '') for k in config['down_block_types']]
lowerCamelCase__ : List[str] = [k.replace('UNetRes', '') for k in config['up_block_types']]
if do_only_weights:
lowerCamelCase__ : Optional[Any] = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin'))
lowerCamelCase__ : Dict = {}
for param_key, param_value in state_dict.items():
if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'):
continue
lowerCamelCase__ : int = False
for key, new_key in key_parameters_to_change.items():
if not has_changed and param_key.split('.')[0] == key:
lowerCamelCase__ : Dict = param_value
lowerCamelCase__ : str = True
if not has_changed:
lowerCamelCase__ : Dict = param_value
model.load_state_dict(new_state_dict)
model.save_pretrained(os.path.join(args.repo_path, subfolder)) | 31 |
"""simple docstring"""
import torch
from transformers import CamembertForMaskedLM, CamembertTokenizer
def __A ( a_ :Union[str, Any] , a_ :Union[str, Any] , a_ :Optional[Any] , a_ :Optional[int]=5) -> List[Any]:
# Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py
assert masked_input.count('''<mask>''') == 1
__a : Optional[Any] = torch.tensor(tokenizer.encode(a_ , add_special_tokens=a_)).unsqueeze(0) # Batch size 1
__a : Dict = model(a_)[0] # The last hidden-state is the first element of the output tuple
__a : Tuple = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
__a : Any = logits[0, masked_index, :]
__a : Any = logits.softmax(dim=0)
__a , __a : Optional[Any] = prob.topk(k=a_ , dim=0)
__a : Optional[int] = ''' '''.join(
[tokenizer.convert_ids_to_tokens(indices[i].item()) for i in range(len(a_))])
__a : List[str] = tokenizer.mask_token
__a : Optional[int] = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''')):
__a : Optional[Any] = predicted_token_bpe.replace('''\u2581''' , ''' ''')
if " {0}".format(a_) in masked_input:
topk_filled_outputs.append(
(
masked_input.replace(''' {0}'''.format(a_) , a_),
values[index].item(),
predicted_token,
))
else:
topk_filled_outputs.append(
(
masked_input.replace(a_ , a_),
values[index].item(),
predicted_token,
))
return topk_filled_outputs
A = CamembertTokenizer.from_pretrained('''camembert-base''')
A = CamembertForMaskedLM.from_pretrained('''camembert-base''')
model.eval()
A = '''Le camembert est <mask> :)'''
print(fill_mask(masked_input, model, tokenizer, topk=3)) | 52 | 0 |
def UpperCAmelCase__ ( UpperCAmelCase__ :int = 10_00 ):
'''simple docstring'''
a , a = 1, 1
a = 2
while True:
a = 0
a = fa + fa
a , a = fa, f
index += 1
for _ in str(UpperCAmelCase__ ):
i += 1
if i == n:
break
return index
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 32 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
A_ : List[str] = (3, 9, -11, 0, 7, 5, 1, -1)
A_ : Optional[int] = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class _lowercase :
_UpperCAmelCase = 42
_UpperCAmelCase = 42
class _lowercase :
def __init__( self : List[Any] , __lowerCAmelCase : Iterable[int] ) -> None:
"""simple docstring"""
a = None
for i in sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ):
a = Node(__lowerCAmelCase , self.head )
def __iter__( self : Union[str, Any] ) -> Iterator[int]:
"""simple docstring"""
a = self.head
while node:
yield node.data
a = node.next_node
def __len__( self : Tuple ) -> int:
"""simple docstring"""
return sum(1 for _ in self )
def __str__( self : Union[str, Any] ) -> str:
"""simple docstring"""
return " -> ".join([str(__lowerCAmelCase ) for node in self] )
def UpperCAmelCase__ ( UpperCAmelCase__ :SortedLinkedList , UpperCAmelCase__ :SortedLinkedList ):
'''simple docstring'''
return SortedLinkedList(list(UpperCAmelCase__ ) + list(UpperCAmelCase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
A_ : Optional[Any] = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 32 | 1 |
'''simple docstring'''
def lowercase__ ( __UpperCamelCase : int , __UpperCamelCase : int ):
'''simple docstring'''
return "\n".join(
F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) )
if __name__ == "__main__":
print(multiplication_table(number=5, number_of_terms=10))
| 566 |
'''simple docstring'''
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
snake_case : Tuple = logging.get_logger(__name__)
snake_case : List[Any] = '▁'
snake_case : Tuple = {
'vocab_file': 'vocab.json',
'spm_file': 'sentencepiece.bpe.model',
}
snake_case : Optional[Any] = {
'vocab_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'
),
},
'spm_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'
)
},
}
snake_case : str = {
'facebook/s2t-small-librispeech-asr': 1_024,
}
snake_case : Optional[Any] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de']
snake_case : Union[str, Any] = {'mustc': MUSTC_LANGS}
class lowerCamelCase__( snake_case_ ):
UpperCamelCase : Union[str, Any] = VOCAB_FILES_NAMES
UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase : List[Any] = MAX_MODEL_INPUT_SIZES
UpperCamelCase : List[str] = ["input_ids", "attention_mask"]
UpperCamelCase : List[int] = []
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase = None , **__UpperCAmelCase , ):
"""simple docstring"""
__lowercase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , do_upper_case=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , lang_codes=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
__lowercase = do_upper_case
__lowercase = do_lower_case
__lowercase = load_json(__UpperCAmelCase )
__lowercase = {v: k for k, v in self.encoder.items()}
__lowercase = spm_file
__lowercase = load_spm(__UpperCAmelCase , self.sp_model_kwargs )
if lang_codes is not None:
__lowercase = lang_codes
__lowercase = LANGUAGES[lang_codes]
__lowercase = [F'''<lang:{lang}>''' for lang in self.langs]
__lowercase = {lang: self.sp_model.PieceToId(F'''<lang:{lang}>''' ) for lang in self.langs}
__lowercase = self.lang_tokens
__lowercase = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
__lowercase = {}
@property
def __magic_name__ ( self ):
"""simple docstring"""
return len(self.encoder )
@property
def __magic_name__ ( self ):
"""simple docstring"""
return self._tgt_lang
@tgt_lang.setter
def __magic_name__ ( self , __UpperCAmelCase ):
"""simple docstring"""
__lowercase = new_tgt_lang
self.set_tgt_lang_special_tokens(__UpperCAmelCase )
def __magic_name__ ( self , __UpperCAmelCase ):
"""simple docstring"""
__lowercase = self.lang_code_to_id[tgt_lang]
__lowercase = [lang_code_id]
def __magic_name__ ( self , __UpperCAmelCase ):
"""simple docstring"""
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def __magic_name__ ( self , __UpperCAmelCase ):
"""simple docstring"""
return self.encoder.get(__UpperCAmelCase , self.encoder[self.unk_token] )
def __magic_name__ ( self , __UpperCAmelCase ):
"""simple docstring"""
return self.decoder.get(__UpperCAmelCase , self.unk_token )
def __magic_name__ ( self , __UpperCAmelCase ):
"""simple docstring"""
__lowercase = []
__lowercase = """"""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
__lowercase = self.sp_model.decode(__UpperCAmelCase )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
__lowercase = []
else:
current_sub_tokens.append(__UpperCAmelCase )
__lowercase = self.sp_model.decode(__UpperCAmelCase )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase=None ):
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
__lowercase = [1] * len(self.prefix_tokens )
__lowercase = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(__UpperCAmelCase )) + suffix_ones
return prefix_ones + ([0] * len(__UpperCAmelCase )) + ([0] * len(__UpperCAmelCase )) + suffix_ones
def __magic_name__ ( self ):
"""simple docstring"""
__lowercase = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
"""simple docstring"""
__lowercase = self.__dict__.copy()
__lowercase = None
return state
def __setstate__( self , __UpperCAmelCase ):
"""simple docstring"""
__lowercase = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__lowercase = {}
__lowercase = load_spm(self.spm_file , self.sp_model_kwargs )
def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase = None ):
"""simple docstring"""
__lowercase = Path(__UpperCAmelCase )
assert save_dir.is_dir(), F'''{save_directory} should be a directory'''
__lowercase = save_dir / (
(filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""]
)
__lowercase = save_dir / (
(filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""]
)
save_json(self.encoder , __UpperCAmelCase )
if os.path.abspath(self.spm_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , __UpperCAmelCase )
elif not os.path.isfile(self.spm_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
__lowercase = self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
return (str(__UpperCAmelCase ), str(__UpperCAmelCase ))
def lowercase__ ( __UpperCamelCase : str , __UpperCamelCase : Dict[str, Any] ):
'''simple docstring'''
__lowercase = sentencepiece.SentencePieceProcessor(**__UpperCamelCase )
spm.Load(str(__UpperCamelCase ) )
return spm
def lowercase__ ( __UpperCamelCase : str ):
'''simple docstring'''
with open(__UpperCamelCase , """r""" ) as f:
return json.load(__UpperCamelCase )
def lowercase__ ( __UpperCamelCase : str , __UpperCamelCase : str ):
'''simple docstring'''
with open(__UpperCamelCase , """w""" ) as f:
json.dump(__UpperCamelCase , __UpperCamelCase , indent=2 )
| 566 | 1 |
'''simple docstring'''
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
snake_case_ : str = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n'
snake_case_ : int = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n'
snake_case_ : int = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n'
def __snake_case ( _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Optional[int]):
return float((preds == labels).mean())
def __snake_case ( _UpperCAmelCase : List[str], _UpperCAmelCase : Optional[Any]):
UpperCamelCase = simple_accuracy(_UpperCAmelCase, _UpperCAmelCase)
UpperCamelCase = float(fa_score(y_true=_UpperCAmelCase, y_pred=_UpperCAmelCase))
return {
"accuracy": acc,
"f1": fa,
}
def __snake_case ( _UpperCAmelCase : Optional[Any], _UpperCAmelCase : str):
UpperCamelCase = float(pearsonr(_UpperCAmelCase, _UpperCAmelCase)[0])
UpperCamelCase = float(spearmanr(_UpperCAmelCase, _UpperCAmelCase)[0])
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION )
class lowercase__ ( datasets.Metric ):
'''simple docstring'''
def UpperCAmelCase ( self ):
'''simple docstring'''
if self.config_name not in [
"sst2",
"mnli",
"mnli_mismatched",
"mnli_matched",
"cola",
"stsb",
"mrpc",
"qqp",
"qnli",
"rte",
"wnli",
"hans",
]:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["sst2", "mnli", "mnli_mismatched", "mnli_matched", '''
'''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ),
'''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ),
} ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , )
def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ ):
'''simple docstring'''
if self.config_name == "cola":
return {"matthews_correlation": matthews_corrcoef(lowerCamelCase__ , lowerCamelCase__ )}
elif self.config_name == "stsb":
return pearson_and_spearman(lowerCamelCase__ , lowerCamelCase__ )
elif self.config_name in ["mrpc", "qqp"]:
return acc_and_fa(lowerCamelCase__ , lowerCamelCase__ )
elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
return {"accuracy": simple_accuracy(lowerCamelCase__ , lowerCamelCase__ )}
else:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["sst2", "mnli", "mnli_mismatched", "mnli_matched", '''
'''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
| 350 |
'''simple docstring'''
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
snake_case_ : Union[str, Any] = {'vocab_file': 'spiece.model'}
snake_case_ : Any = {
'vocab_file': {
'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model',
}
}
snake_case_ : Dict = {
'AI-Sweden/gpt-sw3-126m': 2_048,
'AI-Sweden/gpt-sw3-350m': 2_048,
'AI-Sweden/gpt-sw3-1.6b': 2_048,
'AI-Sweden/gpt-sw3-6.7b': 2_048,
'AI-Sweden/gpt-sw3-20b': 2_048,
}
class lowercase__ ( snake_case_ ):
'''simple docstring'''
_snake_case = VOCAB_FILES_NAMES
_snake_case = PRETRAINED_VOCAB_FILES_MAP
_snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case = ['''input_ids''', '''attention_mask''']
def __init__( self , lowerCamelCase__ , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__ = None , **lowerCamelCase__ , ):
'''simple docstring'''
UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
UpperCamelCase = kwargs.get('''name_or_path''' )
if name_or_path is None:
logger.warning(
'''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,'''
''' you are testing the model, this can safely be ignored''' )
UpperCamelCase = '''None'''
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
UpperCamelCase = '''<|endoftext|>''' if eos_token is None else eos_token
UpperCamelCase = '''<unk>''' if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
UpperCamelCase = unk_token if pad_token is None else pad_token
UpperCamelCase = eos_token if bos_token is None else bos_token
else:
UpperCamelCase = '''<pad>''' if pad_token is None else pad_token
UpperCamelCase = '''<s>''' if bos_token is None else bos_token
super().__init__(
do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , )
UpperCamelCase = do_lower_case
UpperCamelCase = remove_space
UpperCamelCase = keep_accents
UpperCamelCase = vocab_file
UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCamelCase__ )
# Used for whitespace normalization in input texts
# fmt : off
UpperCamelCase = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', ''''''}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
UpperCamelCase = re.compile(
f'[{"".join(map(lowerCamelCase__ , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' )
def __getstate__( self ):
'''simple docstring'''
UpperCamelCase = self.__dict__.copy()
UpperCamelCase = None
return state
def __setstate__( self , lowerCamelCase__ ):
'''simple docstring'''
UpperCamelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCamelCase = {}
UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def UpperCAmelCase ( self ):
'''simple docstring'''
return len(self.sp_model )
def UpperCAmelCase ( self , lowerCamelCase__ ):
'''simple docstring'''
UpperCamelCase = self.non_printing_characters_re.sub('''''' , lowerCamelCase__ )
# Normalize whitespaces
UpperCamelCase = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] )
# NFC Unicode normalization
UpperCamelCase = unicodedata.normalize('''NFC''' , lowerCamelCase__ )
return text
def UpperCAmelCase ( self , lowerCamelCase__ , **lowerCamelCase__ ):
'''simple docstring'''
UpperCamelCase = self.preprocess_text(lowerCamelCase__ )
return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ )
def UpperCAmelCase ( self , lowerCamelCase__ ):
'''simple docstring'''
return self.sp_model.PieceToId(lowerCamelCase__ )
def UpperCAmelCase ( self , lowerCamelCase__ ):
'''simple docstring'''
return self.sp_model.IdToPiece(lowerCamelCase__ )
@staticmethod
def UpperCAmelCase ( lowerCamelCase__ ):
'''simple docstring'''
return out_string
def UpperCAmelCase ( self , lowerCamelCase__ ):
'''simple docstring'''
UpperCamelCase = []
UpperCamelCase = ''''''
UpperCamelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowerCamelCase__ ) + token
UpperCamelCase = True
UpperCamelCase = []
else:
current_sub_tokens.append(lowerCamelCase__ )
UpperCamelCase = False
out_string += self.sp_model.decode(lowerCamelCase__ )
return out_string
def UpperCAmelCase ( self ):
'''simple docstring'''
UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None ):
'''simple docstring'''
if not os.path.isdir(lowerCamelCase__ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
UpperCamelCase = os.path.join(
lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCamelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCamelCase__ , '''wb''' ) as fi:
UpperCamelCase = self.sp_model.serialized_model_proto()
fi.write(lowerCamelCase__ )
return (out_vocab_file,)
def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = False ):
'''simple docstring'''
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
UpperCamelCase = self.preprocess_text(lowerCamelCase__ )
UpperCamelCase = self.sp_model.encode(lowerCamelCase__ )
else:
UpperCamelCase = [self.preprocess_text(lowerCamelCase__ ) for t in text]
UpperCamelCase = self.sp_model.encode(lowerCamelCase__ )
if return_tensors is True or return_tensors == "pt":
UpperCamelCase = torch.tensor(lowerCamelCase__ )
return token_ids
def UpperCAmelCase ( self , lowerCamelCase__ ):
'''simple docstring'''
return self.sp_model.decode(lowerCamelCase__ )
def UpperCAmelCase ( self , lowerCamelCase__ ):
'''simple docstring'''
UpperCamelCase = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()]
UpperCamelCase = (
f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(lowerCamelCase__ ) + f'{self.bos_token}Bot:'
)
return self.encode(text=lowerCamelCase__ )
| 350 | 1 |
from queue import PriorityQueue
from typing import Any
import numpy as np
def __snake_case ( __UpperCamelCase : dict ,__UpperCamelCase : str ,__UpperCamelCase : set ,__UpperCamelCase : set ,__UpperCamelCase : dict ,__UpperCamelCase : dict ,__UpperCamelCase : PriorityQueue ,__UpperCamelCase : dict ,__UpperCamelCase : float | int ,):
"""simple docstring"""
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
A_ = cst_fwd.get(__UpperCamelCase ,np.inf )
A_ = cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
A_ = new_cost_f
A_ = v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
A_ = cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : dict ,__UpperCamelCase : dict ):
"""simple docstring"""
A_ = -1
A_ = set()
A_ = set()
A_ = {source: 0}
A_ = {destination: 0}
A_ = {source: None}
A_ = {destination: None}
A_ = PriorityQueue()
A_ = PriorityQueue()
A_ = np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
A_ , A_ = queue_forward.get()
visited_forward.add(__UpperCamelCase )
A_ , A_ = queue_backward.get()
visited_backward.add(__UpperCamelCase )
A_ = pass_and_relaxation(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,)
A_ = pass_and_relaxation(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,)
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
A_ = shortest_distance
return shortest_path_distance
__a :List[str] = {
'B': [['C', 1]],
'C': [['D', 1]],
'D': [['F', 1]],
'E': [['B', 1], ['G', 2]],
'F': [],
'G': [['F', 1]],
}
__a :Union[str, Any] = {
'B': [['E', 1]],
'C': [['B', 1]],
'D': [['C', 1]],
'F': [['D', 1], ['G', 1]],
'E': [[None, np.inf]],
'G': [['E', 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod() | 86 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
a : Dict = StableDiffusionSAGPipeline
a : Any = TEXT_TO_IMAGE_PARAMS
a : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS
a : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS
a : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS
a : Tuple = False
def _snake_case ( self : List[Any] ) ->Tuple:
'''simple docstring'''
torch.manual_seed(0 )
_UpperCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
_UpperCAmelCase = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , )
torch.manual_seed(0 )
_UpperCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
_UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
_UpperCAmelCase = CLIPTextModel(__UpperCamelCase )
_UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_UpperCAmelCase = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any=0 ) ->Any:
'''simple docstring'''
if str(__UpperCamelCase ).startswith("""mps""" ):
_UpperCAmelCase = torch.manual_seed(__UpperCamelCase )
else:
_UpperCAmelCase = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase )
_UpperCAmelCase = {
"""prompt""": """.""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 1.0,
"""sag_scale""": 1.0,
"""output_type""": """numpy""",
}
return inputs
def _snake_case ( self : Optional[Any] ) ->Optional[int]:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
def _snake_case ( self : Union[str, Any] ) ->str:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self : Tuple ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" )
_UpperCAmelCase = sag_pipe.to(__UpperCamelCase )
sag_pipe.set_progress_bar_config(disable=__UpperCamelCase )
_UpperCAmelCase = """."""
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = sag_pipe(
[prompt] , generator=__UpperCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" )
_UpperCAmelCase = output.images
_UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_UpperCAmelCase = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def _snake_case ( self : Union[str, Any] ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
_UpperCAmelCase = sag_pipe.to(__UpperCamelCase )
sag_pipe.set_progress_bar_config(disable=__UpperCamelCase )
_UpperCAmelCase = """."""
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = sag_pipe(
[prompt] , generator=__UpperCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" )
_UpperCAmelCase = output.images
_UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_UpperCAmelCase = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def _snake_case ( self : str ) ->str:
'''simple docstring'''
_UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
_UpperCAmelCase = sag_pipe.to(__UpperCamelCase )
sag_pipe.set_progress_bar_config(disable=__UpperCamelCase )
_UpperCAmelCase = """."""
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = sag_pipe(
[prompt] , width=7_68 , height=5_12 , generator=__UpperCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , )
_UpperCAmelCase = output.images
assert image.shape == (1, 5_12, 7_68, 3) | 555 | 0 |
'''simple docstring'''
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
lowerCAmelCase_ : Optional[int] = '''src/diffusers'''
# Matches is_xxx_available()
lowerCAmelCase_ : Any = re.compile(r'''is\_([a-z_]*)_available\(\)''')
# Matches from xxx import bla
lowerCAmelCase_ : List[str] = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
lowerCAmelCase_ : Optional[Any] = '''
{0} = None
'''
lowerCAmelCase_ : Optional[Any] = '''
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
'''
lowerCAmelCase_ : List[Any] = '''
def {0}(*args, **kwargs):
requires_backends({0}, {1})
'''
def __A ( lowerCAmelCase_ ):
_UpperCAmelCase : Optional[Any] = _re_backend.findall(lowerCAmelCase_ )
if len(lowerCAmelCase_ ) == 0:
return None
return "_and_".join(lowerCAmelCase_ )
def __A ( ):
with open(os.path.join(lowerCAmelCase_ , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_UpperCAmelCase : Optional[Any] = f.readlines()
# Get to the point we do the actual imports for type checking
_UpperCAmelCase : int = 0
_UpperCAmelCase : Optional[Any] = {}
# Go through the end of the file
while line_index < len(lowerCAmelCase_ ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
_UpperCAmelCase : List[Any] = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("""else:""" ):
line_index += 1
line_index += 1
_UpperCAmelCase : List[Any] = []
# Until we unindent, add backend objects to the list
while line_index < len(lowerCAmelCase_ ) and len(lines[line_index] ) > 1:
_UpperCAmelCase : List[Any] = lines[line_index]
_UpperCAmelCase : Optional[int] = _re_single_line_import.search(lowerCAmelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(lowerCAmelCase_ ) > 0:
_UpperCAmelCase : str = objects
else:
line_index += 1
return backend_specific_objects
def __A ( lowerCAmelCase_ , lowerCAmelCase_ ):
if name.isupper():
return DUMMY_CONSTANT.format(lowerCAmelCase_ )
elif name.islower():
return DUMMY_FUNCTION.format(lowerCAmelCase_ , lowerCAmelCase_ )
else:
return DUMMY_CLASS.format(lowerCAmelCase_ , lowerCAmelCase_ )
def __A ( lowerCAmelCase_=None ):
if backend_specific_objects is None:
_UpperCAmelCase : Union[str, Any] = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
_UpperCAmelCase : Optional[Any] = {}
for backend, objects in backend_specific_objects.items():
_UpperCAmelCase : List[Any] = """[""" + """, """.join(f"\"{b}\"" for b in backend.split("""_and_""" ) ) + """]"""
_UpperCAmelCase : Tuple = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n"""
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(lowerCAmelCase_ , lowerCAmelCase_ ) for o in objects] )
_UpperCAmelCase : Tuple = dummy_file
return dummy_files
def __A ( lowerCAmelCase_=False ):
_UpperCAmelCase : List[Any] = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
_UpperCAmelCase : List[str] = {"""torch""": """pt"""}
# Locate actual dummy modules and read their content.
_UpperCAmelCase : Optional[Any] = os.path.join(lowerCAmelCase_ , """utils""" )
_UpperCAmelCase : int = {
backend: os.path.join(lowerCAmelCase_ , f"dummy_{short_names.get(lowerCAmelCase_ , lowerCAmelCase_ )}_objects.py" )
for backend in dummy_files.keys()
}
_UpperCAmelCase : Optional[Any] = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(lowerCAmelCase_ ):
with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_UpperCAmelCase : Dict = f.read()
else:
_UpperCAmelCase : Dict = """"""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
f"Updating diffusers.utils.dummy_{short_names.get(lowerCAmelCase_ , lowerCAmelCase_ )}_objects.py as the main "
"""__init__ has new objects.""" )
with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"""The main __init__ has objects that are not present in """
f"diffusers.utils.dummy_{short_names.get(lowerCAmelCase_ , lowerCAmelCase_ )}_objects.py. Run `make fix-copies` "
"""to fix this.""" )
if __name__ == "__main__":
lowerCAmelCase_ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
lowerCAmelCase_ : Union[str, Any] = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 156 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase_ : List[str] = {
'''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''],
'''processing_layoutlmv2''': ['''LayoutLMv2Processor'''],
'''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : Optional[Any] = ['''LayoutLMv2TokenizerFast''']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : Dict = ['''LayoutLMv2FeatureExtractor''']
lowerCAmelCase_ : str = ['''LayoutLMv2ImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : Any = [
'''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''LayoutLMv2ForQuestionAnswering''',
'''LayoutLMv2ForSequenceClassification''',
'''LayoutLMv2ForTokenClassification''',
'''LayoutLMv2Layer''',
'''LayoutLMv2Model''',
'''LayoutLMv2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 156 | 1 |
"""simple docstring"""
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import (
BaseOutput,
OptionalDependencyNotAvailable,
is_flax_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_onnx_available,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
@dataclass
class UpperCamelCase_ ( UpperCamelCase):
"""simple docstring"""
snake_case__ : Union[List[PIL.Image.Image], np.ndarray]
snake_case__ : Optional[List[bool]]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_cycle_diffusion import CycleDiffusionPipeline
from .pipeline_stable_diffusion import StableDiffusionPipeline
from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline
from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline
from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline
from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy
from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline
from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline
from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline
from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline
from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline
from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline
from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline
from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline
from .pipeline_stable_unclip import StableUnCLIPPipeline
from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline
from .safety_checker import StableDiffusionSafetyChecker
from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline
else:
from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.26.0''')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
StableDiffusionDepthaImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionPixaPixZeroPipeline,
)
else:
from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline
from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline
from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline
try:
if not (
is_torch_available()
and is_transformers_available()
and is_k_diffusion_available()
and is_k_diffusion_version('''>=''', '''0.0.12''')
):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
else:
from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline
try:
if not (is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_onnx_objects import * # noqa F403
else:
from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline
from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline
from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline
from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy
from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline
if is_transformers_available() and is_flax_available():
import flax
@flax.struct.dataclass
class UpperCamelCase_ ( UpperCamelCase):
"""simple docstring"""
snake_case__ : np.ndarray
snake_case__ : List[bool]
from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState
from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline
from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline
from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline
from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
| 682 |
"""simple docstring"""
import argparse
import os
import re
import torch
from flax.traverse_util import flatten_dict
from tax import checkpoints
from transformers import (
AutoTokenizer,
PixaStructConfig,
PixaStructForConditionalGeneration,
PixaStructImageProcessor,
PixaStructProcessor,
PixaStructTextConfig,
PixaStructVisionConfig,
)
def UpperCAmelCase__ (lowerCAmelCase_ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(lowerCAmelCase_ )
__SCREAMING_SNAKE_CASE = flatten_dict(lowerCAmelCase_ )
return flax_params
def UpperCAmelCase__ (lowerCAmelCase_ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = {
"token_embedder": "embeddings",
"encoder_norm": "layernorm",
"kernel": "weight",
".out": ".output",
"scale": "weight",
"embedders_0.pos_embedding": "row_embedder.weight",
"embedders_1.pos_embedding": "column_embedder.weight",
}
__SCREAMING_SNAKE_CASE = {
"query": "attention.query",
"key": "attention.key",
"value": "attention.value",
"output.dense": "output",
"encoder_decoder_attention.o": "encoder_decoder_attention.attention.o",
"pre_self_attention_layer_norm": "self_attention.layer_norm",
"pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm",
"mlp.": "mlp.DenseReluDense.",
"pre_mlp_layer_norm": "mlp.layer_norm",
"self_attention.o": "self_attention.attention.o",
"decoder.embeddings.embedding": "decoder.embed_tokens.weight",
"decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight",
"decoder.decoder_norm.weight": "decoder.final_layer_norm.weight",
"decoder.logits_dense.weight": "decoder.lm_head.weight",
}
for key in flax_dict.keys():
if "target" in key:
# remove the first prefix from the key
__SCREAMING_SNAKE_CASE = ".".join(key[1:] )
# rename the key
for old, new in CONVERSION_MAPPING.items():
__SCREAMING_SNAKE_CASE = new_key.replace(lowerCAmelCase_ , lowerCAmelCase_ )
if "decoder" in new_key:
for old, new in DECODER_CONVERSION_MAPPING.items():
__SCREAMING_SNAKE_CASE = new_key.replace(lowerCAmelCase_ , lowerCAmelCase_ )
if "layers" in new_key and "decoder" not in new_key:
# use regex to replace the layer number
__SCREAMING_SNAKE_CASE = re.sub(R"layers_(\d+)" , R"layer.\1" , lowerCAmelCase_ )
__SCREAMING_SNAKE_CASE = new_key.replace("encoder" , "encoder.encoder" )
elif "layers" in new_key and "decoder" in new_key:
# use regex to replace the layer number
__SCREAMING_SNAKE_CASE = re.sub(R"layers_(\d+)" , R"layer.\1" , lowerCAmelCase_ )
__SCREAMING_SNAKE_CASE = flax_dict[key]
__SCREAMING_SNAKE_CASE = {}
# convert converted_dict into torch format
for key in converted_dict.keys():
if ("embed_tokens" not in key) and ("embedder" not in key):
__SCREAMING_SNAKE_CASE = torch.from_numpy(converted_dict[key].T )
else:
__SCREAMING_SNAKE_CASE = torch.from_numpy(converted_dict[key] )
return converted_torch_dict
def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = get_flax_param(lowerCAmelCase_ )
if not use_large:
__SCREAMING_SNAKE_CASE = PixaStructVisionConfig()
__SCREAMING_SNAKE_CASE = PixaStructTextConfig()
else:
__SCREAMING_SNAKE_CASE = PixaStructVisionConfig(
hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 )
__SCREAMING_SNAKE_CASE = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 )
__SCREAMING_SNAKE_CASE = PixaStructConfig(
vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=lowerCAmelCase_ )
__SCREAMING_SNAKE_CASE = PixaStructForConditionalGeneration(lowerCAmelCase_ )
__SCREAMING_SNAKE_CASE = rename_and_convert_flax_params(lowerCAmelCase_ )
model.load_state_dict(lowerCAmelCase_ )
__SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer" )
__SCREAMING_SNAKE_CASE = PixaStructImageProcessor()
__SCREAMING_SNAKE_CASE = PixaStructProcessor(image_processor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ )
if use_large:
__SCREAMING_SNAKE_CASE = 4096
__SCREAMING_SNAKE_CASE = True
# mkdir if needed
os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ )
model.save_pretrained(lowerCAmelCase_ )
processor.save_pretrained(lowerCAmelCase_ )
print("Model saved in {}".format(lowerCAmelCase_ ) )
if __name__ == "__main__":
a__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''')
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''')
parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''')
a__ : Optional[Any] = parser.parse_args()
convert_pixastruct_original_pytorch_checkpoint_to_hf(
args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large
)
| 682 | 1 |
"""simple docstring"""
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class __a :
UpperCamelCase_ : str
UpperCamelCase_ : str = None
@staticmethod
def _SCREAMING_SNAKE_CASE ( )-> Union[str, Any]:
"""simple docstring"""
raise NotImplementedError
def _SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , **UpperCAmelCase_ : Dict )-> Union[str, Any]:
"""simple docstring"""
raise NotImplementedError
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase_ : str )-> Any:
"""simple docstring"""
raise NotImplementedError
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> List[str]:
"""simple docstring"""
if not self.is_available():
raise RuntimeError(
f"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." )
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] )-> int:
"""simple docstring"""
return f"`pip install {cls.pip_package or cls.name}`"
class __a ( _lowerCAmelCase ):
UpperCamelCase_ : List[str] = '''optuna'''
@staticmethod
def _SCREAMING_SNAKE_CASE ( )-> Union[str, Any]:
"""simple docstring"""
return is_optuna_available()
def _SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any] )-> Union[str, Any]:
"""simple docstring"""
return run_hp_search_optuna(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase_ : Union[str, Any] )-> Union[str, Any]:
"""simple docstring"""
return default_hp_space_optuna(UpperCAmelCase_ )
class __a ( _lowerCAmelCase ):
UpperCamelCase_ : Optional[int] = '''ray'''
UpperCamelCase_ : Tuple = '''\'ray[tune]\''''
@staticmethod
def _SCREAMING_SNAKE_CASE ( )-> Any:
"""simple docstring"""
return is_ray_available()
def _SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : str , **UpperCAmelCase_ : int )-> int:
"""simple docstring"""
return run_hp_search_ray(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase_ : str )-> Union[str, Any]:
"""simple docstring"""
return default_hp_space_ray(UpperCAmelCase_ )
class __a ( _lowerCAmelCase ):
UpperCamelCase_ : Union[str, Any] = '''sigopt'''
@staticmethod
def _SCREAMING_SNAKE_CASE ( )-> List[str]:
"""simple docstring"""
return is_sigopt_available()
def _SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , **UpperCAmelCase_ : Tuple )-> Tuple:
"""simple docstring"""
return run_hp_search_sigopt(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase_ : Tuple )-> Optional[Any]:
"""simple docstring"""
return default_hp_space_sigopt(UpperCAmelCase_ )
class __a ( _lowerCAmelCase ):
UpperCamelCase_ : Any = '''wandb'''
@staticmethod
def _SCREAMING_SNAKE_CASE ( )-> List[Any]:
"""simple docstring"""
return is_wandb_available()
def _SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , **UpperCAmelCase_ : List[str] )-> str:
"""simple docstring"""
return run_hp_search_wandb(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase_ : List[Any] )-> List[Any]:
"""simple docstring"""
return default_hp_space_wandb(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def lowerCamelCase__ ( )-> str:
"""simple docstring"""
UpperCamelCase = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(UpperCAmelCase_ ) > 0:
UpperCamelCase = available_backends[0].name
if len(UpperCAmelCase_ ) > 1:
logger.info(
F"{len(UpperCAmelCase_ )} hyperparameter search backends available. Using {name} as the default." )
return name
raise RuntimeError(
"No hyperparameter search backend available.\n"
+ "\n".join(
F" - To install {backend.name} run {backend.pip_install()}"
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 702 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
SCREAMING_SNAKE_CASE = {
"""configuration_graphormer""": ["""GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GraphormerConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE = [
"""GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GraphormerForGraphClassification""",
"""GraphormerModel""",
"""GraphormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 556 | 0 |
'''simple docstring'''
from typing import Callable, Optional
from .. import Features
from ..packaged_modules.generator.generator import Generator
from .abc import AbstractDatasetInputStream
class __lowercase ( _lowercase ):
def __init__(self , A , A = None , A = None , A = False , A = False , A = None , A = None , **A , ):
super().__init__(
features=A , cache_dir=A , keep_in_memory=A , streaming=A , num_proc=A , **A , )
lowerCamelCase_ : Optional[Any] = Generator(
cache_dir=A , features=A , generator=A , gen_kwargs=A , **A , )
def UpperCAmelCase__ (self ):
# Build iterable dataset
if self.streaming:
lowerCamelCase_ : int = self.builder.as_streaming_dataset(split='''train''' )
# Build regular (map-style) dataset
else:
lowerCamelCase_ : Optional[Any] = None
lowerCamelCase_ : Optional[Any] = None
lowerCamelCase_ : Optional[Any] = None
lowerCamelCase_ : List[str] = None
self.builder.download_and_prepare(
download_config=A , download_mode=A , verification_mode=A , base_path=A , num_proc=self.num_proc , )
lowerCamelCase_ : Union[str, Any] = self.builder.as_dataset(
split='''train''' , verification_mode=A , in_memory=self.keep_in_memory )
return dataset
| 422 |
'''simple docstring'''
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def lowercase_ ( _lowercase ) -> str:
'''simple docstring'''
if (
(cp >= 0x4_E_0_0 and cp <= 0x9_F_F_F)
or (cp >= 0x3_4_0_0 and cp <= 0x4_D_B_F) #
or (cp >= 0x2_0_0_0_0 and cp <= 0x2_A_6_D_F) #
or (cp >= 0x2_A_7_0_0 and cp <= 0x2_B_7_3_F) #
or (cp >= 0x2_B_7_4_0 and cp <= 0x2_B_8_1_F) #
or (cp >= 0x2_B_8_2_0 and cp <= 0x2_C_E_A_F) #
or (cp >= 0xF_9_0_0 and cp <= 0xF_A_F_F)
or (cp >= 0x2_F_8_0_0 and cp <= 0x2_F_A_1_F) #
): #
return True
return False
def lowercase_ ( _lowercase ) -> Optional[int]:
'''simple docstring'''
for char in word:
lowerCamelCase_ : List[str] = ord(_lowercase )
if not _is_chinese_char(_lowercase ):
return 0
return 1
def lowercase_ ( _lowercase ) -> Dict:
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = set()
for token in tokens:
lowerCamelCase_ : Optional[int] = len(_lowercase ) > 1 and is_chinese(_lowercase )
if chinese_word:
word_set.add(_lowercase )
lowerCamelCase_ : List[str] = list(_lowercase )
return word_list
def lowercase_ ( _lowercase , _lowercase ) -> Optional[Any]:
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
lowerCamelCase_ : List[Any] = max([len(_lowercase ) for w in chinese_word_set] )
lowerCamelCase_ : int = bert_tokens
lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = 0, len(_lowercase )
while start < end:
lowerCamelCase_ : int = True
if is_chinese(bert_word[start] ):
lowerCamelCase_ : Dict = min(end - start , _lowercase )
for i in range(_lowercase , 1 , -1 ):
lowerCamelCase_ : str = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowerCamelCase_ : Union[str, Any] = '''##''' + bert_word[j]
lowerCamelCase_ : Union[str, Any] = start + i
lowerCamelCase_ : Optional[Any] = False
break
if single_word:
start += 1
return bert_word
def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> List[Any]:
'''simple docstring'''
lowerCamelCase_ : Optional[Any] = []
for i in range(0 , len(_lowercase ) , 100 ):
lowerCamelCase_ : Any = ltp_tokenizer.seg(lines[i : i + 100] )[0]
lowerCamelCase_ : Union[str, Any] = [get_chinese_word(_lowercase ) for r in res]
ltp_res.extend(_lowercase )
assert len(_lowercase ) == len(_lowercase )
lowerCamelCase_ : Optional[Any] = []
for i in range(0 , len(_lowercase ) , 100 ):
lowerCamelCase_ : Tuple = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowercase , truncation=_lowercase , max_length=512 )
bert_res.extend(res['''input_ids'''] )
assert len(_lowercase ) == len(_lowercase )
lowerCamelCase_ : str = []
for input_ids, chinese_word in zip(_lowercase , _lowercase ):
lowerCamelCase_ : Tuple = []
for id in input_ids:
lowerCamelCase_ : Tuple = bert_tokenizer._convert_id_to_token(_lowercase )
input_tokens.append(_lowercase )
lowerCamelCase_ : List[Any] = add_sub_symbol(_lowercase , _lowercase )
lowerCamelCase_ : Optional[Any] = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_lowercase ):
if token[:2] == "##":
lowerCamelCase_ : Optional[int] = token[2:]
# save chinese tokens' pos
if len(_lowercase ) == 1 and _is_chinese_char(ord(_lowercase ) ):
ref_id.append(_lowercase )
ref_ids.append(_lowercase )
assert len(_lowercase ) == len(_lowercase )
return ref_ids
def lowercase_ ( _lowercase ) -> List[Any]:
'''simple docstring'''
with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f:
lowerCamelCase_ : List[Any] = f.readlines()
lowerCamelCase_ : List[Any] = [line.strip() for line in data if len(_lowercase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowerCamelCase_ : Optional[int] = LTP(args.ltp ) # faster in GPU device
lowerCamelCase_ : Tuple = BertTokenizer.from_pretrained(args.bert )
lowerCamelCase_ : int = prepare_ref(_lowercase , _lowercase , _lowercase )
with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f:
lowerCamelCase_ : Optional[Any] = [json.dumps(_lowercase ) + '''\n''' for ref in ref_ids]
f.writelines(_lowercase )
if __name__ == "__main__":
__lowercase : int = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path'''
)
parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''')
parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''')
__lowercase : Union[str, Any] = parser.parse_args()
main(args)
| 422 | 1 |
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class _lowercase :
"""simple docstring"""
def __init__( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : int=13 , __lowerCamelCase : Union[str, Any]=30 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Any=32 , __lowerCamelCase : Dict=2 , __lowerCamelCase : str=4 , __lowerCamelCase : Tuple=37 , __lowerCamelCase : Union[str, Any]="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Union[str, Any]=10 , __lowerCamelCase : Tuple=0.0_2 , __lowerCamelCase : Any=3 , __lowerCamelCase : str=None , __lowerCamelCase : Optional[Any]=2 , ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = parent
lowerCamelCase__ : int = batch_size
lowerCamelCase__ : Any = image_size
lowerCamelCase__ : List[str] = patch_size
lowerCamelCase__ : Tuple = num_channels
lowerCamelCase__ : Optional[Any] = is_training
lowerCamelCase__ : List[Any] = use_labels
lowerCamelCase__ : Optional[int] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : Any = num_attention_heads
lowerCamelCase__ : Optional[int] = intermediate_size
lowerCamelCase__ : str = hidden_act
lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob
lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob
lowerCamelCase__ : Dict = type_sequence_label_size
lowerCamelCase__ : List[str] = initializer_range
lowerCamelCase__ : int = scope
lowerCamelCase__ : List[str] = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
lowerCamelCase__ : List[Any] = (image_size // patch_size) ** 2
lowerCamelCase__ : Tuple = num_patches + 2
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ : Any = None
if self.use_labels:
lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Optional[Any] = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Dict ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = TFDeiTModel(config=__lowerCamelCase )
lowerCamelCase__ : List[Any] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : str ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = TFDeiTForMaskedImageModeling(config=__lowerCamelCase )
lowerCamelCase__ : List[str] = model(__lowerCamelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
lowerCamelCase__ : Optional[Any] = 1
lowerCamelCase__ : Union[str, Any] = TFDeiTForMaskedImageModeling(__lowerCamelCase )
lowerCamelCase__ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCamelCase__ : Any = model(__lowerCamelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.type_sequence_label_size
lowerCamelCase__ : int = TFDeiTForImageClassification(__lowerCamelCase )
lowerCamelCase__ : int = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowerCamelCase__ : Optional[Any] = 1
lowerCamelCase__ : Tuple = TFDeiTForImageClassification(__lowerCamelCase )
lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCamelCase__ : str = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : str = self.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = config_and_inputs
lowerCamelCase__ : List[Any] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
A__ = (
{
"""feature-extraction""": TFDeiTModel,
"""image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
A__ = False
A__ = False
A__ = False
A__ = False
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : int = TFDeiTModelTester(self )
lowerCamelCase__ : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds" )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
pass
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ : Tuple = model_class(__lowerCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
lowerCamelCase__ : Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCamelCase , tf.keras.layers.Dense ) )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ : Optional[int] = model_class(__lowerCamelCase )
lowerCamelCase__ : List[str] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ : int = [*signature.parameters.keys()]
lowerCamelCase__ : Dict = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCamelCase )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
def lowerCAmelCase ( self : str , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=False ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : int = TFDeiTModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@cached_property
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" )
if is_vision_available()
else None
)
@slow
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" )
lowerCamelCase__ : Optional[int] = self.default_image_processor
lowerCamelCase__ : int = prepare_img()
lowerCamelCase__ : str = image_processor(images=__lowerCamelCase , return_tensors="tf" )
# forward pass
lowerCamelCase__ : List[str] = model(**__lowerCamelCase )
# verify the logits
lowerCamelCase__ : List[str] = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) )
| 715 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
A : List[Any] = logging.get_logger(__name__)
A : Any = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "blenderbot-small"
A__ = ["past_key_values"]
A__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Dict , __lowerCamelCase : List[str]=50265 , __lowerCamelCase : str=512 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : str=2048 , __lowerCamelCase : str=16 , __lowerCamelCase : List[Any]=8 , __lowerCamelCase : Any=2048 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Dict=False , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : str=2 , __lowerCamelCase : Any=2 , **__lowerCamelCase : int , ):
'''simple docstring'''
lowerCamelCase__ : str = vocab_size
lowerCamelCase__ : Union[str, Any] = max_position_embeddings
lowerCamelCase__ : Union[str, Any] = d_model
lowerCamelCase__ : Optional[int] = encoder_ffn_dim
lowerCamelCase__ : Dict = encoder_layers
lowerCamelCase__ : Any = encoder_attention_heads
lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim
lowerCamelCase__ : str = decoder_layers
lowerCamelCase__ : Optional[Any] = decoder_attention_heads
lowerCamelCase__ : List[str] = dropout
lowerCamelCase__ : List[Any] = attention_dropout
lowerCamelCase__ : Dict = activation_dropout
lowerCamelCase__ : Optional[Any] = activation_function
lowerCamelCase__ : Dict = init_std
lowerCamelCase__ : List[str] = encoder_layerdrop
lowerCamelCase__ : Dict = decoder_layerdrop
lowerCamelCase__ : int = use_cache
lowerCamelCase__ : List[Any] = encoder_layers
lowerCamelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , )
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : int = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ : Union[str, Any] = {0: "batch"}
lowerCamelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
lowerCamelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"}
lowerCamelCase__ : str = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
elif self.task == "causal-lm":
# TODO: figure this case out.
lowerCamelCase__ : Tuple = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"}
else:
lowerCamelCase__ : Any = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
] )
return common_inputs
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Union[str, Any] = super().outputs
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self ).outputs
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Any = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def lowerCAmelCase ( self : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Generate decoder inputs
lowerCamelCase__ : List[str] = seq_length if not self.use_past else 1
lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
lowerCamelCase__ : Optional[Any] = dict(**__lowerCamelCase , **__lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : Tuple = common_inputs["input_ids"].shape
lowerCamelCase__ : int = common_inputs["decoder_input_ids"].shape[1]
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.num_attention_heads
lowerCamelCase__ : str = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Optional[int] = decoder_seq_length + 3
lowerCamelCase__ : Dict = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
lowerCamelCase__ : List[Any] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Optional[Any] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
lowerCamelCase__ , lowerCamelCase__ : str = self.num_layers
lowerCamelCase__ : Union[str, Any] = min(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = max(__lowerCamelCase , __lowerCamelCase ) - min_num_layers
lowerCamelCase__ : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(__lowerCamelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
) )
# TODO: test this.
lowerCamelCase__ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(__lowerCamelCase , __lowerCamelCase ):
common_inputs["past_key_values"].append((torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) )
return common_inputs
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : int = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
lowerCamelCase__ : str = seqlen + 2
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_layers
lowerCamelCase__ , lowerCamelCase__ : int = self.num_attention_heads
lowerCamelCase__ : Tuple = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Union[str, Any] = common_inputs["attention_mask"].dtype
lowerCamelCase__ : List[str] = torch.cat(
[common_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Tuple = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(__lowerCamelCase )
]
return common_inputs
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowerCamelCase__ : List[str] = tokenizer.num_special_tokens_to_add(__lowerCamelCase )
lowerCamelCase__ : Dict = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCamelCase )
# Generate dummy inputs according to compute batch and sequence
lowerCamelCase__ : Optional[int] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size
lowerCamelCase__ : Optional[Any] = dict(tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase ) )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
elif self.task == "causal-lm":
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_causal_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
else:
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Dict = super()._flatten_past_key_values_(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self )._flatten_past_key_values_(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
| 5 | 0 |
import math
from collections.abc import Iterator
from itertools import takewhile
def UpperCAmelCase_ ( __lowerCAmelCase ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCAmelCase_ ( ) -> Iterator[int]:
__lowercase : List[str] = 2
while True:
if is_prime(__lowerCAmelCase ):
yield num
num += 1
def UpperCAmelCase_ ( __lowerCAmelCase = 2_000_000 ) -> int:
return sum(takewhile(lambda __lowerCAmelCase : x < n , prime_generator() ) )
if __name__ == "__main__":
print(F'{solution() = }')
| 509 |
import numpy as np
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self : Union[str, Any] ):
__lowercase : Optional[int] = (0, 0)
__lowercase : List[str] = None
__lowercase : List[Any] = 0
__lowercase : List[Any] = 0
__lowercase : List[Any] = 0
def __eq__( self : str , _snake_case : Any ):
return self.position == cell.position
def snake_case_ ( self : Dict ):
print(self.position )
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self : int , _snake_case : Tuple=(5, 5) ):
__lowercase : Optional[int] = np.zeros(_snake_case )
__lowercase : List[Any] = world_size[0]
__lowercase : List[str] = world_size[1]
def snake_case_ ( self : Tuple ):
print(self.w )
def snake_case_ ( self : Optional[Any] , _snake_case : int ):
__lowercase : Tuple = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
__lowercase : int = cell.position[0]
__lowercase : int = cell.position[1]
__lowercase : str = []
for n in neughbour_cord:
__lowercase : Union[str, Any] = current_x + n[0]
__lowercase : int = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
__lowercase : Any = Cell()
__lowercase : int = (x, y)
__lowercase : Optional[Any] = cell
neighbours.append(_snake_case )
return neighbours
def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
__lowercase : Dict = []
__lowercase : List[Any] = []
_open.append(__lowerCAmelCase )
while _open:
__lowercase : Any = np.argmin([n.f for n in _open] )
__lowercase : Any = _open[min_f]
_closed.append(_open.pop(__lowerCAmelCase ) )
if current == goal:
break
for n in world.get_neigbours(__lowerCAmelCase ):
for c in _closed:
if c == n:
continue
__lowercase : Any = current.g + 1
__lowercase , __lowercase : Tuple = n.position
__lowercase , __lowercase : str = goal.position
__lowercase : str = (ya - ya) ** 2 + (xa - xa) ** 2
__lowercase : int = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(__lowerCAmelCase )
__lowercase : List[Any] = []
while current.parent is not None:
path.append(current.position )
__lowercase : List[Any] = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
__lowerCAmelCase : int = Gridworld()
# Start position and goal
__lowerCAmelCase : int = Cell()
__lowerCAmelCase : Tuple = (0, 0)
__lowerCAmelCase : Optional[int] = Cell()
__lowerCAmelCase : List[str] = (4, 4)
print(F'path from {start.position} to {goal.position}')
__lowerCAmelCase : Optional[int] = astar(world, start, goal)
# Just for visual reasons.
for i in s:
__lowerCAmelCase : List[str] = 1
print(world.w)
| 509 | 1 |
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __magic_name__ ( __lowerCAmelCase):
A: Optional[int] = (EulerDiscreteScheduler,)
A: List[Any] = 1_0
def UpperCAmelCase__ ( self : Optional[Any] , **lowerCamelCase__ : Any ) -> List[Any]:
'''simple docstring'''
UpperCamelCase__ : Dict = {
'''num_train_timesteps''': 1100,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**lowerCamelCase__ )
return config
def UpperCAmelCase__ ( self : List[Any] ) -> Any:
'''simple docstring'''
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=lowerCamelCase__ )
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=lowerCamelCase__ , beta_end=lowerCamelCase__ )
def UpperCAmelCase__ ( self : int ) -> Tuple:
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=lowerCamelCase__ )
def UpperCAmelCase__ ( self : int ) -> List[Any]:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCamelCase__ )
def UpperCAmelCase__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase__ : List[Any] = self.scheduler_classes[0]
UpperCamelCase__ : List[Any] = self.get_scheduler_config()
UpperCamelCase__ : Tuple = scheduler_class(**lowerCamelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCamelCase__ : str = torch.manual_seed(0 )
UpperCamelCase__ : Optional[int] = self.dummy_model()
UpperCamelCase__ : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCamelCase__ : Optional[int] = sample.to(lowerCamelCase__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCamelCase__ : Optional[int] = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ )
UpperCamelCase__ : int = model(lowerCamelCase__ , lowerCamelCase__ )
UpperCamelCase__ : Dict = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , generator=lowerCamelCase__ )
UpperCamelCase__ : Optional[Any] = output.prev_sample
UpperCamelCase__ : int = torch.sum(torch.abs(lowerCamelCase__ ) )
UpperCamelCase__ : Optional[Any] = torch.mean(torch.abs(lowerCamelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1E-2
assert abs(result_mean.item() - 0.0131 ) < 1E-3
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase__ : Any = self.scheduler_classes[0]
UpperCamelCase__ : List[Any] = self.get_scheduler_config(prediction_type='''v_prediction''' )
UpperCamelCase__ : Optional[int] = scheduler_class(**lowerCamelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCamelCase__ : Dict = torch.manual_seed(0 )
UpperCamelCase__ : List[Any] = self.dummy_model()
UpperCamelCase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCamelCase__ : Optional[int] = sample.to(lowerCamelCase__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCamelCase__ : List[Any] = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ )
UpperCamelCase__ : Tuple = model(lowerCamelCase__ , lowerCamelCase__ )
UpperCamelCase__ : List[str] = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , generator=lowerCamelCase__ )
UpperCamelCase__ : int = output.prev_sample
UpperCamelCase__ : Any = torch.sum(torch.abs(lowerCamelCase__ ) )
UpperCamelCase__ : List[str] = torch.mean(torch.abs(lowerCamelCase__ ) )
assert abs(result_sum.item() - 0.0002 ) < 1E-2
assert abs(result_mean.item() - 2.2_6_7_6E-0_6 ) < 1E-3
def UpperCAmelCase__ ( self : Dict ) -> List[Any]:
'''simple docstring'''
UpperCamelCase__ : Optional[Any] = self.scheduler_classes[0]
UpperCamelCase__ : Tuple = self.get_scheduler_config()
UpperCamelCase__ : List[Any] = scheduler_class(**lowerCamelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase__ )
UpperCamelCase__ : int = torch.manual_seed(0 )
UpperCamelCase__ : List[str] = self.dummy_model()
UpperCamelCase__ : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCamelCase__ : str = sample.to(lowerCamelCase__ )
for t in scheduler.timesteps:
UpperCamelCase__ : int = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ )
UpperCamelCase__ : List[str] = model(lowerCamelCase__ , lowerCamelCase__ )
UpperCamelCase__ : Tuple = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , generator=lowerCamelCase__ )
UpperCamelCase__ : List[Any] = output.prev_sample
UpperCamelCase__ : Any = torch.sum(torch.abs(lowerCamelCase__ ) )
UpperCamelCase__ : str = torch.mean(torch.abs(lowerCamelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1E-2
assert abs(result_mean.item() - 0.0131 ) < 1E-3
def UpperCAmelCase__ ( self : Tuple ) -> List[Any]:
'''simple docstring'''
UpperCamelCase__ : Dict = self.scheduler_classes[0]
UpperCamelCase__ : Dict = self.get_scheduler_config()
UpperCamelCase__ : List[str] = scheduler_class(**lowerCamelCase__ , use_karras_sigmas=lowerCamelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase__ )
UpperCamelCase__ : Optional[int] = torch.manual_seed(0 )
UpperCamelCase__ : List[Any] = self.dummy_model()
UpperCamelCase__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCamelCase__ : Optional[Any] = sample.to(lowerCamelCase__ )
for t in scheduler.timesteps:
UpperCamelCase__ : str = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ )
UpperCamelCase__ : Any = model(lowerCamelCase__ , lowerCamelCase__ )
UpperCamelCase__ : int = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , generator=lowerCamelCase__ )
UpperCamelCase__ : str = output.prev_sample
UpperCamelCase__ : Optional[int] = torch.sum(torch.abs(lowerCamelCase__ ) )
UpperCamelCase__ : Any = torch.mean(torch.abs(lowerCamelCase__ ) )
assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1E-2
assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1E-3
| 707 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
__UpperCamelCase : Dict = {
"configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"],
"processing_trocr": ["TrOCRProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[int] = [
"TROCR_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrOCRForCausalLM",
"TrOCRPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
__UpperCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 106 | 0 |
"""simple docstring"""
import math
def __magic_name__ ( __snake_case : int ) -> Any:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(snake_case_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __magic_name__ ( __snake_case : float = 0.1 ) -> Optional[Any]:
lowercase : List[str] = 3
lowercase : str = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ):
primes += is_prime(snake_case_ )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 361 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ):
if (voltage, current, resistance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if resistance < 0:
raise ValueError("Resistance cannot be negative" )
if voltage == 0:
return {"voltage": float(current * resistance )}
elif current == 0:
return {"current": voltage / resistance}
elif resistance == 0:
return {"resistance": voltage / current}
else:
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 297 | 0 |
"""simple docstring"""
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
_UpperCamelCase : Optional[int] = logging.get_logger('transformers.models.speecht5')
def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : Any , __snake_case : Tuple ):
'''simple docstring'''
hf_model.apply_weight_norm()
lowercase = checkpoint['input_conv.weight_g']
lowercase = checkpoint['input_conv.weight_v']
lowercase = checkpoint['input_conv.bias']
for i in range(len(config.upsample_rates ) ):
lowercase = checkpoint[f'upsamples.{i}.1.weight_g']
lowercase = checkpoint[f'upsamples.{i}.1.weight_v']
lowercase = checkpoint[f'upsamples.{i}.1.bias']
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
lowercase = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g']
lowercase = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v']
lowercase = checkpoint[f'blocks.{i}.convs1.{j}.1.bias']
lowercase = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g']
lowercase = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v']
lowercase = checkpoint[f'blocks.{i}.convs2.{j}.1.bias']
lowercase = checkpoint['output_conv.1.weight_g']
lowercase = checkpoint['output_conv.1.weight_v']
lowercase = checkpoint['output_conv.1.bias']
hf_model.remove_weight_norm()
@torch.no_grad()
def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] , __snake_case : List[str] , __snake_case : Dict , __snake_case : List[Any]=None , __snake_case : int=None , ):
'''simple docstring'''
if config_path is not None:
lowercase = SpeechTaHifiGanConfig.from_pretrained(__snake_case )
else:
lowercase = SpeechTaHifiGanConfig()
lowercase = SpeechTaHifiGan(__snake_case )
lowercase = torch.load(__snake_case )
load_weights(orig_checkpoint['model']['generator'] , __snake_case , __snake_case )
lowercase = np.load(__snake_case )
lowercase = stats[0].reshape(-1 )
lowercase = stats[1].reshape(-1 )
lowercase = torch.from_numpy(__snake_case ).float()
lowercase = torch.from_numpy(__snake_case ).float()
model.save_pretrained(__snake_case )
if repo_id:
print('Pushing to the hub...' )
model.push_to_hub(__snake_case )
if __name__ == "__main__":
_UpperCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint')
parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
_UpperCamelCase : Union[str, Any] = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 708 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
_UpperCamelCase : Dict = None
_UpperCamelCase : Dict = logging.get_logger(__name__)
_UpperCamelCase : int = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
_UpperCamelCase : Dict = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
},
'tokenizer_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json',
},
}
_UpperCamelCase : Tuple = {
'camembert-base': 5_1_2,
}
_UpperCamelCase : Union[str, Any] = '▁'
class a ( a_ ):
UpperCAmelCase_ : Dict =VOCAB_FILES_NAMES
UpperCAmelCase_ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ : str =["input_ids", "attention_mask"]
UpperCAmelCase_ : List[Any] =CamembertTokenizer
def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_lowerCamelCase , ):
# Mask token behave like a normal word, i.e. include the space before it
lowercase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token
super().__init__(
_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , )
lowercase = vocab_file
lowercase = False if not self.vocab_file else True
def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowercase = [self.cls_token_id]
lowercase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ):
lowercase = [self.sep_token_id]
lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(_lowerCamelCase ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
lowercase = os.path.join(
_lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ):
copyfile(self.vocab_file , _lowerCamelCase )
return (out_vocab_file,)
| 134 | 0 |
"""simple docstring"""
import random
class snake_case_ :
"""simple docstring"""
@staticmethod
def UpperCAmelCase__ ( lowerCamelCase_) -> tuple[list[int], list[int]]:
UpperCamelCase = [ord(lowerCamelCase_) for i in text]
UpperCamelCase = []
UpperCamelCase = []
for i in plain:
UpperCamelCase = random.randint(1 , 3_0_0)
UpperCamelCase = (i + k) * k
cipher.append(lowerCamelCase_)
key.append(lowerCamelCase_)
return cipher, key
@staticmethod
def UpperCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_) -> str:
UpperCamelCase = []
for i in range(len(lowerCamelCase_)):
UpperCamelCase = int((cipher[i] - (key[i]) ** 2) / key[i])
plain.append(chr(lowerCamelCase_))
return "".join(lowerCamelCase_)
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = Onepad().encrypt('Hello')
print(c, k)
print(Onepad().decrypt(c, k)) | 34 |
"""simple docstring"""
# Imports
import numpy as np
class __a :
def __init__( self , a__=None , a__=None , a__=None , a__=None , a__=None ):
self.set_matricies(red=a__ , green=a__ , blue=a__ , red_edge=a__ , nir=a__ )
def snake_case_ ( self , a__=None , a__=None , a__=None , a__=None , a__=None ):
if red is not None:
_lowerCamelCase = red
if green is not None:
_lowerCamelCase = green
if blue is not None:
_lowerCamelCase = blue
if red_edge is not None:
_lowerCamelCase = red_edge
if nir is not None:
_lowerCamelCase = nir
return True
def snake_case_ ( self , a__="" , a__=None , a__=None , a__=None , a__=None , a__=None ):
self.set_matricies(red=a__ , green=a__ , blue=a__ , red_edge=a__ , nir=a__ )
_lowerCamelCase = {
'ARVI2': self.arvaa,
'CCCI': self.ccci,
'CVI': self.cvi,
'GLI': self.gli,
'NDVI': self.ndvi,
'BNDVI': self.bndvi,
'redEdgeNDVI': self.red_edge_ndvi,
'GNDVI': self.gndvi,
'GBNDVI': self.gbndvi,
'GRNDVI': self.grndvi,
'RBNDVI': self.rbndvi,
'PNDVI': self.pndvi,
'ATSAVI': self.atsavi,
'BWDRVI': self.bwdrvi,
'CIgreen': self.ci_green,
'CIrededge': self.ci_rededge,
'CI': self.ci,
'CTVI': self.ctvi,
'GDVI': self.gdvi,
'EVI': self.evi,
'GEMI': self.gemi,
'GOSAVI': self.gosavi,
'GSAVI': self.gsavi,
'Hue': self.hue,
'IVI': self.ivi,
'IPVI': self.ipvi,
'I': self.i,
'RVI': self.rvi,
'MRVI': self.mrvi,
'MSAVI': self.m_savi,
'NormG': self.norm_g,
'NormNIR': self.norm_nir,
'NormR': self.norm_r,
'NGRDI': self.ngrdi,
'RI': self.ri,
'S': self.s,
'IF': self._if,
'DVI': self.dvi,
'TVI': self.tvi,
'NDRE': self.ndre,
}
try:
return funcs[index]()
except KeyError:
print('Index not in the list!' )
return False
def snake_case_ ( self ):
return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red)))
def snake_case_ ( self ):
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def snake_case_ ( self ):
return self.nir * (self.red / (self.green**2))
def snake_case_ ( self ):
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def snake_case_ ( self ):
return (self.nir - self.red) / (self.nir + self.red)
def snake_case_ ( self ):
return (self.nir - self.blue) / (self.nir + self.blue)
def snake_case_ ( self ):
return (self.redEdge - self.red) / (self.redEdge + self.red)
def snake_case_ ( self ):
return (self.nir - self.green) / (self.nir + self.green)
def snake_case_ ( self ):
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def snake_case_ ( self ):
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def snake_case_ ( self ):
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def snake_case_ ( self ):
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def snake_case_ ( self , a__=0.08 , a__=1.22 , a__=0.03 ):
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def snake_case_ ( self ):
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def snake_case_ ( self ):
return (self.nir / self.green) - 1
def snake_case_ ( self ):
return (self.nir / self.redEdge) - 1
def snake_case_ ( self ):
return (self.red - self.blue) / self.red
def snake_case_ ( self ):
_lowerCamelCase = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def snake_case_ ( self ):
return self.nir - self.green
def snake_case_ ( self ):
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def snake_case_ ( self ):
_lowerCamelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red)
def snake_case_ ( self , a__=0.16 ):
return (self.nir - self.green) / (self.nir + self.green + y)
def snake_case_ ( self , a__=0.5 ):
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def snake_case_ ( self ):
return np.arctan(
((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) )
def snake_case_ ( self , a__=None , a__=None ):
return (self.nir - b) / (a * self.red)
def snake_case_ ( self ):
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def snake_case_ ( self ):
return (self.red + self.green + self.blue) / 30.5
def snake_case_ ( self ):
return self.nir / self.red
def snake_case_ ( self ):
return (self.rvi() - 1) / (self.rvi() + 1)
def snake_case_ ( self ):
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def snake_case_ ( self ):
return self.green / (self.nir + self.red + self.green)
def snake_case_ ( self ):
return self.nir / (self.nir + self.red + self.green)
def snake_case_ ( self ):
return self.red / (self.nir + self.red + self.green)
def snake_case_ ( self ):
return (self.green - self.red) / (self.green + self.red)
def snake_case_ ( self ):
return (self.red - self.green) / (self.red + self.green)
def snake_case_ ( self ):
_lowerCamelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
_lowerCamelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def snake_case_ ( self ):
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def snake_case_ ( self ):
return self.nir / self.red
def snake_case_ ( self ):
return (self.ndvi() + 0.5) ** (1 / 2)
def snake_case_ ( self ):
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 650 | 0 |
"""simple docstring"""
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def _lowerCAmelCase ( ) -> Tuple:
_SCREAMING_SNAKE_CASE : str = {
"repo_name": ["test_repo1", "test_repo2", "test_repo3"],
"path": ["test_1.py", "test_2.py", "unit_test.py"],
"content": ["a " * 2_0, "a " * 3_0, "b " * 7],
}
_SCREAMING_SNAKE_CASE : str = Dataset.from_dict(lowerCamelCase__ )
return dataset
class UpperCamelCase ( __SCREAMING_SNAKE_CASE ):
def __SCREAMING_SNAKE_CASE ( self ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Optional[Any] = get_dataset()
_SCREAMING_SNAKE_CASE : Optional[Any] = make_duplicate_clusters(snake_case__ , 0.85 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def __SCREAMING_SNAKE_CASE ( self ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Optional[Any] = get_dataset()
_SCREAMING_SNAKE_CASE : Optional[Any] = deduplicate_dataset(snake_case__ )
self.assertEqual(len(snake_case__ ) , 2 )
print(snake_case__ )
self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 )
self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , snake_case__ )
| 720 |
"""simple docstring"""
from __future__ import annotations
lowercase_ : List[str] = '''#'''
class UpperCamelCase :
def __init__( self ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : dict = {}
def __SCREAMING_SNAKE_CASE ( self , snake_case__ ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : str = self._trie
for char in text:
if char not in trie:
_SCREAMING_SNAKE_CASE : List[str] = {}
_SCREAMING_SNAKE_CASE : List[str] = trie[char]
_SCREAMING_SNAKE_CASE : Optional[Any] = True
def __SCREAMING_SNAKE_CASE ( self , snake_case__ ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Optional[Any] = self._trie
for char in prefix:
if char in trie:
_SCREAMING_SNAKE_CASE : str = trie[char]
else:
return []
return self._elements(snake_case__ )
def __SCREAMING_SNAKE_CASE ( self , snake_case__ ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : str = []
for c, v in d.items():
_SCREAMING_SNAKE_CASE : int = [" "] if c == END else [(c + s) for s in self._elements(snake_case__ )]
result.extend(snake_case__ )
return tuple(snake_case__ )
lowercase_ : Union[str, Any] = Trie()
lowercase_ : Optional[Any] = ('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''')
for word in words:
trie.insert_word(word)
def _lowerCAmelCase ( lowerCamelCase__ : str ) -> tuple:
_SCREAMING_SNAKE_CASE : Dict = trie.find_word(lowerCamelCase__ )
return tuple(string + word for word in suffixes )
def _lowerCAmelCase ( ) -> None:
print(autocomplete_using_trie("de" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 295 | 0 |
'''simple docstring'''
import numpy as np
from PIL import Image
def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : Any ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = np.array(snake_case_ )
if arr.shape[0] != arr.shape[1]:
raise ValueError("The input array is not a square matrix" )
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
# compute the shape of the output matrix
UpperCAmelCase_ = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
UpperCAmelCase_ = np.zeros((maxpool_shape, maxpool_shape) )
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
UpperCAmelCase_ = np.max(arr[i : i + size, j : j + size] )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
return updated_arr
def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Any , snake_case_ : Optional[int] ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = np.array(snake_case_ )
if arr.shape[0] != arr.shape[1]:
raise ValueError("The input array is not a square matrix" )
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
# compute the shape of the output matrix
UpperCAmelCase_ = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
UpperCAmelCase_ = np.zeros((avgpool_shape, avgpool_shape) )
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
UpperCAmelCase_ = int(np.average(arr[i : i + size, j : j + size] ) )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name='avgpooling', verbose=True)
# Loading the image
SCREAMING_SNAKE_CASE_: Union[str, Any] =Image.open('path_to_image')
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
| 78 |
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase_ = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""")
@require_sentencepiece
@require_tokenizers
class _lowerCAmelCase ( _lowercase , unittest.TestCase ):
A__ = PegasusTokenizer
A__ = PegasusTokenizerFast
A__ = True
A__ = True
def __magic_name__( self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase__ : Union[str, Any] = PegasusTokenizer(__UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __magic_name__( self ):
return PegasusTokenizer.from_pretrained('''google/pegasus-large''' )
def __magic_name__( self , **__UpperCAmelCase ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __magic_name__( self , __UpperCAmelCase ):
return ("This is a test", "This is a test")
def __magic_name__( self ):
lowerCAmelCase__ : Optional[Any] = '''</s>'''
lowerCAmelCase__ : Optional[int] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase )
def __magic_name__( self ):
lowerCAmelCase__ : Tuple = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''</s>''' )
self.assertEqual(vocab_keys[-1] , '''v''' )
self.assertEqual(len(__UpperCAmelCase ) , 1103 )
def __magic_name__( self ):
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def __magic_name__( self ):
lowerCAmelCase__ : int = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ : Tuple = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ : int = (
'''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important'''
''' </s> <pad> <pad> <pad>'''
)
lowerCAmelCase__ : Any = rust_tokenizer([raw_input_str] , return_tensors=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ).input_ids[0]
lowerCAmelCase__ : Dict = py_tokenizer([raw_input_str] , return_tensors=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ).input_ids[0]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __magic_name__( self ):
lowerCAmelCase__ : Any = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowerCAmelCase__ : List[str] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.'''
lowerCAmelCase__ : Tuple = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1]
lowerCAmelCase__ : Tuple = tokenizer([raw_input_str] , return_tensors=__UpperCAmelCase ).input_ids[0]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def __magic_name__( self ):
lowerCAmelCase__ : Dict = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_6103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
lowerCAmelCase__ : str = '''To ensure a smooth flow of bank resolutions.'''
lowerCAmelCase__ : int = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1]
lowerCAmelCase__ : List[Any] = tokenizer([raw_input_str] , return_tensors=__UpperCAmelCase ).input_ids[0]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def __magic_name__( self ):
lowerCAmelCase__ : Optional[int] = ['''This is going to be way too long.''' * 150, '''short example''']
lowerCAmelCase__ : List[str] = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCAmelCase__ : Tuple = self._large_tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors='''pt''' )
lowerCAmelCase__ : Optional[int] = self._large_tokenizer(
text_target=__UpperCAmelCase , max_length=5 , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(__UpperCAmelCase ) == 2 # input_ids, attention_mask.
@slow
def __magic_name__( self ):
# fmt: off
lowerCAmelCase__ : Optional[int] = {'''input_ids''': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__UpperCAmelCase , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , )
@require_sentencepiece
@require_tokenizers
class _lowerCAmelCase ( _lowercase , unittest.TestCase ):
A__ = PegasusTokenizer
A__ = PegasusTokenizerFast
A__ = True
A__ = True
def __magic_name__( self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase__ : List[Any] = PegasusTokenizer(__UpperCAmelCase , offset=0 , mask_token_sent=__UpperCAmelCase , mask_token='''[MASK]''' )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __magic_name__( self ):
return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' )
def __magic_name__( self , **__UpperCAmelCase ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def __magic_name__( self , __UpperCAmelCase ):
return ("This is a test", "This is a test")
def __magic_name__( self ):
lowerCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ : int = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase__ : str = (
'''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>'''
''' <pad> <pad> <pad>'''
)
lowerCAmelCase__ : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ).input_ids[0]
lowerCAmelCase__ : int = py_tokenizer([raw_input_str] , return_tensors=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ).input_ids[0]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
@require_torch
def __magic_name__( self ):
lowerCAmelCase__ : Optional[Any] = ['''This is going to be way too long.''' * 1000, '''short example''']
lowerCAmelCase__ : int = ['''not super long but more than 5 tokens''', '''tiny''']
lowerCAmelCase__ : Tuple = self._large_tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors='''pt''' )
lowerCAmelCase__ : Tuple = self._large_tokenizer(
text_target=__UpperCAmelCase , max_length=5 , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(__UpperCAmelCase ) == 2 # input_ids, attention_mask.
def __magic_name__( self ):
lowerCAmelCase__ : List[str] = (
'''This is an example string that is used to test the original TF implementation against the HF'''
''' implementation'''
)
lowerCAmelCase__ : Union[str, Any] = self._large_tokenizer(__UpperCAmelCase ).input_ids
self.assertListEqual(
__UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
| 678 | 0 |
"""simple docstring"""
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class _lowercase ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase_ ( self : List[Any] ) -> int:
'''simple docstring'''
super().tearDown()
gc.collect()
def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
__UpperCamelCase =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
__UpperCamelCase =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
__UpperCamelCase ='''xvjiarui/stable-diffusion-2-inpainting'''
__UpperCamelCase , __UpperCamelCase =FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase__ , safety_checker=UpperCamelCase__ )
__UpperCamelCase ='''Face of a yellow cat, high resolution, sitting on a park bench'''
__UpperCamelCase =jax.random.PRNGKey(0 )
__UpperCamelCase =50
__UpperCamelCase =jax.device_count()
__UpperCamelCase =num_samples * [prompt]
__UpperCamelCase =num_samples * [init_image]
__UpperCamelCase =num_samples * [mask_image]
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase =pipeline.prepare_inputs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# shard inputs and rng
__UpperCamelCase =replicate(UpperCamelCase__ )
__UpperCamelCase =jax.random.split(UpperCamelCase__ , jax.device_count() )
__UpperCamelCase =shard(UpperCamelCase__ )
__UpperCamelCase =shard(UpperCamelCase__ )
__UpperCamelCase =shard(UpperCamelCase__ )
__UpperCamelCase =pipeline(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , jit=UpperCamelCase__ )
__UpperCamelCase =output.images.reshape(UpperCamelCase__ , 512 , 512 , 3 )
__UpperCamelCase =images[0, 253:256, 253:256, -1]
__UpperCamelCase =jnp.asarray(jax.device_get(image_slice.flatten() ) )
__UpperCamelCase =jnp.array(
[0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] )
print(f"""output_slice: {output_slice}""" )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 296 | """simple docstring"""
from pickle import UnpicklingError
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict
from ..utils import logging
__lowercase = logging.get_logger(__name__)
def lowerCAmelCase (__UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] ):
"""simple docstring"""
try:
with open(__UpperCamelCase , '''rb''' ) as flax_state_f:
__UpperCamelCase =from_bytes(__UpperCamelCase , flax_state_f.read() )
except UnpicklingError as e:
try:
with open(__UpperCamelCase ) as f:
if f.read().startswith('''version''' ):
raise OSError(
'''You seem to have cloned a repository without having git-lfs installed. Please'''
''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the'''
''' folder you cloned.''' )
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(F"""Unable to convert {model_file} to Flax deserializable object. """ )
return load_flax_weights_in_pytorch_model(__UpperCamelCase , __UpperCamelCase )
def lowerCAmelCase (__UpperCamelCase : Tuple , __UpperCamelCase : List[str] ):
"""simple docstring"""
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
# check if we have bf16 weights
__UpperCamelCase =flatten_dict(jax.tree_util.tree_map(lambda __UpperCamelCase : x.dtype == jnp.bfloataa , __UpperCamelCase ) ).values()
if any(__UpperCamelCase ):
# convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '''
'''before loading those in PyTorch model.''' )
__UpperCamelCase =jax.tree_util.tree_map(
lambda __UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __UpperCamelCase )
__UpperCamelCase =''''''
__UpperCamelCase =flatten_dict(__UpperCamelCase , sep='''.''' )
__UpperCamelCase =pt_model.state_dict()
# keep track of unexpected & missing keys
__UpperCamelCase =[]
__UpperCamelCase =set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
__UpperCamelCase =flax_key_tuple.split('''.''' )
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
__UpperCamelCase =flax_key_tuple_array[:-1] + ['''weight''']
__UpperCamelCase =jnp.transpose(__UpperCamelCase , (3, 2, 0, 1) )
elif flax_key_tuple_array[-1] == "kernel":
__UpperCamelCase =flax_key_tuple_array[:-1] + ['''weight''']
__UpperCamelCase =flax_tensor.T
elif flax_key_tuple_array[-1] == "scale":
__UpperCamelCase =flax_key_tuple_array[:-1] + ['''weight''']
if "time_embedding" not in flax_key_tuple_array:
for i, flax_key_tuple_string in enumerate(__UpperCamelCase ):
__UpperCamelCase =(
flax_key_tuple_string.replace('''_0''' , '''.0''' )
.replace('''_1''' , '''.1''' )
.replace('''_2''' , '''.2''' )
.replace('''_3''' , '''.3''' )
.replace('''_4''' , '''.4''' )
.replace('''_5''' , '''.5''' )
.replace('''_6''' , '''.6''' )
.replace('''_7''' , '''.7''' )
.replace('''_8''' , '''.8''' )
.replace('''_9''' , '''.9''' )
)
__UpperCamelCase ='''.'''.join(__UpperCamelCase )
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """
F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
else:
# add weight to pytorch dict
__UpperCamelCase =np.asarray(__UpperCamelCase ) if not isinstance(__UpperCamelCase , np.ndarray ) else flax_tensor
__UpperCamelCase =torch.from_numpy(__UpperCamelCase )
# remove from missing keys
missing_keys.remove(__UpperCamelCase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(__UpperCamelCase )
pt_model.load_state_dict(__UpperCamelCase )
# re-transform missing_keys to list
__UpperCamelCase =list(__UpperCamelCase )
if len(__UpperCamelCase ) > 0:
logger.warning(
'''Some weights of the Flax model were not used when initializing the PyTorch model'''
F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"""
F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"""
''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'''
F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"""
''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'''
''' FlaxBertForSequenceClassification model).''' )
if len(__UpperCamelCase ) > 0:
logger.warning(
F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"""
F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"""
''' use it for predictions and inference.''' )
return pt_model
| 296 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase_ = {
'''configuration_instructblip''': [
'''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''InstructBlipConfig''',
'''InstructBlipQFormerConfig''',
'''InstructBlipVisionConfig''',
],
'''processing_instructblip''': ['''InstructBlipProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
'''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''InstructBlipQFormerModel''',
'''InstructBlipPreTrainedModel''',
'''InstructBlipForConditionalGeneration''',
'''InstructBlipVisionModel''',
]
if TYPE_CHECKING:
from .configuration_instructblip import (
INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
InstructBlipConfig,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from .processing_instructblip import InstructBlipProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_instructblip import (
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
InstructBlipForConditionalGeneration,
InstructBlipPreTrainedModel,
InstructBlipQFormerModel,
InstructBlipVisionModel,
)
else:
import sys
lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 513 |
from cva import destroyAllWindows, imread, imshow, waitKey
def __magic_name__ ( __a : List[Any] ):
'''simple docstring'''
UpperCamelCase__ , UpperCamelCase__ = img.shape[0], img.shape[1]
# converting each pixel's color to its negative
for i in range(__a ):
for j in range(__a ):
UpperCamelCase__ = [255, 255, 255] - img[i][j]
return img
if __name__ == "__main__":
# read original image
lowerCamelCase_ = imread('''image_data/lena.jpg''', 1)
# convert to its negative
lowerCamelCase_ = convert_to_negative(img)
# show result image
imshow('''negative of original image''', img)
waitKey(0)
destroyAllWindows()
| 513 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_a: str = logging.get_logger(__name__)
class __UpperCamelCase ( lowercase ):
SCREAMING_SNAKE_CASE__ = ['pixel_values']
def __init__( self : Dict , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Dict[str, int]] = None , lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : bool = True , lowerCAmelCase : Union[int, float] = 1 / 255 , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , **lowerCAmelCase : Optional[Any] , ):
'''simple docstring'''
super().__init__(**lowerCAmelCase )
UpperCAmelCase_ = size if size is not None else {"shortest_edge": 256}
UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase )
UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224}
UpperCAmelCase_ = get_size_dict(lowerCAmelCase )
UpperCAmelCase_ = do_resize
UpperCAmelCase_ = size
UpperCAmelCase_ = resample
UpperCAmelCase_ = do_center_crop
UpperCAmelCase_ = crop_size
UpperCAmelCase_ = do_rescale
UpperCAmelCase_ = rescale_factor
UpperCAmelCase_ = do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __A ( self : List[Any] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Any , ):
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" )
UpperCAmelCase_ = get_resize_output_image_size(lowerCAmelCase , size=size["shortest_edge"] , default_to_square=lowerCAmelCase )
return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase )
def __A ( self : str , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Optional[Any] , ):
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(lowerCAmelCase )
return center_crop(lowerCAmelCase , size=(size["height"], size["width"]) , data_format=lowerCAmelCase , **lowerCAmelCase )
def __A ( self : Tuple , lowerCAmelCase : np.ndarray , lowerCAmelCase : float , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Any ):
'''simple docstring'''
return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase )
def __A ( self : Tuple , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Optional[Any] , ):
'''simple docstring'''
return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase )
def __A ( self : Tuple , lowerCAmelCase : ImageInput , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : PILImageResampling = None , lowerCAmelCase : bool = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[float] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase : List[Any] , ):
'''simple docstring'''
UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ = size if size is not None else self.size
UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase )
UpperCAmelCase_ = resample if resample is not None else self.resample
UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase_ = get_size_dict(lowerCAmelCase )
UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ = image_std if image_std is not None else self.image_std
UpperCAmelCase_ = make_list_of_images(lowerCAmelCase )
if not valid_images(lowerCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ = [to_numpy_array(lowerCAmelCase ) for image in images]
if do_resize:
UpperCAmelCase_ = [self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) for image in images]
if do_center_crop:
UpperCAmelCase_ = [self.center_crop(image=lowerCAmelCase , size=lowerCAmelCase ) for image in images]
if do_rescale:
UpperCAmelCase_ = [self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) for image in images]
if do_normalize:
UpperCAmelCase_ = [self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase ) for image in images]
UpperCAmelCase_ = [to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) for image in images]
UpperCAmelCase_ = {"pixel_values": images}
return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) | 268 |
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
_a: Optional[int] = """CompVis/stable-diffusion-v1-1"""
_a: Dict = """CompVis/stable-diffusion-v1-2"""
_a: Optional[Any] = """CompVis/stable-diffusion-v1-3"""
_a: str = """CompVis/stable-diffusion-v1-4"""
class __UpperCamelCase ( lowercase ):
def __init__( self : Union[str, Any] , lowerCAmelCase : AutoencoderKL , lowerCAmelCase : CLIPTextModel , lowerCAmelCase : CLIPTokenizer , lowerCAmelCase : UNetaDConditionModel , lowerCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase : StableDiffusionSafetyChecker , lowerCAmelCase : CLIPImageProcessor , lowerCAmelCase : bool = True , ):
'''simple docstring'''
super()._init_()
UpperCAmelCase_ = StableDiffusionPipeline.from_pretrained(lowerCAmelCase )
UpperCAmelCase_ = StableDiffusionPipeline.from_pretrained(lowerCAmelCase )
UpperCAmelCase_ = StableDiffusionPipeline.from_pretrained(lowerCAmelCase )
UpperCAmelCase_ = StableDiffusionPipeline(
vae=lowerCAmelCase , text_encoder=lowerCAmelCase , tokenizer=lowerCAmelCase , unet=lowerCAmelCase , scheduler=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=lowerCAmelCase , requires_safety_checker=lowerCAmelCase , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def __A ( self : Tuple ):
'''simple docstring'''
return {k: getattr(self , lowerCAmelCase ) for k in self.config.keys() if not k.startswith("_" )}
def __A ( self : Dict , lowerCAmelCase : Optional[Union[str, int]] = "auto" ):
'''simple docstring'''
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
UpperCAmelCase_ = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowerCAmelCase )
def __A ( self : int ):
'''simple docstring'''
self.enable_attention_slicing(lowerCAmelCase )
@torch.no_grad()
def __A ( self : Union[str, Any] , lowerCAmelCase : Union[str, List[str]] , lowerCAmelCase : int = 512 , lowerCAmelCase : int = 512 , lowerCAmelCase : int = 50 , lowerCAmelCase : float = 7.5 , lowerCAmelCase : Optional[Union[str, List[str]]] = None , lowerCAmelCase : Optional[int] = 1 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : Optional[torch.Generator] = None , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase : int = 1 , **lowerCAmelCase : Tuple , ):
'''simple docstring'''
return self.pipea(
prompt=lowerCAmelCase , height=lowerCAmelCase , width=lowerCAmelCase , num_inference_steps=lowerCAmelCase , guidance_scale=lowerCAmelCase , negative_prompt=lowerCAmelCase , num_images_per_prompt=lowerCAmelCase , eta=lowerCAmelCase , generator=lowerCAmelCase , latents=lowerCAmelCase , output_type=lowerCAmelCase , return_dict=lowerCAmelCase , callback=lowerCAmelCase , callback_steps=lowerCAmelCase , **lowerCAmelCase , )
@torch.no_grad()
def __A ( self : Dict , lowerCAmelCase : Union[str, List[str]] , lowerCAmelCase : int = 512 , lowerCAmelCase : int = 512 , lowerCAmelCase : int = 50 , lowerCAmelCase : float = 7.5 , lowerCAmelCase : Optional[Union[str, List[str]]] = None , lowerCAmelCase : Optional[int] = 1 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : Optional[torch.Generator] = None , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase : int = 1 , **lowerCAmelCase : List[Any] , ):
'''simple docstring'''
return self.pipea(
prompt=lowerCAmelCase , height=lowerCAmelCase , width=lowerCAmelCase , num_inference_steps=lowerCAmelCase , guidance_scale=lowerCAmelCase , negative_prompt=lowerCAmelCase , num_images_per_prompt=lowerCAmelCase , eta=lowerCAmelCase , generator=lowerCAmelCase , latents=lowerCAmelCase , output_type=lowerCAmelCase , return_dict=lowerCAmelCase , callback=lowerCAmelCase , callback_steps=lowerCAmelCase , **lowerCAmelCase , )
@torch.no_grad()
def __A ( self : List[str] , lowerCAmelCase : Union[str, List[str]] , lowerCAmelCase : int = 512 , lowerCAmelCase : int = 512 , lowerCAmelCase : int = 50 , lowerCAmelCase : float = 7.5 , lowerCAmelCase : Optional[Union[str, List[str]]] = None , lowerCAmelCase : Optional[int] = 1 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : Optional[torch.Generator] = None , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase : int = 1 , **lowerCAmelCase : Union[str, Any] , ):
'''simple docstring'''
return self.pipea(
prompt=lowerCAmelCase , height=lowerCAmelCase , width=lowerCAmelCase , num_inference_steps=lowerCAmelCase , guidance_scale=lowerCAmelCase , negative_prompt=lowerCAmelCase , num_images_per_prompt=lowerCAmelCase , eta=lowerCAmelCase , generator=lowerCAmelCase , latents=lowerCAmelCase , output_type=lowerCAmelCase , return_dict=lowerCAmelCase , callback=lowerCAmelCase , callback_steps=lowerCAmelCase , **lowerCAmelCase , )
@torch.no_grad()
def __A ( self : Dict , lowerCAmelCase : Union[str, List[str]] , lowerCAmelCase : int = 512 , lowerCAmelCase : int = 512 , lowerCAmelCase : int = 50 , lowerCAmelCase : float = 7.5 , lowerCAmelCase : Optional[Union[str, List[str]]] = None , lowerCAmelCase : Optional[int] = 1 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : Optional[torch.Generator] = None , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase : int = 1 , **lowerCAmelCase : Optional[Any] , ):
'''simple docstring'''
return self.pipea(
prompt=lowerCAmelCase , height=lowerCAmelCase , width=lowerCAmelCase , num_inference_steps=lowerCAmelCase , guidance_scale=lowerCAmelCase , negative_prompt=lowerCAmelCase , num_images_per_prompt=lowerCAmelCase , eta=lowerCAmelCase , generator=lowerCAmelCase , latents=lowerCAmelCase , output_type=lowerCAmelCase , return_dict=lowerCAmelCase , callback=lowerCAmelCase , callback_steps=lowerCAmelCase , **lowerCAmelCase , )
@torch.no_grad()
def __A ( self : Union[str, Any] , lowerCAmelCase : Union[str, List[str]] , lowerCAmelCase : int = 512 , lowerCAmelCase : int = 512 , lowerCAmelCase : int = 50 , lowerCAmelCase : float = 7.5 , lowerCAmelCase : Optional[Union[str, List[str]]] = None , lowerCAmelCase : Optional[int] = 1 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : Optional[torch.Generator] = None , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase : int = 1 , **lowerCAmelCase : Union[str, Any] , ):
'''simple docstring'''
UpperCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu"
self.to(lowerCAmelCase )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." )
# Get first result from Stable Diffusion Checkpoint v1.1
UpperCAmelCase_ = self.textaimg_sda_a(
prompt=lowerCAmelCase , height=lowerCAmelCase , width=lowerCAmelCase , num_inference_steps=lowerCAmelCase , guidance_scale=lowerCAmelCase , negative_prompt=lowerCAmelCase , num_images_per_prompt=lowerCAmelCase , eta=lowerCAmelCase , generator=lowerCAmelCase , latents=lowerCAmelCase , output_type=lowerCAmelCase , return_dict=lowerCAmelCase , callback=lowerCAmelCase , callback_steps=lowerCAmelCase , **lowerCAmelCase , )
# Get first result from Stable Diffusion Checkpoint v1.2
UpperCAmelCase_ = self.textaimg_sda_a(
prompt=lowerCAmelCase , height=lowerCAmelCase , width=lowerCAmelCase , num_inference_steps=lowerCAmelCase , guidance_scale=lowerCAmelCase , negative_prompt=lowerCAmelCase , num_images_per_prompt=lowerCAmelCase , eta=lowerCAmelCase , generator=lowerCAmelCase , latents=lowerCAmelCase , output_type=lowerCAmelCase , return_dict=lowerCAmelCase , callback=lowerCAmelCase , callback_steps=lowerCAmelCase , **lowerCAmelCase , )
# Get first result from Stable Diffusion Checkpoint v1.3
UpperCAmelCase_ = self.textaimg_sda_a(
prompt=lowerCAmelCase , height=lowerCAmelCase , width=lowerCAmelCase , num_inference_steps=lowerCAmelCase , guidance_scale=lowerCAmelCase , negative_prompt=lowerCAmelCase , num_images_per_prompt=lowerCAmelCase , eta=lowerCAmelCase , generator=lowerCAmelCase , latents=lowerCAmelCase , output_type=lowerCAmelCase , return_dict=lowerCAmelCase , callback=lowerCAmelCase , callback_steps=lowerCAmelCase , **lowerCAmelCase , )
# Get first result from Stable Diffusion Checkpoint v1.4
UpperCAmelCase_ = self.textaimg_sda_a(
prompt=lowerCAmelCase , height=lowerCAmelCase , width=lowerCAmelCase , num_inference_steps=lowerCAmelCase , guidance_scale=lowerCAmelCase , negative_prompt=lowerCAmelCase , num_images_per_prompt=lowerCAmelCase , eta=lowerCAmelCase , generator=lowerCAmelCase , latents=lowerCAmelCase , output_type=lowerCAmelCase , return_dict=lowerCAmelCase , callback=lowerCAmelCase , callback_steps=lowerCAmelCase , **lowerCAmelCase , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] ) | 268 | 1 |
from collections.abc import Sequence
def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> float:
return sum(c * (x**i) for i, c in enumerate(__snake_case ) )
def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> float:
_UpperCAmelCase = 0.0
for coeff in reversed(__snake_case ):
_UpperCAmelCase = result * x + coeff
return result
if __name__ == "__main__":
__a: str = (0.0, 0.0, 5.0, 9.3, 7.0)
__a: List[str] = 1_0.0
print(evaluate_poly(poly, x))
print(horner(poly, x)) | 108 |
'''simple docstring'''
def UpperCamelCase__ ( lowerCAmelCase ):
"""simple docstring"""
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
_lowerCAmelCase = 1
_lowerCAmelCase = 1
while repunit:
_lowerCAmelCase = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def UpperCamelCase__ ( lowerCAmelCase = 1_00_00_00 ):
"""simple docstring"""
_lowerCAmelCase = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(lowerCAmelCase ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(F"""{solution() = }""")
| 207 | 0 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
def a__ ( SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
lowerCAmelCase : List[str] = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
lowerCAmelCase : List[str] = 1_9_2
lowerCAmelCase : Union[str, Any] = 7_6_8
lowerCAmelCase : Optional[Any] = 1_2
lowerCAmelCase : Tuple = 3
lowerCAmelCase : Tuple = [8_0_0, 1_3_3_3]
lowerCAmelCase : Tuple = False
elif yolos_name == "yolos_s_dWr":
lowerCAmelCase : Dict = 3_3_0
lowerCAmelCase : List[Any] = 1_4
lowerCAmelCase : Tuple = 6
lowerCAmelCase : Optional[Any] = 1_3_2_0
elif "yolos_s" in yolos_name:
lowerCAmelCase : Optional[int] = 3_8_4
lowerCAmelCase : str = 1_5_3_6
lowerCAmelCase : Optional[int] = 1_2
lowerCAmelCase : Union[str, Any] = 6
elif "yolos_b" in yolos_name:
lowerCAmelCase : Dict = [8_0_0, 1_3_4_4]
lowerCAmelCase : int = 9_1
lowerCAmelCase : Optional[int] = "huggingface/label-files"
lowerCAmelCase : List[str] = "coco-detection-id2label.json"
lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) )
lowerCAmelCase : Tuple = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
lowerCAmelCase : Optional[Any] = idalabel
lowerCAmelCase : int = {v: k for k, v in idalabel.items()}
return config
def a__ ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : YolosConfig , SCREAMING_SNAKE_CASE : bool = False ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase : Any = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" )
lowerCAmelCase : List[str] = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase : Union[str, Any] = in_proj_weight[: config.hidden_size, :]
lowerCAmelCase : List[str] = in_proj_bias[: config.hidden_size]
lowerCAmelCase : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase : List[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase : List[Any] = in_proj_weight[-config.hidden_size :, :]
lowerCAmelCase : Tuple = in_proj_bias[-config.hidden_size :]
def a__ ( SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
if "backbone" in name:
lowerCAmelCase : str = name.replace("backbone" , "vit" )
if "cls_token" in name:
lowerCAmelCase : Any = name.replace("cls_token" , "embeddings.cls_token" )
if "det_token" in name:
lowerCAmelCase : Any = name.replace("det_token" , "embeddings.detection_tokens" )
if "mid_pos_embed" in name:
lowerCAmelCase : Dict = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" )
if "pos_embed" in name:
lowerCAmelCase : List[str] = name.replace("pos_embed" , "embeddings.position_embeddings" )
if "patch_embed.proj" in name:
lowerCAmelCase : Union[str, Any] = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "blocks" in name:
lowerCAmelCase : List[Any] = name.replace("blocks" , "encoder.layer" )
if "attn.proj" in name:
lowerCAmelCase : List[Any] = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
lowerCAmelCase : int = name.replace("attn" , "attention.self" )
if "norm1" in name:
lowerCAmelCase : Tuple = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
lowerCAmelCase : Dict = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
lowerCAmelCase : str = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
lowerCAmelCase : Optional[Any] = name.replace("mlp.fc2" , "output.dense" )
if "class_embed" in name:
lowerCAmelCase : Any = name.replace("class_embed" , "class_labels_classifier" )
if "bbox_embed" in name:
lowerCAmelCase : Any = name.replace("bbox_embed" , "bbox_predictor" )
if "vit.norm" in name:
lowerCAmelCase : List[Any] = name.replace("vit.norm" , "vit.layernorm" )
return name
def a__ ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : YolosForObjectDetection ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowerCAmelCase : Tuple = orig_state_dict.pop(SCREAMING_SNAKE_CASE )
if "qkv" in key:
lowerCAmelCase : Dict = key.split("." )
lowerCAmelCase : Dict = int(key_split[2] )
lowerCAmelCase : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
lowerCAmelCase : Tuple = val[:dim, :]
lowerCAmelCase : List[str] = val[
dim : dim * 2, :
]
lowerCAmelCase : Optional[Any] = val[-dim:, :]
else:
lowerCAmelCase : Dict = val[:dim]
lowerCAmelCase : Union[str, Any] = val[dim : dim * 2]
lowerCAmelCase : Tuple = val[-dim:]
else:
lowerCAmelCase : Any = val
return orig_state_dict
def a__ ( ):
'''simple docstring'''
lowerCAmelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCAmelCase : Optional[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = False ):
'''simple docstring'''
lowerCAmelCase : Tuple = get_yolos_config(SCREAMING_SNAKE_CASE )
# load original state_dict
lowerCAmelCase : Optional[Any] = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"]
# load 🤗 model
lowerCAmelCase : Tuple = YolosForObjectDetection(SCREAMING_SNAKE_CASE )
model.eval()
lowerCAmelCase : List[Any] = convert_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
model.load_state_dict(SCREAMING_SNAKE_CASE )
# Check outputs on an image, prepared by YolosImageProcessor
lowerCAmelCase : Optional[int] = 8_0_0 if yolos_name != "yolos_ti" else 5_1_2
lowerCAmelCase : Dict = YolosImageProcessor(format="coco_detection" , size=SCREAMING_SNAKE_CASE )
lowerCAmelCase : Any = image_processor(images=prepare_img() , return_tensors="pt" )
lowerCAmelCase : Any = model(**SCREAMING_SNAKE_CASE )
lowerCAmelCase : Union[str, Any] = outputs.logits, outputs.pred_boxes
lowerCAmelCase : List[str] = None, None
if yolos_name == "yolos_ti":
lowerCAmelCase : Optional[int] = torch.tensor(
[[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] )
lowerCAmelCase : Union[str, Any] = torch.tensor(
[[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] )
elif yolos_name == "yolos_s_200_pre":
lowerCAmelCase : List[str] = torch.tensor(
[[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] )
lowerCAmelCase : Tuple = torch.tensor(
[[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] )
elif yolos_name == "yolos_s_300_pre":
lowerCAmelCase : List[Any] = torch.tensor(
[[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] )
lowerCAmelCase : Union[str, Any] = torch.tensor(
[[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] )
elif yolos_name == "yolos_s_dWr":
lowerCAmelCase : List[Any] = torch.tensor(
[[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] )
lowerCAmelCase : Union[str, Any] = torch.tensor(
[[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] )
elif yolos_name == "yolos_base":
lowerCAmelCase : Tuple = torch.tensor(
[[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] )
lowerCAmelCase : Union[str, Any] = torch.tensor(
[[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] )
else:
raise ValueError(f"""Unknown yolos_name: {yolos_name}""" )
assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 )
Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE )
print(f"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE )
if push_to_hub:
lowerCAmelCase : Tuple = {
"yolos_ti": "yolos-tiny",
"yolos_s_200_pre": "yolos-small",
"yolos_s_300_pre": "yolos-small-300",
"yolos_s_dWr": "yolos-small-dwr",
"yolos_base": "yolos-base",
}
print("Pushing to the hub..." )
lowerCAmelCase : Union[str, Any] = model_mapping[yolos_name]
image_processor.push_to_hub(SCREAMING_SNAKE_CASE , organization="hustvl" )
model.push_to_hub(SCREAMING_SNAKE_CASE , organization="hustvl" )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--yolos_name''',
default='''yolos_s_200_pre''',
type=str,
help=(
'''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\','''
''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
lowerCAmelCase__ = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 706 |
"""simple docstring"""
from math import factorial
def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0 ):
'''simple docstring'''
return sum(int(SCREAMING_SNAKE_CASE ) for x in str(factorial(SCREAMING_SNAKE_CASE ) ) )
if __name__ == "__main__":
print(solution(int(input('''Enter the Number: ''').strip())))
| 681 | 0 |
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
_lowerCAmelCase = logging.get_logger(__name__)
# General docstring
_lowerCAmelCase = """RegNetConfig"""
# Base docstring
_lowerCAmelCase = """facebook/regnet-y-040"""
_lowerCAmelCase = [1, 1088, 7, 7]
# Image classification docstring
_lowerCAmelCase = """facebook/regnet-y-040"""
_lowerCAmelCase = """tabby, tabby cat"""
_lowerCAmelCase = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class UpperCAmelCase__ ( tf.keras.layers.Layer ):
def __init__( self , A__ , A__ = 3 , A__ = 1 , A__ = 1 , A__ = "relu" , **A__ , ):
"""simple docstring"""
super().__init__(**A__ )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
UpperCAmelCase_: Union[str, Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
UpperCAmelCase_: Dict = tf.keras.layers.ConvaD(
filters=A__ , kernel_size=A__ , strides=A__ , padding="VALID" , groups=A__ , use_bias=A__ , name="convolution" , )
UpperCAmelCase_: List[str] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" )
UpperCAmelCase_: Union[str, Any] = ACTaFN[activation] if activation is not None else tf.identity
def snake_case_ ( self , A__ ):
"""simple docstring"""
UpperCAmelCase_: List[Any] = self.convolution(self.padding(A__ ) )
UpperCAmelCase_: str = self.normalization(A__ )
UpperCAmelCase_: Any = self.activation(A__ )
return hidden_state
class UpperCAmelCase__ ( tf.keras.layers.Layer ):
def __init__( self , A__ , **A__ ):
"""simple docstring"""
super().__init__(**A__ )
UpperCAmelCase_: int = config.num_channels
UpperCAmelCase_: Tuple = TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , )
def snake_case_ ( self , A__ ):
"""simple docstring"""
UpperCAmelCase_: List[str] = shape_list(A__ )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
UpperCAmelCase_: Tuple = tf.transpose(A__ , perm=(0, 2, 3, 1) )
UpperCAmelCase_: Optional[Any] = self.embedder(A__ )
return hidden_state
class UpperCAmelCase__ ( tf.keras.layers.Layer ):
def __init__( self , A__ , A__ = 2 , **A__ ):
"""simple docstring"""
super().__init__(**A__ )
UpperCAmelCase_: List[str] = tf.keras.layers.ConvaD(
filters=A__ , kernel_size=1 , strides=A__ , use_bias=A__ , name="convolution" )
UpperCAmelCase_: Dict = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" )
def snake_case_ ( self , A__ , A__ = False ):
"""simple docstring"""
return self.normalization(self.convolution(A__ ) , training=A__ )
class UpperCAmelCase__ ( tf.keras.layers.Layer ):
def __init__( self , A__ , A__ , **A__ ):
"""simple docstring"""
super().__init__(**A__ )
UpperCAmelCase_: List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A__ , name="pooler" )
UpperCAmelCase_: Dict = [
tf.keras.layers.ConvaD(filters=A__ , kernel_size=1 , activation="relu" , name="attention.0" ),
tf.keras.layers.ConvaD(filters=A__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ),
]
def snake_case_ ( self , A__ ):
"""simple docstring"""
UpperCAmelCase_: List[str] = self.pooler(A__ )
for layer_module in self.attention:
UpperCAmelCase_: Optional[Any] = layer_module(A__ )
UpperCAmelCase_: Union[str, Any] = hidden_state * pooled
return hidden_state
class UpperCAmelCase__ ( tf.keras.layers.Layer ):
def __init__( self , A__ , A__ , A__ , A__ = 1 , **A__ ):
"""simple docstring"""
super().__init__(**A__ )
UpperCAmelCase_: Dict = in_channels != out_channels or stride != 1
UpperCAmelCase_: Optional[Any] = max(1 , out_channels // config.groups_width )
UpperCAmelCase_: Dict = (
TFRegNetShortCut(A__ , stride=A__ , name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" , name="shortcut" )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
UpperCAmelCase_: Tuple = [
TFRegNetConvLayer(A__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ),
TFRegNetConvLayer(
A__ , stride=A__ , groups=A__ , activation=config.hidden_act , name="layer.1" ),
TFRegNetConvLayer(A__ , kernel_size=1 , activation=A__ , name="layer.2" ),
]
UpperCAmelCase_: List[Any] = ACTaFN[config.hidden_act]
def snake_case_ ( self , A__ ):
"""simple docstring"""
UpperCAmelCase_: Optional[int] = hidden_state
for layer_module in self.layers:
UpperCAmelCase_: Any = layer_module(A__ )
UpperCAmelCase_: Dict = self.shortcut(A__ )
hidden_state += residual
UpperCAmelCase_: Optional[int] = self.activation(A__ )
return hidden_state
class UpperCAmelCase__ ( tf.keras.layers.Layer ):
def __init__( self , A__ , A__ , A__ , A__ = 1 , **A__ ):
"""simple docstring"""
super().__init__(**A__ )
UpperCAmelCase_: Tuple = in_channels != out_channels or stride != 1
UpperCAmelCase_: int = max(1 , out_channels // config.groups_width )
UpperCAmelCase_: List[Any] = (
TFRegNetShortCut(A__ , stride=A__ , name="shortcut" )
if should_apply_shortcut
else tf.keras.layers.Activation("linear" , name="shortcut" )
)
UpperCAmelCase_: List[str] = [
TFRegNetConvLayer(A__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ),
TFRegNetConvLayer(
A__ , stride=A__ , groups=A__ , activation=config.hidden_act , name="layer.1" ),
TFRegNetSELayer(A__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ),
TFRegNetConvLayer(A__ , kernel_size=1 , activation=A__ , name="layer.3" ),
]
UpperCAmelCase_: int = ACTaFN[config.hidden_act]
def snake_case_ ( self , A__ ):
"""simple docstring"""
UpperCAmelCase_: Tuple = hidden_state
for layer_module in self.layers:
UpperCAmelCase_: List[Any] = layer_module(A__ )
UpperCAmelCase_: List[Any] = self.shortcut(A__ )
hidden_state += residual
UpperCAmelCase_: Optional[int] = self.activation(A__ )
return hidden_state
class UpperCAmelCase__ ( tf.keras.layers.Layer ):
def __init__( self , A__ , A__ , A__ , A__ = 2 , A__ = 2 , **A__ ):
"""simple docstring"""
super().__init__(**A__ )
UpperCAmelCase_: Optional[Any] = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer
UpperCAmelCase_: Optional[Any] = [
# downsampling is done in the first layer with stride of 2
layer(A__ , A__ , A__ , stride=A__ , name="layers.0" ),
*[layer(A__ , A__ , A__ , name=F"layers.{i+1}" ) for i in range(depth - 1 )],
]
def snake_case_ ( self , A__ ):
"""simple docstring"""
for layer_module in self.layers:
UpperCAmelCase_: List[Any] = layer_module(A__ )
return hidden_state
class UpperCAmelCase__ ( tf.keras.layers.Layer ):
def __init__( self , A__ , **A__ ):
"""simple docstring"""
super().__init__(**A__ )
UpperCAmelCase_: List[str] = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
A__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) )
UpperCAmelCase_: int = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(A__ , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(A__ , A__ , A__ , depth=A__ , name=F"stages.{i+1}" ) )
def snake_case_ ( self , A__ , A__ = False , A__ = True ):
"""simple docstring"""
UpperCAmelCase_: Any = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
UpperCAmelCase_: Dict = hidden_states + (hidden_state,)
UpperCAmelCase_: Optional[Any] = stage_module(A__ )
if output_hidden_states:
UpperCAmelCase_: Tuple = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=A__ , hidden_states=A__ )
@keras_serializable
class UpperCAmelCase__ ( tf.keras.layers.Layer ):
snake_case_ = RegNetConfig
def __init__( self , A__ , **A__ ):
"""simple docstring"""
super().__init__(**A__ )
UpperCAmelCase_: Optional[int] = config
UpperCAmelCase_: List[str] = TFRegNetEmbeddings(A__ , name="embedder" )
UpperCAmelCase_: Union[str, Any] = TFRegNetEncoder(A__ , name="encoder" )
UpperCAmelCase_: str = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A__ , name="pooler" )
@unpack_inputs
def snake_case_ ( self , A__ , A__ = None , A__ = None , A__ = False , ):
"""simple docstring"""
UpperCAmelCase_: Any = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCAmelCase_: str = return_dict if return_dict is not None else self.config.use_return_dict
UpperCAmelCase_: Tuple = self.embedder(A__ , training=A__ )
UpperCAmelCase_: List[str] = self.encoder(
A__ , output_hidden_states=A__ , return_dict=A__ , training=A__ )
UpperCAmelCase_: List[str] = encoder_outputs[0]
UpperCAmelCase_: Optional[Any] = self.pooler(A__ )
# Change to NCHW output format have uniformity in the modules
UpperCAmelCase_: str = tf.transpose(A__ , perm=(0, 3, 1, 2) )
UpperCAmelCase_: Optional[int] = tf.transpose(A__ , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
UpperCAmelCase_: Tuple = tuple([tf.transpose(A__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=A__ , pooler_output=A__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class UpperCAmelCase__ ( _lowercase ):
snake_case_ = RegNetConfig
snake_case_ = """regnet"""
snake_case_ = """pixel_values"""
@property
def snake_case_ ( self ):
"""simple docstring"""
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )}
_lowerCAmelCase = R"""
Parameters:
This model is a Tensorflow
[tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a
regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and
behavior.
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
_lowerCAmelCase = R"""
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConveNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
'''The bare RegNet model outputting raw features without any specific head on top.''' , _lowercase , )
class UpperCAmelCase__ ( _lowercase ):
def __init__( self , A__ , *A__ , **A__ ):
"""simple docstring"""
super().__init__(A__ , *A__ , **A__ )
UpperCAmelCase_: List[Any] = TFRegNetMainLayer(A__ , name="regnet" )
@unpack_inputs
@add_start_docstrings_to_model_forward(A__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=A__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def snake_case_ ( self , A__ , A__ = None , A__ = None , A__=False , ):
"""simple docstring"""
UpperCAmelCase_: int = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCAmelCase_: Tuple = return_dict if return_dict is not None else self.config.use_return_dict
UpperCAmelCase_: Optional[Any] = self.regnet(
pixel_values=A__ , output_hidden_states=A__ , return_dict=A__ , training=A__ , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
'''
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
''' , _lowercase , )
class UpperCAmelCase__ ( _lowercase , _lowercase ):
def __init__( self , A__ , *A__ , **A__ ):
"""simple docstring"""
super().__init__(A__ , *A__ , **A__ )
UpperCAmelCase_: Optional[Any] = config.num_labels
UpperCAmelCase_: Tuple = TFRegNetMainLayer(A__ , name="regnet" )
# classification head
UpperCAmelCase_: int = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(A__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def snake_case_ ( self , A__ = None , A__ = None , A__ = None , A__ = None , A__=False , ):
"""simple docstring"""
UpperCAmelCase_: int = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCAmelCase_: Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict
UpperCAmelCase_: Any = self.regnet(
A__ , output_hidden_states=A__ , return_dict=A__ , training=A__ )
UpperCAmelCase_: List[str] = outputs.pooler_output if return_dict else outputs[1]
UpperCAmelCase_: Dict = self.classifier[0](A__ )
UpperCAmelCase_: List[Any] = self.classifier[1](A__ )
UpperCAmelCase_: Any = None if labels is None else self.hf_compute_loss(labels=A__ , logits=A__ )
if not return_dict:
UpperCAmelCase_: Optional[Any] = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=A__ , logits=A__ , hidden_states=outputs.hidden_states ) | 137 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
snake_case__ : Dict = {
"""configuration_whisper""": ["""WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WhisperConfig""", """WhisperOnnxConfig"""],
"""feature_extraction_whisper""": ["""WhisperFeatureExtractor"""],
"""processing_whisper""": ["""WhisperProcessor"""],
"""tokenization_whisper""": ["""WhisperTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : str = ["""WhisperTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Optional[int] = [
"""WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""WhisperForConditionalGeneration""",
"""WhisperModel""",
"""WhisperPreTrainedModel""",
"""WhisperForAudioClassification""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[str] = [
"""TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFWhisperForConditionalGeneration""",
"""TFWhisperModel""",
"""TFWhisperPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Any = [
"""FlaxWhisperForConditionalGeneration""",
"""FlaxWhisperModel""",
"""FlaxWhisperPreTrainedModel""",
"""FlaxWhisperForAudioClassification""",
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
snake_case__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 402 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__UpperCAmelCase = {
"configuration_altclip": [
"ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"AltCLIPConfig",
"AltCLIPTextConfig",
"AltCLIPVisionConfig",
],
"processing_altclip": ["AltCLIPProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
"ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"AltCLIPPreTrainedModel",
"AltCLIPModel",
"AltCLIPTextModel",
"AltCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 703 |
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
__UpperCAmelCase = logging.get_logger(__name__)
class A__ ( A ):
"""simple docstring"""
def __init__( self : Tuple , *A_ : Optional[int] , **A_ : int ):
'''simple docstring'''
warnings.warn(
"The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use ChineseCLIPImageProcessor instead." , A_ , )
super().__init__(*A_ , **A_ )
| 503 | 0 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCAmelCase : Dict = logging.get_logger(__name__)
_UpperCAmelCase : Optional[Any] = {
"""microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""",
}
class lowerCAmelCase ( __UpperCamelCase ):
UpperCAmelCase__ = """git_vision_model"""
def __init__( self : Optional[int] , UpperCAmelCase : Optional[Any]=768 , UpperCAmelCase : int=3072 , UpperCAmelCase : List[Any]=12 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : int=3 , UpperCAmelCase : str=224 , UpperCAmelCase : Any=16 , UpperCAmelCase : Dict="quick_gelu" , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : Optional[Any]=0.0_2 , **UpperCAmelCase : str , ) -> str:
super().__init__(**UpperCAmelCase )
lowerCamelCase__ : Tuple = hidden_size
lowerCamelCase__ : Union[str, Any] = intermediate_size
lowerCamelCase__ : List[str] = num_hidden_layers
lowerCamelCase__ : Any = num_attention_heads
lowerCamelCase__ : Optional[int] = num_channels
lowerCamelCase__ : Optional[int] = patch_size
lowerCamelCase__ : Dict = image_size
lowerCamelCase__ : Dict = initializer_range
lowerCamelCase__ : List[Any] = attention_dropout
lowerCamelCase__ : Optional[Any] = layer_norm_eps
lowerCamelCase__ : Optional[Any] = hidden_act
@classmethod
def A_ ( cls : Optional[int] , UpperCAmelCase : Union[str, os.PathLike] , **UpperCAmelCase : str ) -> "PretrainedConfig":
cls._set_token_in_kwargs(UpperCAmelCase )
lowerCamelCase__ , lowerCamelCase__ : Tuple = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase )
# get the vision config dict if we are loading from GITConfig
if config_dict.get('model_type' ) == "git":
lowerCamelCase__ : str = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(UpperCAmelCase , **UpperCAmelCase )
class lowerCAmelCase ( __UpperCamelCase ):
UpperCAmelCase__ = """git"""
def __init__( self : List[Any] , UpperCAmelCase : int=None , UpperCAmelCase : Optional[int]=30522 , UpperCAmelCase : Tuple=768 , UpperCAmelCase : int=6 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : Dict=3072 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : Tuple=1024 , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : Tuple=1e-12 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any="absolute" , UpperCAmelCase : List[str]=True , UpperCAmelCase : Any=False , UpperCAmelCase : Optional[int]=101 , UpperCAmelCase : Optional[int]=102 , UpperCAmelCase : int=None , **UpperCAmelCase : Optional[int] , ) -> List[str]:
super().__init__(bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , pad_token_id=UpperCAmelCase , **UpperCAmelCase )
if vision_config is None:
lowerCamelCase__ : Optional[Any] = {}
logger.info('vision_config is None. initializing the GitVisionConfig with default values.' )
lowerCamelCase__ : Optional[Any] = GitVisionConfig(**UpperCAmelCase )
lowerCamelCase__ : Union[str, Any] = vocab_size
lowerCamelCase__ : Dict = hidden_size
lowerCamelCase__ : List[str] = num_hidden_layers
lowerCamelCase__ : Dict = num_attention_heads
lowerCamelCase__ : Union[str, Any] = hidden_act
lowerCamelCase__ : Optional[int] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : Tuple = attention_probs_dropout_prob
lowerCamelCase__ : List[str] = max_position_embeddings
lowerCamelCase__ : Dict = initializer_range
lowerCamelCase__ : str = layer_norm_eps
lowerCamelCase__ : Optional[Any] = position_embedding_type
lowerCamelCase__ : str = use_cache
lowerCamelCase__ : List[str] = tie_word_embeddings
lowerCamelCase__ : List[Any] = num_image_with_embedding
lowerCamelCase__ : Any = bos_token_id
lowerCamelCase__ : List[Any] = eos_token_id
def A_ ( self : Optional[int] ) -> Optional[Any]:
lowerCamelCase__ : Optional[int] = copy.deepcopy(self.__dict__ )
lowerCamelCase__ : Dict = self.vision_config.to_dict()
lowerCamelCase__ : Any = self.__class__.model_type
return output
| 295 |
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 200 ) -> int:
lowerCamelCase__ : Dict = [1, 2, 5, 10, 20, 50, 100, 200]
lowerCamelCase__ : Union[str, Any] = [0] * (pence + 1)
lowerCamelCase__ : List[str] = 1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(_UpperCAmelCase , pence + 1 , 1 ):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(2_00) == 7_36_82
| 295 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
'''edbeeching/decision-transformer-gym-hopper-medium''': (
'''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json'''
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class _lowerCAmelCase ( __UpperCamelCase ):
"""simple docstring"""
lowerCAmelCase__ ='''decision_transformer'''
lowerCAmelCase__ =['''past_key_values''']
lowerCAmelCase__ ={
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self , __SCREAMING_SNAKE_CASE=17 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=128 , __SCREAMING_SNAKE_CASE=4096 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=1024 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=5_0256 , __SCREAMING_SNAKE_CASE=5_0256 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ) -> str:
"""simple docstring"""
snake_case__ : Dict =state_dim
snake_case__ : Optional[int] =act_dim
snake_case__ : int =hidden_size
snake_case__ : int =max_ep_len
snake_case__ : Any =action_tanh
snake_case__ : str =vocab_size
snake_case__ : Dict =n_positions
snake_case__ : Union[str, Any] =n_layer
snake_case__ : Optional[int] =n_head
snake_case__ : Any =n_inner
snake_case__ : List[Any] =activation_function
snake_case__ : Optional[Any] =resid_pdrop
snake_case__ : str =embd_pdrop
snake_case__ : Union[str, Any] =attn_pdrop
snake_case__ : List[str] =layer_norm_epsilon
snake_case__ : int =initializer_range
snake_case__ : List[str] =scale_attn_weights
snake_case__ : str =use_cache
snake_case__ : Optional[Any] =scale_attn_by_inverse_layer_idx
snake_case__ : Optional[int] =reorder_and_upcast_attn
snake_case__ : Dict =bos_token_id
snake_case__ : int =eos_token_id
super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
| 707 |
def lowercase_ ( SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
snake_case__ : Optional[int] =len(SCREAMING_SNAKE_CASE )
snake_case__ : int =sum(SCREAMING_SNAKE_CASE )
snake_case__ : str =[[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
snake_case__ : Any =True
for i in range(1 , s + 1 ):
snake_case__ : Dict =False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
snake_case__ : Union[str, Any] =dp[i][j - 1]
if arr[i - 1] <= j:
snake_case__ : Union[str, Any] =dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
snake_case__ : Dict =s - 2 * j
break
return diff
| 408 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.