code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) UpperCAmelCase__ : Any = logging.getLogger(__name__) def A ( snake_case__ : str ) -> Dict: '''simple docstring''' __snake_case = git.Repo(search_parent_directories=snake_case__ ) __snake_case = { 'repo_id': str(snake_case__ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(snake_case__ , 'git_log.json' ) , 'w' ) as f: json.dump(snake_case__ , snake_case__ , indent=4 ) def A ( snake_case__ : Optional[int] ) -> List[Any]: '''simple docstring''' if params.n_gpu <= 0: __snake_case = 0 __snake_case = -1 __snake_case = True __snake_case = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 __snake_case = int(os.environ['WORLD_SIZE'] ) __snake_case = int(os.environ['N_GPU_NODE'] ) __snake_case = int(os.environ['RANK'] ) # number of nodes / node ID __snake_case = params.world_size // params.n_gpu_per_node __snake_case = params.global_rank // params.n_gpu_per_node __snake_case = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 __snake_case = 1 __snake_case = 0 __snake_case = 0 __snake_case = 0 __snake_case = 1 __snake_case = 1 __snake_case = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __snake_case = params.node_id == 0 and params.local_rank == 0 __snake_case = params.n_nodes > 1 # summary __snake_case = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def A ( snake_case__ : Any ) -> Any: '''simple docstring''' np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
313
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class __lowercase : def __init__( self , lowercase_ = "cpu" , lowercase_ = "openai/clip-vit-large-patch14") -> None: __snake_case = device __snake_case = CLIPTokenizerFast.from_pretrained(lowercase_) __snake_case = [0.4814_5466, 0.457_8275, 0.4082_1073] __snake_case = [0.2686_2954, 0.2613_0258, 0.2757_7711] __snake_case = torchvision.transforms.Normalize(self.image_mean , self.image_std) __snake_case = torchvision.transforms.Resize(2_2_4) __snake_case = torchvision.transforms.CenterCrop(2_2_4) def _a ( self , lowercase_) -> int: __snake_case = self.resize(lowercase_) __snake_case = self.center_crop(lowercase_) __snake_case = self.normalize(lowercase_) return images def __call__( self , lowercase_=None , lowercase_=None , **lowercase_) -> Union[str, Any]: __snake_case = self.tokenizer(text=lowercase_ , **lowercase_) __snake_case = self.preprocess_img(lowercase_) __snake_case = {key: value.to(self.device) for (key, value) in encoding.items()} return encoding class __lowercase ( nn.Module ): def __init__( self , lowercase_=1_0 , lowercase_=0.01 , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=False , lowercase_=True , lowercase_="image" , lowercase_=True , lowercase_=False , lowercase_=False , lowercase_=False , ) -> None: super().__init__() __snake_case = None __snake_case = device if device else get_device() if vqgan: __snake_case = vqgan else: __snake_case = load_vqgan(self.device , conf_path=lowercase_ , ckpt_path=lowercase_) self.vqgan.eval() if clip: __snake_case = clip else: __snake_case = CLIPModel.from_pretrained('openai/clip-vit-base-patch32') self.clip.to(self.device) __snake_case = ProcessorGradientFlow(device=self.device) __snake_case = iterations __snake_case = lr __snake_case = log __snake_case = make_grid __snake_case = return_val __snake_case = quantize __snake_case = self.vqgan.decoder.z_shape def _a ( self , lowercase_=None , lowercase_=None , lowercase_=5 , lowercase_=True) -> List[str]: __snake_case = [] if output_path is None: __snake_case = './animation.gif' if input_path is None: __snake_case = self.save_path __snake_case = sorted(glob(input_path + '/*')) if not len(lowercase_): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)') if len(lowercase_) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)') __snake_case = total_duration / len(lowercase_) __snake_case = [frame_duration] * len(lowercase_) if extend_frames: __snake_case = 1.5 __snake_case = 3 for file_name in paths: if file_name.endswith('.png'): images.append(imageio.imread(lowercase_)) imageio.mimsave(lowercase_ , lowercase_ , duration=lowercase_) print(F"gif saved to {output_path}") def _a ( self , lowercase_=None , lowercase_=None) -> Union[str, Any]: if not (path or img): raise ValueError('Input either path or tensor') if img is not None: raise NotImplementedError __snake_case = preprocess(Image.open(lowercase_) , target_image_size=2_5_6).to(self.device) __snake_case = preprocess_vqgan(lowercase_) __snake_case , *__snake_case = self.vqgan.encode(lowercase_) return z def _a ( self , lowercase_) -> Dict: __snake_case = self.latent.detach().requires_grad_() __snake_case = base_latent + transform_vector if self.quantize: __snake_case , *__snake_case = self.vqgan.quantize(lowercase_) else: __snake_case = trans_latent return self.vqgan.decode(lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_=None) -> Any: __snake_case = self.clip_preprocessor(text=lowercase_ , images=lowercase_ , return_tensors='pt' , padding=lowercase_) __snake_case = self.clip(**lowercase_) __snake_case = clip_outputs.logits_per_image if weights is not None: __snake_case = similarity_logits * weights return similarity_logits.sum() def _a ( self , lowercase_ , lowercase_ , lowercase_) -> List[Any]: __snake_case = self._get_clip_similarity(pos_prompts['prompts'] , lowercase_ , weights=(1 / pos_prompts['weights'])) if neg_prompts: __snake_case = self._get_clip_similarity(neg_prompts['prompts'] , lowercase_ , weights=neg_prompts['weights']) else: __snake_case = torch.tensor([1] , device=self.device) __snake_case = -torch.log(lowercase_) + torch.log(lowercase_) return loss def _a ( self , lowercase_ , lowercase_ , lowercase_) -> Any: __snake_case = torch.randn_like(self.latent , requires_grad=lowercase_ , device=self.device) __snake_case = torch.optim.Adam([vector] , lr=self.lr) for i in range(self.iterations): optim.zero_grad() __snake_case = self._add_vector(lowercase_) __snake_case = loop_post_process(lowercase_) __snake_case = self._get_CLIP_loss(lowercase_ , lowercase_ , lowercase_) print('CLIP loss' , lowercase_) if self.log: wandb.log({'CLIP Loss': clip_loss}) clip_loss.backward(retain_graph=lowercase_) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0]) else: yield vector def _a ( self , lowercase_ , lowercase_ , lowercase_) -> Any: wandb.init(reinit=lowercase_ , project='face-editor') wandb.config.update({'Positive Prompts': positive_prompts}) wandb.config.update({'Negative Prompts': negative_prompts}) wandb.config.update({'lr': self.lr, 'iterations': self.iterations}) if image_path: __snake_case = Image.open(lowercase_) __snake_case = image.resize((2_5_6, 2_5_6)) wandb.log('Original Image' , wandb.Image(lowercase_)) def _a ( self , lowercase_) -> Optional[int]: if not prompts: return [] __snake_case = [] __snake_case = [] if isinstance(lowercase_ , lowercase_): __snake_case = [prompt.strip() for prompt in prompts.split('|')] for prompt in prompts: if isinstance(lowercase_ , (tuple, list)): __snake_case = prompt[0] __snake_case = float(prompt[1]) elif ":" in prompt: __snake_case , __snake_case = prompt.split(':') __snake_case = float(lowercase_) else: __snake_case = prompt __snake_case = 1.0 processed_prompts.append(lowercase_) weights.append(lowercase_) return { "prompts": processed_prompts, "weights": torch.tensor(lowercase_ , device=self.device), } def _a ( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=True , lowercase_=None , ) -> List[str]: if image_path: __snake_case = self._get_latent(lowercase_) else: __snake_case = torch.randn(self.latent_dim , device=self.device) if self.log: self._init_logging(lowercase_ , lowercase_ , lowercase_) assert pos_prompts, "You must provide at least one positive prompt." __snake_case = self.process_prompts(lowercase_) __snake_case = self.process_prompts(lowercase_) if save_final and save_path is None: __snake_case = os.path.join('./outputs/' , '_'.join(pos_prompts['prompts'])) if not os.path.exists(lowercase_): os.makedirs(lowercase_) else: __snake_case = save_path + '_' + get_timestamp() os.makedirs(lowercase_) __snake_case = save_path __snake_case = self.vqgan.decode(self.latent)[0] if show_intermediate: print('Original Image') show_pil(custom_to_pil(lowercase_)) __snake_case = loop_post_process(lowercase_) for iter, transformed_img in enumerate(self._optimize_CLIP(lowercase_ , lowercase_ , lowercase_)): if show_intermediate: show_pil(lowercase_) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F"iter_{iter:03d}.png")) if self.log: wandb.log({'Image': wandb.Image(lowercase_)}) if show_final: show_pil(lowercase_) if save_final: transformed_img.save(os.path.join(self.save_path , F"iter_{iter:03d}_final.png"))
313
1
from __future__ import annotations import math def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if len(_UpperCAmelCase ) != 2 or len(a[0] ) != 2 or len(_UpperCAmelCase ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) lowercase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(_UpperCAmelCase ) ) ] def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(_UpperCAmelCase ) ) ] def __snake_case ( _UpperCAmelCase ): """simple docstring""" if len(_UpperCAmelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) lowercase = len(_UpperCAmelCase ) lowercase = matrix_length // 2 lowercase = [[a[i][j] for j in range(_UpperCAmelCase , _UpperCAmelCase )] for i in range(_UpperCAmelCase )] lowercase = [ [a[i][j] for j in range(_UpperCAmelCase , _UpperCAmelCase )] for i in range(_UpperCAmelCase , _UpperCAmelCase ) ] lowercase = [[a[i][j] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase )] lowercase = [[a[i][j] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase , _UpperCAmelCase )] return top_left, top_right, bot_left, bot_right def __snake_case ( _UpperCAmelCase ): """simple docstring""" return len(_UpperCAmelCase ), len(matrix[0] ) def __snake_case ( _UpperCAmelCase ): """simple docstring""" print('\n'.join(str(_UpperCAmelCase ) for line in matrix ) ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if matrix_dimensions(_UpperCAmelCase ) == (2, 2): return default_matrix_multiplication(_UpperCAmelCase , _UpperCAmelCase ) lowercase , lowercase , lowercase , lowercase = split_matrix(_UpperCAmelCase ) lowercase , lowercase , lowercase , lowercase = split_matrix(_UpperCAmelCase ) lowercase = actual_strassen(_UpperCAmelCase , matrix_subtraction(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase = actual_strassen(matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) lowercase = actual_strassen(matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) lowercase = actual_strassen(_UpperCAmelCase , matrix_subtraction(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase = actual_strassen(matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) , matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase = actual_strassen(matrix_subtraction(_UpperCAmelCase , _UpperCAmelCase ) , matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase = actual_strassen(matrix_subtraction(_UpperCAmelCase , _UpperCAmelCase ) , matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase = matrix_addition(matrix_subtraction(matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) , _UpperCAmelCase ) lowercase = matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) lowercase = matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) lowercase = matrix_subtraction(matrix_subtraction(matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) , _UpperCAmelCase ) # construct the new matrix from our 4 quadrants lowercase = [] for i in range(len(_UpperCAmelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(_UpperCAmelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if matrix_dimensions(_UpperCAmelCase )[1] != matrix_dimensions(_UpperCAmelCase )[0]: lowercase = ( 'Unable to multiply these matrices, please check the dimensions.\n' f"""Matrix A: {matrixa}\n""" f"""Matrix B: {matrixa}""" ) raise Exception(_UpperCAmelCase ) lowercase = matrix_dimensions(_UpperCAmelCase ) lowercase = matrix_dimensions(_UpperCAmelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase = max(*_UpperCAmelCase , *_UpperCAmelCase ) lowercase = int(math.pow(2 , math.ceil(math.loga(_UpperCAmelCase ) ) ) ) lowercase = matrixa lowercase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , _UpperCAmelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , _UpperCAmelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , _UpperCAmelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase = actual_strassen(_UpperCAmelCase , _UpperCAmelCase ) # Removing the additional zeros for i in range(0 , _UpperCAmelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , _UpperCAmelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": __magic_name__ = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] __magic_name__ = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
715
def __snake_case ( _UpperCAmelCase = 10 ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or n < 0: raise ValueError('Invalid input' ) lowercase = 10**n lowercase = 2_84_33 * (pow(2 , 7_83_04_57 , _UpperCAmelCase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
314
0
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" def __init__(self , __a , __a , __a=10_24 , __a=10_24 , __a=3.6 ): '''simple docstring''' lowerCamelCase = tokenizer lowerCamelCase = tokenizer.bos_token_id lowerCamelCase = dataset lowerCamelCase = seq_length lowerCamelCase = seq_length * chars_per_token * num_of_sequences def __iter__(self ): '''simple docstring''' lowerCamelCase = iter(self.dataset ) lowerCamelCase = True while more_examples: lowerCamelCase , lowerCamelCase = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__a )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: lowerCamelCase = False break lowerCamelCase = tokenizer(__a , truncation=__a )["input_ids"] lowerCamelCase = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(__a ) , self.seq_length ): lowerCamelCase = all_token_ids[i : i + self.seq_length] if len(__a ) == self.seq_length: yield torch.tensor(__a ) def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = {"streaming": True} lowerCamelCase = load_dataset(args.dataset_name , split="train" , **UpperCAmelCase__ ) lowerCamelCase = ConstantLengthDataset(UpperCAmelCase__ , UpperCAmelCase__ , seq_length=args.seq_length ) lowerCamelCase = DataLoader(UpperCAmelCase__ , batch_size=args.batch_size ) return eval_dataloader def __lowercase( UpperCAmelCase__ ): """simple docstring""" model.eval() lowerCamelCase = [] for step, batch in enumerate(UpperCAmelCase__ ): with torch.no_grad(): lowerCamelCase = model(UpperCAmelCase__ , labels=UpperCAmelCase__ ) lowerCamelCase = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(UpperCAmelCase__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowerCamelCase = torch.mean(torch.cat(UpperCAmelCase__ ) ) try: lowerCamelCase = torch.exp(UpperCAmelCase__ ) except OverflowError: lowerCamelCase = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator a_ : Any = Accelerator() # Parse configuration a_ : Union[str, Any] = HfArgumentParser(EvaluationArguments) a_ : Optional[int] = parser.parse_args() set_seed(args.seed) # Logging a_ : Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer a_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) a_ : List[Any] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader a_ : Dict = create_dataloader(args) # Prepare everything with our `accelerator`. a_ , a_ : List[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') a_ , a_ : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
623
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__(self , __a , __a=7 , __a=3 , __a=18 , __a=30 , __a=4_00 , __a=True , __a=None , __a=True , ): '''simple docstring''' lowerCamelCase = size if size is not None else {"height": 18, "width": 18} lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = num_channels lowerCamelCase = image_size lowerCamelCase = min_resolution lowerCamelCase = max_resolution lowerCamelCase = do_resize lowerCamelCase = size lowerCamelCase = apply_ocr def _a (self ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase): """simple docstring""" _A = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a (self ): '''simple docstring''' lowerCamelCase = LayoutLMvaImageProcessingTester(self ) @property def _a (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _a (self ): '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , "do_resize" ) ) self.assertTrue(hasattr(__a , "size" ) ) self.assertTrue(hasattr(__a , "apply_ocr" ) ) def _a (self ): '''simple docstring''' lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def _a (self ): '''simple docstring''' pass def _a (self ): '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , __a ) self.assertIsInstance(encoding.boxes , __a ) # Test batched lowerCamelCase = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _a (self ): '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowerCamelCase = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _a (self ): '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowerCamelCase = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _a (self ): '''simple docstring''' lowerCamelCase = LayoutLMvaImageProcessor() from datasets import load_dataset lowerCamelCase = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) lowerCamelCase = Image.open(ds[0]["file"] ).convert("RGB" ) lowerCamelCase = image_processing(__a , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowerCamelCase = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "โ€œIntroductory", "Remarksโ€", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 lowerCamelCase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __a ) self.assertListEqual(encoding.boxes , __a ) # with apply_OCR = False lowerCamelCase = LayoutLMvaImageProcessor(apply_ocr=__a ) lowerCamelCase = image_processing(__a , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
623
1
import math class lowerCAmelCase__: '''simple docstring''' def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : List[Any] = 0.0 _SCREAMING_SNAKE_CASE : Tuple = 0.0 for i in range(len(__lowerCamelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> list[list[int | float]]: for i in range(len(__lowerCamelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : List[Any] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _SCREAMING_SNAKE_CASE : Tuple = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _SCREAMING_SNAKE_CASE : Optional[int] = SelfOrganizingMap() _SCREAMING_SNAKE_CASE : Any = 3 _SCREAMING_SNAKE_CASE : Dict = 0.5 for _ in range(__snake_case ): for j in range(len(__snake_case ) ): # training sample _SCREAMING_SNAKE_CASE : List[Any] = training_samples[j] # Compute the winning vector _SCREAMING_SNAKE_CASE : Tuple = self_organizing_map.get_winner(__snake_case, __snake_case ) # Update the winning vector _SCREAMING_SNAKE_CASE : Union[str, Any] = self_organizing_map.update(__snake_case, __snake_case, __snake_case, __snake_case ) # classify test sample _SCREAMING_SNAKE_CASE : Optional[int] = [0, 0, 0, 1] _SCREAMING_SNAKE_CASE : int = self_organizing_map.get_winner(__snake_case, __snake_case ) # results print(f"""Clusters that the test sample belongs to : {winner}""" ) print(f"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
713
import cmath import math def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = math.radians(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = math.radians(__lowerCamelCase ) # Convert voltage and current to rectangular form _SCREAMING_SNAKE_CASE : str = cmath.rect(__lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = cmath.rect(__lowerCamelCase, __lowerCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
381
0
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = embedding_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope def UpperCAmelCase_ (self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ (self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = MobileBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = MobileBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = MobileBertForNextSentencePrediction(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = MobileBertForPreTraining(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , next_sentence_label=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = MobileBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = MobileBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = MobileBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.num_choices UpperCamelCase__ = MobileBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = True def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): UpperCamelCase__ = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def UpperCAmelCase_ (self ): UpperCamelCase__ = MobileBertModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCAmelCase_ (self ): self.config_tester.run_common_tests() def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def __magic_name__ ( __a : List[str] ): '''simple docstring''' return torch.tensor( __a , dtype=torch.long , device=__a , ) lowerCamelCase_ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class __A( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase__ = torch.Size((1, 9, 5_12) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor( [ [ [-2.4736526E07, 8.2691656E04, 1.6521838E05], [-5.7541704E-01, 3.9056022E00, 4.4011507E00], [2.6047359E00, 1.5677652E00, -1.7324188E-01], ] ] , device=SCREAMING_SNAKE_CASE_ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCamelCase__ = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCamelCase__ = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
513
from __future__ import annotations import time import numpy as np lowerCamelCase_ = [8, 5, 9, 7] lowerCamelCase_ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowerCamelCase_ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = claim_vector UpperCamelCase__ = allocated_resources_table UpperCamelCase__ = maximum_claim_table def UpperCAmelCase_ (self ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCAmelCase_ (self ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCAmelCase_ (self ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(SCREAMING_SNAKE_CASE_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCAmelCase_ (self ): return {self.__need().index(SCREAMING_SNAKE_CASE_ ): i for i in self.__need()} def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.__need() UpperCamelCase__ = self.__allocated_resources_table UpperCamelCase__ = self.__available_resources() UpperCamelCase__ = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: UpperCamelCase__ = False for each_need in need_list: UpperCamelCase__ = True for index, need in enumerate(SCREAMING_SNAKE_CASE_ ): if need > available_resources[index]: UpperCamelCase__ = False break if execution: UpperCamelCase__ = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: UpperCamelCase__ = original_need_index print(F"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(SCREAMING_SNAKE_CASE_ ) # update available/freed resources stack UpperCamelCase__ = np.array(SCREAMING_SNAKE_CASE_ ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(SCREAMING_SNAKE_CASE_ ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def UpperCAmelCase_ (self ): print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( F"P{self.__allocated_resources_table.index(SCREAMING_SNAKE_CASE_ ) + 1}" + """ """.join(F"{it:>8}" for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( F"P{self.__maximum_claim_table.index(SCREAMING_SNAKE_CASE_ ) + 1}" + """ """.join(F"{it:>8}" for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(SCREAMING_SNAKE_CASE_ ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(SCREAMING_SNAKE_CASE_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
513
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> List[Any]: """simple docstring""" snake_case_ = analyze_text(__UpperCamelCase ) snake_case_ = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. snake_case_ = sum(single_char_strings.values() ) # one length string snake_case_ = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: snake_case_ = single_char_strings[ch] snake_case_ = my_str / all_sum my_fir_sum += prob * math.loga(__UpperCamelCase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string snake_case_ = sum(two_char_strings.values() ) snake_case_ = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: snake_case_ = cha + cha if sequence in two_char_strings: snake_case_ = two_char_strings[sequence] snake_case_ = int(__UpperCamelCase ) / all_sum my_sec_sum += prob * math.loga(__UpperCamelCase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Optional[int]: """simple docstring""" snake_case_ = Counter() # type: ignore snake_case_ = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__UpperCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __lowerCAmelCase ()-> str: """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
721
import requests def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> None: """simple docstring""" snake_case_ = {'''Content-Type''': '''application/json'''} snake_case_ = requests.post(SCREAMING_SNAKE_CASE , json={'''text''': message_body} , headers=SCREAMING_SNAKE_CASE ) if response.status_code != 200: snake_case_ = ( '''Request to slack returned an error ''' f'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
531
0
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def UpperCamelCase_( _A :float , _A :float , _A :bool = False )-> Optional[Any]: if radian_mode: return [magnitude * cos(lowerCamelCase_ ), magnitude * sin(lowerCamelCase_ )] return [magnitude * cos(radians(lowerCamelCase_ ) ), magnitude * sin(radians(lowerCamelCase_ ) )] def UpperCamelCase_( _A :NDArray[floataa] , _A :NDArray[floataa] , _A :float = 10**-1 )-> Optional[int]: UpperCamelCase__ = cross(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = sum(lowerCamelCase_ ) return abs(lowerCamelCase_ ) < eps if __name__ == "__main__": # Test to check if it works __UpperCamelCase = array( [ polar_force(718.4, 1_8_0 - 3_0), polar_force(879.54, 4_5), polar_force(1_0_0, -9_0), ] ) __UpperCamelCase = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg __UpperCamelCase = array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) __UpperCamelCase = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg __UpperCamelCase = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) __UpperCamelCase = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
551
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: int , lowerCamelCase_: int ): """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
449
0
"""simple docstring""" import math def snake_case__ ( _snake_case : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case__ ( _snake_case : float = 0.1 ): """simple docstring""" UpperCamelCase__ = 3 UpperCamelCase__ = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_snake_case ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
304
"""simple docstring""" from collections.abc import Sequence def snake_case__ ( _snake_case : Sequence[float] , _snake_case : bool = False ): """simple docstring""" if not arr: return 0 UpperCamelCase__ = 0 if allow_empty_subarrays else float("-inf" ) UpperCamelCase__ = 0.0 for num in arr: UpperCamelCase__ = max(0 if allow_empty_subarrays else num , curr_sum + num ) UpperCamelCase__ = max(_snake_case , _snake_case ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() A : str = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
304
1
"""simple docstring""" from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return {key.lstrip("""-""" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = ArgumentParser( """HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=lowerCamelCase__ ) lowerCAmelCase__ = parser.add_subparsers(help="""datasets-cli command helpers""" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(lowerCamelCase__ ) EnvironmentCommand.register_subcommand(lowerCamelCase__ ) TestCommand.register_subcommand(lowerCamelCase__ ) RunBeamCommand.register_subcommand(lowerCamelCase__ ) DummyDataCommand.register_subcommand(lowerCamelCase__ ) # Parse args lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_known_args() if not hasattr(lowerCamelCase__ , """func""" ): parser.print_help() exit(1 ) lowerCAmelCase__ = parse_unknown_args(lowerCamelCase__ ) # Run lowerCAmelCase__ = args.func(lowerCamelCase__ , **lowerCamelCase__ ) service.run() if __name__ == "__main__": main()
644
"""simple docstring""" import math from datetime import datetime, timedelta def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = year % 19 lowerCAmelCase__ = year % 4 lowerCAmelCase__ = year % 7 lowerCAmelCase__ = math.floor(year / 100 ) lowerCAmelCase__ = math.floor((13 + 8 * leap_day_inhibits) / 25 ) lowerCAmelCase__ = leap_day_inhibits / 4 lowerCAmelCase__ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 lowerCAmelCase__ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 lowerCAmelCase__ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon lowerCAmelCase__ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(lowerCamelCase__ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(lowerCamelCase__ , 4 , 18 ) else: return datetime(lowerCamelCase__ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): __lowerCAmelCase : List[str] = "will be" if year > datetime.now().year else "was" print(F"Easter in {year} {tense} {gauss_easter(year)}")
644
1
from PIL import Image def a ( SCREAMING_SNAKE_CASE_ : Image , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : Tuple = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level)) def contrast(SCREAMING_SNAKE_CASE_ : int ) -> int: return int(1_2_8 + factor * (c - 1_2_8) ) return img.point(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change contrast to 170 __UpperCAmelCase : Dict = change_contrast(img, 170) cont_img.save("image_data/lena_high_contrast.png", format="png")
713
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase_ ( _a): '''simple docstring''' def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : str = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) UpperCamelCase : Optional[int] = input_file.read() UpperCamelCase : Union[str, Any] = regexp.search(__SCREAMING_SNAKE_CASE ) return match def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : Optional[int] = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) UpperCamelCase : Tuple = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase : Dict = regexp.finditer(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
643
0
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a = logging.get_logger(__name__) class a_ ( snake_case ): UpperCAmelCase : Optional[Any] = ["""pixel_values"""] def __init__( self : List[str] , a_ : bool = True , a_ : Dict[str, int] = None , a_ : PILImageResampling = PILImageResampling.BICUBIC , a_ : bool = True , a_ : Dict[str, int] = None , a_ : bool = True , a_ : Union[int, float] = 1 / 2_5_5 , a_ : bool = True , a_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , a_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **a_ : Any , ) -> None: super().__init__(**a_ ) snake_case: Any =size if size is not None else {'shortest_edge': 2_2_4} snake_case: List[str] =get_size_dict(a_ , default_to_square=a_ ) snake_case: int =crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} snake_case: Union[str, Any] =get_size_dict(a_ , param_name='crop_size' ) snake_case: List[str] =do_resize snake_case: Any =size snake_case: Dict =resample snake_case: Dict =do_center_crop snake_case: Union[str, Any] =crop_size snake_case: Optional[Any] =do_rescale snake_case: Any =rescale_factor snake_case: Union[str, Any] =do_normalize snake_case: Union[str, Any] =image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case: Any =image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase ( self : List[Any] , a_ : np.ndarray , a_ : Dict[str, int] , a_ : PILImageResampling = PILImageResampling.BICUBIC , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Tuple , ) -> np.ndarray: snake_case: int =get_size_dict(a_ , default_to_square=a_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: snake_case: Union[str, Any] =int((2_5_6 / 2_2_4) * size['shortest_edge'] ) snake_case: Union[str, Any] =get_resize_output_image_size(a_ , size=a_ , default_to_square=a_ ) snake_case: Optional[Any] ={'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( a_ , size=(size_dict['height'], size_dict['width']) , resample=a_ , data_format=a_ , **a_ ) def UpperCamelCase ( self : Optional[int] , a_ : np.ndarray , a_ : Dict[str, int] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Dict , ) -> np.ndarray: snake_case: Dict =get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(a_ , size=(size['height'], size['width']) , data_format=a_ , **a_ ) def UpperCamelCase ( self : Tuple , a_ : np.ndarray , a_ : Union[int, float] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Optional[Any] , ) -> np.ndarray: return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def UpperCamelCase ( self : Union[str, Any] , a_ : np.ndarray , a_ : Union[float, List[float]] , a_ : Union[float, List[float]] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Optional[Any] , ) -> np.ndarray: return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def UpperCamelCase ( self : Optional[int] , a_ : ImageInput , a_ : Optional[bool] = None , a_ : Optional[Dict[str, int]] = None , a_ : PILImageResampling = None , a_ : Optional[bool] = None , a_ : Optional[Dict[str, int]] = None , a_ : Optional[bool] = None , a_ : Optional[float] = None , a_ : Optional[bool] = None , a_ : Optional[Union[float, Iterable[float]]] = None , a_ : Optional[Union[float, Iterable[float]]] = None , a_ : Optional[TensorType] = None , a_ : ChannelDimension = ChannelDimension.FIRST , **a_ : List[str] , ) -> BatchFeature: snake_case: Optional[Any] =do_resize if do_resize is not None else self.do_resize snake_case: List[str] =resample if resample is not None else self.resample snake_case: Any =do_center_crop if do_center_crop is not None else self.do_center_crop snake_case: Union[str, Any] =do_rescale if do_rescale is not None else self.do_rescale snake_case: Any =rescale_factor if rescale_factor is not None else self.rescale_factor snake_case: Any =do_normalize if do_normalize is not None else self.do_normalize snake_case: int =image_mean if image_mean is not None else self.image_mean snake_case: Union[str, Any] =image_std if image_std is not None else self.image_std snake_case: int =size if size is not None else self.size snake_case: Union[str, Any] =get_size_dict(a_ , default_to_square=a_ ) snake_case: Optional[int] =crop_size if crop_size is not None else self.crop_size snake_case: Any =get_size_dict(a_ , param_name='crop_size' ) snake_case: str =make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case: List[str] =[to_numpy_array(a_ ) for image in images] if do_resize: snake_case: Dict =[self.resize(a_ , a_ , a_ ) for image in images] if do_center_crop: snake_case: Union[str, Any] =[self.center_crop(a_ , a_ ) for image in images] if do_rescale: snake_case: List[str] =[self.rescale(a_ , a_ ) for image in images] if do_normalize: snake_case: Dict =[self.normalize(a_ , a_ , a_ ) for image in images] snake_case: Optional[Any] =[to_channel_dimension_format(a_ , a_ ) for image in images] snake_case: int ={'pixel_values': images} return BatchFeature(data=a_ , tensor_type=a_ )
350
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( snake_case , unittest.TestCase ): UpperCAmelCase : int = FunnelTokenizer UpperCAmelCase : Tuple = FunnelTokenizerFast UpperCAmelCase : List[str] = True UpperCAmelCase : Tuple = True def UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: super().setUp() snake_case: Optional[Any] =[ '<unk>', '<cls>', '<sep>', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] snake_case: Any =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCamelCase ( self : Tuple , **a_ : str ) -> Any: return FunnelTokenizer.from_pretrained(self.tmpdirname , **a_ ) def UpperCamelCase ( self : List[Any] , **a_ : int ) -> str: return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **a_ ) def UpperCamelCase ( self : Any , a_ : Union[str, Any] ) -> Union[str, Any]: snake_case: List[str] ='UNwant\u00E9d,running' snake_case: Dict ='unwanted, running' return input_text, output_text def UpperCamelCase ( self : Optional[int] ) -> List[Any]: snake_case: Union[str, Any] =self.tokenizer_class(self.vocab_file ) snake_case: Dict =tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(a_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , [7, 4, 5, 1_0, 8, 9] ) def UpperCamelCase ( self : List[str] ) -> Dict: snake_case: Optional[Any] =self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: snake_case: str =tokenizer('UNwant\u00E9d,running' ) snake_case: Union[str, Any] =len(inputs['input_ids'] ) - 1 self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len ) snake_case: List[str] =tokenizer('UNwant\u00E9d,running' , 'UNwant\u00E9d,running' ) self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len + [1] * sentence_len )
350
1
'''simple docstring''' import colorsys from PIL import Image # type: ignore def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> float: UpperCAmelCase : List[Any] = x UpperCAmelCase : List[str] = y for step in range(_lowercase ): # noqa: B007 UpperCAmelCase : Optional[Any] = a * a - b * b + x UpperCAmelCase : Union[str, Any] = 2 * a * b + y UpperCAmelCase : List[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __lowerCamelCase ( _lowercase ) -> tuple: if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def __lowerCamelCase ( _lowercase ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(_lowercase , 1 , 1 ) ) def __lowerCamelCase ( _lowercase = 8_0_0 , _lowercase = 6_0_0 , _lowercase = -0.6 , _lowercase = 0 , _lowercase = 3.2 , _lowercase = 5_0 , _lowercase = True , ) -> Image.Image: UpperCAmelCase : Optional[int] = Image.new("""RGB""" , (image_width, image_height) ) UpperCAmelCase : Any = img.load() # loop through the image-coordinates for image_x in range(_lowercase ): for image_y in range(_lowercase ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase : Dict = figure_width / image_width * image_height UpperCAmelCase : Dict = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase : List[Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase : Optional[Any] = get_distance(_lowercase , _lowercase , _lowercase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase : Dict = get_color_coded_rgb(_lowercase ) else: UpperCAmelCase : int = get_black_and_white_rgb(_lowercase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure a : Optional[int] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) __snake_case : List[Any] = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , _lowerCamelCase ) if matches: __snake_case : Optional[Any] = float(matches[1] ) __snake_case : Union[str, Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __snake_case : Tuple = 1001 __snake_case : Any = """imagenet-1k-id2label.json""" __snake_case : Optional[Any] = """huggingface/label-files""" __snake_case : List[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __snake_case : Dict = {int(_lowerCamelCase ) + 1: v for k, v in idalabel.items()} __snake_case : List[str] = """background""" __snake_case : List[str] = idalabel __snake_case : List[Any] = {v: k for k, v in idalabel.items()} return config def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = get_mobilenet_va_config(_lowerCamelCase ) # Load ๐Ÿค— model __snake_case : Optional[Any] = MobileNetVaForImageClassification(_lowerCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __snake_case : Optional[int] = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) __snake_case : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" ) __snake_case : Optional[Any] = model(**_lowerCamelCase ) __snake_case : List[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __snake_case : str = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": __snake_case : Tuple = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: __snake_case : List[Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1E-4 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) __snake_case : Optional[Any] = """google/""" + model_name image_processor.push_to_hub(_lowerCamelCase ) model.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the ๐Ÿค— hub." ) __UpperCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
26
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a: str = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a: List[Any] = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a: int = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _a: List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
715
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a: Dict = logging.get_logger(__name__) class __UpperCamelCase ( lowercase ): SCREAMING_SNAKE_CASE__ = ['input_ids', 'attention_mask'] def __init__( self : Tuple , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : Optional[int]="<pad>" , lowerCAmelCase : List[str]=125 , lowerCAmelCase : List[Any]=None , **lowerCAmelCase : Optional[Any] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ = [F"<extra_id_{i}>" for i in range(lowerCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCAmelCase_ = len(set(filter(lambda lowerCAmelCase : bool("extra_id" in str(lowerCAmelCase ) ) , lowerCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" " provided to ByT5Tokenizer. In this case the additional_special_tokens must include the" " extra_ids tokens" ) UpperCAmelCase_ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else pad_token UpperCAmelCase_ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else eos_token UpperCAmelCase_ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else unk_token super().__init__( eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , extra_ids=lowerCAmelCase , additional_special_tokens=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = extra_ids UpperCAmelCase_ = 2**8 # utf is 8 bits # define special tokens dict UpperCAmelCase_ = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } UpperCAmelCase_ = len(self.special_tokens_encoder ) UpperCAmelCase_ = len(lowerCAmelCase ) for i, token in enumerate(lowerCAmelCase ): UpperCAmelCase_ = self.vocab_size + i - n UpperCAmelCase_ = {v: k for k, v in self.special_tokens_encoder.items()} @property def __A ( self : Optional[Any] ): '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __A ( self : List[Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCAmelCase )) + [1] return ([0] * len(lowerCAmelCase )) + [1] + ([0] * len(lowerCAmelCase )) + [1] def __A ( self : Any , lowerCAmelCase : List[int] ): '''simple docstring''' if len(lowerCAmelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def __A ( self : Optional[Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ = self._add_eos_if_not_present(lowerCAmelCase ) if token_ids_a is None: return token_ids_a else: UpperCAmelCase_ = self._add_eos_if_not_present(lowerCAmelCase ) return token_ids_a + token_ids_a def __A ( self : List[str] , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase_ = [chr(lowerCAmelCase ) for i in text.encode("utf-8" )] return tokens def __A ( self : Optional[Any] , lowerCAmelCase : List[Any] ): '''simple docstring''' if token in self.special_tokens_encoder: UpperCAmelCase_ = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: UpperCAmelCase_ = self.added_tokens_encoder[token] elif len(lowerCAmelCase ) != 1: UpperCAmelCase_ = self.unk_token_id else: UpperCAmelCase_ = ord(lowerCAmelCase ) + self._num_special_tokens return token_id def __A ( self : str , lowerCAmelCase : Any ): '''simple docstring''' if index in self.special_tokens_decoder: UpperCAmelCase_ = self.special_tokens_decoder[index] else: UpperCAmelCase_ = chr(index - self._num_special_tokens ) return token def __A ( self : Union[str, Any] , lowerCAmelCase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ = b"" for token in tokens: if token in self.special_tokens_decoder: UpperCAmelCase_ = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.added_tokens_decoder: UpperCAmelCase_ = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.special_tokens_encoder: UpperCAmelCase_ = token.encode("utf-8" ) elif token in self.added_tokens_encoder: UpperCAmelCase_ = token.encode("utf-8" ) else: UpperCAmelCase_ = bytes([ord(lowerCAmelCase )] ) bstring += tok_string UpperCAmelCase_ = bstring.decode("utf-8" , errors="ignore" ) return string def __A ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ): '''simple docstring''' return ()
268
0
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ ( __lowercase): '''simple docstring''' def __init__( self :str , a :Optional[int] , a :str=1_3 , a :Dict=7 , a :str=True , a :Dict=True , a :List[Any]=True , a :Any=True , a :Optional[Any]=True , a :Union[str, Any]=False , a :List[str]=False , a :List[str]=False , a :Tuple=2 , a :Dict=9_9 , a :List[Any]=0 , a :Dict=3_2 , a :str=5 , a :str=4 , a :Dict=0.1 , a :Union[str, Any]=0.1 , a :Union[str, Any]=5_1_2 , a :Optional[int]=1_2 , a :Dict=2 , a :Optional[int]=0.02 , a :Optional[Any]=3 , a :int=4 , a :int="last" , a :List[Any]=None , a :List[Any]=None , ) -> Dict: __UpperCamelCase : Any = parent __UpperCamelCase : Tuple = batch_size __UpperCamelCase : Tuple = seq_length __UpperCamelCase : Tuple = is_training __UpperCamelCase : Dict = use_input_lengths __UpperCamelCase : Any = use_token_type_ids __UpperCamelCase : Tuple = use_labels __UpperCamelCase : Dict = gelu_activation __UpperCamelCase : Any = sinusoidal_embeddings __UpperCamelCase : List[str] = causal __UpperCamelCase : Optional[int] = asm __UpperCamelCase : int = n_langs __UpperCamelCase : List[str] = vocab_size __UpperCamelCase : Tuple = n_special __UpperCamelCase : Optional[Any] = hidden_size __UpperCamelCase : Optional[int] = num_hidden_layers __UpperCamelCase : int = num_attention_heads __UpperCamelCase : Tuple = hidden_dropout_prob __UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCamelCase : Optional[Any] = max_position_embeddings __UpperCamelCase : Tuple = type_vocab_size __UpperCamelCase : Tuple = type_sequence_label_size __UpperCamelCase : Any = initializer_range __UpperCamelCase : str = num_labels __UpperCamelCase : Any = num_choices __UpperCamelCase : Tuple = summary_type __UpperCamelCase : Union[str, Any] = use_proj __UpperCamelCase : Optional[Any] = scope def _lowerCamelCase ( self :Union[str, Any] ) -> List[Any]: __UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : Optional[int] = None if self.use_input_lengths: __UpperCamelCase : Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase : Tuple = None if self.use_token_type_ids: __UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase : Union[str, Any] = None __UpperCamelCase : Optional[int] = None __UpperCamelCase : Dict = None if self.use_labels: __UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase : Any = ids_tensor([self.batch_size] , 2 ).float() __UpperCamelCase : str = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase : List[str] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self :Any ) -> Any: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _lowerCamelCase ( self :Optional[int] , a :Any , a :Optional[int] , a :List[Any] , a :str , a :str , a :Dict , a :Tuple , a :int , a :str , ) -> List[str]: __UpperCamelCase : List[str] = FlaubertModel(config=a ) model.to(a ) model.eval() __UpperCamelCase : List[Any] = model(a , lengths=a , langs=a ) __UpperCamelCase : Any = model(a , langs=a ) __UpperCamelCase : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self :str , a :Optional[int] , a :Dict , a :Dict , a :str , a :Optional[int] , a :Any , a :int , a :str , a :Optional[int] , ) -> Tuple: __UpperCamelCase : Optional[int] = FlaubertWithLMHeadModel(a ) model.to(a ) model.eval() __UpperCamelCase : str = model(a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self :Optional[int] , a :str , a :Optional[Any] , a :List[Any] , a :Optional[Any] , a :Optional[Any] , a :Dict , a :Tuple , a :int , a :Union[str, Any] , ) -> Optional[int]: __UpperCamelCase : str = FlaubertForQuestionAnsweringSimple(a ) model.to(a ) model.eval() __UpperCamelCase : str = model(a ) __UpperCamelCase : List[Any] = model(a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self :Tuple , a :Optional[Any] , a :Tuple , a :Optional[Any] , a :Any , a :str , a :Any , a :Dict , a :Dict , a :Dict , ) -> Dict: __UpperCamelCase : int = FlaubertForQuestionAnswering(a ) model.to(a ) model.eval() __UpperCamelCase : Union[str, Any] = model(a ) __UpperCamelCase : Any = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , p_mask=a , ) __UpperCamelCase : Optional[Any] = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , ) ((__UpperCamelCase) , ) : Tuple = result_with_labels.to_tuple() __UpperCamelCase : List[Any] = model(a , start_positions=a , end_positions=a ) ((__UpperCamelCase) , ) : List[str] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self :Union[str, Any] , a :Optional[int] , a :Dict , a :Optional[Any] , a :Any , a :Tuple , a :Optional[Any] , a :Dict , a :List[Any] , a :Dict , ) -> Optional[Any]: __UpperCamelCase : str = FlaubertForSequenceClassification(a ) model.to(a ) model.eval() __UpperCamelCase : List[Any] = model(a ) __UpperCamelCase : int = model(a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self :Tuple , a :Optional[Any] , a :Any , a :Union[str, Any] , a :str , a :int , a :Tuple , a :List[Any] , a :Union[str, Any] , a :List[str] , ) -> int: __UpperCamelCase : Union[str, Any] = self.num_labels __UpperCamelCase : List[str] = FlaubertForTokenClassification(a ) model.to(a ) model.eval() __UpperCamelCase : int = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self :Optional[Any] , a :Union[str, Any] , a :str , a :Tuple , a :Dict , a :Tuple , a :List[Any] , a :Dict , a :str , a :Union[str, Any] , ) -> Union[str, Any]: __UpperCamelCase : List[Any] = self.num_choices __UpperCamelCase : str = FlaubertForMultipleChoice(config=a ) model.to(a ) model.eval() __UpperCamelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase : str = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self :Any ) -> Optional[int]: __UpperCamelCase : int = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : Any = config_and_inputs __UpperCamelCase : Optional[int] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class lowerCamelCase__ ( __lowercase , __lowercase , unittest.TestCase): '''simple docstring''' _A = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _A = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self :Optional[int] , a :Tuple , a :Optional[Any] , a :Dict , a :Tuple , a :Dict ) -> str: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self :Dict , a :Any , a :int , a :Optional[int]=False ) -> Union[str, Any]: __UpperCamelCase : Tuple = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __UpperCamelCase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) __UpperCamelCase : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _lowerCamelCase ( self :str ) -> Optional[Any]: __UpperCamelCase : Optional[int] = FlaubertModelTester(self ) __UpperCamelCase : Optional[int] = ConfigTester(self , config_class=a , emb_dim=3_7 ) def _lowerCamelCase ( self :List[str] ) -> Union[str, Any]: self.config_tester.run_common_tests() def _lowerCamelCase ( self :Optional[Any] ) -> Optional[Any]: __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a ) def _lowerCamelCase ( self :Tuple ) -> Dict: __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a ) def _lowerCamelCase ( self :Union[str, Any] ) -> Any: __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*a ) def _lowerCamelCase ( self :List[Any] ) -> str: __UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a ) def _lowerCamelCase ( self :Dict ) -> List[Any]: __UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a ) def _lowerCamelCase ( self :str ) -> Tuple: __UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*a ) def _lowerCamelCase ( self :int ) -> int: __UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*a ) @slow def _lowerCamelCase ( self :Dict ) -> Optional[Any]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : List[Any] = FlaubertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def _lowerCamelCase ( self :int ) -> Tuple: __UpperCamelCase , __UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __UpperCamelCase : Dict = True __UpperCamelCase : Any = model_class(config=a ) __UpperCamelCase : List[str] = self._prepare_for_class(a , a ) __UpperCamelCase : Union[str, Any] = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt" ) ) __UpperCamelCase : Optional[int] = torch.jit.load(os.path.join(a , "traced_model.pt" ) , map_location=a ) loaded(inputs_dict["input_ids"].to(a ) , inputs_dict["attention_mask"].to(a ) ) @require_torch class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @slow def _lowerCamelCase ( self :Any ) -> List[str]: __UpperCamelCase : Tuple = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) __UpperCamelCase : Tuple = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) with torch.no_grad(): __UpperCamelCase : Dict = model(a )[0] __UpperCamelCase : str = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a ) __UpperCamelCase : Union[str, Any] = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1E-4 ) )
557
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : Union[str, Any] = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 'efficientformer' def __init__( self :Union[str, Any] , a :List[int] = [3, 2, 6, 4] , a :List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , a :List[bool] = [True, True, True, True] , a :int = 4_4_8 , a :int = 3_2 , a :int = 4 , a :int = 7 , a :int = 5 , a :int = 8 , a :int = 4 , a :float = 0.0 , a :int = 1_6 , a :int = 3 , a :int = 3 , a :int = 3 , a :int = 2 , a :int = 1 , a :float = 0.0 , a :int = 1 , a :bool = True , a :bool = True , a :float = 1E-5 , a :str = "gelu" , a :float = 0.02 , a :float = 1E-1_2 , a :int = 2_2_4 , a :float = 1E-0_5 , **a :str , ) -> None: super().__init__(**a ) __UpperCamelCase : Optional[Any] = hidden_act __UpperCamelCase : Any = hidden_dropout_prob __UpperCamelCase : str = hidden_sizes __UpperCamelCase : Dict = num_hidden_layers __UpperCamelCase : Optional[Any] = num_attention_heads __UpperCamelCase : str = initializer_range __UpperCamelCase : List[str] = layer_norm_eps __UpperCamelCase : str = patch_size __UpperCamelCase : str = num_channels __UpperCamelCase : Any = depths __UpperCamelCase : Tuple = mlp_expansion_ratio __UpperCamelCase : List[str] = downsamples __UpperCamelCase : Optional[int] = dim __UpperCamelCase : Dict = key_dim __UpperCamelCase : Optional[Any] = attention_ratio __UpperCamelCase : Dict = resolution __UpperCamelCase : Union[str, Any] = pool_size __UpperCamelCase : Tuple = downsample_patch_size __UpperCamelCase : Optional[int] = downsample_stride __UpperCamelCase : Optional[int] = downsample_pad __UpperCamelCase : Union[str, Any] = drop_path_rate __UpperCamelCase : Union[str, Any] = num_metaad_blocks __UpperCamelCase : List[str] = distillation __UpperCamelCase : str = use_layer_scale __UpperCamelCase : Tuple = layer_scale_init_value __UpperCamelCase : str = image_size __UpperCamelCase : int = batch_norm_eps
557
1
"""simple docstring""" from datetime import datetime import requests def _snake_case ( lowercase__ : Optional[Any] ) -> bytes: '''simple docstring''' lowerCAmelCase_ :List[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" lowerCAmelCase_ :Optional[Any] = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(_SCREAMING_SNAKE_CASE ).content if __name__ == "__main__": __UpperCAmelCase = input('Enter Video/IGTV url: ').strip() __UpperCAmelCase = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
701
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __UpperCAmelCase = False class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): pass @nightly @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Union[str, Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) lowerCAmelCase_ :Tuple = torch.manual_seed(0 ) lowerCAmelCase_ :Optional[int] = pipe.dual_guided( prompt="""first prompt""" , image=__A , text_to_image_strength=0.7_5 , generator=__A , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__A ) lowerCAmelCase_ :Any = VersatileDiffusionPipeline.from_pretrained(__A , torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :str = generator.manual_seed(0 ) lowerCAmelCase_ :Union[str, Any] = pipe.dual_guided( prompt="""first prompt""" , image=__A , text_to_image_strength=0.7_5 , generator=__A , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Dict = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :str = """cyberpunk 2077""" lowerCAmelCase_ :Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) lowerCAmelCase_ :List[str] = torch.manual_seed(0 ) lowerCAmelCase_ :Tuple = pipe.dual_guided( prompt=__A , image=__A , text_to_image_strength=0.7_5 , generator=__A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images lowerCAmelCase_ :int = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ :List[str] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowerCAmelCase_ :List[str] = """A painting of a squirrel eating a burger """ lowerCAmelCase_ :Union[str, Any] = torch.manual_seed(0 ) lowerCAmelCase_ :Dict = pipe.text_to_image( prompt=__A , generator=__A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images lowerCAmelCase_ :List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ :str = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowerCAmelCase_ :Any = pipe.image_variation(__A , generator=__A , output_type="""numpy""" ).images lowerCAmelCase_ :Dict = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ :Union[str, Any] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
256
0
import argparse _a : Any = 'docs/source/_static/js/custom.js' def a_ ( __magic_name__ ) -> List[Any]: """simple docstring""" with open(__magic_name__ , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case : str = f.readlines() snake_case : Optional[Any] = 0 # First let's put the right version while not lines[index].startswith('''const stableVersion =''' ): index += 1 snake_case : str = F"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('''const versionMapping = {''' ): index += 1 # We go until the end while not lines[index].startswith('''}''' ): index += 1 # We add the new version at the end lines[index - 1] += F" \"v{version}\": \"v{version}\",\n" with open(__magic_name__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__magic_name__ ) if __name__ == "__main__": _a : List[Any] = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') _a : Tuple = parser.parse_args() update_custom_js(args.version)
598
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'fnet' def __init__( self , lowercase=32_000 , lowercase=768 , lowercase=12 , lowercase=3_072 , lowercase="gelu_new" , lowercase=0.1 , lowercase=512 , lowercase=4 , lowercase=0.02 , lowercase=1e-12 , lowercase=False , lowercase=512 , lowercase=3 , lowercase=1 , lowercase=2 , **lowercase , ) -> int: super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) lowerCAmelCase = vocab_size lowerCAmelCase = max_position_embeddings lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = type_vocab_size lowerCAmelCase = layer_norm_eps lowerCAmelCase = use_tpu_fourier_optimizations lowerCAmelCase = tpu_short_seq_length
532
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Dict , a__ : List[str] , a__ : Union[str, Any]=7 , a__ : str=3 , a__ : Union[str, Any]=30 , a__ : List[Any]=400 , a__ : int=True , a__ : Optional[int]=None , a__ : Dict=True , a__ : List[Any]=[0.5, 0.5, 0.5] , a__ : int=[0.5, 0.5, 0.5] , a__ : Optional[int]=True , a__ : Union[str, Any]=1 / 255 , a__ : Dict=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __magic_name__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = min_resolution __magic_name__ = max_resolution __magic_name__ = do_resize __magic_name__ = size __magic_name__ = do_normalize __magic_name__ = image_mean __magic_name__ = image_std __magic_name__ = do_rescale __magic_name__ = rescale_factor __magic_name__ = do_pad def snake_case__ ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case__ ( self : Tuple , a__ : Dict , a__ : int=False ): if not batched: __magic_name__ = image_inputs[0] if isinstance(a__ , Image.Image ): __magic_name__ , __magic_name__ = image.size else: __magic_name__ , __magic_name__ = image.shape[1], image.shape[2] if w < h: __magic_name__ = int(self.size['''shortest_edge'''] * h / w ) __magic_name__ = self.size['''shortest_edge'''] elif w > h: __magic_name__ = self.size['''shortest_edge'''] __magic_name__ = int(self.size['''shortest_edge'''] * w / h ) else: __magic_name__ = self.size['''shortest_edge'''] __magic_name__ = self.size['''shortest_edge'''] else: __magic_name__ = [] for image in image_inputs: __magic_name__ , __magic_name__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ = max(a__ , key=lambda a__ : item[0] )[0] __magic_name__ = max(a__ , key=lambda a__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :List[str] = DetaImageProcessor if is_vision_available() else None def snake_case__ ( self : Any ): __magic_name__ = DetaImageProcessingTester(self ) @property def snake_case__ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Tuple ): __magic_name__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , '''image_mean''' ) ) self.assertTrue(hasattr(a__ , '''image_std''' ) ) self.assertTrue(hasattr(a__ , '''do_normalize''' ) ) self.assertTrue(hasattr(a__ , '''do_resize''' ) ) self.assertTrue(hasattr(a__ , '''do_rescale''' ) ) self.assertTrue(hasattr(a__ , '''do_pad''' ) ) self.assertTrue(hasattr(a__ , '''size''' ) ) def snake_case__ ( self : Dict ): __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , a__ ) def snake_case__ ( self : Dict ): pass def snake_case__ ( self : List[str] ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self : Dict ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self : List[Any] ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case__ ( self : Any ): # prepare image and target __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: __magic_name__ = json.loads(f.read() ) __magic_name__ = {'''image_id''': 3_9769, '''annotations''': target} # encode them __magic_name__ = DetaImageProcessor() __magic_name__ = image_processing(images=a__ , annotations=a__ , return_tensors='''pt''' ) # verify pixel values __magic_name__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , a__ ) __magic_name__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , a__ , atol=1E-4 ) ) # verify area __magic_name__ = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , a__ ) ) # verify boxes __magic_name__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , a__ ) __magic_name__ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , a__ , atol=1E-3 ) ) # verify image_id __magic_name__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , a__ ) ) # verify is_crowd __magic_name__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , a__ ) ) # verify class_labels __magic_name__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , a__ ) ) # verify orig_size __magic_name__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , a__ ) ) # verify size __magic_name__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , a__ ) ) @slow def snake_case__ ( self : List[str] ): # prepare image, target and masks_path __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: __magic_name__ = json.loads(f.read() ) __magic_name__ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} __magic_name__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them __magic_name__ = DetaImageProcessor(format='''coco_panoptic''' ) __magic_name__ = image_processing(images=a__ , annotations=a__ , masks_path=a__ , return_tensors='''pt''' ) # verify pixel values __magic_name__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , a__ ) __magic_name__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , a__ , atol=1E-4 ) ) # verify area __magic_name__ = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , a__ ) ) # verify boxes __magic_name__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , a__ ) __magic_name__ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , a__ , atol=1E-3 ) ) # verify image_id __magic_name__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , a__ ) ) # verify is_crowd __magic_name__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , a__ ) ) # verify class_labels __magic_name__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , a__ ) ) # verify masks __magic_name__ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , a__ ) # verify orig_size __magic_name__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , a__ ) ) # verify size __magic_name__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , a__ ) )
711
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( a=None , a=None ) -> Union[str, Any]: '''simple docstring''' return field(default_factory=lambda: default , metadata=a ) @dataclass class _SCREAMING_SNAKE_CASE : __SCREAMING_SNAKE_CASE :List[str] = list_field( default=[] ,metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } ,) __SCREAMING_SNAKE_CASE :List[int] = list_field( default=[8] ,metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) __SCREAMING_SNAKE_CASE :List[int] = list_field( default=[8, 32, 128, 512] ,metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} ,) __SCREAMING_SNAKE_CASE :bool = field( default=__a ,metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} ,) __SCREAMING_SNAKE_CASE :bool = field( default=__a ,metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} ,) __SCREAMING_SNAKE_CASE :bool = field( default=__a ,metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) __SCREAMING_SNAKE_CASE :bool = field(default=__a ,metadata={"""help""": """Use FP16 to accelerate inference."""} ) __SCREAMING_SNAKE_CASE :bool = field(default=__a ,metadata={"""help""": """Benchmark training of model"""} ) __SCREAMING_SNAKE_CASE :bool = field(default=__a ,metadata={"""help""": """Verbose memory tracing"""} ) __SCREAMING_SNAKE_CASE :bool = field( default=__a ,metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} ,) __SCREAMING_SNAKE_CASE :bool = field( default=__a ,metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } ,) __SCREAMING_SNAKE_CASE :bool = field(default=__a ,metadata={"""help""": """Trace memory line by line"""} ) __SCREAMING_SNAKE_CASE :bool = field(default=__a ,metadata={"""help""": """Save result to a CSV file"""} ) __SCREAMING_SNAKE_CASE :bool = field(default=__a ,metadata={"""help""": """Save all print statements in a log file"""} ) __SCREAMING_SNAKE_CASE :bool = field(default=__a ,metadata={"""help""": """Whether to print environment information"""} ) __SCREAMING_SNAKE_CASE :bool = field( default=__a ,metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } ,) __SCREAMING_SNAKE_CASE :str = field( default=f'''inference_time_{round(time() )}.csv''' ,metadata={"""help""": """CSV filename used if saving time results to csv."""} ,) __SCREAMING_SNAKE_CASE :str = field( default=f'''inference_memory_{round(time() )}.csv''' ,metadata={"""help""": """CSV filename used if saving memory results to csv."""} ,) __SCREAMING_SNAKE_CASE :str = field( default=f'''train_time_{round(time() )}.csv''' ,metadata={"""help""": """CSV filename used if saving time results to csv for training."""} ,) __SCREAMING_SNAKE_CASE :str = field( default=f'''train_memory_{round(time() )}.csv''' ,metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} ,) __SCREAMING_SNAKE_CASE :str = field( default=f'''env_info_{round(time() )}.csv''' ,metadata={"""help""": """CSV filename used if saving environment information."""} ,) __SCREAMING_SNAKE_CASE :str = field( default=f'''log_{round(time() )}.csv''' ,metadata={"""help""": """Log filename used if print statements are saved in log."""} ,) __SCREAMING_SNAKE_CASE :int = field(default=3 ,metadata={"""help""": """Times an experiment will be run."""} ) __SCREAMING_SNAKE_CASE :bool = field( default=__a ,metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } ,) def snake_case__ ( self : Union[str, Any] ): warnings.warn( F'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , a__ , ) def snake_case__ ( self : Dict ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def snake_case__ ( self : Dict ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def snake_case__ ( self : Dict ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
245
0
'''simple docstring''' import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging __lowerCAmelCase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class A ( UpperCAmelCase ): def __init__( self : str , __a : List[Any] , __a : List[str]=7_6_8 ) -> List[str]: super().__init__(__a ) __UpperCAmelCase = proj_size __UpperCAmelCase = CLIPVisionModel(__a ) __UpperCAmelCase = PaintByExampleMapper(__a ) __UpperCAmelCase = nn.LayerNorm(config.hidden_size ) __UpperCAmelCase = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __UpperCAmelCase = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def snake_case__ ( self : Any , __a : int , __a : int=False ) -> Optional[int]: __UpperCAmelCase = self.model(pixel_values=__a ) __UpperCAmelCase = clip_output.pooler_output __UpperCAmelCase = self.mapper(latent_states[:, None] ) __UpperCAmelCase = self.final_layer_norm(__a ) __UpperCAmelCase = self.proj_out(__a ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class A ( nn.Module ): def __init__( self : List[Any] , __a : Dict ) -> Optional[int]: super().__init__() __UpperCAmelCase = (config.num_hidden_layers + 1) // 5 __UpperCAmelCase = config.hidden_size __UpperCAmelCase = 1 __UpperCAmelCase = nn.ModuleList( [ BasicTransformerBlock(__a , __a , __a , activation_fn='''gelu''' , attention_bias=__a ) for _ in range(__a ) ] ) def snake_case__ ( self : Union[str, Any] , __a : Union[str, Any] ) -> Tuple: for block in self.blocks: __UpperCAmelCase = block(__a ) return hidden_states
262
'''simple docstring''' import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available __lowerCAmelCase : int = logging.getLogger(__name__) @dataclass class A : a_ = 42 a_ = 42 a_ = 42 @dataclass class A : a_ = 42 a_ = 42 a_ = None a_ = None class A ( UpperCAmelCase ): a_ = '''train''' a_ = '''dev''' a_ = '''test''' class A : @staticmethod def snake_case__ ( __a : List[Any] , __a : Union[Split, str] ) -> List[InputExample]: raise NotImplementedError @staticmethod def snake_case__ ( __a : str ) -> List[str]: raise NotImplementedError @staticmethod def snake_case__ ( __a : List[InputExample] , __a : List[str] , __a : int , __a : PreTrainedTokenizer , __a : Dict=False , __a : int="[CLS]" , __a : Dict=1 , __a : Tuple="[SEP]" , __a : Any=False , __a : Union[str, Any]=False , __a : Any=0 , __a : Optional[int]=0 , __a : Tuple=-1_0_0 , __a : Optional[Any]=0 , __a : int=True , ) -> List[InputFeatures]: __UpperCAmelCase = {label: i for i, label in enumerate(__a )} __UpperCAmelCase = [] for ex_index, example in enumerate(__a ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d of %d''' , __a , len(__a ) ) __UpperCAmelCase = [] __UpperCAmelCase = [] for word, label in zip(example.words , example.labels ): __UpperCAmelCase = tokenizer.tokenize(__a ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(__a ) > 0: tokens.extend(__a ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(__a ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. __UpperCAmelCase = tokenizer.num_special_tokens_to_add() if len(__a ) > max_seq_length - special_tokens_count: __UpperCAmelCase = tokens[: (max_seq_length - special_tokens_count)] __UpperCAmelCase = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] __UpperCAmelCase = [sequence_a_segment_id] * len(__a ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: __UpperCAmelCase = [cls_token] + tokens __UpperCAmelCase = [pad_token_label_id] + label_ids __UpperCAmelCase = [cls_token_segment_id] + segment_ids __UpperCAmelCase = tokenizer.convert_tokens_to_ids(__a ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. __UpperCAmelCase = [1 if mask_padding_with_zero else 0] * len(__a ) # Zero-pad up to the sequence length. __UpperCAmelCase = max_seq_length - len(__a ) if pad_on_left: __UpperCAmelCase = ([pad_token] * padding_length) + input_ids __UpperCAmelCase = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask __UpperCAmelCase = ([pad_token_segment_id] * padding_length) + segment_ids __UpperCAmelCase = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(__a ) == max_seq_length assert len(__a ) == max_seq_length assert len(__a ) == max_seq_length assert len(__a ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(__a ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(__a ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(__a ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(__a ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(__a ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: __UpperCAmelCase = None features.append( InputFeatures( input_ids=__a , attention_mask=__a , token_type_ids=__a , label_ids=__a ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class A ( UpperCAmelCase ): a_ = 42 a_ = nn.CrossEntropyLoss().ignore_index def __init__( self : List[Any] , __a : TokenClassificationTask , __a : str , __a : PreTrainedTokenizer , __a : List[str] , __a : str , __a : Optional[int] = None , __a : Dict=False , __a : Split = Split.train , ) -> Optional[int]: # Load data features from cache or dataset file __UpperCAmelCase = os.path.join( __a , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(__a ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __UpperCAmelCase = cached_features_file + '''.lock''' with FileLock(__a ): if os.path.exists(__a ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __UpperCAmelCase = torch.load(__a ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __UpperCAmelCase = token_classification_task.read_examples_from_file(__a , __a ) # TODO clean up all this to leverage built-in features of tokenizers __UpperCAmelCase = token_classification_task.convert_examples_to_features( __a , __a , __a , __a , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__a , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , __a ) def __len__( self : List[Any] ) -> Union[str, Any]: return len(self.features ) def __getitem__( self : int , __a : int ) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class A : a_ = 42 a_ = -1_0_0 def __init__( self : Union[str, Any] , __a : TokenClassificationTask , __a : str , __a : PreTrainedTokenizer , __a : List[str] , __a : str , __a : Optional[int] = None , __a : Any=False , __a : Split = Split.train , ) -> Union[str, Any]: __UpperCAmelCase = token_classification_task.read_examples_from_file(__a , __a ) # TODO clean up all this to leverage built-in features of tokenizers __UpperCAmelCase = token_classification_task.convert_examples_to_features( __a , __a , __a , __a , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__a , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: __UpperCAmelCase = tf.data.Dataset.from_generator( __a , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: __UpperCAmelCase = tf.data.Dataset.from_generator( __a , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : int ) -> str: return len(self.features ) def __getitem__( self : int , __a : List[Any] ) -> InputFeatures: return self.features[i]
262
1
"""simple docstring""" import requests __a = "" # <-- Put your OpenWeatherMap appid here! __a = "https://api.openweathermap.org/data/2.5/" def A_ ( _lowercase = "Chicago", _lowercase = APPID ): '''simple docstring''' return requests.get(URL_BASE + """weather""", params=locals() ).json() def A_ ( _lowercase = "Kolkata, India", _lowercase = APPID ): '''simple docstring''' return requests.get(URL_BASE + """forecast""", params=locals() ).json() def A_ ( _lowercase = 55.68, _lowercase = 12.57, _lowercase = APPID ): '''simple docstring''' return requests.get(URL_BASE + """onecall""", params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: __a = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
717
"""simple docstring""" from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __a = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' @register_to_config def __init__( self: int , snake_case: bool , snake_case: Optional[int] = None , snake_case: Optional[int] = None ) -> Dict: super().__init__() snake_case_ :int = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" snake_case_ :str = torch.zeros(snake_case , snake_case ) else: snake_case_ :Optional[int] = None snake_case_ :Union[str, Any] = torch.nn.Parameter(snake_case ) class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : VQModel _A : CLIPTextModel _A : CLIPTokenizer _A : TransformeraDModel _A : LearnedClassifierFreeSamplingEmbeddings _A : VQDiffusionScheduler def __init__( self: Any , snake_case: VQModel , snake_case: CLIPTextModel , snake_case: CLIPTokenizer , snake_case: TransformeraDModel , snake_case: VQDiffusionScheduler , snake_case: LearnedClassifierFreeSamplingEmbeddings , ) -> Union[str, Any]: super().__init__() self.register_modules( vqvae=snake_case , transformer=snake_case , text_encoder=snake_case , tokenizer=snake_case , scheduler=snake_case , learned_classifier_free_sampling_embeddings=snake_case , ) def lowerCAmelCase_ ( self: Tuple , snake_case: Union[str, Any] , snake_case: List[Any] , snake_case: List[str] ) -> Any: snake_case_ :List[str] = len(snake_case ) if isinstance(snake_case , snake_case ) else 1 # get prompt text embeddings snake_case_ :List[str] = self.tokenizer( snake_case , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) snake_case_ :List[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case_ :int = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) snake_case_ :Optional[Any] = text_input_ids[:, : self.tokenizer.model_max_length] snake_case_ :Any = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 snake_case_ :int = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case ) # duplicate text embeddings for each generation per prompt snake_case_ :str = prompt_embeds.repeat_interleave(snake_case , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: snake_case_ :Optional[Any] = self.learned_classifier_free_sampling_embeddings.embeddings snake_case_ :Any = negative_prompt_embeds.unsqueeze(0 ).repeat(snake_case , 1 , 1 ) else: snake_case_ :Any = [""""""] * batch_size snake_case_ :Optional[Any] = text_input_ids.shape[-1] snake_case_ :Dict = self.tokenizer( snake_case , padding="""max_length""" , max_length=snake_case , truncation=snake_case , return_tensors="""pt""" , ) snake_case_ :str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings snake_case_ :Union[str, Any] = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case_ :Tuple = negative_prompt_embeds.shape[1] snake_case_ :int = negative_prompt_embeds.repeat(1 , snake_case , 1 ) snake_case_ :int = negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case_ :str = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self: Dict , snake_case: Union[str, List[str]] , snake_case: int = 100 , snake_case: float = 5.0 , snake_case: float = 1.0 , snake_case: int = 1 , snake_case: Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case: Optional[torch.FloatTensor] = None , snake_case: Optional[str] = "pil" , snake_case: bool = True , snake_case: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case: int = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(snake_case , snake_case ): snake_case_ :Any = 1 elif isinstance(snake_case , snake_case ): snake_case_ :int = len(snake_case ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(snake_case )}""" ) snake_case_ :Tuple = batch_size * num_images_per_prompt snake_case_ :Optional[Any] = guidance_scale > 1.0 snake_case_ :Dict = self._encode_prompt(snake_case , snake_case , snake_case ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case , snake_case ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(snake_case )}.""" ) # get the initial completely masked latents unless the user supplied it snake_case_ :List[str] = (batch_size, self.transformer.num_latent_pixels) if latents is None: snake_case_ :Tuple = self.transformer.num_vector_embeds - 1 snake_case_ :Optional[int] = torch.full(snake_case , snake_case ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" f""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) snake_case_ :str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case , device=self.device ) snake_case_ :Optional[Any] = self.scheduler.timesteps.to(self.device ) snake_case_ :List[Any] = latents for i, t in enumerate(self.progress_bar(snake_case ) ): # expand the sample if we are doing classifier free guidance snake_case_ :List[Any] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` snake_case_ :Any = self.transformer(snake_case , encoder_hidden_states=snake_case , timestep=snake_case ).sample if do_classifier_free_guidance: snake_case_, snake_case_ :Optional[Any] = model_output.chunk(2 ) snake_case_ :Any = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(snake_case , dim=1 , keepdim=snake_case ) snake_case_ :str = self.truncate(snake_case , snake_case ) # remove `log(0)`'s (`-inf`s) snake_case_ :List[str] = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ :Any = self.scheduler.step(snake_case , timestep=snake_case , sample=snake_case , generator=snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case , snake_case , snake_case ) snake_case_ :Optional[int] = self.vqvae.config.vq_embed_dim snake_case_ :Tuple = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) snake_case_ :List[Any] = self.vqvae.quantize.get_codebook_entry(snake_case , shape=snake_case ) snake_case_ :Dict = self.vqvae.decode(snake_case , force_not_quantize=snake_case ).sample snake_case_ :List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ :Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ :Any = self.numpy_to_pil(snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case ) def lowerCAmelCase_ ( self: int , snake_case: torch.FloatTensor , snake_case: float ) -> torch.FloatTensor: snake_case_, snake_case_ :List[Any] = torch.sort(snake_case , 1 , descending=snake_case ) snake_case_ :Optional[int] = torch.exp(snake_case ) snake_case_ :int = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out snake_case_ :Union[str, Any] = torch.full_like(keep_mask[:, 0:1, :] , snake_case ) snake_case_ :List[str] = torch.cat((all_true, keep_mask) , dim=1 ) snake_case_ :List[str] = keep_mask[:, :-1, :] snake_case_ :str = keep_mask.gather(1 , indices.argsort(1 ) ) snake_case_ :int = log_p_x_0.clone() snake_case_ :List[Any] = -torch.inf # -inf = log(0) return rv
310
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Dict = 'openai/whisper-base' A : Optional[Any] = ( 'This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ' 'transcribed text.' ) A : Dict = 'transcriber' A : Any = WhisperProcessor A : Any = WhisperForConditionalGeneration A : Union[str, Any] = ['audio'] A : Optional[int] = ['text'] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: return self.pre_processor(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_features def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: return self.model.generate(inputs=_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Dict: return self.pre_processor.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE )[0]
568
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowercase : Dict = logging.getLogger(__name__) lowercase : Optional[Any] = '''pytorch_model.bin''' @dataclasses.dataclass class UpperCAmelCase_ : '''simple docstring''' A : str = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) A : Optional[str] = dataclasses.field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class UpperCAmelCase_ : '''simple docstring''' A : str = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) A : str = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) A : Optional[str] = dataclasses.field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A csv or a json file containing the validation data.'} ) A : Optional[str] = dataclasses.field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The name of the task to train on.'} , ) A : Optional[List[str]] = dataclasses.field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class UpperCAmelCase_ : '''simple docstring''' A : str = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) A : Optional[str] = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) A : Optional[str] = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) A : Optional[int] = dataclasses.field( default=10 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) A : Optional[float] = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) A : Optional[bool] = dataclasses.field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) A : Optional[bool] = dataclasses.field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) A : Optional[bool] = dataclasses.field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) A : Optional[float] = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) A : Optional[int] = dataclasses.field( default=1_00 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) A : Optional[int] = dataclasses.field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Random seed for initialization.'} , ) def lowerCAmelCase__ ( _a : int , _a : List[Any] , _a : Optional[int] , _a : str , _a : str , _a : Optional[int] ): snake_case_ : List[str] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case_ : Dict = dataset.filter(lambda _a : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case_ : str = int(eval_result * len(_a ) ) print(_a ) snake_case_ : Dict = dataset.sort("probability" , reverse=_a ) snake_case_ : Any = dataset.select(range(_a ) ) snake_case_ : Optional[Any] = dataset.remove_columns(["label", "probability"] ) snake_case_ : Dict = dataset.rename_column("prediction" , "label" ) snake_case_ : int = dataset.map(lambda _a : {"label": idalabel[example["label"]]} ) snake_case_ : str = dataset.shuffle(seed=args.seed ) snake_case_ : int = os.path.join(_a , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(_a , index=_a ) else: dataset.to_json(_a ) def lowerCAmelCase__ ( _a : Any , _a : List[str] , _a : int , _a : int , **_a : Tuple ): snake_case_ : Any = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case_ : Tuple = STModelArguments(model_name_or_path=_a ) snake_case_ : List[str] = STDataArguments(train_file=_a , infer_file=_a ) snake_case_ : Any = STTrainingArguments(output_dir=_a ) snake_case_ : Optional[int] = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_a ).items(): setattr(_a , _a , _a ) for key, value in kwargs.items(): if hasattr(_a , _a ): setattr(_a , _a , _a ) # Sanity checks snake_case_ : List[str] = {} snake_case_ : List[str] = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case_ : List[str] = args.train_file snake_case_ : Optional[int] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case_ : Optional[int] = args.eval_file for key in data_files: snake_case_ : List[str] = data_files[key].split("." )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: snake_case_ : int = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) snake_case_ : Optional[Any] = F'''{args.output_dir}/self-train_iter-{{}}'''.format snake_case_ : Optional[int] = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_a ) os.makedirs(_a , exist_ok=_a ) accelerator.wait_for_everyone() snake_case_ : Optional[int] = None snake_case_ : List[Any] = None snake_case_ : Any = 0 snake_case_ : Tuple = False # Show the progress bar snake_case_ : str = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case_ : Dict = data_dir_format(_a ) assert os.path.exists(_a ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case_ : List[Any] = os.path.join(_a , "stage-1" ) snake_case_ : Union[str, Any] = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_a , _a ): arguments_dict.update({key: value} ) snake_case_ : int = os.path.join(_a , "best-checkpoint" , _a ) if os.path.exists(_a ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , _a , _a , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , _a ) finetune(**_a ) accelerator.wait_for_everyone() assert os.path.exists(_a ) logger.info("Self-training job completed: iteration: %d, stage: 1." , _a ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case_ : str = os.path.join(_a , "best-checkpoint" ) snake_case_ : Any = os.path.join(_a , "stage-2" ) # Update arguments_dict snake_case_ : str = model_path snake_case_ : Optional[int] = data_files["train"] snake_case_ : Any = current_output_dir snake_case_ : Tuple = os.path.join(_a , "best-checkpoint" , _a ) if os.path.exists(_a ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , _a , _a , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , _a ) finetune(**_a ) accelerator.wait_for_everyone() assert os.path.exists(_a ) logger.info("Self-training job completed: iteration: %d, stage: 2." , _a ) snake_case_ : Tuple = iteration snake_case_ : Optional[int] = data_dir_format(iteration + 1 ) snake_case_ : int = AutoConfig.from_pretrained(os.path.join(_a , "best-checkpoint" ) ) snake_case_ : str = config.idalabel snake_case_ : Union[str, Any] = os.path.join(_a , "eval_results_best-checkpoint.json" ) snake_case_ : Any = os.path.join(_a , "test_results_best-checkpoint.json" ) assert os.path.exists(_a ) with open(_a , "r" ) as f: snake_case_ : Union[str, Any] = float(json.load(_a )[args.eval_metric] ) snake_case_ : List[str] = os.path.join(_a , "infer_output_best-checkpoint.csv" ) assert os.path.exists(_a ) # Loading the dataset from local csv or json files. snake_case_ : Optional[int] = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] snake_case_ : Optional[int] = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(_a , exist_ok=_a ) shutil.copy(_a , os.path.join(_a , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(_a ): shutil.copy(_a , os.path.join(_a , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(_a , _a , _a , _a , _a , _a ) accelerator.wait_for_everyone() snake_case_ : Optional[Any] = os.path.join(_a , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case_ : Optional[int] = eval_result if best_iteration is None: snake_case_ : Optional[int] = new_iteration snake_case_ : Dict = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case_ : Any = new_iteration snake_case_ : Optional[Any] = new_eval_result snake_case_ : Dict = 0 else: if new_eval_result == best_eval_result: snake_case_ : Optional[Any] = new_iteration snake_case_ : Dict = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case_ : Optional[Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , _a ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , _a ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_a , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(_a , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , _a ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_a , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(_a , "eval_results_best-iteration.json" ) , )
568
1
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCamelCase ( __A : np.ndarray , __A : Union[int, Iterable[int]] , __A : bool , __A : int ) -> Tuple[int, int]: def constraint_to_multiple_of(__A : Dict , __A : Optional[Any] , __A : List[Any]=0 , __A : Tuple=None ): _UpperCAmelCase : List[Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCAmelCase : Dict = math.floor(val / multiple ) * multiple if x < min_val: _UpperCAmelCase : Optional[Any] = math.ceil(val / multiple ) * multiple return x _UpperCAmelCase : Tuple = (output_size, output_size) if isinstance(__A , __A ) else output_size _UpperCAmelCase , _UpperCAmelCase : List[str] = get_image_size(__A ) _UpperCAmelCase , _UpperCAmelCase : List[str] = output_size # determine new height and width _UpperCAmelCase : Dict = output_height / input_height _UpperCAmelCase : int = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCAmelCase : Optional[Any] = scale_width else: # fit height _UpperCAmelCase : Tuple = scale_height _UpperCAmelCase : Dict = constraint_to_multiple_of(scale_height * input_height , multiple=__A ) _UpperCAmelCase : Dict = constraint_to_multiple_of(scale_width * input_width , multiple=__A ) return (new_height, new_width) class A_ ( __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = ["pixel_values"] def __init__( self , _A = True , _A = None , _A = PILImageResampling.BILINEAR , _A = False , _A = 1 , _A = True , _A = 1 / 255 , _A = True , _A = None , _A = None , **_A , ) -> None: """simple docstring""" super().__init__(**_A) _UpperCAmelCase : str = size if size is not None else {'''height''': 384, '''width''': 384} _UpperCAmelCase : Optional[int] = get_size_dict(_A) _UpperCAmelCase : int = do_resize _UpperCAmelCase : Any = size _UpperCAmelCase : List[Any] = keep_aspect_ratio _UpperCAmelCase : List[Any] = ensure_multiple_of _UpperCAmelCase : List[Any] = resample _UpperCAmelCase : Optional[Any] = do_rescale _UpperCAmelCase : Dict = rescale_factor _UpperCAmelCase : str = do_normalize _UpperCAmelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self , _A , _A , _A = False , _A = 1 , _A = PILImageResampling.BICUBIC , _A = None , **_A , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase : Optional[int] = get_size_dict(_A) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''') _UpperCAmelCase : Optional[Any] = get_resize_output_image_size( _A , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_A , multiple=_A , ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A) def snake_case__ ( self , _A , _A , _A = None , **_A , ) -> List[str]: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A) def snake_case__ ( self , _A , _A , _A , _A = None , **_A , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A) def snake_case__ ( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = ChannelDimension.FIRST , **_A , ) -> PIL.Image.Image: """simple docstring""" _UpperCAmelCase : Dict = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : Any = size if size is not None else self.size _UpperCAmelCase : str = get_size_dict(_A) _UpperCAmelCase : str = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCAmelCase : Tuple = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCAmelCase : int = resample if resample is not None else self.resample _UpperCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : Any = image_std if image_std is not None else self.image_std _UpperCAmelCase : int = make_list_of_images(_A) if not valid_images(_A): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # All transformations expect numpy arrays. _UpperCAmelCase : List[str] = [to_numpy_array(_A) for image in images] if do_resize: _UpperCAmelCase : Dict = [self.resize(image=_A , size=_A , resample=_A) for image in images] if do_rescale: _UpperCAmelCase : Tuple = [self.rescale(image=_A , scale=_A) for image in images] if do_normalize: _UpperCAmelCase : int = [self.normalize(image=_A , mean=_A , std=_A) for image in images] _UpperCAmelCase : Tuple = [to_channel_dimension_format(_A , _A) for image in images] _UpperCAmelCase : Optional[Any] = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A) def snake_case__ ( self , _A , _A = None) -> str: """simple docstring""" _UpperCAmelCase : Tuple = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A) != len(_A): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''') if is_torch_tensor(_A): _UpperCAmelCase : int = target_sizes.numpy() _UpperCAmelCase : List[str] = [] for idx in range(len(_A)): _UpperCAmelCase : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A) _UpperCAmelCase : Any = resized_logits[0].argmax(dim=0) semantic_segmentation.append(_A) else: _UpperCAmelCase : Tuple = logits.argmax(dim=1) _UpperCAmelCase : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
186
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A_ ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Dict = StableDiffusionXLImgaImgPipeline _SCREAMING_SNAKE_CASE : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} _SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - {"latents"} _SCREAMING_SNAKE_CASE : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _SCREAMING_SNAKE_CASE : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS _SCREAMING_SNAKE_CASE : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case__ ( self) -> Tuple: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=_A , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _UpperCAmelCase : int = EulerDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0) _UpperCAmelCase : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) _UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=32 , ) _UpperCAmelCase : int = CLIPTextModel(_A) _UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=_A) _UpperCAmelCase : int = CLIPTextModelWithProjection(_A) _UpperCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=_A) _UpperCAmelCase : Any = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def snake_case__ ( self , _A , _A=0) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A)).to(_A) _UpperCAmelCase : List[Any] = image / 2 + 0.5 if str(_A).startswith('''mps'''): _UpperCAmelCase : Union[str, Any] = torch.manual_seed(_A) else: _UpperCAmelCase : List[str] = torch.Generator(device=_A).manual_seed(_A) _UpperCAmelCase : Tuple = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.75, } return inputs def snake_case__ ( self) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Optional[Any] = self.get_dummy_components() _UpperCAmelCase : Any = StableDiffusionXLImgaImgPipeline(**_A) _UpperCAmelCase : List[str] = sd_pipe.to(_A) sd_pipe.set_progress_bar_config(disable=_A) _UpperCAmelCase : Tuple = self.get_dummy_inputs(_A) _UpperCAmelCase : Any = sd_pipe(**_A).images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCAmelCase : Optional[Any] = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def snake_case__ ( self) -> Optional[Any]: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) def snake_case__ ( self) -> List[Any]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3) def snake_case__ ( self) -> Optional[Any]: """simple docstring""" pass def snake_case__ ( self) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.get_dummy_components() _UpperCAmelCase : str = StableDiffusionXLImgaImgPipeline(**_A) _UpperCAmelCase : Any = sd_pipe.to(_A) _UpperCAmelCase : Tuple = sd_pipe.to(_A) sd_pipe.set_progress_bar_config(disable=_A) # forward without prompt embeds _UpperCAmelCase : str = self.get_dummy_inputs(_A) _UpperCAmelCase : Optional[Any] = 3 * ['''this is a negative prompt'''] _UpperCAmelCase : Optional[int] = negative_prompt _UpperCAmelCase : Optional[int] = 3 * [inputs['''prompt''']] _UpperCAmelCase : Optional[Any] = sd_pipe(**_A) _UpperCAmelCase : Any = output.images[0, -3:, -3:, -1] # forward with prompt embeds _UpperCAmelCase : Dict = self.get_dummy_inputs(_A) _UpperCAmelCase : Optional[Any] = 3 * ['''this is a negative prompt'''] _UpperCAmelCase : Dict = 3 * [inputs.pop('''prompt''')] ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : str = sd_pipe.encode_prompt(_A , negative_prompt=_A) _UpperCAmelCase : str = sd_pipe( **_A , prompt_embeds=_A , negative_prompt_embeds=_A , pooled_prompt_embeds=_A , negative_pooled_prompt_embeds=_A , ) _UpperCAmelCase : List[str] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1e-4 @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self , _A , _A="cpu" , _A=torch.floataa , _A=0) -> int: """simple docstring""" _UpperCAmelCase : Tuple = torch.Generator(device=_A).manual_seed(_A) _UpperCAmelCase : Any = np.random.RandomState(_A).standard_normal((1, 4, 64, 64)) _UpperCAmelCase : Dict = torch.from_numpy(_A).to(device=_A , dtype=_A) _UpperCAmelCase : str = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def snake_case__ ( self) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : List[str] = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''') pipe.to(_A) pipe.set_progress_bar_config(disable=_A) _UpperCAmelCase : str = self.get_inputs(_A) _UpperCAmelCase : Union[str, Any] = pipe(**_A).images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _UpperCAmelCase : int = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506]) assert np.abs(image_slice - expected_slice).max() < 7e-3
186
1
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) lowercase__ : str = str(bin(UpperCAmelCase ) )[2:] # remove the leading "0b" lowercase__ : int = str(bin(UpperCAmelCase ) )[2:] lowercase__ : Optional[Any] = max(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(UpperCAmelCase ) , b_binary.zfill(UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
152
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = KandinskyVaaControlnetImgaImgPipeline SCREAMING_SNAKE_CASE = ["image_embeds", "negative_image_embeds", "image", "hint"] SCREAMING_SNAKE_CASE = ["image_embeds", "negative_image_embeds", "image", "hint"] SCREAMING_SNAKE_CASE = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] SCREAMING_SNAKE_CASE = False @property def _lowerCAmelCase( self ) -> Optional[int]: return 32 @property def _lowerCAmelCase( self ) -> Optional[Any]: return 32 @property def _lowerCAmelCase( self ) -> List[Any]: return self.time_input_dim @property def _lowerCAmelCase( self ) -> int: return self.time_input_dim * 4 @property def _lowerCAmelCase( self ) -> List[str]: return 100 @property def _lowerCAmelCase( self ) -> List[str]: torch.manual_seed(0 ) lowercase__ : str = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase__ : Optional[int] = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def _lowerCAmelCase( self ) -> str: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _lowerCAmelCase( self ) -> Any: torch.manual_seed(0 ) lowercase__ : str = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCAmelCase( self ) -> Any: lowercase__ : List[Any] = self.dummy_unet lowercase__ : Optional[int] = self.dummy_movq lowercase__ : List[str] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } lowercase__ : Union[str, Any] = DDIMScheduler(**__lowerCAmelCase ) lowercase__ : List[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0 ) -> Dict: lowercase__ : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase__ : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCAmelCase ) # create init_image lowercase__ : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase__ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ : int = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create hint lowercase__ : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) if str(__lowerCAmelCase ).startswith('''mps''' ): lowercase__ : Dict = torch.manual_seed(__lowerCAmelCase ) else: lowercase__ : Dict = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase__ : Dict = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Optional[int] = '''cpu''' lowercase__ : Dict = self.get_dummy_components() lowercase__ : List[str] = self.pipeline_class(**__lowerCAmelCase ) lowercase__ : Any = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : int = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) lowercase__ : List[Any] = output.images lowercase__ : str = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] lowercase__ : List[Any] = image[0, -3:, -3:, -1] lowercase__ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ : int = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase( self ) -> Tuple: lowercase__ : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) lowercase__ : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowercase__ : List[Any] = init_image.resize((512, 512) ) lowercase__ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) lowercase__ : str = torch.from_numpy(np.array(__lowerCAmelCase ) ).float() / 2_5_5.0 lowercase__ : List[str] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowercase__ : Union[str, Any] = '''A robot, 4k photo''' lowercase__ : int = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) lowercase__ : Dict = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) lowercase__ : Optional[Any] = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ , lowercase__ : Optional[Any] = pipe_prior( __lowerCAmelCase , image=__lowerCAmelCase , strength=0.8_5 , generator=__lowerCAmelCase , negative_prompt='''''' , ).to_tuple() lowercase__ : Tuple = pipeline( image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , hint=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) lowercase__ : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
152
1
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _UpperCamelCase : Any = logging.getLogger(__name__) @dataclass class _snake_case : SCREAMING_SNAKE_CASE : Optional[int] = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) SCREAMING_SNAKE_CASE : bool = field( default=a_ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) SCREAMING_SNAKE_CASE : bool = field( default=a_ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=a_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=a_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=a_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) @dataclass class _snake_case : SCREAMING_SNAKE_CASE : str = field( default=a_ , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) SCREAMING_SNAKE_CASE : str = field( default=a_ , metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=a_ , metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=a_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=a_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=a_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) SCREAMING_SNAKE_CASE : Optional[bool] = field( default=a_ , metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''} , ) SCREAMING_SNAKE_CASE : bool = field( default=a_ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) SCREAMING_SNAKE_CASE : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) SCREAMING_SNAKE_CASE : bool = field( default=a_ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) SCREAMING_SNAKE_CASE : bool = field( default=a_ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def snake_case ( ) -> str: """simple docstring""" lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_xnli' , snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(snake_case ) datasets.utils.logging.set_verbosity(snake_case ) transformers.utils.logging.set_verbosity(snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCAmelCase = load_dataset( 'xnli' , model_args.language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCAmelCase = load_dataset( 'xnli' , model_args.train_language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase = train_dataset.features['label'].names if training_args.do_eval: lowerCAmelCase = load_dataset( 'xnli' , model_args.language , split='validation' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase = eval_dataset.features['label'].names if training_args.do_predict: lowerCAmelCase = load_dataset( 'xnli' , model_args.language , split='test' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase = predict_dataset.features['label'].names # Labels lowerCAmelCase = len(snake_case ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=snake_case , idalabel={str(snake_case ): label for i, label in enumerate(snake_case )} , labelaid={label: i for i, label in enumerate(snake_case )} , finetuning_task='xnli' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCAmelCase = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCAmelCase = False def preprocess_function(snake_case : Optional[Any] ): # Tokenize the texts return tokenizer( examples['premise'] , examples['hypothesis'] , padding=snake_case , max_length=data_args.max_seq_length , truncation=snake_case , ) if training_args.do_train: if data_args.max_train_samples is not None: lowerCAmelCase = min(len(snake_case ) , data_args.max_train_samples ) lowerCAmelCase = train_dataset.select(range(snake_case ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): lowerCAmelCase = train_dataset.map( snake_case , batched=snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on train dataset' , ) # Log a few random samples from the training set: for index in random.sample(range(len(snake_case ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCAmelCase = min(len(snake_case ) , data_args.max_eval_samples ) lowerCAmelCase = eval_dataset.select(range(snake_case ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): lowerCAmelCase = eval_dataset.map( snake_case , batched=snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on validation dataset' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCAmelCase = min(len(snake_case ) , data_args.max_predict_samples ) lowerCAmelCase = predict_dataset.select(range(snake_case ) ) with training_args.main_process_first(desc='prediction dataset map pre-processing' ): lowerCAmelCase = predict_dataset.map( snake_case , batched=snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on prediction dataset' , ) # Get the metric function lowerCAmelCase = evaluate.load('xnli' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(snake_case : EvalPrediction ): lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , snake_case ) else p.predictions lowerCAmelCase = np.argmax(snake_case , axis=1 ) return metric.compute(predictions=snake_case , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCAmelCase = default_data_collator elif training_args.fpaa: lowerCAmelCase = DataCollatorWithPadding(snake_case , pad_to_multiple_of=8 ) else: lowerCAmelCase = None # Initialize our Trainer lowerCAmelCase = Trainer( model=snake_case , args=snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=snake_case , tokenizer=snake_case , data_collator=snake_case , ) # Training if training_args.do_train: lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase = last_checkpoint lowerCAmelCase = trainer.train(resume_from_checkpoint=snake_case ) lowerCAmelCase = train_result.metrics lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(snake_case ) ) lowerCAmelCase = min(snake_case , len(snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , snake_case ) trainer.save_metrics('train' , snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCAmelCase = trainer.evaluate(eval_dataset=snake_case ) lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(snake_case ) lowerCAmelCase = min(snake_case , len(snake_case ) ) trainer.log_metrics('eval' , snake_case ) trainer.save_metrics('eval' , snake_case ) # Prediction if training_args.do_predict: logger.info('*** Predict ***' ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = trainer.predict(snake_case , metric_key_prefix='predict' ) lowerCAmelCase = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(snake_case ) ) lowerCAmelCase = min(snake_case , len(snake_case ) ) trainer.log_metrics('predict' , snake_case ) trainer.save_metrics('predict' , snake_case ) lowerCAmelCase = np.argmax(snake_case , axis=1 ) lowerCAmelCase = os.path.join(training_args.output_dir , 'predictions.txt' ) if trainer.is_world_process_zero(): with open(snake_case , 'w' ) as writer: writer.write('index\tprediction\n' ) for index, item in enumerate(snake_case ): lowerCAmelCase = label_list[item] writer.write(F'{index}\t{item}\n' ) if __name__ == "__main__": main()
514
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _snake_case : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 * 8 , _SCREAMING_SNAKE_CASE=32 * 8 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=64 , ): '''simple docstring''' lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = is_training lowerCAmelCase = use_auxiliary_loss lowerCAmelCase = num_queries lowerCAmelCase = num_channels lowerCAmelCase = min_size lowerCAmelCase = max_size lowerCAmelCase = num_labels lowerCAmelCase = hidden_dim lowerCAmelCase = hidden_dim def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_SCREAMING_SNAKE_CASE ) > 0.5 ).float() lowerCAmelCase = (torch.rand((self.batch_size, self.num_labels) , device=_SCREAMING_SNAKE_CASE ) > 0.5).long() lowerCAmelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowerCAmelCase = self.num_queries lowerCAmelCase = self.num_labels lowerCAmelCase = [1, 1, 1, 1] lowerCAmelCase = self.num_channels lowerCAmelCase = 64 lowerCAmelCase = 1_28 lowerCAmelCase = self.hidden_dim lowerCAmelCase = self.hidden_dim lowerCAmelCase = self.hidden_dim return config def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = output.encoder_hidden_states lowerCAmelCase = output.pixel_decoder_hidden_states lowerCAmelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , config.decoder_layers ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): '''simple docstring''' with torch.no_grad(): lowerCAmelCase = MaskaFormerModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = MaskaFormerForUniversalSegmentation(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() def comm_check_on_output(_SCREAMING_SNAKE_CASE ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCAmelCase = model(pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = model(_SCREAMING_SNAKE_CASE ) comm_check_on_output(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = model( pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ) comm_check_on_output(_SCREAMING_SNAKE_CASE ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _snake_case ( a_ , a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE : Tuple = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () SCREAMING_SNAKE_CASE : int = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} SCREAMING_SNAKE_CASE : Tuple = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = MaskaFormerModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowerCAmelCase = MaskaFormerModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = (self.model_tester.min_size,) * 2 lowerCAmelCase = { 'pixel_values': torch.randn((2, 3, *size) , device=_SCREAMING_SNAKE_CASE ), 'mask_labels': torch.randn((2, 10, *size) , device=_SCREAMING_SNAKE_CASE ), 'class_labels': torch.zeros(2 , 10 , device=_SCREAMING_SNAKE_CASE ).long(), } lowerCAmelCase = self.model_tester.get_config() lowerCAmelCase = MaskaFormerForUniversalSegmentation(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.attentions is not None ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if not self.model_tester.is_training: return lowerCAmelCase = self.all_model_classes[1] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs() lowerCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.all_model_classes[1] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = model_class(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) model.train() lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowerCAmelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _UpperCamelCase : Union[str, Any] = 1e-4 def snake_case ( ) -> Optional[int]: """simple docstring""" lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class _snake_case ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 3_84, 3_84) ) with torch.no_grad(): lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.tensor( [[-0.2_790, -1.0_717, -1.1_668], [-0.5_128, -0.3_128, -0.4_987], [-0.5_832, 0.1_971, -0.0_197]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = torch.tensor( [[0.8_973, 1.1_847, 1.1_776], [1.1_934, 1.5_040, 1.5_128], [1.1_153, 1.4_486, 1.4_951]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = torch.tensor( [[2.1_152, 1.7_000, -0.8_603], [1.5_808, 1.8_004, -0.9_353], [1.6_043, 1.7_495, -0.5_999]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_SCREAMING_SNAKE_CASE ).eval() lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 3_84, 3_84) ) with torch.no_grad(): lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # masks_queries_logits lowerCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowerCAmelCase = [ [-8.7_839, -9.0_056, -8.8_121], [-7.4_104, -7.0_313, -6.5_401], [-6.6_105, -6.3_427, -6.4_675], ] lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) # class_queries_logits lowerCAmelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase = torch.tensor( [ [1.8_324, -8.0_835, -4.1_922], [0.8_450, -9.0_050, -3.6_053], [0.3_045, -7.7_293, -3.0_275], ] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_SCREAMING_SNAKE_CASE ).eval() lowerCAmelCase = self.default_image_processor lowerCAmelCase = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors='pt' , ) lowerCAmelCase = inputs['pixel_values'].to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [el.to(_SCREAMING_SNAKE_CASE ) for el in inputs['mask_labels']] lowerCAmelCase = [el.to(_SCREAMING_SNAKE_CASE ) for el in inputs['class_labels']] with torch.no_grad(): lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None )
514
1
'''simple docstring''' from math import isqrt, loga def _lowerCAmelCase ( lowercase ) -> list[int]: __lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowercase , lowercase ): __lowerCAmelCase = False return [i for i in range(2 , lowercase ) if is_prime[i]] def _lowerCAmelCase ( lowercase = 80_0800 , lowercase = 80_0800 ) -> int: __lowerCAmelCase = degree * loga(lowercase ) __lowerCAmelCase = int(lowercase ) __lowerCAmelCase = calculate_prime_numbers(lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = len(lowercase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f'{solution() = }')
689
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase : List[Any] = { "configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Any = [ "GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "GraphormerForGraphClassification", "GraphormerModel", "GraphormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case__ :Tuple = mock.Mock() snake_case__ :List[str] = 500 snake_case__ :Any = {} snake_case__ :Union[str, Any] = HTTPError snake_case__ :Tuple = {} # Download this model to make sure it's in the cache. snake_case__ :Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Dict = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase_ ( self ) -> Dict: # A mock response for an HTTP head request to emulate server down snake_case__ :Union[str, Any] = mock.Mock() snake_case__ :int = 500 snake_case__ :Any = {} snake_case__ :Dict = HTTPError snake_case__ :List[Any] = {} # Download this model to make sure it's in the cache. snake_case__ :Optional[int] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Any = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ) -> int: # This test is for deprecated behavior and can be removed in v5 try: snake_case__ :Union[str, Any] = tempfile.mktemp() with open(UpperCamelCase ,"wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ,UpperCamelCase ) snake_case__ :Tuple = AlbertTokenizer.from_pretrained(UpperCamelCase ) finally: os.remove(UpperCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" ,"wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" ,UpperCamelCase ) snake_case__ :Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 snake_case__ :Union[str, Any] = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _snake_case ( unittest.TestCase ): _A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowerCAmelCase_ ( cls ) -> Optional[int]: snake_case__ :List[str] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def lowerCAmelCase_ ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token ,repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase_ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[str] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :str = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("test-tokenizer" ,use_auth_token=self._token ) snake_case__ :Dict = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase ,repo_id="test-tokenizer" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :List[str] = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def lowerCAmelCase_ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[Any] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Any = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" ,use_auth_token=self._token ) snake_case__ :Any = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCamelCase ,repo_id="valid_org/test-tokenizer-org" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def lowerCAmelCase_ ( self ) -> Any: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :str = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Optional[int] = CustomTokenizer(UpperCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :int = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Tuple = BertTokenizerFast.from_pretrained(UpperCamelCase ) bert_tokenizer.save_pretrained(UpperCamelCase ) snake_case__ :List[Any] = CustomTokenizerFast.from_pretrained(UpperCamelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :List[Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizerFast" ) snake_case__ :List[str] = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=UpperCamelCase ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = Trie() trie.add("Hello ๅ‹้”" ) self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {" ": {"ๅ‹": {"้”": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"ๅ‹": {"้”": {"": 1}}}}}}}}} ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) ,["A", "BC"] ) self.assertEqual(trie.split("BCA" ) ,["BC", "A"] ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Any = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) ,["AB", "C"] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Dict = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) ,["ABC", "D"] ) def lowerCAmelCase_ ( self ) -> int: # Even if the offsets are wrong, we necessarily output correct string # parts. snake_case__ :Optional[int] = Trie() snake_case__ :Union[str, Any] = trie.cut_text("ABC" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCamelCase ,["AB", "C"] )
57
1
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =model.config UpperCAmelCase_ =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 1_6, 3_2] , window_size=original_config.window_size , embed_dim=1_2_8 , ) UpperCAmelCase_ =MBartConfig( is_decoder=lowercase__ , is_encoder_decoder=lowercase__ , add_cross_attention=lowercase__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowercase__ , add_final_layer_norm=lowercase__ , ) return encoder_config, decoder_config def a__ ( lowercase__ ): '''simple docstring''' if "encoder.model" in name: UpperCAmelCase_ =name.replace("encoder.model" , "encoder" ) if "decoder.model" in name: UpperCAmelCase_ =name.replace("decoder.model" , "decoder" ) if "patch_embed.proj" in name: UpperCAmelCase_ =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: UpperCAmelCase_ =name.replace("patch_embed.norm" , "embeddings.norm" ) if name.startswith("encoder" ): if "layers" in name: UpperCAmelCase_ ="encoder." + name if "attn.proj" in name: UpperCAmelCase_ =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "mask" not in name: UpperCAmelCase_ =name.replace("attn" , "attention.self" ) if "norm1" in name: UpperCAmelCase_ =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCAmelCase_ =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase_ =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase_ =name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": UpperCAmelCase_ ="encoder.layernorm.weight" if name == "encoder.norm.bias": UpperCAmelCase_ ="encoder.layernorm.bias" return name def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_ =orig_state_dict.pop(lowercase__ ) if "qkv" in key: UpperCAmelCase_ =key.split("." ) UpperCAmelCase_ =int(key_split[3] ) UpperCAmelCase_ =int(key_split[5] ) UpperCAmelCase_ =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase_ =val[:dim, :] UpperCAmelCase_ =val[dim : dim * 2, :] UpperCAmelCase_ =val[-dim:, :] else: UpperCAmelCase_ =val[:dim] UpperCAmelCase_ =val[dim : dim * 2] UpperCAmelCase_ =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: UpperCAmelCase_ =val return orig_state_dict def a__ ( lowercase__ , lowercase__=None , lowercase__=False ): '''simple docstring''' UpperCAmelCase_ =DonutModel.from_pretrained(lowercase__ ).eval() # load HuggingFace model UpperCAmelCase_ , UpperCAmelCase_ =get_configs(lowercase__ ) UpperCAmelCase_ =DonutSwinModel(lowercase__ ) UpperCAmelCase_ =MBartForCausalLM(lowercase__ ) UpperCAmelCase_ =VisionEncoderDecoderModel(encoder=lowercase__ , decoder=lowercase__ ) model.eval() UpperCAmelCase_ =original_model.state_dict() UpperCAmelCase_ =convert_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ ) # verify results on scanned document UpperCAmelCase_ =load_dataset("hf-internal-testing/example-documents" ) UpperCAmelCase_ =dataset["test"][0]["image"].convert("RGB" ) UpperCAmelCase_ =XLMRobertaTokenizerFast.from_pretrained(lowercase__ , from_slow=lowercase__ ) UpperCAmelCase_ =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) UpperCAmelCase_ =DonutProcessor(lowercase__ , lowercase__ ) UpperCAmelCase_ =processor(lowercase__ , return_tensors="pt" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": UpperCAmelCase_ ="<s_docvqa><s_question>{user_input}</s_question><s_answer>" UpperCAmelCase_ ="When is the coffee break?" UpperCAmelCase_ =task_prompt.replace("{user_input}" , lowercase__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": UpperCAmelCase_ ="<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: UpperCAmelCase_ ="<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": UpperCAmelCase_ ="s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": UpperCAmelCase_ ="<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt UpperCAmelCase_ ="hello world" else: raise ValueError("Model name not supported" ) UpperCAmelCase_ =original_model.decoder.tokenizer(lowercase__ , add_special_tokens=lowercase__ , return_tensors="pt" )[ "input_ids" ] UpperCAmelCase_ =original_model.encoder.model.patch_embed(lowercase__ ) UpperCAmelCase_ , UpperCAmelCase_ =model.encoder.embeddings(lowercase__ ) assert torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) # verify encoder hidden states UpperCAmelCase_ =original_model.encoder(lowercase__ ) UpperCAmelCase_ =model.encoder(lowercase__ ).last_hidden_state assert torch.allclose(lowercase__ , lowercase__ , atol=1E-2 ) # verify decoder hidden states UpperCAmelCase_ =original_model(lowercase__ , lowercase__ , lowercase__ ).logits UpperCAmelCase_ =model(lowercase__ , decoder_input_ids=lowercase__ ).logits assert torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) processor.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) if __name__ == "__main__": __lowercase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""naver-clova-ix/donut-base-finetuned-docvqa""", required=False, type=str, help="""Name of the original model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, required=False, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the ๐Ÿค— hub.""", ) __lowercase : str =parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
54
def __lowerCAmelCase ( A , A , A , A ): # Return True if there is node that has not iterated. UpperCAmelCase_ = [False] * len(A ) UpperCAmelCase_ = [] queue.append(A ) UpperCAmelCase_ = True while queue: UpperCAmelCase_ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(A ) UpperCAmelCase_ = True UpperCAmelCase_ = u return visited[t] def __lowerCAmelCase ( A , A , A ): # This array is filled by BFS and to store path UpperCAmelCase_ = [-1] * (len(A )) UpperCAmelCase_ = 0 while bfs(A , A , A , A ): UpperCAmelCase_ = float("Inf" ) UpperCAmelCase_ = sink while s != source: # Find the minimum value in select path UpperCAmelCase_ = min(A , graph[parent[s]][s] ) UpperCAmelCase_ = parent[s] max_flow += path_flow UpperCAmelCase_ = sink while v != source: UpperCAmelCase_ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase_ = parent[v] return max_flow _a: Any = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _a , _a: Optional[int] = 0, 5 print(ford_fulkerson(graph, source, sink))
162
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_50, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_00, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_00, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ) -> str: if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='utf-8' , check=lowerCAmelCase_ , ) assert hasattr(self , 'env' ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> List[str]: __a = f'''{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}''' # distributed data settings __a = {'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=lowerCAmelCase_ , instance_count=lowerCAmelCase_ , instance_type=self.instance_type , debugger_hook_config=lowerCAmelCase_ , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=lowerCAmelCase_ , py_version='py36' , ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> Optional[int]: TrainingJobAnalytics(lowerCAmelCase_ ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> int: __a = self.create_estimator(lowerCAmelCase_ ) # run training estimator.fit() # result dataframe __a = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __a = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __a = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __a = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , lowerCAmelCase_ )
719
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class a__ : A__ : List[Any] = MBartConfig A__ : Any = {} A__ : List[str] = 'gelu' def __init__( self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=9_9 , UpperCAmelCase=3_2 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=2_0 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=0 , ) -> List[str]: __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = eos_token_id __a = pad_token_id __a = bos_token_id def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: __a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __a = tf.concat([input_ids, eos_tensor] , axis=1 ) __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __a = prepare_mbart_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase ) -> int: __a = TFMBartModel(config=UpperCAmelCase ).get_decoder() __a = inputs_dict['input_ids'] __a = input_ids[:1, :] __a = inputs_dict['attention_mask'][:1, :] __a = inputs_dict['head_mask'] __a = 1 # first forward pass __a = model(UpperCAmelCase , attention_mask=UpperCAmelCase , head_mask=UpperCAmelCase , use_cache=UpperCAmelCase ) __a , __a = outputs.to_tuple() __a = past_key_values[1] def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ): if attention_mask is None: __a = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __a = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __a = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a__ ( __snake_case , __snake_case , unittest.TestCase ): A__ : List[Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A__ : Any = (TFMBartForConditionalGeneration,) if is_tf_available() else () A__ : List[str] = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A__ : int = True A__ : List[str] = False A__ : Union[str, Any] = False def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: __a = TFMBartModelTester(self ) __a = ConfigTester(self , config_class=UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> int: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: __a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class a__ ( unittest.TestCase ): A__ : Optional[Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ] A__ : List[Any] = [ 'ลžeful ONU declarฤƒ cฤƒ nu existฤƒ o soluลฃie militarฤƒ รฎn Siria', ] A__ : List[Any] = 'facebook/mbart-large-en-ro' @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: __a = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __SCREAMING_SNAKE_CASE ( self , **UpperCAmelCase ) -> Dict: __a = self.translate_src_text(**UpperCAmelCase ) self.assertListEqual(self.expected_text , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , **UpperCAmelCase ) -> int: __a = self.tokenizer(self.src_text , **UpperCAmelCase , return_tensors='tf' ) __a = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __a = self.tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) return generated_words @slow def __SCREAMING_SNAKE_CASE ( self ) -> Any: self._assert_generated_batch_equal_expected()
246
0
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Any = DistilBertTokenizer lowerCamelCase :Optional[Any] = DistilBertTokenizerFast lowerCamelCase :Union[str, Any] = True @slow def UpperCAmelCase ( self ) -> Optional[int]: _A = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) _A = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCAmelCase_ ) _A = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCAmelCase_ ) _A = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) _A = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
401
import math def snake_case ( snake_case__ :int) -> list: _A = [True] * n _A = False _A = False _A = True for i in range(3 , int(n**0.5 + 1) , 2): _A = i * 2 while index < n: _A = False _A = index + i _A = [2] for i in range(3 , snake_case__ , 2): if is_prime[i]: primes.append(snake_case__) return primes def snake_case ( snake_case__ :int = 999_966_663_333) -> int: _A = math.floor(math.sqrt(snake_case__)) + 100 _A = prime_sieve(snake_case__) _A = 0 _A = 0 _A = primes[prime_index] while (last_prime**2) <= limit: _A = primes[prime_index + 1] _A = last_prime**2 _A = next_prime**2 # Get numbers divisible by lps(current) _A = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) _A = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps _A = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair _A = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
401
1
def a__ ( _UpperCamelCase : list ): if len(_UpperCamelCase ) < 2: return collection def circle_sort_util(_UpperCamelCase : list ,_UpperCamelCase : int ,_UpperCamelCase : int ) -> bool: __lowerCamelCase = False if low == high: return swapped __lowerCamelCase = low __lowerCamelCase = high while left < right: if collection[left] > collection[right]: __lowerCamelCase ,__lowerCamelCase = ( collection[right], collection[left], ) __lowerCamelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __lowerCamelCase ,__lowerCamelCase = ( collection[right + 1], collection[left], ) __lowerCamelCase = True __lowerCamelCase = low + int((high - low) / 2 ) __lowerCamelCase = circle_sort_util(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = circle_sort_util(_UpperCamelCase ,mid + 1 ,_UpperCamelCase ) return swapped or left_swap or right_swap __lowerCamelCase = True while is_not_sorted is True: __lowerCamelCase = circle_sort_util(_UpperCamelCase ,0 ,len(_UpperCamelCase ) - 1 ) return collection if __name__ == "__main__": a_ = input("""Enter numbers separated by a comma:\n""").strip() a_ = [int(item) for item in user_input.split(""",""")] print(circle_sort(unsorted))
622
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed a_ = """true""" def a__ ( _UpperCamelCase : Union[str, Any] ,_UpperCamelCase : List[str]=82 ,_UpperCamelCase : Optional[Any]=16 ): set_seed(42 ) __lowerCamelCase = RegressionModel() __lowerCamelCase = deepcopy(_UpperCamelCase ) __lowerCamelCase = RegressionDataset(length=_UpperCamelCase ) __lowerCamelCase = DataLoader(_UpperCamelCase ,batch_size=_UpperCamelCase ) model.to(accelerator.device ) __lowerCamelCase ,__lowerCamelCase = accelerator.prepare(_UpperCamelCase ,_UpperCamelCase ) return model, ddp_model, dataloader def a__ ( _UpperCamelCase : Accelerator ,_UpperCamelCase : str=False ): __lowerCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) __lowerCamelCase = load_dataset('''glue''' ,'''mrpc''' ,split='''validation''' ) def tokenize_function(_UpperCamelCase : int ): __lowerCamelCase = tokenizer(examples['''sentence1'''] ,examples['''sentence2'''] ,truncation=_UpperCamelCase ,max_length=_UpperCamelCase ) return outputs with accelerator.main_process_first(): __lowerCamelCase = dataset.map( _UpperCamelCase ,batched=_UpperCamelCase ,remove_columns=['''idx''', '''sentence1''', '''sentence2'''] ,) __lowerCamelCase = tokenized_datasets.rename_column('''label''' ,'''labels''' ) def collate_fn(_UpperCamelCase : Any ): if use_longest: return tokenizer.pad(_UpperCamelCase ,padding='''longest''' ,return_tensors='''pt''' ) return tokenizer.pad(_UpperCamelCase ,padding='''max_length''' ,max_length=1_28 ,return_tensors='''pt''' ) return DataLoader(_UpperCamelCase ,shuffle=_UpperCamelCase ,collate_fn=_UpperCamelCase ,batch_size=16 ) def a__ ( _UpperCamelCase : Dict ,_UpperCamelCase : List[str] ): __lowerCamelCase = Accelerator(dispatch_batches=_UpperCamelCase ,split_batches=_UpperCamelCase ) __lowerCamelCase = get_dataloader(_UpperCamelCase ,not dispatch_batches ) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' ,return_dict=_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = accelerator.prepare(_UpperCamelCase ,_UpperCamelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def a__ ( _UpperCamelCase : Dict ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Union[str, Any] ): __lowerCamelCase = [] for batch in dataloader: __lowerCamelCase ,__lowerCamelCase = batch.values() with torch.no_grad(): __lowerCamelCase = model(_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __lowerCamelCase ,__lowerCamelCase = [], [] for logit, targ in logits_and_targets: logits.append(_UpperCamelCase ) targs.append(_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = torch.cat(_UpperCamelCase ), torch.cat(_UpperCamelCase ) return logits, targs def a__ ( _UpperCamelCase : Accelerator ,_UpperCamelCase : List[Any]=82 ,_UpperCamelCase : str=False ,_UpperCamelCase : List[str]=False ,_UpperCamelCase : Optional[int]=16 ): __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = get_basic_setup(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = generate_predictions(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) assert ( len(_UpperCamelCase ) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_UpperCamelCase )}""" def a__ ( _UpperCamelCase : bool = False ,_UpperCamelCase : bool = False ): __lowerCamelCase = evaluate.load('''glue''' ,'''mrpc''' ) __lowerCamelCase ,__lowerCamelCase = get_mrpc_setup(_UpperCamelCase ,_UpperCamelCase ) # First do baseline __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = setup['''no'''] model.to(_UpperCamelCase ) model.eval() for batch in dataloader: batch.to(_UpperCamelCase ) with torch.inference_mode(): __lowerCamelCase = model(**_UpperCamelCase ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_UpperCamelCase ,references=batch['''labels'''] ) __lowerCamelCase = metric.compute() # Then do distributed __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCamelCase = model(**_UpperCamelCase ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) __lowerCamelCase = batch['''labels'''] __lowerCamelCase ,__lowerCamelCase = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_UpperCamelCase ,references=_UpperCamelCase ) __lowerCamelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] ,distributed[key] ), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def a__ ( ): __lowerCamelCase = Accelerator(split_batches=_UpperCamelCase ,dispatch_batches=_UpperCamelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(_UpperCamelCase ,_UpperCamelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCamelCase = Accelerator(split_batches=_UpperCamelCase ,dispatch_batches=_UpperCamelCase ) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(_UpperCamelCase ,99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) __lowerCamelCase = Accelerator() test_torch_metrics(_UpperCamelCase ,5_12 ) accelerator.state._reset_state() def a__ ( _UpperCamelCase : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
622
1
'''simple docstring''' import math import flax.linen as nn import jax.numpy as jnp def __a(SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float = 1 , SCREAMING_SNAKE_CASE_ : float = 1 , SCREAMING_SNAKE_CASE_ : float = 1.0e4 , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : float = 1.0 , ): '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F'''Embedding dimension {embedding_dim} should be even''' _lowerCAmelCase = float(embedding_dim // 2 ) _lowerCAmelCase = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) _lowerCAmelCase = min_timescale * jnp.exp(jnp.arange(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa ) * -log_timescale_increment ) _lowerCAmelCase = jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) * jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 0 ) # scale embeddings _lowerCAmelCase = scale * emb if flip_sin_to_cos: _lowerCAmelCase = jnp.concatenate([jnp.cos(SCREAMING_SNAKE_CASE_ ), jnp.sin(SCREAMING_SNAKE_CASE_ )] , axis=1 ) else: _lowerCAmelCase = jnp.concatenate([jnp.sin(SCREAMING_SNAKE_CASE_ ), jnp.cos(SCREAMING_SNAKE_CASE_ )] , axis=1 ) _lowerCAmelCase = jnp.reshape(SCREAMING_SNAKE_CASE_ , [jnp.shape(SCREAMING_SNAKE_CASE_ )[0], embedding_dim] ) return signal class lowerCAmelCase_ ( nn.Module ): __lowerCamelCase : int = 32 __lowerCamelCase : jnp.dtype = jnp.floataa @nn.compact def __call__( self , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_1" )(_lowerCAmelCase ) _lowerCAmelCase = nn.silu(_lowerCAmelCase ) _lowerCAmelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_2" )(_lowerCAmelCase ) return temb class lowerCAmelCase_ ( nn.Module ): __lowerCamelCase : int = 32 __lowerCamelCase : bool = False __lowerCamelCase : float = 1 @nn.compact def __call__( self , _lowerCAmelCase ) -> List[Any]: return get_sinusoidal_embeddings( _lowerCAmelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
18
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase__ ( a , a ): __snake_case = u for i in range(1 , a ): __snake_case = temp * (u - i) return temp def lowerCamelCase__ ( ): __snake_case = int(input('enter the numbers of values: ' ) ) __snake_case = [] for _ in range(a ): y.append([] ) for i in range(a ): for j in range(a ): y[i].append(a ) __snake_case = 0 print('enter the values of parameters in a list: ' ) __snake_case = list(map(a , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(a ): __snake_case = float(input() ) __snake_case = int(input('enter the value to interpolate: ' ) ) __snake_case = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , a ): for j in range(n - i ): __snake_case = y[j + 1][i - 1] - y[j][i - 1] __snake_case = y[0][0] for i in range(1 , a ): summ += (ucal(a , a ) * y[0][i]) / math.factorial(a ) print(f'the value at {value} is {summ}' ) if __name__ == "__main__": main()
356
0
def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
710
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[int] = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class A ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase : Optional[int] = """data2vec-text""" def __init__( self : List[str] , _UpperCamelCase : List[str]=30_522 , _UpperCamelCase : Union[str, Any]=768 , _UpperCamelCase : Dict=12 , _UpperCamelCase : Optional[Any]=12 , _UpperCamelCase : Optional[Any]=3_072 , _UpperCamelCase : List[Any]="gelu" , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Dict=512 , _UpperCamelCase : Optional[Any]=2 , _UpperCamelCase : Any=0.0_2 , _UpperCamelCase : Dict=1e-12 , _UpperCamelCase : Union[str, Any]=1 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : Dict=2 , _UpperCamelCase : Optional[Any]="absolute" , _UpperCamelCase : Any=True , _UpperCamelCase : List[str]=None , **_UpperCamelCase : Tuple , ): super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase) _lowercase: str = vocab_size _lowercase: Tuple = hidden_size _lowercase: Optional[int] = num_hidden_layers _lowercase: Optional[Any] = num_attention_heads _lowercase: Any = hidden_act _lowercase: Any = intermediate_size _lowercase: List[Any] = hidden_dropout_prob _lowercase: Optional[int] = attention_probs_dropout_prob _lowercase: Optional[Any] = max_position_embeddings _lowercase: str = type_vocab_size _lowercase: List[Any] = initializer_range _lowercase: List[str] = layer_norm_eps _lowercase: int = position_embedding_type _lowercase: Union[str, Any] = use_cache _lowercase: Any = classifier_dropout class A ( lowerCamelCase_ ): '''simple docstring''' @property def UpperCAmelCase__ ( self : Optional[Any]): if self.task == "multiple-choice": _lowercase: str = {0: "batch", 1: "choice", 2: "sequence"} else: _lowercase: Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
206
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowercase : Any =logging.get_logger(__name__) # General docstring _lowercase : Any ='ResNetConfig' # Base docstring _lowercase : Optional[Any] ='microsoft/resnet-50' _lowercase : List[Any] =[1, 2048, 7, 7] # Image classification docstring _lowercase : int ='microsoft/resnet-50' _lowercase : List[Any] ='tiger cat' _lowercase : Optional[Any] =[ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class snake_case__ (nn.Module ): """simple docstring""" def __init__( self , __lowercase , __lowercase , __lowercase = 3 , __lowercase = 1 , __lowercase = "relu" ) -> Tuple: """simple docstring""" super().__init__() a__ : List[str] = nn.Convad( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , padding=kernel_size // 2 , bias=SCREAMING_SNAKE_CASE_ ) a__ : List[Any] = nn.BatchNormad(SCREAMING_SNAKE_CASE_ ) a__ : Optional[Any] = ACTaFN[activation] if activation is not None else nn.Identity() def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tensor: """simple docstring""" a__ : str = self.convolution(SCREAMING_SNAKE_CASE_ ) a__ : Optional[int] = self.normalization(SCREAMING_SNAKE_CASE_ ) a__ : Optional[Any] = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class snake_case__ (nn.Module ): """simple docstring""" def __init__( self , __lowercase ) -> List[Any]: """simple docstring""" super().__init__() a__ : Optional[Any] = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) a__ : Tuple = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) a__ : int = config.num_channels def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tensor: """simple docstring""" a__ : List[Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) a__ : Union[str, Any] = self.embedder(SCREAMING_SNAKE_CASE_ ) a__ : List[Any] = self.pooler(SCREAMING_SNAKE_CASE_ ) return embedding class snake_case__ (nn.Module ): """simple docstring""" def __init__( self , __lowercase , __lowercase , __lowercase = 2 ) -> Optional[Any]: """simple docstring""" super().__init__() a__ : Dict = nn.Convad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 , stride=SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) a__ : Optional[int] = nn.BatchNormad(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tensor: """simple docstring""" a__ : Union[str, Any] = self.convolution(SCREAMING_SNAKE_CASE_ ) a__ : Dict = self.normalization(SCREAMING_SNAKE_CASE_ ) return hidden_state class snake_case__ (nn.Module ): """simple docstring""" def __init__( self , __lowercase , __lowercase , __lowercase = 1 , __lowercase = "relu" ) -> Dict: """simple docstring""" super().__init__() a__ : List[Any] = in_channels != out_channels or stride != 1 a__ : Dict = ( ResNetShortCut(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ ) if should_apply_shortcut else nn.Identity() ) a__ : str = nn.Sequential( ResNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ ) , ResNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , activation=SCREAMING_SNAKE_CASE_ ) , ) a__ : List[str] = ACTaFN[activation] def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Dict: """simple docstring""" a__ : Union[str, Any] = hidden_state a__ : Dict = self.layer(SCREAMING_SNAKE_CASE_ ) a__ : str = self.shortcut(SCREAMING_SNAKE_CASE_ ) hidden_state += residual a__ : Union[str, Any] = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class snake_case__ (nn.Module ): """simple docstring""" def __init__( self , __lowercase , __lowercase , __lowercase = 1 , __lowercase = "relu" , __lowercase = 4 ) -> int: """simple docstring""" super().__init__() a__ : List[Any] = in_channels != out_channels or stride != 1 a__ : List[str] = out_channels // reduction a__ : Tuple = ( ResNetShortCut(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ ) if should_apply_shortcut else nn.Identity() ) a__ : List[Any] = nn.Sequential( ResNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 ) , ResNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ ) , ResNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE_ ) , ) a__ : List[Any] = ACTaFN[activation] def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Optional[Any]: """simple docstring""" a__ : Optional[Any] = hidden_state a__ : List[str] = self.layer(SCREAMING_SNAKE_CASE_ ) a__ : Union[str, Any] = self.shortcut(SCREAMING_SNAKE_CASE_ ) hidden_state += residual a__ : int = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class snake_case__ (nn.Module ): """simple docstring""" def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase = 2 , __lowercase = 2 , ) -> str: """simple docstring""" super().__init__() a__ : Union[str, Any] = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer a__ : List[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , activation=config.hidden_act ) , *[layer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tensor: """simple docstring""" a__ : Union[str, Any] = input for layer in self.layers: a__ : List[Any] = layer(SCREAMING_SNAKE_CASE_ ) return hidden_state class snake_case__ (nn.Module ): """simple docstring""" def __init__( self , __lowercase ) -> Optional[int]: """simple docstring""" super().__init__() a__ : Any = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( SCREAMING_SNAKE_CASE_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) a__ : Tuple = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(SCREAMING_SNAKE_CASE_ , config.depths[1:] ): self.stages.append(ResNetStage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , depth=SCREAMING_SNAKE_CASE_ ) ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = False , __lowercase = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" a__ : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: a__ : Union[str, Any] = hidden_states + (hidden_state,) a__ : Any = stage_module(SCREAMING_SNAKE_CASE_ ) if output_hidden_states: a__ : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE_ , hidden_states=SCREAMING_SNAKE_CASE_ , ) class snake_case__ (_lowerCAmelCase ): """simple docstring""" __lowerCAmelCase :Dict = ResNetConfig __lowerCAmelCase :Tuple = "resnet" __lowerCAmelCase :str = "pixel_values" __lowerCAmelCase :Optional[Any] = True def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Optional[Any]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(SCREAMING_SNAKE_CASE_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=False ) -> int: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): a__ : Tuple = value _lowercase : Any =r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _lowercase : Dict =r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." , _lowerCAmelCase , ) class snake_case__ (_lowerCAmelCase ): """simple docstring""" def __init__( self , __lowercase ) -> Optional[Any]: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE_ ) a__ : List[Any] = config a__ : Union[str, Any] = ResNetEmbeddings(SCREAMING_SNAKE_CASE_ ) a__ : Optional[Any] = ResNetEncoder(SCREAMING_SNAKE_CASE_ ) a__ : Optional[int] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None , __lowercase = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" a__ : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a__ : Any = return_dict if return_dict is not None else self.config.use_return_dict a__ : Optional[Any] = self.embedder(SCREAMING_SNAKE_CASE_ ) a__ : Dict = self.encoder( SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) a__ : str = encoder_outputs[0] a__ : Dict = self.pooler(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE_ , pooler_output=SCREAMING_SNAKE_CASE_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _lowerCAmelCase , ) class snake_case__ (_lowerCAmelCase ): """simple docstring""" def __init__( self , __lowercase ) -> str: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE_ ) a__ : List[Any] = config.num_labels a__ : Tuple = ResNetModel(SCREAMING_SNAKE_CASE_ ) # classification head a__ : Dict = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE__( self , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" a__ : List[str] = return_dict if return_dict is not None else self.config.use_return_dict a__ : List[Any] = self.resnet(SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) a__ : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] a__ : Union[str, Any] = self.classifier(SCREAMING_SNAKE_CASE_ ) a__ : Tuple = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: a__ : int = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): a__ : List[str] = """single_label_classification""" else: a__ : int = """multi_label_classification""" if self.config.problem_type == "regression": a__ : List[str] = MSELoss() if self.num_labels == 1: a__ : Any = loss_fct(logits.squeeze() , labels.squeeze() ) else: a__ : Dict = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif self.config.problem_type == "single_label_classification": a__ : List[str] = CrossEntropyLoss() a__ : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": a__ : str = BCEWithLogitsLoss() a__ : Dict = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: a__ : str = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " , _lowerCAmelCase , ) class snake_case__ (_lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" def __init__( self , __lowercase ) -> Optional[Any]: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE_ ) super()._init_backbone(SCREAMING_SNAKE_CASE_ ) a__ : Optional[Any] = [config.embedding_size] + config.hidden_sizes a__ : List[str] = ResNetEmbeddings(SCREAMING_SNAKE_CASE_ ) a__ : int = ResNetEncoder(SCREAMING_SNAKE_CASE_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @replace_return_docstrings(output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None , __lowercase = None ) -> BackboneOutput: """simple docstring""" a__ : Any = return_dict if return_dict is not None else self.config.use_return_dict a__ : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a__ : List[Any] = self.embedder(SCREAMING_SNAKE_CASE_ ) a__ : Optional[int] = self.encoder(SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) a__ : Any = outputs.hidden_states a__ : Optional[Any] = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: a__ : str = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=SCREAMING_SNAKE_CASE_ , )
136
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) a : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=_lowerCAmelCase ) class _a : A = 42 A = 42 A = None A = None A = None @dataclass(frozen=_lowerCAmelCase ) class _a : A = 42 A = None A = None A = None A = None if is_torch_available(): import torch from torch.utils.data import Dataset class _a ( _lowerCAmelCase ): A = 42 def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_ = False, ) -> Union[str, Any]: UpperCAmelCase_: Optional[Any] = hans_processors[task]() UpperCAmelCase_: Dict = os.path.join( SCREAMING_SNAKE_CASE_, """cached_{}_{}_{}_{}""".format( """dev""" if evaluate else """train""", tokenizer.__class__.__name__, str(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, ), ) UpperCAmelCase_: Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_: Tuple = label_list[2], label_list[1] UpperCAmelCase_: str = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_: int = cached_features_file + """.lock""" with FileLock(SCREAMING_SNAKE_CASE_ ): if os.path.exists(SCREAMING_SNAKE_CASE_ ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) UpperCAmelCase_: Dict = torch.load(SCREAMING_SNAKE_CASE_ ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) UpperCAmelCase_: Union[str, Any] = ( processor.get_dev_examples(SCREAMING_SNAKE_CASE_ ) if evaluate else processor.get_train_examples(SCREAMING_SNAKE_CASE_ ) ) logger.info("""Training examples: %s""", len(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: List[Any] = hans_convert_examples_to_features(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) logger.info("""Saving features into cached file %s""", SCREAMING_SNAKE_CASE_ ) torch.save(self.features, SCREAMING_SNAKE_CASE_ ) def __len__(self ) -> Optional[int]: return len(self.features ) def __getitem__(self, SCREAMING_SNAKE_CASE_ ) -> InputFeatures: return self.features[i] def __snake_case (self ) -> List[str]: return self.label_list if is_tf_available(): import tensorflow as tf class _a : A = 42 def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 128, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_ = False, ) -> Optional[int]: UpperCAmelCase_: Union[str, Any] = hans_processors[task]() UpperCAmelCase_: List[Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_: List[str] = label_list[2], label_list[1] UpperCAmelCase_: Dict = label_list UpperCAmelCase_: List[str] = processor.get_dev_examples(SCREAMING_SNAKE_CASE_ ) if evaluate else processor.get_train_examples(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = hans_convert_examples_to_features(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ), desc="""convert examples to features""" ): if ex_index % 10000 == 0: logger.info("""Writing example %d of %d""" % (ex_index, len(SCREAMING_SNAKE_CASE_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase_: List[str] = tf.data.Dataset.from_generator( SCREAMING_SNAKE_CASE_, ( { """example_id""": tf.intaa, """input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa, }, tf.intaa, ), ( { """example_id""": tf.TensorShape([] ), """input_ids""": tf.TensorShape([None, None] ), """attention_mask""": tf.TensorShape([None, None] ), """token_type_ids""": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ), ) def __snake_case (self ) -> Optional[Any]: return self.dataset def __len__(self ) -> Optional[int]: return len(self.features ) def __getitem__(self, SCREAMING_SNAKE_CASE_ ) -> InputFeatures: return self.features[i] def __snake_case (self ) -> Union[str, Any]: return self.label_list class _a ( _lowerCAmelCase ): def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Dict: return self._create_examples(self._read_tsv(os.path.join(SCREAMING_SNAKE_CASE_, """heuristics_train_set.txt""" ) ), """train""" ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Dict: return self._create_examples(self._read_tsv(os.path.join(SCREAMING_SNAKE_CASE_, """heuristics_evaluation_set.txt""" ) ), """dev""" ) def __snake_case (self ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCAmelCase_: Optional[Any] = [] for i, line in enumerate(SCREAMING_SNAKE_CASE_ ): if i == 0: continue UpperCAmelCase_: Tuple = """%s-%s""" % (set_type, line[0]) UpperCAmelCase_: int = line[5] UpperCAmelCase_: int = line[6] UpperCAmelCase_: List[str] = line[7][2:] if line[7].startswith("""ex""" ) else line[7] UpperCAmelCase_: Any = line[0] examples.append(InputExample(guid=SCREAMING_SNAKE_CASE_, text_a=SCREAMING_SNAKE_CASE_, text_b=SCREAMING_SNAKE_CASE_, label=SCREAMING_SNAKE_CASE_, pairID=SCREAMING_SNAKE_CASE_ ) ) return examples def lowerCAmelCase_ (lowerCAmelCase__: List[InputExample] , lowerCAmelCase__: List[str] , lowerCAmelCase__: int , lowerCAmelCase__: PreTrainedTokenizer , ): """simple docstring""" UpperCAmelCase_: List[str] = {label: i for i, label in enumerate(lowerCAmelCase__ )} UpperCAmelCase_: Optional[int] = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCAmelCase__ ) , desc="""convert examples to features""" ): if ex_index % 1_0_0_0_0 == 0: logger.info("""Writing example %d""" % (ex_index) ) UpperCAmelCase_: Tuple = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" , truncation=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , ) UpperCAmelCase_: Optional[Any] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase_: Tuple = int(example.pairID ) features.append(InputFeatures(**lowerCAmelCase__ , label=lowerCAmelCase__ , pairID=lowerCAmelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info("""*** Example ***""" ) logger.info(F'guid: {example}' ) logger.info(F'features: {features[i]}' ) return features a : Optional[int] = { 'hans': 3, } a : Dict = { 'hans': HansProcessor, }
556
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
48
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ = logging.get_logger(__name__) a_ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = """deberta-v2""" def __init__(self , lowercase__=12_81_00 , lowercase__=15_36 , lowercase__=24 , lowercase__=24 , lowercase__=61_44 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=0 , lowercase__=0.02 , lowercase__=1e-7 , lowercase__=False , lowercase__=-1 , lowercase__=0 , lowercase__=True , lowercase__=None , lowercase__=0 , lowercase__="gelu" , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[Any] = relative_attention snake_case_ : Dict = max_relative_positions snake_case_ : Optional[int] = pad_token_id snake_case_ : List[str] = position_biased_input # Backwards compatibility if type(lowercase__ ) == str: snake_case_ : Union[str, Any] = [x.strip() for x in pos_att_type.lower().split("""|""" )] snake_case_ : Optional[int] = pos_att_type snake_case_ : List[str] = vocab_size snake_case_ : Tuple = layer_norm_eps snake_case_ : List[Any] = kwargs.get("""pooler_hidden_size""" , lowercase__ ) snake_case_ : List[str] = pooler_dropout snake_case_ : int = pooler_hidden_act class __lowercase ( _UpperCAmelCase): """simple docstring""" @property def __UpperCamelCase (self ): if self.task == "multiple-choice": snake_case_ : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : int = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def __UpperCamelCase (self ): return 12 def __UpperCamelCase (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , lowercase__ = 3 , lowercase__ = 40 , lowercase__ = 40 , lowercase__ = None , ): snake_case_ : str = super().generate_dummy_inputs(preprocessor=lowercase__ , framework=lowercase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
48
1
"""simple docstring""" import sys __UpperCamelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowercase (SCREAMING_SNAKE_CASE_ : str = N ) -> Optional[int]: SCREAMING_SNAKE_CASE = -sys.maxsize - 1 for i in range(len(lowerCamelCase_ ) - 12 ): SCREAMING_SNAKE_CASE = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: SCREAMING_SNAKE_CASE = product return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
247
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __A : int = random.Random() def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :Optional[int]=1.0 , lowerCamelCase_ :List[Any]=None , lowerCamelCase_ :Optional[Any]=None ): '''simple docstring''' if rng is None: snake_case_ : str = global_rng snake_case_ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __UpperCamelCase ( unittest.TestCase ): def __init__( self :str ,_UpperCamelCase :Dict ,_UpperCamelCase :List[Any]=7 ,_UpperCamelCase :List[Any]=4_0_0 ,_UpperCamelCase :Any=2_0_0_0 ,_UpperCamelCase :Union[str, Any]=1 ,_UpperCamelCase :Tuple=0.0 ,_UpperCamelCase :Union[str, Any]=1_6_0_0_0 ,_UpperCamelCase :Union[str, Any]=True ,_UpperCamelCase :List[Any]=True ,): snake_case_ : Tuple = parent snake_case_ : Any = batch_size snake_case_ : Dict = min_seq_length snake_case_ : List[str] = max_seq_length snake_case_ : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case_ : Union[str, Any] = feature_size snake_case_ : Optional[Any] = padding_value snake_case_ : List[Any] = sampling_rate snake_case_ : Union[str, Any] = return_attention_mask snake_case_ : Dict = do_normalize def a__ ( self :Any ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self :Union[str, Any] ,_UpperCamelCase :Optional[Any]=False ,_UpperCamelCase :Any=False ): def _flatten(_UpperCamelCase :Tuple ): return list(itertools.chain(*_UpperCamelCase ) ) if equal_length: snake_case_ : int = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case_ : Any = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: snake_case_ : int = [np.asarray(_UpperCamelCase ) for x in speech_inputs] return speech_inputs class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : List[Any] = WavaVecaFeatureExtractor def a__ ( self :Tuple ): snake_case_ : List[Any] = WavaVecaFeatureExtractionTester(self ) def a__ ( self :Any ,_UpperCamelCase :Dict ): self.assertTrue(np.all(np.mean(_UpperCamelCase ,axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_UpperCamelCase ,axis=0 ) - 1 ) < 1E-3 ) ) def a__ ( self :Dict ): # Tests that all call wrap to encode_plus and batch_encode_plus snake_case_ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_0_0 ,1_4_0_0 ,2_0_0 )] snake_case_ : Any = [np.asarray(_UpperCamelCase ) for speech_input in speech_inputs] # Test not batched input snake_case_ : Tuple = feat_extract(speech_inputs[0] ,return_tensors="""np""" ).input_values snake_case_ : int = feat_extract(np_speech_inputs[0] ,return_tensors="""np""" ).input_values self.assertTrue(np.allclose(_UpperCamelCase ,_UpperCamelCase ,atol=1E-3 ) ) # Test batched snake_case_ : str = feat_extract(_UpperCamelCase ,return_tensors="""np""" ).input_values snake_case_ : str = feat_extract(_UpperCamelCase ,return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCamelCase ,_UpperCamelCase ): self.assertTrue(np.allclose(_UpperCamelCase ,_UpperCamelCase ,atol=1E-3 ) ) # Test 2-D numpy arrays are batched. snake_case_ : List[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] snake_case_ : int = np.asarray(_UpperCamelCase ) snake_case_ : int = feat_extract(_UpperCamelCase ,return_tensors="""np""" ).input_values snake_case_ : List[Any] = feat_extract(_UpperCamelCase ,return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCamelCase ,_UpperCamelCase ): self.assertTrue(np.allclose(_UpperCamelCase ,_UpperCamelCase ,atol=1E-3 ) ) def a__ ( self :Tuple ): snake_case_ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_0_0 ,1_4_0_0 ,2_0_0 )] snake_case_ : int = ["""longest""", """max_length""", """do_not_pad"""] snake_case_ : Any = [None, 1_6_0_0, None] for max_length, padding in zip(_UpperCamelCase ,_UpperCamelCase ): snake_case_ : Optional[int] = feat_extract(_UpperCamelCase ,padding=_UpperCamelCase ,max_length=_UpperCamelCase ,return_tensors="""np""" ) snake_case_ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def a__ ( self :Optional[Any] ): snake_case_ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Optional[int] = range(8_0_0 ,1_4_0_0 ,2_0_0 ) snake_case_ : str = [floats_list((1, x) )[0] for x in lengths] snake_case_ : Tuple = ["""longest""", """max_length""", """do_not_pad"""] snake_case_ : Tuple = [None, 1_6_0_0, None] for max_length, padding in zip(_UpperCamelCase ,_UpperCamelCase ): snake_case_ : Dict = feat_extract(_UpperCamelCase ,max_length=_UpperCamelCase ,padding=_UpperCamelCase ) snake_case_ : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def a__ ( self :Any ): snake_case_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : List[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 ,1_4_0_0 ,2_0_0 )] snake_case_ : int = feat_extract( _UpperCamelCase ,truncation=_UpperCamelCase ,max_length=1_0_0_0 ,padding="""max_length""" ,return_tensors="""np""" ) snake_case_ : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def a__ ( self :Tuple ): snake_case_ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : int = [floats_list((1, x) )[0] for x in range(8_0_0 ,1_4_0_0 ,2_0_0 )] snake_case_ : Optional[Any] = feat_extract( _UpperCamelCase ,truncation=_UpperCamelCase ,max_length=1_0_0_0 ,padding="""longest""" ,return_tensors="""np""" ) snake_case_ : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) snake_case_ : Optional[int] = [floats_list((1, x) )[0] for x in range(8_0_0 ,1_4_0_0 ,2_0_0 )] snake_case_ : Any = feat_extract( _UpperCamelCase ,truncation=_UpperCamelCase ,max_length=2_0_0_0 ,padding="""longest""" ,return_tensors="""np""" ) snake_case_ : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) @require_torch def a__ ( self :int ): import torch snake_case_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Any = np.random.rand(1_0_0 ).astype(np.floataa ) snake_case_ : List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case_ : Tuple = feature_extractor.pad([{"""input_values""": inputs}] ,return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case_ : str = feature_extractor.pad([{"""input_values""": inputs}] ,return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def a__ ( self :Any ): # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: snake_case_ : Union[str, Any] = WavaVecaConfig.from_pretrained(_UpperCamelCase ) snake_case_ : str = WavaVecaFeatureExtractor.from_pretrained(_UpperCamelCase ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask ,config.feat_extract_norm == """layer""" )
334
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """dpr""" def __init__( self :Optional[int] , lowerCamelCase_ :Dict=3_05_22 , lowerCamelCase_ :Any=7_68 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :str=12 , lowerCamelCase_ :Union[str, Any]=30_72 , lowerCamelCase_ :List[Any]="gelu" , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :List[str]=5_12 , lowerCamelCase_ :Optional[Any]=2 , lowerCamelCase_ :str=0.0_2 , lowerCamelCase_ :Optional[Any]=1E-12 , lowerCamelCase_ :List[str]=0 , lowerCamelCase_ :Any="absolute" , lowerCamelCase_ :int = 0 , **lowerCamelCase_ :Tuple , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : str = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : int = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = type_vocab_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[Any] = projection_dim SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type
720
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :List[str] , lowerCamelCase_ :Union[List[ControlNetModel], Tuple[ControlNetModel]] ) -> Union[str, Any]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList(lowerCamelCase_ ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :torch.FloatTensor , lowerCamelCase_ :Union[torch.Tensor, float, int] , lowerCamelCase_ :torch.Tensor , lowerCamelCase_ :List[torch.tensor] , lowerCamelCase_ :List[float] , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[Dict[str, Any]] = None , lowerCamelCase_ :bool = False , lowerCamelCase_ :bool = True , ) -> Union[ControlNetOutput, Tuple]: '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(lowerCamelCase_ , lowerCamelCase_ , self.nets ) ): SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = controlnet( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) # merge samples if i == 0: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = down_samples, mid_sample else: SCREAMING_SNAKE_CASE : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowerCamelCase_ , lowerCamelCase_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Union[str, os.PathLike] , lowerCamelCase_ :bool = True , lowerCamelCase_ :Callable = None , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[str] = None , ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : Any = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowerCamelCase_ , is_main_process=lowerCamelCase_ , save_function=lowerCamelCase_ , safe_serialization=lowerCamelCase_ , variant=lowerCamelCase_ , ) idx += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = model_path_to_save + f"_{idx}" @classmethod def __lowerCAmelCase ( cls :Dict , lowerCamelCase_ :Optional[Union[str, os.PathLike]] , **lowerCamelCase_ :Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Optional[int] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... SCREAMING_SNAKE_CASE : Dict = pretrained_model_path while os.path.isdir(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Tuple = ControlNetModel.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) controlnets.append(lowerCamelCase_ ) idx += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + f"_{idx}" logger.info(f"{len(lowerCamelCase_ )} controlnets loaded from {pretrained_model_path}." ) if len(lowerCamelCase_ ) == 0: raise ValueError( f"No ControlNets found under {os.path.dirname(lowerCamelCase_ )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(lowerCamelCase_ )
18
0
def _lowerCAmelCase ( _lowerCAmelCase = 1_0_0_0 ): '''simple docstring''' A_ : int = 3 A_ : int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
569
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _UpperCAmelCase : def _lowerCamelCase ( self ): torch.manual_seed(0 ) A_ : Optional[Any] = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A_ : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A_ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) A_ : str = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=a__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) A_ : Tuple = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowerCamelCase ( self ): torch.manual_seed(0 ) A_ : Tuple = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A_ : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A_ : int = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.414 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) A_ : Union[str, Any] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=a__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) A_ : Union[str, Any] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) A_ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowerCamelCase ( self ): A_ : str = self.get_dummy_components() A_ : List[Any] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) A_ : Optional[Any] = self.get_dummy_inputs(a__ ) A_ : List[str] = inputs["""prompt"""] A_ : str = inputs["""generator"""] A_ : Tuple = inputs["""num_inference_steps"""] A_ : Optional[int] = inputs["""output_type"""] if "image" in inputs: A_ : List[str] = inputs["""image"""] else: A_ : Optional[int] = None if "mask_image" in inputs: A_ : int = inputs["""mask_image"""] else: A_ : str = None if "original_image" in inputs: A_ : List[Any] = inputs["""original_image"""] else: A_ : int = None A_ , A_ : Optional[int] = pipe.encode_prompt(a__ ) # inputs with prompt converted to embeddings A_ : Optional[int] = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: A_ : str = image if mask_image is not None: A_ : Dict = mask_image if original_image is not None: A_ : Optional[int] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(a__ , a__ , a__ ) A_ : List[Any] = pipe(**a__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a__ ) A_ : Union[str, Any] = self.pipeline_class.from_pretrained(a__ ) pipe_loaded.to(a__ ) pipe_loaded.set_progress_bar_config(disable=a__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(a__ , a__ ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) A_ : Optional[int] = self.get_dummy_inputs(a__ ) A_ : int = inputs["""generator"""] A_ : List[Any] = inputs["""num_inference_steps"""] A_ : Dict = inputs["""output_type"""] # inputs with prompt converted to embeddings A_ : Dict = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: A_ : Any = image if mask_image is not None: A_ : Optional[int] = mask_image if original_image is not None: A_ : int = original_image A_ : Optional[Any] = pipe_loaded(**a__ )[0] A_ : Optional[int] = np.abs(to_np(a__ ) - to_np(a__ ) ).max() self.assertLess(a__ , 1E-4 ) def _lowerCamelCase ( self ): A_ : Dict = self.get_dummy_components() A_ : Optional[Any] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) A_ : Any = self.get_dummy_inputs(a__ ) A_ : List[Any] = pipe(**a__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a__ ) A_ : List[Any] = self.pipeline_class.from_pretrained(a__ ) pipe_loaded.to(a__ ) pipe_loaded.set_progress_bar_config(disable=a__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests A_ : Optional[Any] = self.get_dummy_inputs(a__ ) A_ : Optional[Any] = pipe_loaded(**a__ )[0] A_ : Union[str, Any] = np.abs(to_np(a__ ) - to_np(a__ ) ).max() self.assertLess(a__ , 1E-4 )
569
1
'''simple docstring''' from __future__ import annotations import math def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : int = u for i in range(1 , lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = temp * (u - i) return temp def __A ( ): _UpperCAmelCase : str = int(input("""enter the numbers of values: """ ) ) _UpperCAmelCase : list[list[float]] = [] for _ in range(lowerCAmelCase_ ): y.append([] ) for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): y[i].append(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = 0 print("""enter the values of parameters in a list: """ ) _UpperCAmelCase : Tuple = list(map(lowerCAmelCase_ , input().split() ) ) print("""enter the values of corresponding parameters: """ ) for i in range(lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = float(input() ) _UpperCAmelCase : Tuple = int(input("""enter the value to interpolate: """ ) ) _UpperCAmelCase : int = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , lowerCAmelCase_ ): for j in range(n - i ): _UpperCAmelCase : List[str] = y[j + 1][i - 1] - y[j][i - 1] _UpperCAmelCase : Union[str, Any] = y[0][0] for i in range(1 , lowerCAmelCase_ ): summ += (ucal(lowerCAmelCase_ , lowerCAmelCase_ ) * y[0][i]) / math.factorial(lowerCAmelCase_ ) print(f"the value at {value} is {summ}" ) if __name__ == "__main__": main()
704
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : int = tmp_path / """cache""" _UpperCAmelCase : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase : Tuple = JsonDatasetReader(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ ).read() _check_json_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Any = tmp_path / """cache""" _UpperCAmelCase : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase : int = features.copy() if features else default_expected_features _UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : Any = JsonDatasetReader(lowerCAmelCase_ , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() _check_json_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Any = tmp_path / """cache""" _UpperCAmelCase : Optional[Any] = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} _UpperCAmelCase : int = features.copy() if features else default_expected_features _UpperCAmelCase : Optional[Any] = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : Dict = JsonDatasetReader(lowerCAmelCase_ , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} _UpperCAmelCase : Union[str, Any] = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} _UpperCAmelCase : Optional[Any] = features.copy() _UpperCAmelCase : Any = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : Tuple = tmp_path / """cache""" _UpperCAmelCase : Optional[Any] = JsonDatasetReader(lowerCAmelCase_ , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Dict = tmp_path / """cache""" _UpperCAmelCase : List[str] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase : List[Any] = JsonDatasetReader(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , split=lowerCAmelCase_ ).read() _check_json_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if issubclass(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Any = jsonl_path elif issubclass(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Union[str, Any] = [jsonl_path] _UpperCAmelCase : int = tmp_path / """cache""" _UpperCAmelCase : List[str] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase : Any = JsonDatasetReader(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() _check_json_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=("train",) ): assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for split in splits: _UpperCAmelCase : List[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = tmp_path / """cache""" _UpperCAmelCase : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase : List[Any] = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ ).read() _check_json_datasetdict(lowerCAmelCase_ , lowerCAmelCase_ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = tmp_path / """cache""" _UpperCAmelCase : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase : List[str] = features.copy() if features else default_expected_features _UpperCAmelCase : int = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : Any = JsonDatasetReader({"""train""": jsonl_path} , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() _check_json_datasetdict(lowerCAmelCase_ , lowerCAmelCase_ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if split: _UpperCAmelCase : str = {split: jsonl_path} else: _UpperCAmelCase : int = """train""" _UpperCAmelCase : int = {"""train""": jsonl_path, """test""": jsonl_path} _UpperCAmelCase : Optional[int] = tmp_path / """cache""" _UpperCAmelCase : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase : Optional[Any] = JsonDatasetReader(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() _check_json_datasetdict(lowerCAmelCase_ , lowerCAmelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __A ( lowerCAmelCase_ ): return json.load(lowerCAmelCase_ ) def __A ( lowerCAmelCase_ ): return [json.loads(lowerCAmelCase_ ) for line in buffer] class __lowerCAmelCase : @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowerCAmelCase__ , lowerCAmelCase__ , lines=lowerCAmelCase__ ).write() buffer.seek(0 ) _UpperCAmelCase : Optional[int] = load_json_function(lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert isinstance(exported_content[0] , lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == 1_0 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowerCAmelCase__ , lowerCAmelCase__ , lines=lowerCAmelCase__ , orient=lowerCAmelCase__ ).write() buffer.seek(0 ) _UpperCAmelCase : str = load_json(lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowerCAmelCase__ , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 1_0 else: assert len(lowerCAmelCase__ ) == 1_0 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowerCAmelCase__ , lowerCAmelCase__ , lines=lowerCAmelCase__ , num_proc=2 ).write() buffer.seek(0 ) _UpperCAmelCase : Optional[int] = load_json_function(lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert isinstance(exported_content[0] , lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == 1_0 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowerCAmelCase__ , lowerCAmelCase__ , lines=lowerCAmelCase__ , orient=lowerCAmelCase__ , num_proc=2 ).write() buffer.seek(0 ) _UpperCAmelCase : Optional[Any] = load_json(lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowerCAmelCase__ , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 1_0 else: assert len(lowerCAmelCase__ ) == 1_0 def snake_case_ (self , lowerCAmelCase__ ): with pytest.raises(lowerCAmelCase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("""data""" ) / F"test.json.{extension}" _UpperCAmelCase : List[Any] = str(shared_datadir / F"test_file.json.{extension}" ) JsonDatasetWriter(lowerCAmelCase__ , lowerCAmelCase__ , compression=lowerCAmelCase__ ).write() with fsspec.open(lowerCAmelCase__ , """rb""" , compression="""infer""" ) as f: _UpperCAmelCase : str = f.read() with fsspec.open(lowerCAmelCase__ , """rb""" , compression="""infer""" ) as f: _UpperCAmelCase : Optional[int] = f.read() assert exported_content == original_content
156
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : str = ['image_processor', 'tokenizer'] A_ : Optional[int] = 'ViTImageProcessor' A_ : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__(self : Union[str, Any] , a__ : Optional[int]=None , a__ : Dict=None , **a__ : List[str] ): """simple docstring""" __snake_case = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase_ , ) __snake_case = kwargs.pop('''feature_extractor''' ) __snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase_ , lowercase_ ) def __call__(self : Any , a__ : List[str]=None , a__ : int=None , a__ : Optional[Any]=None , a__ : Dict=None , **a__ : Dict ): """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: __snake_case = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if visual_prompt is not None: __snake_case = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: __snake_case = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if visual_prompt is not None and images is not None: __snake_case = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: __snake_case = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: __snake_case = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def a (self : Optional[Any] , *a__ : List[Any] , **a__ : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def a (self : Union[str, Any] , *a__ : Any , **a__ : int ): """simple docstring""" return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def a (self : Optional[int] ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase_ , ) return self.image_processor_class @property def a (self : int ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase_ , ) return self.image_processor
592
from math import isqrt, loga def lowerCAmelCase__ ( a__ ) ->list[int]: '''simple docstring''' _UpperCamelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , a__ , a__ ): _UpperCamelCase = False return [i for i in range(2 , a__ ) if is_prime[i]] def lowerCAmelCase__ ( a__ = 800_800 , a__ = 800_800 ) ->int: '''simple docstring''' _UpperCamelCase = degree * loga(a__ ) _UpperCamelCase = int(a__ ) _UpperCamelCase = calculate_prime_numbers(a__ ) _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = len(a__ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
547
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""tokenizer_file""": """tokenizer.json"""} _SCREAMING_SNAKE_CASE = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = ["""input_ids""", """attention_mask"""] __UpperCAmelCase = None def __init__(self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__=False , lowerCAmelCase__=False , **lowerCAmelCase__ , ): '''simple docstring''' super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCamelCase : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCAmelCase__ ) != add_prefix_space: _UpperCamelCase : List[Any] = getattr(lowerCAmelCase__ , pre_tok_state.pop("type" ) ) _UpperCamelCase : Any = add_prefix_space _UpperCamelCase : Optional[Any] = pre_tok_class(**lowerCAmelCase__ ) _UpperCamelCase : str = add_prefix_space def lowercase_ (self , *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Tuple = kwargs.get("is_split_into_words" , lowerCAmelCase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" " pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def lowercase_ (self , *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : str = kwargs.get("is_split_into_words" , lowerCAmelCase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" " pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ): '''simple docstring''' _UpperCamelCase : List[Any] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def lowercase_ (self , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] ) if len(lowerCAmelCase__ ) > self.model_max_length: _UpperCamelCase : Optional[int] = input_ids[-self.model_max_length :] return input_ids
239
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self , lowerCAmelCase__ , lowerCAmelCase__=1_00 , lowerCAmelCase__=13 , lowerCAmelCase__=30 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , ): '''simple docstring''' _UpperCamelCase : Dict = parent _UpperCamelCase : str = vocab_size _UpperCamelCase : Tuple = batch_size _UpperCamelCase : Optional[Any] = image_size _UpperCamelCase : List[str] = patch_size _UpperCamelCase : Tuple = num_channels _UpperCamelCase : Optional[int] = is_training _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : Tuple = intermediate_size _UpperCamelCase : Any = hidden_act _UpperCamelCase : int = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Any = type_sequence_label_size _UpperCamelCase : Union[str, Any] = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : Optional[int] = (image_size // patch_size) ** 2 _UpperCamelCase : List[Any] = num_patches + 1 def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Tuple = None if self.use_labels: _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : Optional[int] = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : List[Any] = FlaxBeitModel(config=lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Tuple = FlaxBeitForMaskedImageModeling(config=lowerCAmelCase__ ) _UpperCamelCase : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Optional[int] = self.type_sequence_label_size _UpperCamelCase : int = FlaxBeitForImageClassification(config=lowerCAmelCase__ ) _UpperCamelCase : Any = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase : Dict = 1 _UpperCamelCase : Tuple = FlaxBeitForImageClassification(lowerCAmelCase__ ) _UpperCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : str = model(lowerCAmelCase__ ) def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[Any] = config_and_inputs _UpperCamelCase : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Dict = FlaxBeitModelTester(self ) _UpperCamelCase : Tuple = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def lowercase_ (self ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ (self ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(lowerCAmelCase__ ) _UpperCamelCase : List[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Dict = [*signature.parameters.keys()] _UpperCamelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def lowercase_ (self ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCamelCase : Tuple = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase : Dict = model_class(lowerCAmelCase__ ) @jax.jit def model_jitted(lowerCAmelCase__ , **lowerCAmelCase__ ): return model(pixel_values=lowerCAmelCase__ , **lowerCAmelCase__ ) with self.subTest("JIT Enabled" ): _UpperCamelCase : Optional[Any] = model_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _UpperCamelCase : int = model_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def lowercase_ (self ): '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase : Optional[int] = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) _UpperCamelCase : Optional[Any] = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(lowerCAmelCase__ ) def __lowerCAmelCase ( ) -> Dict: _UpperCamelCase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase_ (self ): '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Tuple = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) _UpperCamelCase : Union[str, Any] = self.default_image_processor _UpperCamelCase : Union[str, Any] = prepare_img() _UpperCamelCase : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="np" ).pixel_values # prepare bool_masked_pos _UpperCamelCase : List[Any] = np.ones((1, 1_96) , dtype=lowerCAmelCase__ ) # forward pass _UpperCamelCase : List[Any] = model(pixel_values=lowerCAmelCase__ , bool_masked_pos=lowerCAmelCase__ ) _UpperCamelCase : Dict = outputs.logits # verify the logits _UpperCamelCase : Tuple = (1, 1_96, 81_92) self.assertEqual(logits.shape , lowerCAmelCase__ ) _UpperCamelCase : List[str] = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , lowerCAmelCase__ , atol=1E-2 ) ) @slow def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Dict = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) _UpperCamelCase : int = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=lowerCAmelCase__ , return_tensors="np" ) # forward pass _UpperCamelCase : Optional[int] = model(**lowerCAmelCase__ ) _UpperCamelCase : Union[str, Any] = outputs.logits # verify the logits _UpperCamelCase : List[str] = (1, 10_00) self.assertEqual(logits.shape , lowerCAmelCase__ ) _UpperCamelCase : List[str] = np.array([-1.2385, -1.0987, -1.0108] ) self.assertTrue(np.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) _UpperCamelCase : Optional[Any] = 2_81 self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase__ ) @slow def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Any = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) _UpperCamelCase : Any = self.default_image_processor _UpperCamelCase : str = prepare_img() _UpperCamelCase : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="np" ) # forward pass _UpperCamelCase : Optional[int] = model(**lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = outputs.logits # verify the logits _UpperCamelCase : Union[str, Any] = (1, 2_18_41) self.assertEqual(logits.shape , lowerCAmelCase__ ) _UpperCamelCase : List[Any] = np.array([1.6881, -0.2787, 0.5901] ) self.assertTrue(np.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) _UpperCamelCase : List[str] = 23_96 self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase__ )
239
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ : List[Any] = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Any = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __magic_name__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
102
'''simple docstring''' def __A ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def __A ( ): """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
211
0
from itertools import count def __lowerCAmelCase ( _UpperCamelCase = 50 ) -> int: '''simple docstring''' lowerCamelCase__: List[Any] = [1] * min_block_length for n in count(_UpperCamelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCamelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1000000: break return n if __name__ == "__main__": print(F"""{solution() = }""")
242
import argparse import collections import json import os import re import string import sys import numpy as np _lowercase = re.compile(r'\b(a|an|the)\b', re.UNICODE) _lowercase = None def __lowerCAmelCase ( ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__: Any = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" ) parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" ) parser.add_argument( """--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""" , """-t""" , type=_UpperCamelCase , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , ) parser.add_argument( """--out-image-dir""" , """-p""" , metavar="""out_images""" , default=_UpperCamelCase , help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __lowerCAmelCase ( _UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCamelCase__: Any = bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def __lowerCAmelCase ( _UpperCamelCase ) -> List[str]: '''simple docstring''' def remove_articles(_UpperCamelCase ): return ARTICLES_REGEX.sub(""" """ , _UpperCamelCase ) def white_space_fix(_UpperCamelCase ): return " ".join(text.split() ) def remove_punc(_UpperCamelCase ): lowerCamelCase__: Any = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCamelCase ) ) ) ) def __lowerCAmelCase ( _UpperCamelCase ) -> int: '''simple docstring''' if not s: return [] return normalize_answer(_UpperCamelCase ).split() def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> List[Any]: '''simple docstring''' return int(normalize_answer(_UpperCamelCase ) == normalize_answer(_UpperCamelCase ) ) def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> Tuple: '''simple docstring''' lowerCamelCase__: Any = get_tokens(_UpperCamelCase ) lowerCamelCase__: Union[str, Any] = get_tokens(_UpperCamelCase ) lowerCamelCase__: List[str] = collections.Counter(_UpperCamelCase ) & collections.Counter(_UpperCamelCase ) lowerCamelCase__: Optional[Any] = sum(common.values() ) if len(_UpperCamelCase ) == 0 or len(_UpperCamelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 lowerCamelCase__: List[str] = 1.0 * num_same / len(_UpperCamelCase ) lowerCamelCase__: Optional[Any] = 1.0 * num_same / len(_UpperCamelCase ) lowerCamelCase__: Dict = (2 * precision * recall) / (precision + recall) return fa def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> Dict: '''simple docstring''' lowerCamelCase__: Any = {} lowerCamelCase__: str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCamelCase__: Dict = qa["""id"""] lowerCamelCase__: Union[str, Any] = [t for t in qa["""answers"""]["""text"""] if normalize_answer(_UpperCamelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCamelCase__: int = [""""""] if qid not in preds: print(f"""Missing prediction for {qid}""" ) continue lowerCamelCase__: Optional[Any] = preds[qid] # Take max over all gold answers lowerCamelCase__: str = max(compute_exact(_UpperCamelCase , _UpperCamelCase ) for a in gold_answers ) lowerCamelCase__: str = max(compute_fa(_UpperCamelCase , _UpperCamelCase ) for a in gold_answers ) return exact_scores, fa_scores def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: '''simple docstring''' lowerCamelCase__: List[str] = {} for qid, s in scores.items(): lowerCamelCase__: Dict = na_probs[qid] > na_prob_thresh if pred_na: lowerCamelCase__: Optional[int] = float(not qid_to_has_ans[qid] ) else: lowerCamelCase__: str = s return new_scores def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ) -> Optional[int]: '''simple docstring''' if not qid_list: lowerCamelCase__: List[str] = len(_UpperCamelCase ) return collections.OrderedDict( [ ("""exact""", 1_00.0 * sum(exact_scores.values() ) / total), ("""f1""", 1_00.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: lowerCamelCase__: int = len(_UpperCamelCase ) return collections.OrderedDict( [ ("""exact""", 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: '''simple docstring''' for k in new_eval: lowerCamelCase__: int = new_eval[k] def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: '''simple docstring''' plt.step(_UpperCamelCase , _UpperCamelCase , color="""b""" , alpha=0.2 , where="""post""" ) plt.fill_between(_UpperCamelCase , _UpperCamelCase , step="""post""" , alpha=0.2 , color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(_UpperCamelCase ) plt.savefig(_UpperCamelCase ) plt.clf() def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ) -> str: '''simple docstring''' lowerCamelCase__: Tuple = sorted(_UpperCamelCase , key=lambda _UpperCamelCase : na_probs[k] ) lowerCamelCase__: str = 0.0 lowerCamelCase__: Optional[int] = 1.0 lowerCamelCase__: List[Any] = 0.0 lowerCamelCase__: Any = [1.0] lowerCamelCase__: Any = [0.0] lowerCamelCase__: List[str] = 0.0 for i, qid in enumerate(_UpperCamelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCamelCase__: List[str] = true_pos / float(i + 1 ) lowerCamelCase__: int = true_pos / float(_UpperCamelCase ) if i == len(_UpperCamelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_UpperCamelCase ) recalls.append(_UpperCamelCase ) if out_image: plot_pr_curve(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return {"ap": 1_00.0 * avg_prec} def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: '''simple docstring''' if out_image_dir and not os.path.exists(_UpperCamelCase ): os.makedirs(_UpperCamelCase ) lowerCamelCase__: List[str] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return lowerCamelCase__: int = make_precision_recall_eval( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , out_image=os.path.join(_UpperCamelCase , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , ) lowerCamelCase__: Union[str, Any] = make_precision_recall_eval( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , out_image=os.path.join(_UpperCamelCase , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , ) lowerCamelCase__: int = {k: float(_UpperCamelCase ) for k, v in qid_to_has_ans.items()} lowerCamelCase__: List[str] = make_precision_recall_eval( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , out_image=os.path.join(_UpperCamelCase , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , ) merge_eval(_UpperCamelCase , _UpperCamelCase , """pr_exact""" ) merge_eval(_UpperCamelCase , _UpperCamelCase , """pr_f1""" ) merge_eval(_UpperCamelCase , _UpperCamelCase , """pr_oracle""" ) def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: '''simple docstring''' if not qid_list: return lowerCamelCase__: Dict = [na_probs[k] for k in qid_list] lowerCamelCase__: int = np.ones_like(_UpperCamelCase ) / float(len(_UpperCamelCase ) ) plt.hist(_UpperCamelCase , weights=_UpperCamelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(f"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(_UpperCamelCase , f"""na_prob_hist_{name}.png""" ) ) plt.clf() def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: '''simple docstring''' lowerCamelCase__: List[str] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) lowerCamelCase__: List[str] = num_no_ans lowerCamelCase__: List[Any] = cur_score lowerCamelCase__: Tuple = 0.0 lowerCamelCase__: Any = sorted(_UpperCamelCase , key=lambda _UpperCamelCase : na_probs[k] ) for i, qid in enumerate(_UpperCamelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCamelCase__: int = scores[qid] else: if preds[qid]: lowerCamelCase__: List[Any] = -1 else: lowerCamelCase__: Any = 0 cur_score += diff if cur_score > best_score: lowerCamelCase__: List[Any] = cur_score lowerCamelCase__: Union[str, Any] = na_probs[qid] return 1_00.0 * best_score / len(_UpperCamelCase ), best_thresh def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] = find_best_thresh(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowerCamelCase__ , lowerCamelCase__: int = find_best_thresh(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowerCamelCase__: int = best_exact lowerCamelCase__: int = exact_thresh lowerCamelCase__: Optional[Any] = best_fa lowerCamelCase__: Union[str, Any] = fa_thresh def __lowerCAmelCase ( ) -> Optional[int]: '''simple docstring''' with open(OPTS.data_file ) as f: lowerCamelCase__: Any = json.load(_UpperCamelCase ) lowerCamelCase__: List[Any] = dataset_json["""data"""] with open(OPTS.pred_file ) as f: lowerCamelCase__: str = json.load(_UpperCamelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: lowerCamelCase__: Any = json.load(_UpperCamelCase ) else: lowerCamelCase__: Dict = {k: 0.0 for k in preds} lowerCamelCase__: Dict = make_qid_to_has_ans(_UpperCamelCase ) # maps qid to True/False lowerCamelCase__: Any = [k for k, v in qid_to_has_ans.items() if v] lowerCamelCase__: Dict = [k for k, v in qid_to_has_ans.items() if not v] lowerCamelCase__ , lowerCamelCase__: Dict = get_raw_scores(_UpperCamelCase , _UpperCamelCase ) lowerCamelCase__: Union[str, Any] = apply_no_ans_threshold(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , OPTS.na_prob_thresh ) lowerCamelCase__: Tuple = apply_no_ans_threshold(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , OPTS.na_prob_thresh ) lowerCamelCase__: Tuple = make_eval_dict(_UpperCamelCase , _UpperCamelCase ) if has_ans_qids: lowerCamelCase__: Optional[Any] = make_eval_dict(_UpperCamelCase , _UpperCamelCase , qid_list=_UpperCamelCase ) merge_eval(_UpperCamelCase , _UpperCamelCase , """HasAns""" ) if no_ans_qids: lowerCamelCase__: Optional[Any] = make_eval_dict(_UpperCamelCase , _UpperCamelCase , qid_list=_UpperCamelCase ) merge_eval(_UpperCamelCase , _UpperCamelCase , """NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , OPTS.out_image_dir ) histogram_na_prob(_UpperCamelCase , _UpperCamelCase , OPTS.out_image_dir , """hasAns""" ) histogram_na_prob(_UpperCamelCase , _UpperCamelCase , OPTS.out_image_dir , """noAns""" ) if OPTS.out_file: with open(OPTS.out_file , """w""" ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) else: print(json.dumps(_UpperCamelCase , indent=2 ) ) if __name__ == "__main__": _lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
242
1
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : List[Any] = [] lowerCamelCase_ : Optional[Any] = [] lowerCamelCase_ : Tuple = [] for rt in rc.restypes: lowerCamelCase_ : Dict = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) lowerCamelCase_ : str = {name: i for i, name in enumerate(__UpperCAmelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) lowerCamelCase_ : Dict = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) lowerCamelCase_ : List[str] = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) lowerCamelCase_ : Optional[Any] = torch.tensor( __UpperCAmelCase , dtype=torch.floataa , device=protein['''aatype'''].device , ) lowerCamelCase_ : Optional[int] = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowerCamelCase_ : Dict = restype_atomaa_to_atomaa[protein_aatype] lowerCamelCase_ : List[str] = restype_atomaa_mask[protein_aatype] lowerCamelCase_ : Any = residx_atomaa_mask lowerCamelCase_ : str = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowerCamelCase_ : Union[str, Any] = restype_atomaa_to_atomaa[protein_aatype] lowerCamelCase_ : List[Any] = residx_atomaa_to_atomaa.long() # create the corresponding mask lowerCamelCase_ : List[Any] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): lowerCamelCase_ : Tuple = rc.restype_atoa[restype_letter] lowerCamelCase_ : Tuple = rc.residue_atoms[restype_name] for atom_name in atom_names: lowerCamelCase_ : Any = rc.atom_order[atom_name] lowerCamelCase_ : Union[str, Any] = 1 lowerCamelCase_ : Optional[Any] = restype_atomaa_mask[protein_aatype] lowerCamelCase_ : Optional[Any] = residx_atomaa_mask return protein def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Optional[int] = tree_map(lambda __UpperCAmelCase : torch.tensor(__UpperCAmelCase , device=batch['''aatype'''].device ) , __UpperCAmelCase , np.ndarray ) lowerCamelCase_ : Optional[Any] = tensor_tree_map(lambda __UpperCAmelCase : np.array(__UpperCAmelCase ) , make_atomaa_masks(__UpperCAmelCase ) ) return out
501
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __lowerCamelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__ ( _lowerCAmelCase ): def __init__( self : int , UpperCamelCase_ : CLIPSegForImageSegmentation , UpperCamelCase_ : CLIPSegProcessor , UpperCamelCase_ : AutoencoderKL , UpperCamelCase_ : CLIPTextModel , UpperCamelCase_ : CLIPTokenizer , UpperCamelCase_ : UNetaDConditionModel , UpperCamelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCamelCase_ : StableDiffusionSafetyChecker , UpperCamelCase_ : CLIPImageProcessor , ) -> Optional[int]: """simple docstring""" super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: lowerCamelCase_ : int = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , UpperCamelCase_ , standard_warn=UpperCamelCase_ ) lowerCamelCase_ : Union[str, Any] = dict(scheduler.config ) lowerCamelCase_ : Optional[Any] = 1 lowerCamelCase_ : List[Any] = FrozenDict(UpperCamelCase_ ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: lowerCamelCase_ : Any = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , UpperCamelCase_ , standard_warn=UpperCamelCase_ ) lowerCamelCase_ : Dict = dict(scheduler.config ) lowerCamelCase_ : Union[str, Any] = True lowerCamelCase_ : Any = FrozenDict(UpperCamelCase_ ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=UpperCamelCase_ , segmentation_processor=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , ) def __UpperCamelCase ( self : str , UpperCamelCase_ : Optional[Union[str, int]] = "auto" ) -> int: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase_ ) def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" self.enable_attention_slicing(UpperCamelCase_ ) def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowerCamelCase_ : List[str] = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[str, List[str]] , UpperCamelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , UpperCamelCase_ : str , UpperCamelCase_ : int = 512 , UpperCamelCase_ : int = 512 , UpperCamelCase_ : int = 50 , UpperCamelCase_ : float = 7.5 , UpperCamelCase_ : Optional[Union[str, List[str]]] = None , UpperCamelCase_ : Optional[int] = 1 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[torch.Generator] = None , UpperCamelCase_ : Optional[torch.FloatTensor] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_ : int = 1 , **UpperCamelCase_ : Dict , ) -> List[Any]: """simple docstring""" lowerCamelCase_ : Optional[Any] = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) lowerCamelCase_ : Union[str, Any] = self.segmentation_model(**UpperCamelCase_ ) lowerCamelCase_ : Dict = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowerCamelCase_ : int = self.numpy_to_pil(UpperCamelCase_ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowerCamelCase_ : List[str] = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , height=UpperCamelCase_ , width=UpperCamelCase_ , num_inference_steps=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , negative_prompt=UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ , eta=UpperCamelCase_ , generator=UpperCamelCase_ , latents=UpperCamelCase_ , output_type=UpperCamelCase_ , return_dict=UpperCamelCase_ , callback=UpperCamelCase_ , callback_steps=UpperCamelCase_ , )
501
1
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). " ,lowerCAmelCase ,) class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase =RobertaConfig UpperCAmelCase ="roberta" def __init__( self , snake_case) -> List[Any]: '''simple docstring''' super().__init__(snake_case) _UpperCAmelCase : Optional[Any] =RobertaEmbeddings(snake_case) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " ,lowerCAmelCase ,) class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase =RobertaConfig UpperCAmelCase ="roberta" def __init__( self , snake_case) -> Optional[int]: '''simple docstring''' super().__init__(snake_case) _UpperCAmelCase : Optional[int] =config.num_labels _UpperCAmelCase : Optional[int] =config.num_hidden_layers _UpperCAmelCase : int =DeeRobertaModel(snake_case) _UpperCAmelCase : Optional[Any] =nn.Dropout(config.hidden_dropout_prob) _UpperCAmelCase : Any =nn.Linear(config.hidden_size , self.config.num_labels) @add_start_docstrings_to_model_forward(snake_case) def lowerCAmelCase ( self , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=-1 , snake_case=False , ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Dict =self.num_layers try: _UpperCAmelCase : str =self.roberta( snake_case , attention_mask=snake_case , token_type_ids=snake_case , position_ids=snake_case , head_mask=snake_case , inputs_embeds=snake_case , ) _UpperCAmelCase : List[Any] =outputs[1] _UpperCAmelCase : Any =self.dropout(snake_case) _UpperCAmelCase : Any =self.classifier(snake_case) _UpperCAmelCase : List[Any] =(logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _UpperCAmelCase : Tuple =e.message _UpperCAmelCase : str =e.exit_layer _UpperCAmelCase : Optional[Any] =outputs[0] if not self.training: _UpperCAmelCase : str =entropy(snake_case) _UpperCAmelCase : List[str] =[] _UpperCAmelCase : Union[str, Any] =[] if labels is not None: if self.num_labels == 1: # We are doing regression _UpperCAmelCase : str =MSELoss() _UpperCAmelCase : Optional[Any] =loss_fct(logits.view(-1) , labels.view(-1)) else: _UpperCAmelCase : str =CrossEntropyLoss() _UpperCAmelCase : Dict =loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) # work with highway exits _UpperCAmelCase : Tuple =[] for highway_exit in outputs[-1]: _UpperCAmelCase : Tuple =highway_exit[0] if not self.training: highway_logits_all.append(snake_case) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression _UpperCAmelCase : Tuple =MSELoss() _UpperCAmelCase : List[str] =loss_fct(highway_logits.view(-1) , labels.view(-1)) else: _UpperCAmelCase : str =CrossEntropyLoss() _UpperCAmelCase : str =loss_fct(highway_logits.view(-1 , self.num_labels) , labels.view(-1)) highway_losses.append(snake_case) if train_highway: _UpperCAmelCase : Optional[Any] =(sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: _UpperCAmelCase : str =(loss,) + outputs if not self.training: _UpperCAmelCase : int =outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _UpperCAmelCase : List[Any] =( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
331
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase =random.Random() if is_torch_available(): import torch def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : int=1.0 , __lowerCamelCase : str=None , __lowerCamelCase : Tuple=None ): '''simple docstring''' if rng is None: _UpperCAmelCase : Optional[Any] =global_rng _UpperCAmelCase : Optional[int] =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __magic_name__ ( unittest.TestCase ): def __init__( self , snake_case , snake_case=7 , snake_case=4_0_0 , snake_case=2_0_0_0 , snake_case=1 , snake_case=0.0 , snake_case=1_6_0_0_0 , snake_case=True , snake_case=True , ) -> int: '''simple docstring''' _UpperCAmelCase : int =parent _UpperCAmelCase : Any =batch_size _UpperCAmelCase : Tuple =min_seq_length _UpperCAmelCase : Tuple =max_seq_length _UpperCAmelCase : Optional[Any] =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase : int =feature_size _UpperCAmelCase : List[str] =padding_value _UpperCAmelCase : int =sampling_rate _UpperCAmelCase : List[str] =return_attention_mask _UpperCAmelCase : Tuple =do_normalize def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCAmelCase ( self , snake_case=False , snake_case=False) -> Any: '''simple docstring''' def _flatten(snake_case): return list(itertools.chain(*snake_case)) if equal_length: _UpperCAmelCase : List[Any] =floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size _UpperCAmelCase : Optional[Any] =[ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: _UpperCAmelCase : Optional[int] =[np.asarray(snake_case) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __magic_name__ ( lowerCAmelCase ,unittest.TestCase ): UpperCAmelCase =ASTFeatureExtractor def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple =ASTFeatureExtractionTester(self) def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCAmelCase : str =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase : str =[floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] _UpperCAmelCase : Optional[int] =[np.asarray(snake_case) for speech_input in speech_inputs] # Test not batched input _UpperCAmelCase : List[str] =feat_extract(speech_inputs[0] , return_tensors='np').input_values _UpperCAmelCase : List[Any] =feat_extract(np_speech_inputs[0] , return_tensors='np').input_values self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-3)) # Test batched _UpperCAmelCase : Tuple =feat_extract(snake_case , padding=snake_case , return_tensors='np').input_values _UpperCAmelCase : List[Any] =feat_extract(snake_case , padding=snake_case , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(snake_case , snake_case): self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-3)) # Test 2-D numpy arrays are batched. _UpperCAmelCase : Dict =[floats_list((1, x))[0] for x in (8_0_0, 8_0_0, 8_0_0)] _UpperCAmelCase : Tuple =np.asarray(snake_case) _UpperCAmelCase : Optional[Any] =feat_extract(snake_case , return_tensors='np').input_values _UpperCAmelCase : Dict =feat_extract(snake_case , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(snake_case , snake_case): self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-3)) @require_torch def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' import torch _UpperCAmelCase : Any =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _UpperCAmelCase : int =np.random.rand(1_0_0).astype(np.floataa) _UpperCAmelCase : str =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase : Optional[Any] =feature_extractor.pad([{'input_values': inputs}] , return_tensors='np') self.assertTrue(np_processed.input_values.dtype == np.floataa) _UpperCAmelCase : List[str] =feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt') self.assertTrue(pt_processed.input_values.dtype == torch.floataa) def lowerCAmelCase ( self , snake_case) -> int: '''simple docstring''' from datasets import load_dataset _UpperCAmelCase : Optional[Any] =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation') # automatic decoding with librispeech _UpperCAmelCase : int =ds.sort('id').select(range(snake_case))[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def lowerCAmelCase ( self) -> int: '''simple docstring''' # fmt: off _UpperCAmelCase : List[str] =torch.tensor( [-0.98_94, -1.27_76, -0.90_66, -1.27_76, -0.93_49, -1.26_09, -1.03_86, -1.27_76, -1.15_61, -1.27_76, -1.20_52, -1.27_23, -1.21_90, -1.21_32, -1.27_76, -1.11_33, -1.19_53, -1.13_43, -1.15_84, -1.22_03, -1.17_70, -1.24_74, -1.23_81, -1.19_36, -0.92_70, -0.83_17, -0.80_49, -0.77_06, -0.75_65, -0.78_69]) # fmt: on _UpperCAmelCase : Dict =self._load_datasamples(1) _UpperCAmelCase : Optional[Any] =ASTFeatureExtractor() _UpperCAmelCase : Optional[Any] =feature_extractor(snake_case , return_tensors='pt').input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8)) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , snake_case , atol=1E-4))
331
1
"""simple docstring""" import qiskit def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register UpperCamelCase : List[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator UpperCamelCase : Tuple = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __magic_name__ : Any = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
102
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class UpperCAmelCase : def __init__( self : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple=9_9 , __lowerCamelCase : int=1_3 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Dict=9 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : List[str]=False , __lowerCamelCase : List[Any]=3_2 , __lowerCamelCase : int=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Tuple=3_7 , __lowerCamelCase : Any=8 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Any=0.0_02 , __lowerCamelCase : List[str]=1 , __lowerCamelCase : str=0 , __lowerCamelCase : str=0 , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=None , ): UpperCAmelCase__ :Tuple = parent UpperCAmelCase__ :str = batch_size UpperCAmelCase__ :int = encoder_seq_length UpperCAmelCase__ :Optional[int] = decoder_seq_length # For common tests UpperCAmelCase__ :int = self.decoder_seq_length UpperCAmelCase__ :List[Any] = is_training UpperCAmelCase__ :Any = use_attention_mask UpperCAmelCase__ :Tuple = use_labels UpperCAmelCase__ :Optional[int] = vocab_size UpperCAmelCase__ :Optional[Any] = hidden_size UpperCAmelCase__ :Optional[Any] = num_hidden_layers UpperCAmelCase__ :Tuple = num_attention_heads UpperCAmelCase__ :str = d_ff UpperCAmelCase__ :Tuple = relative_attention_num_buckets UpperCAmelCase__ :int = dropout_rate UpperCAmelCase__ :Dict = initializer_factor UpperCAmelCase__ :int = eos_token_id UpperCAmelCase__ :Tuple = pad_token_id UpperCAmelCase__ :Tuple = decoder_start_token_id UpperCAmelCase__ :List[str] = None UpperCAmelCase__ :List[str] = decoder_layers def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return TaConfig.from_pretrained('''google/umt5-base''' ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[Any]=None , ): if attention_mask is None: UpperCAmelCase__ :Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCAmelCase__ :Any = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCAmelCase__ :List[str] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__lowerCamelCase ) if decoder_head_mask is None: UpperCAmelCase__ :Optional[Any] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__lowerCamelCase ) if cross_attn_head_mask is None: UpperCAmelCase__ :List[Any] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__lowerCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __SCREAMING_SNAKE_CASE ( self : List[str] ): UpperCAmelCase__ :Optional[int] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) UpperCAmelCase__ :List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCAmelCase__ :int = input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase__ :Tuple = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase__ :Dict = self.get_config() UpperCAmelCase__ :Union[str, Any] = config.num_attention_heads UpperCAmelCase__ :Dict = self.prepare_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, input_dict def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): UpperCAmelCase__ , UpperCAmelCase__ :int = self.prepare_config_and_inputs() return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , ): UpperCAmelCase__ :str = UMTaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCAmelCase__ :Optional[int] = model( input_ids=__lowerCamelCase , decoder_input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase , decoder_attention_mask=__lowerCamelCase , ) UpperCAmelCase__ :List[Any] = model(input_ids=__lowerCamelCase , decoder_input_ids=__lowerCamelCase ) UpperCAmelCase__ :Dict = result.last_hidden_state UpperCAmelCase__ :Tuple = result.past_key_values UpperCAmelCase__ :Dict = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__lowerCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , ): UpperCAmelCase__ :Tuple = UMTaModel(config=__lowerCamelCase ).get_decoder().to(__lowerCamelCase ).eval() # first forward pass UpperCAmelCase__ :Dict = model(__lowerCamelCase , use_cache=__lowerCamelCase ) UpperCAmelCase__ :Any = model(__lowerCamelCase ) UpperCAmelCase__ :List[str] = model(__lowerCamelCase , use_cache=__lowerCamelCase ) self.parent.assertTrue(len(__lowerCamelCase ) == len(__lowerCamelCase ) ) self.parent.assertTrue(len(__lowerCamelCase ) == len(__lowerCamelCase ) + 1 ) UpperCAmelCase__ , UpperCAmelCase__ :int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase__ :int = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and UpperCAmelCase__ :Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase__ :Union[str, Any] = model(__lowerCamelCase )['''last_hidden_state'''] UpperCAmelCase__ :str = model(__lowerCamelCase , past_key_values=__lowerCamelCase )['''last_hidden_state'''] # select random slice UpperCAmelCase__ :Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase__ :Any = output_from_no_past[:, -1, random_slice_idx].detach() UpperCAmelCase__ :Union[str, Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self : Any , __lowerCamelCase : Tuple , __lowerCamelCase : str , ): UpperCAmelCase__ :Optional[Any] = UMTaModel(config=__lowerCamelCase ).to(__lowerCamelCase ).half().eval() UpperCAmelCase__ :Any = model(**__lowerCamelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__lowerCamelCase ).any().item() ) @require_torch class UpperCAmelCase ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): UpperCAmelCase = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCAmelCase = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = True UpperCAmelCase = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCAmelCase = [0.8, 0.9] def __SCREAMING_SNAKE_CASE ( self : str ): UpperCAmelCase__ :Optional[Any] = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def __SCREAMING_SNAKE_CASE ( self : int ): UpperCAmelCase__ :int = self.model_tester.prepare_config_and_inputs() UpperCAmelCase__ :Optional[int] = UMTaModel(config_and_inputs[0] ).to(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __lowerCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=__lowerCamelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): UpperCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): UpperCAmelCase__ :Tuple = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] UpperCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() UpperCAmelCase__ :int = config_and_inputs[0] UpperCAmelCase__ :Optional[Any] = UMTaForConditionalGeneration(__lowerCamelCase ).eval() model.to(__lowerCamelCase ) UpperCAmelCase__ :List[str] = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__lowerCamelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__lowerCamelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__lowerCamelCase ), } for attn_name, (name, mask) in zip(__lowerCamelCase , head_masking.items() ): UpperCAmelCase__ :Union[str, Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": UpperCAmelCase__ :Optional[Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=__lowerCamelCase ) UpperCAmelCase__ :Union[str, Any] = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__lowerCamelCase , return_dict_in_generate=__lowerCamelCase , **__lowerCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step UpperCAmelCase__ :List[Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def __SCREAMING_SNAKE_CASE ( self : Any ): UpperCAmelCase__ :Optional[Any] = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__lowerCamelCase ).to(__lowerCamelCase ) UpperCAmelCase__ :List[str] = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__lowerCamelCase , legacy=__lowerCamelCase ) UpperCAmelCase__ :Dict = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] UpperCAmelCase__ :Optional[Any] = tokenizer(__lowerCamelCase , return_tensors='''pt''' , padding=__lowerCamelCase ).input_ids # fmt: off UpperCAmelCase__ :List[Any] = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ] ) # fmt: on torch.testing.assert_allclose(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase__ :Dict = model.generate(input_ids.to(__lowerCamelCase ) ) UpperCAmelCase__ :str = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ <extra_id_56>ajลกietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajลกie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> ํ”ผํ•ด[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] UpperCAmelCase__ :Dict = tokenizer.batch_decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase )
467
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex snake_case : Any = logging.getLogger(__name__) class lowerCAmelCase__ : def __init__( self : Union[str, Any]): A__ : Dict = False def _lowercase ( self : Optional[int] , _A : int , _A : Optional[int] , _A : List[str] , _A : Optional[Any]): if not self.initialized: A__ : List[Any] = RagRetriever( _A , question_encoder_tokenizer=_A , generator_tokenizer=_A , index=_A , init_retrieval=_A , ) A__ : Dict = True def _lowercase ( self : Union[str, Any]): self.retriever.index.init_index() def _lowercase ( self : List[str] , _A : Optional[int] , _A : List[str]): A__ , A__ : str = self.retriever._main_retrieve(_A , _A) return doc_ids, retrieved_doc_embeds class lowerCAmelCase__ ( UpperCamelCase ): def __init__( self : Optional[Any] , _A : Union[str, Any] , _A : Tuple , _A : int , _A : Tuple , _A : Union[str, Any]=None): if index is not None and index.is_initialized() and len(_A) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py ") super().__init__( _A , question_encoder_tokenizer=_A , generator_tokenizer=_A , index=_A , init_retrieval=_A , ) A__ : str = retrieval_workers if len(self.retrieval_workers) > 0: ray.get( [ worker.create_rag_retriever.remote(_A , _A , _A , _A) for worker in self.retrieval_workers ]) def _lowercase ( self : Optional[Any]): logger.info("initializing retrieval") if len(self.retrieval_workers) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers]) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _lowercase ( self : Union[str, Any] , _A : List[str] , _A : Optional[Any]): if len(self.retrieval_workers) > 0: # Select a random retrieval actor. A__ : Optional[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers) - 1)] A__ , A__ : List[Any] = ray.get(random_worker.retrieve.remote(_A , _A)) else: A__ , A__ : Union[str, Any] = self._main_retrieve(_A , _A) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_A) @classmethod def _lowercase ( cls : int , _A : Optional[int] , _A : List[str]=None , **_A : Optional[Any]): return super(_A , cls).get_tokenizers(_A , _A , **_A) @classmethod def _lowercase ( cls : Any , _A : Union[str, Any] , _A : Optional[Any] , _A : List[str]=None , **_A : Optional[Any]): A__ : str = kwargs.pop("config" , _A) or RagConfig.from_pretrained(_A , **_A) A__ : int = RagTokenizer.from_pretrained(_A , config=_A) A__ : List[str] = rag_tokenizer.question_encoder A__ : str = rag_tokenizer.generator if indexed_dataset is not None: A__ : Tuple = "custom" A__ : Tuple = CustomHFIndex(config.retrieval_vector_size , _A) else: A__ : Union[str, Any] = cls._build_index(_A) return cls( _A , question_encoder_tokenizer=_A , generator_tokenizer=_A , retrieval_workers=_A , index=_A , )
182
from __future__ import annotations snake_case : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCAmelCase__ : def __init__( self : Optional[Any] , _A : dict[str, list[str]] , _A : str): A__ : Optional[Any] = graph # mapping node to its parent in resulting breadth first tree A__ : dict[str, str | None] = {} A__ : List[str] = source_vertex def _lowercase ( self : List[Any]): A__ : str = {self.source_vertex} A__ : List[str] = None A__ : List[str] = [self.source_vertex] # first in first out queue while queue: A__ : int = queue.pop(0) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_A) A__ : Any = vertex queue.append(_A) def _lowercase ( self : int , _A : str): if target_vertex == self.source_vertex: return self.source_vertex A__ : List[Any] = self.parent.get(_A) if target_vertex_parent is None: A__ : Union[str, Any] = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(_A) return self.shortest_path(_A) + F'->{target_vertex}' if __name__ == "__main__": snake_case : Any = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
182
1
'''simple docstring''' import math import sys def _lowercase ( UpperCamelCase__ : str ): __A : Optional[Any] = '' try: with open(UpperCamelCase__, 'rb' ) as binary_file: __A : str = binary_file.read() for dat in data: __A : Tuple = f"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _lowercase ( UpperCamelCase__ : str ): __A : Dict = {'0': '0', '1': '1'} __A ,__A : List[str] = '', '' __A : Optional[int] = len(UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __A : Dict = lexicon[curr_string] result += last_match_id __A : List[str] = last_match_id + '0' if math.loga(UpperCamelCase__ ).is_integer(): __A : Optional[Any] = {} for curr_key in list(UpperCamelCase__ ): __A : Optional[Any] = lexicon.pop(UpperCamelCase__ ) __A : Dict = new_lex __A : Tuple = last_match_id + '1' index += 1 __A : Optional[Any] = '' return result def _lowercase ( UpperCamelCase__ : str, UpperCamelCase__ : str ): __A : List[Any] = 8 try: with open(UpperCamelCase__, 'wb' ) as opened_file: __A : Optional[int] = [ to_write[i : i + byte_length] for i in range(0, len(UpperCamelCase__ ), UpperCamelCase__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(UpperCamelCase__, 2 ).to_bytes(1, byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _lowercase ( UpperCamelCase__ : str ): __A : int = 0 for letter in data_bits: if letter == "1": break counter += 1 __A : Optional[Any] = data_bits[counter:] __A : str = data_bits[counter + 1 :] return data_bits def _lowercase ( UpperCamelCase__ : str, UpperCamelCase__ : str ): __A : Optional[Any] = read_file_binary(UpperCamelCase__ ) __A : List[str] = remove_prefix(UpperCamelCase__ ) __A : List[Any] = decompress_data(UpperCamelCase__ ) write_file_binary(UpperCamelCase__, UpperCamelCase__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
365
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/config.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/config.json' # See all FNet models at https://huggingface.co/models?filter=fnet } class _lowerCamelCase ( snake_case_ ): '''simple docstring''' __lowercase : List[Any] = '''fnet''' def __init__( self , __lowercase=32_000 , __lowercase=768 , __lowercase=12 , __lowercase=3_072 , __lowercase="gelu_new" , __lowercase=0.1 , __lowercase=512 , __lowercase=4 , __lowercase=0.0_2 , __lowercase=1E-12 , __lowercase=False , __lowercase=512 , __lowercase=3 , __lowercase=1 , __lowercase=2 , **__lowercase , ): """simple docstring""" super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __A : Union[str, Any] = vocab_size __A : Dict = max_position_embeddings __A : List[str] = hidden_size __A : Tuple = num_hidden_layers __A : Optional[int] = intermediate_size __A : Dict = hidden_act __A : List[str] = hidden_dropout_prob __A : str = initializer_range __A : Dict = type_vocab_size __A : int = layer_norm_eps __A : Tuple = use_tpu_fourier_optimizations __A : Optional[Any] = tpu_short_seq_length
365
1
'''simple docstring''' from __future__ import annotations from math import pi def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__): if (inductance, frequency, reactance).count(0) != 1: raise ValueError("One and only one argument must be 0") if inductance < 0: raise ValueError("Inductance cannot be negative") if frequency < 0: raise ValueError("Frequency cannot be negative") if reactance < 0: raise ValueError("Inductive reactance cannot be negative") if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0") if __name__ == "__main__": import doctest doctest.testmod()
187
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class lowercase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int=1 , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Dict ) -> str: '''simple docstring''' super().__init__(**__lowerCamelCase ) lowerCamelCase__ = vocab_size lowerCamelCase__ = d_embed lowerCamelCase__ = d_proj lowerCamelCase__ = cutoffs + [vocab_size] lowerCamelCase__ = [0] + self.cutoffs lowerCamelCase__ = div_val lowerCamelCase__ = self.cutoffs[0] lowerCamelCase__ = len(self.cutoffs ) - 1 lowerCamelCase__ = self.shortlist_size + self.n_clusters lowerCamelCase__ = keep_order lowerCamelCase__ = [] lowerCamelCase__ = [] def a__ ( self : Optional[int] , __lowerCamelCase : str ) -> List[str]: '''simple docstring''' if self.n_clusters > 0: lowerCamelCase__ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="zeros" , trainable=__lowerCamelCase , name="cluster_weight" ) lowerCamelCase__ = self.add_weight( shape=(self.n_clusters,) , initializer="zeros" , trainable=__lowerCamelCase , name="cluster_bias" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: lowerCamelCase__ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_projs_._{i}''' , ) self.out_projs.append(__lowerCamelCase ) else: self.out_projs.append(__lowerCamelCase ) lowerCamelCase__ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_layers_._{i}_._weight''' , ) lowerCamelCase__ = self.add_weight( shape=(self.vocab_size,) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): lowerCamelCase__ , lowerCamelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCamelCase__ = self.d_embed // (self.div_val**i) lowerCamelCase__ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_projs_._{i}''' ) self.out_projs.append(__lowerCamelCase ) lowerCamelCase__ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_layers_._{i}_._weight''' , ) lowerCamelCase__ = self.add_weight( shape=(r_idx - l_idx,) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(__lowerCamelCase ) @staticmethod def a__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str]=None ) -> str: '''simple docstring''' lowerCamelCase__ = x if proj is not None: lowerCamelCase__ = tf.einsum("ibd,ed->ibe" , __lowerCamelCase , __lowerCamelCase ) return tf.einsum("ibd,nd->ibn" , __lowerCamelCase , __lowerCamelCase ) + b @staticmethod def a__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = shape_list(__lowerCamelCase ) lowerCamelCase__ = tf.range(lp_size[0] , dtype=target.dtype ) lowerCamelCase__ = tf.stack([r, target] , 1 ) return tf.gather_nd(__lowerCamelCase , __lowerCamelCase ) def a__ ( self : Any , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : str=True , __lowerCamelCase : Tuple=False ) -> int: '''simple docstring''' lowerCamelCase__ = 0 if self.n_clusters == 0: lowerCamelCase__ = self._logit(__lowerCamelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: lowerCamelCase__ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=__lowerCamelCase , logits=__lowerCamelCase ) lowerCamelCase__ = tf.nn.log_softmax(__lowerCamelCase , axis=-1 ) else: lowerCamelCase__ = shape_list(__lowerCamelCase ) lowerCamelCase__ = [] lowerCamelCase__ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): lowerCamelCase__ , lowerCamelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: lowerCamelCase__ = (target >= l_idx) & (target < r_idx) lowerCamelCase__ = tf.where(__lowerCamelCase ) lowerCamelCase__ = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) - l_idx if self.div_val == 1: lowerCamelCase__ = self.out_layers[0][0][l_idx:r_idx] lowerCamelCase__ = self.out_layers[0][1][l_idx:r_idx] else: lowerCamelCase__ = self.out_layers[i][0] lowerCamelCase__ = self.out_layers[i][1] if i == 0: lowerCamelCase__ = tf.concat([cur_W, self.cluster_weight] , 0 ) lowerCamelCase__ = tf.concat([cur_b, self.cluster_bias] , 0 ) lowerCamelCase__ = self._logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.out_projs[0] ) lowerCamelCase__ = tf.nn.log_softmax(__lowerCamelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: lowerCamelCase__ = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ = self._gather_logprob(__lowerCamelCase , __lowerCamelCase ) else: lowerCamelCase__ = self._logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.out_projs[i] ) lowerCamelCase__ = tf.nn.log_softmax(__lowerCamelCase ) lowerCamelCase__ = self.cutoffs[0] + i - 1 # No probability for the head cluster lowerCamelCase__ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(__lowerCamelCase ) if target is not None: lowerCamelCase__ = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ = self._gather_logprob(__lowerCamelCase , __lowerCamelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(__lowerCamelCase , -cur_logprob , shape_list(__lowerCamelCase ) ) lowerCamelCase__ = tf.concat(__lowerCamelCase , axis=-1 ) if target is not None: if return_mean: lowerCamelCase__ = tf.reduce_mean(__lowerCamelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(__lowerCamelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(__lowerCamelCase , name=self.name , aggregation="mean" if return_mean else "" ) return out
187
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class __lowercase (_UpperCAmelCase ): _UpperCamelCase = """fnet""" def __init__( self , A_=3_2000 , A_=768 , A_=12 , A_=3072 , A_="gelu_new" , A_=0.1 , A_=512 , A_=4 , A_=0.02 , A_=1e-12 , A_=False , A_=512 , A_=3 , A_=1 , A_=2 , **A_ , ) ->str: '''simple docstring''' super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) __lowerCAmelCase : str = vocab_size __lowerCAmelCase : Dict = max_position_embeddings __lowerCAmelCase : Dict = hidden_size __lowerCAmelCase : Dict = num_hidden_layers __lowerCAmelCase : Any = intermediate_size __lowerCAmelCase : List[Any] = hidden_act __lowerCAmelCase : Dict = hidden_dropout_prob __lowerCAmelCase : Tuple = initializer_range __lowerCAmelCase : Tuple = type_vocab_size __lowerCAmelCase : Dict = layer_norm_eps __lowerCAmelCase : int = use_tpu_fourier_optimizations __lowerCAmelCase : Tuple = tpu_short_seq_length
492
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor _UpperCamelCase = logging.get_logger(__name__) class __lowercase (_UpperCAmelCase ): def __init__( self , *A_ , **A_ ) ->None: '''simple docstring''' warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
492
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES lowerCAmelCase__ = "tiny-wmt19-en-ru" # Build # borrowed from a test lowerCAmelCase__ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] lowerCAmelCase__ = dict(zip(vocab, range(len(vocab)))) lowerCAmelCase__ = ["l o 123", "lo w 1456", "e r</w> 1789", ""] with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(tmpdirname) lowerCAmelCase__ = build_dir / VOCAB_FILES_NAMES["src_vocab_file"] lowerCAmelCase__ = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"] lowerCAmelCase__ = build_dir / VOCAB_FILES_NAMES["merges_file"] with open(src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, "w") as fp: fp.write("\n".join(merges)) lowerCAmelCase__ = FSMTTokenizer( langs=["en", "ru"], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) lowerCAmelCase__ = FSMTConfig( langs=["ru", "en"], src_vocab_size=1_0_0_0, tgt_vocab_size=1_0_0_0, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) lowerCAmelCase__ = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test lowerCAmelCase__ = tokenizer(["Making tiny model"], return_tensors="pt") lowerCAmelCase__ = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
718
from __future__ import annotations from collections import Counter from random import random class _a : """simple docstring""" def __init__( self ): _lowercase ={} def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase ={} def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if nodea not in self.connections: self.add_node(lowerCAmelCase_ ) if nodea not in self.connections: self.add_node(lowerCAmelCase_ ) _lowercase =probability def __lowerCAmelCase ( self ): return list(self.connections ) def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =0 _lowercase =random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __lowerCamelCase ( __a : str , __a : list[tuple[str, str, float]] , __a : int ) -> dict[str, int]: _lowercase =MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__a , __a , __a ) _lowercase =Counter(graph.get_nodes() ) _lowercase =start for _ in range(__a ): _lowercase =graph.transition(__a ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
594
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowercase : int ={"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : int =[ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict =[ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __lowercase : int =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
118
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __magic_name__ ( _a): _UpperCAmelCase : int = '''facebook/bart-large-mnli''' _UpperCAmelCase : Tuple = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) _UpperCAmelCase : Dict = '''text_classifier''' _UpperCAmelCase : Optional[Any] = AutoTokenizer _UpperCAmelCase : List[Any] = AutoModelForSequenceClassification _UpperCAmelCase : List[Any] = ['''text''', ['''text''']] _UpperCAmelCase : Optional[Any] = ['''text'''] def _UpperCAmelCase ( self : Any ): super().setup() UpperCAmelCase = self.model.config UpperCAmelCase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): UpperCAmelCase = int(A__ ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def _UpperCAmelCase ( self : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : List[str] ): UpperCAmelCase = labels return self.pre_processor( [text] * len(A__ ) ,[f'''This example is {label}''' for label in labels] ,return_tensors="pt" ,padding="max_length" ,) def _UpperCAmelCase ( self : Tuple ,__SCREAMING_SNAKE_CASE : Tuple ): UpperCAmelCase = outputs.logits UpperCAmelCase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase ={ "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __lowerCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
405
0
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ : List[str] = get_tests_dir("fixtures/test_sentencepiece.model") UpperCAmelCase__ : List[str] = {"target_lang": "fi", "source_lang": "en"} UpperCAmelCase__ : str = ">>zh<<" UpperCAmelCase__ : List[Any] = "Helsinki-NLP/" if is_torch_available(): UpperCAmelCase__ : Tuple = "pt" elif is_tf_available(): UpperCAmelCase__ : Union[str, Any] = "tf" else: UpperCAmelCase__ : Optional[Any] = "jax" @require_sentencepiece class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Any = MarianTokenizer snake_case__ :Any = False snake_case__ :Optional[int] = True def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" super().setUp() lowerCAmelCase__ = ["</s>", "<unk>", "โ–This", "โ–is", "โ–a", "โ–t", "est", "\u0120", "<pad>"] lowerCAmelCase__ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) lowerCAmelCase__ = Path(self.tmpdirname ) save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["vocab"] ) save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["source_spm"] ) copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["target_spm"] ) lowerCAmelCase__ = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : str , **__magic_name__ : Optional[int] ): """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Union[str, Any] ): """simple docstring""" return ( "This is a test", "This is a test", ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = "</s>" lowerCAmelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(__magic_name__ ) , 9 ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = MarianTokenizer.from_pretrained(f"""{ORG_NAME}opus-mt-en-de""" ) lowerCAmelCase__ = en_de_tokenizer(["I am a small frog"] , return_tensors=__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = [38, 121, 14, 697, 38848, 0] self.assertListEqual(__magic_name__ , batch.input_ids[0] ) lowerCAmelCase__ = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(__magic_name__ ) lowerCAmelCase__ = [x.name for x in Path(__magic_name__ ).glob("*" )] self.assertIn("source.spm" , __magic_name__ ) MarianTokenizer.from_pretrained(__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = tok( ["I am a small frog" * 1000, "I am a small frog"] , padding=__magic_name__ , truncation=__magic_name__ , return_tensors=__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = tok(["I am a tiny frog", "I am a small frog"] , padding=__magic_name__ , return_tensors=__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = {"input_ids": [[43495, 462, 20, 42164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 38999, 6, 8, 464, 132, 1703, 492, 13, 4669, 37867, 13, 7525, 27, 1593, 988, 13, 33972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 12338, 2, 13958, 387, 2, 3629, 6953, 188, 2900, 2, 13958, 8011, 11501, 23, 8460, 4073, 34009, 20, 435, 11439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 37867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 26453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10767, 6, 316, 304, 4239, 3, 0], [148, 15722, 19, 1839, 12, 1350, 13, 22327, 5082, 5418, 47567, 35938, 59, 318, 19552, 108, 2183, 54, 14976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 19088, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100], [36, 6395, 12570, 39147, 11597, 6, 266, 4, 45405, 7296, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="Helsinki-NLP/opus-mt-en-de" , revision="1a8c2263da11e68e50938f97e10cd57820bd504c" , decode_kwargs={"use_source_tokenizer": True} , ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" ) lowerCAmelCase__ = "Tรคmรค on testi" lowerCAmelCase__ = "This is a test" lowerCAmelCase__ = [76, 7, 2047, 2] lowerCAmelCase__ = [69, 12, 11, 940, 2] lowerCAmelCase__ = tokenizer(__magic_name__ ).input_ids self.assertListEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = tokenizer(text_target=__magic_name__ ).input_ids self.assertListEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ )
48
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase__ = 0 if start < end: lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = a[end] lowerCAmelCase__ = a[pivot] lowerCAmelCase__ = temp lowerCAmelCase__ ,lowerCAmelCase__ = _in_place_partition(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) count += _in_place_quick_sort(UpperCamelCase_ , UpperCamelCase_ , p - 1 ) count += _in_place_quick_sort(UpperCamelCase_ , p + 1 , UpperCamelCase_ ) return count def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any ) -> Dict: '''simple docstring''' lowerCAmelCase__ = 0 lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = a[end] lowerCAmelCase__ = a[pivot] lowerCAmelCase__ = temp lowerCAmelCase__ = start - 1 for index in range(UpperCamelCase_ , UpperCamelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCAmelCase__ = new_pivot_index + 1 lowerCAmelCase__ = a[new_pivot_index] lowerCAmelCase__ = a[index] lowerCAmelCase__ = temp lowerCAmelCase__ = a[new_pivot_index + 1] lowerCAmelCase__ = a[end] lowerCAmelCase__ = temp return new_pivot_index + 1, count UpperCAmelCase__ : Tuple = TemporaryFile() UpperCAmelCase__ : List[str] = 1_00 # 1000 elements are to be sorted UpperCAmelCase__ , UpperCAmelCase__ : Dict = 0, 1 # mean and standard deviation UpperCAmelCase__ : Tuple = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase__ : Optional[Any] = np.load(outfile) UpperCAmelCase__ : Any = len(M) - 1 UpperCAmelCase__ : Tuple = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
48
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : List[str] = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Any = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys _a : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
702
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _a : str = logging.get_logger(__name__) _a : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _a : Optional[Any] = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _a : Union[str, Any] = { 'yjernite/retribert-base-uncased': 512, } _a : Tuple = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class a_ ( a ): A__ : List[str] = VOCAB_FILES_NAMES A__ : Any = PRETRAINED_VOCAB_FILES_MAP A__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Any = PRETRAINED_INIT_CONFIGURATION A__ : Optional[Any] = RetriBertTokenizer A__ : Any = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Dict="[UNK]" , UpperCAmelCase__ : str="[SEP]" , UpperCAmelCase__ : Union[str, Any]="[PAD]" , UpperCAmelCase__ : Dict="[CLS]" , UpperCAmelCase__ : Optional[Any]="[MASK]" , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Optional[int]=None , **UpperCAmelCase__ : Dict , ): """simple docstring""" super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , ) snake_case : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCAmelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCAmelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCAmelCase__ ) != tokenize_chinese_chars ): snake_case : int = getattr(UpperCAmelCase__ , normalizer_state.pop('''type''' ) ) snake_case : List[Any] = do_lower_case snake_case : Union[str, Any] = strip_accents snake_case : int = tokenize_chinese_chars snake_case : int = normalizer_class(**UpperCAmelCase__ ) snake_case : Union[str, Any] = do_lower_case def lowerCAmelCase( self : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any]=None ): """simple docstring""" snake_case : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase( self : Optional[Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" snake_case : List[Any] = [self.sep_token_id] snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ): """simple docstring""" snake_case : Tuple = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
84
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __UpperCAmelCase = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
90
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def _snake_case ( A , A , A ) -> Union[str, Any]: lowerCAmelCase__ = OmegaConf.load(A ) lowerCAmelCase__ = torch.load(A , map_location='''cpu''' )['''model'''] lowerCAmelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCAmelCase__ = {} lowerCAmelCase__ = '''first_stage_model.''' for key in keys: if key.startswith(A ): lowerCAmelCase__ = state_dict[key] # extract state_dict for UNetLDM lowerCAmelCase__ = {} lowerCAmelCase__ = '''model.diffusion_model.''' for key in keys: if key.startswith(A ): lowerCAmelCase__ = state_dict[key] lowerCAmelCase__ = config.model.params.first_stage_config.params lowerCAmelCase__ = config.model.params.unet_config.params lowerCAmelCase__ = VQModel(**A ).eval() vqvae.load_state_dict(A ) lowerCAmelCase__ = UNetLDMModel(**A ).eval() unet.load_state_dict(A ) lowerCAmelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=A , ) lowerCAmelCase__ = LDMPipeline(A , A , A ) pipeline.save_pretrained(A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) __UpperCAmelCase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
90
1
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa UpperCAmelCase_ : Union[str, Any] = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Tuple = """summarization""" snake_case__ : Tuple = ["""loss"""] snake_case__ : int = ROUGE_KEYS snake_case__ : int = """rouge2""" def __init__( self : Tuple , __lowerCamelCase : List[str] , **__lowerCamelCase : List[str] ): if hparams.sortish_sampler and hparams.gpus > 1: UpperCamelCase :Optional[int] = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(__lowerCamelCase , num_labels=__lowerCamelCase , mode=self.mode , **__lowerCamelCase ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) UpperCamelCase :str = Path(self.output_dir ) / """metrics.json""" UpperCamelCase :Dict = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) UpperCamelCase :List[str] = 0 UpperCamelCase :Dict = defaultdict(__lowerCamelCase ) UpperCamelCase :Optional[Any] = self.config.model_type UpperCamelCase :List[str] = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size UpperCamelCase :dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } UpperCamelCase :List[str] = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } UpperCamelCase :int = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} UpperCamelCase :Dict = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F"""target_lens: {self.target_lens}""" assert self.target_lens["train"] <= self.target_lens["test"], F"""target_lens: {self.target_lens}""" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) UpperCamelCase :Optional[Any] = get_git_info()["""repo_sha"""] UpperCamelCase :List[str] = hparams.num_workers UpperCamelCase :Tuple = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , __lowerCamelCase ): UpperCamelCase :Optional[int] = self.tokenizer.lang_code_to_id[hparams.tgt_lang] UpperCamelCase :Union[str, Any] = self.decoder_start_token_id UpperCamelCase :int = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) UpperCamelCase :Union[str, Any] = False UpperCamelCase :Tuple = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: UpperCamelCase :int = self.hparams.eval_max_gen_length else: UpperCamelCase :Dict = self.model.config.max_length UpperCamelCase :Optional[Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _A ( self : List[Any] , __lowerCamelCase : Dict[str, torch.Tensor] ): UpperCamelCase :List[Any] = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(__lowerCamelCase , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) UpperCamelCase :Dict = True return readable_batch def _A ( self : Union[str, Any] , __lowerCamelCase : Tuple , **__lowerCamelCase : List[str] ): return self.model(__lowerCamelCase , **__lowerCamelCase ) def _A ( self : List[Any] , __lowerCamelCase : List[int] ): UpperCamelCase :Optional[Any] = self.tokenizer.batch_decode( __lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) return lmap(str.strip , __lowerCamelCase ) def _A ( self : List[Any] , __lowerCamelCase : dict ): UpperCamelCase :Any = self.tokenizer.pad_token_id UpperCamelCase :Dict = batch["""input_ids"""], batch["""attention_mask"""] UpperCamelCase :int = batch["""labels"""] if isinstance(self.model , __lowerCamelCase ): UpperCamelCase :List[str] = self.model._shift_right(__lowerCamelCase ) else: UpperCamelCase :Optional[int] = shift_tokens_right(__lowerCamelCase , __lowerCamelCase ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero UpperCamelCase :Any = decoder_input_ids self.save_readable_batch(__lowerCamelCase ) UpperCamelCase :int = self(__lowerCamelCase , attention_mask=__lowerCamelCase , decoder_input_ids=__lowerCamelCase , use_cache=__lowerCamelCase ) UpperCamelCase :Any = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id UpperCamelCase :Dict = nn.CrossEntropyLoss(ignore_index=__lowerCamelCase ) assert lm_logits.shape[-1] == self.vocab_size UpperCamelCase :Any = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: UpperCamelCase :Optional[int] = nn.functional.log_softmax(__lowerCamelCase , dim=-1 ) UpperCamelCase :str = label_smoothed_nll_loss( __lowerCamelCase , __lowerCamelCase , self.hparams.label_smoothing , ignore_index=__lowerCamelCase ) return (loss,) @property def _A ( self : List[str] ): return self.tokenizer.pad_token_id def _A ( self : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): UpperCamelCase :Optional[int] = self._step(__lowerCamelCase ) UpperCamelCase :Optional[int] = dict(zip(self.loss_names , __lowerCamelCase ) ) # tokens per batch UpperCamelCase :Dict = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() UpperCamelCase :Optional[Any] = batch["""input_ids"""].shape[0] UpperCamelCase :Union[str, Any] = batch["""input_ids"""].eq(self.pad ).sum() UpperCamelCase :int = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _A ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Dict ): return self._generative_step(__lowerCamelCase ) def _A ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict="val" ): self.step_count += 1 UpperCamelCase :Any = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} UpperCamelCase :List[str] = losses["""loss"""] UpperCamelCase :Optional[int] = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } UpperCamelCase :List[Any] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) UpperCamelCase :torch.FloatTensor = torch.tensor(__lowerCamelCase ).type_as(__lowerCamelCase ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(__lowerCamelCase ) UpperCamelCase :Optional[Any] = {F"""{prefix}_avg_{k}""": x for k, x in losses.items()} UpperCamelCase :Tuple = self.step_count self.metrics[prefix].append(__lowerCamelCase ) # callback writes this to self.metrics_save_path UpperCamelCase :List[str] = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F"""{prefix}_loss""": loss, F"""{prefix}_{self.val_metric}""": metric_tensor, } def _A ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] ): return calculate_rouge(__lowerCamelCase , __lowerCamelCase ) def _A ( self : int , __lowerCamelCase : dict ): UpperCamelCase :Tuple = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') UpperCamelCase :Any = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=__lowerCamelCase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) UpperCamelCase :Dict = (time.time() - ta) / batch["""input_ids"""].shape[0] UpperCamelCase :List[str] = self.ids_to_clean_text(__lowerCamelCase ) UpperCamelCase :List[str] = self.ids_to_clean_text(batch["""labels"""] ) UpperCamelCase :List[str] = self._step(__lowerCamelCase ) UpperCamelCase :List[str] = dict(zip(self.loss_names , __lowerCamelCase ) ) UpperCamelCase :Dict = self.calc_generative_metrics(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = np.mean(lmap(__lowerCamelCase , __lowerCamelCase ) ) base_metrics.update(gen_time=__lowerCamelCase , gen_len=__lowerCamelCase , preds=__lowerCamelCase , target=__lowerCamelCase , **__lowerCamelCase ) return base_metrics def _A ( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : str ): return self._generative_step(__lowerCamelCase ) def _A ( self : Optional[int] , __lowerCamelCase : Dict ): return self.validation_epoch_end(__lowerCamelCase , prefix="""test""" ) def _A ( self : Optional[int] , __lowerCamelCase : Any ): UpperCamelCase :List[Any] = self.n_obs[type_path] UpperCamelCase :int = self.target_lens[type_path] UpperCamelCase :Union[str, Any] = self.dataset_class( self.tokenizer , type_path=__lowerCamelCase , n_obs=__lowerCamelCase , max_target_length=__lowerCamelCase , **self.dataset_kwargs , ) return dataset def _A ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : bool = False ): UpperCamelCase :Optional[int] = self.get_dataset(__lowerCamelCase ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": UpperCamelCase :str = dataset.make_sortish_sampler(__lowerCamelCase , distributed=self.hparams.gpus > 1 ) return DataLoader( __lowerCamelCase , batch_size=__lowerCamelCase , collate_fn=dataset.collate_fn , shuffle=__lowerCamelCase , num_workers=self.num_workers , sampler=__lowerCamelCase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": UpperCamelCase :Dict = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( __lowerCamelCase , batch_sampler=__lowerCamelCase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( __lowerCamelCase , batch_size=__lowerCamelCase , collate_fn=dataset.collate_fn , shuffle=__lowerCamelCase , num_workers=self.num_workers , sampler=__lowerCamelCase , ) def _A ( self : Any ): UpperCamelCase :int = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=__lowerCamelCase ) return dataloader def _A ( self : Any ): return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def _A ( self : Any ): return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def _A ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : int ): BaseTransformer.add_model_specific_args(__lowerCamelCase , __lowerCamelCase ) add_generic_args(__lowerCamelCase , __lowerCamelCase ) parser.add_argument( """--max_source_length""" , default=1_024 , type=__lowerCamelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=__lowerCamelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=142 , type=__lowerCamelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=142 , type=__lowerCamelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=__lowerCamelCase ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=__lowerCamelCase ) parser.add_argument("""--max_tokens_per_batch""" , type=__lowerCamelCase , default=__lowerCamelCase ) parser.add_argument("""--logger_name""" , type=__lowerCamelCase , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=__lowerCamelCase , default=-1 , required=__lowerCamelCase , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=__lowerCamelCase , default=500 , required=__lowerCamelCase , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=__lowerCamelCase , default=-1 , required=__lowerCamelCase , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=__lowerCamelCase , default="""summarization""" , required=__lowerCamelCase , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=__lowerCamelCase , default=0.0 , required=__lowerCamelCase ) parser.add_argument("""--src_lang""" , type=__lowerCamelCase , default="""""" , required=__lowerCamelCase ) parser.add_argument("""--tgt_lang""" , type=__lowerCamelCase , default="""""" , required=__lowerCamelCase ) parser.add_argument("""--eval_beams""" , type=__lowerCamelCase , default=__lowerCamelCase , required=__lowerCamelCase ) parser.add_argument( """--val_metric""" , type=__lowerCamelCase , default=__lowerCamelCase , required=__lowerCamelCase , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=__lowerCamelCase , default=__lowerCamelCase , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=__lowerCamelCase , default=1 , required=__lowerCamelCase , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=__lowerCamelCase , default=-1 , required=__lowerCamelCase , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Union[str, Any] = """translation""" snake_case__ : str = ["""loss"""] snake_case__ : Any = ["""bleu"""] snake_case__ : List[Any] = """bleu""" def __init__( self : List[str] , __lowerCamelCase : Tuple , **__lowerCamelCase : Tuple ): super().__init__(__lowerCamelCase , **__lowerCamelCase ) UpperCamelCase :Dict = hparams.src_lang UpperCamelCase :List[Any] = hparams.tgt_lang def _A ( self : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): return calculate_bleu(__lowerCamelCase , __lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str , __magic_name__ : Tuple=None ) -> SummarizationModule: """simple docstring""" Path(args.output_dir ).mkdir(exist_ok=__magic_name__ ) check_output_dir(__magic_name__ , expected_items=3 ) if model is None: if "summarization" in args.task: UpperCamelCase :SummarizationModule = SummarizationModule(__magic_name__ ) else: UpperCamelCase :SummarizationModule = TranslationModule(__magic_name__ ) UpperCamelCase :Tuple = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): UpperCamelCase :Optional[int] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger UpperCamelCase :List[Any] = os.environ.get("""WANDB_PROJECT""" , __magic_name__ ) UpperCamelCase :Any = WandbLogger(name=model.output_dir.name , project=__magic_name__ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger UpperCamelCase :Union[str, Any] = WandbLogger(name=model.output_dir.name , project=f"""hf_{dataset}""" ) if args.early_stopping_patience >= 0: UpperCamelCase :Tuple = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: UpperCamelCase :str = False UpperCamelCase :List[str] = args.val_metric == """loss""" UpperCamelCase :pl.Trainer = generic_train( __magic_name__ , __magic_name__ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , __magic_name__ ) , early_stopping_callback=__magic_name__ , logger=__magic_name__ , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model UpperCamelCase :Optional[int] = """""" UpperCamelCase :Dict = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=__magic_name__ ) ) if checkpoints: UpperCamelCase :Union[str, Any] = checkpoints[-1] UpperCamelCase :Optional[int] = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() UpperCAmelCase_ : Optional[int] = pl.Trainer.add_argparse_args(parser) UpperCAmelCase_ : List[Any] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) UpperCAmelCase_ : Dict = parser.parse_args() main(args)
702
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Any = """trocr""" snake_case__ : str = ["""past_key_values"""] snake_case__ : str = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self : List[str] , __lowerCamelCase : int=50_265 , __lowerCamelCase : Tuple=1_024 , __lowerCamelCase : Dict=12 , __lowerCamelCase : Tuple=16 , __lowerCamelCase : int=4_096 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : Any=0.0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : str=0.0 , __lowerCamelCase : Any=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : int=True , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : List[str]=0 , __lowerCamelCase : int=2 , **__lowerCamelCase : Dict , ): UpperCamelCase :Optional[Any] = vocab_size UpperCamelCase :str = d_model UpperCamelCase :Dict = decoder_layers UpperCamelCase :Tuple = decoder_attention_heads UpperCamelCase :Tuple = decoder_ffn_dim UpperCamelCase :List[Any] = activation_function UpperCamelCase :Dict = max_position_embeddings UpperCamelCase :Optional[Any] = dropout UpperCamelCase :List[str] = attention_dropout UpperCamelCase :int = activation_dropout UpperCamelCase :List[str] = init_std UpperCamelCase :int = decoder_layerdrop UpperCamelCase :List[Any] = use_cache UpperCamelCase :Optional[Any] = scale_embedding UpperCamelCase :Any = use_learned_position_embeddings UpperCamelCase :Tuple = layernorm_embedding super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , )
590
0
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __snake_case ( lowerCamelCase_ : int , lowerCamelCase_ : bool = True , lowerCamelCase_ : float = math.inf , lowerCamelCase_ : float = -math.inf , lowerCamelCase_ : float = math.inf , lowerCamelCase_ : float = -math.inf , lowerCamelCase_ : bool = False , lowerCamelCase_ : float = 100 , lowerCamelCase_ : float = 0.01 , lowerCamelCase_ : float = 1 , ): '''simple docstring''' __magic_name__ = False __magic_name__ = search_prob __magic_name__ = start_temperate __magic_name__ = [] __magic_name__ = 0 __magic_name__ = None while not search_end: __magic_name__ = current_state.score() if best_state is None or current_score > best_state.score(): __magic_name__ = current_state scores.append(lowerCamelCase_ ) iterations += 1 __magic_name__ = None __magic_name__ = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __magic_name__ = random.randint(0 , len(lowerCamelCase_ ) - 1 ) # picking a random neighbor __magic_name__ = neighbors.pop(lowerCamelCase_ ) __magic_name__ = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __magic_name__ = change * -1 # in case we are finding minimum if change > 0: # improves the solution __magic_name__ = picked_neighbor else: __magic_name__ = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __magic_name__ = picked_neighbor __magic_name__ = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __magic_name__ = True else: __magic_name__ = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCamelCase_ ) , lowerCamelCase_ ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def __snake_case ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) __magic_name__ : Union[str, Any] =SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __magic_name__ : int =simulated_annealing( prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) __magic_name__ : List[Any] =SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __magic_name__ : int =simulated_annealing( prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __snake_case ( lowerCamelCase_ : int , lowerCamelCase_ : List[str] ): '''simple docstring''' return (3 * x**2) - (6 * y) __magic_name__ : int =SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __magic_name__ : List[Any] =simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F'''{local_min.score()}''' ) __magic_name__ : int =SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __magic_name__ : int =simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F'''{local_min.score()}''' )
664
'''simple docstring''' import torch from transformers import AutoModel class UpperCamelCase_ ( torch.nn.Module ): """simple docstring""" def __init__( self : Any , _lowerCamelCase : Optional[int]="sayef/fsner-bert-base-uncased" ) -> List[Any]: super(_lowerCamelCase , self ).__init__() __magic_name__ = AutoModel.from_pretrained(_lowerCamelCase , return_dict=_lowerCamelCase ) __magic_name__ = torch.nn.CosineSimilarity(3 , 1e-08 ) __magic_name__ = torch.nn.Softmax(dim=1 ) def __A ( self : Tuple , **_lowerCamelCase : Union[str, Any] ) -> Optional[int]: return self.bert(**_lowerCamelCase ).last_hidden_state def __A ( self : Dict , _lowerCamelCase : Dict ) -> Dict: return token_embeddings.sum(2 , keepdim=_lowerCamelCase ) def __A ( self : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : str , _lowerCamelCase : Tuple=1 ) -> Optional[Any]: return self.softmax(T * self.cos(_lowerCamelCase , _lowerCamelCase ) ) def __A ( self : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] ) -> List[str]: __magic_name__ = W_supports["sizes"].tolist() __magic_name__ = W_supports["start_token_id"].item() __magic_name__ = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __magic_name__ = self.BERT(**_lowerCamelCase ) __magic_name__ = self.BERT(**_lowerCamelCase ) __magic_name__ = None __magic_name__ = None __magic_name__ = W_supports["input_ids"] == start_token_id __magic_name__ = W_supports["input_ids"] == end_token_id for i, size in enumerate(_lowerCamelCase ): if i == 0: __magic_name__ = 0 else: __magic_name__ = support_sizes[i - 1] __magic_name__ = S[s : s + size][start_token_masks[s : s + size]] __magic_name__ = S[s : s + size][end_token_masks[s : s + size]] __magic_name__ = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) __magic_name__ = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __magic_name__ = torch.vstack((p_starts, p_start) ) __magic_name__ = torch.vstack((p_ends, p_end) ) else: __magic_name__ = p_start __magic_name__ = p_end return p_starts, p_ends
664
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase : List[Any] = { '''configuration_conditional_detr''': [ '''CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConditionalDetrConfig''', '''ConditionalDetrOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = ['''ConditionalDetrFeatureExtractor'''] __lowerCAmelCase : Optional[Any] = ['''ConditionalDetrImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ '''CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConditionalDetrForObjectDetection''', '''ConditionalDetrForSegmentation''', '''ConditionalDetrModel''', '''ConditionalDetrPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
709
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
21
0
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase : List[str] = Dict[str, Any] lowerCAmelCase : int = List[Prediction] @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' super().__init__(*snake_case__ , **snake_case__ ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def a ( self , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} if "threshold" in kwargs: _lowerCAmelCase : Union[str, Any] = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' return super().__call__(*snake_case__ , **snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = load_image(snake_case__ ) _lowerCAmelCase : List[Any] = torch.IntTensor([[image.height, image.width]] ) _lowerCAmelCase : str = self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: _lowerCAmelCase : Optional[int] = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) _lowerCAmelCase : List[str] = target_size return inputs def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = model_inputs.pop('target_size' ) _lowerCAmelCase : int = self.model(**snake_case__ ) _lowerCAmelCase : Dict = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: _lowerCAmelCase : int = model_inputs['bbox'] return model_outputs def a ( self , snake_case__ , snake_case__=0.9 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = target_size[0].tolist() def unnormalize(snake_case__ ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) _lowerCAmelCase , _lowerCAmelCase : List[str] = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) _lowerCAmelCase : List[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] _lowerCAmelCase : int = [unnormalize(snake_case__ ) for bbox in model_outputs['bbox'].squeeze(0 )] _lowerCAmelCase : List[str] = ['score', 'label', 'box'] _lowerCAmelCase : int = [dict(zip(snake_case__ , snake_case__ ) ) for vals in zip(scores.tolist() , snake_case__ , snake_case__ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel _lowerCAmelCase : int = self.image_processor.post_process_object_detection(snake_case__ , snake_case__ , snake_case__ ) _lowerCAmelCase : Union[str, Any] = raw_annotations[0] _lowerCAmelCase : Dict = raw_annotation['scores'] _lowerCAmelCase : Optional[int] = raw_annotation['labels'] _lowerCAmelCase : int = raw_annotation['boxes'] _lowerCAmelCase : List[Any] = scores.tolist() _lowerCAmelCase : Optional[int] = [self.model.config.idalabel[label.item()] for label in labels] _lowerCAmelCase : Optional[Any] = [self._get_bounding_box(snake_case__ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] _lowerCAmelCase : Optional[int] = ['score', 'label', 'box'] _lowerCAmelCase : List[Any] = [ dict(zip(snake_case__ , snake_case__ ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def a ( self , snake_case__ ): '''simple docstring''' if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = box.int().tolist() _lowerCAmelCase : Optional[Any] = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
444
'''simple docstring''' from __future__ import annotations from math import gcd def lowercase (_A , _A = 2 , _A = 1 , _A = 3 , ): """simple docstring""" if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(_A , _A , _A ) -> int: return (pow(_A , 2 ) + step) % modulus for _ in range(_A ): # These track the position within the cycle detection logic. _lowerCAmelCase : Dict = seed _lowerCAmelCase : int = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. _lowerCAmelCase : str = rand_fn(_A , _A , _A ) _lowerCAmelCase : Optional[int] = rand_fn(_A , _A , _A ) _lowerCAmelCase : Union[str, Any] = rand_fn(_A , _A , _A ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. _lowerCAmelCase : Optional[int] = gcd(hare - tortoise , _A ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. _lowerCAmelCase : Tuple = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """num""", type=int, help="""The value to find a divisor of""", ) parser.add_argument( """--attempts""", type=int, default=3, help="""The number of attempts before giving up""", ) lowerCAmelCase : List[str] = parser.parse_args() lowerCAmelCase : List[str] = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F'''{args.num} is probably prime''') else: lowerCAmelCase : Union[str, Any] = args.num // divisor print(F'''{args.num} = {divisor} * {quotient}''')
444
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) class a ( a_ ): def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
134
"""simple docstring""" import math import unittest def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class a ( unittest.TestCase ): def UpperCamelCase_ ( self ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(1_1 ) ) self.assertTrue(is_prime(1_3 ) ) self.assertTrue(is_prime(1_7 ) ) self.assertTrue(is_prime(1_9 ) ) self.assertTrue(is_prime(2_3 ) ) self.assertTrue(is_prime(2_9 ) ) def UpperCamelCase_ ( self ): with self.assertRaises(_lowerCamelCase ): is_prime(-1_9 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
134
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : int = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Any = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
670
from manim import * class lowercase_ ( __snake_case ): def UpperCamelCase ( self ): _snake_case : Tuple = Rectangle(height=0.5 , width=0.5 ) _snake_case : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _snake_case : List[str] = [mem.copy() for i in range(6 )] _snake_case : Any = [mem.copy() for i in range(6 )] _snake_case : Any = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Any = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : str = VGroup(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : int = Text("CPU" , font_size=24 ) _snake_case : str = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase_ ) _snake_case : int = [mem.copy() for i in range(4 )] _snake_case : Dict = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : str = Text("GPU" , font_size=24 ) _snake_case : Optional[int] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase_ ) _snake_case : Any = [mem.copy() for i in range(6 )] _snake_case : Any = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Dict = Text("Model" , font_size=24 ) _snake_case : Dict = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) model.move_to([3, -1.0, 0] ) self.add(lowercase_ ) _snake_case : str = [] for i, rect in enumerate(lowercase_ ): rect.set_stroke(lowercase_ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _snake_case : Union[str, Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0 ) self.add(lowercase_ ) cpu_targs.append(lowercase_ ) _snake_case : List[Any] = [mem.copy() for i in range(6 )] _snake_case : Union[str, Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Optional[Any] = Text("Loaded Checkpoint" , font_size=24 ) _snake_case : Union[str, Any] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _snake_case : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _snake_case : Optional[Any] = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>โ—</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase_ , lowercase_ ) _snake_case : Union[str, Any] = MarkupText( f"""<span fgcolor='{BLUE}'>โ—</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _snake_case : List[Any] = MarkupText( f"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_ ) , Write(lowercase_ ) ) self.play(Write(lowercase_ , run_time=1 ) , Create(lowercase_ , run_time=1 ) ) _snake_case : int = [] _snake_case : str = [] for i, rect in enumerate(lowercase_ ): _snake_case : Dict = fill.copy().set_fill(lowercase_ , opacity=0.7 ) target.move_to(lowercase_ ) first_animations.append(GrowFromCenter(lowercase_ , run_time=1 ) ) _snake_case : Dict = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5 ) ) self.play(*lowercase_ ) self.play(*lowercase_ ) self.wait()
670
1
from typing import List import numpy as np def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : List[Any] = {key: len(SCREAMING_SNAKE_CASE__ ) for key, value in gen_kwargs.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( 'Sharding is ambiguous for this dataset: ' + 'we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n' + '\n'.join(f'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ' + 'and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.' ) ) __lowerCamelCase : str = max(lists_lengths.values() , default=0 ) return max(1 , SCREAMING_SNAKE_CASE__ ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : List[Any] = [] for group_idx in range(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Tuple = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break __lowerCamelCase : Tuple = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 __lowerCamelCase : int = range(SCREAMING_SNAKE_CASE__ , start + num_shards_to_add ) shards_indices_per_group.append(SCREAMING_SNAKE_CASE__ ) return shards_indices_per_group def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : str = _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE__ ) if num_shards == 1: return [dict(SCREAMING_SNAKE_CASE__ )] else: __lowerCamelCase : List[str] = _distribute_shards(num_shards=SCREAMING_SNAKE_CASE__ , max_num_jobs=SCREAMING_SNAKE_CASE__ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(SCREAMING_SNAKE_CASE__ ) ) ] def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , SCREAMING_SNAKE_CASE__ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : List[Any] = {len(SCREAMING_SNAKE_CASE__ ) for value in gen_kwargs.values() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} __lowerCamelCase : Union[str, Any] = {} for size in list_sizes: __lowerCamelCase : Dict = list(range(SCREAMING_SNAKE_CASE__ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes __lowerCamelCase : List[str] = dict(SCREAMING_SNAKE_CASE__ ) for key, value in shuffled_kwargs.items(): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Tuple = [value[i] for i in indices_per_size[len(SCREAMING_SNAKE_CASE__ )]] return shuffled_kwargs
230
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging lowercase_ = logging.get_logger(__name__) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Union[str, Any] = nn.functional.normalize(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Tuple = nn.functional.normalize(SCREAMING_SNAKE_CASE__ ) return torch.mm(SCREAMING_SNAKE_CASE__ , normalized_text_embeds.t() ) class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = CLIPConfig __snake_case = ["""CLIPEncoderLayer"""] def __init__( self: List[Any] , a: CLIPConfig ): super().__init__(a ) __lowerCamelCase : List[str] = CLIPVisionModel(config.vision_config ) __lowerCamelCase : Union[str, Any] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=a ) __lowerCamelCase : Any = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=a ) __lowerCamelCase : List[str] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=a ) __lowerCamelCase : Any = nn.Parameter(torch.ones(17 ) , requires_grad=a ) __lowerCamelCase : Any = nn.Parameter(torch.ones(3 ) , requires_grad=a ) @torch.no_grad() def _snake_case ( self: Any , a: List[Any] , a: Union[str, Any] ): __lowerCamelCase : Optional[Any] = self.vision_model(a )[1] # pooled_output __lowerCamelCase : Dict = self.visual_projection(a ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowerCamelCase : int = cosine_distance(a , self.special_care_embeds ).cpu().float().numpy() __lowerCamelCase : Optional[int] = cosine_distance(a , self.concept_embeds ).cpu().float().numpy() __lowerCamelCase : List[str] = [] __lowerCamelCase : Tuple = image_embeds.shape[0] for i in range(a ): __lowerCamelCase : int = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images __lowerCamelCase : int = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): __lowerCamelCase : List[Any] = special_cos_dist[i][concept_idx] __lowerCamelCase : str = self.special_care_embeds_weights[concept_idx].item() __lowerCamelCase : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) __lowerCamelCase : Optional[Any] = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): __lowerCamelCase : Optional[Any] = cos_dist[i][concept_idx] __lowerCamelCase : Union[str, Any] = self.concept_embeds_weights[concept_idx].item() __lowerCamelCase : Any = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(a ) result.append(a ) __lowerCamelCase : Tuple = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _snake_case ( self: str , a: torch.FloatTensor , a: torch.FloatTensor ): __lowerCamelCase : Optional[int] = self.vision_model(a )[1] # pooled_output __lowerCamelCase : str = self.visual_projection(a ) __lowerCamelCase : str = cosine_distance(a , self.special_care_embeds ) __lowerCamelCase : Dict = cosine_distance(a , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images __lowerCamelCase : List[str] = 0.0 __lowerCamelCase : Tuple = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) __lowerCamelCase : int = torch.any(special_scores > 0 , dim=1 ) __lowerCamelCase : List[str] = special_care * 0.0_1 __lowerCamelCase : str = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) __lowerCamelCase : Dict = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) __lowerCamelCase : Optional[Any] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
230
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class _snake_case ( lowerCamelCase_): UpperCamelCase__ : List[str] ="""layoutlmv3""" def __init__( self : Dict, __lowercase : Optional[Any]=5_0265, __lowercase : str=768, __lowercase : str=12, __lowercase : str=12, __lowercase : Union[str, Any]=3072, __lowercase : List[str]="gelu", __lowercase : Dict=0.1, __lowercase : List[Any]=0.1, __lowercase : Dict=512, __lowercase : Any=2, __lowercase : Optional[Any]=0.02, __lowercase : List[str]=1e-5, __lowercase : Dict=1, __lowercase : Optional[Any]=0, __lowercase : int=2, __lowercase : Union[str, Any]=1024, __lowercase : List[str]=128, __lowercase : Tuple=128, __lowercase : int=True, __lowercase : List[str]=32, __lowercase : Optional[int]=128, __lowercase : List[str]=64, __lowercase : Optional[Any]=256, __lowercase : List[Any]=True, __lowercase : str=True, __lowercase : Tuple=True, __lowercase : Any=224, __lowercase : List[Any]=3, __lowercase : Optional[Any]=16, __lowercase : List[str]=None, **__lowercase : Any, ): super().__init__( vocab_size=_UpperCamelCase, hidden_size=_UpperCamelCase, num_hidden_layers=_UpperCamelCase, num_attention_heads=_UpperCamelCase, intermediate_size=_UpperCamelCase, hidden_act=_UpperCamelCase, hidden_dropout_prob=_UpperCamelCase, attention_probs_dropout_prob=_UpperCamelCase, max_position_embeddings=_UpperCamelCase, type_vocab_size=_UpperCamelCase, initializer_range=_UpperCamelCase, layer_norm_eps=_UpperCamelCase, pad_token_id=_UpperCamelCase, bos_token_id=_UpperCamelCase, eos_token_id=_UpperCamelCase, **_UpperCamelCase, ) lowercase__ = max_ad_position_embeddings lowercase__ = coordinate_size lowercase__ = shape_size lowercase__ = has_relative_attention_bias lowercase__ = rel_pos_bins lowercase__ = max_rel_pos lowercase__ = has_spatial_attention_bias lowercase__ = rel_ad_pos_bins lowercase__ = max_rel_ad_pos lowercase__ = text_embed lowercase__ = visual_embed lowercase__ = input_size lowercase__ = num_channels lowercase__ = patch_size lowercase__ = classifier_dropout class _snake_case ( lowerCamelCase_): UpperCamelCase__ : Dict =version.parse("""1.12""") @property def A__ ( self : Optional[int] ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) else: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels"}), ] ) @property def A__ ( self : Optional[int] ): return 1e-5 @property def A__ ( self : Tuple ): return 12 def A__ ( self : Optional[Any], __lowercase : "ProcessorMixin", __lowercase : int = -1, __lowercase : int = -1, __lowercase : bool = False, __lowercase : Optional["TensorType"] = None, __lowercase : int = 3, __lowercase : int = 40, __lowercase : int = 40, ): setattr(processor.image_processor, "apply_ocr", _UpperCamelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase__ = compute_effective_axis_dimension( _UpperCamelCase, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase__ = processor.tokenizer.num_special_tokens_to_add(_UpperCamelCase ) lowercase__ = compute_effective_axis_dimension( _UpperCamelCase, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=_UpperCamelCase ) # Generate dummy inputs according to compute batch and sequence lowercase__ = [[" ".join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes lowercase__ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) lowercase__ = self._generate_dummy_images(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) lowercase__ = dict( processor( _UpperCamelCase, text=_UpperCamelCase, boxes=_UpperCamelCase, return_tensors=_UpperCamelCase, ) ) return inputs
413
import warnings from ..trainer import Trainer from ..utils import logging _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) class A ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : List[str] , _UpperCamelCase : int=None , **_UpperCamelCase : Optional[int]): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." , _UpperCamelCase , ) super().__init__(args=_UpperCamelCase , **_UpperCamelCase)
226
0
"""simple docstring""" import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 UpperCAmelCase : Optional[int] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') UpperCAmelCase : List[str] = get_tests_dir('fixtures/vocab.json') UpperCAmelCase : List[Any] = get_tests_dir('fixtures') class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" __a = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 0 def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Any = WavaVecaConfig() __UpperCAmelCase : Tuple = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) __UpperCAmelCase : int = AutoProcessor.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase , os.path.join(UpperCamelCase , UpperCamelCase ) ) copyfile(UpperCamelCase , os.path.join(UpperCamelCase , """vocab.json""" ) ) __UpperCAmelCase : Optional[Any] = AutoProcessor.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : List[str] = WavaVecaFeatureExtractor() __UpperCAmelCase : Any = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) __UpperCAmelCase : Optional[Any] = WavaVecaProcessor(UpperCamelCase , UpperCamelCase ) # save in new folder processor.save_pretrained(UpperCamelCase ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase , UpperCamelCase ) , """r""" ) as f: __UpperCAmelCase : Union[str, Any] = json.load(UpperCamelCase ) config_dict.pop("""processor_class""" ) with open(os.path.join(UpperCamelCase , UpperCamelCase ) , """w""" ) as f: f.write(json.dumps(UpperCamelCase ) ) __UpperCAmelCase : Dict = AutoProcessor.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Union[str, Any] = WavaVecaFeatureExtractor() __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) __UpperCAmelCase : List[Any] = WavaVecaProcessor(UpperCamelCase , UpperCamelCase ) # save in new folder processor.save_pretrained(UpperCamelCase ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase , UpperCamelCase ) , """r""" ) as f: __UpperCAmelCase : Union[str, Any] = json.load(UpperCamelCase ) config_dict.pop("""processor_class""" ) with open(os.path.join(UpperCamelCase , UpperCamelCase ) , """w""" ) as f: f.write(json.dumps(UpperCamelCase ) ) __UpperCAmelCase : str = AutoProcessor.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Any = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(UpperCamelCase ) # copy relevant files copyfile(UpperCamelCase , os.path.join(UpperCamelCase , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase , UpperCamelCase ) , """w""" ) as f: f.write("""{}""" ) __UpperCAmelCase : Optional[Any] = AutoProcessor.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' with self.assertRaises(UpperCamelCase ): __UpperCAmelCase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase ): __UpperCAmelCase : Optional[Any] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=UpperCamelCase ) __UpperCAmelCase : List[Any] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=UpperCamelCase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) __UpperCAmelCase : Any = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) __UpperCAmelCase : Any = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version __UpperCAmelCase : Optional[Any] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=UpperCamelCase , use_fast=UpperCamelCase ) __UpperCAmelCase : Dict = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' try: AutoConfig.register("""custom""" , UpperCamelCase ) AutoFeatureExtractor.register(UpperCamelCase , UpperCamelCase ) AutoTokenizer.register(UpperCamelCase , slow_tokenizer_class=UpperCamelCase ) AutoProcessor.register(UpperCamelCase , UpperCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase ): AutoProcessor.register(UpperCamelCase , UpperCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCAmelCase : List[str] = CustomFeatureExtractor.from_pretrained(UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase : Tuple = os.path.join(UpperCamelCase , """vocab.txt""" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) __UpperCAmelCase : str = CustomTokenizer(UpperCamelCase ) __UpperCAmelCase : str = CustomProcessor(UpperCamelCase , UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = AutoProcessor.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self : Dict ): '''simple docstring''' class lowerCamelCase__ ( A ): """simple docstring""" __a = False class lowerCamelCase__ ( A ): """simple docstring""" __a = False class lowerCamelCase__ ( A ): """simple docstring""" __a = """AutoFeatureExtractor""" __a = """AutoTokenizer""" __a = False try: AutoConfig.register("""custom""" , UpperCamelCase ) AutoFeatureExtractor.register(UpperCamelCase , UpperCamelCase ) AutoTokenizer.register(UpperCamelCase , slow_tokenizer_class=UpperCamelCase ) AutoProcessor.register(UpperCamelCase , UpperCamelCase ) # If remote code is not set, the default is to use local classes. __UpperCAmelCase : List[str] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. __UpperCAmelCase : str = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=UpperCamelCase ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. __UpperCAmelCase : int = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=UpperCamelCase ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Tuple = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" __a = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def lowerCamelCase__ ( cls : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def lowerCamelCase__ ( cls : Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase , """test-processor""" ) , push_to_hub=UpperCamelCase , use_auth_token=self._token ) __UpperCAmelCase : Optional[Any] = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase , getattr(new_processor.feature_extractor , UpperCamelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Tuple = WavaVecaProcessor.from_pretrained(UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase , """test-processor-org""" ) , push_to_hub=UpperCamelCase , use_auth_token=self._token , organization="""valid_org""" , ) __UpperCAmelCase : List[str] = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase , getattr(new_processor.feature_extractor , UpperCamelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() __UpperCAmelCase : str = CustomFeatureExtractor.from_pretrained(UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase : int = os.path.join(UpperCamelCase , """vocab.txt""" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) __UpperCAmelCase : Union[str, Any] = CustomTokenizer(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = CustomProcessor(UpperCamelCase , UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) __UpperCAmelCase : List[str] = Repository(UpperCamelCase , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(UpperCamelCase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase , """tokenizer_config.json""" ) ) as f: __UpperCAmelCase : str = json.load(UpperCamelCase ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase , """custom_processing.py""" ) ) ) repo.push_to_hub() __UpperCAmelCase : int = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
713
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase : int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') UpperCAmelCase : List[Any] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) UpperCAmelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def lowerCamelCase ( _UpperCamelCase : str ) -> str: '''simple docstring''' with open(_UpperCamelCase , """rb""" ) as f: __UpperCAmelCase : List[Any] = Image.open(_UpperCamelCase ) return im.convert("""RGB""" ) @dataclass class lowerCamelCase__ : """simple docstring""" __a = field( default=A , metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } , ) __a = field( default=A , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __a = field(default=A , metadata={"""help""": """A folder containing the training data."""} ) __a = field(default=A , metadata={"""help""": """A folder containing the validation data."""} ) __a = field( default=0.1_5 , metadata={"""help""": """Percent to split off of train for validation."""} ) __a = field( default=A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __a = field( default=A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( """You must specify either a dataset name from the hub or a train and/or validation directory.""" ) @dataclass class lowerCamelCase__ : """simple docstring""" __a = field( default="""google/vit-base-patch16-224-in21k""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) __a = field( default=A , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(A )} , ) __a = field( default=A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __a = field( default=A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) __a = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __a = field(default=A , metadata={"""help""": """Name or path of preprocessor config."""} ) __a = field( default=A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __a = field( default=A , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def lowerCamelCase ( _UpperCamelCase : str ) -> int: '''simple docstring''' __UpperCAmelCase : str = torch.stack([example["""pixel_values"""] for example in examples] ) __UpperCAmelCase : Optional[Any] = torch.tensor([example["""labels"""] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def lowerCamelCase ( ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_image_classification""" , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __UpperCAmelCase : int = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. __UpperCAmelCase : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCAmelCase : Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: __UpperCAmelCase : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="""image-classification""" , use_auth_token=True if model_args.use_auth_token else None , ) else: __UpperCAmelCase : Tuple = {} if data_args.train_dir is not None: __UpperCAmelCase : Optional[int] = os.path.join(data_args.train_dir , """**""" ) if data_args.validation_dir is not None: __UpperCAmelCase : Any = os.path.join(data_args.validation_dir , """**""" ) __UpperCAmelCase : Dict = load_dataset( """imagefolder""" , data_files=_UpperCamelCase , cache_dir=model_args.cache_dir , task="""image-classification""" , ) # If we don't have a validation split, split off a percentage of train as validation. __UpperCAmelCase : List[str] = None if """validation""" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _UpperCamelCase ) and data_args.train_val_split > 0.0: __UpperCAmelCase : Any = dataset["""train"""].train_test_split(data_args.train_val_split ) __UpperCAmelCase : Union[str, Any] = split["""train"""] __UpperCAmelCase : Optional[Any] = split["""test"""] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __UpperCAmelCase : Union[str, Any] = dataset["""train"""].features["""labels"""].names __UpperCAmelCase ,__UpperCAmelCase : Optional[int] = {}, {} for i, label in enumerate(_UpperCamelCase ): __UpperCAmelCase : Any = str(_UpperCamelCase ) __UpperCAmelCase : str = label # Load the accuracy metric from the datasets package __UpperCAmelCase : str = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Any ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) __UpperCAmelCase : Tuple = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel=_UpperCamelCase , finetuning_task="""image-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) __UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: __UpperCAmelCase : int = image_processor.size["""shortest_edge"""] else: __UpperCAmelCase : List[Any] = (image_processor.size["""height"""], image_processor.size["""width"""]) __UpperCAmelCase : List[Any] = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) __UpperCAmelCase : Any = Compose( [ RandomResizedCrop(_UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) __UpperCAmelCase : str = Compose( [ Resize(_UpperCamelCase ), CenterCrop(_UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(_UpperCamelCase : List[Any] ): __UpperCAmelCase : Optional[int] = [ _train_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""] ] return example_batch def val_transforms(_UpperCamelCase : Optional[int] ): __UpperCAmelCase : Dict = [_val_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: __UpperCAmelCase : str = ( dataset["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: __UpperCAmelCase : Dict = ( dataset["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_UpperCamelCase ) # Initalize our trainer __UpperCAmelCase : Any = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=dataset["""train"""] if training_args.do_train else None , eval_dataset=dataset["""validation"""] if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , ) # Training if training_args.do_train: __UpperCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: __UpperCAmelCase : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: __UpperCAmelCase : Dict = last_checkpoint __UpperCAmelCase : Union[str, Any] = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __UpperCAmelCase : Optional[int] = trainer.evaluate() trainer.log_metrics("""eval""" , _UpperCamelCase ) trainer.save_metrics("""eval""" , _UpperCamelCase ) # Write model card and (optionally) push to hub __UpperCAmelCase : Union[str, Any] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """image-classification""", """dataset""": data_args.dataset_name, """tags""": ["""image-classification""", """vision"""], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
299
0
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __a ( A__ : str , A__ : Any=10 ): SCREAMING_SNAKE_CASE = [] for _ in range(A__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __a ( A__ : List[Any] , A__ : Optional[Any]=10 ): SCREAMING_SNAKE_CASE = [] for step in range(A__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = os.path.join(A__ , "schedule.bin" ) torch.save(scheduler.state_dict() , A__ ) SCREAMING_SNAKE_CASE = torch.load(A__ ) scheduler.load_state_dict(A__ ) return lrs @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ): self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for a, b in zip(__lowerCamelCase , __lowerCamelCase ): self.assertAlmostEqual(__lowerCamelCase , __lowerCamelCase , delta=__lowerCamelCase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([0.4, 0.2, -0.5] ) SCREAMING_SNAKE_CASE = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): SCREAMING_SNAKE_CASE = criterion(__lowerCamelCase , __lowerCamelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([0.4, 0.2, -0.5] ) SCREAMING_SNAKE_CASE = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=__lowerCamelCase , weight_decay=0.0 , relative_step=__lowerCamelCase , scale_parameter=__lowerCamelCase , warmup_init=__lowerCamelCase , ) for _ in range(1000 ): SCREAMING_SNAKE_CASE = criterion(__lowerCamelCase , __lowerCamelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None lowerCamelCase__ = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None lowerCamelCase__ = 1_0 def _snake_case ( self : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any=None ): self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for a, b in zip(__lowerCamelCase , __lowerCamelCase ): self.assertAlmostEqual(__lowerCamelCase , __lowerCamelCase , delta=__lowerCamelCase , msg=__lowerCamelCase ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = data SCREAMING_SNAKE_CASE = scheduler_func(self.optimizer , **__lowerCamelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) SCREAMING_SNAKE_CASE = unwrap_schedule(__lowerCamelCase , self.num_steps ) self.assertListAlmostEqual( __lowerCamelCase , __lowerCamelCase , tol=1e-2 , msg=f"failed for {scheduler_func} in normal scheduler" , ) SCREAMING_SNAKE_CASE = scheduler_func(self.optimizer , **__lowerCamelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__lowerCamelCase ) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE = unwrap_and_save_reload_schedule(__lowerCamelCase , self.num_steps ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase , msg=f"failed for {scheduler_func} in save and reload" ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = fn def __call__( self : List[Any] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : List[Any] ): return self.fn(*__lowerCamelCase , **__lowerCamelCase ) @classmethod def _snake_case ( self : List[Any] , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = list(map(self , scheduler.lr_lambdas ) )
16
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. A = importlib.util.spec_from_file_location( 'transformers', os.path.join(PATH_TO_TRANSFORMERS, '__init__.py'), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A = spec.loader.load_module() A = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A = re.compile('\[(.+?)\]\((https://huggingface\.co/.+?)\)') A = { 'CLIPConfigMixin', 'DecisionTransformerConfigMixin', 'EncoderDecoderConfigMixin', 'RagConfigMixin', 'SpeechEncoderDecoderConfigMixin', 'VisionEncoderDecoderConfigMixin', 'VisionTextDualEncoderConfigMixin', } def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" snake_case : Union[str, Any] = [] for config_class in list(CONFIG_MAPPING.values() ): snake_case : List[str] = False # source code of `config_class` snake_case : Optional[int] = inspect.getsource(lowerCamelCase_ ) snake_case : Optional[int] = _re_checkpoint.findall(lowerCamelCase_ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` snake_case , snake_case : Tuple = checkpoint # verify the checkpoint name corresponds to the checkpoint link snake_case : Any = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: snake_case : List[str] = True break snake_case : Any = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: snake_case : List[str] = "\n".join(sorted(lowerCamelCase_ ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
449
0
from math import factorial def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ = 1_0_0 ): return sum(int(UpperCamelCase__ ) for x in str(factorial(UpperCamelCase__ ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
712
def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ = 5_0_0_0_0_0_0_0 ): UpperCamelCase__ : Any = set() UpperCamelCase__ : Any = int((limit - 2_4) ** (1 / 2) ) UpperCamelCase__ : Dict = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , UpperCamelCase__ ) ) ) for primea in primes: UpperCamelCase__ : Dict = primea * primea for primea in primes: UpperCamelCase__ : str = primea * primea * primea if square + cube >= limit - 1_6: break for primea in primes: UpperCamelCase__ : Dict = primea * primea * primea * primea UpperCamelCase__ : Tuple = square + cube + tetr if total >= limit: break ret.add(UpperCamelCase__ ) return len(UpperCamelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
462
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ : def __init__( self : List[str] , _A : Optional[Any] , _A : str=13 , _A : List[Any]=32 , _A : Tuple=3 , _A : Tuple=4 , _A : List[str]=[10, 20, 30, 40] , _A : Tuple=[2, 2, 3, 2] , _A : List[str]=True , _A : List[str]=True , _A : Optional[int]=37 , _A : Union[str, Any]="gelu" , _A : int=10 , _A : List[str]=0.0_2 , _A : Tuple=["stage2", "stage3", "stage4"] , _A : Dict=3 , _A : Dict=None , ): '''simple docstring''' UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : Dict = batch_size UpperCAmelCase__ : int = image_size UpperCAmelCase__ : int = num_channels UpperCAmelCase__ : int = num_stages UpperCAmelCase__ : List[Any] = hidden_sizes UpperCAmelCase__ : Dict = depths UpperCAmelCase__ : Optional[int] = is_training UpperCAmelCase__ : Tuple = use_labels UpperCAmelCase__ : Optional[Any] = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_act UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : Any = out_features UpperCAmelCase__ : Optional[Any] = num_labels UpperCAmelCase__ : Any = scope UpperCAmelCase__ : List[str] = num_stages def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : List[Any] = self.get_config() return config, pixel_values, labels def lowercase_ ( self : int ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase_ ( self : str ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_A , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_A , loss_ignore_index=255 , num_labels=self.num_labels , ) def lowercase_ ( self : Any , _A : int , _A : List[str] , _A : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = UperNetForSemanticSegmentation(config=_A ) model.to(_A ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(_A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase__ : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCAmelCase__ = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : int = UperNetModelTester(self ) UpperCAmelCase__ : Dict = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def lowercase_ ( self : Dict ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self : Dict ): '''simple docstring''' return def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class(_A ) UpperCAmelCase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Any = [*signature.parameters.keys()] UpperCAmelCase__ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_A ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def lowercase_ ( self : int ): '''simple docstring''' pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def lowercase_ ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''' ) def lowercase_ ( self : Dict ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' pass def lowercase_ ( self : Tuple ): '''simple docstring''' def check_hidden_states_output(_A : Any , _A : List[Any] , _A : Dict ): UpperCAmelCase__ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase__ : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase__ : List[str] = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[Any] = _config_zero_init(_A ) UpperCAmelCase__ : Dict = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[Any] = model_class(config=_A ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def lowercase_ ( self : List[Any] ): '''simple docstring''' pass @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Any = UperNetForSemanticSegmentation.from_pretrained(_A ) self.assertIsNotNone(_A ) def a__ ( ) -> Tuple: UpperCAmelCase__ : Optional[int] = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) UpperCAmelCase__ : Optional[Any] = Image.open(lowerCAmelCase__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) UpperCAmelCase__ : Any = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_A ) UpperCAmelCase__ : Union[str, Any] = prepare_img() UpperCAmelCase__ : Union[str, Any] = processor(images=_A , return_tensors='''pt''' ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**_A ) UpperCAmelCase__ : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase__ : Any = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _A , atol=1e-4 ) ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) UpperCAmelCase__ : Any = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_A ) UpperCAmelCase__ : str = prepare_img() UpperCAmelCase__ : Dict = processor(images=_A , return_tensors='''pt''' ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**_A ) UpperCAmelCase__ : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase__ : List[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _A , atol=1e-4 ) )
75
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowercase ): UpperCamelCase_ : str = ["pixel_values"] def __init__( self , a = True , a = None , a = PIL.Image.BICUBIC , a = True , a = None , a = 1 / 2_55 , a = True , a = True , a = None , a = None , **a , ) -> None: '''simple docstring''' super().__init__(**a ) _UpperCamelCase = size if size is not None else {"""height""": 2_56, """width""": 2_56} _UpperCamelCase = get_size_dict(a ) _UpperCamelCase = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} _UpperCamelCase = get_size_dict(a , param_name="""crop_size""" ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def A_ ( self , a , a , a = PIL.Image.BICUBIC , a = None , **a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( a , size=(size["""height"""], size["""width"""]) , resample=a , data_format=a , **a ) def A_ ( self , a , a , a = None , **a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(a , size=(size["""height"""], size["""width"""]) , data_format=a , **a ) def A_ ( self , a , a , a = None , **a , ) -> List[str]: '''simple docstring''' return rescale(a , scale=a , data_format=a , **a ) def A_ ( self , a , a , a , a = None , **a , ) -> np.ndarray: '''simple docstring''' return normalize(a , mean=a , std=a , data_format=a , **a ) def A_ ( self , a , a = None , a = None , a=None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> PIL.Image.Image: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(a ) _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(a , param_name="""crop_size""" ) _UpperCamelCase = make_list_of_images(a ) if not valid_images(a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(a ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=a , size=a , resample=a ) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=a , size=a ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=a , mean=a , std=a ) for image in images] _UpperCamelCase = [to_channel_dimension_format(a , a ) for image in images] _UpperCamelCase = {"""pixel_values""": images} return BatchFeature(data=a , tensor_type=a )
612
0
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger("""transformers.models.encodec""") _lowerCAmelCase = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } _lowerCAmelCase = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } _lowerCAmelCase = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } _lowerCAmelCase = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } _lowerCAmelCase = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } _lowerCAmelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } _lowerCAmelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } _lowerCAmelCase = [] _lowerCAmelCase = [] def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' for attribute in key.split(""".""" ): A_ : List[str] = getattr(_lowerCAmelCase ,_lowerCAmelCase ) if weight_type is not None: A_ : List[str] = getattr(_lowerCAmelCase ,_lowerCAmelCase ).shape else: A_ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": A_ : List[Any] = value elif weight_type == "weight_g": A_ : int = value elif weight_type == "weight_v": A_ : int = value elif weight_type == "bias": A_ : Optional[Any] = value elif weight_type == "running_mean": A_ : str = value elif weight_type == "running_var": A_ : List[str] = value elif weight_type == "num_batches_tracked": A_ : Tuple = value elif weight_type == "weight_ih_l0": A_ : Optional[Any] = value elif weight_type == "weight_hh_l0": A_ : List[Any] = value elif weight_type == "bias_ih_l0": A_ : Optional[Any] = value elif weight_type == "bias_hh_l0": A_ : Union[str, Any] = value elif weight_type == "weight_ih_l1": A_ : int = value elif weight_type == "weight_hh_l1": A_ : Any = value elif weight_type == "bias_ih_l1": A_ : List[Any] = value elif weight_type == "bias_hh_l1": A_ : List[Any] = value else: A_ : Optional[int] = value logger.info(f"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: A_ : List[str] = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : int = [] if model_name == "encodec_24khz" or "encodec_32khz": A_ : Tuple = MAPPING_24K elif model_name == "encodec_48khz": A_ : int = MAPPING_48K else: raise ValueError(f"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(_lowerCAmelCase ,_lowerCAmelCase ): logger.info(f"""{name} was ignored""" ) continue A_ : Any = False for key, mapped_key in MAPPING.items(): if "*" in key: A_ : Any = key.split(""".*.""" ) if prefix in name and suffix in name: A_ : Optional[Any] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ): continue A_ : int = True if "*" in mapped_key: A_ : Optional[Any] = name.split(_lowerCAmelCase )[0].split(""".""" )[-2] A_ : Dict = mapped_key.replace("""*""" ,_lowerCAmelCase ) if "weight_g" in name: A_ : str = """weight_g""" elif "weight_v" in name: A_ : Any = """weight_v""" elif "weight_ih_l0" in name: A_ : Any = """weight_ih_l0""" elif "weight_hh_l0" in name: A_ : Union[str, Any] = """weight_hh_l0""" elif "bias_ih_l0" in name: A_ : List[Any] = """bias_ih_l0""" elif "bias_hh_l0" in name: A_ : int = """bias_hh_l0""" elif "weight_ih_l1" in name: A_ : Optional[int] = """weight_ih_l1""" elif "weight_hh_l1" in name: A_ : str = """weight_hh_l1""" elif "bias_ih_l1" in name: A_ : Tuple = """bias_ih_l1""" elif "bias_hh_l1" in name: A_ : Dict = """bias_hh_l1""" elif "bias" in name: A_ : List[str] = """bias""" elif "weight" in name: A_ : int = """weight""" elif "running_mean" in name: A_ : Optional[Any] = """running_mean""" elif "running_var" in name: A_ : str = """running_var""" elif "num_batches_tracked" in name: A_ : List[str] = """num_batches_tracked""" else: A_ : Any = None set_recursively(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) @torch.no_grad() def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,): '''simple docstring''' if config_path is not None: A_ : Tuple = EncodecConfig.from_pretrained(_lowerCAmelCase ) else: A_ : List[str] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": A_ : Optional[Any] = [8, 5, 4, 4] A_ : Optional[Any] = [2.2] A_ : str = 6_4 A_ : Optional[int] = 3_2_0_0_0 A_ : Dict = 2_0_4_8 A_ : Optional[Any] = False A_ : Optional[Any] = False A_ : Dict = False elif model_name == "encodec_48khz": A_ : Union[str, Any] = [8, 5, 4, 2] A_ : List[str] = [3.0, 6.0, 12.0, 24.0] A_ : Tuple = 4_8_0_0_0 A_ : Tuple = 2 A_ : Tuple = False A_ : List[str] = """time_group_norm""" A_ : Tuple = True A_ : str = 1.0 A_ : Dict = 0.01 else: raise ValueError(f"""Unknown model name: {model_name}""" ) A_ : Union[str, Any] = EncodecModel(_lowerCAmelCase ) A_ : Dict = EncodecFeatureExtractor( feature_size=config.audio_channels ,sampling_rate=config.sampling_rate ,chunk_length_s=config.chunk_length_s ,overlap=config.overlap ,) feature_extractor.save_pretrained(_lowerCAmelCase ) A_ : Dict = torch.load(_lowerCAmelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights A_ : List[str] = original_checkpoint["""best_state"""] recursively_load_weights(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if repo_id: print("""Pushing to the hub...""" ) feature_extractor.push_to_hub(_lowerCAmelCase ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the ๐Ÿค— hub.""" ) _lowerCAmelCase = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
701
from ....configuration_utils import PretrainedConfig from ....utils import logging _lowerCAmelCase = logging.get_logger(__name__) # TODO: upload to AWS _lowerCAmelCase = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class _UpperCAmelCase ( _lowerCamelCase ): a = '''retribert''' def __init__( self , a__=30522 , a__=768 , a__=8 , a__=12 , a__=3072 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=2 , a__=0.02 , a__=1E-12 , a__=True , a__=128 , a__=0 , **a__ , ): super().__init__(pad_token_id=a__ , **a__ ) A_ : Union[str, Any] = vocab_size A_ : Optional[Any] = hidden_size A_ : Optional[Any] = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Optional[int] = hidden_act A_ : Any = intermediate_size A_ : Tuple = hidden_dropout_prob A_ : Optional[Any] = attention_probs_dropout_prob A_ : Dict = max_position_embeddings A_ : Dict = type_vocab_size A_ : List[str] = initializer_range A_ : Optional[int] = layer_norm_eps A_ : Optional[Any] = share_encoders A_ : Dict = projection_dim
481
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> Any: """simple docstring""" __snake_case : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __snake_case : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Tuple: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: __snake_case : List[str] = """""" else: __snake_case : Dict = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __snake_case : List[str] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) __snake_case : Any = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __snake_case : Dict = in_proj_weight[ : config.hidden_size, : ] __snake_case : str = in_proj_bias[: config.hidden_size] __snake_case : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __snake_case : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __snake_case : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] __snake_case : str = in_proj_bias[-config.hidden_size :] def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Union[str, Any] = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : Dict = dct.pop(_lowerCamelCase ) __snake_case : List[Any] = val def _a ( ) -> Tuple: """simple docstring""" __snake_case : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : Optional[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> str: """simple docstring""" __snake_case : Optional[Any] = ViTConfig() # patch_size if model_name[-1] == "8": __snake_case : List[Any] = 8 # set labels if required if not base_model: __snake_case : Union[str, Any] = 1000 __snake_case : str = """huggingface/label-files""" __snake_case : List[str] = """imagenet-1k-id2label.json""" __snake_case : List[str] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __snake_case : Optional[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __snake_case : Optional[int] = idalabel __snake_case : Any = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __snake_case : List[str] = 384 __snake_case : Optional[Any] = 1536 __snake_case : Optional[int] = 12 __snake_case : Optional[Any] = 6 # load original model from torch hub __snake_case : List[str] = torch.hub.load("""facebookresearch/dino:main""" , _lowerCamelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys __snake_case : str = original_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) __snake_case : str = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if base_model: __snake_case : Union[str, Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval() else: __snake_case : Optional[int] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor __snake_case : List[str] = ViTImageProcessor() __snake_case : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" ) __snake_case : Any = encoding["""pixel_values"""] __snake_case : Optional[int] = model(_lowerCamelCase ) if base_model: __snake_case : List[Any] = original_model(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: __snake_case : Dict = original_model(_lowerCamelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1E-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dino_vitb16", type=str, help="Name of the model trained with DINO you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--base_model", action="store_true", help="Whether to only convert the base model (no projection head weights).", ) parser.set_defaults(base_model=True) __UpperCamelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
26
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class SCREAMING_SNAKE_CASE_ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int = 16 , SCREAMING_SNAKE_CASE__ : int = 88 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : int = 32 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "geglu" , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Optional[int]: super().__init__() A : Tuple =nn.ModuleList( [ TransformeraDModel( num_attention_heads=SCREAMING_SNAKE_CASE__ , attention_head_dim=SCREAMING_SNAKE_CASE__ , in_channels=SCREAMING_SNAKE_CASE__ , num_layers=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , norm_num_groups=SCREAMING_SNAKE_CASE__ , cross_attention_dim=SCREAMING_SNAKE_CASE__ , attention_bias=SCREAMING_SNAKE_CASE__ , sample_size=SCREAMING_SNAKE_CASE__ , num_vector_embeds=SCREAMING_SNAKE_CASE__ , activation_fn=SCREAMING_SNAKE_CASE__ , num_embeds_ada_norm=SCREAMING_SNAKE_CASE__ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference A : List[Any] =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` A : str =[77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` A : Optional[int] =[1, 0] def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : bool = True , ) -> Dict: A : Any =hidden_states A : int =[] A : str =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens A : Optional[int] =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] A : str =self.transformer_index_for_condition[i] A : str =self.transformers[transformer_index]( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , cross_attention_kwargs=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] A : str =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) A : Any =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=SCREAMING_SNAKE_CASE__ )
305
0
from __future__ import annotations class a : def __init__( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = order # a_{0} ... a_{k} __SCREAMING_SNAKE_CASE: Any = [1.0] + [0.0] * order # b_{0} ... b_{k} __SCREAMING_SNAKE_CASE: List[Any] = [1.0] + [0.0] * order # x[n-1] ... x[n-k] __SCREAMING_SNAKE_CASE: int = [0.0] * self.order # y[n-1] ... y[n-k] __SCREAMING_SNAKE_CASE: Any = [0.0] * self.order def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if len(_lowerCAmelCase ) < self.order: __SCREAMING_SNAKE_CASE: Tuple = [1.0, *a_coeffs] if len(_lowerCAmelCase ) != self.order + 1: __SCREAMING_SNAKE_CASE: Any = ( f"""Expected a_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(_lowerCAmelCase )}""" ) raise ValueError(_lowerCAmelCase ) if len(_lowerCAmelCase ) != self.order + 1: __SCREAMING_SNAKE_CASE: Union[str, Any] = ( f"""Expected b_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(_lowerCAmelCase )}""" ) raise ValueError(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[str] = a_coeffs __SCREAMING_SNAKE_CASE: List[str] = b_coeffs def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) __SCREAMING_SNAKE_CASE: str = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] __SCREAMING_SNAKE_CASE: str = self.input_history[:-1] __SCREAMING_SNAKE_CASE: List[str] = self.output_history[:-1] __SCREAMING_SNAKE_CASE: Any = sample __SCREAMING_SNAKE_CASE: str = result return result
713
from math import isclose, sqrt def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> tuple[float, float, float]: """simple docstring""" __SCREAMING_SNAKE_CASE: int = point_y / 4 / point_x __SCREAMING_SNAKE_CASE: Optional[Any] = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) __SCREAMING_SNAKE_CASE: Optional[Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __SCREAMING_SNAKE_CASE: Dict = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __SCREAMING_SNAKE_CASE: Dict = outgoing_gradient**2 + 4 __SCREAMING_SNAKE_CASE: Union[str, Any] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __SCREAMING_SNAKE_CASE: Optional[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 __SCREAMING_SNAKE_CASE: Optional[int] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __SCREAMING_SNAKE_CASE: Optional[Any] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __SCREAMING_SNAKE_CASE: Union[str, Any] = x_minus if isclose(UpperCamelCase__ , UpperCamelCase__ ) else x_plus __SCREAMING_SNAKE_CASE: Any = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowerCAmelCase ( UpperCamelCase__ : float = 1.4 , UpperCamelCase__ : float = -9.6 ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE: int = 0 __SCREAMING_SNAKE_CASE: float = first_x_coord __SCREAMING_SNAKE_CASE: float = first_y_coord __SCREAMING_SNAKE_CASE: float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: List[Any] = next_point(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
146
0
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) snake_case_ = str(bin(SCREAMING_SNAKE_CASE__ ) ) binary_number += "0" * shift_amount return binary_number def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) snake_case_ = str(bin(SCREAMING_SNAKE_CASE__ ) )[2:] if shift_amount >= len(SCREAMING_SNAKE_CASE__ ): return "0b0" snake_case_ = binary_number[: len(SCREAMING_SNAKE_CASE__ ) - shift_amount] return "0b" + shifted_binary_number def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if number >= 0: # Get binary representation of positive number snake_case_ = '''0''' + str(bin(SCREAMING_SNAKE_CASE__ ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number snake_case_ = len(bin(SCREAMING_SNAKE_CASE__ )[3:] ) # Find 2's complement of number snake_case_ = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:] snake_case_ = ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ )) + binary_number ) if shift_amount >= len(SCREAMING_SNAKE_CASE__ ): return "0b" + binary_number[0] * len(SCREAMING_SNAKE_CASE__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(SCREAMING_SNAKE_CASE__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
39
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Dict , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
39
1
import unittest from knapsack import knapsack as k class UpperCAmelCase( unittest.TestCase ): """simple docstring""" def __a ( self ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = 0 lowercase__ : int = [0] lowercase__ : Optional[Any] = [0] lowercase__ : Optional[int] = len(lowerCamelCase ) self.assertEqual(k.knapsack(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) , 0 ) lowercase__ : Any = [60] lowercase__ : Dict = [10] lowercase__ : Any = len(lowerCamelCase ) self.assertEqual(k.knapsack(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) , 0 ) def __a ( self ) -> str: """simple docstring""" lowercase__ : Any = 3 lowercase__ : Union[str, Any] = [1, 2, 3] lowercase__ : Dict = [3, 2, 1] lowercase__ : List[Any] = len(lowerCamelCase ) self.assertEqual(k.knapsack(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) , 5 ) def __a ( self ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = 50 lowercase__ : int = [60, 100, 120] lowercase__ : Optional[Any] = [10, 20, 30] lowercase__ : List[str] = len(lowerCamelCase ) self.assertEqual(k.knapsack(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) , 220 ) if __name__ == "__main__": unittest.main()
705
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class UpperCAmelCase( unittest.TestCase ): """simple docstring""" @slow def __a ( self ) -> int: """simple docstring""" lowercase__ : str = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained("google/mt5-small" ) lowercase__ : Optional[int] = tokenizer("Hello there" , return_tensors="np" ).input_ids lowercase__ : Optional[Any] = tokenizer("Hi I am" , return_tensors="np" ).input_ids lowercase__ : int = shift_tokens_right(lowerCamelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) lowercase__ : List[Any] = model(lowerCamelCase , decoder_input_ids=lowerCamelCase ).logits lowercase__ : Any = optax.softmax_cross_entropy(lowerCamelCase , onehot(lowerCamelCase , logits.shape[-1] ) ).mean() lowercase__ : Union[str, Any] = -(labels.shape[-1] * loss.item()) lowercase__ : Any = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
298
0
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _lowerCAmelCase: Optional[int] = logging.getLogger(__name__) def _lowercase( __a : Dict , __a : List[Any] ): a__ =np.argmax(__a , axis=1 ) return np.sum(outputs == labels ) def _lowercase( __a : Union[str, Any] ): with open(__a , encoding='utf_8' ) as f: a__ =csv.reader(__a ) a__ =[] next(__a ) # skip the first line for line in tqdm(__a ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _lowercase( __a : int , __a : List[Any] , __a : Dict , __a : Tuple , __a : List[Any] , __a : Tuple ): a__ =[] for dataset in encoded_datasets: a__ =len(__a ) a__ =np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) a__ =np.zeros((n_batch, 2) , dtype=np.intaa ) a__ =np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) a__ =np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(__a ): a__ =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] a__ =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] a__ =with_conta a__ =with_conta a__ =len(__a ) - 1 a__ =len(__a ) - 1 a__ =with_conta a__ =with_conta a__ =mc_label a__ =(input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(__a ) for t in all_inputs ) ) return tensor_datasets def _lowercase( ): a__ =argparse.ArgumentParser() parser.add_argument('--model_name' , type=__a , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=__a , type=__a , required=__a , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=__a , default='' ) parser.add_argument('--eval_dataset' , type=__a , default='' ) parser.add_argument('--seed' , type=__a , default=42 ) parser.add_argument('--num_train_epochs' , type=__a , default=3 ) parser.add_argument('--train_batch_size' , type=__a , default=8 ) parser.add_argument('--eval_batch_size' , type=__a , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=__a , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=__a , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=__a , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=__a , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=__a , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=__a , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=__a , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=__a , default=0.01 ) parser.add_argument('--lm_coef' , type=__a , default=0.9 ) parser.add_argument('--n_valid' , type=__a , default=374 ) parser.add_argument('--server_ip' , type=__a , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__a , default='' , help='Can be used for distant debugging.' ) a__ =parser.parse_args() print(__a ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__a ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) a__ =torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) a__ =torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(__a , __a ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset a__ =['_start_', '_delimiter_', '_classify_'] a__ =OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(__a ) a__ =tokenizer.convert_tokens_to_ids(__a ) a__ =OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(__a ) ) model.to(__a ) # Load and encode the datasets def tokenize_and_encode(__a : Any ): if isinstance(__a , __a ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__a ) ) elif isinstance(__a , __a ): return obj return [tokenize_and_encode(__a ) for o in obj] logger.info('Encoding dataset...' ) a__ =load_rocstories_dataset(args.train_dataset ) a__ =load_rocstories_dataset(args.eval_dataset ) a__ =(train_dataset, eval_dataset) a__ =tokenize_and_encode(__a ) # Compute the max input length for the Transformer a__ =model.config.n_positions // 2 - 2 a__ =max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) a__ =min(__a , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders a__ =pre_process_datasets(__a , __a , __a , *__a ) a__ , a__ =tensor_datasets[0], tensor_datasets[1] a__ =TensorDataset(*__a ) a__ =RandomSampler(__a ) a__ =DataLoader(__a , sampler=__a , batch_size=args.train_batch_size ) a__ =TensorDataset(*__a ) a__ =SequentialSampler(__a ) a__ =DataLoader(__a , sampler=__a , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: a__ =args.max_steps a__ =args.max_steps // (len(__a ) // args.gradient_accumulation_steps) + 1 else: a__ =len(__a ) // args.gradient_accumulation_steps * args.num_train_epochs a__ =list(model.named_parameters() ) a__ =['bias', 'LayerNorm.bias', 'LayerNorm.weight'] a__ =[ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] a__ =AdamW(__a , lr=args.learning_rate , eps=args.adam_epsilon ) a__ =get_linear_schedule_with_warmup( __a , num_warmup_steps=args.warmup_steps , num_training_steps=__a ) if args.do_train: a__ , a__ , a__ =0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): a__ =0 a__ =0 a__ =tqdm(__a , desc='Training' ) for step, batch in enumerate(__a ): a__ =tuple(t.to(__a ) for t in batch ) a__ , a__ , a__ , a__ =batch a__ =model(__a , mc_token_ids=__a , lm_labels=__a , mc_labels=__a ) a__ =args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() a__ =( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 a__ ='Training loss: {:.2e} lr: {:.2e}'.format(__a , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer a__ =model.module if hasattr(__a , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` a__ =os.path.join(args.output_dir , __a ) a__ =os.path.join(args.output_dir , __a ) torch.save(model_to_save.state_dict() , __a ) model_to_save.config.to_json_file(__a ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned a__ =OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) a__ =OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(__a ) if args.do_eval: model.eval() a__ , a__ =0, 0 a__ , a__ =0, 0 for batch in tqdm(__a , desc='Evaluating' ): a__ =tuple(t.to(__a ) for t in batch ) a__ , a__ , a__ , a__ =batch with torch.no_grad(): a__ , a__ , a__ , a__ =model( __a , mc_token_ids=__a , lm_labels=__a , mc_labels=__a ) a__ =mc_logits.detach().cpu().numpy() a__ =mc_labels.to('cpu' ).numpy() a__ =accuracy(__a , __a ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 a__ =eval_loss / nb_eval_steps a__ =eval_accuracy / nb_eval_examples a__ =tr_loss / nb_tr_steps if args.do_train else None a__ ={'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} a__ =os.path.join(args.output_dir , 'eval_results.txt' ) with open(__a , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , __a , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
20
from manim import * class lowercase_ (lowercase__ ): def __UpperCamelCase ( self) -> List[Any]: a__ =Rectangle(height=0.5 , width=0.5) a__ =Rectangle(height=0.46 , width=0.46).set_stroke(width=0) a__ =[mem.copy() for i in range(6)] a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(lowercase_ , lowercase_).arrange(lowercase_ , buff=0) a__ =Text('CPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) cpu.move_to([-2.5, -0.5, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(4)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('GPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) gpu.move_to([-1, -1, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Model' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) model.move_to([3, -1.0, 0]) self.add(lowercase_) a__ =[] for i, rect in enumerate(lowercase_): rect.set_stroke(lowercase_) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) a__ =Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(lowercase_ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=lowercase_) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0) self.add(lowercase_) cpu_targs.append(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Loaded Checkpoint' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4) checkpoint.move_to([3, 0.5, 0]) a__ =Square(side_length=2.2) key.move_to([-5, 2, 0]) a__ =MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>โ—</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(lowercase_ , lowercase_) a__ =MarkupText( F"""<span fgcolor='{BLUE}'>โ—</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left()) a__ =MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(lowercase_) , Write(lowercase_)) self.play(Write(lowercase_ , run_time=1) , Create(lowercase_ , run_time=1)) a__ =[] a__ =[] for i, rect in enumerate(lowercase_): a__ =fill.copy().set_fill(lowercase_ , opacity=0.7) target.move_to(lowercase_) first_animations.append(GrowFromCenter(lowercase_ , run_time=1)) a__ =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5)) self.play(*lowercase_) self.play(*lowercase_) self.wait()
20
1
'''simple docstring''' __magic_name__ ={ '''Pillow''': '''Pillow<10.0.0''', '''accelerate''': '''accelerate>=0.20.3''', '''av''': '''av==9.2.0''', '''beautifulsoup4''': '''beautifulsoup4''', '''black''': '''black~=23.1''', '''codecarbon''': '''codecarbon==1.2.0''', '''cookiecutter''': '''cookiecutter==1.7.3''', '''dataclasses''': '''dataclasses''', '''datasets''': '''datasets!=2.5.0''', '''decord''': '''decord==0.6.0''', '''deepspeed''': '''deepspeed>=0.9.3''', '''diffusers''': '''diffusers''', '''dill''': '''dill<0.3.5''', '''evaluate''': '''evaluate>=0.2.0''', '''fairscale''': '''fairscale>0.3''', '''faiss-cpu''': '''faiss-cpu''', '''fastapi''': '''fastapi''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1,<=0.7.0''', '''ftfy''': '''ftfy''', '''fugashi''': '''fugashi>=1.0''', '''GitPython''': '''GitPython<3.1.19''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.14.1,<1.0''', '''importlib_metadata''': '''importlib_metadata''', '''ipadic''': '''ipadic>=1.0.0,<2.0''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2,<=0.4.13''', '''jaxlib''': '''jaxlib>=0.1.65,<=0.4.13''', '''jieba''': '''jieba''', '''kenlm''': '''kenlm''', '''keras-nlp''': '''keras-nlp>=0.3.1''', '''librosa''': '''librosa''', '''nltk''': '''nltk''', '''natten''': '''natten>=0.14.6''', '''numpy''': '''numpy>=1.17''', '''onnxconverter-common''': '''onnxconverter-common''', '''onnxruntime-tools''': '''onnxruntime-tools>=1.4.2''', '''onnxruntime''': '''onnxruntime>=1.4.0''', '''opencv-python''': '''opencv-python''', '''optuna''': '''optuna''', '''optax''': '''optax>=0.0.8,<=0.1.4''', '''packaging''': '''packaging>=20.0''', '''parameterized''': '''parameterized''', '''phonemizer''': '''phonemizer''', '''protobuf''': '''protobuf''', '''psutil''': '''psutil''', '''pyyaml''': '''pyyaml>=5.1''', '''pydantic''': '''pydantic<2''', '''pytest''': '''pytest>=7.2.0''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''python''': '''python>=3.8.0''', '''ray[tune]''': '''ray[tune]''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''rhoknp''': '''rhoknp>=1.1.0,<1.3.1''', '''rjieba''': '''rjieba''', '''rouge-score''': '''rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1''', '''ruff''': '''ruff>=0.0.241,<=0.0.259''', '''sacrebleu''': '''sacrebleu>=1.4.12,<2.0.0''', '''sacremoses''': '''sacremoses''', '''safetensors''': '''safetensors>=0.3.1''', '''sagemaker''': '''sagemaker>=2.31.0''', '''scikit-learn''': '''scikit-learn''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''sigopt''': '''sigopt''', '''starlette''': '''starlette''', '''sudachipy''': '''sudachipy>=0.6.6''', '''sudachidict_core''': '''sudachidict_core>=20220729''', '''tensorflow-cpu''': '''tensorflow-cpu>=2.6,<2.14''', '''tensorflow''': '''tensorflow>=2.6,<2.14''', '''tensorflow-text''': '''tensorflow-text<2.14''', '''tf2onnx''': '''tf2onnx''', '''timeout-decorator''': '''timeout-decorator''', '''timm''': '''timm''', '''tokenizers''': '''tokenizers>=0.11.1,!=0.11.3,<0.14''', '''torch''': '''torch>=1.9,!=1.12.0''', '''torchaudio''': '''torchaudio''', '''torchvision''': '''torchvision''', '''pyctcdecode''': '''pyctcdecode>=0.4.0''', '''tqdm''': '''tqdm>=4.27''', '''unidic''': '''unidic>=1.0.2''', '''unidic_lite''': '''unidic_lite>=1.0.7''', '''urllib3''': '''urllib3<2.0.0''', '''uvicorn''': '''uvicorn''', }
715
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __magic_name__ =logging.get_logger(__name__) __magic_name__ ='''โ–''' __magic_name__ ={'''vocab_file''': '''sentencepiece.bpe.model'''} __magic_name__ ={ '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model''' ), } } __magic_name__ ={ '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off __magic_name__ =['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class _A ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : List[Any] =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Dict =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[str] =["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ : List[int] =[] SCREAMING_SNAKE_CASE_ : List[int] =[] def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> str: '''simple docstring''' UpperCamelCase__ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs UpperCamelCase__ = legacy_behaviour super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , src_lang=SCREAMING_SNAKE_CASE_ , tgt_lang=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | 'โ–n' | 'โ–m' | 'โ–t' | 'โ–k' | 'โ–a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | 'โ–n' | 'โ–m' | 'โ–t' | 'โ–k' | 'โ–a' | 'โ–s' # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase__ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase__ = 1 UpperCamelCase__ = len(self.sp_model ) UpperCamelCase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(SCREAMING_SNAKE_CASE_ ) } UpperCamelCase__ = {v: k for k, v in self.lang_code_to_id.items()} UpperCamelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCamelCase__ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCamelCase__ = src_lang if src_lang is not None else '''eng_Latn''' UpperCamelCase__ = self.lang_code_to_id[self._src_lang] UpperCamelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__(self ) -> Any: '''simple docstring''' UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None UpperCamelCase__ = self.sp_model.serialized_model_proto() return state def __setstate__(self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _a (self ) -> Tuple: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _a (self ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def _a (self , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' UpperCamelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [1] * len(self.prefix_tokens ) UpperCamelCase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE_ )) + ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase__ = src_lang UpperCamelCase__ = self(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tgt_lang_id return inputs def _a (self ) -> str: '''simple docstring''' UpperCamelCase__ = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a (self , SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase__ = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _a (self , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _a (self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = ''''''.join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_ , ''' ''' ).strip() return out_string def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase__ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "eng_Latn" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "fra_Latn" , **SCREAMING_SNAKE_CASE_ , ) -> BatchEncoding: '''simple docstring''' UpperCamelCase__ = src_lang UpperCamelCase__ = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _a (self ) -> Union[str, Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _a (self ) -> Dict: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a (self , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' UpperCamelCase__ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: UpperCamelCase__ = [] UpperCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: UpperCamelCase__ = [self.cur_lang_code] UpperCamelCase__ = [self.eos_token_id] def _a (self , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' UpperCamelCase__ = self.lang_code_to_id[lang] if self.legacy_behaviour: UpperCamelCase__ = [] UpperCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: UpperCamelCase__ = [self.cur_lang_code] UpperCamelCase__ = [self.eos_token_id]
469
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __snake_case : List[Any] ={'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' snake_case_ =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING snake_case_ =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: snake_case_ ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: snake_case_ ={ config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : List[str] = ZeroShotClassificationPipeline( model=__lowerCamelCase ,tokenizer=__lowerCamelCase ,candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Any = classifier('''Who are you voting for in 2020?''' ,candidate_labels='''politics''' ) self.assertEqual(__lowerCamelCase ,{'''sequence''': ANY(__lowerCamelCase ), '''labels''': [ANY(__lowerCamelCase )], '''scores''': [ANY(__lowerCamelCase )]} ) # No kwarg lowerCAmelCase__ : int = classifier('''Who are you voting for in 2020?''' ,['''politics'''] ) self.assertEqual(__lowerCamelCase ,{'''sequence''': ANY(__lowerCamelCase ), '''labels''': [ANY(__lowerCamelCase )], '''scores''': [ANY(__lowerCamelCase )]} ) lowerCAmelCase__ : Tuple = classifier('''Who are you voting for in 2020?''' ,candidate_labels=['''politics'''] ) self.assertEqual(__lowerCamelCase ,{'''sequence''': ANY(__lowerCamelCase ), '''labels''': [ANY(__lowerCamelCase )], '''scores''': [ANY(__lowerCamelCase )]} ) lowerCAmelCase__ : List[Any] = classifier('''Who are you voting for in 2020?''' ,candidate_labels='''politics, public health''' ) self.assertEqual( __lowerCamelCase ,{'''sequence''': ANY(__lowerCamelCase ), '''labels''': [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )], '''scores''': [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) ,1.0 ) lowerCAmelCase__ : Tuple = classifier('''Who are you voting for in 2020?''' ,candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( __lowerCamelCase ,{'''sequence''': ANY(__lowerCamelCase ), '''labels''': [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )], '''scores''': [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) ,1.0 ) lowerCAmelCase__ : List[Any] = classifier( '''Who are you voting for in 2020?''' ,candidate_labels='''politics''' ,hypothesis_template='''This text is about {}''' ) self.assertEqual(__lowerCamelCase ,{'''sequence''': ANY(__lowerCamelCase ), '''labels''': [ANY(__lowerCamelCase )], '''scores''': [ANY(__lowerCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 lowerCAmelCase__ : Any = classifier(['''I am happy'''] ,['''positive''', '''negative'''] ) self.assertEqual( __lowerCamelCase ,[ {'''sequence''': ANY(__lowerCamelCase ), '''labels''': [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )], '''scores''': [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )]} for i in range(1 ) ] ,) lowerCAmelCase__ : Optional[Any] = classifier(['''I am happy''', '''I am sad'''] ,['''positive''', '''negative'''] ) self.assertEqual( __lowerCamelCase ,[ {'''sequence''': ANY(__lowerCamelCase ), '''labels''': [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )], '''scores''': [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )]} for i in range(2 ) ] ,) with self.assertRaises(__lowerCamelCase ): classifier('''''' ,candidate_labels='''politics''' ) with self.assertRaises(__lowerCamelCase ): classifier(__lowerCamelCase ,candidate_labels='''politics''' ) with self.assertRaises(__lowerCamelCase ): classifier('''Who are you voting for in 2020?''' ,candidate_labels='''''' ) with self.assertRaises(__lowerCamelCase ): classifier('''Who are you voting for in 2020?''' ,candidate_labels=__lowerCamelCase ) with self.assertRaises(__lowerCamelCase ): classifier( '''Who are you voting for in 2020?''' ,candidate_labels='''politics''' ,hypothesis_template='''Not formatting template''' ,) with self.assertRaises(__lowerCamelCase ): classifier( '''Who are you voting for in 2020?''' ,candidate_labels='''politics''' ,hypothesis_template=__lowerCamelCase ,) self.run_entailment_id(__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = zero_shot_classifier.model.config lowerCAmelCase__ : Tuple = config.labelaid lowerCAmelCase__ : Any = zero_shot_classifier.entailment_id lowerCAmelCase__ : Optional[int] = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id ,-1 ) lowerCAmelCase__ : str = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id ,0 ) lowerCAmelCase__ : Union[str, Any] = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id ,0 ) lowerCAmelCase__ : str = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id ,2 ) lowerCAmelCase__ : List[Any] = original_labelaid self.assertEqual(__lowerCamelCase ,zero_shot_classifier.entailment_id ) @require_torch def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = pipeline( '''zero-shot-classification''' ,model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' ,framework='''pt''' ,) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 1_00 ,candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : str = pipeline( '''zero-shot-classification''' ,model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' ,framework='''pt''' ,) lowerCAmelCase__ : int = zero_shot_classifier( '''Who are you voting for in 2020?''' ,candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__lowerCamelCase ) ,{ '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } ,) @require_tf def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Any = pipeline( '''zero-shot-classification''' ,model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' ,framework='''tf''' ,) lowerCAmelCase__ : List[str] = zero_shot_classifier( '''Who are you voting for in 2020?''' ,candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__lowerCamelCase ) ,{ '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } ,) @slow @require_torch def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[Any] = pipeline('''zero-shot-classification''' ,model='''roberta-large-mnli''' ,framework='''pt''' ) lowerCAmelCase__ : int = zero_shot_classifier( '''Who are you voting for in 2020?''' ,candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__lowerCamelCase ) ,{ '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } ,) lowerCAmelCase__ : Optional[int] = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' ,candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] ,multi_label=__lowerCamelCase ,) self.assertEqual( nested_simplify(__lowerCamelCase ) ,{ '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } ,) @slow @require_tf def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = pipeline('''zero-shot-classification''' ,model='''roberta-large-mnli''' ,framework='''tf''' ) lowerCAmelCase__ : List[Any] = zero_shot_classifier( '''Who are you voting for in 2020?''' ,candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__lowerCamelCase ) ,{ '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } ,) lowerCAmelCase__ : Dict = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' ,candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] ,multi_label=__lowerCamelCase ,) self.assertEqual( nested_simplify(__lowerCamelCase ) ,{ '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } ,)
647
import math import unittest def lowerCAmelCase__ ( lowerCamelCase_ : int): '''simple docstring''' assert isinstance(lowerCamelCase_ ,lowerCamelCase_) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(lowerCamelCase_) + 1) ,6): if number % i == 0 or number % (i + 2) == 0: return False return True class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def lowerCAmelCase__ (self ) -> str: """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" with self.assertRaises(__lowerCamelCase ): is_prime(-19 ) self.assertFalse( is_prime(0 ) ,'''Zero doesn\'t have any positive factors, primes must have exactly two.''' ,) self.assertFalse( is_prime(1 ) ,'''One only has 1 positive factor, primes must have exactly two.''' ,) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
647
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a: List[Any] = logging.get_logger(__name__) _a: Union[str, Any] = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class __UpperCamelCase ( lowercase ): SCREAMING_SNAKE_CASE__ = 'roberta-prelayernorm' def __init__( self : Any , lowerCAmelCase : List[Any]=50_265 , lowerCAmelCase : Union[str, Any]=768 , lowerCAmelCase : str=12 , lowerCAmelCase : Optional[int]=12 , lowerCAmelCase : str=3_072 , lowerCAmelCase : Dict="gelu" , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=512 , lowerCAmelCase : List[str]=2 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : List[Any]=1e-12 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[str]=0 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : str="absolute" , lowerCAmelCase : Dict=True , lowerCAmelCase : List[Any]=None , **lowerCAmelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class __UpperCamelCase ( lowercase ): @property def __A ( self : List[str] ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
707
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _a: Optional[Any] = logging.get_logger(__name__) def __lowerCAmelCase ( A ): if isinstance(A , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(A , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(A ): return [[videos]] raise ValueError(F"Could not make batched video from {videos}" ) class __UpperCamelCase ( lowercase ): SCREAMING_SNAKE_CASE__ = ['pixel_values'] def __init__( self : int , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : bool = True , lowerCAmelCase : Union[int, float] = 1 / 255 , lowerCAmelCase : bool = True , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , **lowerCAmelCase : List[Any] , ): '''simple docstring''' super().__init__(**lowerCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 256} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = offset UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self : List[Any] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : List[str] , ): '''simple docstring''' UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(lowerCAmelCase , size["shortest_edge"] , default_to_square=lowerCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(F"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def __A ( self : List[str] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Dict , ): '''simple docstring''' UpperCAmelCase_ = get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(lowerCAmelCase , size=(size["height"], size["width"]) , data_format=lowerCAmelCase , **lowerCAmelCase ) def __A ( self : List[Any] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[int, float] , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : List[str] , ): '''simple docstring''' UpperCAmelCase_ = image.astype(np.floataa ) if offset: UpperCAmelCase_ = image - (scale / 2) return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def __A ( self : Tuple , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : int , ): '''simple docstring''' return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def __A ( self : Union[str, Any] , lowerCAmelCase : ImageInput , lowerCAmelCase : bool = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : PILImageResampling = None , lowerCAmelCase : bool = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : bool = None , lowerCAmelCase : float = None , lowerCAmelCase : bool = None , lowerCAmelCase : bool = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ): '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(lowerCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(lowerCAmelCase , size=lowerCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase , offset=lowerCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) return image def __A ( self : Optional[int] , lowerCAmelCase : ImageInput , lowerCAmelCase : bool = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : PILImageResampling = None , lowerCAmelCase : bool = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : bool = None , lowerCAmelCase : float = None , lowerCAmelCase : bool = None , lowerCAmelCase : bool = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase : Dict , ): '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = offset if offset is not None else self.offset UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) if not valid_images(lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(lowerCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=lowerCAmelCase , do_resize=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , do_center_crop=lowerCAmelCase , crop_size=lowerCAmelCase , do_rescale=lowerCAmelCase , rescale_factor=lowerCAmelCase , offset=lowerCAmelCase , do_normalize=lowerCAmelCase , image_mean=lowerCAmelCase , image_std=lowerCAmelCase , data_format=lowerCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase )
268
0
import torch def snake_case ( ): '''simple docstring''' if torch.cuda.is_available(): __lowercase = torch.cuda.device_count() else: __lowercase = 0 print(F'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
80
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Dict = ['image_processor', 'tokenizer'] _snake_case : int = 'BlipImageProcessor' _snake_case : Tuple = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] ) -> int: '''simple docstring''' _UpperCamelCase = False super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = self.image_processor def __call__( self : int , lowerCAmelCase__ : ImageInput = None , lowerCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase__ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _UpperCamelCase = self.tokenizer _UpperCamelCase = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) return text_encoding # add pixel_values _UpperCamelCase = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) if text is not None: _UpperCamelCase = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) else: _UpperCamelCase = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase__ ) return encoding_image_processor def snake_case__ ( self : Any , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Dict ) -> List[str]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : Tuple , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Optional[int] ) -> Optional[int]: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def snake_case__ ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase = self.tokenizer.model_input_names _UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
98
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =R"""\w+[.]\d+""" __magic_name__ : Tuple =re.findall(lowerCamelCase , lowerCamelCase ) for pat in pats: __magic_name__ : Tuple =key.replace(lowerCamelCase , """_""".join(pat.split(""".""" ) ) ) return key def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Any =pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): __magic_name__ : List[str] =pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: __magic_name__ : int =pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: __magic_name__ : Union[str, Any] =pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer __magic_name__ : Any =pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: __magic_name__ : Optional[int] =pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __magic_name__ : Dict =pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": __magic_name__ : int =pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __magic_name__ : Tuple =pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __magic_name__ : Any =pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=42 ): # Step 1: Convert pytorch tensor to numpy __magic_name__ : Any ={k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params __magic_name__ : Any =flax_model.init_weights(PRNGKey(lowerCamelCase ) ) __magic_name__ : Dict =flatten_dict(lowerCamelCase ) __magic_name__ : Dict ={} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __magic_name__ : str =rename_key(lowerCamelCase ) __magic_name__ : Union[str, Any] =tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters __magic_name__ , __magic_name__ : int =rename_key_and_reshape_tensor(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown __magic_name__ : Optional[int] =jnp.asarray(lowerCamelCase ) return unflatten_dict(lowerCamelCase )
367
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance UpperCAmelCase_ : Dict = 637_8137.0 UpperCAmelCase_ : List[Any] = 635_6752.31_4245 UpperCAmelCase_ : List[str] = 6378137 def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : str =(AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __magic_name__ : str =atan((1 - flattening) * tan(radians(lowerCamelCase ) ) ) __magic_name__ : List[Any] =atan((1 - flattening) * tan(radians(lowerCamelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __magic_name__ : List[Any] =haversine_distance(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __magic_name__ : Tuple =(b_lata + b_lata) / 2 __magic_name__ : int =(b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __magic_name__ : Optional[int] =(sin(lowerCamelCase ) ** 2) * (cos(lowerCamelCase ) ** 2) __magic_name__ : Any =cos(sigma / 2 ) ** 2 __magic_name__ : List[Any] =(sigma - sin(lowerCamelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __magic_name__ : Any =(cos(lowerCamelCase ) ** 2) * (sin(lowerCamelCase ) ** 2) __magic_name__ : Optional[Any] =sin(sigma / 2 ) ** 2 __magic_name__ : str =(sigma + sin(lowerCamelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
367
1
'''simple docstring''' def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: while a != 0: snake_case__ : Tuple = b % a, a return b def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> str: if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) != 1: snake_case__ : Tuple = f"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(UpperCAmelCase_ ) snake_case__ : Any = 1, 0, a snake_case__ : List[str] = 0, 1, m while va != 0: snake_case__ : Any = ua // va snake_case__ : List[str] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
374
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowercase_: Tuple = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : Any = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_) lowercase_: Dict = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : Tuple = list(s_dict.keys()) for key in keys: snake_case__ : str = key for k, v in WHISPER_MAPPING.items(): if k in key: snake_case__ : Union[str, Any] = new_key.replace(UpperCAmelCase_ , UpperCAmelCase_) print(F'{key} -> {new_key}') snake_case__ : Dict = s_dict.pop(UpperCAmelCase_) return s_dict def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ , snake_case__ : Any = emb.weight.shape snake_case__ : List[Any] = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ , bias=UpperCAmelCase_) snake_case__ : int = emb.weight.data return lin_layer def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_) snake_case__ : Dict = os.path.basename(UpperCAmelCase_) snake_case__ : Tuple = url.split("""/""")[-2] snake_case__ : Optional[int] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_) if os.path.exists(UpperCAmelCase_) and not os.path.isfile(UpperCAmelCase_): raise RuntimeError(F'{download_target} exists and is not a regular file') if os.path.isfile(UpperCAmelCase_): snake_case__ : Optional[int] = open(UpperCAmelCase_ , """rb""").read() if hashlib.shaaaa(UpperCAmelCase_).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'{download_target} exists, but the SHA256 checksum does not match; re-downloading the file') with urllib.request.urlopen(UpperCAmelCase_) as source, open(UpperCAmelCase_ , """wb""") as output: with tqdm( total=int(source.info().get("""Content-Length""")) , ncols=80 , unit="""iB""" , unit_scale=UpperCAmelCase_ , unit_divisor=1_024) as loop: while True: snake_case__ : Union[str, Any] = source.read(8_192) if not buffer: break output.write(UpperCAmelCase_) loop.update(len(UpperCAmelCase_)) snake_case__ : Optional[int] = open(UpperCAmelCase_ , """rb""").read() if hashlib.shaaaa(UpperCAmelCase_).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""") return model_bytes def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" if ".pt" not in checkpoint_path: snake_case__ : List[Any] = _download(_MODELS[checkpoint_path]) else: snake_case__ : Union[str, Any] = torch.load(UpperCAmelCase_ , map_location="""cpu""") snake_case__ : Union[str, Any] = original_checkpoint["""dims"""] snake_case__ : Optional[int] = original_checkpoint["""model_state_dict"""] snake_case__ : int = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(UpperCAmelCase_) rename_keys(UpperCAmelCase_) snake_case__ : List[Any] = True snake_case__ : Dict = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] snake_case__ : List[Any] = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=UpperCAmelCase_ , decoder_ffn_dim=UpperCAmelCase_ , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) snake_case__ : int = WhisperForConditionalGeneration(UpperCAmelCase_) snake_case__ , snake_case__ : Tuple = model.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_) if len(UpperCAmelCase_) > 0 and not set(UpperCAmelCase_) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F' but all the following weights are missing {missing}') if tie_embeds: snake_case__ : Dict = make_linear_from_emb(model.model.decoder.embed_tokens) else: snake_case__ : Optional[int] = proj_out_weights model.save_pretrained(UpperCAmelCase_) if __name__ == "__main__": lowercase_: int = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowercase_: int = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
648
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self ,a_ ,a_=7 ,a_=3 ,a_=18 ,a_=30 ,a_=400 ,a_=True ,a_=None ,a_=True ,): """simple docstring""" lowerCAmelCase__ = size if size is not None else {"""height""": 18, """width""": 18} lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = image_size lowerCAmelCase__ = min_resolution lowerCAmelCase__ = max_resolution lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = do_normalize def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __snake_case ( _UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ImageGPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = ImageGPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ ,'clusters' ) ) self.assertTrue(hasattr(lowercase_ ,'do_resize' ) ) self.assertTrue(hasattr(lowercase_ ,'size' ) ) self.assertTrue(hasattr(lowercase_ ,'do_normalize' ) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) lowerCAmelCase__ = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ ,obj[key] ) ) else: self.assertEqual(obj[key] ,lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = os.path.join(lowercase_ ,'image_processor.json' ) image_processor_first.to_json_file(lowercase_ ) lowerCAmelCase__ = self.image_processing_class.from_json_file(lowercase_ ).to_dict() lowerCAmelCase__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase_ ) lowerCAmelCase__ = self.image_processing_class.from_pretrained(lowercase_ ).to_dict() lowerCAmelCase__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,lowercase_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass def UpperCAmelCase_ ( ) -> int: """simple docstring""" lowerCAmelCase__ = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) lowerCAmelCase__ = Image.open(dataset[4]['file'] ) lowerCAmelCase__ = Image.open(dataset[5]['file'] ) lowerCAmelCase__ = [imagea, imagea] return images @require_vision @require_torch class __snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) lowerCAmelCase__ = prepare_images() # test non-batched lowerCAmelCase__ = image_processing(images[0] ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1024) ) lowerCAmelCase__ = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,lowercase_ ) # test batched lowerCAmelCase__ = image_processing(lowercase_ ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1024) ) lowerCAmelCase__ = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,lowercase_ )
708
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : Tuple = {} class __snake_case ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ = 'llama' SCREAMING_SNAKE_CASE__ = ['past_key_values'] def __init__( self ,a_=3_2000 ,a_=4096 ,a_=1_1008 ,a_=32 ,a_=32 ,a_=None ,a_="silu" ,a_=2048 ,a_=0.02 ,a_=1e-6 ,a_=True ,a_=0 ,a_=1 ,a_=2 ,a_=1 ,a_=False ,a_=None ,**a_ ,): """simple docstring""" lowerCAmelCase__ = vocab_size lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = hidden_size lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = num_key_value_heads lowerCAmelCase__ = hidden_act lowerCAmelCase__ = initializer_range lowerCAmelCase__ = rms_norm_eps lowerCAmelCase__ = pretraining_tp lowerCAmelCase__ = use_cache lowerCAmelCase__ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=a_ ,bos_token_id=a_ ,eos_token_id=a_ ,tie_word_embeddings=a_ ,**a_ ,) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,a_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'got {self.rope_scaling}' ) lowerCAmelCase__ = self.rope_scaling.get('type' ,a_ ) lowerCAmelCase__ = self.rope_scaling.get('factor' ,a_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(a_ ,a_ ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
604
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _snake_case : str = logging.get_logger(__name__) _snake_case : Tuple = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = "codegen" __UpperCAmelCase : Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[int] , lowerCamelCase : Dict=50400 , lowerCamelCase : int=2048 , lowerCamelCase : List[Any]=2048 , lowerCamelCase : List[Any]=4096 , lowerCamelCase : Dict=28 , lowerCamelCase : List[str]=16 , lowerCamelCase : str=64 , lowerCamelCase : Any=None , lowerCamelCase : Optional[int]="gelu_new" , lowerCamelCase : Any=0.0 , lowerCamelCase : Union[str, Any]=0.0 , lowerCamelCase : int=0.0 , lowerCamelCase : List[str]=1E-5 , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : List[str]=True , lowerCamelCase : Optional[Any]=50256 , lowerCamelCase : int=50256 , lowerCamelCase : str=False , **lowerCamelCase : int , ) -> Union[str, Any]: __snake_case : str = vocab_size __snake_case : List[Any] = n_ctx __snake_case : Tuple = n_positions __snake_case : int = n_embd __snake_case : List[str] = n_layer __snake_case : int = n_head __snake_case : Union[str, Any] = n_inner __snake_case : List[Any] = rotary_dim __snake_case : Tuple = activation_function __snake_case : str = resid_pdrop __snake_case : Dict = embd_pdrop __snake_case : Optional[int] = attn_pdrop __snake_case : Dict = layer_norm_epsilon __snake_case : Tuple = initializer_range __snake_case : Union[str, Any] = use_cache __snake_case : Dict = bos_token_id __snake_case : Any = eos_token_id super().__init__( bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , tie_word_embeddings=lowerCamelCase , **lowerCamelCase ) class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : str , lowerCamelCase : PretrainedConfig , lowerCamelCase : str = "default" , lowerCamelCase : List[PatchingSpec] = None , lowerCamelCase : bool = False , ) -> Any: super().__init__(lowerCamelCase , task=lowerCamelCase , patching_specs=lowerCamelCase , use_past=lowerCamelCase ) if not getattr(self._config , "pad_token_id" , lowerCamelCase ): # TODO: how to do that better? __snake_case : Any = 0 @property def __snake_case ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: __snake_case : Dict = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(lowerCamelCase , direction="inputs" ) __snake_case : Optional[Any] = {0: "batch", 1: "past_sequence + sequence"} else: __snake_case : int = {0: "batch", 1: "sequence"} return common_inputs @property def __snake_case ( self : int ) -> int: return self._config.n_layer @property def __snake_case ( self : List[str] ) -> int: return self._config.n_head def __snake_case ( self : Tuple , lowerCamelCase : PreTrainedTokenizer , lowerCamelCase : int = -1 , lowerCamelCase : int = -1 , lowerCamelCase : bool = False , lowerCamelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: __snake_case : Union[str, Any] = super(lowerCamelCase , self ).generate_dummy_inputs( lowerCamelCase , batch_size=lowerCamelCase , seq_length=lowerCamelCase , is_pair=lowerCamelCase , framework=lowerCamelCase ) # We need to order the input in the way they appears in the forward() __snake_case : List[str] = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __snake_case , __snake_case : Optional[Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values __snake_case : Optional[Any] = seqlen + 2 __snake_case : str = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case : str = [ (torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) for _ in range(self.num_layers ) ] __snake_case : List[Any] = common_inputs["attention_mask"] if self.use_past: __snake_case : List[Any] = ordered_inputs["attention_mask"].dtype __snake_case : Any = torch.cat( [ordered_inputs["attention_mask"], torch.ones(lowerCamelCase , lowerCamelCase , dtype=lowerCamelCase )] , dim=1 ) return ordered_inputs @property def __snake_case ( self : Tuple ) -> int: return 13
81
def __lowerCamelCase ( __a :int ) -> Dict: """simple docstring""" A__ = len(__a ) A__ = sum(__a ) A__ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): A__ = True for i in range(1 , s + 1 ): A__ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): A__ = dp[i][j - 1] if arr[i - 1] <= j: A__ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: A__ = s - 2 * j break return diff
176
0
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports a__ : Optional[Any] = """ import os """ a__ : Optional[Any] = """ def foo(): import os return False """ a__ : Tuple = """ def foo(): def bar(): if True: import os return False return bar() """ a__ : List[Any] = """ import os try: import bar except ImportError: raise ValueError() """ a__ : Optional[Any] = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ a__ : Optional[Any] = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ a__ : Dict = """ import os try: import bar except ImportError as e: raise ValueError() """ a__ : str = """ import os try: import bar except: raise ValueError() """ a__ : List[Any] = """ import os try: import bar import baz except ImportError: raise ValueError() """ a__ : List[str] = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ a__ : Union[str, Any] = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('case', __lowerCamelCase ) def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = os.path.join(__lowerCamelCase, 'test_file.py' ) with open(__lowerCamelCase, 'w' ) as _tmp_file: _tmp_file.write(__lowerCamelCase ) _lowerCAmelCase = get_imports(__lowerCamelCase ) assert parsed_imports == ["os"]
720
"""simple docstring""" import qiskit def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _lowerCAmelCase = qiskit.QuantumCircuit(__lowerCamelCase, __lowerCamelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1], [0, 1] ) # Execute the circuit on the qasm simulator _lowerCAmelCase = qiskit.execute(__lowerCamelCase, __lowerCamelCase, shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__lowerCamelCase ) if __name__ == "__main__": a__ : Optional[Any] = single_qubit_measure(2, 2) print(f'Total count for various states are: {counts}')
309
0
'''simple docstring''' from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = CustomTokenizer pass
38
'''simple docstring''' from collections.abc import Callable class __snake_case : """simple docstring""" def __init__( self : Tuple , lowerCamelCase : Callable | None = None ) -> None: # Stores actual heap items. lowerCAmelCase_ : list = [] # Stores indexes of each item for supporting updates and deletion. lowerCAmelCase_ : dict = {} # Stores current size of heap. lowerCAmelCase_ : List[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. lowerCAmelCase_ : Tuple = key or (lambda lowerCamelCase : x) def __lowercase ( self : Optional[Any] , lowerCamelCase : int ) -> int | None: return int((i - 1) / 2 ) if i > 0 else None def __lowercase ( self : Union[str, Any] , lowerCamelCase : int ) -> int | None: lowerCAmelCase_ : List[str] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowercase ( self : Optional[Any] , lowerCamelCase : int ) -> int | None: lowerCAmelCase_ : List[Any] = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowercase ( self : List[str] , lowerCamelCase : int , lowerCamelCase : int ) -> None: lowerCAmelCase_, lowerCAmelCase_ : Union[str, Any] = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. lowerCAmelCase_, lowerCAmelCase_ : List[Any] = self.arr[j], self.arr[i] def __lowercase ( self : Tuple , lowerCamelCase : int , lowerCamelCase : int ) -> bool: return self.arr[i][1] < self.arr[j][1] def __lowercase ( self : int , lowerCamelCase : int ) -> int: lowerCAmelCase_ : List[str] = self._left(lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = self._right(lowerCamelCase ) lowerCAmelCase_ : Tuple = i if left is not None and not self._cmp(lowerCamelCase , lowerCamelCase ): lowerCAmelCase_ : int = left if right is not None and not self._cmp(lowerCamelCase , lowerCamelCase ): lowerCAmelCase_ : Optional[Any] = right return valid_parent def __lowercase ( self : List[Any] , lowerCamelCase : int ) -> None: lowerCAmelCase_ : Tuple = self._parent(lowerCamelCase ) while parent is not None and not self._cmp(lowerCamelCase , lowerCamelCase ): self._swap(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_, lowerCAmelCase_ : str = parent, self._parent(lowerCamelCase ) def __lowercase ( self : Tuple , lowerCamelCase : int ) -> None: lowerCAmelCase_ : Optional[Any] = self._get_valid_parent(lowerCamelCase ) while valid_parent != index: self._swap(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_, lowerCAmelCase_ : int = valid_parent, self._get_valid_parent(lowerCamelCase ) def __lowercase ( self : Optional[Any] , lowerCamelCase : int , lowerCamelCase : int ) -> None: if item not in self.pos_map: return lowerCAmelCase_ : Dict = self.pos_map[item] lowerCAmelCase_ : Dict = [item, self.key(lowerCamelCase )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCamelCase ) self._heapify_down(lowerCamelCase ) def __lowercase ( self : int , lowerCamelCase : int ) -> None: if item not in self.pos_map: return lowerCAmelCase_ : List[str] = self.pos_map[item] del self.pos_map[item] lowerCAmelCase_ : Tuple = self.arr[self.size - 1] lowerCAmelCase_ : List[str] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCamelCase ) self._heapify_down(lowerCamelCase ) def __lowercase ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ) -> None: lowerCAmelCase_ : Any = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowerCamelCase )] ) else: lowerCAmelCase_ : str = [item, self.key(lowerCamelCase )] lowerCAmelCase_ : Optional[Any] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowercase ( self : str ) -> tuple | None: return self.arr[0] if self.size else None def __lowercase ( self : Optional[Any] ) -> tuple | None: lowerCAmelCase_ : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def UpperCamelCase_ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
275
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ : List[str] =logging.get_logger(__name__) snake_case_ : str ={ "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class a__ ( __UpperCAmelCase ): UpperCAmelCase_ : Tuple = 'xlm-roberta-xl' def __init__( self , lowercase__=250880 , lowercase__=2560 , lowercase__=36 , lowercase__=32 , lowercase__=10240 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=514 , lowercase__=1 , lowercase__=0.02 , lowercase__=1e-05 , lowercase__=1 , lowercase__=0 , lowercase__=2 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ) -> Any: super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = hidden_act __A = intermediate_size __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = initializer_range __A = layer_norm_eps __A = position_embedding_type __A = use_cache __A = classifier_dropout class a__ ( __UpperCAmelCase ): @property def _lowerCamelCase ( self ) -> Tuple: if self.task == "multiple-choice": __A = {0: "batch", 1: "choice", 2: "sequence"} else: __A = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
712
snake_case_ : str =[0, 2, 4, 6, 8] snake_case_ : List[str] =[1, 3, 5, 7, 9] def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __A = 0 for digit in range(10 ): __A = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , lowerCAmelCase__ , lowerCAmelCase__ ) return result __A = 0 for digita in range(10 ): __A = digita if (remainder + digita) % 2 == 0: __A = ODD_DIGITS else: __A = EVEN_DIGITS for digita in other_parity_digits: __A = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , lowerCAmelCase__ , lowerCAmelCase__ , ) return result def UpperCAmelCase ( lowerCAmelCase__ = 9 ): '''simple docstring''' __A = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(lowerCAmelCase__ , 0 , [0] * length , lowerCAmelCase__ ) return result if __name__ == "__main__": print(f"""{solution() = }""")
205
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , unittest.TestCase ): lowerCamelCase_ = StableDiffusionPanoramaPipeline lowerCamelCase_ = TEXT_TO_IMAGE_PARAMS lowerCamelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowercase : Dict =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase : int =DDIMScheduler() torch.manual_seed(0 ) lowercase : Optional[int] =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase : Optional[Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase : Optional[Any] =CLIPTextModel(UpperCAmelCase__ ) lowercase : List[Any] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase : int ={ '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase_ ( self : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any=0 ): '''simple docstring''' lowercase : str =torch.manual_seed(UpperCAmelCase__ ) lowercase : int ={ '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : Optional[int] ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : Optional[int] =self.get_dummy_components() lowercase : Union[str, Any] =StableDiffusionPanoramaPipeline(**UpperCAmelCase__ ) lowercase : Optional[Any] =sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) lowercase : List[str] =self.get_dummy_inputs(UpperCAmelCase__ ) lowercase : str =sd_pipe(**UpperCAmelCase__ ).images lowercase : str =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase : int =np.array([0.61_86, 0.53_74, 0.49_15, 0.41_35, 0.41_14, 0.45_63, 0.51_28, 0.49_77, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Dict ): '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : Optional[Any] ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : Any =self.get_dummy_components() lowercase : int =StableDiffusionPanoramaPipeline(**UpperCAmelCase__ ) lowercase : List[Any] =sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) lowercase : Dict =self.get_dummy_inputs(UpperCAmelCase__ ) lowercase : Tuple ='''french fries''' lowercase : Union[str, Any] =sd_pipe(**UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ ) lowercase : Tuple =output.images lowercase : Any =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase : Union[str, Any] =np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : List[str] ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : Tuple =self.get_dummy_components() lowercase : Tuple =StableDiffusionPanoramaPipeline(**UpperCAmelCase__ ) lowercase : Union[str, Any] =sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) lowercase : List[str] =self.get_dummy_inputs(UpperCAmelCase__ ) lowercase : int =sd_pipe(**UpperCAmelCase__ , view_batch_size=2 ) lowercase : Optional[int] =output.images lowercase : List[str] =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase : List[str] =np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowercase : int ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : str =self.get_dummy_components() lowercase : str =EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' ) lowercase : Optional[int] =StableDiffusionPanoramaPipeline(**UpperCAmelCase__ ) lowercase : Tuple =sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) lowercase : int =self.get_dummy_inputs(UpperCAmelCase__ ) lowercase : Tuple =sd_pipe(**UpperCAmelCase__ ).images lowercase : Any =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase : Optional[int] =np.array([0.40_24, 0.65_10, 0.49_01, 0.53_78, 0.58_13, 0.56_22, 0.47_95, 0.44_67, 0.49_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : Tuple ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : int =self.get_dummy_components() lowercase : Optional[int] =PNDMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , skip_prk_steps=UpperCAmelCase__ ) lowercase : Optional[int] =StableDiffusionPanoramaPipeline(**UpperCAmelCase__ ) lowercase : int =sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) lowercase : Union[str, Any] =self.get_dummy_inputs(UpperCAmelCase__ ) lowercase : Dict =sd_pipe(**UpperCAmelCase__ ).images lowercase : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase : Optional[int] =np.array([0.63_91, 0.62_91, 0.48_61, 0.51_34, 0.55_52, 0.45_78, 0.50_32, 0.50_23, 0.45_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowerCamelCase_ ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : str , UpperCAmelCase__ : Tuple=0 ): '''simple docstring''' lowercase : Dict =torch.manual_seed(UpperCAmelCase__ ) lowercase : Optional[int] ={ '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : Union[str, Any] ='''stabilityai/stable-diffusion-2-base''' lowercase : Tuple =DDIMScheduler.from_pretrained(UpperCAmelCase__ , subfolder='''scheduler''' ) lowercase : Optional[Any] =StableDiffusionPanoramaPipeline.from_pretrained(UpperCAmelCase__ , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing() lowercase : List[Any] =self.get_inputs() lowercase : List[Any] =pipe(**UpperCAmelCase__ ).images lowercase : Union[str, Any] =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase : str =np.array( [ 0.36_96_83_92, 0.27_02_53_72, 0.32_44_67_66, 0.28_37_93_87, 0.36_36_32_74, 0.30_73_33_47, 0.27_10_00_27, 0.27_05_41_25, 0.25_53_60_96, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : Optional[Any] =StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=UpperCAmelCase__ ) lowercase : List[str] =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing() lowercase : Optional[Any] =self.get_inputs() lowercase : List[Any] =pipe(**UpperCAmelCase__ ).images lowercase : Any =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase : Tuple =np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowercase : Any =0 def callback_fn(UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : torch.FloatTensor ) -> None: lowercase : Optional[Any] =True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase : Any =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase : Tuple =latents[0, -3:, -3:, -1] lowercase : List[str] =np.array( [ 0.18_68_18_69, 0.33_90_78_16, 0.5_36_12_76, 0.14_43_28_65, -0.02_85_66_11, -0.73_94_11_23, 0.23_39_79_87, 0.47_32_26_82, -0.37_82_31_64, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowercase : Union[str, Any] =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase : Any =latents[0, -3:, -3:, -1] lowercase : int =np.array( [ 0.18_53_96_45, 0.33_98_72_48, 0.5_37_85_59, 0.14_43_71_42, -0.02_45_52_61, -0.7_33_83_17, 0.23_99_07_55, 0.47_35_62_72, -0.3_78_65_05, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowercase : Union[str, Any] =False lowercase : Any ='''stabilityai/stable-diffusion-2-base''' lowercase : List[Any] =DDIMScheduler.from_pretrained(UpperCAmelCase__ , subfolder='''scheduler''' ) lowercase : Any =StableDiffusionPanoramaPipeline.from_pretrained(UpperCAmelCase__ , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ ) lowercase : Union[str, Any] =pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing() lowercase : Tuple =self.get_inputs() pipe(**UpperCAmelCase__ , callback=UpperCAmelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowerCamelCase_ ( self : str ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase : Optional[Any] ='''stabilityai/stable-diffusion-2-base''' lowercase : str =DDIMScheduler.from_pretrained(UpperCAmelCase__ , subfolder='''scheduler''' ) lowercase : Optional[int] =StableDiffusionPanoramaPipeline.from_pretrained(UpperCAmelCase__ , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ ) lowercase : str =pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase : str =self.get_inputs() lowercase : Tuple =pipe(**UpperCAmelCase__ ) lowercase : Optional[int] =torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
92
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCAmelCase__ =logging.get_logger(__name__) @dataclass class lowerCamelCase__ : a : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) a : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) a : int = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : bool = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = self.task_name.lower() class lowerCamelCase__ ( _a ): a : List[Any] = """train""" a : List[str] = """dev""" a : Optional[int] = """test""" class lowerCamelCase__ ( _a ): a : GlueDataTrainingArguments a : str a : List[InputFeatures] def __init__( self : Optional[int] , A_ : GlueDataTrainingArguments , A_ : PreTrainedTokenizerBase , A_ : Optional[int] = None , A_ : Union[str, Split] = Split.train , A_ : Optional[str] = None , ): '''simple docstring''' warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the ๐Ÿค— Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , A_ , ) __lowercase = args __lowercase = glue_processors[args.task_name]() __lowercase = glue_output_modes[args.task_name] if isinstance(A_ , A_ ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) __lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(A_ ): if os.path.exists(A_ ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(A_ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(F'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowercase = self.processor.get_test_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowercase = examples[:limit_length] __lowercase = glue_convert_examples_to_features( A_ , A_ , max_length=args.max_seq_length , label_list=A_ , output_mode=self.output_mode , ) __lowercase = time.time() torch.save(self.features , A_ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : int ): '''simple docstring''' return len(self.features ) def __getitem__( self : Optional[Any] , A_ : Union[str, Any] ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return self.label_list
616
0
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: __lowercase = torch.exp(SCREAMING_SNAKE_CASE ) __lowercase = torch.sum(SCREAMING_SNAKE_CASE , dim=1 ) # sum of exp(x_i) __lowercase = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(SCREAMING_SNAKE_CASE ) - B / A class A__ ( nn.Module ): def __init__( self : str , _UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" super().__init__() __lowercase = config.output_attentions __lowercase = config.output_hidden_states __lowercase = nn.ModuleList([BertLayer(_UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) __lowercase = nn.ModuleList([BertHighway(_UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) __lowercase = [-1 for _ in range(config.num_hidden_layers )] def a__ ( self : List[Any] , _UpperCAmelCase : Dict ) -> str: """simple docstring""" if (type(_UpperCAmelCase ) is float) or (type(_UpperCAmelCase ) is int): for i in range(len(self.early_exit_entropy ) ): __lowercase = x else: __lowercase = x def a__ ( self : List[str] , _UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def a__ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , ) -> List[str]: """simple docstring""" __lowercase = () __lowercase = () __lowercase = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __lowercase = all_hidden_states + (hidden_states,) __lowercase = layer_module( _UpperCAmelCase , _UpperCAmelCase , head_mask[i] , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = layer_outputs[0] if self.output_attentions: __lowercase = all_attentions + (layer_outputs[1],) __lowercase = (hidden_states,) if self.output_hidden_states: __lowercase = current_outputs + (all_hidden_states,) if self.output_attentions: __lowercase = current_outputs + (all_attentions,) __lowercase = self.highway[i](_UpperCAmelCase ) # logits, pooled_output if not self.training: __lowercase = highway_exit[0] __lowercase = entropy(_UpperCAmelCase ) __lowercase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __lowercase = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __lowercase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(_UpperCAmelCase , i + 1 ) else: __lowercase = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __lowercase = all_hidden_states + (hidden_states,) __lowercase = (hidden_states,) if self.output_hidden_states: __lowercase = outputs + (all_hidden_states,) if self.output_attentions: __lowercase = outputs + (all_attentions,) __lowercase = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , lowerCAmelCase__ , ) class A__ ( lowerCAmelCase__ ): def __init__( self : str , _UpperCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config __lowercase = BertEmbeddings(_UpperCAmelCase ) __lowercase = DeeBertEncoder(_UpperCAmelCase ) __lowercase = BertPooler(_UpperCAmelCase ) self.init_weights() def a__ ( self : Optional[int] ) -> int: """simple docstring""" self.encoder.init_highway_pooler(self.pooler ) def a__ ( self : str ) -> Optional[Any]: """simple docstring""" return self.embeddings.word_embeddings def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = value def a__ ( self : Optional[Any] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def a__ ( self : Tuple , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : str=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __lowercase = input_ids.size() elif inputs_embeds is not None: __lowercase = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __lowercase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __lowercase = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if encoder_attention_mask is None: __lowercase = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: __lowercase = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __lowercase = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __lowercase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __lowercase = encoder_attention_mask[:, None, None, :] __lowercase = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __lowercase = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __lowercase = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) __lowercase = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) __lowercase = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __lowercase = encoder_outputs[0] __lowercase = self.pooler(_UpperCAmelCase ) __lowercase = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class A__ ( lowerCAmelCase__ ): def __init__( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : str ) -> Any: """simple docstring""" __lowercase = message __lowercase = exit_layer # start from 1! class A__ ( nn.Module ): def __init__( self : int , _UpperCAmelCase : Any ) -> Tuple: """simple docstring""" super().__init__() __lowercase = BertPooler(_UpperCAmelCase ) __lowercase = nn.Dropout(config.hidden_dropout_prob ) __lowercase = nn.Linear(config.hidden_size , config.num_labels ) def a__ ( self : Optional[Any] , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = encoder_outputs[0] __lowercase = self.pooler(_UpperCAmelCase ) # "return" pooler_output # BertModel __lowercase = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __lowercase = bmodel_output[1] __lowercase = self.dropout(_UpperCAmelCase ) __lowercase = self.classifier(_UpperCAmelCase ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , lowerCAmelCase__ , ) class A__ ( lowerCAmelCase__ ): def __init__( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config.num_labels __lowercase = config.num_hidden_layers __lowercase = DeeBertModel(_UpperCAmelCase ) __lowercase = nn.Dropout(config.hidden_dropout_prob ) __lowercase = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Tuple=-1 , _UpperCAmelCase : Dict=False , ) -> Optional[int]: """simple docstring""" __lowercase = self.num_layers try: __lowercase = self.bert( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __lowercase = outputs[1] __lowercase = self.dropout(_UpperCAmelCase ) __lowercase = self.classifier(_UpperCAmelCase ) __lowercase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __lowercase = e.message __lowercase = e.exit_layer __lowercase = outputs[0] if not self.training: __lowercase = entropy(_UpperCAmelCase ) __lowercase = [] __lowercase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __lowercase = MSELoss() __lowercase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __lowercase = CrossEntropyLoss() __lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __lowercase = [] for highway_exit in outputs[-1]: __lowercase = highway_exit[0] if not self.training: highway_logits_all.append(_UpperCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __lowercase = MSELoss() __lowercase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __lowercase = CrossEntropyLoss() __lowercase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_UpperCAmelCase ) if train_highway: __lowercase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __lowercase = (loss,) + outputs if not self.training: __lowercase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __lowercase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
688
from argparse import ArgumentParser from .env import EnvironmentCommand def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) __lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE ) # Let's go __lowercase = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
688
1
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __UpperCamelCase ( enum.Enum ): _UpperCAmelCase = 0 _UpperCAmelCase = 1 _UpperCAmelCase = 2 @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ ): _UpperCAmelCase = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self ,*_A ,**_A ): '''simple docstring''' super().__init__(*_A ,**_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _lowerCAmelCase : List[str] = None if self.model.config.prefix is not None: _lowerCAmelCase : Any = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _lowerCAmelCase : str = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self._sanitize_parameters(prefix=_A ,**self._forward_params ) _lowerCAmelCase : Union[str, Any] = {**self._preprocess_params, **preprocess_params} _lowerCAmelCase : Any = {**self._forward_params, **forward_params} def __lowerCamelCase ( self ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,**_A ,): '''simple docstring''' _lowerCAmelCase : List[str] = {} if prefix is not None: _lowerCAmelCase : Dict = prefix if prefix: _lowerCAmelCase : Optional[int] = self.tokenizer( _A ,padding=_A ,add_special_tokens=_A ,return_tensors=self.framework ) _lowerCAmelCase : Optional[int] = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ' [None, \'hole\']' ) _lowerCAmelCase : Optional[Any] = handle_long_generation preprocess_params.update(_A ) _lowerCAmelCase : int = generate_kwargs _lowerCAmelCase : List[Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) _lowerCAmelCase : Optional[Any] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) _lowerCAmelCase : Tuple = ReturnType.TENSORS if return_type is not None: _lowerCAmelCase : Union[str, Any] = return_type if clean_up_tokenization_spaces is not None: _lowerCAmelCase : List[str] = clean_up_tokenization_spaces if stop_sequence is not None: _lowerCAmelCase : Optional[int] = self.tokenizer.encode(_A ,add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) _lowerCAmelCase : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowerCamelCase ( self ,*_A ,**_A ): '''simple docstring''' if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*_A ,**_A ) def __call__( self ,_A ,**_A ): '''simple docstring''' return super().__call__(_A ,**_A ) def __lowerCamelCase ( self ,_A ,_A="" ,_A=None ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.tokenizer( prefix + prompt_text ,padding=_A ,add_special_tokens=_A ,return_tensors=self.framework ) _lowerCAmelCase : Union[str, Any] = prompt_text if handle_long_generation == "hole": _lowerCAmelCase : Optional[Any] = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: _lowerCAmelCase : List[Any] = generate_kwargs['max_new_tokens'] else: _lowerCAmelCase : Any = generate_kwargs.get('max_length' ,self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _lowerCAmelCase : Optional[Any] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) _lowerCAmelCase : str = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: _lowerCAmelCase : int = inputs['attention_mask'][:, -keep_length:] return inputs def __lowerCamelCase ( self ,_A ,**_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = model_inputs['input_ids'] _lowerCAmelCase : int = model_inputs.get('attention_mask' ,_A ) # Allow empty prompts if input_ids.shape[1] == 0: _lowerCAmelCase : Dict = None _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Dict = 1 else: _lowerCAmelCase : Optional[int] = input_ids.shape[0] _lowerCAmelCase : Union[str, Any] = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _lowerCAmelCase : Union[str, Any] = generate_kwargs.pop('prefix_length' ,0 ) if prefix_length > 0: _lowerCAmelCase : Any = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: _lowerCAmelCase : List[Any] = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _lowerCAmelCase : Tuple = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _lowerCAmelCase : int = self.model.generate(input_ids=_A ,attention_mask=_A ,**_A ) _lowerCAmelCase : Dict = generated_sequence.shape[0] if self.framework == "pt": _lowerCAmelCase : Tuple = generated_sequence.reshape(_A ,out_b // in_b ,*generated_sequence.shape[1:] ) elif self.framework == "tf": _lowerCAmelCase : str = tf.reshape(_A ,(in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __lowerCamelCase ( self ,_A ,_A=ReturnType.FULL_TEXT ,_A=True ): '''simple docstring''' _lowerCAmelCase : List[str] = model_outputs['generated_sequence'][0] _lowerCAmelCase : Tuple = model_outputs['input_ids'] _lowerCAmelCase : Optional[int] = model_outputs['prompt_text'] _lowerCAmelCase : List[Any] = generated_sequence.numpy().tolist() _lowerCAmelCase : Any = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _lowerCAmelCase : Optional[Any] = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _lowerCAmelCase : Optional[int] = self.tokenizer.decode( _A ,skip_special_tokens=_A ,clean_up_tokenization_spaces=_A ,) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _lowerCAmelCase : Dict = 0 else: _lowerCAmelCase : Dict = len( self.tokenizer.decode( input_ids[0] ,skip_special_tokens=_A ,clean_up_tokenization_spaces=_A ,) ) if return_type == ReturnType.FULL_TEXT: _lowerCAmelCase : str = prompt_text + text[prompt_length:] else: _lowerCAmelCase : Optional[int] = text[prompt_length:] _lowerCAmelCase : Optional[Any] = {'generated_text': all_text} records.append(_A ) return records
259
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' debug_launcher(test_script.main ) def __lowerCamelCase ( self ): '''simple docstring''' debug_launcher(test_ops.main )
259
1
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): A_ : Dict = 'data2vec-audio' def __init__(self : str , a__ : int=32 , a__ : Union[str, Any]=768 , a__ : Tuple=12 , a__ : Union[str, Any]=12 , a__ : Dict=3072 , a__ : int="gelu" , a__ : Optional[int]=0.1 , a__ : int=0.1 , a__ : Dict=0.1 , a__ : int=0.0 , a__ : Tuple=0.1 , a__ : str=0.1 , a__ : Union[str, Any]=0.0_2 , a__ : int=1E-5 , a__ : List[str]="gelu" , a__ : int=(512, 512, 512, 512, 512, 512, 512) , a__ : List[str]=(5, 2, 2, 2, 2, 2, 2) , a__ : Optional[Any]=(10, 3, 3, 3, 3, 2, 2) , a__ : Tuple=False , a__ : Optional[int]=16 , a__ : Optional[int]=19 , a__ : List[str]=5 , a__ : Dict=0.0_5 , a__ : Dict=10 , a__ : Dict=2 , a__ : Tuple=0.0 , a__ : List[str]=10 , a__ : str=0 , a__ : Union[str, Any]="sum" , a__ : List[str]=False , a__ : Any=False , a__ : int=256 , a__ : Dict=(512, 512, 512, 512, 1500) , a__ : Union[str, Any]=(5, 3, 3, 1, 1) , a__ : int=(1, 2, 3, 1, 1) , a__ : Union[str, Any]=512 , a__ : Optional[Any]=0 , a__ : Any=1 , a__ : Dict=2 , a__ : Tuple=False , a__ : Dict=3 , a__ : Union[str, Any]=2 , a__ : str=3 , a__ : Optional[int]=None , **a__ : Tuple , ): """simple docstring""" super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) __snake_case = hidden_size __snake_case = feat_extract_activation __snake_case = list(_a ) __snake_case = list(_a ) __snake_case = list(_a ) __snake_case = conv_bias __snake_case = num_conv_pos_embeddings __snake_case = num_conv_pos_embedding_groups __snake_case = conv_pos_kernel_size __snake_case = len(self.conv_dim ) __snake_case = num_hidden_layers __snake_case = intermediate_size __snake_case = hidden_act __snake_case = num_attention_heads __snake_case = hidden_dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = feat_proj_dropout __snake_case = final_dropout __snake_case = layerdrop __snake_case = layer_norm_eps __snake_case = initializer_range __snake_case = vocab_size __snake_case = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case = mask_time_prob __snake_case = mask_time_length __snake_case = mask_time_min_masks __snake_case = mask_feature_prob __snake_case = mask_feature_length __snake_case = mask_feature_min_masks # ctc loss __snake_case = ctc_loss_reduction __snake_case = ctc_zero_infinity # adapter __snake_case = add_adapter __snake_case = adapter_kernel_size __snake_case = adapter_stride __snake_case = num_adapter_layers __snake_case = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __snake_case = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __snake_case = list(_a ) __snake_case = list(_a ) __snake_case = list(_a ) __snake_case = xvector_output_dim @property def a (self : Dict ): """simple docstring""" return math.prod(self.conv_stride )
710
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : int = StableDiffusionDiffEditPipeline A_ : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} A_ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} A_ : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ : List[Any] = frozenset([] ) def a (self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a__ , ) __snake_case = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=a__ , set_alpha_to_one=a__ , ) __snake_case = DDIMInverseScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=a__ , set_alpha_to_zero=a__ , ) torch.manual_seed(0 ) __snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) __snake_case = CLIPTextModel(a__ ) __snake_case = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __snake_case = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a (self : Any , a__ : Optional[Any] , a__ : List[str]=0 ): """simple docstring""" __snake_case = floats_tensor((1, 16, 16) , rng=random.Random(a__ ) ).to(a__ ) __snake_case = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(a__ ) ).to(a__ ) if str(a__ ).startswith('''mps''' ): __snake_case = torch.manual_seed(a__ ) else: __snake_case = torch.Generator(device=a__ ).manual_seed(a__ ) __snake_case = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def a (self : int , a__ : Optional[Any] , a__ : Optional[Any]=0 ): """simple docstring""" __snake_case = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) __snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case = Image.fromarray(np.uinta(a__ ) ).convert('''RGB''' ) if str(a__ ).startswith('''mps''' ): __snake_case = torch.manual_seed(a__ ) else: __snake_case = torch.Generator(device=a__ ).manual_seed(a__ ) __snake_case = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def a (self : List[Any] , a__ : Dict , a__ : Any=0 ): """simple docstring""" __snake_case = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) __snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case = Image.fromarray(np.uinta(a__ ) ).convert('''RGB''' ) if str(a__ ).startswith('''mps''' ): __snake_case = torch.manual_seed(a__ ) else: __snake_case = torch.Generator(device=a__ ).manual_seed(a__ ) __snake_case = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def a (self : List[Any] ): """simple docstring""" if not hasattr(self.pipeline_class , '''_optional_components''' ): return __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(a__ , a__ , a__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) __snake_case = self.get_dummy_inputs(a__ ) __snake_case = pipe(**a__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a__ ) __snake_case = self.pipeline_class.from_pretrained(a__ ) pipe_loaded.to(a__ ) pipe_loaded.set_progress_bar_config(disable=a__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(a__ , a__ ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __snake_case = self.get_dummy_inputs(a__ ) __snake_case = pipe_loaded(**a__ )[0] __snake_case = np.abs(output - output_loaded ).max() self.assertLess(a__ , 1E-4 ) def a (self : str ): """simple docstring""" __snake_case = '''cpu''' __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_mask_inputs(a__ ) __snake_case = pipe.generate_mask(**a__ ) __snake_case = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) __snake_case = np.array([0] * 9 ) __snake_case = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def a (self : List[str] ): """simple docstring""" __snake_case = '''cpu''' __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inversion_inputs(a__ ) __snake_case = pipe.invert(**a__ ).images __snake_case = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __snake_case = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) __snake_case = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1E-3 ) def a (self : Optional[int] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def a (self : List[Any] ): """simple docstring""" __snake_case = '''cpu''' __snake_case = self.get_dummy_components() __snake_case = {'''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''beta_schedule''': '''scaled_linear'''} __snake_case = DPMSolverMultistepScheduler(**a__ ) __snake_case = DPMSolverMultistepInverseScheduler(**a__ ) __snake_case = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inversion_inputs(a__ ) __snake_case = pipe.invert(**a__ ).images __snake_case = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __snake_case = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) __snake_case = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1E-3 ) @require_torch_gpu @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def a (cls : Dict ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) __snake_case = raw_image.convert('''RGB''' ).resize((768, 768) ) __snake_case = raw_image def a (self : List[str] ): """simple docstring""" __snake_case = torch.manual_seed(0 ) __snake_case = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=a__ , torch_dtype=torch.floataa ) __snake_case = DDIMScheduler.from_config(pipe.scheduler.config ) __snake_case = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''a bowl of fruit''' __snake_case = '''a bowl of pears''' __snake_case = pipe.generate_mask( image=self.raw_image , source_prompt=a__ , target_prompt=a__ , generator=a__ , ) __snake_case = pipe.invert( prompt=a__ , image=self.raw_image , inpaint_strength=0.7 , generator=a__ ).latents __snake_case = pipe( prompt=a__ , mask_image=a__ , image_latents=a__ , generator=a__ , negative_prompt=a__ , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] __snake_case = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def a (self : str ): """simple docstring""" __snake_case = torch.manual_seed(0 ) __snake_case = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=a__ , torch_dtype=torch.floataa ) __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __snake_case = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''a bowl of fruit''' __snake_case = '''a bowl of pears''' __snake_case = pipe.generate_mask( image=self.raw_image , source_prompt=a__ , target_prompt=a__ , generator=a__ , ) __snake_case = pipe.invert( prompt=a__ , image=self.raw_image , inpaint_strength=0.7 , generator=a__ , num_inference_steps=25 , ).latents __snake_case = pipe( prompt=a__ , mask_image=a__ , image_latents=a__ , generator=a__ , negative_prompt=a__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] __snake_case = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
388
0
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_A, _A ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ ,__magic_name__ : int = emb.weight.shape __magic_name__ : int = nn.Linear(_A, _A, bias=_A ) __magic_name__ : Union[str, Any] = emb.weight.data return lin_layer def UpperCamelCase ( _A, _A=None ): """simple docstring""" __magic_name__ : str = {} for old_key in state_dict.keys(): __magic_name__ : str = old_key if "moe_layer.experts." in key: if expert_idx is not None: __magic_name__ : int = key.replace("""moe_layer.experts.0""", f'ffn.experts.expert_{expert_idx}' ) else: __magic_name__ : Optional[int] = key.replace("""moe_layer.experts.""", """ffn.experts.expert_""" ) if "gate" in key: __magic_name__ : List[Any] = key.replace(""".moe_layer.gate.wg""", """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __magic_name__ : Any = key.replace(""".fc2.""", """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __magic_name__ : Any = key.replace(""".fc1.""", """.ffn.fc1.""" ) if ".encoder_attn." in key: __magic_name__ : Union[str, Any] = key.replace(""".encoder_attn.""", """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __magic_name__ : Any = key.replace("""encoder_attn_layer_norm""", """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __magic_name__ : str = key.replace("""final_layer_norm""", """ff_layer_norm""" ) __magic_name__ : List[Any] = state_dict[old_key] return new_dict def UpperCamelCase ( _A, _A, _A, _A, _A = WEIGHTS_NAME ): """simple docstring""" __magic_name__ : Union[str, Any] = [] __magic_name__ : str = 0 os.makedirs(_A, exist_ok=_A ) for expert in range(_A ): __magic_name__ : str = switch_checkpoint_path + f'-rank-{expert}.pt' if os.path.isfile(_A ): __magic_name__ : str = torch.load(_A )["""model"""] remove_ignore_keys_(_A ) __magic_name__ : str = rename_fairseq_keys(_A, _A ) __magic_name__ : Union[str, Any] = os.path.join( _A, weights_name.replace(""".bin""", f'-{len(_A )+1:05d}-of-???.bin' ) ) torch.save(_A, _A ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_A )[0]].dtype ) # Add the last block __magic_name__ : int = os.path.join(_A, weights_name.replace(""".bin""", f'-{len(_A )+1:05d}-of-???.bin' ) ) __magic_name__ : Optional[Any] = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_A ) __magic_name__ : Optional[int] = rename_fairseq_keys(_A, _A ) __magic_name__ : Optional[int] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_A ) == 1: __magic_name__ : str = os.path.join(_A, _A ) torch.save(_A, _A ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_A, _A ) # Otherwise, let's build the index __magic_name__ : Tuple = {} for idx, shard in enumerate(_A ): __magic_name__ : Optional[Any] = weights_name.replace(""".bin""", f'-{idx+1:05d}-of-{len(_A ):05d}.bin' ) __magic_name__ : Any = os.path.join(_A, weights_name.replace(""".bin""", f'-{idx+1:05d}-of-???.bin' ) ) os.rename(_A, os.path.join(_A, _A ) ) for key in shard: __magic_name__ : List[str] = shard_file # Add the metadata __magic_name__ : List[str] = {"""total_size""": total_size} __magic_name__ : Optional[int] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_A, _A ), """w""", encoding="""utf-8""" ) as f: __magic_name__ : str = json.dumps(_A, indent=2, sort_keys=_A ) + """\n""" f.write(_A ) return metadata, index if __name__ == "__main__": __magic_name__: str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __magic_name__: List[str] = parser.parse_args() __magic_name__ , __magic_name__: Optional[Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __magic_name__: List[Any] = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __magic_name__: Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
324
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer __magic_name__: Optional[int] = logging.get_logger(__name__) __magic_name__: List[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __magic_name__: Optional[Any] = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } __magic_name__: List[Any] = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } __magic_name__: Union[str, Any] = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class snake_case__ ( _lowerCAmelCase ): lowercase__ : Optional[int] = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Tuple = PRETRAINED_INIT_CONFIGURATION lowercase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Dict = SqueezeBertTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__="[UNK]" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="[PAD]" , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[MASK]" , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> List[str]: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCAmelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase__ ) != tokenize_chinese_chars ): __magic_name__ : Any = getattr(lowerCAmelCase__ , normalizer_state.pop("""type""" ) ) __magic_name__ : Any = do_lower_case __magic_name__ : List[str] = strip_accents __magic_name__ : int = tokenize_chinese_chars __magic_name__ : int = normalizer_class(**lowerCAmelCase__ ) __magic_name__ : Optional[int] = do_lower_case def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> List[Any]: __magic_name__ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : int = [self.sep_token_id] __magic_name__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: __magic_name__ : Optional[Any] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
324
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCamelCase : Tuple ={'''tokenization_bertweet''': ['''BertweetTokenizer''']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys lowerCamelCase : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
237
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCamelCase : Tuple =logging.get_logger(__name__) lowerCamelCase : Union[str, Any] ={ '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __snake_case( A_ ): '''simple docstring''' _UpperCAmelCase = "umt5" _UpperCAmelCase = ["past_key_values"] def __init__( self , __lowerCamelCase=250112 , __lowerCamelCase=512 , __lowerCamelCase=64 , __lowerCamelCase=1024 , __lowerCamelCase=8 , __lowerCamelCase=None , __lowerCamelCase=6 , __lowerCamelCase=32 , __lowerCamelCase=128 , __lowerCamelCase=0.1 , __lowerCamelCase=1e-6 , __lowerCamelCase=1.0 , __lowerCamelCase="gated-gelu" , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase="T5Tokenizer" , __lowerCamelCase=True , __lowerCamelCase=0 , __lowerCamelCase=1 , __lowerCamelCase=0 , **__lowerCamelCase , ): '''simple docstring''' super().__init__( is_encoder_decoder=__lowerCamelCase , tokenizer_class=__lowerCamelCase , tie_word_embeddings=__lowerCamelCase , pad_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , ) __A : Union[str, Any] = vocab_size __A : Any = d_model __A : str = d_kv __A : List[Any] = d_ff __A : Union[str, Any] = num_layers __A : Tuple = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __A : Union[str, Any] = num_heads __A : str = relative_attention_num_buckets __A : Union[str, Any] = relative_attention_max_distance __A : int = dropout_rate __A : int = layer_norm_epsilon __A : int = initializer_factor __A : List[Any] = feed_forward_proj __A : str = use_cache __A : str = self.feed_forward_proj.split('-' ) __A : str = act_info[-1] __A : Any = act_info[0] == 'gated' if len(__lowerCamelCase ) > 1 and act_info[0] != "gated" or len(__lowerCamelCase ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __A : Optional[int] = 'gelu_new' @property def _a ( self ): '''simple docstring''' return self.d_model @property def _a ( self ): '''simple docstring''' return self.num_heads @property def _a ( self ): '''simple docstring''' return self.num_layers class __snake_case( A_ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def _a ( self ): '''simple docstring''' __A : List[Any] = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __A : int = 'past_encoder_sequence + sequence' __A : List[str] = {0: 'batch'} __A : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __A : List[str] = {0: 'batch', 1: 'decoder_sequence'} __A : str = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def _a ( self ): '''simple docstring''' return 13 @property def _a ( self ): '''simple docstring''' return 5e-4
237
1
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def a__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''-m''', '''--pretrained_model_name_or_path''', type=lowercase, default=lowercase, required=lowercase, help='''Path to pretrained model or model identifier from huggingface.co/models.''', ) parser.add_argument( '''-c''', '''--caption''', type=lowercase, default='''robotic cat with wings''', help='''Text used to generate images.''', ) parser.add_argument( '''-n''', '''--images_num''', type=lowercase, default=4, help='''How much images to generate.''', ) parser.add_argument( '''-s''', '''--seed''', type=lowercase, default=42, help='''Seed for random process.''', ) parser.add_argument( '''-ci''', '''--cuda_id''', type=lowercase, default=0, help='''cuda_id.''', ) _UpperCamelCase = parser.parse_args() return args def a__ ( lowercase : Tuple, lowercase : int, lowercase : int ) -> List[str]: """simple docstring""" if not len(lowercase ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) _UpperCamelCase , _UpperCamelCase = imgs[0].size _UpperCamelCase = Image.new('''RGB''', size=(cols * w, rows * h) ) _UpperCamelCase , _UpperCamelCase = grid.size for i, img in enumerate(lowercase ): grid.paste(lowercase, box=(i % cols * w, i // cols * h) ) return grid def a__ ( lowercase : List[str], lowercase : int="robotic cat with wings", lowercase : Optional[int]=7.5, lowercase : List[str]=50, lowercase : List[str]=1, lowercase : str=42, ) -> Tuple: """simple docstring""" _UpperCamelCase = torch.Generator(pipeline.device ).manual_seed(lowercase ) _UpperCamelCase = pipeline( lowercase, guidance_scale=lowercase, num_inference_steps=lowercase, generator=lowercase, num_images_per_prompt=lowercase, ).images _UpperCamelCase = int(math.sqrt(lowercase ) ) _UpperCamelCase = image_grid(lowercase, rows=_rows, cols=num_images_per_prompt // _rows ) return grid, images lowercase__ : List[Any] = parse_args() # Load models and create wrapper for stable diffusion lowercase__ : Union[str, Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') lowercase__ : Tuple = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') lowercase__ : int = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') lowercase__ : int = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') lowercase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowercase__ : Optional[Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): lowercase__ : int = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: lowercase__ : str = unet.to(torch.device('cuda', args.cuda_id)) lowercase__ : str = pipeline.to(unet.device) lowercase__ , lowercase__ : List[str] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) lowercase__ : Dict = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
98
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _lowerCamelCase ( UpperCamelCase , UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self , _SCREAMING_SNAKE_CASE = 768 , )->Union[str, Any]: '''simple docstring''' super().__init__() A_ : Union[str, Any] = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) A_ : Any = nn.Parameter(torch.ones(1 , _SCREAMING_SNAKE_CASE ) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , )->Tuple: '''simple docstring''' A_ : Optional[Any] = nn.Parameter(self.mean.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) A_ : str = nn.Parameter(self.std.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) return self def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' A_ : Tuple = (embeds - self.mean) * 1.0 / self.std return embeds def _snake_case ( self , _SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' A_ : List[str] = (embeds * self.std) + self.mean return embeds
590
0
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin A__ : Tuple= get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") class __lowerCamelCase ( _a , unittest.TestCase ): a : str =BartphoTokenizer a : Union[str, Any] =False a : str =True def SCREAMING_SNAKE_CASE__ ( self ) -> str: super().setUp() UpperCamelCase__ = ['โ–This', 'โ–is', 'โ–a', 'โ–t', 'est'] UpperCamelCase__ = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) UpperCamelCase__ = {'unk_token': '<unk>'} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] ) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(F'{token} {vocab_tokens[token]}\n' ) UpperCamelCase__ = BartphoTokenizer(snake_case_ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> int: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Dict: UpperCamelCase__ = 'This is a lร  test' UpperCamelCase__ = 'This is a<unk><unk> test' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = BartphoTokenizer(snake_case_ , self.monolingual_vocab_file , **self.special_tokens_map ) UpperCamelCase__ = 'This is a lร  test' UpperCamelCase__ = 'โ–This โ–is โ–a โ–l ร  โ–t est'.split() UpperCamelCase__ = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ )
20
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Tuple: UpperCamelCase__ = parent UpperCamelCase__ = 13 UpperCamelCase__ = 7 UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = 99 UpperCamelCase__ = 384 UpperCamelCase__ = 2 UpperCamelCase__ = 4 UpperCamelCase__ = 37 UpperCamelCase__ = 'gelu' UpperCamelCase__ = 0.1 UpperCamelCase__ = 0.1 UpperCamelCase__ = 512 UpperCamelCase__ = 16 UpperCamelCase__ = 2 UpperCamelCase__ = 0.02 UpperCamelCase__ = 3 UpperCamelCase__ = 4 UpperCamelCase__ = 128 UpperCamelCase__ = 2 UpperCamelCase__ = 9 UpperCamelCase__ = 1 UpperCamelCase__ = None def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertModel(config=snake_case_ ) UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase__ = [input_ids, input_mask] UpperCamelCase__ = model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertForMaskedLM(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForSequenceClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = self.num_choices UpperCamelCase__ = TFConvBertForMultipleChoice(config=snake_case_ ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForTokenClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = TFConvBertForQuestionAnswering(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a : str =( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a : Any =False a : Dict =False a : str =False def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = TFConvBertModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = True if hasattr(snake_case_ , 'use_cache' ): UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) for model_class in self.all_model_classes: UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = len(model(snake_case_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) UpperCamelCase__ = os.path.join(snake_case_ , 'saved_model' , '1' ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = outputs['encoder_hidden_states'] UpperCamelCase__ = outputs['encoder_attentions'] else: UpperCamelCase__ = outputs['hidden_states'] UpperCamelCase__ = outputs['attentions'] self.assertEqual(len(snake_case_ ) , snake_case_ ) UpperCamelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) def check_decoder_attentions_output(snake_case_ ): UpperCamelCase__ = len(snake_case_ ) self.assertEqual(out_len % 2 , 0 ) UpperCamelCase__ = outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(snake_case_ ): UpperCamelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) UpperCamelCase__ = len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__ = model(snake_case_ )[0] UpperCamelCase__ = [1, 6, 768] self.assertEqual(output.shape , snake_case_ ) UpperCamelCase__ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
20
1
import os def UpperCAmelCase__ ( __snake_case ) -> Dict: _A = len(grid[0] ) _A = len(snake_case_ ) _A = 0 _A = 0 _A = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(snake_case_ ): for j in range(n_rows - 3 ): _A = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] _A = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: _A = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: _A = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) _A = max( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if max_product > largest: _A = max_product return largest def UpperCAmelCase__ ( ) -> str: _A = [] with open(os.path.dirname(snake_case_ ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) _A = [[int(snake_case_ ) for i in grid[j]] for j in range(len(snake_case_ ) )] return largest_product(snake_case_ ) if __name__ == "__main__": print(solution())
317
"""simple docstring""" import numpy as np def A_ ( snake_case_ : Tuple ,snake_case_ : Any ,snake_case_ : str ,snake_case_ : Optional[int] ,snake_case_ : List[str] ): '''simple docstring''' UpperCamelCase : int = int(np.ceil((x_end - xa) / h ) ) UpperCamelCase : Dict = np.zeros((n + 1,) ) UpperCamelCase : Optional[int] = ya UpperCamelCase : Optional[Any] = xa for k in range(snake_case_ ): UpperCamelCase : Optional[Any] = f(snake_case_ ,y[k] ) UpperCamelCase : Optional[Any] = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) UpperCamelCase : Optional[Any] = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) UpperCamelCase : Optional[int] = f(x + h ,y[k] + h * ka ) UpperCamelCase : Tuple = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
499
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder ): """simple docstring""" def __A ( self: Dict ) -> int: return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=__A , ) def __A ( self: Optional[int] , __A: Any , __A: List[str] ) -> str: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def __A ( self: List[str] , __A: str , __A: List[str] ) -> Dict: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__A ) class SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder ): """simple docstring""" def __A ( self: Optional[Any] ) -> Optional[int]: return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=__A , ) def __A ( self: int , __A: str , __A: str ) -> Tuple: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def __A ( self: Optional[Any] , __A: Dict , __A: int ) -> Tuple: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__A ) def __A ( ): '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def __A ( ): '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" @require_beam def __A ( self: Union[str, Any] ) -> str: _A = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _A = DummyBeamDataset(cache_dir=__A , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__A , builder.name , '''default''' , '''0.0.0''' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) _A = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __A ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __A ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__A , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def __A ( self: Tuple ) -> Dict: import apache_beam as beam _A = beam.io.parquetio.WriteToParquet _A = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _A = DummyBeamDataset(cache_dir=__A , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: _A = partial(__A , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __A , builder.name , '''default''' , '''0.0.0''' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( __A , builder.name , '''default''' , '''0.0.0''' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) _A = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __A ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __A ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(__A , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def __A ( self: List[str] ) -> int: with tempfile.TemporaryDirectory() as tmp_cache_dir: _A = DummyBeamDataset(cache_dir=__A ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __A ( self: List[str] ) -> List[Any]: _A = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _A = NestedBeamDataset(cache_dir=__A , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__A , builder.name , '''default''' , '''0.0.0''' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) _A = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __A ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __A ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__A , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
62
import math def __A ( _lowercase ): '''simple docstring''' _A = [] _A = 2 _A = int(math.sqrt(_lowercase ) ) # Size of every segment _A = [True] * (end + 1) _A = [] while start <= end: if temp[start] is True: in_prime.append(_lowercase ) for i in range(start * start , end + 1 , _lowercase ): _A = False start += 1 prime += in_prime _A = end + 1 _A = min(2 * end , _lowercase ) while low <= n: _A = [True] * (high - low + 1) for each in in_prime: _A = math.floor(low / each ) * each if t < low: t += each for j in range(_lowercase , high + 1 , _lowercase ): _A = False for j in range(len(_lowercase ) ): if temp[j] is True: prime.append(j + low ) _A = high + 1 _A = min(high + end , _lowercase ) return prime print(sieve(10**6))
62
1
from typing import Any import numpy as np def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return np.array_equal(lowerCAmelCase__ , matrix.conjugate().T ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : List[Any] = v.conjugate().T SCREAMING_SNAKE_CASE_ : str = v_star.dot(lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , np.ndarray ) return (v_star_dot.dot(lowerCAmelCase__ )) / (v_star.dot(lowerCAmelCase__ )) def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : Optional[int] = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) SCREAMING_SNAKE_CASE_ : int = np.array([[1], [2], [3]] ) assert is_hermitian(lowerCAmelCase__ ), f'{a} is not hermitian.' print(rayleigh_quotient(lowerCAmelCase__ , lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowerCAmelCase__ ), f'{a} is not hermitian.' assert rayleigh_quotient(lowerCAmelCase__ , lowerCAmelCase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
345
def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _lowerCAmelCase : Optional[int] = str(bin(lowerCAmelCase__ ) )[2:] # remove the leading "0b" _lowerCAmelCase : Optional[Any] = str(bin(lowerCAmelCase__ ) )[2:] # remove the leading "0b" _lowerCAmelCase : List[Any] = max(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(lowerCAmelCase__ ) , b_binary.zfill(lowerCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
424
0
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = (CMStochasticIterativeScheduler,) SCREAMING_SNAKE_CASE : int = 1_0 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,**lowercase__ : str ): __lowercase = { '''num_train_timesteps''': 2_0_1, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } config.update(**_SCREAMING_SNAKE_CASE ) return config def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = 1_0 __lowercase = self.get_scheduler_config() __lowercase = self.scheduler_classes[0](**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) __lowercase = scheduler.timesteps[0] __lowercase = scheduler.timesteps[1] __lowercase = self.dummy_sample __lowercase = 0.1 * sample __lowercase = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).prev_sample __lowercase = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : List[str] ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowercase = 1 scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) __lowercase = scheduler.timesteps __lowercase = torch.manual_seed(0 ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_SCREAMING_SNAKE_CASE ): # 1. scale model input __lowercase = scheduler.scale_model_input(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # 2. predict noise residual __lowercase = model(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # 3. predict previous sample x_t-1 __lowercase = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,generator=_SCREAMING_SNAKE_CASE ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) __lowercase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1_9_2.7_6_1_4 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_1_0 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowercase = [1_0_6, 0] scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) __lowercase = scheduler.timesteps __lowercase = torch.manual_seed(0 ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input __lowercase = scheduler.scale_model_input(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # 2. predict noise residual __lowercase = model(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # 3. predict previous sample x_t-1 __lowercase = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,generator=_SCREAMING_SNAKE_CASE ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) __lowercase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 3_4_7.6_3_5_7 ) < 1e-2 assert abs(result_mean.item() - 0.4_5_2_7 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowercase = [3_9, 3_0, 1_2, 1_5, 0] with self.assertRaises(_SCREAMING_SNAKE_CASE ,msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowercase = [3_9, 3_0, 1_2, 1, 0] __lowercase = len(_SCREAMING_SNAKE_CASE ) with self.assertRaises(_SCREAMING_SNAKE_CASE ,msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_SCREAMING_SNAKE_CASE ,timesteps=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowercase = [scheduler.config.num_train_timesteps] with self.assertRaises( _SCREAMING_SNAKE_CASE ,msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' ,): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
713
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : int ,lowercase__ : List[str]=None ,lowercase__ : Any=True ,lowercase__ : Union[str, Any]=None ,**lowercase__ : Dict ): __lowercase = parent __lowercase = config_class __lowercase = has_text_modality __lowercase = kwargs __lowercase = common_properties def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.config_class(**self.inputs_dict ) __lowercase = ( ['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers'''] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size'''] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(lowercase__ ,lowercase__ ) ,msg=F"`{prop}` does not exist" ) # Test that config has the common properties as setter for idx, name in enumerate(lowercase__ ): try: setattr(lowercase__ ,lowercase__ ,lowercase__ ) self.parent.assertEqual( getattr(lowercase__ ,lowercase__ ) ,lowercase__ ,msg=F"`{name} value {idx} expected, but was {getattr(lowercase__ ,lowercase__ )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(lowercase__ ): try: __lowercase = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(lowercase__ ,lowercase__ ) ,lowercase__ ,msg=F"`{name} value {idx} expected, but was {getattr(lowercase__ ,lowercase__ )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.config_class(**self.inputs_dict ) __lowercase = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = os.path.join(lowercase__ ,'''config.json''' ) config_first.to_json_file(lowercase__ ) __lowercase = self.config_class.from_json_file(lowercase__ ) self.parent.assertEqual(config_second.to_dict() ,config_first.to_dict() ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(lowercase__ ) __lowercase = self.config_class.from_pretrained(lowercase__ ) self.parent.assertEqual(config_second.to_dict() ,config_first.to_dict() ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.config_class(**self.inputs_dict ) __lowercase = '''test''' with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = os.path.join(lowercase__ ,lowercase__ ) config_first.save_pretrained(lowercase__ ) __lowercase = self.config_class.from_pretrained(lowercase__ ,subfolder=lowercase__ ) self.parent.assertEqual(config_second.to_dict() ,config_first.to_dict() ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.config_class(**self.inputs_dict ,num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) ,5 ) self.parent.assertEqual(len(config.labelaid ) ,5 ) __lowercase = 3 self.parent.assertEqual(len(config.idalabel ) ,3 ) self.parent.assertEqual(len(config.labelaid ) ,3 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): if self.config_class.is_composition: return __lowercase = self.config_class() self.parent.assertIsNotNone(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = copy.deepcopy(lowercase__ ) __lowercase = self.config_class(**lowercase__ ) __lowercase = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) ) elif getattr(lowercase__ ,lowercase__ ) != value: wrong_values.append((key, getattr(lowercase__ ,lowercase__ ), value) ) if len(lowercase__ ) > 0: __lowercase = '''\n'''.join([F"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] ) raise ValueError(F"The following keys were not properly set in the config:\n{errors}" ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
624
0
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCAmelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str]): lowerCamelCase : int = list(UpperCAmelCase__) lowerCamelCase : List[str] = list(UpperCAmelCase__) lowerCamelCase : int = 0 for i in range(len(UpperCAmelCase__)): if lista[i] != lista[i]: count += 1 lowerCamelCase : Union[str, Any] = """_""" if count > 1: return False else: return "".join(UpperCAmelCase__) def UpperCAmelCase ( UpperCAmelCase__ : Dict): lowerCamelCase : List[str] = [] while True: lowerCamelCase : Dict = ["""$"""] * len(UpperCAmelCase__) lowerCamelCase : int = [] for i in range(len(UpperCAmelCase__)): for j in range(i + 1 , len(UpperCAmelCase__)): lowerCamelCase : str = compare_string(binary[i] , binary[j]) if k is False: lowerCamelCase : Dict = """*""" lowerCamelCase : List[str] = """*""" temp.append('X') for i in range(len(UpperCAmelCase__)): if checka[i] == "$": pi.append(binary[i]) if len(UpperCAmelCase__) == 0: return pi lowerCamelCase : int = list(set(UpperCAmelCase__)) def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : int): lowerCamelCase : Union[str, Any] = [] for minterm in minterms: lowerCamelCase : Tuple = """""" for _ in range(UpperCAmelCase__): lowerCamelCase : List[str] = str(minterm % 2) + string minterm //= 2 temp.append(UpperCAmelCase__) return temp def UpperCAmelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str]): lowerCamelCase : Union[str, Any] = list(UpperCAmelCase__) lowerCamelCase : Tuple = list(UpperCAmelCase__) lowerCamelCase : Optional[Any] = 0 for i in range(len(UpperCAmelCase__)): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCAmelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any]): lowerCamelCase : List[str] = [] lowerCamelCase : Dict = [0] * len(UpperCAmelCase__) for i in range(len(chart[0])): lowerCamelCase : Tuple = 0 lowerCamelCase : Optional[int] = -1 for j in range(len(UpperCAmelCase__)): if chart[j][i] == 1: count += 1 lowerCamelCase : Dict = j if count == 1: lowerCamelCase : List[Any] = 1 for i in range(len(UpperCAmelCase__)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(UpperCAmelCase__)): lowerCamelCase : Any = 0 temp.append(prime_implicants[i]) while True: lowerCamelCase : Tuple = 0 lowerCamelCase : int = -1 lowerCamelCase : str = 0 for i in range(len(UpperCAmelCase__)): lowerCamelCase : Optional[int] = chart[i].count(1) if count_n > max_n: lowerCamelCase : Optional[int] = count_n lowerCamelCase : Union[str, Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(UpperCAmelCase__)): lowerCamelCase : int = 0 def UpperCAmelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any]): lowerCamelCase : Optional[int] = [[0 for x in range(len(UpperCAmelCase__))] for x in range(len(UpperCAmelCase__))] for i in range(len(UpperCAmelCase__)): lowerCamelCase : Any = prime_implicants[i].count('_') for j in range(len(UpperCAmelCase__)): if is_for_table(prime_implicants[i] , binary[j] , UpperCAmelCase__): lowerCamelCase : Optional[int] = 1 return chart def UpperCAmelCase ( ): lowerCamelCase : Union[str, Any] = int(input('Enter the no. of variables\n')) lowerCamelCase : int = [ float(UpperCAmelCase__) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n').split() ] lowerCamelCase : List[str] = decimal_to_binary(UpperCAmelCase__ , UpperCAmelCase__) lowerCamelCase : Optional[Any] = check(UpperCAmelCase__) print('Prime Implicants are:') print(UpperCAmelCase__) lowerCamelCase : Union[str, Any] = prime_implicant_chart(UpperCAmelCase__ , UpperCAmelCase__) lowerCamelCase : int = selection(UpperCAmelCase__ , UpperCAmelCase__) print('Essential Prime Implicants are:') print(UpperCAmelCase__) if __name__ == "__main__": import doctest doctest.testmod() main()
320
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def _SCREAMING_SNAKE_CASE ( UpperCamelCase="ro" , UpperCamelCase="en" , UpperCamelCase="wmt16" , UpperCamelCase=None ): """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) lowerCAmelCase__ : Optional[Any] = f"""{src_lang}-{tgt_lang}""" print(f"""Converting {dataset}-{pair}""" ) lowerCAmelCase__ : Any = datasets.load_dataset(UpperCamelCase , UpperCamelCase ) if save_dir is None: lowerCAmelCase__ : Optional[Any] = f"""{dataset}-{pair}""" lowerCAmelCase__ : Optional[Any] = Path(UpperCamelCase ) save_dir.mkdir(exist_ok=UpperCamelCase ) for split in ds.keys(): print(f"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets lowerCAmelCase__ : str = """val""" if split == """validation""" else split lowerCAmelCase__ : Optional[int] = save_dir.joinpath(f"""{fn}.source""" ) lowerCAmelCase__ : Any = save_dir.joinpath(f"""{fn}.target""" ) lowerCAmelCase__ : Union[str, Any] = src_path.open("""w+""" ) lowerCAmelCase__ : Optional[int] = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): lowerCAmelCase__ : Optional[int] = x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(f"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
565
0
"""simple docstring""" from __future__ import annotations def lowerCAmelCase__ ( _UpperCamelCase : int | str ) -> bool: """simple docstring""" snake_case = str(_UpperCamelCase ) return n == n[::-1] def lowerCAmelCase__ ( _UpperCamelCase : int = 1_0_0_0_0_0_0 ) -> Dict: """simple docstring""" snake_case = 0 for i in range(1 , _UpperCamelCase ): if is_palindrome(_UpperCamelCase ) and is_palindrome(bin(_UpperCamelCase ).split('b' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
704
"""simple docstring""" import math def lowerCAmelCase__ ( _UpperCamelCase : int ) -> bool: """simple docstring""" return math.sqrt(_UpperCamelCase ) * math.sqrt(_UpperCamelCase ) == num def lowerCAmelCase__ ( _UpperCamelCase : int ) -> bool: """simple docstring""" snake_case = 0 snake_case = n while left <= right: snake_case = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: snake_case = mid - 1 else: snake_case = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
104
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
99
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem SCREAMING_SNAKE_CASE = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 SCREAMING_SNAKE_CASE = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def a (lowerCAmelCase__ ): if "://" in dataset_path: __a = dataset_path.split("""://""" )[1] return dataset_path def a (lowerCAmelCase__ ): if fs is not None and fs.protocol != "file": return True else: return False def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __a = not is_remote_filesystem(lowerCAmelCase__ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowerCAmelCase__ ) , fs._strip_protocol(lowerCAmelCase__ ) ) else: fs.mv(lowerCAmelCase__ , lowerCAmelCase__ , recursive=lowerCAmelCase__ ) def a (): if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __a = None __a = None __a = threading.Lock()
99
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow _UpperCamelCase : int = False class _lowerCAmelCase( unittest.TestCase): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase=32 )-> Union[str, Any]: set_seed(0 ) __A = UNetaDModel(sample_size=UpperCAmelCase , in_channels=3 , out_channels=3 ) __A = torch.optim.SGD(model.parameters() , lr=0.0001 ) return model, optimizer @slow def SCREAMING_SNAKE_CASE__ ( self )-> Optional[Any]: __A = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable __A = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCAmelCase , ) __A = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCAmelCase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) __A = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(UpperCAmelCase ) for _ in range(4 )] __A = [torch.randn((4, 3, 32, 32) ).to(UpperCAmelCase ) for _ in range(4 )] __A = [torch.randint(0 , 10_00 , (4,) ).long().to(UpperCAmelCase ) for _ in range(4 )] # train with a DDPM scheduler __A , __A = self.get_model_optimizer(resolution=32 ) model.train().to(UpperCAmelCase ) for i in range(4 ): optimizer.zero_grad() __A = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) __A = model(UpperCAmelCase , timesteps[i] ).sample __A = torch.nn.functional.mse_loss(UpperCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM __A , __A = self.get_model_optimizer(resolution=32 ) model.train().to(UpperCAmelCase ) for i in range(4 ): optimizer.zero_grad() __A = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) __A = model(UpperCAmelCase , timesteps[i] ).sample __A = torch.nn.functional.mse_loss(UpperCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) ) self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) )
341
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase( _a , unittest.TestCase): """simple docstring""" lowerCamelCase__ = GPTSanJapaneseTokenizer lowerCamelCase__ = False lowerCamelCase__ = {'''do_clean_text''': False, '''add_prefix_space''': False} def SCREAMING_SNAKE_CASE__ ( self )-> List[Any]: super().setUp() # fmt: off __A = ['''ใ“ใ‚“''', '''ใ“ใ‚“ใซ''', '''ใซใกใฏ''', '''ใฐใ‚“ใฏ''', '''ไธ–็•Œ,ใ”บ็•Œ''', '''ใ€''', '''ใ€‚''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on __A = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # ๐Ÿ˜€ __A = {'''unk_token''': '''<unk>'''} __A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self , **UpperCAmelCase )-> Union[str, Any]: kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> Union[str, Any]: __A = '''ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ \nใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€''' __A = '''ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ \nใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚๐Ÿ˜€''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> Optional[int]: __A , __A = self.get_input_output_texts(UpperCAmelCase ) __A = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) __A = tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) return text, ids def SCREAMING_SNAKE_CASE__ ( self )-> Tuple: pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self )-> Optional[Any]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self )-> Union[str, Any]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self )-> str: __A = self.get_tokenizer() # Testing tokenization __A = '''ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ใ€€ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚''' __A = ['''ใ“ใ‚“''', '''ใซใกใฏ''', '''ใ€''', '''ไธ–็•Œ''', '''ใ€‚''', '''<SP>''', '''ใ“ใ‚“''', '''ใฐใ‚“ใฏ''', '''ใ€''', '''ใ”บ็•Œ''', '''ใ€‚'''] __A = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Testing conversion to ids without special tokens __A = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __A = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Testing conversion to ids with special tokens __A = tokens + [tokenizer.unk_token] __A = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] __A = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self )-> Union[str, Any]: __A = self.get_tokenizer() # Testing tokenization __A = '''ใ“ใ‚“ใซใกใฏใ€<|bagoftoken|>ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€<|bagoftoken|>ใ”บ็•Œใ€‚''' __A = '''ใ“ใ‚“ใซใกใฏใ€ใ€ใ€ใ€ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€ใ€ใ€ใ€ไธ–็•Œใ€‚''' __A = tokenizer.encode(UpperCAmelCase ) __A = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self )-> Dict: __A = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization __A = '''ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚''' __A = '''ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€''' __A = '''ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚๐Ÿ˜€''' __A = tokenizer.encode(prefix_text + input_text ) __A = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) __A = tokenizer.encode(UpperCAmelCase , prefix_text=UpperCAmelCase ) __A = tokenizer.decode(UpperCAmelCase ) __A = tokenizer.decode(UpperCAmelCase ) __A = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self )-> Optional[Any]: __A = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization __A = '''ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚''' __A = '''ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€''' __A = len(tokenizer.encode(UpperCAmelCase ) ) - 2 __A = len(tokenizer.encode(UpperCAmelCase ) ) - 2 __A = [1] + [0] * (len_prefix + len_text + 1) __A = [1] * (len_prefix + len_text + 1) + [0] __A = [1] + [1] * (len_prefix) + [0] * (len_text + 1) __A = tokenizer(prefix_text + input_text ).token_type_ids __A = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids __A = tokenizer(UpperCAmelCase , prefix_text=UpperCAmelCase ).token_type_ids self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self )-> Optional[Any]: __A = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) __A = tokenizer.encode('''ใ‚ใƒณใ„ใƒฏ''' ) __A = tokenizer.encode('''''' , prefix_text='''ใ‚ใƒณใ„ใƒฏ''' ) __A = tokenizer.encode('''ใ„ใƒฏ''' , prefix_text='''ใ‚ใƒณ''' ) self.assertEqual(tokenizer.decode(UpperCAmelCase ) , tokenizer.decode(UpperCAmelCase ) ) self.assertEqual(tokenizer.decode(UpperCAmelCase ) , tokenizer.decode(UpperCAmelCase ) ) self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def SCREAMING_SNAKE_CASE__ ( self )-> Optional[Any]: __A = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) __A = [['''ๆญฆ็”ฐไฟก็Ž„''', '''ใฏใ€'''], ['''็น”็”ฐไฟก้•ท''', '''ใฎ้…ไธ‹ใฎใ€''']] __A = tokenizer(UpperCAmelCase , padding=UpperCAmelCase ) __A = tokenizer.batch_encode_plus(UpperCAmelCase , padding=UpperCAmelCase ) # fmt: off __A = [[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]] __A = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __A = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , UpperCAmelCase ) self.assertListEqual(x_token.token_type_ids , UpperCAmelCase ) self.assertListEqual(x_token.attention_mask , UpperCAmelCase ) self.assertListEqual(x_token_a.input_ids , UpperCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , UpperCAmelCase ) self.assertListEqual(x_token_a.attention_mask , UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self )-> int: # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def SCREAMING_SNAKE_CASE__ ( self )-> List[str]: # tokenizer has no padding token pass
341
1