code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Tuple = logging.get_logger(__name__) _A : int = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : Tuple = """gptsan-japanese""" lowerCamelCase__ : Dict = [ """past_key_values""", ] lowerCamelCase__ : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , A_=3_60_00 , A_=12_80 , A_=10_24 , A_=81_92 , A_=40_96 , A_=1_28 , A_=10 , A_=0 , A_=16 , A_=16 , A_=1_28 , A_=0.0 , A_=1E-5 , A_=False , A_=0.0 , A_="float32" , A_=False , A_=False , A_=False , A_=0.002 , A_=False , A_=True , A_=3_59_98 , A_=3_59_95 , A_=3_59_99 , **A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = d_model SCREAMING_SNAKE_CASE__ = d_ff SCREAMING_SNAKE_CASE__ = d_ext SCREAMING_SNAKE_CASE__ = d_spout SCREAMING_SNAKE_CASE__ = num_switch_layers SCREAMING_SNAKE_CASE__ = num_ext_layers SCREAMING_SNAKE_CASE__ = num_switch_layers + num_ext_layers SCREAMING_SNAKE_CASE__ = num_heads SCREAMING_SNAKE_CASE__ = num_experts SCREAMING_SNAKE_CASE__ = expert_capacity SCREAMING_SNAKE_CASE__ = dropout_rate SCREAMING_SNAKE_CASE__ = layer_norm_epsilon SCREAMING_SNAKE_CASE__ = router_bias SCREAMING_SNAKE_CASE__ = router_jitter_noise SCREAMING_SNAKE_CASE__ = router_dtype SCREAMING_SNAKE_CASE__ = router_ignore_padding_tokens SCREAMING_SNAKE_CASE__ = output_hidden_states SCREAMING_SNAKE_CASE__ = output_attentions SCREAMING_SNAKE_CASE__ = initializer_factor SCREAMING_SNAKE_CASE__ = output_router_logits SCREAMING_SNAKE_CASE__ = use_cache super().__init__( separator_token_id=A_ , pad_token_id=A_ , eos_token_id=A_ , **A_ , )
100
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _UpperCamelCase : Optional[Any] = logging.getLogger(__name__) _UpperCamelCase : List[Any] = "Hello world! cécé herlolip" _UpperCamelCase : int = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def snake_case ( snake_case : int , snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = BertAbsConfig( temp_dir='.' , finetune_bert=snake_case , large=snake_case , share_emb=snake_case , use_bert_emb=snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) lowerCAmelCase = torch.load(snake_case , lambda snake_case , snake_case : storage ) lowerCAmelCase = AbsSummarizer(snake_case , torch.device('cpu' ) , snake_case ) original.eval() lowerCAmelCase = BertAbsSummarizer(snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) lowerCAmelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs lowerCAmelCase = tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case )) ) lowerCAmelCase = torch.tensor(snake_case ).unsqueeze(0 ) lowerCAmelCase = tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case )) ) lowerCAmelCase = torch.tensor(snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass lowerCAmelCase = encoder_input_ids lowerCAmelCase = decoder_input_ids lowerCAmelCase = lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = lowerCAmelCase = None lowerCAmelCase = lowerCAmelCase = None lowerCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical lowerCAmelCase = original(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case )[0] lowerCAmelCase = original.generator(snake_case ) lowerCAmelCase = new_model( snake_case , snake_case , snake_case , snake_case , snake_case )[0] lowerCAmelCase = new_model.generator(snake_case ) lowerCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(snake_case ) ) lowerCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(snake_case ) ) lowerCAmelCase = torch.allclose(snake_case , snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _UpperCamelCase : Optional[int] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
284
0
"""simple docstring""" import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values a_ = argparse.ArgumentParser() parser.add_argument("""--user""", type=str, default="""ubuntu""") parser.add_argument("""--host""", type=str, default="""localhost""") parser.add_argument("""--key_path""", type=str, default=None) parser.add_argument("""--instance""", type=str, default="""V100:1""") parser.add_argument("""--provider""", type=str, default="""cheapest""") parser.add_argument("""--use_spot""", type=bool, default=False) parser.add_argument("""--example""", type=str, default="""pytorch/text-generation/run_generation.py""") a_ , a_ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("""Cannot specify both BYO and on-demand cluster args""") a_ = rh.cluster( name="""rh-cluster""", ips=[args.host], ssh_creds={"""ssh_user""": args.user, """ssh_private_key""": args.key_path} ) else: a_ = rh.cluster( name="""rh-cluster""", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) a_ = args.example.rsplit("""/""", 1)[0] # Set up remote environment cluster.install_packages(["""pip:./"""]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"pip install -r transformers/examples/{example_dir}/requirements.txt"]) cluster.run(["""pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"""]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
708
"""simple docstring""" def UpperCAmelCase_ ( __a : Dict , __a : Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = '' for i in table: res += inp[i - 1] return res def UpperCAmelCase_ ( __a : List[Any] ): '''simple docstring''' return data[1:] + data[0] def UpperCAmelCase_ ( __a : Any , __a : Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = '' for i in range(len(__a ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCAmelCase_ ( __a : List[Any] , __a : str ): '''simple docstring''' _lowerCamelCase : str = int('0b' + data[0] + data[-1] , 2 ) _lowerCamelCase : Optional[int] = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def UpperCAmelCase_ ( __a : Dict , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] ): '''simple docstring''' _lowerCamelCase : str = message[:4] _lowerCamelCase : Optional[Any] = message[4:] _lowerCamelCase : Union[str, Any] = apply_table(__a , __a ) _lowerCamelCase : int = xor(__a , __a ) _lowerCamelCase : str = apply_sbox(__a , temp[:4] ) # noqa: E741 _lowerCamelCase : Any = apply_sbox(__a , temp[4:] ) _lowerCamelCase : Dict = '0' * (2 - len(__a )) + l # noqa: E741 _lowerCamelCase : Optional[Any] = '0' * (2 - len(__a )) + r _lowerCamelCase : Tuple = apply_table(l + r , __a ) _lowerCamelCase : Tuple = xor(__a , __a ) return temp + right if __name__ == "__main__": a_ = input("""Enter 10 bit key: """) a_ = input("""Enter 8 bit message: """) a_ = [6, 3, 7, 4, 8, 5, 10, 9] a_ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] a_ = [2, 4, 3, 1] a_ = [2, 6, 3, 1, 4, 8, 5, 7] a_ = [4, 1, 3, 5, 7, 2, 8, 6] a_ = [4, 1, 2, 3, 2, 3, 4, 1] a_ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] a_ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation a_ = apply_table(key, paa_table) a_ = temp[:5] a_ = temp[5:] a_ = left_shift(left) a_ = left_shift(right) a_ = apply_table(left + right, pa_table) a_ = left_shift(left) a_ = left_shift(right) a_ = left_shift(left) a_ = left_shift(right) a_ = apply_table(left + right, pa_table) # encryption a_ = apply_table(message, IP) a_ = function(expansion, sa, sa, keya, temp) a_ = temp[4:] + temp[:4] a_ = function(expansion, sa, sa, keya, temp) a_ = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption a_ = apply_table(CT, IP) a_ = function(expansion, sa, sa, keya, temp) a_ = temp[4:] + temp[:4] a_ = function(expansion, sa, sa, keya, temp) a_ = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
349
0
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : Tuple ) ->Optional[Any]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def snake_case__( self : List[str] ) ->List[str]: snake_case_ = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(_UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self._create_example_records() snake_case_ = Dataset.from_list(_UpperCamelCase ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(_UpperCamelCase ): self.assertDictEqual(_UpperCamelCase , example_records[i] ) def snake_case__( self : Optional[int] ) ->Any: snake_case_ = self._create_example_records() snake_case_ = Dataset.from_list(_UpperCamelCase ) snake_case_ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def snake_case__( self : Dict ) ->Optional[int]: # checks what happens with missing columns snake_case_ = [{'''col_1''': 1}, {'''col_2''': '''x'''}] snake_case_ = Dataset.from_list(_UpperCamelCase ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def snake_case__( self : Dict ) ->str: # checks if the type can be inferred from the second record snake_case_ = [{'''col_1''': []}, {'''col_1''': [1, 2]}] snake_case_ = Dataset.from_list(_UpperCamelCase ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def snake_case__( self : Dict ) ->int: snake_case_ = Dataset.from_list([] ) self.assertEqual(len(_UpperCamelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
39
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCamelCase__ = get_logger(__name__) class UpperCamelCase : __UpperCamelCase = """dummy_data""" __UpperCamelCase = """datasets""" __UpperCamelCase = False def __init__( self : Dict ,_lowerCAmelCase : str ,_lowerCAmelCase : str ,_lowerCAmelCase : Union[Version, str] ,_lowerCAmelCase : Optional[str] = None ,_lowerCAmelCase : bool = False ,_lowerCAmelCase : bool = True ,_lowerCAmelCase : Optional[List[Callable]] = None ,): """simple docstring""" __snake_case = 0 __snake_case = dataset_name __snake_case = cache_dir __snake_case = use_local_dummy_data __snake_case = config # download_callbacks take a single url as input __snake_case = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __snake_case = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __snake_case = str(_lowerCAmelCase ) # to be downloaded __snake_case = None __snake_case = None @property def UpperCamelCase_ ( self : str ): """simple docstring""" if self._dummy_file is None: __snake_case = self.download_dummy_data() return self._dummy_file @property def UpperCamelCase_ ( self : Tuple ): """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" ,self.config.name ,self.version_name ) # structure is dummy / version_name return os.path.join("dummy" ,self.version_name ) @property def UpperCamelCase_ ( self : List[Any] ): """simple docstring""" return os.path.join(self.dummy_data_folder ,"dummy_data.zip" ) def UpperCamelCase_ ( self : List[str] ): """simple docstring""" __snake_case = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __snake_case = cached_path( _lowerCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=_lowerCAmelCase ,force_extract=_lowerCAmelCase ) return os.path.join(_lowerCAmelCase ,self.dummy_file_name ) @property def UpperCamelCase_ ( self : Dict ): """simple docstring""" return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file ) @property def UpperCamelCase_ ( self : str ): """simple docstring""" if self._bucket_url is None: __snake_case = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) ) return self._bucket_url @property def UpperCamelCase_ ( self : Optional[int] ): """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] ) def UpperCamelCase_ ( self : str ,_lowerCAmelCase : List[Any] ,*_lowerCAmelCase : Optional[int] ): """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested __snake_case = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __snake_case = self.dummy_file_name # special case when data_url is a dict if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): return self.create_dummy_data_dict(_lowerCAmelCase ,_lowerCAmelCase ) elif isinstance(_lowerCAmelCase ,(list, tuple) ): return self.create_dummy_data_list(_lowerCAmelCase ,_lowerCAmelCase ) else: return self.create_dummy_data_single(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self : Dict ,_lowerCAmelCase : str ,*_lowerCAmelCase : Dict ): """simple docstring""" return self.download_and_extract(_lowerCAmelCase ) def UpperCamelCase_ ( self : int ,_lowerCAmelCase : Optional[int] ,_lowerCAmelCase : Optional[Any] ): """simple docstring""" return self.download_and_extract(_lowerCAmelCase ) def UpperCamelCase_ ( self : List[str] ,_lowerCAmelCase : str ,*_lowerCAmelCase : List[str] ,**_lowerCAmelCase : List[Any] ): """simple docstring""" return path def UpperCamelCase_ ( self : Optional[int] ): """simple docstring""" return {} def UpperCamelCase_ ( self : str ,_lowerCAmelCase : int ,_lowerCAmelCase : Optional[int] ): """simple docstring""" __snake_case = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): for single_url in single_urls: download_callback(_lowerCAmelCase ) else: __snake_case = single_urls download_callback(_lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): __snake_case = [os.path.join(_lowerCAmelCase ,urllib.parse.quote_plus(Path(_lowerCAmelCase ).name ) ) for x in single_urls] else: __snake_case = single_urls __snake_case = os.path.join(_lowerCAmelCase ,urllib.parse.quote_plus(Path(_lowerCAmelCase ).name ) ) __snake_case = value # make sure that values are unique if all(isinstance(_lowerCAmelCase ,_lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __snake_case = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCamelCase_ ( self : List[str] ,_lowerCAmelCase : str ,_lowerCAmelCase : Any ): """simple docstring""" __snake_case = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __snake_case = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,_lowerCAmelCase ) ) for url in data_url ) __snake_case = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __snake_case = [data_url[0]] * len(_lowerCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __snake_case = os.path.join(_lowerCAmelCase ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(_lowerCAmelCase ) return dummy_data_list def UpperCamelCase_ ( self : Tuple ,_lowerCAmelCase : Any ,_lowerCAmelCase : Union[str, Any] ): """simple docstring""" for download_callback in self.download_callbacks: download_callback(_lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __snake_case = os.path.join(_lowerCAmelCase ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(_lowerCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCamelCase_ ( self : Any ): """simple docstring""" pass def UpperCamelCase_ ( self : Dict ): """simple docstring""" pass def UpperCamelCase_ ( self : Tuple ,_lowerCAmelCase : List[str] ): """simple docstring""" def _iter_archive_members(_lowerCAmelCase : Tuple ): # this preserves the order of the members inside the ZIP archive __snake_case = Path(self.dummy_file ).parent __snake_case = path.relative_to(_lowerCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __snake_case = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_lowerCAmelCase ) __snake_case = Path(_lowerCAmelCase ) __snake_case = _iter_archive_members(_lowerCAmelCase ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(_lowerCAmelCase ).as_posix(), file_path.open("rb" ) def UpperCamelCase_ ( self : List[str] ,_lowerCAmelCase : Tuple ): """simple docstring""" if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ): __snake_case = [paths] for path in paths: if os.path.isfile(_lowerCAmelCase ): if os.path.basename(_lowerCAmelCase ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(_lowerCAmelCase ): if os.path.basename(_lowerCAmelCase ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(_lowerCAmelCase ): if filename.startswith((".", "__") ): continue yield os.path.join(_lowerCAmelCase ,_lowerCAmelCase )
524
0
def _a ( ): return [ a * b * (1_0_0_0 - a - b) for a in range(1 , 9_9_9 ) for b in range(__lowerCAmelCase , 9_9_9 ) if (a * a + b * b == (1_0_0_0 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'''{solution() = }''')
709
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __lowerCamelCase = [ '''openmmlab/upernet-convnext-tiny''', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __lowerCamelCase = '''UperNetConfig''' class a__ ( nn.Module ): def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Union[int, Tuple[int, int]] , lowerCamelCase_ : Union[int, Tuple[int, int], str] = 0 , lowerCamelCase_ : bool = False , lowerCamelCase_ : Union[int, Tuple[int, int]] = 1 , ): super().__init__() a_ : str = nn.Convad( in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , kernel_size=lowerCamelCase_ , padding=lowerCamelCase_ , bias=lowerCamelCase_ , dilation=lowerCamelCase_ , ) a_ : Dict = nn.BatchNormad(lowerCamelCase_ ) a_ : Union[str, Any] = nn.ReLU() def UpperCAmelCase( self : str , lowerCamelCase_ : torch.Tensor ): a_ : Tuple = self.conv(lowerCamelCase_ ) a_ : int = self.batch_norm(lowerCamelCase_ ) a_ : Optional[int] = self.activation(lowerCamelCase_ ) return output class a__ ( nn.Module ): def __init__( self : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): super().__init__() a_ : Union[str, Any] = [ nn.AdaptiveAvgPoolad(lowerCamelCase_ ), UperNetConvModule(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(lowerCamelCase_ ) , lowerCamelCase_ ) def UpperCAmelCase( self : List[Any] , lowerCamelCase_ : torch.Tensor ): a_ : Optional[int] = input for layer in self.layers: a_ : Dict = layer(lowerCamelCase_ ) return hidden_state class a__ ( nn.Module ): def __init__( self : Union[str, Any] , lowerCamelCase_ : Tuple[int, ...] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : bool ): super().__init__() a_ : Optional[int] = pool_scales a_ : List[Any] = align_corners a_ : Union[str, Any] = in_channels a_ : List[str] = channels a_ : Optional[int] = [] for i, pool_scale in enumerate(lowerCamelCase_ ): a_ : Optional[int] = UperNetPyramidPoolingBlock(pool_scale=lowerCamelCase_ , in_channels=lowerCamelCase_ , channels=lowerCamelCase_ ) self.blocks.append(lowerCamelCase_ ) self.add_module(str(lowerCamelCase_ ) , lowerCamelCase_ ) def UpperCAmelCase( self : List[str] , lowerCamelCase_ : torch.Tensor ): a_ : List[str] = [] for ppm in self.blocks: a_ : Any = ppm(lowerCamelCase_ ) a_ : str = nn.functional.interpolate( lowerCamelCase_ , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(lowerCamelCase_ ) return ppm_outs class a__ ( nn.Module ): def __init__( self : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : int ): super().__init__() a_ : Tuple = config a_ : int = config.pool_scales # e.g. (1, 2, 3, 6) a_ : str = in_channels a_ : str = config.hidden_size a_ : int = False a_ : int = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module a_ : Optional[int] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) a_ : int = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module a_ : List[Any] = nn.ModuleList() a_ : Optional[int] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer a_ : List[str] = UperNetConvModule(lowerCamelCase_ , self.channels , kernel_size=1 ) a_ : Union[str, Any] = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(lowerCamelCase_ ) self.fpn_convs.append(lowerCamelCase_ ) a_ : str = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def UpperCAmelCase( self : str ): self.apply(self._init_weights ) def UpperCAmelCase( self : Any , lowerCamelCase_ : Union[str, Any] ): if isinstance(lowerCamelCase_ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase( self : Tuple , lowerCamelCase_ : Optional[int] ): a_ : Optional[int] = inputs[-1] a_ : List[str] = [x] psp_outs.extend(self.psp_modules(lowerCamelCase_ ) ) a_ : int = torch.cat(lowerCamelCase_ , dim=1 ) a_ : Tuple = self.bottleneck(lowerCamelCase_ ) return output def UpperCAmelCase( self : List[str] , lowerCamelCase_ : torch.Tensor ): # build laterals a_ : List[Any] = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(lowerCamelCase_ ) ) # build top-down path a_ : Tuple = len(lowerCamelCase_ ) for i in range(used_backbone_levels - 1 , 0 , -1 ): a_ : List[Any] = laterals[i - 1].shape[2:] a_ : int = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=lowerCamelCase_ , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs a_ : int = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): a_ : Union[str, Any] = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) a_ : Optional[Any] = torch.cat(lowerCamelCase_ , dim=1 ) a_ : Tuple = self.fpn_bottleneck(lowerCamelCase_ ) a_ : str = self.classifier(lowerCamelCase_ ) return output class a__ ( nn.Module ): def __init__( self : Union[str, Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int = 2 , lowerCamelCase_ : int = 3 , lowerCamelCase_ : Union[int, Tuple[int, int]] = 1 ): super().__init__() a_ : Union[str, Any] = config a_ : str = config.auxiliary_in_channels a_ : List[str] = config.auxiliary_channels a_ : List[Any] = config.auxiliary_num_convs a_ : Optional[Any] = config.auxiliary_concat_input a_ : str = in_index a_ : str = (kernel_size // 2) * dilation a_ : Union[str, Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=lowerCamelCase_ , padding=lowerCamelCase_ , dilation=lowerCamelCase_ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=lowerCamelCase_ , padding=lowerCamelCase_ , dilation=lowerCamelCase_ ) ) if self.num_convs == 0: a_ : Dict = nn.Identity() else: a_ : Optional[Any] = nn.Sequential(*lowerCamelCase_ ) if self.concat_input: a_ : List[str] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=lowerCamelCase_ , padding=kernel_size // 2 ) a_ : str = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def UpperCAmelCase( self : Optional[int] ): self.apply(self._init_weights ) def UpperCAmelCase( self : List[str] , lowerCamelCase_ : Dict ): if isinstance(lowerCamelCase_ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase( self : Any , lowerCamelCase_ : torch.Tensor ): # just take the relevant feature maps a_ : List[Any] = encoder_hidden_states[self.in_index] a_ : Any = self.convs(lowerCamelCase_ ) if self.concat_input: a_ : Optional[Any] = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) a_ : Union[str, Any] = self.classifier(lowerCamelCase_ ) return output class a__ ( lowerCAmelCase_ ): lowerCamelCase__: Tuple = UperNetConfig lowerCamelCase__: Tuple = """pixel_values""" lowerCamelCase__: Optional[Any] = True def UpperCAmelCase( self : Optional[int] , lowerCamelCase_ : str ): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase( self : List[str] ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase( self : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str=False ): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): a_ : List[Any] = value __lowerCamelCase = R''' Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __lowerCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""" , lowerCAmelCase_ , ) class a__ ( lowerCAmelCase_ ): def __init__( self : Optional[int] , lowerCamelCase_ : Optional[Any] ): super().__init__(lowerCamelCase_ ) a_ : str = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) a_ : List[Any] = UperNetHead(lowerCamelCase_ , in_channels=self.backbone.channels ) a_ : List[str] = UperNetFCNHead(lowerCamelCase_ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase( self : Union[str, Any] , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[bool] = None , ): a_ : List[str] = return_dict if return_dict is not None else self.config.use_return_dict a_ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions a_ : List[Any] = self.backbone.forward_with_filtered_kwargs( lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , output_attentions=lowerCamelCase_ ) a_ : str = outputs.feature_maps a_ : Tuple = self.decode_head(lowerCamelCase_ ) a_ : Optional[Any] = nn.functional.interpolate(lowerCamelCase_ , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=lowerCamelCase_ ) a_ : List[Any] = None if self.auxiliary_head is not None: a_ : Dict = self.auxiliary_head(lowerCamelCase_ ) a_ : List[Any] = nn.functional.interpolate( lowerCamelCase_ , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=lowerCamelCase_ ) a_ : Dict = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss a_ : int = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) a_ : List[Any] = loss_fct(lowerCamelCase_ , lowerCamelCase_ ) a_ : Optional[int] = loss_fct(lowerCamelCase_ , lowerCamelCase_ ) a_ : Tuple = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: a_ : str = (logits,) + outputs[1:] else: a_ : Optional[int] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=lowerCamelCase_ , logits=lowerCamelCase_ , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
478
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( snake_case , snake_case , snake_case ): # Initialise PyTorch model _lowerCAmelCase = MobileBertConfig.from_json_file(lowerCamelCase__ ) print(F'Building PyTorch model from configuration: {config}' ) _lowerCAmelCase = MobileBertForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint _lowerCAmelCase = load_tf_weights_in_mobilebert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": _lowercase: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowercase: str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
192
class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase=None , lowercase=None ) -> List[Any]: lowerCamelCase_ = data lowerCamelCase_ = previous lowerCamelCase_ = next_node def __str__( self ) -> str: return f'{self.data}' def SCREAMING_SNAKE_CASE_( self ) -> int: return self.data def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: return self.next def SCREAMING_SNAKE_CASE_( self ) -> int: return self.previous class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase ) -> Optional[int]: lowerCamelCase_ = head def __iter__( self ) -> int: return self def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: if not self.current: raise StopIteration else: lowerCamelCase_ = self.current.get_data() lowerCamelCase_ = self.current.get_next() return value class _SCREAMING_SNAKE_CASE : def __init__( self ) -> Union[str, Any]: lowerCamelCase_ = None # First node in list lowerCamelCase_ = None # Last node in list def __str__( self ) -> Optional[Any]: lowerCamelCase_ = self.head lowerCamelCase_ = [] while current is not None: nodes.append(current.get_data() ) lowerCamelCase_ = current.get_next() return " ".join(str(lowercase ) for node in nodes ) def __contains__( self , lowercase ) -> Optional[int]: lowerCamelCase_ = self.head while current: if current.get_data() == value: return True lowerCamelCase_ = current.get_next() return False def __iter__( self ) -> List[str]: return LinkedListIterator(self.head ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: if self.head: return self.head.get_data() return None def SCREAMING_SNAKE_CASE_( self ) -> Any: if self.tail: return self.tail.get_data() return None def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: if self.head is None: lowerCamelCase_ = node lowerCamelCase_ = node else: self.insert_before_node(self.head , lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: if self.head is None: self.set_head(lowercase ) else: self.insert_after_node(self.tail , lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = Node(lowercase ) if self.head is None: self.set_head(lowercase ) else: self.set_tail(lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> None: lowerCamelCase_ = node lowerCamelCase_ = node.previous if node.get_previous() is None: lowerCamelCase_ = node_to_insert else: lowerCamelCase_ = node_to_insert lowerCamelCase_ = node_to_insert def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> None: lowerCamelCase_ = node lowerCamelCase_ = node.next if node.get_next() is None: lowerCamelCase_ = node_to_insert else: lowerCamelCase_ = node_to_insert lowerCamelCase_ = node_to_insert def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> None: lowerCamelCase_ = 1 lowerCamelCase_ = Node(lowercase ) lowerCamelCase_ = self.head while node: if current_position == position: self.insert_before_node(lowercase , lowercase ) return current_position += 1 lowerCamelCase_ = node.next self.insert_after_node(self.tail , lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Node: lowerCamelCase_ = self.head while node: if node.get_data() == item: return node lowerCamelCase_ = node.get_next() raise Exception("Node not found" ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Union[str, Any]: if (node := self.get_node(lowercase )) is not None: if node == self.head: lowerCamelCase_ = self.head.get_next() if node == self.tail: lowerCamelCase_ = self.tail.get_previous() self.remove_node_pointers(lowercase ) @staticmethod def SCREAMING_SNAKE_CASE_( lowercase ) -> None: if node.get_next(): lowerCamelCase_ = node.previous if node.get_previous(): lowerCamelCase_ = node.next lowerCamelCase_ = None lowerCamelCase_ = None def SCREAMING_SNAKE_CASE_( self ) -> int: return self.head is None def lowerCamelCase_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
463
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def UpperCAmelCase_ ( lowercase__ ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) lowercase = '''\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n''' class UpperCAmelCase ( __a): '''simple docstring''' @staticmethod def lowercase_ ( lowerCAmelCase_) -> Optional[int]: """simple docstring""" a_ =parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="Model's type.") train_parser.add_argument( "--tf_checkpoint" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="TensorFlow checkpoint path or folder.") train_parser.add_argument( "--pytorch_dump_output" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="Path to the PyTorch saved model output.") train_parser.add_argument("--config" , type=_SCREAMING_SNAKE_CASE , default="" , help="Configuration file path or folder.") train_parser.add_argument( "--finetuning_task_name" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=_SCREAMING_SNAKE_CASE) def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ , ) -> Optional[Any]: """simple docstring""" a_ =logging.get_logger("transformers-cli/converting") self._logger.info(f"""Loading model {model_type}""") a_ =model_type a_ =tf_checkpoint a_ =pytorch_dump_output a_ =config a_ =finetuning_task_name def lowercase_ ( self) -> Dict: """simple docstring""" if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_SCREAMING_SNAKE_CASE) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_SCREAMING_SNAKE_CASE) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_SCREAMING_SNAKE_CASE) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_SCREAMING_SNAKE_CASE) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_SCREAMING_SNAKE_CASE) if "ckpt" in self._tf_checkpoint.lower(): a_ =self._tf_checkpoint a_ ="" else: a_ =self._tf_checkpoint a_ ="" convert_transfo_xl_checkpoint_to_pytorch( _SCREAMING_SNAKE_CASE , self._config , self._pytorch_dump_output , _SCREAMING_SNAKE_CASE) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_SCREAMING_SNAKE_CASE) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_SCREAMING_SNAKE_CASE) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]")
713
'''simple docstring''' import os from math import logaa def UpperCAmelCase_ ( lowercase__ = "base_exp.txt" ): '''simple docstring''' a_ =0 a_ =0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowercase__ ) , lowercase__ ) ) ): a_ , a_ =list(map(lowercase__ , line.split("," ) ) ) if x * logaa(lowercase__ ) > largest: a_ =x * logaa(lowercase__ ) a_ =i + 1 return result if __name__ == "__main__": print(solution())
41
0
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter A = True except ImportError: A = False A = logging.get_logger(__name__) # pylint: disable=invalid-name def a(lowercase__ ): '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" @staticmethod def __lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" snake_case_ = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' , action='store_true' , help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' , type=lowerCamelCase__ , help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' , type=lowerCamelCase__ , help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , *__UpperCamelCase ): """simple docstring""" snake_case_ = testing snake_case_ = testing_file snake_case_ = path def __lowerCAmelCase ( self ): """simple docstring""" warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case_ = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(lowerCamelCase__ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) snake_case_ = ( Path(lowerCamelCase__ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case_ = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCamelCase__ ) ) else: with open(self._testing_file , 'r' ) as configuration_file: snake_case_ = json.load(lowerCamelCase__ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowerCamelCase__ , extra_context=lowerCamelCase__ , ) snake_case_ = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' , 'r' ) as configuration_file: snake_case_ = json.load(lowerCamelCase__ ) snake_case_ = configuration['''lowercase_modelname'''] snake_case_ = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f"""{directory}/configuration.json""" ) snake_case_ = '''PyTorch''' in generate_tensorflow_pytorch_and_flax snake_case_ = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax snake_case_ = '''Flax''' in generate_tensorflow_pytorch_and_flax snake_case_ = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=lowerCamelCase__ ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , 'w' ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(__UpperCamelCase ): with open(lowerCamelCase__ , 'r' ) as f: snake_case_ = f.readlines() with open(lowerCamelCase__ , 'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCamelCase__ ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): # Create temp file snake_case_ = mkstemp() snake_case_ = False with fdopen(lowerCamelCase__ , 'w' ) as new_file: with open(lowerCamelCase__ ) as old_file: for line in old_file: new_file.write(lowerCamelCase__ ) if line_to_copy_below in line: snake_case_ = True for line_to_copy in lines_to_copy: new_file.write(lowerCamelCase__ ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(lowerCamelCase__ , lowerCamelCase__ ) # Remove original file remove(lowerCamelCase__ ) # Move new file move(lowerCamelCase__ , lowerCamelCase__ ) def skip_units(__UpperCamelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__UpperCamelCase ): with open(lowerCamelCase__ ) as datafile: snake_case_ = [] snake_case_ = False snake_case_ = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case_ = line.split('"' )[1] snake_case_ = skip_units(lowerCamelCase__ ) elif "# Below: " in line and "##" not in line: snake_case_ = line.split('"' )[1] snake_case_ = skip_units(lowerCamelCase__ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) snake_case_ = [] elif "# Replace with" in line and "##" not in line: snake_case_ = [] elif "##" not in line: lines_to_copy.append(lowerCamelCase__ ) remove(lowerCamelCase__ ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(lowerCamelCase__ )
187
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __SCREAMING_SNAKE_CASE : Any = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
348
0
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __A : Any = get_logger(__name__) __A : Union[str, Any] = Path(__file__).parent / "model_card_template.md" __A : int = uuida().hex __A : Optional[Any] = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES __A : Union[str, Any] = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES __A : Union[str, Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/" def lowercase ( _SCREAMING_SNAKE_CASE : Union[Dict, str, None] = None ): '''simple docstring''' _UpperCAmelCase = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'; torch/{_torch_version}' if is_flax_available(): ua += f'; jax/{_jax_version}' ua += f'; flax/{_flax_version}' if is_onnx_available(): ua += f'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): ua += "; " + user_agent return ua def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None , _SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if token is None: _UpperCAmelCase = HfFolder.get_token() if organization is None: _UpperCAmelCase = whoami(_SCREAMING_SNAKE_CASE )['''name'''] return f'{username}/{model_id}' else: return f'{organization}/{model_id}' def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(_SCREAMING_SNAKE_CASE , '''local_rank''' ) and args.local_rank not in [-1, 0]: return _UpperCAmelCase = args.hub_token if hasattr(_SCREAMING_SNAKE_CASE , '''hub_token''' ) else None _UpperCAmelCase = get_full_repo_name(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_SCREAMING_SNAKE_CASE , model_name=_SCREAMING_SNAKE_CASE , repo_name=_SCREAMING_SNAKE_CASE , dataset_name=args.dataset_name if hasattr(_SCREAMING_SNAKE_CASE , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_SCREAMING_SNAKE_CASE , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(_SCREAMING_SNAKE_CASE , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(_SCREAMING_SNAKE_CASE , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_SCREAMING_SNAKE_CASE , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(_SCREAMING_SNAKE_CASE , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(_SCREAMING_SNAKE_CASE , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_SCREAMING_SNAKE_CASE , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_SCREAMING_SNAKE_CASE , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(_SCREAMING_SNAKE_CASE , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(_SCREAMING_SNAKE_CASE , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) _UpperCAmelCase = os.path.join(args.output_dir , '''README.md''' ) model_card.save(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[str] , _SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash _UpperCAmelCase = str(Path(_SCREAMING_SNAKE_CASE ).as_posix() ) _UpperCAmelCase = re.search(r'''snapshots/([^/]+)/''' , _SCREAMING_SNAKE_CASE ) if search is None: return None _UpperCAmelCase = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_SCREAMING_SNAKE_CASE ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __A : Dict = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) __A : Optional[int] = os.path.join(hf_cache_home, "diffusers") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[str] = None , _SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if new_cache_dir is None: _UpperCAmelCase = DIFFUSERS_CACHE if old_cache_dir is None: _UpperCAmelCase = old_diffusers_cache _UpperCAmelCase = Path(_SCREAMING_SNAKE_CASE ).expanduser() _UpperCAmelCase = Path(_SCREAMING_SNAKE_CASE ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): _UpperCAmelCase = new_cache_dir / old_blob_path.relative_to(_SCREAMING_SNAKE_CASE ) new_blob_path.parent.mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) os.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) try: os.symlink(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __A : Optional[Any] = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt") if not os.path.isfile(cache_version_file): __A : Optional[Any] = 0 else: with open(cache_version_file) as f: try: __A : Tuple = int(f.read()) except ValueError: __A : int = 0 if cache_version < 1: __A : List[Any] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " "existing cached models. This is a one-time operation, you can interrupt it or run it " "later by calling `diffusers.utils.hub_utils.move_cache()`." ) try: move_cache() except Exception as e: __A : Optional[int] = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' "the directory exists and can be written to." ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if variant is not None: _UpperCAmelCase = weights_name.split('''.''' ) _UpperCAmelCase = splits[:-1] + [variant] + splits[-1:] _UpperCAmelCase = '''.'''.join(_SCREAMING_SNAKE_CASE ) return weights_name def lowercase ( _SCREAMING_SNAKE_CASE : str , *, _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any]=None , ): '''simple docstring''' _UpperCAmelCase = str(_SCREAMING_SNAKE_CASE ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): return pretrained_model_name_or_path elif os.path.isdir(_SCREAMING_SNAKE_CASE ): if os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): # Load from a PyTorch checkpoint _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return model_file else: raise EnvironmentError( f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_SCREAMING_SNAKE_CASE ).base_version ) >= version.parse('''0.20.0''' ) ): try: _UpperCAmelCase = hf_hub_download( _SCREAMING_SNAKE_CASE , filename=_add_variant(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , proxies=_SCREAMING_SNAKE_CASE , resume_download=_SCREAMING_SNAKE_CASE , local_files_only=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , user_agent=_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE , revision=revision or commit_hash , ) warnings.warn( f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , _SCREAMING_SNAKE_CASE , ) return model_file except: # noqa: E722 warnings.warn( f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}\' so that the correct variant file can be added.' , _SCREAMING_SNAKE_CASE , ) try: # 2. Load model file as usual _UpperCAmelCase = hf_hub_download( _SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , proxies=_SCREAMING_SNAKE_CASE , resume_download=_SCREAMING_SNAKE_CASE , local_files_only=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , user_agent=_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' '''this model name. Check the model page at ''' f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' f' directory containing a file named {weights_name} or' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' f'containing a file named {weights_name}' )
95
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : List[str] , __UpperCamelCase : NestedDataStructureLike[PathLike] , __UpperCamelCase : Optional[NamedSplit] = None , __UpperCamelCase : Optional[Features] = None , __UpperCamelCase : str = None , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[int] = None , **__UpperCamelCase : Optional[Any] , )->Any: super().__init__( __UpperCamelCase , split=__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase , streaming=__UpperCamelCase , num_proc=__UpperCamelCase , **__UpperCamelCase , ) _UpperCAmelCase = path_or_paths if isinstance(__UpperCamelCase , __UpperCamelCase ) else {self.split: path_or_paths} _UpperCAmelCase = Text( cache_dir=__UpperCamelCase , data_files=__UpperCamelCase , features=__UpperCamelCase , **__UpperCamelCase , ) def lowercase__ ( self : Optional[Any] )->str: # Build iterable dataset if self.streaming: _UpperCAmelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None self.builder.download_and_prepare( download_config=__UpperCamelCase , download_mode=__UpperCamelCase , verification_mode=__UpperCamelCase , base_path=__UpperCamelCase , num_proc=self.num_proc , ) _UpperCAmelCase = self.builder.as_dataset( split=self.split , verification_mode=__UpperCamelCase , in_memory=self.keep_in_memory ) return dataset
95
1
from collections.abc import Iterable from typing import Generic, TypeVar _snake_case : Dict = TypeVar("_T") class a (Generic[_T] ): """simple docstring""" def __init__( self : int , lowerCamelCase : Iterable[_T] | None = None ) -> None: __snake_case : list[_T] = list(iterable or [] ) __snake_case : list[_T] = [] def __len__( self : Optional[int] ) -> int: return len(self._stacka ) + len(self._stacka ) def __repr__( self : Tuple ) -> str: return F'Queue({tuple(self._stacka[::-1] + self._stacka )})' def __snake_case ( self : Tuple , lowerCamelCase : _T ) -> None: self._stacka.append(lowerCamelCase ) def __snake_case ( self : str ) -> _T: __snake_case : List[str] = self._stacka.pop __snake_case : int = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
81
from collections import deque class lowerCAmelCase_ : def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase__ = process_name # process name lowerCAmelCase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCAmelCase__ = arrival_time lowerCAmelCase__ = burst_time # remaining burst time lowerCAmelCase__ = 0 # total time of the process wait in ready queue lowerCAmelCase__ = 0 # time from arrival time to completion time class lowerCAmelCase_ : def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int , ): # total number of mlfq's queues lowerCAmelCase__ = number_of_queues # time slice of queues that round robin algorithm applied lowerCAmelCase__ = time_slices # unfinished process is in this ready_queue lowerCAmelCase__ = queue # current time lowerCAmelCase__ = current_time # finished process is in this sequence queue lowerCAmelCase__ = deque() def __snake_case ( self : Tuple ): lowerCAmelCase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def __snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : list[Process] ): lowerCAmelCase__ = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def __snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : list[Process] ): lowerCAmelCase__ = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def __snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : list[Process] ): lowerCAmelCase__ = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): completion_times.append(queue[i].stop_time ) return completion_times def __snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : deque[Process] ): return [q.burst_time for q in queue] def __snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def __snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : deque[Process] ): lowerCAmelCase__ = deque() # sequence deque of finished process while len(SCREAMING_SNAKE_CASE_ ) != 0: lowerCAmelCase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCAmelCase__ = 0 # set the process's turnaround time because it is finished lowerCAmelCase__ = self.current_time - cp.arrival_time # set the completion time lowerCAmelCase__ = self.current_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def __snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(SCREAMING_SNAKE_CASE_ ) ): lowerCAmelCase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCAmelCase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(SCREAMING_SNAKE_CASE_ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCAmelCase__ = 0 # set the finish time lowerCAmelCase__ = self.current_time # update the process' turnaround time because it is finished lowerCAmelCase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def __snake_case ( self : int ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): lowerCAmelCase__ , lowerCAmelCase__ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _UpperCAmelCase : List[Any] = Process("P1", 0, 53) _UpperCAmelCase : Tuple = Process("P2", 0, 17) _UpperCAmelCase : int = Process("P3", 0, 68) _UpperCAmelCase : str = Process("P4", 0, 24) _UpperCAmelCase : Tuple = 3 _UpperCAmelCase : List[Any] = [17, 25] _UpperCAmelCase : Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) _UpperCAmelCase : Tuple = Process("P1", 0, 53) _UpperCAmelCase : List[str] = Process("P2", 0, 17) _UpperCAmelCase : Any = Process("P3", 0, 68) _UpperCAmelCase : List[Any] = Process("P4", 0, 24) _UpperCAmelCase : Optional[int] = 3 _UpperCAmelCase : int = [17, 25] _UpperCAmelCase : str = deque([Pa, Pa, Pa, Pa]) _UpperCAmelCase : Tuple = MLFQ(number_of_queues, time_slices, queue, 0) _UpperCAmelCase : int = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
668
0
from __future__ import annotations from typing import Any class __a : '''simple docstring''' def __init__( self , _a ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = num_of_nodes SCREAMING_SNAKE_CASE__ : List[Any] = [] SCREAMING_SNAKE_CASE__ : str = {} def _a ( self , _a , _a , _a ) -> None: """simple docstring""" self.m_edges.append([u_node, v_node, weight] ) def _a ( self , _a ) -> int: """simple docstring""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _a ( self , _a ) -> None: """simple docstring""" if self.m_component[u_node] != u_node: for k in self.m_component: SCREAMING_SNAKE_CASE__ : Dict = self.find_component(snake_case_ ) def _a ( self , _a , _a , _a ) -> None: """simple docstring""" if component_size[u_node] <= component_size[v_node]: SCREAMING_SNAKE_CASE__ : Optional[Any] = v_node component_size[v_node] += component_size[u_node] self.set_component(snake_case_ ) elif component_size[u_node] >= component_size[v_node]: SCREAMING_SNAKE_CASE__ : Optional[int] = self.find_component(snake_case_ ) component_size[u_node] += component_size[v_node] self.set_component(snake_case_ ) def _a ( self ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : str = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) SCREAMING_SNAKE_CASE__ : Any = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = edge SCREAMING_SNAKE_CASE__ : Optional[Any] = self.m_component[u] SCREAMING_SNAKE_CASE__ : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): SCREAMING_SNAKE_CASE__ : Optional[Any] = [u, v, w] for edge in minimum_weight_edge: if isinstance(snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = edge SCREAMING_SNAKE_CASE__ : List[Any] = self.m_component[u] SCREAMING_SNAKE_CASE__ : Dict = self.m_component[v] if u_component != v_component: mst_weight += w self.union(snake_case_ , snake_case_ , snake_case_ ) print(f'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 SCREAMING_SNAKE_CASE__ : Tuple = [-1] * self.m_num_of_nodes print(f'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def _lowercase ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
719
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class __a (UpperCamelCase_): '''simple docstring''' def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> Union[str, Any]: """simple docstring""" super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a ) SCREAMING_SNAKE_CASE__ : List[Any] = Sql( cache_dir=_a , features=_a , sql=_a , con=_a , **_a , ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : Optional[int] = None self.builder.download_and_prepare( download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , ) # Build dataset for splits SCREAMING_SNAKE_CASE__ : str = self.builder.as_dataset( split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory ) return dataset class __a : '''simple docstring''' def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> Any: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) SCREAMING_SNAKE_CASE__ : int = dataset SCREAMING_SNAKE_CASE__ : Any = name SCREAMING_SNAKE_CASE__ : Optional[Any] = con SCREAMING_SNAKE_CASE__ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE SCREAMING_SNAKE_CASE__ : int = num_proc SCREAMING_SNAKE_CASE__ : int = to_sql_kwargs def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.to_sql_kwargs.pop("""sql""" , _a ) SCREAMING_SNAKE_CASE__ : Tuple = self.to_sql_kwargs.pop("""con""" , _a ) SCREAMING_SNAKE_CASE__ : Tuple = self.to_sql_kwargs.pop("""index""" , _a ) SCREAMING_SNAKE_CASE__ : Optional[int] = self._write(index=_a , **self.to_sql_kwargs ) return written def _a ( self , _a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = args SCREAMING_SNAKE_CASE__ : List[str] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs SCREAMING_SNAKE_CASE__ : Any = query_table( table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , ) SCREAMING_SNAKE_CASE__ : Optional[int] = batch.to_pandas() SCREAMING_SNAKE_CASE__ : List[Any] = df.to_sql(self.name , self.con , index=_a , **_a ) return num_rows or len(_a ) def _a ( self , _a , **_a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
12
0
'''simple docstring''' import math def __UpperCAmelCase (lowercase__ ) -> list: '''simple docstring''' a_ = [True] * n a_ = False a_ = False a_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): a_ = i * 2 while index < n: a_ = False a_ = index + i a_ = [2] for i in range(3 ,lowercase__ ,2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def __UpperCAmelCase (lowercase__ = 999966663333 ) -> int: '''simple docstring''' a_ = math.floor(math.sqrt(lowercase__ ) ) + 100 a_ = prime_sieve(lowercase__ ) a_ = 0 a_ = 0 a_ = primes[prime_index] while (last_prime**2) <= limit: a_ = primes[prime_index + 1] a_ = last_prime**2 a_ = next_prime**2 # Get numbers divisible by lps(current) a_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) a_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps a_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair a_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
685
'''simple docstring''' from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ ): _UpperCAmelCase ='''pixel_values''' _UpperCAmelCase =False _UpperCAmelCase =TimmBackboneConfig def __init__( self: Union[str, Any] , a: Union[str, Any] , **a: Tuple) ->Optional[Any]: '''simple docstring''' requires_backends(self , "timm") super().__init__(a) a_ = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name.") if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""") if hasattr(a , "out_features") and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead.") a_ = getattr(a , "use_pretrained_backbone" , a) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False.") # We just take the final layer by default. This matches the default for the transformers models. a_ = config.out_indices if getattr(a , "out_indices" , a) is not None else (-1,) a_ = timm.create_model( config.backbone , pretrained=a , features_only=config.features_only , in_chans=config.num_channels , out_indices=a , **a , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. a_ = self._backbone.return_layers a_ = {layer["module"]: str(a) for i, layer in enumerate(self._backbone.feature_info.info)} super()._init_backbone(a) @classmethod def _lowerCAmelCase ( cls: Tuple , a: Optional[Any] , *a: Optional[Any] , **a: str) ->List[Any]: '''simple docstring''' requires_backends(cls , ["vision", "timm"]) from ...models.timm_backbone import TimmBackboneConfig a_ = kwargs.pop("config" , TimmBackboneConfig()) a_ = kwargs.pop("use_timm_backbone" , a) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones") a_ = kwargs.pop("num_channels" , config.num_channels) a_ = kwargs.pop("features_only" , config.features_only) a_ = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone) a_ = kwargs.pop("out_indices" , config.out_indices) a_ = TimmBackboneConfig( backbone=a , num_channels=a , features_only=a , use_pretrained_backbone=a , out_indices=a , ) return super()._from_config(a , **a) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[int]) ->str: '''simple docstring''' pass def _lowerCAmelCase ( self: Tuple , a: List[Any] , a: Any=None , a: Dict=None , a: Optional[int]=None , **a: int) ->Union[BackboneOutput, Tuple[Tensor, ...]]: '''simple docstring''' a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment") if output_hidden_states: # We modify the return layers to include all the stages of the backbone a_ = self._all_layers a_ = self._backbone(a , **a) a_ = self._return_layers a_ = tuple(hidden_states[i] for i in self.out_indices) else: a_ = self._backbone(a , **a) a_ = None a_ = tuple(a) a_ = tuple(a) if hidden_states is not None else None if not return_dict: a_ = (feature_maps,) if output_hidden_states: a_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=a , hidden_states=a , attentions=a)
685
1
import math def _lowerCamelCase( lowerCAmelCase__ : float , lowerCAmelCase__ : float ): '''simple docstring''' return math.pow(lowerCAmelCase__ , 2 ) - a def _lowerCamelCase( lowerCAmelCase__ : float ): '''simple docstring''' return 2 * x def _lowerCamelCase( lowerCAmelCase__ : float ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = 2.0 while start <= a: SCREAMING_SNAKE_CASE_ : str = math.pow(lowerCAmelCase__ , 2 ) return start def _lowerCamelCase( lowerCAmelCase__ : float , lowerCAmelCase__ : int = 9999 , lowerCAmelCase__ : float = 0.00_000_000_000_001 ): '''simple docstring''' if a < 0: raise ValueError('math domain error' ) SCREAMING_SNAKE_CASE_ : Optional[int] = get_initial_point(lowerCAmelCase__ ) for _ in range(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Tuple = value SCREAMING_SNAKE_CASE_ : Union[str, Any] = value - fx(lowerCAmelCase__ , lowerCAmelCase__ ) / fx_derivative(lowerCAmelCase__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
717
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py A = 'src/transformers' A = 'docs/source/en/tasks' def _lowerCamelCase( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] ): '''simple docstring''' with open(lowerCAmelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.readlines() # Find the start prompt. SCREAMING_SNAKE_CASE_ : Optional[int] = 0 while not lines[start_index].startswith(lowerCAmelCase__ ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE_ : int = start_index while not lines[end_index].startswith(lowerCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. A = direct_transformers_import(TRANSFORMERS_PATH) A = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). A = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def _lowerCamelCase( lowerCAmelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = TASK_GUIDE_TO_MODELS[task_guide] SCREAMING_SNAKE_CASE_ : Union[str, Any] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(lowerCAmelCase__ , set() ) SCREAMING_SNAKE_CASE_ : Optional[int] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def _lowerCamelCase( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str]=False ): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = _find_text_in_file( filename=os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) SCREAMING_SNAKE_CASE_ : Dict = get_model_list_for_task(lowerCAmelCase__ ) if current_list != new_list: if overwrite: with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' ' to fix this.' ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') A = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
97
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __magic_name__ ( lowercase__ ): _SCREAMING_SNAKE_CASE : int = (DPMSolverSinglestepScheduler,) _SCREAMING_SNAKE_CASE : str = (('num_inference_steps', 25),) def lowerCAmelCase ( self : Any , **snake_case_ : int ): __snake_case = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**snake_case_ ) return config def lowerCAmelCase ( self : int , snake_case_ : Dict=0 , **snake_case_ : Optional[int] ): __snake_case = dict(self.forward_default_kwargs ) __snake_case = kwargs.pop("num_inference_steps" , snake_case_ ) __snake_case = self.dummy_sample __snake_case = 0.1 * sample __snake_case = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __snake_case = self.get_scheduler_config(**snake_case_ ) __snake_case = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals __snake_case = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case_ ) __snake_case = scheduler_class.from_pretrained(snake_case_ ) new_scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals __snake_case = dummy_past_residuals[: new_scheduler.config.solver_order] __snake_case , __snake_case = sample, sample for t in range(snake_case_ , time_step + scheduler.config.solver_order + 1 ): __snake_case = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample __snake_case = new_scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCAmelCase ( self : str ): pass def lowerCAmelCase ( self : List[Any] , snake_case_ : str=0 , **snake_case_ : Any ): __snake_case = dict(self.forward_default_kwargs ) __snake_case = kwargs.pop("num_inference_steps" , snake_case_ ) __snake_case = self.dummy_sample __snake_case = 0.1 * sample __snake_case = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals (must be after setting timesteps) __snake_case = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case_ ) __snake_case = scheduler_class.from_pretrained(snake_case_ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case_ ) # copy over dummy past residual (must be after setting timesteps) __snake_case = dummy_past_residuals[: new_scheduler.config.solver_order] __snake_case = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample __snake_case = new_scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCAmelCase ( self : str , snake_case_ : Union[str, Any]=None , **snake_case_ : Union[str, Any] ): if scheduler is None: __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config(**snake_case_ ) __snake_case = scheduler_class(**snake_case_ ) __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config(**snake_case_ ) __snake_case = scheduler_class(**snake_case_ ) __snake_case = 10 __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter scheduler.set_timesteps(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): __snake_case = model(snake_case_ , snake_case_ ) __snake_case = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample return sample def lowerCAmelCase ( self : Any ): __snake_case = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __snake_case = 50 __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter scheduler.set_timesteps(snake_case_ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __snake_case = model(snake_case_ , snake_case_ ) __snake_case = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample __snake_case = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.2574 ) < 1e-3 def lowerCAmelCase ( self : List[Any] ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=snake_case_ ) def lowerCAmelCase ( self : List[Any] ): # make sure that iterating over schedulers with same config names gives same results # for defaults __snake_case = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __snake_case = self.full_loop(scheduler=snake_case_ ) __snake_case = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 __snake_case = DEISMultistepScheduler.from_config(scheduler.config ) __snake_case = DPMSolverMultistepScheduler.from_config(scheduler.config ) __snake_case = UniPCMultistepScheduler.from_config(scheduler.config ) __snake_case = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __snake_case = self.full_loop(scheduler=snake_case_ ) __snake_case = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def lowerCAmelCase ( self : str ): self.check_over_configs(thresholding=snake_case_ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=snake_case_ , prediction_type=snake_case_ , sample_max_value=snake_case_ , algorithm_type="dpmsolver++" , solver_order=snake_case_ , solver_type=snake_case_ , ) def lowerCAmelCase ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def lowerCAmelCase ( self : List[Any] ): for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=snake_case_ , solver_type=snake_case_ , prediction_type=snake_case_ , algorithm_type=snake_case_ , ) __snake_case = self.full_loop( solver_order=snake_case_ , solver_type=snake_case_ , prediction_type=snake_case_ , algorithm_type=snake_case_ , ) assert not torch.isnan(snake_case_ ).any(), "Samples have nan numbers" def lowerCAmelCase ( self : int ): self.check_over_configs(lower_order_final=snake_case_ ) self.check_over_configs(lower_order_final=snake_case_ ) def lowerCAmelCase ( self : int ): self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def lowerCAmelCase ( self : Any ): self.check_over_configs(variance_type=snake_case_ ) self.check_over_configs(variance_type="learned_range" ) def lowerCAmelCase ( self : Optional[Any] ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=snake_case_ , time_step=0 ) def lowerCAmelCase ( self : Dict ): __snake_case = self.full_loop() __snake_case = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def lowerCAmelCase ( self : str ): __snake_case = self.full_loop(use_karras_sigmas=snake_case_ ) __snake_case = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.2248 ) < 1e-3 def lowerCAmelCase ( self : Dict ): __snake_case = self.full_loop(prediction_type="v_prediction" ) __snake_case = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.1453 ) < 1e-3 def lowerCAmelCase ( self : Optional[Any] ): __snake_case = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=snake_case_ ) __snake_case = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.0649 ) < 1e-3 def lowerCAmelCase ( self : int ): __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config(thresholding=snake_case_ , dynamic_thresholding_ratio=0 ) __snake_case = scheduler_class(**snake_case_ ) __snake_case = 10 __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter.half() scheduler.set_timesteps(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): __snake_case = model(snake_case_ , snake_case_ ) __snake_case = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample assert sample.dtype == torch.floataa
163
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __magic_name__ ( lowercase__ ): def __init__( self : int , *snake_case_ : Optional[Any] , **snake_case_ : Optional[Any] ): warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead." , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
163
1
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
488
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : str ): SCREAMING_SNAKE_CASE : List[str] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE : int = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : str = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : str = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : Optional[int] = output.images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : List[str] = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Any = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Optional[Any] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
488
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class UpperCAmelCase ( snake_case_ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _lowercase: str = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowercase: ClassVar[Features] = Features({'''text''': Value('''string''' )} ) _lowercase: ClassVar[Features] = Features({'''labels''': ClassLabel} ) _lowercase: str = "text" _lowercase: str = "labels" def lowercase__ ( self : Union[str, Any] , __snake_case : Tuple ) -> str: if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , __snake_case ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) _lowerCAmelCase = copy.deepcopy(self ) _lowerCAmelCase = self.label_schema.copy() _lowerCAmelCase = features[self.label_column] _lowerCAmelCase = label_schema return task_template @property def lowercase__ ( self : List[Any] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
207
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : int ={ '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str =[ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] =[ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] =[ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys A__ : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
207
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = torch.device("""cpu""") def snake_case_ () -> int: __lowerCAmelCase : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase : Optional[int] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im def snake_case_ (__A : Any ) -> Any: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def snake_case_ (__A : Any , __A : Tuple , __A : Dict ) -> Union[str, Any]: __lowerCAmelCase : Tuple = dct.pop(_UpperCamelCase ) __lowerCAmelCase : Tuple = val def snake_case_ (__A : str ) -> int: __lowerCAmelCase : Dict = [] for k in state_dict.keys(): __lowerCAmelCase : Tuple = k if ".pwconv" in k: __lowerCAmelCase : Optional[int] = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: __lowerCAmelCase : List[str] = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: __lowerCAmelCase : str = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: __lowerCAmelCase : Optional[int] = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: __lowerCAmelCase : str = k_new.split(""".""" ) if ls[2].isdigit(): __lowerCAmelCase : int = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: __lowerCAmelCase : Optional[Any] = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def snake_case_ (__A : str , __A : Optional[Any] , __A : Tuple ) -> Dict: __lowerCAmelCase : List[Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __lowerCAmelCase : List[str] = 1_0_0_0 __lowerCAmelCase : str = """huggingface/label-files""" __lowerCAmelCase : List[Any] = """imagenet-1k-id2label.json""" __lowerCAmelCase : Tuple = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase : str = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __lowerCAmelCase : Optional[int] = idalabel __lowerCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __lowerCAmelCase : Optional[int] = [3, 3, 6, 4] __lowerCAmelCase : List[str] = [4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": __lowerCAmelCase : int = [3, 3, 9, 6] __lowerCAmelCase : Dict = [4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": __lowerCAmelCase : Any = [4, 3, 1_0, 5] __lowerCAmelCase : Dict = [4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": __lowerCAmelCase : Optional[Any] = [4, 4, 1_2, 6] __lowerCAmelCase : Any = [6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): __lowerCAmelCase : str = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location="""cpu""" , check_hash=_UpperCamelCase ) else: __lowerCAmelCase : Tuple = torch.load(_UpperCamelCase , map_location="""cpu""" ) __lowerCAmelCase : Tuple = checkpoint __lowerCAmelCase : Optional[Any] = create_rename_keys(_UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # load HuggingFace model __lowerCAmelCase : List[str] = SwiftFormerForImageClassification(_UpperCamelCase ).eval() hf_model.load_state_dict(_UpperCamelCase ) # prepare test inputs __lowerCAmelCase : Optional[Any] = prepare_img() __lowerCAmelCase : List[Any] = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) __lowerCAmelCase : Tuple = processor(images=_UpperCamelCase , return_tensors="""pt""" ) # compare outputs from both models __lowerCAmelCase : List[Any] = get_expected_output(_UpperCamelCase ) __lowerCAmelCase : Optional[Any] = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , _UpperCamelCase , atol=1e-3 ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(f'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") __UpperCAmelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
721
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCAmelCase = """platform""" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def snake_case_ (__A : Tuple , __A : List[str] , __A : str=None , __A : Any=None , __A : Union[str, Any]=None , __A : str=None , __A : str=None , __A : Tuple=None , ) -> Optional[int]: if attention_mask is None: __lowerCAmelCase : Optional[int] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __lowerCAmelCase : Union[str, Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __lowerCAmelCase : int = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCAmelCase : Optional[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCAmelCase : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : str=13 , lowerCAmelCase : Union[str, Any]=7 , lowerCAmelCase : int=True , lowerCAmelCase : int=False , lowerCAmelCase : Any=99 , lowerCAmelCase : Dict=16 , lowerCAmelCase : int=2 , lowerCAmelCase : int=4 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Dict="gelu" , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : Any=2 , lowerCAmelCase : Dict=1 , lowerCAmelCase : Dict=0 , lowerCAmelCase : List[str]=0.02 , ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[Any] = parent __lowerCAmelCase : str = batch_size __lowerCAmelCase : Any = seq_length __lowerCAmelCase : int = is_training __lowerCAmelCase : Tuple = use_labels __lowerCAmelCase : Union[str, Any] = vocab_size __lowerCAmelCase : Optional[int] = hidden_size __lowerCAmelCase : Dict = num_hidden_layers __lowerCAmelCase : Optional[int] = num_attention_heads __lowerCAmelCase : str = intermediate_size __lowerCAmelCase : Union[str, Any] = hidden_act __lowerCAmelCase : Tuple = hidden_dropout_prob __lowerCAmelCase : str = attention_probs_dropout_prob __lowerCAmelCase : List[Any] = max_position_embeddings __lowerCAmelCase : Optional[Any] = eos_token_id __lowerCAmelCase : List[Any] = pad_token_id __lowerCAmelCase : Optional[Any] = bos_token_id __lowerCAmelCase : Dict = initializer_range def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __lowerCAmelCase : List[str] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __lowerCAmelCase : Optional[int] = shift_tokens_right(lowerCAmelCase , 1 , 2 ) __lowerCAmelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase , ) __lowerCAmelCase : Dict = prepare_blenderbot_inputs_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : Tuple = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] ) -> int: """simple docstring""" __lowerCAmelCase : List[str] = 20 __lowerCAmelCase : Tuple = model_class_name(lowerCAmelCase ) __lowerCAmelCase : str = model.encode(inputs_dict["""input_ids"""] ) __lowerCAmelCase ,__lowerCAmelCase : Dict = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __lowerCAmelCase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Any = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __lowerCAmelCase : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCAmelCase : Dict = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , decoder_position_ids=lowerCAmelCase , ) __lowerCAmelCase : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __lowerCAmelCase : Any = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase , ) __lowerCAmelCase : List[str] = model.decode(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : Dict , lowerCAmelCase : Any , lowerCAmelCase : List[str] ) -> Dict: """simple docstring""" __lowerCAmelCase : List[Any] = 20 __lowerCAmelCase : Tuple = model_class_name(lowerCAmelCase ) __lowerCAmelCase : Tuple = model.encode(inputs_dict["""input_ids"""] ) __lowerCAmelCase ,__lowerCAmelCase : str = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __lowerCAmelCase : Tuple = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __lowerCAmelCase : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCAmelCase : List[str] = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , decoder_position_ids=lowerCAmelCase , ) __lowerCAmelCase : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __lowerCAmelCase : Any = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase , decoder_position_ids=lowerCAmelCase , ) __lowerCAmelCase : Any = model.decode(lowerCAmelCase , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase ) __lowerCAmelCase : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[Any] =99 def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: """simple docstring""" __lowerCAmelCase : Dict = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __lowerCAmelCase : Dict = input_ids.shape[0] __lowerCAmelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : Tuple = self._get_config_and_data() __lowerCAmelCase : Union[str, Any] = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase ) __lowerCAmelCase : Any = lm_model(input_ids=lowerCAmelCase ) __lowerCAmelCase : List[str] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> str: """simple docstring""" __lowerCAmelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __lowerCAmelCase : List[str] = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase ) __lowerCAmelCase : Dict = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __lowerCAmelCase : str = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __lowerCAmelCase : List[str] = lm_model(input_ids=lowerCAmelCase , decoder_input_ids=lowerCAmelCase ) __lowerCAmelCase : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[int] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __lowerCAmelCase : Tuple = shift_tokens_right(lowerCAmelCase , 1 , 2 ) __lowerCAmelCase : int = np.equal(lowerCAmelCase , 1 ).astype(np.floataa ).sum() __lowerCAmelCase : List[Any] = np.equal(lowerCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowerCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase , a_ ): """simple docstring""" lowerCamelCase : Dict =True lowerCamelCase : List[Any] =( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowerCamelCase : Tuple =(FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE ( self : int ) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = FlaxBlenderbotModelTester(self ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> int: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase : Tuple = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : str = model_class(lowerCAmelCase ) @jax.jit def encode_jitted(lowerCAmelCase : Optional[int] , lowerCAmelCase : Any=None , **lowerCAmelCase : Optional[Any] ): return model.encode(input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase ) with self.subTest("""JIT Enabled""" ): __lowerCAmelCase : Optional[int] = encode_jitted(**lowerCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCAmelCase : Tuple = encode_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase : List[Any] = model_class(lowerCAmelCase ) __lowerCAmelCase : Any = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __lowerCAmelCase : Union[str, Any] = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] ): return model.decode( decoder_input_ids=lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , encoder_outputs=lowerCAmelCase , ) with self.subTest("""JIT Enabled""" ): __lowerCAmelCase : Union[str, Any] = decode_jitted(**lowerCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCAmelCase : Optional[Any] = decode_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def SCREAMING_SNAKE_CASE ( self : str ) -> int: """simple docstring""" for model_class_name in self.all_model_classes: __lowerCAmelCase : Optional[int] = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __lowerCAmelCase : Optional[int] = np.ones((1, 1) ) * model.config.eos_token_id __lowerCAmelCase : Any = model(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[Any] = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} __lowerCAmelCase : str = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} __lowerCAmelCase : Optional[int] = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowerCAmelCase ) __lowerCAmelCase : str = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) __lowerCAmelCase : List[str] = ["""Sam"""] __lowerCAmelCase : List[str] = tokenizer(lowerCAmelCase , return_tensors="""jax""" ) __lowerCAmelCase : Union[str, Any] = model.generate(**lowerCAmelCase , **lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = """Sam is a great name. It means \"sun\" in Gaelic.""" __lowerCAmelCase : List[Any] = tokenizer.batch_decode(lowerCAmelCase , **lowerCAmelCase ) assert generated_txt[0].strip() == tgt_text
218
0
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self , __a ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): __lowerCAmelCase = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__a ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tiny-gpt2" __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __lowerCAmelCase = PyTorchBenchmark(__a ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case ( self ): __lowerCAmelCase = "sgugger/tiny-distilbert-classification" __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , ) __lowerCAmelCase = PyTorchBenchmark(__a ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tiny-gpt2" __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , torchscript=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __lowerCAmelCase = PyTorchBenchmark(__a ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tiny-gpt2" __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , fpaa=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __lowerCAmelCase = PyTorchBenchmark(__a ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tiny-gpt2" __lowerCAmelCase = AutoConfig.from_pretrained(__a ) # set architectures equal to `None` __lowerCAmelCase = None __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __lowerCAmelCase = PyTorchBenchmark(__a , configs=[config] ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tiny-gpt2" __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __lowerCAmelCase = PyTorchBenchmark(__a ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision" ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tiny-gpt2" __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__a , multi_process=__a , ) __lowerCAmelCase = PyTorchBenchmark(__a ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tiny-gpt2" __lowerCAmelCase = AutoConfig.from_pretrained(__a ) __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __lowerCAmelCase = PyTorchBenchmark(__a , configs=[config] ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tinier_bart" __lowerCAmelCase = AutoConfig.from_pretrained(__a ) __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __lowerCAmelCase = PyTorchBenchmark(__a , configs=[config] ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tiny-gpt2" __lowerCAmelCase = AutoConfig.from_pretrained(__a ) __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __lowerCAmelCase = PyTorchBenchmark(__a , configs=[config] ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tinier_bart" __lowerCAmelCase = AutoConfig.from_pretrained(__a ) __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) __lowerCAmelCase = PyTorchBenchmark(__a , configs=[config] ) __lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , "inf_time.csv" ) , train_memory_csv_file=os.path.join(__a , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(__a , "inf_mem.csv" ) , train_time_csv_file=os.path.join(__a , "train_time.csv" ) , env_info_csv_file=os.path.join(__a , "env.csv" ) , multi_process=__a , ) __lowerCAmelCase = PyTorchBenchmark(__a ) benchmark.run() self.assertTrue(Path(os.path.join(__a , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__a , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__a , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__a , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__a , "env.csv" ) ).exists() ) def snake_case ( self ): __lowerCAmelCase = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__a ): self.assertTrue(hasattr(__a , "sequential" ) ) self.assertTrue(hasattr(__a , "cumulative" ) ) self.assertTrue(hasattr(__a , "current" ) ) self.assertTrue(hasattr(__a , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , "log.txt" ) , log_print=__a , trace_memory_line_by_line=__a , multi_process=__a , ) __lowerCAmelCase = PyTorchBenchmark(__a ) __lowerCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(__a , "log.txt" ) ).exists() )
636
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration A : List[str] = pytest.mark.integration A : Optional[Any] = {"comet"} A : int = importlib.util.find_spec("fairseq") is not None A : Union[str, Any] = {"code_eval"} A : Dict = os.name == "nt" A : Dict = {"bertscore", "frugalscore", "perplexity"} A : Any = importlib.util.find_spec("transformers") is not None def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' @wraps(_UpperCamelCase ) def wrapper(self , _UpperCamelCase ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , _UpperCamelCase ) return wrapper def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' @wraps(_UpperCamelCase ) def wrapper(self , _UpperCamelCase ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , _UpperCamelCase ) return wrapper def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' @wraps(_UpperCamelCase ) def wrapper(self , _UpperCamelCase ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , _UpperCamelCase ) return wrapper def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) @local class _UpperCamelCase ( parameterized.TestCase ): '''simple docstring''' __UpperCAmelCase : Any ={} __UpperCAmelCase : List[str] =None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def snake_case ( self , __a ): __lowerCAmelCase = "[...]" __lowerCAmelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , __a ) ).module_path ) __lowerCAmelCase = datasets.load.import_main_class(metric_module.__name__ , dataset=__a ) # check parameters __lowerCAmelCase = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__a , metric_module.__name__ ): with self.use_local_metrics(): try: __lowerCAmelCase = doctest.testmod(__a , verbose=__a , raise_on_error=__a ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def snake_case ( self , __a ): __lowerCAmelCase = "[...]" __lowerCAmelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , __a ) ).module_path ) # run doctest with self.use_local_metrics(): __lowerCAmelCase = doctest.testmod(__a , verbose=__a , raise_on_error=__a ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def snake_case ( self , __a , __a ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__a ): yield else: yield @contextmanager def snake_case ( self ): def load_local_metric(__a , *__a , **__a ): return load_metric(os.path.join("metrics" , __a ) , *__a , **__a ) with patch("datasets.load_metric" ) as mock_load_metric: __lowerCAmelCase = load_local_metric yield @classmethod def snake_case ( cls , __a ): def wrapper(__a ): __lowerCAmelCase = contextmanager(__a ) __lowerCAmelCase = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def snake_case ( self , __a ): assert len(input_dict["input_ids"] ) == 2 return np.array([1.0_3, 1.0_4] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: __lowerCAmelCase = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' import torch def bert_cos_score_idf(_UpperCamelCase , _UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ): return torch.tensor([[1.0, 1.0, 1.0]] * len(_UpperCamelCase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: __lowerCAmelCase = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' def load_from_checkpoint(_UpperCamelCase ): class _UpperCamelCase : '''simple docstring''' def snake_case ( self , __a , *__a , **__a ): assert len(__a ) == 2 __lowerCAmelCase = [0.1_9, 0.9_2] return scores, sum(__a ) / len(__a ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: __lowerCAmelCase = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: __lowerCAmelCase = load_from_checkpoint yield def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = load_metric(os.path.join("metrics" , "seqeval" ) ) __lowerCAmelCase = "ERROR" __lowerCAmelCase = f"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}" with pytest.raises(_UpperCamelCase , match=re.escape(_UpperCamelCase ) ): metric.compute(predictions=[] , references=[] , scheme=_UpperCamelCase )
636
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase A_ = logging.get_logger(__name__) A_ = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class __lowercase ( __UpperCAmelCase ): lowercase = """longformer""" def __init__( self : List[Any] , __lowerCamelCase : List[str] = 5_12 , __lowerCamelCase : Any = 2 , __lowerCamelCase : int = 1 , __lowerCamelCase : Optional[int] = 0 , __lowerCamelCase : List[str] = 2 , __lowerCamelCase : Dict = 3_05_22 , __lowerCamelCase : Optional[int] = 7_68 , __lowerCamelCase : Tuple = 12 , __lowerCamelCase : Dict = 12 , __lowerCamelCase : Dict = 30_72 , __lowerCamelCase : Any = "gelu" , __lowerCamelCase : Dict = 0.1 , __lowerCamelCase : Optional[Any] = 0.1 , __lowerCamelCase : Union[str, Any] = 5_12 , __lowerCamelCase : str = 2 , __lowerCamelCase : Optional[Any] = 0.02 , __lowerCamelCase : List[str] = 1E-12 , __lowerCamelCase : Any = False , **__lowerCamelCase : Optional[Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) lowercase = attention_window lowercase = sep_token_id lowercase = bos_token_id lowercase = eos_token_id lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = onnx_export class __lowercase ( __UpperCAmelCase ): def __init__( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] = "default" , __lowerCamelCase : Union[str, Any] = None ) -> Any: '''simple docstring''' super().__init__(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowercase = True @property def __a ( self : Dict ) -> List[str]: '''simple docstring''' if self.task == "multiple-choice": lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def __a ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' lowercase = super().outputs if self.task == "default": lowercase = {0: '''batch'''} return outputs @property def __a ( self : str ) -> Optional[Any]: '''simple docstring''' return 1E-4 @property def __a ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return max(super().default_onnx_opset , 14 ) def __a ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : Any = False , __lowerCamelCase : Optional[Any] = None , ) -> Optional[int]: '''simple docstring''' lowercase = super().generate_dummy_inputs( preprocessor=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowercase = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global lowercase = 1 return inputs
711
import logging from transformers import PretrainedConfig A_ = logging.getLogger(__name__) A_ = { "bertabs-finetuned-cnndm": "https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json", } class __lowercase ( _A ): lowercase = 'bertabs' def __init__( self : Dict , __lowerCamelCase : Tuple=3_05_22 , __lowerCamelCase : Tuple=5_12 , __lowerCamelCase : List[Any]=6 , __lowerCamelCase : Any=5_12 , __lowerCamelCase : Any=8 , __lowerCamelCase : Union[str, Any]=5_12 , __lowerCamelCase : Tuple=0.2 , __lowerCamelCase : str=6 , __lowerCamelCase : int=7_68 , __lowerCamelCase : int=8 , __lowerCamelCase : List[Any]=20_48 , __lowerCamelCase : Union[str, Any]=0.2 , **__lowerCamelCase : Dict , ) -> Dict: '''simple docstring''' super().__init__(**__lowerCamelCase ) lowercase = vocab_size lowercase = max_pos lowercase = enc_layers lowercase = enc_hidden_size lowercase = enc_heads lowercase = enc_ff_size lowercase = enc_dropout lowercase = dec_layers lowercase = dec_hidden_size lowercase = dec_heads lowercase = dec_ff_size lowercase = dec_dropout
479
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''microsoft/speecht5_tts''' _lowerCamelCase = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) _lowerCamelCase = '''text_reader''' _lowerCamelCase = SpeechTaProcessor _lowerCamelCase = SpeechTaForTextToSpeech _lowerCamelCase = SpeechTaHifiGan _lowerCamelCase = ['''text'''] _lowerCamelCase = ['''audio'''] def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' if self.post_processor is None: snake_case_ : str = """microsoft/speecht5_hifigan""" super().setup() def UpperCAmelCase__ ( self , _lowercase , _lowercase=None ) -> Optional[int]: '''simple docstring''' snake_case_ : Any = self.pre_processor(text=_lowercase , return_tensors="""pt""" , truncation=_lowercase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) snake_case_ : List[str] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) snake_case_ : Union[str, Any] = torch.tensor(embeddings_dataset[7_3_0_5]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase__ ( self , _lowercase ) -> Any: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> str: '''simple docstring''' with torch.no_grad(): return self.post_processor(_lowercase ).cpu().detach()
58
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowercase : List[str] = ['''text''', '''image''', '''audio'''] def lowercase ( __A : List[str] ) -> List[str]: '''simple docstring''' snake_case : Optional[int] = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__A , __A ): inputs.append(create_inputs(__A ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def lowercase ( __A : List ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = [] for output in outputs: if isinstance(__A , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(__A , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(__A , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class _A : '''simple docstring''' def snake_case_ ( self ): '''simple docstring''' self.assertTrue(hasattr(self.tool ,"""inputs""" ) ) self.assertTrue(hasattr(self.tool ,"""outputs""" ) ) snake_case : Dict = self.tool.inputs for _input in inputs: if isinstance(_input ,SCREAMING_SNAKE_CASE_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) snake_case : int = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def snake_case_ ( self ): '''simple docstring''' snake_case : List[str] = create_inputs(self.tool.inputs ) snake_case : str = self.tool(*SCREAMING_SNAKE_CASE_ ) # There is a single output if len(self.tool.outputs ) == 1: snake_case : Union[str, Any] = [outputs] self.assertListEqual(output_types(SCREAMING_SNAKE_CASE_ ) ,self.tool.outputs ) def snake_case_ ( self ): '''simple docstring''' self.assertTrue(hasattr(self.tool ,"""description""" ) ) self.assertTrue(hasattr(self.tool ,"""default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def snake_case_ ( self ): '''simple docstring''' snake_case : List[Any] = create_inputs(self.tool.inputs ) snake_case : int = self.tool(*SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): snake_case : Any = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) ,len(self.tool.outputs ) ) for output, output_type in zip(SCREAMING_SNAKE_CASE_ ,self.tool.outputs ): snake_case : List[str] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ): '''simple docstring''' snake_case : Tuple = create_inputs(self.tool.inputs ) snake_case : Any = [] for _input, input_type in zip(SCREAMING_SNAKE_CASE_ ,self.tool.inputs ): if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error snake_case : Tuple = self.tool(*SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): snake_case : Union[str, Any] = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) ,len(self.tool.outputs ) )
36
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = { """configuration_longformer""": [ """LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongformerConfig""", """LongformerOnnxConfig""", ], """tokenization_longformer""": ["""LongformerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""LongformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongformerForMaskedLM""", """LongformerForMultipleChoice""", """LongformerForQuestionAnswering""", """LongformerForSequenceClassification""", """LongformerForTokenClassification""", """LongformerModel""", """LongformerPreTrainedModel""", """LongformerSelfAttention""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLongformerForMaskedLM""", """TFLongformerForMultipleChoice""", """TFLongformerForQuestionAnswering""", """TFLongformerForSequenceClassification""", """TFLongformerForTokenClassification""", """TFLongformerModel""", """TFLongformerPreTrainedModel""", """TFLongformerSelfAttention""", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
534
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": _SCREAMING_SNAKE_CASE = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") _SCREAMING_SNAKE_CASE = F'''https://www.google.com/search?q={query}&num=100''' _SCREAMING_SNAKE_CASE = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: _SCREAMING_SNAKE_CASE = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: _SCREAMING_SNAKE_CASE = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
534
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Optional[int] = tempfile.mkdtemp() # fmt: off __lowercase : List[str] = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowercase : Tuple = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowercase : Optional[int] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowercase : List[str] = {'''unk_token''': '''<unk>'''} __lowercase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase_ ) ) __lowercase : str = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowercase : List[Any] = os.path.join(self.tmpdirname , UpperCamelCase_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) def _lowerCamelCase ( self , **UpperCamelCase_ ) -> Any: return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **UpperCamelCase_ ) def _lowerCamelCase ( self , **UpperCamelCase_ ) -> Tuple: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **UpperCamelCase_ ) def _lowerCamelCase ( self , **UpperCamelCase_ ) -> str: return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def _lowerCamelCase ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self ) -> int: __lowercase : List[str] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase : Dict = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCamelCase ( self ) -> Tuple: __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : int = self.get_rust_tokenizer() __lowercase : Optional[int] = self.get_image_processor() __lowercase : int = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) __lowercase : int = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase_ ) __lowercase : Tuple = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) __lowercase : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Any: __lowercase : List[Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase : Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowercase : Any = self.get_image_processor(do_normalize=UpperCamelCase_ ) __lowercase : Dict = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : List[str] = self.get_image_processor() __lowercase : Any = self.get_tokenizer() __lowercase : List[str] = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowercase : Dict = self.prepare_image_inputs() __lowercase : List[Any] = image_processor(UpperCamelCase_ , return_tensors='''np''' ) __lowercase : Optional[Any] = processor(images=UpperCamelCase_ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCamelCase ( self ) -> str: __lowercase : Dict = self.get_image_processor() __lowercase : Optional[int] = self.get_tokenizer() __lowercase : List[str] = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowercase : Optional[int] = '''lower newer''' __lowercase : Any = processor(text=UpperCamelCase_ , return_tensors='''np''' ) __lowercase : Optional[Any] = tokenizer(UpperCamelCase_ , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : int = self.get_image_processor() __lowercase : Tuple = self.get_tokenizer() __lowercase : Optional[int] = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowercase : str = '''lower newer''' __lowercase : Tuple = self.prepare_image_inputs() __lowercase : Optional[Any] = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def _lowerCamelCase ( self ) -> Tuple: __lowercase : int = '''google/owlvit-base-patch32''' __lowercase : Optional[Any] = OwlViTProcessor.from_pretrained(UpperCamelCase_ ) __lowercase : Tuple = ['''cat''', '''nasa badge'''] __lowercase : Tuple = processor(text=UpperCamelCase_ ) __lowercase : Union[str, Any] = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def _lowerCamelCase ( self ) -> Any: __lowercase : Tuple = '''google/owlvit-base-patch32''' __lowercase : int = OwlViTProcessor.from_pretrained(UpperCamelCase_ ) __lowercase : int = [['''cat''', '''nasa badge'''], ['''person''']] __lowercase : Tuple = processor(text=UpperCamelCase_ ) __lowercase : Tuple = 16 __lowercase : Any = len(UpperCamelCase_ ) __lowercase : Optional[Any] = max([len(UpperCamelCase_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : List[Any] = '''google/owlvit-base-patch32''' __lowercase : Tuple = OwlViTProcessor.from_pretrained(UpperCamelCase_ ) __lowercase : str = ['''cat''', '''nasa badge'''] __lowercase : Optional[Any] = processor(text=UpperCamelCase_ ) __lowercase : Tuple = 16 __lowercase : int = inputs['''input_ids'''] __lowercase : List[Any] = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _lowerCamelCase ( self ) -> Dict: __lowercase : Optional[int] = self.get_image_processor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : Any = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowercase : Union[str, Any] = self.prepare_image_inputs() __lowercase : List[Any] = self.prepare_image_inputs() __lowercase : Tuple = processor(images=UpperCamelCase_ , query_images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Optional[int] = self.get_image_processor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Tuple = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowercase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase : Any = processor.batch_decode(UpperCamelCase_ ) __lowercase : List[Any] = tokenizer.batch_decode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
76
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase__ : Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class _a : """simple docstring""" SCREAMING_SNAKE_CASE = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'}) SCREAMING_SNAKE_CASE = field( default=_lowerCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) SCREAMING_SNAKE_CASE = field( default=_lowerCamelCase , metadata={'help': 'The column name of the images in the files.'}) SCREAMING_SNAKE_CASE = field(default=_lowerCamelCase , metadata={'help': 'A folder containing the training data.'}) SCREAMING_SNAKE_CASE = field(default=_lowerCamelCase , metadata={'help': 'A folder containing the validation data.'}) SCREAMING_SNAKE_CASE = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'}) SCREAMING_SNAKE_CASE = field( default=_lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=_lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = {} if self.train_dir is not None: _SCREAMING_SNAKE_CASE = self.train_dir if self.validation_dir is not None: _SCREAMING_SNAKE_CASE = self.validation_dir _SCREAMING_SNAKE_CASE = data_files if data_files else None @dataclass class _a : """simple docstring""" SCREAMING_SNAKE_CASE = field( default=_lowerCamelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) SCREAMING_SNAKE_CASE = field( default=_lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'}) SCREAMING_SNAKE_CASE = field( default=_lowerCamelCase , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) SCREAMING_SNAKE_CASE = field( default=_lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'}) SCREAMING_SNAKE_CASE = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE = field(default=_lowerCamelCase , metadata={'help': 'Name or path of preprocessor config.'}) SCREAMING_SNAKE_CASE = field( default=_lowerCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) SCREAMING_SNAKE_CASE = field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'}) SCREAMING_SNAKE_CASE = field( default=_lowerCamelCase , metadata={'help': 'Whether or not to train with normalized pixel values as target.'}) @dataclass class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = field( default=1E-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'}) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE_ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. _SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. _SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _SCREAMING_SNAKE_CASE = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , SCREAMING_SNAKE_CASE_ ) and data_args.train_val_split > 0.0: _SCREAMING_SNAKE_CASE = ds["""train"""].train_test_split(data_args.train_val_split ) _SCREAMING_SNAKE_CASE = split["""train"""] _SCREAMING_SNAKE_CASE = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _SCREAMING_SNAKE_CASE = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: _SCREAMING_SNAKE_CASE = ViTMAEConfig.from_pretrained(model_args.config_name , **SCREAMING_SNAKE_CASE_ ) elif model_args.model_name_or_path: _SCREAMING_SNAKE_CASE = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE_ ) else: _SCREAMING_SNAKE_CASE = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _SCREAMING_SNAKE_CASE = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **SCREAMING_SNAKE_CASE_ ) elif model_args.model_name_or_path: _SCREAMING_SNAKE_CASE = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE_ ) else: _SCREAMING_SNAKE_CASE = ViTImageProcessor() # create model if model_args.model_name_or_path: _SCREAMING_SNAKE_CASE = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) _SCREAMING_SNAKE_CASE = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE_ ) if training_args.do_train: _SCREAMING_SNAKE_CASE = ds["""train"""].column_names else: _SCREAMING_SNAKE_CASE = ds["""validation"""].column_names if data_args.image_column_name is not None: _SCREAMING_SNAKE_CASE = data_args.image_column_name elif "image" in column_names: _SCREAMING_SNAKE_CASE = """image""" elif "img" in column_names: _SCREAMING_SNAKE_CASE = """img""" else: _SCREAMING_SNAKE_CASE = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _SCREAMING_SNAKE_CASE = image_processor.size["""shortest_edge"""] else: _SCREAMING_SNAKE_CASE = (image_processor.size["""height"""], image_processor.size["""width"""]) _SCREAMING_SNAKE_CASE = Compose( [ Lambda(lambda SCREAMING_SNAKE_CASE_ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(SCREAMING_SNAKE_CASE_ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = [transforms(SCREAMING_SNAKE_CASE_ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: _SCREAMING_SNAKE_CASE = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(SCREAMING_SNAKE_CASE_ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: _SCREAMING_SNAKE_CASE = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(SCREAMING_SNAKE_CASE_ ) # Compute absolute learning rate _SCREAMING_SNAKE_CASE = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _SCREAMING_SNAKE_CASE = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer _SCREAMING_SNAKE_CASE = Trainer( model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE_ , data_collator=SCREAMING_SNAKE_CASE_ , ) # Training if training_args.do_train: _SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: _SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: _SCREAMING_SNAKE_CASE = last_checkpoint _SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _SCREAMING_SNAKE_CASE = trainer.evaluate() trainer.log_metrics("""eval""" , SCREAMING_SNAKE_CASE_ ) trainer.save_metrics("""eval""" , SCREAMING_SNAKE_CASE_ ) # Write model card and (optionally) push to hub _SCREAMING_SNAKE_CASE = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE_ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
591
0
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __lowerCamelCase = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self : str , __snake_case : int = 1_0_1 ) -> Tuple: __magic_name__: Optional[Any] = length def __len__( self : int ) -> Tuple: return self.length def __getitem__( self : Dict , __snake_case : str ) -> int: return i class __A : def __call__( self : int , __snake_case : List[str] ) -> List[Any]: return {"input_ids": torch.tensor(__snake_case ), "labels": torch.tensor(__snake_case )} class __A ( nn.Module ): def __init__( self : Any ) -> Dict: super().__init__() # Add some (unused) params otherwise DDP will complain. __magic_name__: List[str] = nn.Linear(1_2_0 , 8_0 ) def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : List[str]=None ) -> str: if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class __A ( SCREAMING_SNAKE_CASE_ ): @require_torch_neuroncore def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: __magic_name__: List[Any] = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() __magic_name__: Tuple = self.get_auto_remove_tmp_dir() __magic_name__: Any = F'--output_dir {output_dir}'.split() __magic_name__: Any = ["""torchrun"""] + distributed_args + args execute_subprocess_async(__snake_case , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class __A ( SCREAMING_SNAKE_CASE_ ): @require_torch_multi_gpu def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__: List[Any] = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() __magic_name__: Optional[Any] = self.get_auto_remove_tmp_dir() __magic_name__: Union[str, Any] = F'--output_dir {output_dir}'.split() __magic_name__: Union[str, Any] = ["""torchrun"""] + distributed_args + args execute_subprocess_async(__snake_case , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __lowerCamelCase = HfArgumentParser((TrainingArguments,)) __lowerCamelCase = parser.parse_args_into_dataclasses()[0] logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' f'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_01, 40, 7]: __lowerCamelCase = DummyDataset(dataset_length) def a ( __UpperCAmelCase : EvalPrediction ) -> Dict: __magic_name__: Any = list(range(len(__UpperCAmelCase ) ) ) __magic_name__: List[Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( """Predictions and/or labels do not match expected results:\n - predictions: """ f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} __lowerCamelCase = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __lowerCamelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCamelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCamelCase = 2 __lowerCamelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCamelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCamelCase = None
213
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): UpperCAmelCase__ = IFInpaintingSuperResolutionPipeline UpperCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} UpperCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) UpperCAmelCase__ = PipelineTesterMixin.required_optional_params - {"latents"} def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: return self._get_superresolution_dummy_components() def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Any=0 ) -> Dict: if str(__snake_case ).startswith("""mps""" ): __magic_name__: int = torch.manual_seed(__snake_case ) else: __magic_name__: List[Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__: Tuple = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__: List[str] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__: Dict = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__: Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase__ ( self : Dict ) -> Any: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCamelCase__ ( self : Tuple ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[Any]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCamelCase__ ( self : int ) -> str: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCamelCase__ ( self : Any ) -> List[Any]: self._test_save_load_local() def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
213
1
def a (lowerCAmelCase__ = 1_000 ): __a , __a = 1, 1 __a = 2 while True: __a = 0 __a = fa + fa __a , __a = fa, f index += 1 for _ in str(lowerCAmelCase__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
99
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class A_(SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ : Dict = TextToVideoSDPipeline a_ : Dict = TEXT_TO_IMAGE_PARAMS a_ : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a_ : str = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def _lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCamelCase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) _lowerCamelCase : Optional[int] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=A , set_alpha_to_one=A , ) torch.manual_seed(0 ) _lowerCamelCase : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) _lowerCamelCase : str = CLIPTextModel(A ) _lowerCamelCase : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCamelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def _lowerCAmelCase ( self , A , A=0 ): if str(A ).startswith('mps' ): _lowerCamelCase : Tuple = torch.manual_seed(A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=A ).manual_seed(A ) _lowerCamelCase : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def _lowerCAmelCase ( self ): _lowerCamelCase : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : Tuple = self.get_dummy_components() _lowerCamelCase : Dict = TextToVideoSDPipeline(**A ) _lowerCamelCase : Optional[int] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) _lowerCamelCase : Union[str, Any] = self.get_dummy_inputs(A ) _lowerCamelCase : Union[str, Any] = 'np' _lowerCamelCase : Optional[int] = sd_pipe(**A ).frames _lowerCamelCase : Dict = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _lowerCamelCase : Tuple = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCAmelCase ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=A , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A , expected_max_diff=1E-2 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def _lowerCAmelCase ( self ): pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def _lowerCAmelCase ( self ): pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def _lowerCAmelCase ( self ): pass def _lowerCAmelCase ( self ): return super().test_progress_bar() @slow @skip_mps class A_(unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' ) _lowerCamelCase : Dict = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) _lowerCamelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _lowerCamelCase : Tuple = pipe.to('cuda' ) _lowerCamelCase : str = 'Spiderman is surfing' _lowerCamelCase : Any = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCamelCase : Union[str, Any] = pipe(A , generator=A , num_inference_steps=25 , output_type='pt' ).frames _lowerCamelCase : Any = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' ) _lowerCamelCase : int = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) _lowerCamelCase : Optional[Any] = pipe.to('cuda' ) _lowerCamelCase : Tuple = 'Spiderman is surfing' _lowerCamelCase : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCamelCase : Tuple = pipe(A , generator=A , num_inference_steps=2 , output_type='pt' ).frames _lowerCamelCase : Optional[int] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
437
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCamelCase_ ( ): a_ = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=A__ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=A__ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=A__ ) return parser.parse_args() def UpperCamelCase_ ( ): a_ = parse_args() # Import training_script as a module. a_ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) a_ = script_fpath.stem a_ = importlib.import_module(A__ ) # Patch sys.argv a_ = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
714
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowercase__ =logging.get_logger(__name__) lowercase__ ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowercase__ ={ 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } lowercase__ ={ 'roberta-base': 5_12, 'roberta-large': 5_12, 'roberta-large-mnli': 5_12, 'distilroberta-base': 5_12, 'roberta-base-openai-detector': 5_12, 'roberta-large-openai-detector': 5_12, } class a_ ( UpperCamelCase__ ): lowerCamelCase__ : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Tuple = ['input_ids', 'attention_mask'] lowerCamelCase__ : Any = RobertaTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="replace" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ): super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) a_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase ) != add_prefix_space: a_ = getattr(UpperCAmelCase , pre_tok_state.pop("""type""" ) ) a_ = add_prefix_space a_ = pre_tok_class(**UpperCAmelCase ) a_ = add_prefix_space a_ = """post_processor""" a_ = getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: a_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a_ = tuple(state["""sep"""] ) if "cls" in state: a_ = tuple(state["""cls"""] ) a_ = False if state.get("""add_prefix_space""" , UpperCAmelCase ) != add_prefix_space: a_ = add_prefix_space a_ = True if state.get("""trim_offsets""" , UpperCAmelCase ) != trim_offsets: a_ = trim_offsets a_ = True if changes_to_apply: a_ = getattr(UpperCAmelCase , state.pop("""type""" ) ) a_ = component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property def lowerCAmelCase__ ( self ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value a_ = value def lowerCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): a_ = kwargs.get("""is_split_into_words""" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def lowerCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): a_ = kwargs.get("""is_split_into_words""" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): a_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=None ): a_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
511
0
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int = None , UpperCAmelCase_ : Union[str, Any] = "geglu" , UpperCAmelCase_ : int = None , UpperCAmelCase_ : Any = False , UpperCAmelCase_ : str = False , UpperCAmelCase_ : Union[str, Any] = False , UpperCAmelCase_ : Union[str, Any] = False , UpperCAmelCase_ : int = True , UpperCAmelCase_ : List[str] = "layer_norm" , UpperCAmelCase_ : Optional[int] = False , ): super().__init__() SCREAMING_SNAKE_CASE : Union[str, Any] = only_cross_attention SCREAMING_SNAKE_CASE : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' SCREAMING_SNAKE_CASE : List[str] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: SCREAMING_SNAKE_CASE : Union[str, Any] = AdaLayerNorm(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.use_ada_layer_norm_zero: SCREAMING_SNAKE_CASE : List[str] = AdaLayerNormZero(UpperCAmelCase_ , UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : Tuple = nn.LayerNorm(UpperCAmelCase_ , elementwise_affine=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = Attention( query_dim=UpperCAmelCase_ , heads=UpperCAmelCase_ , dim_head=UpperCAmelCase_ , dropout=UpperCAmelCase_ , bias=UpperCAmelCase_ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=UpperCAmelCase_ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. SCREAMING_SNAKE_CASE : Dict = ( AdaLayerNorm(UpperCAmelCase_ , UpperCAmelCase_ ) if self.use_ada_layer_norm else nn.LayerNorm(UpperCAmelCase_ , elementwise_affine=UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : str = Attention( query_dim=UpperCAmelCase_ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=UpperCAmelCase_ , dim_head=UpperCAmelCase_ , dropout=UpperCAmelCase_ , bias=UpperCAmelCase_ , upcast_attention=UpperCAmelCase_ , ) # is self-attn if encoder_hidden_states is none else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : List[Any] = None # 3. Feed-forward SCREAMING_SNAKE_CASE : Dict = nn.LayerNorm(UpperCAmelCase_ , elementwise_affine=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = FeedForward(UpperCAmelCase_ , dropout=UpperCAmelCase_ , activation_fn=UpperCAmelCase_ , final_dropout=UpperCAmelCase_ ) # let chunk size default to None SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : str = 0 def _A ( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : Any = chunk_size SCREAMING_SNAKE_CASE : Union[str, Any] = dim def _A ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Dict = None , UpperCAmelCase_ : Tuple = None , UpperCAmelCase_ : Optional[Any] = None , UpperCAmelCase_ : Union[str, Any] = None , ): if self.use_ada_layer_norm: SCREAMING_SNAKE_CASE : List[str] = self.norma(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.use_ada_layer_norm_zero: SCREAMING_SNAKE_CASE : Any = self.norma( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , hidden_dtype=hidden_states.dtype ) else: SCREAMING_SNAKE_CASE : List[Any] = self.norma(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} SCREAMING_SNAKE_CASE : Any = self.attna( UpperCAmelCase_ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , ) if self.use_ada_layer_norm_zero: SCREAMING_SNAKE_CASE : List[Any] = gate_msa.unsqueeze(1 ) * attn_output SCREAMING_SNAKE_CASE : List[Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: SCREAMING_SNAKE_CASE : List[Any] = ( self.norma(UpperCAmelCase_ , UpperCAmelCase_ ) if self.use_ada_layer_norm else self.norma(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : Any = self.attna( UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Optional[int] = attn_output + hidden_states # 3. Feed-forward SCREAMING_SNAKE_CASE : List[str] = self.norma(UpperCAmelCase_ ) if self.use_ada_layer_norm_zero: SCREAMING_SNAKE_CASE : str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) SCREAMING_SNAKE_CASE : Optional[Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat( [self.ff(UpperCAmelCase_ ) for hid_slice in norm_hidden_states.chunk(UpperCAmelCase_ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = self.ff(UpperCAmelCase_ ) if self.use_ada_layer_norm_zero: SCREAMING_SNAKE_CASE : List[str] = gate_mlp.unsqueeze(1 ) * ff_output SCREAMING_SNAKE_CASE : Tuple = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict = None , UpperCAmelCase_ : Tuple = 4 , UpperCAmelCase_ : Any = 0.0 , UpperCAmelCase_ : Dict = "geglu" , UpperCAmelCase_ : str = False , ): super().__init__() SCREAMING_SNAKE_CASE : Optional[Any] = int(dim * mult ) SCREAMING_SNAKE_CASE : Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": SCREAMING_SNAKE_CASE : Union[str, Any] = GELU(UpperCAmelCase_ , UpperCAmelCase_ ) if activation_fn == "gelu-approximate": SCREAMING_SNAKE_CASE : Optional[Any] = GELU(UpperCAmelCase_ , UpperCAmelCase_ , approximate="tanh" ) elif activation_fn == "geglu": SCREAMING_SNAKE_CASE : str = GEGLU(UpperCAmelCase_ , UpperCAmelCase_ ) elif activation_fn == "geglu-approximate": SCREAMING_SNAKE_CASE : Union[str, Any] = ApproximateGELU(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = nn.ModuleList([] ) # project in self.net.append(UpperCAmelCase_ ) # project dropout self.net.append(nn.Dropout(UpperCAmelCase_ ) ) # project out self.net.append(nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(UpperCAmelCase_ ) ) def _A ( self : List[Any] , UpperCAmelCase_ : int ): for module in self.net: SCREAMING_SNAKE_CASE : Union[str, Any] = module(UpperCAmelCase_ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str = "none" ): super().__init__() SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = approximate def _A ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] ): if gate.device.type != "mps": return F.gelu(UpperCAmelCase_ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _A ( self : List[Any] , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Optional[int] = self.proj(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.gelu(UpperCAmelCase_ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple ): super().__init__() SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(UpperCAmelCase_ , dim_out * 2 ) def _A ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] ): if gate.device.type != "mps": return F.gelu(UpperCAmelCase_ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _A ( self : Any , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Tuple = self.proj(UpperCAmelCase_ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(UpperCAmelCase_ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ): super().__init__() SCREAMING_SNAKE_CASE : str = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE : Optional[int] = self.proj(UpperCAmelCase_ ) return x * torch.sigmoid(1.702 * x ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ): super().__init__() SCREAMING_SNAKE_CASE : int = nn.Embedding(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = nn.SiLU() SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(UpperCAmelCase_ , embedding_dim * 2 ) SCREAMING_SNAKE_CASE : List[Any] = nn.LayerNorm(UpperCAmelCase_ , elementwise_affine=UpperCAmelCase_ ) def _A ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE : List[str] = self.linear(self.silu(self.emb(UpperCAmelCase_ ) ) ) SCREAMING_SNAKE_CASE : int = torch.chunk(UpperCAmelCase_ , 2 ) SCREAMING_SNAKE_CASE : Optional[Any] = self.norm(UpperCAmelCase_ ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict ): super().__init__() SCREAMING_SNAKE_CASE : List[Any] = CombinedTimestepLabelEmbeddings(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = nn.SiLU() SCREAMING_SNAKE_CASE : Any = nn.Linear(UpperCAmelCase_ , 6 * embedding_dim , bias=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = nn.LayerNorm(UpperCAmelCase_ , elementwise_affine=UpperCAmelCase_ , eps=1E-6 ) def _A ( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict=None ): SCREAMING_SNAKE_CASE : Optional[int] = self.linear(self.silu(self.emb(UpperCAmelCase_ , UpperCAmelCase_ , hidden_dtype=UpperCAmelCase_ ) ) ) SCREAMING_SNAKE_CASE : List[str] = emb.chunk(6 , dim=1 ) SCREAMING_SNAKE_CASE : Dict = self.norm(UpperCAmelCase_ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] = None , UpperCAmelCase_ : Dict = 1E-5 ): super().__init__() SCREAMING_SNAKE_CASE : Optional[Any] = num_groups SCREAMING_SNAKE_CASE : Any = eps if act_fn is None: SCREAMING_SNAKE_CASE : Optional[Any] = None else: SCREAMING_SNAKE_CASE : Any = get_activation(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = nn.Linear(UpperCAmelCase_ , out_dim * 2 ) def _A ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any ): if self.act: SCREAMING_SNAKE_CASE : Optional[int] = self.act(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.linear(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = emb[:, :, None, None] SCREAMING_SNAKE_CASE : Optional[Any] = emb.chunk(2 , dim=1 ) SCREAMING_SNAKE_CASE : Any = F.group_norm(UpperCAmelCase_ , self.num_groups , eps=self.eps ) SCREAMING_SNAKE_CASE : Optional[Any] = x * (1 + scale) + shift return x
62
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) @dataclass class _lowerCamelCase: lowercase_ : Optional[str] = field( default="""tab_fact""", metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) lowercase_ : Optional[str] = field( default="""tab_fact""", metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""}, ) lowercase_ : int = field( default=10_24, metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) }, ) lowercase_ : bool = field( default=_a, metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) lowercase_ : bool = field( default=_a, metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) }, ) lowercase_ : Optional[int] = field( default=_a, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) }, ) lowercase_ : Optional[int] = field( default=_a, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) }, ) lowercase_ : Optional[int] = field( default=_a, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) }, ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """A csv or a json file containing the training data."""} ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """A csv or a json file containing the validation data."""} ) lowercase_ : Optional[str] = field(default=_a, metadata={"""help""": """A csv or a json file containing the test data."""} ) def UpperCamelCase ( self) -> Dict: """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.') else: _lowercase : int = self.train_file.split('.')[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _lowercase : Tuple = self.validation_file.split('.')[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _lowerCamelCase: lowercase_ : str = field( default=_a, metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""}, ) lowercase_ : bool = field( default=_a, metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""}, ) lowercase_ : str = field( default="""main""", metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""}, ) lowercase_ : bool = field( default=_a, metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) }, ) def UpperCamelCase_( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowercase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowercase , _lowercase , _lowercase : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowercase , _lowercase , _lowercase : Union[str, Any] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowercase : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(lowerCamelCase_ ) datasets.utils.logging.set_verbosity(lowerCamelCase_ ) transformers.utils.logging.set_verbosity(lowerCamelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _lowercase : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowercase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _lowercase : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _lowercase : Optional[Any] = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _lowercase : Tuple = data_args.train_file.split('.' )[-1] _lowercase : int = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _lowercase : Any = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'''load a local file for {key}: {data_files[key]}''' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files _lowercase : str = load_dataset('csv' , data_files=lowerCamelCase_ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files _lowercase : Optional[int] = load_dataset('json' , data_files=lowerCamelCase_ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _lowercase : Optional[Any] = raw_datasets['train'].features['label'].names _lowercase : Any = len(lowerCamelCase_ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowercase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer _lowercase : str = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowerCamelCase_ , ) _lowercase : Tuple = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: _lowercase : int = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _lowercase : str = False # Some models have set the order of the labels to use, so let's make sure we do use it. _lowercase : List[Any] = {'Refused': 0, 'Entailed': 1} _lowercase : Union[str, Any] = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) _lowercase : List[str] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCamelCase_ ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCamelCase_ ): _lowercase : int = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] _lowercase : Any = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd _lowercase : List[Any] = examples['statement'] _lowercase : Optional[Any] = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) _lowercase : Union[str, Any] = tokenizer(lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ) _lowercase : Any = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): _lowercase : str = raw_datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) _lowercase : Any = raw_datasets['train'] if data_args.max_train_samples is not None: _lowercase : str = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) _lowercase : str = raw_datasets['validation'] if data_args.max_eval_samples is not None: _lowercase : List[Any] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) _lowercase : Optional[int] = raw_datasets['test'] if data_args.max_predict_samples is not None: _lowercase : List[str] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCamelCase_ ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase_ ): _lowercase : Dict = p.predictions[0] if isinstance(p.predictions , lowerCamelCase_ ) else p.predictions _lowercase : Tuple = np.argmax(lowerCamelCase_ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _lowercase : Any = default_data_collator elif training_args.fpaa: _lowercase : str = DataCollatorWithPadding(lowerCamelCase_ , pad_to_multiple_of=8 ) else: _lowercase : Optional[Any] = None # Initialize our Trainer _lowercase : List[str] = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCamelCase_ , tokenizer=lowerCamelCase_ , data_collator=lowerCamelCase_ , ) # Training if training_args.do_train: _lowercase : Optional[int] = None if training_args.resume_from_checkpoint is not None: _lowercase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowercase : Optional[Any] = last_checkpoint _lowercase : Optional[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase_ ) _lowercase : List[Any] = train_result.metrics _lowercase : Dict = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase_ ) ) _lowercase : int = min(lowerCamelCase_ , len(lowerCamelCase_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , lowerCamelCase_ ) trainer.save_metrics('train' , lowerCamelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowercase : Tuple = trainer.evaluate(eval_dataset=lowerCamelCase_ ) _lowercase : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase_ ) _lowercase : Optional[int] = min(lowerCamelCase_ , len(lowerCamelCase_ ) ) trainer.log_metrics('eval' , lowerCamelCase_ ) trainer.save_metrics('eval' , lowerCamelCase_ ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. _lowercase : Any = predict_dataset.remove_columns('label' ) _lowercase : Optional[Any] = trainer.predict(lowerCamelCase_ , metric_key_prefix='predict' ).predictions _lowercase : Union[str, Any] = np.argmax(lowerCamelCase_ , axis=1 ) _lowercase : Dict = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(lowerCamelCase_ , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(lowerCamelCase_ ): _lowercase : List[str] = label_list[item] writer.write(F'''{index}\t{item}\n''' ) _lowercase : str = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase_ ) else: trainer.create_model_card(**lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
89
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def snake_case ( snake_case__ :str , snake_case__ :str , snake_case__ :str , snake_case__ :PreTrainedTokenizer , snake_case__ :int , snake_case__ :Optional[int] = None , ) -> Optional[int]: _A = {} if train_file is not None: _A = [train_file] if eval_file is not None: _A = [eval_file] if test_file is not None: _A = [test_file] _A = datasets.load_dataset("""csv""" , data_files=snake_case__) _A = list(ds[list(files.keys())[0]].features.keys()) _A = features_name.pop(snake_case__) _A = list(set(ds[list(files.keys())[0]][label_name])) _A = {label: i for i, label in enumerate(snake_case__)} _A = tokenizer.model_input_names _A = {} if len(snake_case__) == 1: for k in files.keys(): _A = ds[k].map( lambda snake_case__: tokenizer.batch_encode_plus( example[features_name[0]] , truncation=snake_case__ , max_length=snake_case__ , padding="""max_length""") , batched=snake_case__ , ) elif len(snake_case__) == 2: for k in files.keys(): _A = ds[k].map( lambda snake_case__: tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=snake_case__ , max_length=snake_case__ , padding="""max_length""" , ) , batched=snake_case__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _A = {k: v for k, v in ex.items() if k in input_names} _A = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _A = {k: v for k, v in ex.items() if k in input_names} _A = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _A = {k: v for k, v in ex.items() if k in input_names} _A = labelaid[ex[label_name]] yield (d, label) _A = ( tf.data.Dataset.from_generator( snake_case__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _A = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN]))) _A = ( tf.data.Dataset.from_generator( snake_case__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _A = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION]))) _A = ( tf.data.Dataset.from_generator( snake_case__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _A = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST]))) return train_ds, val_ds, test_ds, labelaid _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class a : """simple docstring""" lowerCamelCase :int = field(metadata={'''help''': '''Which column contains the label'''} ) lowerCamelCase :str = field(default=__lowerCAmelCase , metadata={'''help''': '''The path of the training file'''} ) lowerCamelCase :Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''The path of the development file'''} ) lowerCamelCase :Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''The path of the test file'''} ) lowerCamelCase :int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowerCamelCase :bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class a : """simple docstring""" lowerCamelCase :str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCamelCase :Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCamelCase :Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCamelCase :bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCamelCase :Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def snake_case ( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _A = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) _A , _A , _A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""") # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( F'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1)}, ''' F'''16-bits training: {training_args.fpaa}''') logger.info(F'''Training/evaluation parameters {training_args}''') # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _A , _A , _A , _A = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=snake_case__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) _A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(snake_case__) , labelaid=snake_case__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): _A = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path) , config=snake_case__ , cache_dir=model_args.cache_dir , ) def compute_metrics(snake_case__ :EvalPrediction) -> Dict: _A = np.argmax(p.predictions , axis=1) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _A = TFTrainer( model=snake_case__ , args=snake_case__ , train_dataset=snake_case__ , eval_dataset=snake_case__ , compute_metrics=snake_case__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir) # Evaluation _A = {} if training_args.do_eval: logger.info("""*** Evaluate ***""") _A = trainer.evaluate() _A = os.path.join(training_args.output_dir , """eval_results.txt""") with open(snake_case__ , """w""") as writer: logger.info("""***** Eval results *****""") for key, value in result.items(): logger.info(F''' {key} = {value}''') writer.write(F'''{key} = {value}\n''') results.update(snake_case__) return results if __name__ == "__main__": main()
706
def snake_case ( snake_case__ :int , snake_case__ :int) -> int: return int(input_a == input_a == 0) def snake_case ( ) -> None: print("""Truth Table of NOR Gate:""") print("""| Input 1 | Input 2 | Output |""") print(F'''| 0 | 0 | {nor_gate(0 , 0)} |''') print(F'''| 0 | 1 | {nor_gate(0 , 1)} |''') print(F'''| 1 | 0 | {nor_gate(1 , 0)} |''') print(F'''| 1 | 1 | {nor_gate(1 , 1)} |''') if __name__ == "__main__": import doctest doctest.testmod() main()
83
0
import os from datetime import datetime as dt from github import Github a__ = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : List[str] = Github(os.environ['''GITHUB_TOKEN'''] ) _a : Tuple = g.get_repo('''huggingface/diffusers''' ) _a : str = repo.get_issues(state='''open''' ) for issue in open_issues: _a : Optional[int] = sorted(issue.get_comments() ,key=lambda __a : i.created_at ,reverse=__a ) _a : Union[str, Any] = comments[0] if len(__a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
14
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
15
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase : str = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = b.T lowercase_ = np.sum(np.square(__lowerCAmelCase ) , axis=1 ) lowercase_ = np.sum(np.square(__lowerCAmelCase ) , axis=0 ) lowercase_ = np.matmul(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = aa[:, None] - 2 * ab + ba[None, :] return d def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = x.reshape(-1 , 3 ) lowercase_ = squared_euclidean_distance(__lowerCAmelCase , __lowerCAmelCase ) return np.argmin(__lowerCAmelCase , axis=1 ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = ["pixel_values"] def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[Union[List[List[int]], np.ndarray]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Tuple , ): """simple docstring""" super().__init__(**lowerCAmelCase_) lowercase_ = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} lowercase_ = get_size_dict(lowerCAmelCase_) lowercase_ = np.array(lowerCAmelCase_) if clusters is not None else None lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = do_normalize lowercase_ = do_color_quantize def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Tuple , ): """simple docstring""" lowercase_ = get_size_dict(lowerCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''') return resize( lowerCAmelCase_ , size=(size["""height"""], size["""width"""]) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , ): """simple docstring""" lowercase_ = rescale(image=lowerCAmelCase_ , scale=1 / 127.5 , data_format=lowerCAmelCase_) lowercase_ = image - 1 return image def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[List[List[int]], np.ndarray]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **lowerCAmelCase_ : Any , ): """simple docstring""" lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(lowerCAmelCase_) lowercase_ = resample if resample is not None else self.resample lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = do_color_quantize if do_color_quantize is not None else self.do_color_quantize lowercase_ = clusters if clusters is not None else self.clusters lowercase_ = np.array(lowerCAmelCase_) lowercase_ = make_list_of_images(lowerCAmelCase_) if not valid_images(lowerCAmelCase_): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""") if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""") # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(lowerCAmelCase_) for image in images] if do_resize: lowercase_ = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_) for image in images] if do_normalize: lowercase_ = [self.normalize(image=lowerCAmelCase_) for image in images] if do_color_quantize: lowercase_ = [to_channel_dimension_format(lowerCAmelCase_ , ChannelDimension.LAST) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) lowercase_ = np.array(lowerCAmelCase_) lowercase_ = color_quantize(lowerCAmelCase_ , lowerCAmelCase_).reshape(images.shape[:-1]) # flatten to (batch_size, height*width) lowercase_ = images.shape[0] lowercase_ = images.reshape(lowerCAmelCase_ , -1) # We need to convert back to a list of images to keep consistent behaviour across processors. lowercase_ = list(lowerCAmelCase_) else: lowercase_ = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_) for image in images] lowercase_ = {"""input_ids""": images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_)
703
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : Any = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase : Any = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase : Optional[int] = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase : List[str] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } UpperCAmelCase : List[Any] = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } UpperCAmelCase : Tuple = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } UpperCAmelCase : int = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } UpperCAmelCase : Union[str, Any] = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } UpperCAmelCase : List[str] = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase : Union[str, Any] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) UpperCAmelCase : Optional[int] = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) UpperCAmelCase : Any = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : def __call__( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Union[bool, str] = False , lowerCAmelCase_ : Union[bool, str] = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Optional[bool] = None , **lowerCAmelCase_ : List[str] , ): """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) elif titles is None or texts is None: lowercase_ = titles if texts is None else texts return super().__call__( lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase_ = titles if not isinstance(lowerCAmelCase_ , lowerCAmelCase_) else [titles] lowercase_ = texts if not isinstance(lowerCAmelCase_ , lowerCAmelCase_) else [texts] lowercase_ = len(lowerCAmelCase_) lowercase_ = questions if not isinstance(lowerCAmelCase_ , lowerCAmelCase_) else [questions] * n_passages if len(lowerCAmelCase_) != len(lowerCAmelCase_): raise ValueError( F'''There should be as many titles than texts but got {len(lowerCAmelCase_)} titles and {len(lowerCAmelCase_)} texts.''') lowercase_ = super().__call__(lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_)["""input_ids"""] lowercase_ = super().__call__(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_)["""input_ids"""] lowercase_ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase_ , lowerCAmelCase_) ] } if return_attention_mask is not False: lowercase_ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) lowercase_ = attention_mask return self.pad(lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : BatchEncoding , lowerCAmelCase_ : DPRReaderOutput , lowerCAmelCase_ : int = 1_6 , lowerCAmelCase_ : int = 6_4 , lowerCAmelCase_ : int = 4 , ): """simple docstring""" lowercase_ = reader_input["""input_ids"""] lowercase_ , lowercase_ , lowercase_ = reader_output[:3] lowercase_ = len(lowerCAmelCase_) lowercase_ = sorted(range(lowerCAmelCase_) , reverse=lowerCAmelCase_ , key=relevance_logits.__getitem__) lowercase_ = [] for doc_id in sorted_docs: lowercase_ = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence lowercase_ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase_ = sequence_ids.index(self.pad_token_id) else: lowercase_ = len(lowerCAmelCase_) lowercase_ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCAmelCase_ , top_spans=lowerCAmelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCAmelCase_ , start_index=lowerCAmelCase_ , end_index=lowerCAmelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(lowerCAmelCase_) >= num_spans: break return nbest_spans_predictions[:num_spans] def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , ): """simple docstring""" lowercase_ = [] for start_index, start_score in enumerate(lowerCAmelCase_): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) lowercase_ = sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_: x[1] , reverse=lowerCAmelCase_) lowercase_ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''') lowercase_ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''') if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(lowerCAmelCase_) == top_spans: break return chosen_span_intervals @add_end_docstrings(__UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowercase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = READER_PRETRAINED_INIT_CONFIGURATION lowercase__ = ["input_ids", "attention_mask"]
100
0
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''EncodecFeatureExtractor''' a__ =('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self , A , A ) -> Any: super().__init__(A , A ) _UpperCAmelCase : Optional[int] = self.feature_extractor _UpperCAmelCase : List[Any] = False def __lowerCAmelCase ( self , A=None , A=None , A=True ) -> Tuple: return self.tokenizer.get_decoder_prompt_ids(task=A , language=A , no_timestamps=A ) def __call__( self , *A , **A ) -> Dict: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A , **A ) _UpperCAmelCase : List[Any] = kwargs.pop('''audio''' , A ) _UpperCAmelCase : str = kwargs.pop('''sampling_rate''' , A ) _UpperCAmelCase : Optional[int] = kwargs.pop('''text''' , A ) if len(A ) > 0: _UpperCAmelCase : Union[str, Any] = args[0] _UpperCAmelCase : Optional[int] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: _UpperCAmelCase : Union[str, Any] = self.tokenizer(A , **A ) if audio is not None: _UpperCAmelCase : Tuple = self.feature_extractor(A , *A , sampling_rate=A , **A ) if audio is None: return inputs elif text is None: return audio_inputs else: _UpperCAmelCase : Any = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: _UpperCAmelCase : int = audio_inputs['''padding_mask'''] return inputs def __lowerCAmelCase ( self , *A , **A ) -> Any: _UpperCAmelCase : List[Any] = kwargs.pop('''audio''' , A ) _UpperCAmelCase : Tuple = kwargs.pop('''padding_mask''' , A ) if len(A ) > 0: _UpperCAmelCase : Optional[int] = args[0] _UpperCAmelCase : Any = args[1:] if audio_values is not None: return self._decode_audio(A , padding_mask=A ) else: return self.tokenizer.batch_decode(*A , **A ) def __lowerCAmelCase ( self , *A , **A ) -> Optional[int]: return self.tokenizer.decode(*A , **A ) def __lowerCAmelCase ( self , A , A = None ) -> List[np.ndarray]: _UpperCAmelCase : List[str] = to_numpy(A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = audio_values.shape if padding_mask is None: return list(A ) _UpperCAmelCase : Union[str, Any] = to_numpy(A ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _UpperCAmelCase : Union[str, Any] = seq_len - padding_mask.shape[-1] _UpperCAmelCase : str = 1 - self.feature_extractor.padding_value _UpperCAmelCase : Optional[int] = np.pad(A , ((0, 0), (0, difference)) , '''constant''' , constant_values=A ) _UpperCAmelCase : List[str] = audio_values.tolist() for i in range(A ): _UpperCAmelCase : List[str] = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _UpperCAmelCase : List[Any] = sliced_audio.reshape(A , -1 ) return audio_values
506
"""simple docstring""" import qiskit def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int ): _UpperCAmelCase : Any = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase : Tuple = qiskit.QuantumCircuit(UpperCamelCase__ , UpperCamelCase__ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase : Dict = qiskit.execute(UpperCamelCase__ , UpperCamelCase__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCamelCase__ ) if __name__ == "__main__": _lowerCAmelCase :Tuple = single_qubit_measure(2, 2) print(f"Total count for various states are: {counts}")
506
1
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _a : List[str]= logging.get_logger(__name__) _a : Tuple= {"vocab_file": "vocab.txt"} _a : str= { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _a : int= { "facebook/esm2_t6_8M_UR50D": 1_024, "facebook/esm2_t12_35M_UR50D": 1_024, } def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' with open(UpperCAmelCase_ , 'r' ) as f: __snake_case : Optional[Any] = f.read().splitlines() return [l.strip() for l in lines] class UpperCamelCase ( lowercase ): UpperCAmelCase : Any = VOCAB_FILES_NAMES UpperCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : int = ["""input_ids""", """attention_mask"""] def __init__(self : Optional[Any] , _A : Optional[Any] , _A : List[str]="<unk>" , _A : Union[str, Any]="<cls>" , _A : str="<pad>" , _A : List[str]="<mask>" , _A : Optional[int]="<eos>" , **_A : List[str] , ) -> Any: super().__init__(**_A) __snake_case : Union[str, Any] = load_vocab_file(_A) __snake_case : Tuple = dict(enumerate(self.all_tokens)) __snake_case : Dict = {tok: ind for ind, tok in enumerate(self.all_tokens)} __snake_case : Tuple = unk_token __snake_case : str = cls_token __snake_case : Union[str, Any] = pad_token __snake_case : str = mask_token __snake_case : Union[str, Any] = eos_token __snake_case : Union[str, Any] = self.all_tokens self._create_trie(self.unique_no_split_tokens) def _lowercase (self : Optional[Any] , _A : int) -> str: return self._id_to_token.get(_A , self.unk_token) def _lowercase (self : List[str] , _A : str) -> int: return self._token_to_id.get(_A , self._token_to_id.get(self.unk_token)) def _lowercase (self : Tuple , _A : Tuple , **_A : Union[str, Any]) -> Optional[int]: return text.split() def _lowercase (self : str , _A : str=False) -> Any: return len(self._id_to_token) def _lowercase (self : Dict) -> Optional[Any]: return {token: i for i, token in enumerate(self.all_tokens)} def _lowercase (self : str , _A : str) -> int: return self._token_to_id.get(_A , self._token_to_id.get(self.unk_token)) def _lowercase (self : str , _A : int) -> str: return self._id_to_token.get(_A , self.unk_token) def _lowercase (self : Tuple , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : Union[str, Any] = [self.cls_token_id] __snake_case : int = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!') return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _lowercase (self : Any , _A : List , _A : Optional[List] = None , _A : bool = False) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if token in self.all_special_ids else 0 for token in token_ids_a] __snake_case : Any = [1] + ([0] * len(_A)) + [1] if token_ids_a is not None: mask += [0] * len(_A) + [1] return mask def _lowercase (self : List[str] , _A : List[Any] , _A : Optional[Any]) -> List[str]: __snake_case : str = os.path.join(_A , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt') with open(_A , 'w') as f: f.write('\n'.join(self.all_tokens)) return (vocab_file,) @property def _lowercase (self : str) -> int: return self.get_vocab_size(with_added_tokens=_A) def _lowercase (self : Optional[Any] , _A : Union[List[str], List[AddedToken]] , _A : bool = False) -> int: return super()._add_tokens(_A , special_tokens=_A)
192
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : str ) -> list[int]: '''simple docstring''' __snake_case : Union[str, Any] = int(UpperCAmelCase_ ) # Initialize Result __snake_case : int = [] # Traverse through all denomination for denomination in reversed(UpperCAmelCase_ ): # Find denominations while int(UpperCAmelCase_ ) >= int(UpperCAmelCase_ ): total_value -= int(UpperCAmelCase_ ) answer.append(UpperCAmelCase_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": _a : Optional[int]= [] _a : Optional[int]= "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): _a : int= int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) _a : Optional[int]= input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter _a : Tuple= [1, 2, 5, 10, 20, 50, 100, 500, 2_000] _a : List[str]= input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(f'''Following is minimal change for {value}: ''') _a : List[Any]= find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
192
1
"""simple docstring""" class A__ : '''simple docstring''' def __init__( self: Dict , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Tuple) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = name __lowerCAmelCase : Tuple = value __lowerCAmelCase : Union[str, Any] = weight def __repr__( self: Optional[int]) -> Tuple: """simple docstring""" return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def _SCREAMING_SNAKE_CASE ( self: List[str]) -> int: """simple docstring""" return self.value def _SCREAMING_SNAKE_CASE ( self: Tuple) -> List[Any]: """simple docstring""" return self.name def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Dict: """simple docstring""" return self.weight def _SCREAMING_SNAKE_CASE ( self: Any) -> Optional[int]: """simple docstring""" return self.value / self.weight def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Any: __lowerCAmelCase : int = [] for i in range(len(__snake_case ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> List[str]: __lowerCAmelCase : Optional[int] = sorted(__snake_case ,key=__snake_case ,reverse=__snake_case ) __lowerCAmelCase : str = [] __lowerCAmelCase , __lowerCAmelCase : List[Any] = 0.0, 0.0 for i in range(len(__snake_case ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _lowercase ( ) -> Union[str, Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
293
"""simple docstring""" import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __snake_case : Union[str, Any] = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __snake_case : Any = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def _lowercase ( __snake_case ) -> List[Any]: __lowerCAmelCase : int = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) ,dtype=__snake_case )[0] @deprecated(__snake_case ,"Please use tf.data to implement this functionality." ) def _lowercase ( __snake_case ) -> Union[str, Any]: print("Extracting" ,f.name ) with gzip.GzipFile(fileobj=__snake_case ) as bytestream: __lowerCAmelCase : Union[str, Any] = _readaa(__snake_case ) if magic != 2_051: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) __lowerCAmelCase : List[str] = _readaa(__snake_case ) __lowerCAmelCase : Union[str, Any] = _readaa(__snake_case ) __lowerCAmelCase : int = _readaa(__snake_case ) __lowerCAmelCase : int = bytestream.read(rows * cols * num_images ) __lowerCAmelCase : Optional[Any] = numpy.frombuffer(__snake_case ,dtype=numpy.uinta ) __lowerCAmelCase : str = data.reshape(__snake_case ,__snake_case ,__snake_case ,1 ) return data @deprecated(__snake_case ,"Please use tf.one_hot on tensors." ) def _lowercase ( __snake_case ,__snake_case ) -> Any: __lowerCAmelCase : Union[str, Any] = labels_dense.shape[0] __lowerCAmelCase : Optional[int] = numpy.arange(__snake_case ) * num_classes __lowerCAmelCase : int = numpy.zeros((num_labels, num_classes) ) __lowerCAmelCase : str = 1 return labels_one_hot @deprecated(__snake_case ,"Please use tf.data to implement this functionality." ) def _lowercase ( __snake_case ,__snake_case=False ,__snake_case=10 ) -> str: print("Extracting" ,f.name ) with gzip.GzipFile(fileobj=__snake_case ) as bytestream: __lowerCAmelCase : List[str] = _readaa(__snake_case ) if magic != 2_049: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) __lowerCAmelCase : Union[str, Any] = _readaa(__snake_case ) __lowerCAmelCase : Union[str, Any] = bytestream.read(__snake_case ) __lowerCAmelCase : Dict = numpy.frombuffer(__snake_case ,dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__snake_case ,__snake_case ) return labels class A__ : '''simple docstring''' @deprecated( _SCREAMING_SNAKE_CASE , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self: Dict , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Any=False , _SCREAMING_SNAKE_CASE: int=False , _SCREAMING_SNAKE_CASE: str=dtypes.floataa , _SCREAMING_SNAKE_CASE: Any=True , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = random_seed.get_seed(_SCREAMING_SNAKE_CASE) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda) __lowerCAmelCase : Optional[Any] = dtypes.as_dtype(_SCREAMING_SNAKE_CASE).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype) if fake_data: __lowerCAmelCase : Tuple = 1_0000 __lowerCAmelCase : Optional[Any] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F"""images.shape: {images.shape} labels.shape: {labels.shape}""" __lowerCAmelCase : Union[str, Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __lowerCAmelCase : List[str] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2]) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __lowerCAmelCase : Dict = images.astype(numpy.floataa) __lowerCAmelCase : int = numpy.multiply(_SCREAMING_SNAKE_CASE , 1.0 / 255.0) __lowerCAmelCase : Optional[Any] = images __lowerCAmelCase : int = labels __lowerCAmelCase : Optional[Any] = 0 __lowerCAmelCase : Optional[int] = 0 @property def _SCREAMING_SNAKE_CASE ( self: Dict) -> Tuple: """simple docstring""" return self._images @property def _SCREAMING_SNAKE_CASE ( self: Dict) -> int: """simple docstring""" return self._labels @property def _SCREAMING_SNAKE_CASE ( self: int) -> str: """simple docstring""" return self._num_examples @property def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> List[str]: """simple docstring""" return self._epochs_completed def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: int=False , _SCREAMING_SNAKE_CASE: List[str]=True) -> int: """simple docstring""" if fake_data: __lowerCAmelCase : Dict = [1] * 784 __lowerCAmelCase : str = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_SCREAMING_SNAKE_CASE)], [fake_label for _ in range(_SCREAMING_SNAKE_CASE)], ) __lowerCAmelCase : Tuple = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __lowerCAmelCase : Any = numpy.arange(self._num_examples) numpy.random.shuffle(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = self.images[perma] __lowerCAmelCase : Dict = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __lowerCAmelCase : Tuple = self._num_examples - start __lowerCAmelCase : List[str] = self._images[start : self._num_examples] __lowerCAmelCase : Tuple = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __lowerCAmelCase : Tuple = numpy.arange(self._num_examples) numpy.random.shuffle(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = self.images[perm] __lowerCAmelCase : Dict = self.labels[perm] # Start next epoch __lowerCAmelCase : str = 0 __lowerCAmelCase : Dict = batch_size - rest_num_examples __lowerCAmelCase : str = self._index_in_epoch __lowerCAmelCase : Optional[Any] = self._images[start:end] __lowerCAmelCase : Optional[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0), ) else: self._index_in_epoch += batch_size __lowerCAmelCase : int = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__snake_case ,"Please write your own downloading logic." ) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Any: if not gfile.Exists(__snake_case ): gfile.MakeDirs(__snake_case ) __lowerCAmelCase : Tuple = os.path.join(__snake_case ,__snake_case ) if not gfile.Exists(__snake_case ): urllib.request.urlretrieve(__snake_case ,__snake_case ) # noqa: S310 with gfile.GFile(__snake_case ) as f: __lowerCAmelCase : Union[str, Any] = f.size() print("Successfully downloaded" ,__snake_case ,__snake_case ,"bytes." ) return filepath @deprecated( __snake_case ,"Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def _lowercase ( __snake_case ,__snake_case=False ,__snake_case=False ,__snake_case=dtypes.floataa ,__snake_case=True ,__snake_case=5_000 ,__snake_case=None ,__snake_case=DEFAULT_SOURCE_URL ,) -> Tuple: if fake_data: def fake(): return _DataSet( [] ,[] ,fake_data=__snake_case ,one_hot=__snake_case ,dtype=__snake_case ,seed=__snake_case ) __lowerCAmelCase : Union[str, Any] = fake() __lowerCAmelCase : Optional[Any] = fake() __lowerCAmelCase : List[Any] = fake() return _Datasets(train=__snake_case ,validation=__snake_case ,test=__snake_case ) if not source_url: # empty string check __lowerCAmelCase : Optional[Any] = DEFAULT_SOURCE_URL __lowerCAmelCase : Dict = "train-images-idx3-ubyte.gz" __lowerCAmelCase : int = "train-labels-idx1-ubyte.gz" __lowerCAmelCase : List[str] = "t10k-images-idx3-ubyte.gz" __lowerCAmelCase : Any = "t10k-labels-idx1-ubyte.gz" __lowerCAmelCase : Any = _maybe_download( __snake_case ,__snake_case ,source_url + train_images_file ) with gfile.Open(__snake_case ,"rb" ) as f: __lowerCAmelCase : Union[str, Any] = _extract_images(__snake_case ) __lowerCAmelCase : Optional[int] = _maybe_download( __snake_case ,__snake_case ,source_url + train_labels_file ) with gfile.Open(__snake_case ,"rb" ) as f: __lowerCAmelCase : Optional[int] = _extract_labels(__snake_case ,one_hot=__snake_case ) __lowerCAmelCase : Optional[int] = _maybe_download( __snake_case ,__snake_case ,source_url + test_images_file ) with gfile.Open(__snake_case ,"rb" ) as f: __lowerCAmelCase : List[Any] = _extract_images(__snake_case ) __lowerCAmelCase : str = _maybe_download( __snake_case ,__snake_case ,source_url + test_labels_file ) with gfile.Open(__snake_case ,"rb" ) as f: __lowerCAmelCase : List[Any] = _extract_labels(__snake_case ,one_hot=__snake_case ) if not 0 <= validation_size <= len(__snake_case ): __lowerCAmelCase : Tuple = ( "Validation size should be between 0 and " F"""{len(__snake_case )}. Received: {validation_size}.""" ) raise ValueError(__snake_case ) __lowerCAmelCase : Any = train_images[:validation_size] __lowerCAmelCase : Any = train_labels[:validation_size] __lowerCAmelCase : List[str] = train_images[validation_size:] __lowerCAmelCase : Optional[Any] = train_labels[validation_size:] __lowerCAmelCase : Dict = {"dtype": dtype, "reshape": reshape, "seed": seed} __lowerCAmelCase : str = _DataSet(__snake_case ,__snake_case ,**__snake_case ) __lowerCAmelCase : Dict = _DataSet(__snake_case ,__snake_case ,**__snake_case ) __lowerCAmelCase : Union[str, Any] = _DataSet(__snake_case ,__snake_case ,**__snake_case ) return _Datasets(train=__snake_case ,validation=__snake_case ,test=__snake_case )
293
1
'''simple docstring''' import argparse import json from tqdm import tqdm def lowercase__ ( ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=__lowercase , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=__lowercase , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=__lowercase , help='where to store parsed gold_data_path file' , ) __UpperCamelCase = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: __UpperCamelCase = json.load(__lowercase ) for dpr_record in tqdm(__lowercase ): __UpperCamelCase = dpr_record['question'] __UpperCamelCase = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(__lowercase ) + '\n' ) if __name__ == "__main__": main()
434
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Optional[int] =logging.get_logger(__name__) a__ : int ={ '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any ="xlnet" SCREAMING_SNAKE_CASE_ : List[str] =["mems"] SCREAMING_SNAKE_CASE_ : Dict ={ "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[Any] , __A : Optional[Any]=3_2_0_0_0 , __A : int=1_0_2_4 , __A : Tuple=2_4 , __A : Dict=1_6 , __A : str=4_0_9_6 , __A : List[str]="gelu" , __A : int=True , __A : str="bi" , __A : List[str]=0.02 , __A : List[Any]=1e-12 , __A : Optional[Any]=0.1 , __A : str=5_1_2 , __A : Any=None , __A : str=True , __A : Dict=False , __A : str=False , __A : Tuple=-1 , __A : List[Any]=False , __A : str="last" , __A : Optional[Any]=True , __A : Optional[int]="tanh" , __A : Any=0.1 , __A : List[str]=5 , __A : Tuple=5 , __A : Dict=5 , __A : str=1 , __A : Optional[Any]=2 , **__A : List[Any] , ): __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = n_layer __UpperCamelCase = n_head if d_model % n_head != 0: raise ValueError(f'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) __UpperCamelCase = d_model // n_head __UpperCamelCase = ff_activation __UpperCamelCase = d_inner __UpperCamelCase = untie_r __UpperCamelCase = attn_type __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = dropout __UpperCamelCase = mem_len __UpperCamelCase = reuse_len __UpperCamelCase = bi_data __UpperCamelCase = clamp_len __UpperCamelCase = same_length __UpperCamelCase = summary_type __UpperCamelCase = summary_use_proj __UpperCamelCase = summary_activation __UpperCamelCase = summary_last_dropout __UpperCamelCase = start_n_top __UpperCamelCase = end_n_top __UpperCamelCase = bos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , __A , ) __UpperCamelCase = kwargs['use_cache'] __UpperCamelCase = use_mems_eval __UpperCamelCase = use_mems_train super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) @property def _lowerCamelCase ( self : List[str] ): logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def _lowerCamelCase ( self : int , __A : Optional[int] ): # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
434
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case : Tuple = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __snake_case : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
293
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') __snake_case : List[Any] = parser.parse_args() if args.model_type == "bert": __snake_case : int = BertForMaskedLM.from_pretrained(args.model_name) __snake_case : Tuple = 'bert' else: raise ValueError('args.model_type should be "bert".') __snake_case : List[Any] = model.state_dict() __snake_case : Any = {} for w in ["word_embeddings", "position_embeddings"]: __snake_case : List[str] = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: __snake_case : Optional[int] = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] __snake_case : List[str] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: __snake_case : str = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] __snake_case : Tuple = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] __snake_case : str = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] __snake_case : Any = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] __snake_case : Union[str, Any] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] __snake_case : Union[str, Any] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] __snake_case : Any = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] __snake_case : Optional[int] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 __snake_case : Union[str, Any] = state_dict['cls.predictions.decoder.weight'] __snake_case : Union[str, Any] = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: __snake_case : Union[str, Any] = state_dict[F"""cls.predictions.transform.dense.{w}"""] __snake_case : List[str] = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
293
1
"""simple docstring""" def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: SCREAMING_SNAKE_CASE__ = _modexpt(snake_case__ , exponent // 2 , snake_case__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(snake_case__ , exponent - 1 , snake_case__ )) % modulo_value def A ( snake_case__ = 17_77 , snake_case__ = 18_55 , snake_case__ = 8 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = base for _ in range(1 , snake_case__ ): SCREAMING_SNAKE_CASE__ = _modexpt(snake_case__ , snake_case__ , 10**digits ) return result if __name__ == "__main__": print(F'{solution() = }')
616
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch A_ : List[str] = random.Random() def A ( snake_case__ , snake_case__=1.0 , snake_case__=None , snake_case__=None ): '''simple docstring''' if rng is None: SCREAMING_SNAKE_CASE__ = global_rng SCREAMING_SNAKE_CASE__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCamelCase (unittest.TestCase ): def __init__( self : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : List[str]=7 , __UpperCAmelCase : List[str]=4_0_0 , __UpperCAmelCase : Tuple=2_0_0_0 , __UpperCAmelCase : Any=1 , __UpperCAmelCase : str=0.0 , __UpperCAmelCase : int=1_6_0_0_0 , __UpperCAmelCase : str=True , __UpperCAmelCase : List[str]=8_0 , __UpperCAmelCase : Dict=1_6 , __UpperCAmelCase : int=6_4 , __UpperCAmelCase : Any="hann_window" , __UpperCAmelCase : Tuple=8_0 , __UpperCAmelCase : Tuple=7_6_0_0 , __UpperCAmelCase : List[Any]=1e-10 , __UpperCAmelCase : Tuple=True , ) -> int: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = min_seq_length SCREAMING_SNAKE_CASE__ = max_seq_length SCREAMING_SNAKE_CASE__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE__ = feature_size SCREAMING_SNAKE_CASE__ = padding_value SCREAMING_SNAKE_CASE__ = sampling_rate SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = num_mel_bins SCREAMING_SNAKE_CASE__ = hop_length SCREAMING_SNAKE_CASE__ = win_length SCREAMING_SNAKE_CASE__ = win_function SCREAMING_SNAKE_CASE__ = fmin SCREAMING_SNAKE_CASE__ = fmax SCREAMING_SNAKE_CASE__ = mel_floor SCREAMING_SNAKE_CASE__ = return_attention_mask def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : Dict=False , __UpperCAmelCase : List[str]=False ) -> Optional[Any]: def _flatten(__UpperCAmelCase : List[Any] ): return list(itertools.chain(*__UpperCAmelCase ) ) if equal_length: SCREAMING_SNAKE_CASE__ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE__ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE__ = [np.asarray(__UpperCAmelCase ) for x in speech_inputs] return speech_inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : Optional[int]=False ) -> str: if equal_length: SCREAMING_SNAKE_CASE__ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE__ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE__ = [np.asarray(__UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowerCamelCase (A__ ,unittest.TestCase ): lowerCamelCase__ : Any = SpeechTaFeatureExtractor def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE__ = SpeechTaFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : Any ) -> Tuple: self.assertTrue(np.all(np.mean(__UpperCAmelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCAmelCase , axis=0 ) - 1 ) < 1e-3 ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] SCREAMING_SNAKE_CASE__ = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE__ = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values SCREAMING_SNAKE_CASE__ = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) # Test batched SCREAMING_SNAKE_CASE__ = feat_extract(__UpperCAmelCase , return_tensors="""np""" ).input_values SCREAMING_SNAKE_CASE__ = feat_extract(__UpperCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] SCREAMING_SNAKE_CASE__ = ["""longest""", """max_length""", """do_not_pad"""] SCREAMING_SNAKE_CASE__ = [None, 1_6_0_0, None] for max_length, padding in zip(__UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = feat_extract(__UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ = range(8_0_0 , 1_4_0_0 , 2_0_0 ) SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in lengths] SCREAMING_SNAKE_CASE__ = ["""longest""", """max_length""", """do_not_pad"""] SCREAMING_SNAKE_CASE__ = [None, 1_6_0_0, None] for max_length, padding in zip(__UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = feat_extract(__UpperCAmelCase , max_length=__UpperCAmelCase , padding=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] SCREAMING_SNAKE_CASE__ = feat_extract( __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=1_0_0_0 , padding="""max_length""" , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] SCREAMING_SNAKE_CASE__ = feat_extract( __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=1_0_0_0 , padding="""longest""" , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] SCREAMING_SNAKE_CASE__ = feat_extract( __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=2_0_0_0 , padding="""longest""" , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ = np.random.rand(1_0_0 ).astype(np.floataa ) SCREAMING_SNAKE_CASE__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE__ = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE__ = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] SCREAMING_SNAKE_CASE__ = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE__ = feature_extractor(audio_target=__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="""np""" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input SCREAMING_SNAKE_CASE__ = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_values SCREAMING_SNAKE_CASE__ = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) # Test batched SCREAMING_SNAKE_CASE__ = feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_values SCREAMING_SNAKE_CASE__ = feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] SCREAMING_SNAKE_CASE__ = np.asarray(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_values SCREAMING_SNAKE_CASE__ = feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) for x, y in zip(__UpperCAmelCase , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) SCREAMING_SNAKE_CASE__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) SCREAMING_SNAKE_CASE__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE__ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE__ = feat_extract.pad(__UpperCAmelCase , padding="""longest""" , return_tensors="""np""" )[input_name] SCREAMING_SNAKE_CASE__ = feat_extract.pad(__UpperCAmelCase , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.feat_extract_dict SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE__ = [len(__UpperCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE__ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE__ = feat_extract.pad(__UpperCAmelCase , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , __UpperCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.feat_extract_dict SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE__ = [len(__UpperCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE__ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ = min(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE__ = feat_extract.pad( __UpperCAmelCase , padding="""max_length""" , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors="""np""" ) self.assertIn("""attention_mask""" , __UpperCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : int ) -> str: from datasets import load_dataset SCREAMING_SNAKE_CASE__ = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE__ = ds.sort("""id""" ).select(range(__UpperCAmelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: # fmt: off SCREAMING_SNAKE_CASE__ = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on SCREAMING_SNAKE_CASE__ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE__ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE__ = feature_extractor(__UpperCAmelCase , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0] , __UpperCAmelCase , atol=1e-6 ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: # fmt: off SCREAMING_SNAKE_CASE__ = torch.tensor( [-2.6_870, -3.0_104, -3.1_356, -3.5_352, -3.0_044, -3.0_353, -3.4_719, -3.6_777, -3.1_520, -2.9_435, -2.6_553, -2.8_795, -2.9_944, -2.5_921, -3.0_279, -3.0_386, -3.0_864, -3.1_291, -3.2_353, -2.7_444, -2.6_831, -2.7_287, -3.1_761, -3.1_571, -3.2_726, -3.0_582, -3.1_007, -3.4_533, -3.4_695, -3.0_998] ) # fmt: on SCREAMING_SNAKE_CASE__ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE__ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE__ = feature_extractor(audio_target=__UpperCAmelCase , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , __UpperCAmelCase , atol=1e-4 ) )
616
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase = { '''configuration_xlm_roberta_xl''': [ '''XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaXLConfig''', '''XLMRobertaXLOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ '''XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaXLForCausalLM''', '''XLMRobertaXLForMaskedLM''', '''XLMRobertaXLForMultipleChoice''', '''XLMRobertaXLForQuestionAnswering''', '''XLMRobertaXLForSequenceClassification''', '''XLMRobertaXLForTokenClassification''', '''XLMRobertaXLModel''', '''XLMRobertaXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
674
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) class __lowerCamelCase ( __lowercase ): def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' warnings.warn( """The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ImageGPTImageProcessor instead.""" , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
156
0
def _lowerCAmelCase ( A__: dict ): '''simple docstring''' UpperCAmelCase = set() # edges = list of graph's edges UpperCAmelCase = get_edges(A__ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: UpperCAmelCase , UpperCAmelCase = edges.pop() chosen_vertices.add(A__ ) chosen_vertices.add(A__ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(A__ ) return chosen_vertices def _lowerCAmelCase ( A__: dict ): '''simple docstring''' UpperCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
391
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __magic_name__ = r"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(A__ ) class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """rag""" __SCREAMING_SNAKE_CASE = True def __init__( self , _snake_case=None , _snake_case=True , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=" / " , _snake_case=" // " , _snake_case=5 , _snake_case=300 , _snake_case=768 , _snake_case=8 , _snake_case="wiki_dpr" , _snake_case="train" , _snake_case="compressed" , _snake_case=None , _snake_case=None , _snake_case=False , _snake_case=False , _snake_case=0.0 , _snake_case=True , _snake_case=False , _snake_case=False , _snake_case=False , _snake_case=True , _snake_case=None , **_snake_case , ) -> str: """simple docstring""" super().__init__( bos_token_id=_snake_case , pad_token_id=_snake_case , eos_token_id=_snake_case , decoder_start_token_id=_snake_case , forced_eos_token_id=_snake_case , is_encoder_decoder=_snake_case , prefix=_snake_case , vocab_size=_snake_case , **_snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase = kwargs.pop('''question_encoder''' ) UpperCAmelCase = question_encoder_config.pop('''model_type''' ) UpperCAmelCase = kwargs.pop('''generator''' ) UpperCAmelCase = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase = AutoConfig.for_model(_snake_case , **_snake_case ) UpperCAmelCase = AutoConfig.for_model(_snake_case , **_snake_case ) UpperCAmelCase = reduce_loss UpperCAmelCase = label_smoothing UpperCAmelCase = exclude_bos_score UpperCAmelCase = do_marginalize UpperCAmelCase = title_sep UpperCAmelCase = doc_sep UpperCAmelCase = n_docs UpperCAmelCase = max_combined_length UpperCAmelCase = dataset UpperCAmelCase = dataset_split UpperCAmelCase = index_name UpperCAmelCase = retrieval_vector_size UpperCAmelCase = retrieval_batch_size UpperCAmelCase = passages_path UpperCAmelCase = index_path UpperCAmelCase = use_dummy_dataset UpperCAmelCase = output_retrieved UpperCAmelCase = do_deduplication UpperCAmelCase = use_cache if self.forced_eos_token_id is None: UpperCAmelCase = getattr(self.generator , '''forced_eos_token_id''' , _snake_case ) @classmethod def snake_case_ ( cls , _snake_case , _snake_case , **_snake_case ) -> PretrainedConfig: """simple docstring""" return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_snake_case ) def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.question_encoder.to_dict() UpperCAmelCase = self.generator.to_dict() UpperCAmelCase = self.__class__.model_type return output
391
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__: int = logging.get_logger(__name__) __magic_name__: Optional[int] = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class snake_case__ ( _UpperCAmelCase ): lowercase__ : List[str] = """lxmert""" lowercase__ : int = {} def __init__( self , lowerCAmelCase__=3_05_22 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=95_00 , lowerCAmelCase__=16_00 , lowerCAmelCase__=4_00 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-1_2 , lowerCAmelCase__=9 , lowerCAmelCase__=5 , lowerCAmelCase__=5 , lowerCAmelCase__=20_48 , lowerCAmelCase__=4 , lowerCAmelCase__=6.6_7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> List[str]: __magic_name__ : Union[str, Any] = vocab_size __magic_name__ : Optional[Any] = hidden_size __magic_name__ : Union[str, Any] = num_attention_heads __magic_name__ : List[Any] = hidden_act __magic_name__ : int = intermediate_size __magic_name__ : str = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : str = max_position_embeddings __magic_name__ : Dict = type_vocab_size __magic_name__ : Optional[int] = initializer_range __magic_name__ : Optional[int] = layer_norm_eps __magic_name__ : Optional[int] = num_qa_labels __magic_name__ : Tuple = num_object_labels __magic_name__ : Any = num_attr_labels __magic_name__ : List[str] = l_layers __magic_name__ : Dict = x_layers __magic_name__ : Optional[int] = r_layers __magic_name__ : Any = visual_feat_dim __magic_name__ : Optional[int] = visual_pos_dim __magic_name__ : int = visual_loss_normalizer __magic_name__ : Any = task_matched __magic_name__ : str = task_mask_lm __magic_name__ : Dict = task_obj_predict __magic_name__ : Optional[int] = task_qa __magic_name__ : Union[str, Any] = visual_obj_loss __magic_name__ : List[str] = visual_attr_loss __magic_name__ : List[Any] = visual_feat_loss __magic_name__ : Optional[int] = {"""vision""": r_layers, """cross_encoder""": x_layers, """language""": l_layers} super().__init__(**lowercase__ )
324
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(SCREAMING_SNAKE_CASE__ ) ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[list[int]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if index == len(SCREAMING_SNAKE_CASE__ ): return True # Recursive Step for i in range(SCREAMING_SNAKE_CASE__ ): if valid_coloring(graph[index] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Color current vertex snake_case_ : Dict = i # Validate coloring if util_color(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ): return True # Backtrack snake_case_ : List[Any] = -1 return False def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[list[int]] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : int = [-1] * len(SCREAMING_SNAKE_CASE__ ) if util_color(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 0 ): return colored_vertices return []
480
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _A = logging.get_logger(__name__) class _lowerCamelCase ( a_ ): _lowerCamelCase :int = ["pixel_values"] def __init__( self : Optional[Any] , UpperCamelCase : bool = True , UpperCamelCase : Optional[Dict[str, int]] = None , UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 2_55 , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , **UpperCamelCase : Any , ) -> None: """simple docstring""" super().__init__(**UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = size if size is not None else {"""shortest_edge""": 2_56} lowerCAmelCase__ : Optional[Any] = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) lowerCAmelCase__ : int = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} lowerCAmelCase__ : List[str] = get_size_dict(UpperCamelCase ) lowerCAmelCase__ : List[str] = do_resize lowerCAmelCase__ : List[Any] = size lowerCAmelCase__ : int = resample lowerCAmelCase__ : Dict = do_center_crop lowerCAmelCase__ : Dict = crop_size lowerCAmelCase__ : Union[str, Any] = do_rescale lowerCAmelCase__ : Tuple = rescale_factor lowerCAmelCase__ : str = do_normalize lowerCAmelCase__ : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase__ : List[str] = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowerCAmelCase__ : List[str] = get_resize_output_image_size(UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : int , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Optional[Any] , ) -> np.ndarray: """simple docstring""" lowerCAmelCase__ : str = get_size_dict(UpperCamelCase ) return center_crop(UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : int , UpperCamelCase : np.ndarray , UpperCamelCase : float , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any ) -> np.ndarray: """simple docstring""" return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : int , UpperCamelCase : np.ndarray , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Optional[int] , ) -> np.ndarray: """simple docstring""" return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : Dict , UpperCamelCase : ImageInput , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = None , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Optional[float] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase : Dict , ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ : int = size if size is not None else self.size lowerCAmelCase__ : Any = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) lowerCAmelCase__ : List[str] = resample if resample is not None else self.resample lowerCAmelCase__ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ : List[str] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ : List[str] = get_size_dict(UpperCamelCase ) lowerCAmelCase__ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ : List[str] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ : Optional[Any] = image_std if image_std is not None else self.image_std lowerCAmelCase__ : List[Any] = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase__ : List[Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: lowerCAmelCase__ : str = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: lowerCAmelCase__ : Any = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: lowerCAmelCase__ : int = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_normalize: lowerCAmelCase__ : Optional[Any] = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images] lowerCAmelCase__ : Optional[Any] = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] lowerCAmelCase__ : int = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
709
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger() @dataclass class _lowerCamelCase : _lowerCamelCase :nn.Module _lowerCamelCase :List[nn.Module] = field(default_factory=a_ ) _lowerCamelCase :list = field(default_factory=a_ ) def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : str , UpperCamelCase : Tensor , UpperCamelCase : Tensor ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Dict = len(list(m.modules() ) ) == 1 or isinstance(UpperCamelCase , nn.Convad ) or isinstance(UpperCamelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCamelCase ) def __call__( self : int , UpperCamelCase : Tensor ) -> Tuple: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCamelCase ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCamelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _lowerCamelCase : _lowerCamelCase :nn.Module _lowerCamelCase :nn.Module _lowerCamelCase :int = 0 _lowerCamelCase :List = field(default_factory=a_ ) _lowerCamelCase :List = field(default_factory=a_ ) def __call__( self : str , UpperCamelCase : Tensor ) -> str: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = Tracker(self.dest )(UpperCamelCase ).parametrized lowerCAmelCase__ : Union[str, Any] = Tracker(self.src )(UpperCamelCase ).parametrized lowerCAmelCase__ : Any = list(filter(lambda UpperCamelCase : type(UpperCamelCase ) not in self.src_skip , UpperCamelCase ) ) lowerCAmelCase__ : int = list(filter(lambda UpperCamelCase : type(UpperCamelCase ) not in self.dest_skip , UpperCamelCase ) ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise Exception( f"""Numbers of operations are different. Source module has {len(UpperCamelCase )} operations while""" f""" destination module has {len(UpperCamelCase )}.""" ) for dest_m, src_m in zip(UpperCamelCase , UpperCamelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True ) -> List[str]: print(f"""Converting {name}...""" ) with torch.no_grad(): lowerCAmelCase__ : Any = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() lowerCAmelCase__ : int = ResNetForImageClassification(__UpperCAmelCase ).eval() lowerCAmelCase__ : List[str] = ModuleTransfer(src=__UpperCAmelCase , dest=__UpperCAmelCase ) lowerCAmelCase__ : str = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCAmelCase ) assert torch.allclose(from_model(__UpperCAmelCase ) , our_model(__UpperCAmelCase ).logits ), "The model logits don't match the original one." lowerCAmelCase__ : int = f"""resnet{'-'.join(name.split('resnet' ) )}""" print(__UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=__UpperCAmelCase , ) # we can use the convnext one lowerCAmelCase__ : Tuple = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=__UpperCAmelCase , ) print(f"""Pushed {checkpoint_name}""" ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True ) -> List[str]: lowerCAmelCase__ : Dict = """imagenet-1k-id2label.json""" lowerCAmelCase__ : Any = 1000 lowerCAmelCase__ : Optional[int] = (1, num_labels) lowerCAmelCase__ : List[Any] = """huggingface/label-files""" lowerCAmelCase__ : int = num_labels lowerCAmelCase__ : Any = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase__ : Optional[Any] = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase__ : Optional[int] = idalabel lowerCAmelCase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : Union[str, Any] = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(__UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) _A = parser.parse_args() _A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
507
0
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> None: """simple docstring""" warnings.warn( """The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DPTImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
477
"""simple docstring""" from __future__ import annotations from random import choice def UpperCAmelCase ( A : Union[str, Any] ): '''simple docstring''' return choice(A ) def UpperCAmelCase ( A : list[int] , A : int ): '''simple docstring''' _UpperCAmelCase = random_pivot(A ) # partition based on pivot # linear time _UpperCAmelCase = [e for e in lst if e < pivot] _UpperCAmelCase = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(A ) == k - 1: return pivot # pivot is in elements bigger than k elif len(A ) < k - 1: return kth_number(A , k - len(A ) - 1 ) # pivot is in elements smaller than k else: return kth_number(A , A ) if __name__ == "__main__": import doctest doctest.testmod()
573
0
from __future__ import annotations import numpy as np def lowerCamelCase_ ( UpperCamelCase__ : np.ndarray ) -> tuple[np.ndarray, np.ndarray]: """simple docstring""" __lowerCamelCase , __lowerCamelCase = np.shape(UpperCamelCase__ ) if rows != columns: __lowerCamelCase = ( '\'table\' has to be of square shaped array but got a ' F"""{rows}x{columns} array:\n{table}""" ) raise ValueError(UpperCamelCase__ ) __lowerCamelCase = np.zeros((rows, columns) ) __lowerCamelCase = np.zeros((rows, columns) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __lowerCamelCase = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase__ ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) __lowerCamelCase = (table[i][j] - total) / upper[j][j] __lowerCamelCase = 1 for j in range(UpperCamelCase__ , UpperCamelCase__ ): __lowerCamelCase = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase__ ) ) __lowerCamelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
167
def lowerCamelCase_ ( UpperCamelCase__ : int = 1000 ) -> int: """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
167
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =['image_processor', 'tokenizer'] lowerCamelCase__ ='ViTImageProcessor' lowerCamelCase__ =('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Optional[int] , a : List[Any]=None , a : str=None , **a : Optional[int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a , ) SCREAMING_SNAKE_CASE : Dict = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a , a ) def __call__( self : Tuple , a : Tuple=None , a : Optional[int]=None , a : Tuple=None , a : List[Any]=None , **a : str ) -> Optional[int]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(a , return_tensors=a , **a ) if visual_prompt is not None: SCREAMING_SNAKE_CASE : List[str] = self.image_processor(a , return_tensors=a , **a ) if images is not None: SCREAMING_SNAKE_CASE : int = self.image_processor(a , return_tensors=a , **a ) if visual_prompt is not None and images is not None: SCREAMING_SNAKE_CASE : List[Any] = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: SCREAMING_SNAKE_CASE : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: SCREAMING_SNAKE_CASE : Any = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def __UpperCamelCase ( self : Optional[Any] , *a : int , **a : List[str] ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*a , **a ) def __UpperCamelCase ( self : Optional[int] , *a : Any , **a : List[str] ) -> int: """simple docstring""" return self.tokenizer.decode(*a , **a ) @property def __UpperCamelCase ( self : str ) -> Optional[int]: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a , ) return self.image_processor_class @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a , ) return self.image_processor
25
"""simple docstring""" def snake_case ( _a: float , _a: float )-> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f"""{price_plus_tax(100, 0.25) = }""") print(f"""{price_plus_tax(1_25.50, 0.05) = }""")
510
0
a__ = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ a__ = [{"""type""": """code""", """content""": INSTALL_CONTENT}] a__ = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
198
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class snake_case : '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : Tuple=13 , lowerCAmelCase : Union[str, Any]=7 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Optional[int]=99 , lowerCAmelCase : List[str]=32 , lowerCAmelCase : List[str]=5 , lowerCAmelCase : Optional[Any]=4 , lowerCAmelCase : Optional[int]=37 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Tuple=512 , lowerCAmelCase : Tuple=16 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : str=0.02 , lowerCAmelCase : str=3 , lowerCAmelCase : List[Any]=4 , lowerCAmelCase : Any=None , ) -> Optional[int]: """simple docstring""" _snake_case : Union[str, Any] = parent _snake_case : Optional[int] = batch_size _snake_case : str = seq_length _snake_case : int = is_training _snake_case : Dict = use_input_mask _snake_case : Tuple = use_token_type_ids _snake_case : List[Any] = use_labels _snake_case : List[str] = vocab_size _snake_case : str = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : Union[str, Any] = intermediate_size _snake_case : Dict = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : str = max_position_embeddings _snake_case : str = type_vocab_size _snake_case : List[str] = type_sequence_label_size _snake_case : Optional[int] = initializer_range _snake_case : Any = num_labels _snake_case : Dict = num_choices _snake_case : List[Any] = scope def UpperCamelCase_ ( self : Optional[int]) -> str: """simple docstring""" _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _snake_case : Optional[Any] = None if self.use_input_mask: _snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length]) _snake_case : List[Any] = None if self.use_token_type_ids: _snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _snake_case : Union[str, Any] = None _snake_case : Union[str, Any] = None _snake_case : Optional[Any] = None if self.use_labels: _snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _snake_case : int = ids_tensor([self.batch_size] , self.num_choices) _snake_case : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : List[Any]) -> Any: """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Any , lowerCAmelCase : int) -> Optional[int]: """simple docstring""" _snake_case : List[str] = LlamaModel(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : int = model(lowerCAmelCase , attention_mask=lowerCAmelCase) _snake_case : str = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase_ ( self : Dict , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , ) -> Dict: """simple docstring""" _snake_case : Optional[Any] = True _snake_case : List[Any] = LlamaModel(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : Union[str, Any] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , ) _snake_case : Dict = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , ) _snake_case : Tuple = model(lowerCAmelCase , attention_mask=lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , ) -> Dict: """simple docstring""" _snake_case : List[str] = LlamaForCausalLM(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : int = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] , ) -> Tuple: """simple docstring""" _snake_case : str = True _snake_case : Optional[Any] = True _snake_case : List[Any] = LlamaForCausalLM(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() # first forward pass _snake_case : Tuple = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , use_cache=lowerCAmelCase , ) _snake_case : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _snake_case : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size) _snake_case : str = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and _snake_case : int = torch.cat([input_ids, next_tokens] , dim=-1) _snake_case : Tuple = torch.cat([input_mask, next_mask] , dim=-1) _snake_case : Tuple = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , output_hidden_states=lowerCAmelCase , )["""hidden_states"""][0] _snake_case : Optional[Any] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , output_hidden_states=lowerCAmelCase , )["""hidden_states"""][0] # select random slice _snake_case : str = ids_tensor((1,) , output_from_past.shape[-1]).item() _snake_case : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() _snake_case : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3)) def UpperCamelCase_ ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" _snake_case : str = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : List[str] = config_and_inputs _snake_case : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : int = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () snake_case_ : Optional[int] = (LlamaForCausalLM,) if is_torch_available() else () snake_case_ : int = ( { """feature-extraction""": LlamaModel, """text-classification""": LlamaForSequenceClassification, """text-generation""": LlamaForCausalLM, """zero-shot""": LlamaForSequenceClassification, } if is_torch_available() else {} ) snake_case_ : Dict = False snake_case_ : int = False def UpperCamelCase_ ( self : Tuple) -> int: """simple docstring""" _snake_case : int = LlamaModelTester(self) _snake_case : Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37) def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase) def UpperCamelCase_ ( self : List[str]) -> List[str]: """simple docstring""" _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _snake_case : List[Any] = type self.model_tester.create_and_check_model(*lowerCAmelCase) def UpperCamelCase_ ( self : List[str]) -> Union[str, Any]: """simple docstring""" _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : List[str] = 3 _snake_case : Any = input_dict["""input_ids"""] _snake_case : Optional[int] = input_ids.ne(1).to(lowerCAmelCase) _snake_case : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) _snake_case : Tuple = LlamaForSequenceClassification(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : Dict = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def UpperCamelCase_ ( self : List[Any]) -> Union[str, Any]: """simple docstring""" _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = 3 _snake_case : Optional[Any] = """single_label_classification""" _snake_case : Optional[int] = input_dict["""input_ids"""] _snake_case : str = input_ids.ne(1).to(lowerCAmelCase) _snake_case : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) _snake_case : str = LlamaForSequenceClassification(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : int = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def UpperCamelCase_ ( self : int) -> str: """simple docstring""" _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : List[Any] = 3 _snake_case : Any = """multi_label_classification""" _snake_case : str = input_dict["""input_ids"""] _snake_case : List[str] = input_ids.ne(1).to(lowerCAmelCase) _snake_case : List[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) _snake_case : Tuple = LlamaForSequenceClassification(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : int = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""") def UpperCamelCase_ ( self : Any) -> int: """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)]) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = ids_tensor([1, 10] , config.vocab_size) _snake_case : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights _snake_case : Dict = LlamaModel(lowerCAmelCase) original_model.to(lowerCAmelCase) original_model.eval() _snake_case : int = original_model(lowerCAmelCase).last_hidden_state _snake_case : str = original_model(lowerCAmelCase).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights _snake_case : Optional[int] = {"""type""": scaling_type, """factor""": 10.0} _snake_case : Dict = LlamaModel(lowerCAmelCase) scaled_model.to(lowerCAmelCase) scaled_model.eval() _snake_case : str = scaled_model(lowerCAmelCase).last_hidden_state _snake_case : List[Any] = scaled_model(lowerCAmelCase).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5)) else: self.assertFalse(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5)) @require_torch class snake_case ( unittest.TestCase ): '''simple docstring''' @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""") @slow def UpperCamelCase_ ( self : List[str]) -> Optional[int]: """simple docstring""" _snake_case : int = [1, 306, 4658, 278, 6593, 310, 2834, 338] _snake_case : Any = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""") _snake_case : Tuple = model(torch.tensor([input_ids])) # Expected mean on dim = -1 _snake_case : Union[str, Any] = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]]) torch.testing.assert_close(out.mean(-1) , lowerCAmelCase , atol=1E-2 , rtol=1E-2) # slicing logits[0, 0, 0:30] # fmt: off _snake_case : Optional[Any] = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,]) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCAmelCase , atol=1E-5 , rtol=1E-5) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""") @slow def UpperCamelCase_ ( self : List[str]) -> Dict: """simple docstring""" _snake_case : str = [1, 306, 4658, 278, 6593, 310, 2834, 338] _snake_case : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""") _snake_case : List[Any] = model(torch.tensor(lowerCAmelCase)) # Expected mean on dim = -1 _snake_case : Any = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]]) torch.testing.assert_close(out.mean(-1) , lowerCAmelCase , atol=1E-2 , rtol=1E-2) # slicing logits[0, 0, 0:30] # fmt: off _snake_case : List[str] = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273]) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCAmelCase , atol=1E-5 , rtol=1E-5) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""") @slow def UpperCamelCase_ ( self : List[str]) -> List[str]: """simple docstring""" _snake_case : Any = [1, 306, 4658, 278, 6593, 310, 2834, 338] _snake_case : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""") _snake_case : int = model(torch.tensor(lowerCAmelCase)) # Expected mean on dim = -1 _snake_case : List[Any] = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]]) torch.testing.assert_close(out.mean(-1) , lowerCAmelCase , atol=1E-2 , rtol=1E-2) # slicing logits[0, 0, 0:30] # fmt: off _snake_case : Any = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513]) # fmt: on torch.testing.assert_close(out.mean(-1) , lowerCAmelCase , atol=1E-2 , rtol=1E-2) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""") @slow def UpperCamelCase_ ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" _snake_case : Any = [1, 306, 4658, 278, 6593, 310, 2834, 338] _snake_case : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""") _snake_case : int = model(torch.tensor(lowerCAmelCase)) _snake_case : Any = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa) torch.testing.assert_close(out.mean(-1) , lowerCAmelCase , atol=1E-2 , rtol=1E-2) # fmt: off _snake_case : Dict = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312]) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCAmelCase , atol=1E-5 , rtol=1E-5) @unittest.skip("""Model is curently gated""") @slow def UpperCamelCase_ ( self : Tuple) -> Any: """simple docstring""" _snake_case : List[Any] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" _snake_case : Optional[Any] = """Simply put, the theory of relativity states that """ _snake_case : Union[str, Any] = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""") _snake_case : Dict = tokenizer.encode(lowerCAmelCase , return_tensors="""pt""") _snake_case : Optional[Any] = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=lowerCAmelCase) # greedy generation outputs _snake_case : Optional[int] = model.generate(lowerCAmelCase , max_new_tokens=64 , top_p=lowerCAmelCase , temperature=1 , do_sample=lowerCAmelCase) _snake_case : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=lowerCAmelCase) self.assertEqual(lowerCAmelCase , lowerCAmelCase)
198
1
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ): # Load checkpoint lowerCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' ) lowerCAmelCase = chkpt['model'] # We have the base model one level deeper than the original XLM repository lowerCAmelCase = {} for k, v in state_dict.items(): if "pred_layer" in k: lowerCAmelCase = v else: lowerCAmelCase = v lowerCAmelCase = chkpt['params'] lowerCAmelCase = {n: v for n, v in config.items() if not isinstance(_UpperCAmelCase , (torch.FloatTensor, numpy.ndarray) )} lowerCAmelCase = chkpt['dico_word2id'] lowerCAmelCase = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model lowerCAmelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCAmelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME lowerCAmelCase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCAmelCase , indent=2 ) + '\n' ) print(F'Save vocab file to {pytorch_config_dump_path}' ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCAmelCase , indent=2 ) + '\n' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __UpperCamelCase : List[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
4
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class __UpperCamelCase ( _lowerCAmelCase ): # to overwrite at feature extractactor specific tests __snake_case :Optional[int] = None __snake_case :Dict = None @property def _a ( self : str ) -> List[str]: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """feature_size""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """sampling_rate""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """padding_value""" ) ) def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.feat_extract_tester.prepare_inputs_for_common() __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowerCAmelCase ) __lowercase = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) __lowercase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowercase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowerCAmelCase ) __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) __lowercase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowercase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def _a ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowerCAmelCase ) __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} , tensor_type="""tf""" ) __lowercase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowercase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def _a ( self : str , _lowerCAmelCase : List[Any]=False ) -> int: """simple docstring""" def _inputs_have_equal_length(_lowerCAmelCase : int ): __lowercase = len(input[0] ) for input_slice in input[1:]: if len(_lowerCAmelCase ) != length: return False return True def _inputs_are_equal(_lowerCAmelCase : Dict , _lowerCAmelCase : Tuple ): if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): return False for input_slice_a, input_slice_a in zip(_lowerCAmelCase , _lowerCAmelCase ): if not np.allclose(np.asarray(_lowerCAmelCase ) , np.asarray(_lowerCAmelCase ) , atol=1e-3 ): return False return True __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_lowerCAmelCase ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = self.feat_extract_tester.seq_length_diff __lowercase = self.feat_extract_tester.max_seq_length + pad_diff __lowercase = self.feat_extract_tester.min_seq_length __lowercase = self.feat_extract_tester.batch_size __lowercase = self.feat_extract_tester.feature_size # test padding for List[int] + numpy __lowercase = feat_extract.pad(_lowerCAmelCase , padding=_lowerCAmelCase ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad(_lowerCAmelCase , padding="""longest""" ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad(_lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[-1] ) ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad(_lowerCAmelCase , padding="""longest""" , return_tensors="""np""" ) __lowercase = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_lowerCAmelCase ): feat_extract.pad(_lowerCAmelCase , padding="""max_length""" )[input_name] __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(_inputs_are_equal(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy __lowercase = feat_extract.pad(_lowerCAmelCase , pad_to_multiple_of=10 ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad(_lowerCAmelCase , padding="""longest""" , pad_to_multiple_of=10 ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , pad_to_multiple_of=10 , max_length=_lowerCAmelCase ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , pad_to_multiple_of=10 , max_length=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = input_a[input_name] self.assertTrue(all(len(_lowerCAmelCase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_lowerCAmelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct __lowercase = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def _a ( self : Tuple , _lowerCAmelCase : str=False ) -> Union[str, Any]: """simple docstring""" def _inputs_have_equal_length(_lowerCAmelCase : Tuple ): __lowercase = len(input[0] ) for input_slice in input[1:]: if len(_lowerCAmelCase ) != length: return False return True def _inputs_are_equal(_lowerCAmelCase : Any , _lowerCAmelCase : str ): if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): return False for input_slice_a, input_slice_a in zip(_lowerCAmelCase , _lowerCAmelCase ): if not np.allclose(np.asarray(_lowerCAmelCase ) , np.asarray(_lowerCAmelCase ) , atol=1e-3 ): return False return True __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_lowerCAmelCase ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) # truncate to smallest __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , truncation=_lowerCAmelCase ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad(_lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) ) __lowercase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(_lowerCAmelCase ) ) # truncate to smallest with np __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" , truncation=_lowerCAmelCase , ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" ) __lowercase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_lowerCAmelCase ) ) # truncate to middle __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=_lowerCAmelCase ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , return_tensors="""np""" ) __lowercase = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(_inputs_are_equal(_lowerCAmelCase , _lowerCAmelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowerCAmelCase ): feat_extract.pad(_lowerCAmelCase , truncation=_lowerCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowerCAmelCase ): feat_extract.pad(_lowerCAmelCase , padding="""longest""" , truncation=_lowerCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowerCAmelCase ): feat_extract.pad(_lowerCAmelCase , padding="""longest""" , truncation=_lowerCAmelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_lowerCAmelCase ): feat_extract.pad(_lowerCAmelCase , padding="""max_length""" , truncation=_lowerCAmelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy __lowercase = 12 __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_lowerCAmelCase , truncation=_lowerCAmelCase , ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_lowerCAmelCase , ) __lowercase = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of __lowercase = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: __lowercase = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(_lowerCAmelCase ) ) def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" self._check_padding(numpify=_lowerCAmelCase ) def _a ( self : List[Any] ) -> Dict: """simple docstring""" self._check_padding(numpify=_lowerCAmelCase ) def _a ( self : int ) -> Tuple: """simple docstring""" self._check_truncation(numpify=_lowerCAmelCase ) def _a ( self : str ) -> str: """simple docstring""" self._check_truncation(numpify=_lowerCAmelCase ) @require_torch def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common() __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = feat_extract.pad(_lowerCAmelCase , padding="""longest""" , return_tensors="""np""" )[input_name] __lowercase = feat_extract.pad(_lowerCAmelCase , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def _a ( self : Any ) -> Any: """simple docstring""" __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common() __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = feat_extract.pad(_lowerCAmelCase , padding="""longest""" , return_tensors="""np""" )[input_name] __lowercase = feat_extract.pad(_lowerCAmelCase , padding="""longest""" , return_tensors="""tf""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _a ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = self.feat_extract_dict __lowercase = True __lowercase = self.feature_extraction_class(**_lowerCAmelCase ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common() __lowercase = [len(_lowerCAmelCase ) for x in speech_inputs] __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = feat_extract.pad(_lowerCAmelCase , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase ) def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.feat_extract_dict __lowercase = True __lowercase = self.feature_extraction_class(**_lowerCAmelCase ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common() __lowercase = [len(_lowerCAmelCase ) for x in speech_inputs] __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = min(_lowerCAmelCase ) __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
80
0
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __lowerCAmelCase : def __init__( self : Union[str, Any] , A : Union[str, Any] , A : Optional[int]=13 , A : int=30 , A : Union[str, Any]=2 , A : Dict=3 , A : Optional[int]=True , A : Optional[int]=True , A : Dict=32 , A : List[str]=5 , A : str=4 , A : List[str]=37 , A : Union[str, Any]="gelu" , A : Tuple=0.1 , A : Optional[int]=0.1 , A : List[str]=10 , A : List[str]=0.0_2 , A : Any=3 , A : Any=None , A : int=2 , ) -> List[str]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = scope _UpperCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = num_patches + 2 def _lowerCamelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : List[str]) -> Dict: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowerCamelCase ( self : Optional[Any] , A : List[Any] , A : Optional[int] , A : Union[str, Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = DeiTModel(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCamelCase ( self : int , A : Union[str, Any] , A : Tuple , A : str) -> Optional[int]: """simple docstring""" _UpperCAmelCase = DeiTForMaskedImageModeling(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = DeiTForMaskedImageModeling(A) model.to(A) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCAmelCase = model(A) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _lowerCamelCase ( self : Optional[int] , A : Union[str, Any] , A : Union[str, Any] , A : str) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = DeiTForImageClassification(A) model.to(A) model.eval() _UpperCAmelCase = model(A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = DeiTForImageClassification(A) model.to(A) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCAmelCase = model(A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _lowerCamelCase ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = DeiTModelTester(self) _UpperCAmelCase = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37) def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds') def _lowerCamelCase ( self : List[str]) -> Dict: """simple docstring""" pass def _lowerCamelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(A) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear)) def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(A) _UpperCAmelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A) def _lowerCamelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A) def _lowerCamelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A) def _lowerCamelCase ( self : Union[str, Any] , A : Optional[Any] , A : List[str] , A : str=False) -> Dict: """simple docstring""" _UpperCAmelCase = super()._prepare_for_class(A , A , return_labels=A) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _lowerCamelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" if not self.model_tester.is_training: return _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(A) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue _UpperCAmelCase = model_class(A) model.to(A) model.train() _UpperCAmelCase = self._prepare_for_class(A , A , return_labels=A) _UpperCAmelCase = model(**A).loss loss.backward() def _lowerCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _UpperCAmelCase = False _UpperCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(A) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue _UpperCAmelCase = model_class(A) model.gradient_checkpointing_enable() model.to(A) model.train() _UpperCAmelCase = self._prepare_for_class(A , A , return_labels=A) _UpperCAmelCase = model(**A).loss loss.backward() def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(A), *get_values(A), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}"): _UpperCAmelCase = problem_type['title'] _UpperCAmelCase = problem_type['num_labels'] _UpperCAmelCase = model_class(A) model.to(A) model.train() _UpperCAmelCase = self._prepare_for_class(A , A , return_labels=A) if problem_type["num_labels"] > 1: _UpperCAmelCase = inputs['labels'].unsqueeze(1).repeat(1 , problem_type['num_labels']) _UpperCAmelCase = inputs['labels'].to(problem_type['dtype']) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=A) as warning_list: _UpperCAmelCase = model(**A).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}") loss.backward() @slow def _lowerCamelCase ( self : int) -> Optional[int]: """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = DeiTModel.from_pretrained(A) self.assertIsNotNone(A) def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224') if is_vision_available() else None ) @slow def _lowerCamelCase ( self : Any) -> int: """simple docstring""" _UpperCAmelCase = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224').to( A) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt').to(A) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**A) # verify the logits _UpperCAmelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , A) _UpperCAmelCase = torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1]).to(A) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def _lowerCamelCase ( self : int) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224' , torch_dtype=torch.floataa , device_map='auto') _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt') _UpperCAmelCase = inputs.pixel_values.to(A) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCAmelCase = model(A)
639
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" UpperCAmelCase_ : Optional[Any] = original_name.split("." )[0] UpperCAmelCase_ : List[str] = key.split("." ) UpperCAmelCase_ : Any = int(key_list[key_list.index(_SCREAMING_SNAKE_CASE ) - 2] ) UpperCAmelCase_ : Dict = int(key_list[key_list.index(_SCREAMING_SNAKE_CASE ) - 1] ) UpperCAmelCase_ : Optional[int] = orig_block_num - offset UpperCAmelCase_ : Tuple = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def a__ ( _SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : str = OrderedDict() UpperCAmelCase_ , UpperCAmelCase_ : Any = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): UpperCAmelCase_ : Dict = key.replace("network" , "poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 UpperCAmelCase_ : List[str] = key[: key.find("proj" )] UpperCAmelCase_ : List[Any] = key.replace(_SCREAMING_SNAKE_CASE , F'''patch_embeddings.{total_embed_found}.''' ) UpperCAmelCase_ : List[str] = key.replace("proj" , "projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: UpperCAmelCase_ : str = "poolformer.encoder." + key if "mlp.fc1" in key: UpperCAmelCase_ : Dict = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "mlp.fc1" , "output.conv1" ) if "mlp.fc2" in key: UpperCAmelCase_ : int = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "mlp.fc2" , "output.conv2" ) if "norm1" in key: UpperCAmelCase_ : Optional[Any] = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "norm1" , "before_norm" ) if "norm2" in key: UpperCAmelCase_ : Optional[Any] = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "norm2" , "after_norm" ) if "layer_scale_1" in key: UpperCAmelCase_ : List[Any] = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "layer_scale_1" , "layer_scale_1" ) if "layer_scale_2" in key: UpperCAmelCase_ : List[Any] = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "layer_scale_2" , "layer_scale_2" ) if "head" in key: UpperCAmelCase_ : List[Any] = key.replace("head" , "classifier" ) UpperCAmelCase_ : Any = value return new_state_dict def a__ ( ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : Union[str, Any] = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def a__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Dict = PoolFormerConfig() # set attributes based on model_name UpperCAmelCase_ : Any = "huggingface/label-files" UpperCAmelCase_ : str = model_name[-3:] UpperCAmelCase_ : Union[str, Any] = 10_00 UpperCAmelCase_ : Union[str, Any] = "imagenet-1k-id2label.json" UpperCAmelCase_ : Tuple = (1, 10_00) # set config attributes UpperCAmelCase_ : int = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ : str = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCAmelCase_ : Any = idalabel UpperCAmelCase_ : List[str] = {v: k for k, v in idalabel.items()} if size == "s12": UpperCAmelCase_ : Tuple = [2, 2, 6, 2] UpperCAmelCase_ : int = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : int = 4.0 UpperCAmelCase_ : Optional[int] = 0.9 elif size == "s24": UpperCAmelCase_ : str = [4, 4, 12, 4] UpperCAmelCase_ : Union[str, Any] = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : List[Any] = 4.0 UpperCAmelCase_ : Optional[Any] = 0.9 elif size == "s36": UpperCAmelCase_ : str = [6, 6, 18, 6] UpperCAmelCase_ : str = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : Union[str, Any] = 4.0 UpperCAmelCase_ : Any = 1E-6 UpperCAmelCase_ : Any = 0.9 elif size == "m36": UpperCAmelCase_ : int = [6, 6, 18, 6] UpperCAmelCase_ : Any = [96, 1_92, 3_84, 7_68] UpperCAmelCase_ : Union[str, Any] = 4.0 UpperCAmelCase_ : int = 1E-6 UpperCAmelCase_ : Optional[Any] = 0.95 elif size == "m48": UpperCAmelCase_ : str = [8, 8, 24, 8] UpperCAmelCase_ : Optional[int] = [96, 1_92, 3_84, 7_68] UpperCAmelCase_ : str = 4.0 UpperCAmelCase_ : List[str] = 1E-6 UpperCAmelCase_ : Optional[int] = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor UpperCAmelCase_ : Dict = PoolFormerImageProcessor(crop_pct=_SCREAMING_SNAKE_CASE ) # Prepare image UpperCAmelCase_ : Optional[Any] = prepare_img() UpperCAmelCase_ : List[str] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict UpperCAmelCase_ : Optional[int] = torch.load(_SCREAMING_SNAKE_CASE , map_location=torch.device("cpu" ) ) # rename keys UpperCAmelCase_ : Tuple = rename_keys(_SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict UpperCAmelCase_ : Optional[int] = PoolFormerForImageClassification(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() # Define image processor UpperCAmelCase_ : List[str] = PoolFormerImageProcessor(crop_pct=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values # forward pass UpperCAmelCase_ : Any = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = outputs.logits # define expected logit slices for different models if size == "s12": UpperCAmelCase_ : Any = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": UpperCAmelCase_ : str = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": UpperCAmelCase_ : Dict = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": UpperCAmelCase_ : Optional[Any] = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": UpperCAmelCase_ : Any = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _lowerCamelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
71
"""simple docstring""" from numpy import exp, pi, sqrt def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple , _lowercase : float = 0.0 , _lowercase : float = 1.0 ) ->int: '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
633
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys snake_case__ : Optional[int] = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') snake_case__ : List[str] = ( subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode('utf-8').split() ) snake_case__ : int = '|'.join(sys.argv[1:]) snake_case__ : Optional[Any] = re.compile(rF"""^({joined_dirs}).*?\.py$""") snake_case__ : List[Any] = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
592
import argparse import os import torch from transformers.utils import WEIGHTS_NAME snake_case__ : List[str] = ['small', 'medium', 'large'] snake_case__ : Dict = 'lm_head.decoder.weight' snake_case__ : List[Any] = 'lm_head.weight' def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]: _UpperCAmelCase =torch.load(_lowerCamelCase ) _UpperCAmelCase =d.pop(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) snake_case__ : Any = parser.parse_args() for MODEL in DIALOGPT_MODELS: snake_case__ : str = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") snake_case__ : str = F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
592
1
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowerCamelCase = logging.getLogger(__name__) __lowerCamelCase = tf.data.AUTOTUNE def UpperCamelCase ( ): snake_case : int = argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=__lowerCamelCase , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=__lowerCamelCase , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=__lowerCamelCase , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=__lowerCamelCase , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=__lowerCamelCase , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=__lowerCamelCase , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=__lowerCamelCase , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=__lowerCamelCase , default=2**18 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=__lowerCamelCase , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=__lowerCamelCase , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=__lowerCamelCase , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=__lowerCamelCase , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=__lowerCamelCase , default=512 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=__lowerCamelCase , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=__lowerCamelCase , required=__lowerCamelCase , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=__lowerCamelCase , help="Model ID to upload to on the Hugging Face Hub." ) snake_case : Any = parser.parse_args() return args def UpperCamelCase ( __lowerCamelCase : Optional[int] ): try: if args.tpu_name: snake_case : Dict = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: snake_case : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(__lowerCamelCase ) tf.tpu.experimental.initialize_tpu_system(__lowerCamelCase ) return tpu def UpperCamelCase ( __lowerCamelCase : List[Any] ): snake_case : Optional[int] = 0 for file in file_list: snake_case : Optional[Any] = file.split("/" )[-1] snake_case : Union[str, Any] = re.search(r"-\d+-(\d+)\.tfrecord" , __lowerCamelCase ).group(1 ) snake_case : Optional[int] = int(__lowerCamelCase ) num_samples += sample_count return num_samples def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : Dict=None ): snake_case : List[Any] = count_samples(__lowerCamelCase ) snake_case : List[str] = tf.data.Dataset.from_tensor_slices(__lowerCamelCase ) if shuffle: snake_case : List[str] = dataset.shuffle(len(__lowerCamelCase ) ) snake_case : Tuple = tf.data.TFRecordDataset(__lowerCamelCase , num_parallel_reads=__lowerCamelCase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here snake_case : Union[str, Any] = dataset.apply(tf.data.experimental.assert_cardinality(__lowerCamelCase ) ) snake_case : Tuple = dataset.map(__lowerCamelCase , num_parallel_calls=__lowerCamelCase ) if shuffle: assert shuffle_buffer_size is not None snake_case : Tuple = dataset.shuffle(args.shuffle_buffer_size ) snake_case : Any = dataset.batch(__lowerCamelCase , drop_remainder=__lowerCamelCase ) snake_case : Union[str, Any] = dataset.map(__lowerCamelCase , num_parallel_calls=__lowerCamelCase ) snake_case : Tuple = dataset.prefetch(__lowerCamelCase ) return dataset def UpperCamelCase ( __lowerCamelCase : Dict ): if not args.no_tpu: snake_case : Union[str, Any] = initialize_tpu(__lowerCamelCase ) snake_case : Dict = tf.distribute.TPUStrategy(__lowerCamelCase ) else: snake_case : List[Any] = tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) snake_case : List[str] = AutoTokenizer.from_pretrained(args.tokenizer ) snake_case : Tuple = AutoConfig.from_pretrained(args.pretrained_model_config ) snake_case : int = tokenizer.vocab_size snake_case : List[Any] = tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(f"""No .tfrecord files found in {args.train_dataset}.""" ) snake_case : str = tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(f"""No .tfrecord files found in {args.eval_dataset}.""" ) snake_case : Optional[Any] = count_samples(__lowerCamelCase ) snake_case : Tuple = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) snake_case : Tuple = steps_per_epoch * args.num_epochs with strategy.scope(): snake_case : Optional[int] = TFAutoModelForMaskedLM.from_config(__lowerCamelCase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built snake_case , snake_case : str = create_optimizer( num_train_steps=__lowerCamelCase , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__lowerCamelCase , metrics=["accuracy"] ) def decode_fn(__lowerCamelCase : Optional[Any] ): snake_case : Dict = { "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(__lowerCamelCase , __lowerCamelCase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. snake_case : Optional[int] = DataCollatorForLanguageModeling( tokenizer=__lowerCamelCase , mlm_probability=args.mlm_probability , mlm=__lowerCamelCase , return_tensors="tf" ) def mask_with_collator(__lowerCamelCase : str ): # TF really needs an isin() function snake_case : Dict = ( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) snake_case , snake_case : Union[str, Any] = data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(__lowerCamelCase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=__lowerCamelCase , ) return batch snake_case : int = args.per_replica_batch_size * strategy.num_replicas_in_sync snake_case : List[Any] = prepare_dataset( __lowerCamelCase , decode_fn=__lowerCamelCase , mask_fn=__lowerCamelCase , batch_size=__lowerCamelCase , shuffle=__lowerCamelCase , shuffle_buffer_size=args.shuffle_buffer_size , ) snake_case : List[Any] = prepare_dataset( __lowerCamelCase , decode_fn=__lowerCamelCase , mask_fn=__lowerCamelCase , batch_size=__lowerCamelCase , shuffle=__lowerCamelCase , ) snake_case : Tuple = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=__lowerCamelCase ) ) model.fit( __lowerCamelCase , validation_data=__lowerCamelCase , epochs=args.num_epochs , callbacks=__lowerCamelCase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowerCamelCase = parse_args() main(args)
204
'''simple docstring''' import os import sys import unittest _a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""") class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = find_backend(""" if not is_torch_available():""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowerCAmelCase = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE ) self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""",objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" ) __lowerCAmelCase = create_dummy_object("""function""","""'torch'""" ) self.assertEqual( __SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __lowerCAmelCase = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ __lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" ) self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ __lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
689
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ : List[Any] = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Tuple = ["""YolosFeatureExtractor"""] lowerCAmelCase__ : Tuple = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : int = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowerCAmelCase__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
502
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a : """simple docstring""" def __init__( self : Any , snake_case_ : str , snake_case_ : Optional[Any]=1_3 , snake_case_ : int=7 , snake_case_ : int=True , snake_case_ : Optional[Any]=True , snake_case_ : Dict=True , snake_case_ : int=True , snake_case_ : Optional[Any]=9_9 , snake_case_ : int=6_4 , snake_case_ : Dict=5 , snake_case_ : List[Any]=4 , snake_case_ : Union[str, Any]=3_7 , snake_case_ : Dict="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Dict=0.1 , snake_case_ : Any=5_1_2 , snake_case_ : Any=1_6 , snake_case_ : Any=2 , snake_case_ : Dict=0.0_2 , snake_case_ : List[str]=3 , snake_case_ : Optional[int]=4 , snake_case_ : str=None , ): '''simple docstring''' snake_case__ : List[Any] = parent snake_case__ : int = batch_size snake_case__ : Dict = seq_length snake_case__ : int = is_training snake_case__ : Optional[Any] = use_input_mask snake_case__ : Optional[Any] = use_token_type_ids snake_case__ : Dict = use_labels snake_case__ : int = vocab_size snake_case__ : Any = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : List[Any] = intermediate_size snake_case__ : int = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : Optional[int] = max_position_embeddings snake_case__ : Optional[int] = type_vocab_size snake_case__ : Any = type_sequence_label_size snake_case__ : str = initializer_range snake_case__ : List[str] = num_labels snake_case__ : Dict = num_choices snake_case__ : Union[str, Any] = scope snake_case__ : List[Any] = vocab_size - 1 def __magic_name__ ( self : List[Any] ): '''simple docstring''' snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Optional[int] = None if self.use_input_mask: snake_case__ : int = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Dict = self.get_config() return config, input_ids, input_mask, token_labels def __magic_name__ ( self : List[Any] ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = self.prepare_config_and_inputs() snake_case__ : List[str] = True return config, input_ids, input_mask, token_labels def __magic_name__ ( self : Tuple , snake_case_ : Any , snake_case_ : str , snake_case_ : str ): '''simple docstring''' snake_case__ : Any = GPTNeoXModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Union[str, Any] = model(snake_case_ , attention_mask=snake_case_ ) snake_case__ : int = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : List[Any] , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Optional[int] ): '''simple docstring''' snake_case__ : Union[str, Any] = True snake_case__ : Tuple = GPTNeoXModel(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Dict = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Any , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : List[Any] ): '''simple docstring''' snake_case__ : Union[str, Any] = GPTNeoXForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Tuple = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : Optional[int] , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : List[str] ): '''simple docstring''' snake_case__ : Dict = self.num_labels snake_case__ : List[Any] = GPTNeoXForQuestionAnswering(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Any = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : List[Any] , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Dict ): '''simple docstring''' snake_case__ : str = self.num_labels snake_case__ : List[str] = GPTNeoXForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : str = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : Dict , snake_case_ : Optional[int] ): '''simple docstring''' snake_case__ : Any = self.num_labels snake_case__ : Any = GPTNeoXForTokenClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : Tuple ): '''simple docstring''' snake_case__ : Optional[Any] = True snake_case__ : Union[str, Any] = GPTNeoXForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() # first forward pass snake_case__ : int = model(snake_case_ , attention_mask=snake_case_ , use_cache=snake_case_ ) snake_case__ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , output_hidden_states=snake_case_ ) snake_case__ : Union[str, Any] = output_from_no_past['''hidden_states'''][0] snake_case__ : str = model( snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ , output_hidden_states=snake_case_ , )['''hidden_states'''][0] # select random slice snake_case__ : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : str = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) def __magic_name__ ( self : Optional[int] ): '''simple docstring''' snake_case__ : Dict = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : Tuple = config_and_inputs snake_case__ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) __UpperCAmelCase = (GPTNeoXForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def __magic_name__ ( self : int ): '''simple docstring''' snake_case__ : Optional[int] = GPTNeoXModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=snake_case_ , hidden_size=6_4 , num_attention_heads=8 ) def __magic_name__ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self : Dict ): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : Dict ): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case__ : Optional[int] = None self.model_tester.create_and_check_model_as_decoder(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : Optional[int] ): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : int ): '''simple docstring''' snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*snake_case_ ) def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def __magic_name__ ( self : Any ): '''simple docstring''' snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def __magic_name__ ( self : List[Any] ): '''simple docstring''' snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __magic_name__ ( self : Optional[int] , snake_case_ : Optional[Any] ): '''simple docstring''' snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = ids_tensor([1, 1_0] , config.vocab_size ) snake_case__ : List[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : Tuple = GPTNeoXModel(snake_case_ ) original_model.to(snake_case_ ) original_model.eval() snake_case__ : Any = original_model(snake_case_ ).last_hidden_state snake_case__ : List[str] = original_model(snake_case_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : Optional[Any] = {'''type''': scaling_type, '''factor''': 1_0.0} snake_case__ : Optional[Any] = GPTNeoXModel(snake_case_ ) scaled_model.to(snake_case_ ) scaled_model.eval() snake_case__ : Optional[int] = scaled_model(snake_case_ ).last_hidden_state snake_case__ : List[str] = scaled_model(snake_case_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1e-5 ) ) @require_torch class a ( unittest.TestCase ): """simple docstring""" @slow def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ : Dict = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: snake_case__ : str = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(snake_case_ ) snake_case__ : Tuple = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(snake_case_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 snake_case__ : List[str] = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' snake_case__ : Optional[int] = model.generate(**snake_case_ , do_sample=snake_case_ , max_new_tokens=2_0 ) snake_case__ : Tuple = tokenizer.batch_decode(snake_case_ )[0] self.assertEqual(snake_case_ , snake_case_ )
502
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_lowercase ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: str = field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowerCamelCase: ClassVar[Features] = Features({'''audio''': Audio()} ) _lowerCamelCase: ClassVar[Features] = Features({'''labels''': ClassLabel} ) _lowerCamelCase: str = "audio" _lowerCamelCase: str = "labels" def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : int ) -> Tuple: if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] ,A_ ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) A = copy.deepcopy(self ) A = self.label_schema.copy() A = features[self.label_column] A = label_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict[str, str]: return { self.audio_column: "audio", self.label_column: "labels", }
91
'''simple docstring''' def A_ ( snake_case ): SCREAMING_SNAKE_CASE:str = [1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[str] = 0, 0, 0 SCREAMING_SNAKE_CASE:List[str] = ugly_nums[ia] * 2 SCREAMING_SNAKE_CASE:Union[str, Any] = ugly_nums[ia] * 3 SCREAMING_SNAKE_CASE:Optional[Any] = ugly_nums[ia] * 5 for _ in range(1 , snake_case ): SCREAMING_SNAKE_CASE:int = min(snake_case , snake_case , snake_case ) ugly_nums.append(snake_case ) if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE:Dict = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE:int = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE:Optional[Any] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_00) = }''')
143
0
'''simple docstring''' import math import sys def _SCREAMING_SNAKE_CASE( snake_case_ : List[Any] ) ->List[str]: '''simple docstring''' _lowercase : Tuple = '''''' try: with open(_UpperCAmelCase , '''rb''' ) as binary_file: _lowercase : Any = binary_file.read() for dat in data: _lowercase : Tuple = F"{dat:08b}" result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def _SCREAMING_SNAKE_CASE( snake_case_ : List[str] ) ->Dict: '''simple docstring''' _lowercase : List[str] = {'''0''': '''0''', '''1''': '''1'''} _lowercase , _lowercase : Optional[int] = '''''', '''''' _lowercase : Optional[int] = len(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _lowercase : int = lexicon[curr_string] result += last_match_id _lowercase : Union[str, Any] = last_match_id + '''0''' if math.loga(_UpperCAmelCase ).is_integer(): _lowercase : Optional[int] = {} for curr_key in list(_UpperCAmelCase ): _lowercase : Optional[Any] = lexicon.pop(_UpperCAmelCase ) _lowercase : int = new_lex _lowercase : List[str] = last_match_id + '''1''' index += 1 _lowercase : Dict = '''''' return result def _SCREAMING_SNAKE_CASE( snake_case_ : str , snake_case_ : str ) ->List[str]: '''simple docstring''' _lowercase : Tuple = 8 try: with open(_UpperCAmelCase , '''wb''' ) as opened_file: _lowercase : Union[str, Any] = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCAmelCase , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def _SCREAMING_SNAKE_CASE( snake_case_ : Tuple ) ->str: '''simple docstring''' _lowercase : Optional[Any] = 0 for letter in data_bits: if letter == "1": break counter += 1 _lowercase : Tuple = data_bits[counter:] _lowercase : List[Any] = data_bits[counter + 1 :] return data_bits def _SCREAMING_SNAKE_CASE( snake_case_ : List[str] , snake_case_ : Union[str, Any] ) ->List[Any]: '''simple docstring''' _lowercase : Dict = read_file_binary(_UpperCAmelCase ) _lowercase : Tuple = remove_prefix(_UpperCAmelCase ) _lowercase : Any = decompress_data(_UpperCAmelCase ) write_file_binary(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
716
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _SCREAMING_SNAKE_CASE( snake_case_ : Optional[Any]=32 , snake_case_ : List[str]=10 , snake_case_ : Any=1_00 , snake_case_ : List[str]=10_26 , snake_case_ : Dict=True , snake_case_ : Any="data/tokenized_stories_train_wikitext103.jbl" , snake_case_ : Any="igf_context_pairs.jbl" , ) ->List[Any]: '''simple docstring''' set_seed(3 ) # generate train_data and objective_set _lowercase , _lowercase : List[Any] = generate_datasets( snake_case_ , snake_case_ , number=snake_case_ , min_len=10_26 , trim=snake_case_ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? _lowercase : int = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model _lowercase : Dict = load_gpta('''gpt2''' ).to(snake_case_ ) print('''computing perplexity on objective set''' ) _lowercase : Any = compute_perplexity(snake_case_ , snake_case_ , snake_case_ ).item() print('''perplexity on objective set:''' , snake_case_ ) # collect igf pairs and save to file demo.jbl collect_objective_set(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE( snake_case_ : str , snake_case_ : Optional[Any]=15 , snake_case_ : Dict=1_28 , snake_case_ : Tuple=1_00 , snake_case_ : Union[str, Any]="igf_model.pt" , ) ->List[Any]: '''simple docstring''' set_seed(42 ) # Load pre-trained model _lowercase : Optional[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model _lowercase : List[Any] = SecondaryLearner(snake_case_ ) # Train secondary learner _lowercase : Any = train_secondary_learner( snake_case_ , snake_case_ , max_epochs=snake_case_ , batch_size=snake_case_ , eval_freq=1_00 , igf_model_path=snake_case_ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : List[Any]=32 , snake_case_ : List[Any]=10_00 , snake_case_ : List[str]=16 , snake_case_ : List[Any]=1.0 , snake_case_ : Optional[Any]=recopy_gpta , snake_case_ : Optional[int]=None , snake_case_ : List[Any]=10 , snake_case_ : Optional[Any]="gpt2_finetuned.pt" , ) ->List[Any]: '''simple docstring''' _lowercase : Optional[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) _lowercase : Optional[int] = RandomSampler(snake_case_ ) _lowercase : Union[str, Any] = DataLoader(snake_case_ , sampler=snake_case_ ) _lowercase : str = max_steps // (len(snake_case_ )) + 1 _lowercase : Optional[int] = 0 _lowercase : Optional[Any] = torch.zeros((1, context_len) , dtype=torch.long , device=snake_case_ ) _lowercase , _lowercase , _lowercase : int = recopy_model(snake_case_ , snake_case_ , snake_case_ ) model.train() if secondary_learner is not None: secondary_learner.to(snake_case_ ) secondary_learner.eval() _lowercase : List[Any] = [] _lowercase : Optional[int] = 0 _lowercase : List[Any] = [] _lowercase : Any = [] # Compute the performance of the transformer model at the beginning _lowercase : Tuple = compute_perplexity(snake_case_ , snake_case_ , snake_case_ ) test_perps.append(snake_case_ ) print('''Test perplexity, step''' , snake_case_ , ''':''' , snake_case_ ) for epoch in range(int(snake_case_ ) ): for step, example in enumerate(snake_case_ ): torch.cuda.empty_cache() _lowercase : int = random.randint(0 , example.size(2 ) - context_len - 1 ) _lowercase : Tuple = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() _lowercase : Any = model(snake_case_ , labels=snake_case_ ) _lowercase : int = True if secondary_learner is not None: _lowercase : List[Any] = secondary_learner.forward( torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(snake_case_ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: _lowercase : Any = -1 if predicted_q < threshold: _lowercase : List[str] = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) _lowercase : Dict = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() _lowercase : Optional[Any] = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: _lowercase : Union[str, Any] = compute_perplexity(snake_case_ , snake_case_ , snake_case_ ) test_perps.append(snake_case_ ) print('''Test perplexity, step''' , snake_case_ , ''':''' , snake_case_ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , snake_case_ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _SCREAMING_SNAKE_CASE( ) ->List[Any]: '''simple docstring''' _lowercase : Tuple = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=snake_case_ , type=snake_case_ , required=snake_case_ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=snake_case_ , type=snake_case_ , required=snake_case_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=snake_case_ , default=snake_case_ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=snake_case_ , default=snake_case_ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=snake_case_ , type=snake_case_ , required=snake_case_ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=snake_case_ , type=snake_case_ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=snake_case_ , default=snake_case_ , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=snake_case_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=1_00 , type=snake_case_ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=1_00 , type=snake_case_ , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=10_00 , type=snake_case_ , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=1_28 , type=snake_case_ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=snake_case_ , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=snake_case_ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=1_00 , type=snake_case_ , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=10_26 , type=snake_case_ , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=snake_case_ , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=snake_case_ , type=snake_case_ , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=snake_case_ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=snake_case_ , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=snake_case_ , type=snake_case_ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=snake_case_ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner _lowercase : List[str] = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner _lowercase : Optional[int] = training_secondary_learner( snake_case_ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model _lowercase : Dict = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model _lowercase , _lowercase : Any = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=1_00 , min_len=10_26 , trim=snake_case_ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( snake_case_ , snake_case_ , snake_case_ , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=snake_case_ , secondary_learner=snake_case_ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
411
0
"""simple docstring""" import os from distutils.util import strtobool def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" for e in env_keys: _lowerCAmelCase = int(os.environ.get(__lowerCamelCase, -1 ) ) if val >= 0: return val return default def A__ ( __lowerCamelCase, __lowerCamelCase=False ): """simple docstring""" _lowerCAmelCase = os.environ.get(__lowerCamelCase, str(__lowerCamelCase ) ) return strtobool(__lowerCamelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def A__ ( __lowerCamelCase, __lowerCamelCase="no" ): """simple docstring""" _lowerCAmelCase = os.environ.get(__lowerCamelCase, str(__lowerCamelCase ) ) return value
589
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : List[str] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
589
1
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): @property def lowerCamelCase_ ( self : int ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = ort.SessionOptions() UpperCamelCase = False return options def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default UpperCamelCase = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase = """A red cat sitting on a park bench""" UpperCamelCase = np.random.RandomState(0 ) UpperCamelCase = pipe( prompt=__magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=1_5 , generator=__magic_name__ , output_type="""np""" , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-2
703
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCAmelCase : def __init__( self : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : str=1_3 , __magic_name__ : str=7 , __magic_name__ : Optional[Any]=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Tuple=9_9 , __magic_name__ : List[str]=3_2 , __magic_name__ : List[str]=5 , __magic_name__ : int=4 , __magic_name__ : Union[str, Any]=3_7 , __magic_name__ : List[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : List[Any]=5_0 , __magic_name__ : Tuple=0.02 , __magic_name__ : Optional[int]=True , __magic_name__ : Optional[Any]=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = initializer_range UpperCamelCase = use_labels UpperCamelCase = scope def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = self.get_config() return config, input_ids, input_mask, token_labels def lowerCamelCase_ ( self : str ): """simple docstring""" return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = self.prepare_config_and_inputs() UpperCamelCase = True UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase_ ( self : Tuple , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : List[str] , **__magic_name__ : Optional[Any] , ): """simple docstring""" UpperCamelCase = BertGenerationEncoder(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCamelCase = model(__magic_name__ , attention_mask=__magic_name__ ) UpperCamelCase = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : Optional[int] , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , **__magic_name__ : Union[str, Any] , ): """simple docstring""" UpperCamelCase = True UpperCamelCase = BertGenerationEncoder(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCamelCase = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , ) UpperCamelCase = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Union[str, Any] , **__magic_name__ : Dict , ): """simple docstring""" UpperCamelCase = True UpperCamelCase = True UpperCamelCase = BertGenerationDecoder(config=__magic_name__ ).to(__magic_name__ ).eval() # first forward pass UpperCamelCase = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , use_cache=__magic_name__ , ) UpperCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , output_hidden_states=__magic_name__ , )["""hidden_states"""][0] UpperCamelCase = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , past_key_values=__magic_name__ , output_hidden_states=__magic_name__ , )["""hidden_states"""][0] # select random slice UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) def lowerCamelCase_ ( self : int , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , *__magic_name__ : Optional[Any] , ): """simple docstring""" UpperCamelCase = BertGenerationDecoder(__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCamelCase = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase = (BertGenerationDecoder,) if is_torch_available() else () lowercase = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = BertGenerationEncoderTester(self ) UpperCamelCase = ConfigTester(self , config_class=__magic_name__ , hidden_size=3_7 ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs() UpperCamelCase = """bert""" self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__magic_name__ ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__magic_name__ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase = None self.model_tester.create_and_check_model_as_decoder( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__magic_name__ ) @slow def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) self.assertIsNotNone(__magic_name__ ) @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) UpperCamelCase = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): UpperCamelCase = model(__magic_name__ )[0] UpperCamelCase = torch.Size([1, 8, 1_0_2_4] ) self.assertEqual(output.shape , __magic_name__ ) UpperCamelCase = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1e-4 ) ) @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = BertGenerationDecoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) UpperCamelCase = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): UpperCamelCase = model(__magic_name__ )[0] UpperCamelCase = torch.Size([1, 8, 5_0_3_5_8] ) self.assertEqual(output.shape , __magic_name__ ) UpperCamelCase = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1e-4 ) )
181
0
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase = 1 , UpperCamelCase = 1000 ) -> int: """simple docstring""" __UpperCAmelCase : int = 1 __UpperCAmelCase : Tuple = 0 for divide_by_number in range(UpperCamelCase , digit + 1 ): __UpperCAmelCase : list[int] = [] __UpperCAmelCase : int = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(UpperCamelCase ): __UpperCAmelCase : Any = len(UpperCamelCase ) __UpperCAmelCase : Optional[int] = divide_by_number else: has_been_divided.append(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
77
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCamelCase__ = "CompVis/stable-diffusion-v1-1" lowerCamelCase__ = "CompVis/stable-diffusion-v1-2" lowerCamelCase__ = "CompVis/stable-diffusion-v1-3" lowerCamelCase__ = "CompVis/stable-diffusion-v1-4" class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : AutoencoderKL , __a : CLIPTextModel , __a : CLIPTokenizer , __a : UNetaDConditionModel , __a : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __a : StableDiffusionSafetyChecker , __a : CLIPImageProcessor , __a : bool = True , ) -> List[str]: super()._init_() _UpperCamelCase : Optional[int] = StableDiffusionPipeline.from_pretrained(__a ) _UpperCamelCase : int = StableDiffusionPipeline.from_pretrained(__a ) _UpperCamelCase : List[Any] = StableDiffusionPipeline.from_pretrained(__a ) _UpperCamelCase : int = StableDiffusionPipeline( vae=__a , text_encoder=__a , tokenizer=__a , unet=__a , scheduler=__a , safety_checker=__a , feature_extractor=__a , requires_safety_checker=__a , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict[str, Any]: return {k: getattr(self , __a ) for k in self.config.keys() if not k.startswith("_" )} def __SCREAMING_SNAKE_CASE ( self : Any , __a : Optional[Union[str, int]] = "auto" ) -> Optional[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCamelCase : Tuple = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Any: self.enable_attention_slicing(__a ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Union[str, List[str]] , __a : int = 512 , __a : int = 512 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : Any , ) -> Optional[int]: return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Union[str, List[str]] , __a : int = 512 , __a : int = 512 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : Tuple , ) -> str: return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Union[str, List[str]] , __a : int = 512 , __a : int = 512 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : Tuple , ) -> Any: return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Union[str, List[str]] , __a : int = 512 , __a : int = 512 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : List[Any] , ) -> Union[str, Any]: return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( self : str , __a : Union[str, List[str]] , __a : int = 512 , __a : int = 512 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : int , ) -> List[Any]: _UpperCamelCase : Tuple = "cuda" if torch.cuda.is_available() else "cpu" self.to(__a ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 _UpperCamelCase : List[str] = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get first result from Stable Diffusion Checkpoint v1.2 _UpperCamelCase : Optional[Any] = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get first result from Stable Diffusion Checkpoint v1.3 _UpperCamelCase : str = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get first result from Stable Diffusion Checkpoint v1.4 _UpperCamelCase : str = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
624
0
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json''' ), } class _snake_case ( lowerCAmelCase_ ): """simple docstring""" _UpperCamelCase : Dict = '''xlm-prophetnet''' _UpperCamelCase : Union[str, Any] = ['''past_key_values'''] _UpperCamelCase : Tuple = { '''num_attention_heads''': '''num_encoder_attention_heads''', } def __init__( self : List[Any] , UpperCamelCase_ : Optional[float] = 0.1 , UpperCamelCase_ : Optional[Union[str, Callable]] = "gelu" , UpperCamelCase_ : Optional[int] = 30522 , UpperCamelCase_ : Optional[int] = 1024 , UpperCamelCase_ : Optional[int] = 4096 , UpperCamelCase_ : Optional[int] = 12 , UpperCamelCase_ : Optional[int] = 16 , UpperCamelCase_ : Optional[int] = 4096 , UpperCamelCase_ : Optional[int] = 12 , UpperCamelCase_ : Optional[int] = 16 , UpperCamelCase_ : Optional[float] = 0.1 , UpperCamelCase_ : Optional[float] = 0.1 , UpperCamelCase_ : Optional[int] = 512 , UpperCamelCase_ : Optional[float] = 0.0_2 , UpperCamelCase_ : Optional[bool] = True , UpperCamelCase_ : Optional[bool] = True , UpperCamelCase_ : Optional[int] = 0 , UpperCamelCase_ : Optional[int] = 2 , UpperCamelCase_ : Optional[int] = 32 , UpperCamelCase_ : Optional[int] = 128 , UpperCamelCase_ : Optional[bool] = False , UpperCamelCase_ : Optional[float] = 0.0 , UpperCamelCase_ : Optional[bool] = True , UpperCamelCase_ : Optional[int] = 0 , UpperCamelCase_ : Optional[int] = 1 , UpperCamelCase_ : Optional[int] = 2 , **UpperCamelCase_ : Dict , ): lowerCAmelCase_ : Optional[Any] =vocab_size lowerCAmelCase_ : List[str] =hidden_size lowerCAmelCase_ : int =encoder_ffn_dim lowerCAmelCase_ : Dict =num_encoder_layers lowerCAmelCase_ : Union[str, Any] =num_encoder_attention_heads lowerCAmelCase_ : Optional[Any] =decoder_ffn_dim lowerCAmelCase_ : Optional[int] =num_decoder_layers lowerCAmelCase_ : Tuple =num_decoder_attention_heads lowerCAmelCase_ : int =max_position_embeddings lowerCAmelCase_ : Any =init_std # Normal(0, this parameter) lowerCAmelCase_ : Optional[int] =activation_function # parameters for xlmprophetnet lowerCAmelCase_ : int =ngram lowerCAmelCase_ : Any =num_buckets lowerCAmelCase_ : Tuple =relative_max_distance lowerCAmelCase_ : Optional[Any] =disable_ngram_loss lowerCAmelCase_ : Any =eps # 3 Types of Dropout lowerCAmelCase_ : Optional[Any] =attention_dropout lowerCAmelCase_ : Dict =activation_dropout lowerCAmelCase_ : Dict =dropout lowerCAmelCase_ : int =use_cache super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , add_cross_attention=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) @property def __A ( self : Tuple ): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def __A ( self : Tuple , UpperCamelCase_ : List[str] ): raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
718
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask __lowercase = logging.getLogger(__name__) class _snake_case ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : str , UpperCamelCase_ : List[Any]=-1 ): # in NER datasets, the last column is usually reserved for NER label lowerCAmelCase_ : Tuple =label_idx def __A ( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[Split, str] ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase_ : Any =mode.value lowerCAmelCase_ : List[str] =os.path.join(UpperCamelCase_ , F'{mode}.txt' ) lowerCAmelCase_ : Tuple =1 lowerCAmelCase_ : Dict =[] with open(UpperCamelCase_ , encoding='''utf-8''' ) as f: lowerCAmelCase_ : Optional[Any] =[] lowerCAmelCase_ : Optional[Any] =[] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=UpperCamelCase_ , labels=UpperCamelCase_ ) ) guid_index += 1 lowerCAmelCase_ : Dict =[] lowerCAmelCase_ : int =[] else: lowerCAmelCase_ : Tuple =line.split(''' ''' ) words.append(splits[0] ) if len(UpperCamelCase_ ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=UpperCamelCase_ , labels=UpperCamelCase_ ) ) return examples def __A ( self : List[str] , UpperCamelCase_ : TextIO , UpperCamelCase_ : TextIO , UpperCamelCase_ : List ): lowerCAmelCase_ : Any =0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(UpperCamelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowerCAmelCase_ : List[str] =line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(UpperCamelCase_ ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def __A ( self : int , UpperCamelCase_ : str ): if path: with open(UpperCamelCase_ , '''r''' ) as f: lowerCAmelCase_ : int =f.read().splitlines() if "O" not in labels: lowerCAmelCase_ : str =['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class _snake_case ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : List[str] ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __A ( self : Optional[int] , UpperCamelCase_ : str ): if path: with open(UpperCamelCase_ , '''r''' ) as f: lowerCAmelCase_ : Tuple =f.read().splitlines() if "O" not in labels: lowerCAmelCase_ : Optional[int] =['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class _snake_case ( lowerCAmelCase_ ): """simple docstring""" def __A ( self : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[Split, str] ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase_ : str =mode.value lowerCAmelCase_ : Tuple =os.path.join(UpperCamelCase_ , F'{mode}.txt' ) lowerCAmelCase_ : Any =1 lowerCAmelCase_ : Union[str, Any] =[] with open(UpperCamelCase_ , encoding='''utf-8''' ) as f: for sentence in parse_incr(UpperCamelCase_ ): lowerCAmelCase_ : int =[] lowerCAmelCase_ : Tuple =[] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=UpperCamelCase_ , labels=UpperCamelCase_ ) ) guid_index += 1 return examples def __A ( self : Dict , UpperCamelCase_ : TextIO , UpperCamelCase_ : TextIO , UpperCamelCase_ : List ): lowerCAmelCase_ : Optional[Any] =0 for sentence in parse_incr(UpperCamelCase_ ): lowerCAmelCase_ : List[str] =preds_list[example_id] lowerCAmelCase_ : str ='''''' for token in sentence: out += F'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(UpperCamelCase_ ) example_id += 1 def __A ( self : Union[str, Any] , UpperCamelCase_ : str ): if path: with open(UpperCamelCase_ , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
305
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Tuple = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) _lowerCamelCase : Any = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _lowerCamelCase : List[str] = model(__lowerCAmelCase )['last_hidden_state'] _lowerCamelCase : Tuple = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , __lowerCAmelCase ) # compare the actual values for a slice. _lowerCamelCase : Optional[Any] = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
83
import gc import threading import time import psutil import torch class lowerCAmelCase : def __init__( self : str ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = psutil.Process() lowerCamelCase__ : Union[str, Any] = False def A_ ( self : Optional[int] ) -> int: lowerCamelCase__ : Optional[Any] = -1 while True: lowerCamelCase__ : Dict = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def A_ ( self : Tuple ) -> Dict: lowerCamelCase__ : List[Any] = True lowerCamelCase__ : List[str] = threading.Thread(target=self.peak_monitor ) lowerCamelCase__ : Union[str, Any] = True self.thread.start() def A_ ( self : str ) -> Dict: lowerCamelCase__ : int = False self.thread.join() return self.cpu_memory_peak _UpperCAmelCase : Dict = PeakCPUMemory() def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: # Time lowerCamelCase__ : List[Any] = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem lowerCamelCase__ : List[str] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): lowerCamelCase__ : Union[str, Any] = torch.cuda.memory_allocated(_UpperCAmelCase ) torch.cuda.reset_peak_memory_stats() return measures def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: # Time lowerCamelCase__ : Optional[int] = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem lowerCamelCase__ : Dict = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**20 lowerCamelCase__ : int = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): lowerCamelCase__ : List[str] = (torch.cuda.memory_allocated(_UpperCAmelCase ) - start_measures[str(_UpperCAmelCase )]) / 2**20 lowerCamelCase__ : Optional[Any] = (torch.cuda.max_memory_allocated(_UpperCAmelCase ) - start_measures[str(_UpperCAmelCase )]) / 2**20 return measures def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: print(F"""{description}:""" ) print(F"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(_UpperCAmelCase )]:.2f}MiB""" ) lowerCamelCase__ : List[str] = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
295
0
lowerCAmelCase_ = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
703
from manim import * class UpperCamelCase ( snake_case__ ): """simple docstring""" def A( self : Dict ) -> Tuple: '''simple docstring''' A = Rectangle(height=0.5 ,width=0.5 ) A = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) A = [mem.copy() for i in range(6 )] A = [mem.copy() for i in range(6 )] A = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE ,buff=0 ) A = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE ,buff=0 ) A = VGroup(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE ,buff=0 ) A = Text('CPU' ,font_size=2_4 ) A = Group(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE ,buff=0.5 ,aligned_edge=_SCREAMING_SNAKE_CASE ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_SCREAMING_SNAKE_CASE ) A = [mem.copy() for i in range(1 )] A = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE ,buff=0 ) A = Text('GPU' ,font_size=2_4 ) A = Group(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE ,buff=0.5 ,aligned_edge=_SCREAMING_SNAKE_CASE ) gpu.align_to(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) gpu.set_x(gpu.get_x() - 1 ) self.add(_SCREAMING_SNAKE_CASE ) A = [mem.copy() for i in range(6 )] A = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE ,buff=0 ) A = Text('Model' ,font_size=2_4 ) A = Group(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE ,buff=0.5 ,aligned_edge=_SCREAMING_SNAKE_CASE ) model.move_to([3, -1.0, 0] ) self.play( Create(_SCREAMING_SNAKE_CASE ,run_time=1 ) ,Create(_SCREAMING_SNAKE_CASE ,run_time=1 ) ,Create(_SCREAMING_SNAKE_CASE ,run_time=1 ) ,) A = MarkupText( f'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' ,font_size=2_4 ,) A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=1_8 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_SCREAMING_SNAKE_CASE ,run_time=2.5 ) ,Write(_SCREAMING_SNAKE_CASE ) ,Write(_SCREAMING_SNAKE_CASE ) ) self.add(_SCREAMING_SNAKE_CASE ) A = [] A = [] A = [] for i, rect in enumerate(_SCREAMING_SNAKE_CASE ): A = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(_SCREAMING_SNAKE_CASE ,opacity=0.7 ) cpu_target.move_to(_SCREAMING_SNAKE_CASE ) cpu_target.generate_target() A = 0.46 / 4 A = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=_SCREAMING_SNAKE_CASE ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=_SCREAMING_SNAKE_CASE ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=_SCREAMING_SNAKE_CASE ,buff=0.0 ) cpu_targs.append(_SCREAMING_SNAKE_CASE ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_SCREAMING_SNAKE_CASE ) ) second_animations.append(MoveToTarget(_SCREAMING_SNAKE_CASE ,run_time=1.5 ) ) self.play(*_SCREAMING_SNAKE_CASE ) self.play(*_SCREAMING_SNAKE_CASE ) self.wait()
110
0
def snake_case (UpperCAmelCase__ ) -> bool: UpperCamelCase_: Union[str, Any] = 0 for ch in input_str: UpperCamelCase_: Optional[Any] = ord(_A ) UpperCamelCase_: str = pow(2 , _A ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
57
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
551
0
'''simple docstring''' import operator as op snake_case_ = '''scaler.pt''' snake_case_ = '''pytorch_model''' snake_case_ = '''random_states''' snake_case_ = '''optimizer''' snake_case_ = '''scheduler''' snake_case_ = '''pytorch_model.bin''' snake_case_ = '''pytorch_model.bin.index.json''' snake_case_ = '''model.safetensors''' snake_case_ = '''model.safetensors.index.json''' snake_case_ = '''1.10.2''' snake_case_ = '''py38''' snake_case_ = '''4.17.0''' snake_case_ = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] snake_case_ = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] snake_case_ = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] snake_case_ = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] snake_case_ = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] snake_case_ = '''2.0.1''' snake_case_ = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] snake_case_ = ['''default''', '''reduce-overhead''', '''max-autotune'''] snake_case_ = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 snake_case_ = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] snake_case_ = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] snake_case_ = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
715
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets snake_case_ = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' snake_case_ = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' snake_case_ = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def A__ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: def remove_articles(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Tuple =re.compile(R'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(SCREAMING_SNAKE_CASE_ , ''' ''' , SCREAMING_SNAKE_CASE_ ) def white_space_fix(SCREAMING_SNAKE_CASE_ ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : int =set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE_ ) ) ) ) def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: return int(normalize_answer(SCREAMING_SNAKE_CASE_ ) == normalize_answer(SCREAMING_SNAKE_CASE_ ) ) def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: lowerCamelCase : Union[str, Any] =[any(compute_exact(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for ref in refs ) for pred, refs in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] return (sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ )) * 1_0_0 def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCamelCase : Any =[rgram for rgrams in rgramslist for rgram in rgrams] lowerCamelCase : int =Counter(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict =Counter(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Any =Counter() for sgram, scount in sgramcounter.items(): lowerCamelCase : Tuple =scount * numref lowerCamelCase : Optional[int] =Counter(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Tuple =Counter() for cgram, ccount in cgramcounter.items(): lowerCamelCase : Tuple =ccount * numref # KEEP lowerCamelCase : str =sgramcounter_rep & cgramcounter_rep lowerCamelCase : Union[str, Any] =keepgramcounter_rep & rgramcounter lowerCamelCase : Optional[Any] =sgramcounter_rep & rgramcounter lowerCamelCase : Optional[Any] =0 lowerCamelCase : List[Any] =0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCamelCase : Tuple =1 lowerCamelCase : int =1 if len(SCREAMING_SNAKE_CASE_ ) > 0: lowerCamelCase : Tuple =keeptmpscorea / len(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) lowerCamelCase : Any =keeptmpscorea / sum(keepgramcounterall_rep.values() ) lowerCamelCase : Optional[Any] =0 if keepscore_precision > 0 or keepscore_recall > 0: lowerCamelCase : Optional[int] =2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION lowerCamelCase : int =sgramcounter_rep - cgramcounter_rep lowerCamelCase : Dict =delgramcounter_rep - rgramcounter lowerCamelCase : Dict =sgramcounter_rep - rgramcounter lowerCamelCase : Optional[int] =0 lowerCamelCase : List[Any] =0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCamelCase : str =1 if len(SCREAMING_SNAKE_CASE_ ) > 0: lowerCamelCase : Optional[int] =deltmpscorea / len(SCREAMING_SNAKE_CASE_ ) # ADDITION lowerCamelCase : List[Any] =set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : int =set(SCREAMING_SNAKE_CASE_ ) & set(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Optional[Any] =set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : int =0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCamelCase : int =1 lowerCamelCase : List[Any] =1 if len(SCREAMING_SNAKE_CASE_ ) > 0: lowerCamelCase : str =addtmpscore / len(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: lowerCamelCase : List[str] =addtmpscore / len(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Optional[Any] =0 if addscore_precision > 0 or addscore_recall > 0: lowerCamelCase : Optional[Any] =2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: lowerCamelCase : Optional[int] =len(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict =ssent.split(''' ''' ) lowerCamelCase : Any =csent.split(''' ''' ) lowerCamelCase : str =[] lowerCamelCase : Optional[Any] =[] lowerCamelCase : List[Any] =[] lowerCamelCase : List[str] =[] lowerCamelCase : Tuple =[] lowerCamelCase : Optional[Any] =[] lowerCamelCase : int =[] lowerCamelCase : List[str] =[] lowerCamelCase : Dict =[] lowerCamelCase : Any =[] for rsent in rsents: lowerCamelCase : Any =rsent.split(''' ''' ) lowerCamelCase : int =[] lowerCamelCase : Optional[Any] =[] lowerCamelCase : List[Any] =[] ragramslist.append(SCREAMING_SNAKE_CASE_ ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ): if i < len(SCREAMING_SNAKE_CASE_ ) - 1: lowerCamelCase : Optional[int] =ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(SCREAMING_SNAKE_CASE_ ) if i < len(SCREAMING_SNAKE_CASE_ ) - 2: lowerCamelCase : str =ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(SCREAMING_SNAKE_CASE_ ) if i < len(SCREAMING_SNAKE_CASE_ ) - 3: lowerCamelCase : int =ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(SCREAMING_SNAKE_CASE_ ) ragramslist.append(SCREAMING_SNAKE_CASE_ ) ragramslist.append(SCREAMING_SNAKE_CASE_ ) ragramslist.append(SCREAMING_SNAKE_CASE_ ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ): if i < len(SCREAMING_SNAKE_CASE_ ) - 1: lowerCamelCase : Optional[int] =sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(SCREAMING_SNAKE_CASE_ ) if i < len(SCREAMING_SNAKE_CASE_ ) - 2: lowerCamelCase : List[Any] =sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(SCREAMING_SNAKE_CASE_ ) if i < len(SCREAMING_SNAKE_CASE_ ) - 3: lowerCamelCase : Optional[int] =sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(SCREAMING_SNAKE_CASE_ ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ): if i < len(SCREAMING_SNAKE_CASE_ ) - 1: lowerCamelCase : Optional[int] =cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(SCREAMING_SNAKE_CASE_ ) if i < len(SCREAMING_SNAKE_CASE_ ) - 2: lowerCamelCase : List[str] =cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(SCREAMING_SNAKE_CASE_ ) if i < len(SCREAMING_SNAKE_CASE_ ) - 3: lowerCamelCase : str =cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(SCREAMING_SNAKE_CASE_ ) ((lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase)) : Any =SARIngram(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase)) : Optional[Any] =SARIngram(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase)) : List[Any] =SARIngram(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase)) : List[str] =SARIngram(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[Any] =sum([keepascore, keepascore, keepascore, keepascore] ) / 4 lowerCamelCase : List[str] =sum([delascore, delascore, delascore, delascore] ) / 4 lowerCamelCase : int =sum([addascore, addascore, addascore, addascore] ) / 4 lowerCamelCase : Any =(avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = "13a" , SCREAMING_SNAKE_CASE_ = True ) -> Any: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: lowerCamelCase : Union[str, Any] =sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: lowerCamelCase : List[Any] =sacrebleu.metrics.bleu._get_tokenizer(SCREAMING_SNAKE_CASE_ )()(SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase : Any =sacrebleu.TOKENIZERS[tokenizer]()(SCREAMING_SNAKE_CASE_ ) elif tokenizer == "moses": lowerCamelCase : int =sacremoses.MosesTokenizer().tokenize(SCREAMING_SNAKE_CASE_ , return_str=SCREAMING_SNAKE_CASE_ , escape=SCREAMING_SNAKE_CASE_ ) elif tokenizer == "penn": lowerCamelCase : Any =sacremoses.MosesTokenizer().penn_tokenize(SCREAMING_SNAKE_CASE_ , return_str=SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase : Optional[int] =sentence if not return_str: lowerCamelCase : Union[str, Any] =normalized_sent.split() return normalized_sent def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: if not (len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ )): raise ValueError('''Sources length must match predictions and references lengths.''' ) lowerCamelCase : Dict =0 for src, pred, refs in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): sari_score += SARIsent(normalize(SCREAMING_SNAKE_CASE_ ) , normalize(SCREAMING_SNAKE_CASE_ ) , [normalize(SCREAMING_SNAKE_CASE_ ) for sent in refs] ) lowerCamelCase : str =sari_score / len(SCREAMING_SNAKE_CASE_ ) return 1_0_0 * sari_score def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="exp" , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , ) -> Dict: lowerCamelCase : Optional[int] =len(references[0] ) if any(len(SCREAMING_SNAKE_CASE_ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) lowerCamelCase : Optional[int] =[[refs[i] for refs in references] for i in range(SCREAMING_SNAKE_CASE_ )] lowerCamelCase : Union[str, Any] =sacrebleu.corpus_bleu( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , smooth_method=SCREAMING_SNAKE_CASE_ , smooth_value=SCREAMING_SNAKE_CASE_ , force=SCREAMING_SNAKE_CASE_ , lowercase=SCREAMING_SNAKE_CASE_ , use_effective_order=SCREAMING_SNAKE_CASE_ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class snake_case_ ( datasets.Metric): def __lowercase ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowercase ( self , __lowercase , __lowercase , __lowercase ) -> Tuple: lowerCamelCase : str ={} result.update({'''sari''': compute_sari(sources=__lowercase , predictions=__lowercase , references=__lowercase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__lowercase , references=__lowercase )} ) result.update({'''exact''': compute_em(predictions=__lowercase , references=__lowercase )} ) return result
262
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A : def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Optional[int]=13 , __magic_name__ : List[str]=7 , __magic_name__ : Optional[int]=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Dict=False , __magic_name__ : Dict=True , __magic_name__ : Union[str, Any]=99 , __magic_name__ : Optional[Any]=32 , __magic_name__ : Optional[Any]=5 , __magic_name__ : Optional[Any]=4 , __magic_name__ : str=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : str=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : List[str]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : Tuple=3 , __magic_name__ : List[str]=4 , __magic_name__ : Any=None , ) -> Dict: """simple docstring""" __snake_case : Tuple = parent __snake_case : Any = batch_size __snake_case : Optional[int] = seq_length __snake_case : int = is_training __snake_case : Union[str, Any] = use_input_mask __snake_case : Any = use_token_type_ids __snake_case : Optional[Any] = use_labels __snake_case : str = vocab_size __snake_case : Any = hidden_size __snake_case : int = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : str = intermediate_size __snake_case : Optional[int] = hidden_act __snake_case : Any = hidden_dropout_prob __snake_case : str = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Optional[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : int = initializer_range __snake_case : Optional[Any] = num_labels __snake_case : str = num_choices __snake_case : List[Any] = scope def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : List[str] = None if self.use_input_mask: __snake_case : int = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = None __snake_case : str = None __snake_case : Optional[int] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : int = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[Any] ) -> Any: """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = LlamaModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : int = model(__magic_name__ , attention_mask=__magic_name__ ) __snake_case : int = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : List[str] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : Tuple , ) -> str: """simple docstring""" __snake_case : Optional[int] = True __snake_case : Optional[int] = LlamaModel(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : str = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , ) __snake_case : List[Any] = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , ) __snake_case : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Any , ) -> str: """simple docstring""" __snake_case : Dict = LlamaForCausalLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : List[str] = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : str , ) -> Dict: """simple docstring""" __snake_case : int = True __snake_case : Optional[Any] = True __snake_case : Union[str, Any] = LlamaForCausalLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() # first forward pass __snake_case : List[str] = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , use_cache=__magic_name__ , ) __snake_case : Any = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __snake_case : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case : Any = torch.cat([input_mask, next_mask] , dim=-1 ) __snake_case : int = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , output_hidden_states=__magic_name__ , )["""hidden_states"""][0] __snake_case : int = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , past_key_values=__magic_name__ , output_hidden_states=__magic_name__ , )["""hidden_states"""][0] # select random slice __snake_case : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case : int = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) def lowercase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[str] = config_and_inputs __snake_case : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): lowercase__: int = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase__: Tuple = (LlamaForCausalLM,) if is_torch_available() else () lowercase__: Any = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase__: Any = False lowercase__: List[Any] = False def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case : int = LlamaModelTester(self ) __snake_case : Dict = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : str ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : int ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Union[str, Any] = type self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[Any] = 3 __snake_case : Dict = input_dict["""input_ids"""] __snake_case : List[Any] = input_ids.ne(1 ).to(__magic_name__ ) __snake_case : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case : Union[str, Any] = LlamaForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : List[str] = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : List[Any] = 3 __snake_case : Optional[int] = """single_label_classification""" __snake_case : int = input_dict["""input_ids"""] __snake_case : Tuple = input_ids.ne(1 ).to(__magic_name__ ) __snake_case : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case : str = LlamaForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : str = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : Optional[int] ) -> int: """simple docstring""" __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] = 3 __snake_case : int = """multi_label_classification""" __snake_case : str = input_dict["""input_ids"""] __snake_case : Any = input_ids.ne(1 ).to(__magic_name__ ) __snake_case : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __snake_case : List[Any] = LlamaForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def lowercase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] = ids_tensor([1, 10] , config.vocab_size ) __snake_case : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : Dict = LlamaModel(__magic_name__ ) original_model.to(__magic_name__ ) original_model.eval() __snake_case : Optional[int] = original_model(__magic_name__ ).last_hidden_state __snake_case : Optional[Any] = original_model(__magic_name__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : Any = {"""type""": scaling_type, """factor""": 10.0} __snake_case : Optional[Any] = LlamaModel(__magic_name__ ) scaled_model.to(__magic_name__ ) scaled_model.eval() __snake_case : Union[str, Any] = scaled_model(__magic_name__ ).last_hidden_state __snake_case : Union[str, Any] = scaled_model(__magic_name__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) @require_torch class _A ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : List[str] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __snake_case : Any = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) __snake_case : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __snake_case : List[str] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __magic_name__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __snake_case : Union[str, Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __magic_name__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __snake_case : List[str] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) __snake_case : Tuple = model(torch.tensor(__magic_name__ ) ) # Expected mean on dim = -1 __snake_case : Union[str, Any] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __magic_name__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __snake_case : Dict = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __magic_name__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : List[Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __snake_case : Optional[Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) __snake_case : int = model(torch.tensor(__magic_name__ ) ) # Expected mean on dim = -1 __snake_case : List[Any] = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __magic_name__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __snake_case : Optional[int] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __magic_name__ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[int] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __snake_case : List[str] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) __snake_case : Optional[int] = model(torch.tensor(__magic_name__ ) ) __snake_case : Any = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __magic_name__ , atol=1E-2 , rtol=1E-2 ) # fmt: off __snake_case : Dict = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __magic_name__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Model is curently gated""" ) @slow def lowercase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case : Tuple = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __snake_case : Union[str, Any] = """Simply put, the theory of relativity states that """ __snake_case : str = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , return_tensors="""pt""" ) __snake_case : Union[str, Any] = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__magic_name__ ) # greedy generation outputs __snake_case : List[str] = model.generate(__magic_name__ , max_new_tokens=64 , top_p=__magic_name__ , temperature=1 , do_sample=__magic_name__ ) __snake_case : List[str] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ )
26
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __A(lowerCAmelCase ) -> Dict: """simple docstring""" _UpperCamelCase = os.path.join(args.tf_model_dir , """parameters.json""" ) _UpperCamelCase = json.loads(open(lowerCAmelCase ).read() ) if not params: raise ValueError( F'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith(""".pt""" ): _UpperCamelCase = args.output + """.pt""" _UpperCamelCase = OrderedDict() with tf.device("""/CPU:0""" ): _UpperCamelCase = tf.train.load_checkpoint(args.tf_model_dir ) _UpperCamelCase = reader.get_variable_to_shape_map() for key_name in shapes.keys(): _UpperCamelCase = reader.get_tensor(lowerCAmelCase ).astype(np.floataa ) if key_name.endswith("""/adam_m""" ) or key_name.endswith("""/adam_v""" ): continue if key_name.startswith("""pasts/""" ): if key_name.startswith("""pasts/mlp""" ): _UpperCamelCase = int(key_name[9] ) elif key_name.startswith("""pasts/out""" ): _UpperCamelCase = 8 _UpperCamelCase = """model.sqout.%d.weight""" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _UpperCamelCase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _UpperCamelCase = torch.tensor(lowerCAmelCase ) elif key_name.startswith("""model/moe""" ): _UpperCamelCase = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/switch_gating/kernel""" ): _UpperCamelCase = """model.blocks.%d.feed_forward.mlp.router.classifier.weight""" % player _UpperCamelCase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _UpperCamelCase = torch.tensor(lowerCAmelCase ) elif key_name.endswith("""/softmlp/kernel""" ): _UpperCamelCase = """model.blocks.%d.feed_forward.soft_bypass_mlp.weight""" % player _UpperCamelCase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _UpperCamelCase = torch.tensor(lowerCAmelCase ) elif key_name.endswith("""/wo/kernel""" ) or key_name.endswith("""/wi/kernel""" ): _UpperCamelCase = key_name[-9:-7] for i in range(1_6 ): _UpperCamelCase = """model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight""" % (player, i, nlayer) _UpperCamelCase = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _UpperCamelCase = torch.tensor(lowerCAmelCase ) elif key_name.startswith("""model/mlp""" ): _UpperCamelCase = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/p1/kernel""" ): _UpperCamelCase = """model.blocks.%d.feed_forward.mlp.wi.weight""" % player _UpperCamelCase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _UpperCamelCase = torch.tensor(lowerCAmelCase ) elif key_name.endswith("""/p1/bias""" ): _UpperCamelCase = """model.blocks.%d.feed_forward.mlp.wi.bias""" % player _UpperCamelCase = vnp.copy() # same because it is one dimensional _UpperCamelCase = torch.tensor(lowerCAmelCase ) elif key_name.endswith("""/p2/kernel""" ): _UpperCamelCase = """model.blocks.%d.feed_forward.mlp.wo.weight""" % player _UpperCamelCase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _UpperCamelCase = torch.tensor(lowerCAmelCase ) elif key_name.endswith("""/p2/bias""" ): _UpperCamelCase = """model.blocks.%d.feed_forward.mlp.wo.bias""" % player _UpperCamelCase = vnp.copy() # same because it is one dimensional _UpperCamelCase = torch.tensor(lowerCAmelCase ) elif key_name.startswith("""model/ln""" ): _UpperCamelCase = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): _UpperCamelCase = """model.blocks.%d.feed_forward.norm.bias""" % player _UpperCamelCase = vnp.copy() # same because it is one dimensional _UpperCamelCase = torch.tensor(lowerCAmelCase ) elif key_name.endswith("""/g""" ): _UpperCamelCase = """model.blocks.%d.feed_forward.norm.weight""" % player _UpperCamelCase = vnp.copy() # same because it is one dimensional _UpperCamelCase = torch.tensor(lowerCAmelCase ) elif key_name.startswith("""model/att""" ): _UpperCamelCase = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/qkv/kernel""" ): _UpperCamelCase = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _UpperCamelCase = state[:, 0, :, :] _UpperCamelCase = state[:, 1, :, :] _UpperCamelCase = state[:, 2, :, :] _UpperCamelCase = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _UpperCamelCase = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _UpperCamelCase = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _UpperCamelCase = """model.blocks.%d.self_attn.self_attn.q_proj.weight""" % player _UpperCamelCase = torch.tensor(lowerCAmelCase ) _UpperCamelCase = """model.blocks.%d.self_attn.self_attn.k_proj.weight""" % player _UpperCamelCase = torch.tensor(lowerCAmelCase ) _UpperCamelCase = """model.blocks.%d.self_attn.self_attn.v_proj.weight""" % player _UpperCamelCase = torch.tensor(lowerCAmelCase ) elif key_name.endswith("""/o/kernel""" ): _UpperCamelCase = """model.blocks.%d.self_attn.self_attn.out_proj.weight""" % player _UpperCamelCase = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _UpperCamelCase = torch.tensor(lowerCAmelCase ) elif key_name.startswith("""model/an""" ): _UpperCamelCase = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): _UpperCamelCase = """model.blocks.%d.self_attn.norm.bias""" % player _UpperCamelCase = vnp.copy() # same because it is one dimensional _UpperCamelCase = torch.tensor(lowerCAmelCase ) elif key_name.endswith("""/g""" ): _UpperCamelCase = """model.blocks.%d.self_attn.norm.weight""" % player _UpperCamelCase = vnp.copy() # same because it is one dimensional _UpperCamelCase = torch.tensor(lowerCAmelCase ) elif ( key_name.startswith("""model/wte""" ) or key_name.startswith("""model/wpe""" ) or key_name.startswith("""model/ete""" ) ): _UpperCamelCase = {"""wte""": """embed_tokens""", """wpe""": """position_embeddings""", """ete""": """extra_position_embeddings"""}[ key_name[-3:] ] _UpperCamelCase = """model.%s.weight""" % nlayer _UpperCamelCase = vnp.copy() # same in embedded _UpperCamelCase = torch.tensor(lowerCAmelCase ) if key_name.startswith("""model/wte""" ): _UpperCamelCase = """lm_head.weight""" _UpperCamelCase = vnp.copy() # same in embedded _UpperCamelCase = torch.tensor(lowerCAmelCase ) elif key_name.startswith("""model/wob""" ): _UpperCamelCase = """final_logits_bias""" _UpperCamelCase = vnp.copy() # same in embedded _UpperCamelCase = state.reshape((1, -1) ) _UpperCamelCase = torch.tensor(lowerCAmelCase ) elif key_name == "model/dense/kernel": _UpperCamelCase = """model.last_project.weight""" _UpperCamelCase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _UpperCamelCase = torch.tensor(lowerCAmelCase ) elif key_name == "model/dense_1/bias": _UpperCamelCase = """model.last_project.bias""" _UpperCamelCase = vnp.copy() # same because it is one dimensional _UpperCamelCase = torch.tensor(lowerCAmelCase ) torch.save(lowerCAmelCase , args.output ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") lowerCamelCase__ = parser.parse_args() convert_tf_gptsan_to_pt(args)
612
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : List[str] ={"""configuration_sew""": ["""SEW_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SEWConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int =[ """SEW_PRETRAINED_MODEL_ARCHIVE_LIST""", """SEWForCTC""", """SEWForSequenceClassification""", """SEWModel""", """SEWPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys _lowercase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
412
import operator as op _lowercase : Optional[int] ="""scaler.pt""" _lowercase : List[Any] ="""pytorch_model""" _lowercase : Tuple ="""random_states""" _lowercase : Tuple ="""optimizer""" _lowercase : Dict ="""scheduler""" _lowercase : List[str] ="""pytorch_model.bin""" _lowercase : Optional[int] ="""pytorch_model.bin.index.json""" _lowercase : List[Any] ="""model.safetensors""" _lowercase : Union[str, Any] ="""model.safetensors.index.json""" _lowercase : str ="""1.10.2""" _lowercase : Optional[int] ="""py38""" _lowercase : int ="""4.17.0""" _lowercase : str =["""ml.p3.16xlarge""", """ml.p3dn.24xlarge""", """ml.p4dn.24xlarge"""] _lowercase : int =["""FULL_SHARD""", """SHARD_GRAD_OP""", """NO_SHARD""", """HYBRID_SHARD""", """HYBRID_SHARD_ZERO2"""] _lowercase : str =["""TRANSFORMER_BASED_WRAP""", """SIZE_BASED_WRAP""", """NO_WRAP"""] _lowercase : int =["""BACKWARD_PRE""", """BACKWARD_POST""", """NO_PREFETCH"""] _lowercase : Union[str, Any] =["""FULL_STATE_DICT""", """LOCAL_STATE_DICT""", """SHARDED_STATE_DICT"""] _lowercase : str ="""2.0.1""" _lowercase : Tuple =["""pdsh""", """standard""", """openmpi""", """mvapich"""] _lowercase : List[Any] =["""default""", """reduce-overhead""", """max-autotune"""] _lowercase : Union[str, Any] ={""">""": op.gt, """>=""": op.ge, """==""": op.eq, """!=""": op.ne, """<=""": op.le, """<""": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 _lowercase : Optional[int] =[ """nnodes""", """nproc_per_node""", """rdzv_backend""", """rdzv_endpoint""", """rdzv_id""", """rdzv_conf""", """standalone""", """max_restarts""", """monitor_interval""", """start_method""", """role""", """module""", """m""", """no_python""", """run_path""", """log_dir""", """r""", """redirects""", """t""", """tee""", """node_rank""", """master_addr""", """master_port""", ] _lowercase : int =["""DEEPSPEED""", """MULTI_GPU""", """FSDP""", """MEGATRON_LM"""] _lowercase : Optional[Any] =["""DEEPSPEED""", """MULTI_XPU""", """FSDP"""]
412
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] ): super().__init__() # make sure scheduler can always be converted to DDIM A__ : Optional[Any] =DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self : Dict , UpperCamelCase__ : int = 1 , UpperCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : int = 50 , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[str] = "pil" , UpperCamelCase__ : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCamelCase__ ): A__ : int =( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: A__ : List[str] =(batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase__ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) A__ : Dict =randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A__ : Tuple =self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A__ : Any =self.scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , eta=UpperCamelCase__ , use_clipped_model_output=UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample A__ : Optional[int] =(image / 2 + 0.5).clamp(0 , 1 ) A__ : Tuple =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A__ : Any =self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
656
"""simple docstring""" import math import tensorflow as tf from packaging import version def lowercase ( UpperCamelCase : Optional[Any] ): """simple docstring""" A__ : List[Any] =tf.convert_to_tensor(UpperCamelCase ) A__ : List[Any] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowercase ( UpperCamelCase : Optional[int] ): """simple docstring""" A__ : Optional[Any] =tf.convert_to_tensor(UpperCamelCase ) A__ : Tuple =tf.cast(math.pi , x.dtype ) A__ : Dict =tf.cast(0.04_47_15 , x.dtype ) A__ : Optional[int] =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(UpperCamelCase , 3 )) )) return x * cdf def lowercase ( UpperCamelCase : Optional[int] ): """simple docstring""" A__ : List[str] =tf.convert_to_tensor(UpperCamelCase ) return x * tf.tanh(tf.math.softplus(UpperCamelCase ) ) def lowercase ( UpperCamelCase : List[str] ): """simple docstring""" A__ : Union[str, Any] =tf.convert_to_tensor(UpperCamelCase ) A__ : List[Any] =tf.cast(0.04_47_15 , x.dtype ) A__ : List[Any] =tf.cast(0.79_78_84_56_08 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowercase ( UpperCamelCase : List[Any] ): """simple docstring""" A__ : List[str] =tf.convert_to_tensor(UpperCamelCase ) A__ : str =tf.cast(1.7_02 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowercase ( UpperCamelCase : Tuple ): """simple docstring""" return tf.clip_by_value(_gelu(UpperCamelCase ) , -10 , 10 ) def lowercase ( UpperCamelCase : str , UpperCamelCase : Any=-1 ): """simple docstring""" A__ , A__ : Optional[Any] =tf.split(UpperCamelCase , 2 , axis=UpperCamelCase ) return a * tf.math.sigmoid(UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowercase ( UpperCamelCase : int ): """simple docstring""" return tf.keras.activations.gelu(UpperCamelCase , approximate=UpperCamelCase ) __A : Optional[Any] = tf.keras.activations.gelu __A : Optional[Any] = approximate_gelu_wrap else: __A : Any = _gelu __A : Union[str, Any] = _gelu_new __A : List[str] = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowercase ( UpperCamelCase : List[Any] ): """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
656
1
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class _SCREAMING_SNAKE_CASE (UpperCamelCase ): lowerCAmelCase = """M-CLIP""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=1_0_2_4 , UpperCamelCase : Union[str, Any]=7_6_8 , **UpperCamelCase : Any )->Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = transformerDimSize __SCREAMING_SNAKE_CASE : int = imageDimSize super().__init__(**UpperCamelCase ) class _SCREAMING_SNAKE_CASE (UpperCamelCase ): lowerCAmelCase = MCLIPConfig def __init__( self : Optional[int] , UpperCamelCase : List[Any] , *UpperCamelCase : List[str] , **UpperCamelCase : Optional[Any] )->Union[str, Any]: super().__init__(UpperCamelCase , *UpperCamelCase , **UpperCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = XLMRobertaModel(UpperCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def __snake_case ( self : int , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[Any] )->int: __SCREAMING_SNAKE_CASE : str = self.transformer(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(UpperCamelCase ), embs
447
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _SCREAMING_SNAKE_CASE (UpperCamelCase ): lowerCAmelCase = ["""vqvae"""] def __init__( self : Tuple , UpperCamelCase : AutoencoderKL , UpperCamelCase : UNetaDConditionModel , UpperCamelCase : Mel , UpperCamelCase : Union[DDIMScheduler, DDPMScheduler] , )->Tuple: super().__init__() self.register_modules(unet=UpperCamelCase , scheduler=UpperCamelCase , mel=UpperCamelCase , vqvae=UpperCamelCase ) def __snake_case ( self : List[Any] )->int: return 5_0 if isinstance(self.scheduler , UpperCamelCase ) else 1_0_0_0 @torch.no_grad() def __call__( self : Dict , UpperCamelCase : int = 1 , UpperCamelCase : str = None , UpperCamelCase : np.ndarray = None , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : int = None , UpperCamelCase : torch.Generator = None , UpperCamelCase : float = 0 , UpperCamelCase : float = 0 , UpperCamelCase : torch.Generator = None , UpperCamelCase : float = 0 , UpperCamelCase : torch.Tensor = None , UpperCamelCase : torch.Tensor = None , UpperCamelCase : Any=True , )->Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: __SCREAMING_SNAKE_CASE : Optional[Any] = steps or self.get_default_steps() self.scheduler.set_timesteps(UpperCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __SCREAMING_SNAKE_CASE : Dict = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __SCREAMING_SNAKE_CASE : Any = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=UpperCamelCase , device=self.device , ) __SCREAMING_SNAKE_CASE : Any = noise __SCREAMING_SNAKE_CASE : Any = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(UpperCamelCase , UpperCamelCase ) __SCREAMING_SNAKE_CASE : str = self.mel.audio_slice_to_image(UpperCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = (input_image / 2_5_5) * 2 - 1 __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.vqvae.encode(torch.unsqueeze(UpperCamelCase , 0 ) ).latent_dist.sample( generator=UpperCamelCase )[0] __SCREAMING_SNAKE_CASE : int = self.vqvae.config.scaling_factor * input_images if start_step > 0: __SCREAMING_SNAKE_CASE : List[str] = self.scheduler.add_noise(UpperCamelCase , UpperCamelCase , self.scheduler.timesteps[start_step - 1] ) __SCREAMING_SNAKE_CASE : int = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __SCREAMING_SNAKE_CASE : Union[str, Any] = int(mask_start_secs * pixels_per_second ) __SCREAMING_SNAKE_CASE : int = int(mask_end_secs * pixels_per_second ) __SCREAMING_SNAKE_CASE : Any = self.scheduler.add_noise(UpperCamelCase , UpperCamelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , UpperCamelCase ): __SCREAMING_SNAKE_CASE : str = self.unet(UpperCamelCase , UpperCamelCase , UpperCamelCase )["sample"] else: __SCREAMING_SNAKE_CASE : int = self.unet(UpperCamelCase , UpperCamelCase )["sample"] if isinstance(self.scheduler , UpperCamelCase ): __SCREAMING_SNAKE_CASE : int = self.scheduler.step( model_output=UpperCamelCase , timestep=UpperCamelCase , sample=UpperCamelCase , eta=UpperCamelCase , generator=UpperCamelCase , )["prev_sample"] else: __SCREAMING_SNAKE_CASE : Tuple = self.scheduler.step( model_output=UpperCamelCase , timestep=UpperCamelCase , sample=UpperCamelCase , generator=UpperCamelCase , )["prev_sample"] if mask is not None: if mask_start > 0: __SCREAMING_SNAKE_CASE : int = mask[:, step, :, :mask_start] if mask_end > 0: __SCREAMING_SNAKE_CASE : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __SCREAMING_SNAKE_CASE : Any = 1 / self.vqvae.config.scaling_factor * images __SCREAMING_SNAKE_CASE : Any = self.vqvae.decode(UpperCamelCase )["sample"] __SCREAMING_SNAKE_CASE : Union[str, Any] = (images / 2 + 0.5).clamp(0 , 1 ) __SCREAMING_SNAKE_CASE : str = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __SCREAMING_SNAKE_CASE : Tuple = (images * 2_5_5).round().astype("uint8" ) __SCREAMING_SNAKE_CASE : Optional[int] = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(UpperCamelCase , mode="RGB" ).convert("L" ) for _ in images) ) __SCREAMING_SNAKE_CASE : List[str] = [self.mel.image_to_audio(UpperCamelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(UpperCamelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(UpperCamelCase ) ) @torch.no_grad() def __snake_case ( self : Dict , UpperCamelCase : List[Image.Image] , UpperCamelCase : int = 5_0 )->np.ndarray: assert isinstance(self.scheduler , UpperCamelCase ) self.scheduler.set_timesteps(UpperCamelCase ) __SCREAMING_SNAKE_CASE : int = np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) __SCREAMING_SNAKE_CASE : Dict = (sample / 2_5_5) * 2 - 1 __SCREAMING_SNAKE_CASE : Optional[int] = torch.Tensor(UpperCamelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __SCREAMING_SNAKE_CASE : Optional[int] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.alphas_cumprod[t] __SCREAMING_SNAKE_CASE : List[Any] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __SCREAMING_SNAKE_CASE : Dict = 1 - alpha_prod_t __SCREAMING_SNAKE_CASE : List[Any] = self.unet(UpperCamelCase , UpperCamelCase )["sample"] __SCREAMING_SNAKE_CASE : Union[str, Any] = (1 - alpha_prod_t_prev) ** 0.5 * model_output __SCREAMING_SNAKE_CASE : Union[str, Any] = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __SCREAMING_SNAKE_CASE : Optional[Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __snake_case ( UpperCamelCase : torch.Tensor , UpperCamelCase : torch.Tensor , UpperCamelCase : float )->torch.Tensor: __SCREAMING_SNAKE_CASE : List[str] = acos(torch.dot(torch.flatten(UpperCamelCase ) , torch.flatten(UpperCamelCase ) ) / torch.norm(UpperCamelCase ) / torch.norm(UpperCamelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(UpperCamelCase ) + sin(alpha * theta ) * xa / sin(UpperCamelCase )
447
1
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
589
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Any = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
589
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCamelCase__ ( a , a , a , a , a ): # Load configuration defined in the metadata file with open(a ) as metadata_file: __snake_case = json.load(a ) __snake_case = LukeConfig(use_entity_aware_attention=a , **metadata['model_config'] ) # Load in the weights from the checkpoint_path __snake_case = torch.load(a , map_location='cpu' )['module'] # Load the entity vocab file __snake_case = load_original_entity_vocab(a ) # add an entry for [MASK2] __snake_case = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __snake_case = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks __snake_case = AddedToken('<ent>' , lstrip=a , rstrip=a ) __snake_case = AddedToken('<ent2>' , lstrip=a , rstrip=a ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(a ) with open(os.path.join(a , 'tokenizer_config.json' ) , 'r' ) as f: __snake_case = json.load(a ) __snake_case = 'MLukeTokenizer' with open(os.path.join(a , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(a , a ) with open(os.path.join(a , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(a , a ) __snake_case = MLukeTokenizer.from_pretrained(a ) # Initialize the embeddings of the special tokens __snake_case = tokenizer.convert_tokens_to_ids(['@'] )[0] __snake_case = tokenizer.convert_tokens_to_ids(['#'] )[0] __snake_case = state_dict['embeddings.word_embeddings.weight'] __snake_case = word_emb[ent_init_index].unsqueeze(0 ) __snake_case = word_emb[enta_init_index].unsqueeze(0 ) __snake_case = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __snake_case = state_dict[bias_name] __snake_case = decoder_bias[ent_init_index].unsqueeze(0 ) __snake_case = decoder_bias[enta_init_index].unsqueeze(0 ) __snake_case = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __snake_case = f'encoder.layer.{layer_index}.attention.self.' __snake_case = state_dict[prefix + matrix_name] __snake_case = state_dict[prefix + matrix_name] __snake_case = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __snake_case = state_dict['entity_embeddings.entity_embeddings.weight'] __snake_case = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) __snake_case = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __snake_case = state_dict['entity_predictions.bias'] __snake_case = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) __snake_case = torch.cat([entity_prediction_bias, entity_mask_bias] ) __snake_case = LukeForMaskedLM(config=a ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) __snake_case = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): __snake_case = state_dict[key] else: __snake_case = state_dict[key] __snake_case , __snake_case = model.load_state_dict(a , strict=a ) if set(a ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __snake_case = MLukeTokenizer.from_pretrained(a , task='entity_classification' ) __snake_case = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' __snake_case = (0, 9) __snake_case = tokenizer(a , entity_spans=[span] , return_tensors='pt' ) __snake_case = model(**a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case = torch.Size((1, 33, 768) ) __snake_case = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , a , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case = torch.Size((1, 1, 768) ) __snake_case = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , a , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __snake_case = MLukeTokenizer.from_pretrained(a ) __snake_case = 'Tokyo is the capital of <mask>.' __snake_case = (24, 30) __snake_case = tokenizer(a , entity_spans=[span] , return_tensors='pt' ) __snake_case = model(**a ) __snake_case = encoding['input_ids'][0].tolist() __snake_case = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) __snake_case = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(a ) __snake_case = outputs.entity_logits[0][0].argmax().item() __snake_case = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(a ) ) model.save_pretrained(a ) def lowerCamelCase__ ( a ): __snake_case = ['[MASK]', '[PAD]', '[UNK]'] __snake_case = [json.loads(a ) for line in open(a )] __snake_case = {} for entry in data: __snake_case = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __snake_case = entity_id break __snake_case = f'{language}:{entity_name}' __snake_case = entity_id return new_mapping if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) _lowercase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
427
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class a_ ( UpperCAmelCase__ ): lowercase_ : Dict = '''gpt_neo''' lowercase_ : Tuple = ['''past_key_values'''] lowercase_ : List[str] = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : List[str] , __lowerCAmelCase : Optional[int]=5_0_2_5_7 , __lowerCAmelCase : Tuple=2_0_4_8 , __lowerCAmelCase : str=2_0_4_8 , __lowerCAmelCase : Optional[Any]=2_4 , __lowerCAmelCase : Optional[Any]=[[["global", "local"], 1_2]] , __lowerCAmelCase : Optional[Any]=1_6 , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Any=2_5_6 , __lowerCAmelCase : str="gelu_new" , __lowerCAmelCase : Union[str, Any]=0.0 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : Dict=0.0 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : List[Any]=1E-5 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : int=True , __lowerCAmelCase : Tuple=5_0_2_5_6 , __lowerCAmelCase : Any=5_0_2_5_6 , **__lowerCAmelCase : Optional[int] , ): __snake_case = vocab_size __snake_case = max_position_embeddings __snake_case = hidden_size __snake_case = num_layers __snake_case = num_heads __snake_case = intermediate_size __snake_case = window_size __snake_case = activation_function __snake_case = resid_dropout __snake_case = embed_dropout __snake_case = attention_dropout __snake_case = classifier_dropout __snake_case = layer_norm_epsilon __snake_case = initializer_range __snake_case = use_cache __snake_case = bos_token_id __snake_case = eos_token_id __snake_case = attention_types __snake_case = self.expand_attention_types_params(__lowerCAmelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' F'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' F'`config.num_layers = {self.num_layers}`. ' '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @staticmethod def lowercase__ ( __lowerCAmelCase : Optional[Any] ): __snake_case = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase__ ( a , a , a , a ): import torch __snake_case = input.size() __snake_case = len(a ) __snake_case = shape[dimension] __snake_case = torch.arange(0 , a , a ) __snake_case = torch.div(sizedim - size , a , rounding_mode='floor' ) + 1 __snake_case = torch.arange(a ) + low_indices[:min_length][:, None] __snake_case = [slice(a )] * rank __snake_case = indices __snake_case = input[s] __snake_case = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(a ) def lowerCamelCase__ ( a , a ): import torch __snake_case = torch.arange(1 , a ) __snake_case = torch.remainder(a , a ) __snake_case = remainders == 0 __snake_case = candidates[divisor_indices] __snake_case = torch.max(a ) return largest_divisor, torch.div(a , a , rounding_mode='floor' ) class a_ ( UpperCAmelCase__ ): @property def lowercase__ ( self : Optional[Any] ): __snake_case = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCAmelCase , direction='inputs' ) __snake_case = {0: 'batch', 1: 'past_sequence + sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowercase__ ( self : Tuple ): return self._config.num_heads def lowercase__ ( self : int , __lowerCAmelCase : PreTrainedTokenizer , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[TensorType] = None , ): __snake_case = super(__lowerCAmelCase , self ).generate_dummy_inputs( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) # We need to order the input in the way they appears in the forward() __snake_case = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __snake_case , __snake_case = common_inputs['input_ids'].shape # Not using the same length for past_key_values __snake_case = seqlen + 2 __snake_case = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case = [ (torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase )) for _ in range(self.num_layers ) ] __snake_case = common_inputs['attention_mask'] if self.use_past: __snake_case = ordered_inputs['attention_mask'].dtype __snake_case = torch.cat( [ordered_inputs['attention_mask'], torch.ones(__lowerCAmelCase , __lowerCAmelCase , dtype=__lowerCAmelCase )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : str ): return 1_3
427
1
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , __lowercase : List[str] , __lowercase : Optional[Any]=100 , __lowercase : Tuple=13 , __lowercase : Optional[int]=30 , __lowercase : Union[str, Any]=2 , __lowercase : Optional[int]=3 , __lowercase : List[str]=True , __lowercase : Tuple=True , __lowercase : Tuple=32 , __lowercase : Any=5 , __lowercase : Optional[int]=4 , __lowercase : List[str]=37 , __lowercase : Dict="gelu" , __lowercase : Union[str, Any]=0.1 , __lowercase : int=0.1 , __lowercase : Union[str, Any]=10 , __lowercase : Tuple=0.0_2 , __lowercase : Any=3 , ): '''simple docstring''' __UpperCAmelCase : Dict = parent __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : Optional[Any] = patch_size __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Any = intermediate_size __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : Dict = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCAmelCase : Tuple = (image_size // patch_size) ** 2 __UpperCAmelCase : Optional[int] = num_patches + 1 def A_ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Any = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowercase , initializer_range=self.initializer_range , ) return config, pixel_values, labels def A_ ( self : Tuple , __lowercase : Tuple , __lowercase : Tuple , __lowercase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : List[str] = FlaxBeitModel(config=__lowercase ) __UpperCAmelCase : Any = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : List[Any] , __lowercase : Any , __lowercase : List[Any] , __lowercase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : int = FlaxBeitForMaskedImageModeling(config=__lowercase ) __UpperCAmelCase : Dict = model(__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def A_ ( self : Optional[int] , __lowercase : Dict , __lowercase : Optional[Any] , __lowercase : Any ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.type_sequence_label_size __UpperCAmelCase : Tuple = FlaxBeitForImageClassification(config=__lowercase ) __UpperCAmelCase : int = model(__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCAmelCase : Any = 1 __UpperCAmelCase : str = FlaxBeitForImageClassification(__lowercase ) __UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : Optional[int] = model(__lowercase ) def A_ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Tuple = config_and_inputs __UpperCAmelCase : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class snake_case ( snake_case_ , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def A_ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = FlaxBeitModelTester(self ) __UpperCAmelCase : Dict = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def A_ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A_ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Dict = model_class(__lowercase ) __UpperCAmelCase : List[str] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Tuple = [*signature.parameters.keys()] __UpperCAmelCase : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) def A_ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase : Tuple = self._prepare_for_class(__lowercase , __lowercase ) __UpperCAmelCase : int = model_class(__lowercase ) @jax.jit def model_jitted(__lowercase : int , **__lowercase : Union[str, Any] ): return model(pixel_values=__lowercase , **__lowercase ) with self.subTest('''JIT Enabled''' ): __UpperCAmelCase : Optional[Any] = model_jitted(**__lowercase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __UpperCAmelCase : Optional[Any] = model_jitted(**__lowercase ).to_tuple() self.assertEqual(len(__lowercase ) , len(__lowercase ) ) for jitted_output, output in zip(__lowercase , __lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def A_ ( self : Any ): '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def A_ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowercase ) def A_ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) @slow def A_ ( self : int ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCAmelCase : Tuple = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) __UpperCAmelCase : List[str] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__lowercase ) def lowerCamelCase_ ( ) ->Union[str, Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A_ ( self : Optional[int] ): '''simple docstring''' return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def A_ ( self : str ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : List[Any] = prepare_img() __UpperCAmelCase : List[str] = image_processor(images=__lowercase , return_tensors='''np''' ).pixel_values # prepare bool_masked_pos __UpperCAmelCase : List[Any] = np.ones((1, 196) , dtype=__lowercase ) # forward pass __UpperCAmelCase : Any = model(pixel_values=__lowercase , bool_masked_pos=__lowercase ) __UpperCAmelCase : int = outputs.logits # verify the logits __UpperCAmelCase : Optional[int] = (1, 196, 8_192) self.assertEqual(logits.shape , __lowercase ) __UpperCAmelCase : Union[str, Any] = np.array( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , __lowercase , atol=1e-2 ) ) @slow def A_ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Dict = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) __UpperCAmelCase : List[Any] = self.default_image_processor __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : str = image_processor(images=__lowercase , return_tensors='''np''' ) # forward pass __UpperCAmelCase : str = model(**__lowercase ) __UpperCAmelCase : List[Any] = outputs.logits # verify the logits __UpperCAmelCase : int = (1, 1_000) self.assertEqual(logits.shape , __lowercase ) __UpperCAmelCase : Dict = np.array([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ) self.assertTrue(np.allclose(logits[0, :3] , __lowercase , atol=1e-4 ) ) __UpperCAmelCase : Optional[Any] = 281 self.assertEqual(logits.argmax(-1 ).item() , __lowercase ) @slow def A_ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : List[Any] = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) __UpperCAmelCase : str = self.default_image_processor __UpperCAmelCase : Dict = prepare_img() __UpperCAmelCase : str = image_processor(images=__lowercase , return_tensors='''np''' ) # forward pass __UpperCAmelCase : List[str] = model(**__lowercase ) __UpperCAmelCase : Optional[Any] = outputs.logits # verify the logits __UpperCAmelCase : int = (1, 21_841) self.assertEqual(logits.shape , __lowercase ) __UpperCAmelCase : Dict = np.array([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ) self.assertTrue(np.allclose(logits[0, :3] , __lowercase , atol=1e-4 ) ) __UpperCAmelCase : List[Any] = 2_396 self.assertEqual(logits.argmax(-1 ).item() , __lowercase )
522
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json""" ), """distilbert-base-uncased-finetuned-sst-2-english""": ( """https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json""" ), } class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''distilbert''' UpperCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , A=3_0522 , A=512 , A=False , A=6 , A=12 , A=768 , A=4 * 768 , A=0.1 , A=0.1 , A="gelu" , A=0.02 , A=0.1 , A=0.2 , A=0 , **A , ) -> Dict: _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = sinusoidal_pos_embds _SCREAMING_SNAKE_CASE = n_layers _SCREAMING_SNAKE_CASE = n_heads _SCREAMING_SNAKE_CASE = dim _SCREAMING_SNAKE_CASE = hidden_dim _SCREAMING_SNAKE_CASE = dropout _SCREAMING_SNAKE_CASE = attention_dropout _SCREAMING_SNAKE_CASE = activation _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = qa_dropout _SCREAMING_SNAKE_CASE = seq_classif_dropout super().__init__(**A , pad_token_id=A ) class a_ ( snake_case_ ): '''simple docstring''' @property def snake_case_( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
314
0
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class _A ( _snake_case ): '''simple docstring''' _snake_case : torch.FloatTensor class _A ( _snake_case , _snake_case ): '''simple docstring''' @register_to_config def __init__( self : Optional[int] , lowerCamelCase : int = 16 , lowerCamelCase : int = 88 , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : int = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : int = 32 , lowerCamelCase : Optional[int] = None , lowerCamelCase : bool = False , lowerCamelCase : Optional[int] = None , lowerCamelCase : str = "geglu" , lowerCamelCase : bool = True , lowerCamelCase : bool = True , ): '''simple docstring''' super().__init__() __lowercase = num_attention_heads __lowercase = attention_head_dim __lowercase = num_attention_heads * attention_head_dim __lowercase = in_channels __lowercase = torch.nn.GroupNorm(num_groups=lowerCamelCase , num_channels=lowerCamelCase , eps=1e-6 , affine=lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) # 3. Define transformers blocks __lowercase = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase , lowerCamelCase , lowerCamelCase , dropout=lowerCamelCase , cross_attention_dim=lowerCamelCase , activation_fn=lowerCamelCase , attention_bias=lowerCamelCase , double_self_attention=lowerCamelCase , norm_elementwise_affine=lowerCamelCase , ) for d in range(lowerCamelCase ) ] ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Dict , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]=None , lowerCamelCase : int=None , lowerCamelCase : Dict=None , lowerCamelCase : str=1 , lowerCamelCase : int=None , lowerCamelCase : bool = True , ): '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = hidden_states.shape __lowercase = batch_frames // num_frames __lowercase = hidden_states __lowercase = hidden_states[None, :].reshape(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) __lowercase = self.norm(lowerCamelCase ) __lowercase = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , lowerCamelCase , lowerCamelCase ) __lowercase = self.proj_in(lowerCamelCase ) # 2. Blocks for block in self.transformer_blocks: __lowercase = block( lowerCamelCase , encoder_hidden_states=lowerCamelCase , timestep=lowerCamelCase , cross_attention_kwargs=lowerCamelCase , class_labels=lowerCamelCase , ) # 3. Output __lowercase = self.proj_out(lowerCamelCase ) __lowercase = ( hidden_states[None, None, :] .reshape(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) __lowercase = hidden_states.reshape(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=lowerCamelCase )
713
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["prompt"] __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] if "image" in inputs: __lowercase = inputs["image"] else: __lowercase = None if "mask_image" in inputs: __lowercase = inputs["mask_image"] else: __lowercase = None if "original_image" in inputs: __lowercase = inputs["original_image"] else: __lowercase = None __lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
655
0
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : List[Any] = tmp_path / """cache""" UpperCAmelCase__ : List[Any] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase__ : Union[str, Any] = TextDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase ).read() _check_text_dataset(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Dict = tmp_path / """cache""" UpperCAmelCase__ : Tuple = {"""text""": """string"""} UpperCAmelCase__ : Dict = features.copy() if features else default_expected_features UpperCAmelCase__ : Tuple = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase__ : Optional[Any] = TextDatasetReader(__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_text_dataset(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : List[Any] = tmp_path / """cache""" UpperCAmelCase__ : str = {"""text""": """string"""} UpperCAmelCase__ : Dict = TextDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase , split=__UpperCamelCase ).read() _check_text_dataset(__UpperCamelCase , __UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if issubclass(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : Union[str, Any] = text_path elif issubclass(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : Tuple = [text_path] UpperCAmelCase__ : Dict = tmp_path / """cache""" UpperCAmelCase__ : Optional[Any] = {"""text""": """string"""} UpperCAmelCase__ : Union[str, Any] = TextDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_text_dataset(__UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=("train",) ): '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ) for split in splits: UpperCAmelCase__ : Any = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Any = tmp_path / """cache""" UpperCAmelCase__ : Tuple = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase__ : Dict = TextDatasetReader({"""train""": text_path} , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase ).read() _check_text_datasetdict(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : List[Any] = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" UpperCAmelCase__ : Optional[int] = {"""text""": """string"""} UpperCAmelCase__ : Optional[Any] = features.copy() if features else default_expected_features UpperCAmelCase__ : str = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase__ : Tuple = TextDatasetReader({"""train""": text_path} , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_text_datasetdict(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if split: UpperCAmelCase__ : Tuple = {split: text_path} else: UpperCAmelCase__ : Optional[int] = """train""" UpperCAmelCase__ : Optional[Any] = {"""train""": text_path, """test""": text_path} UpperCAmelCase__ : List[str] = tmp_path / """cache""" UpperCAmelCase__ : Optional[Any] = {"""text""": """string"""} UpperCAmelCase__ : str = TextDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_text_datasetdict(__UpperCamelCase , __UpperCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
65
import torch from diffusers import StableDiffusionPipeline _snake_case = "path-to-your-trained-model" _snake_case = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda") _snake_case = "A photo of sks dog in a bucket" _snake_case = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png")
307
0
'''simple docstring''' def UpperCAmelCase ( _lowerCamelCase ): for i in range(len(_lowerCamelCase ) - 1 , 0 , -1 ): A : Dict = False for j in range(_lowerCamelCase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: A : str = unsorted[j - 1], unsorted[j] A : Optional[Any] = True for j in range(_lowerCamelCase ): if unsorted[j] > unsorted[j + 1]: A : Optional[Any] = unsorted[j + 1], unsorted[j] A : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE = input("""Enter numbers separated by a comma:\n""").strip() __SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(""",""")] print(F"""{cocktail_shaker_sort(unsorted) = }""")
717
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Union[str, Any]: A : Union[str, Any] = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) A : Tuple = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house A : Tuple = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim A : List[str] = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): A : Tuple = model(__lowerCamelCase )["last_hidden_state"].detach() self.assertEqual(output.shape , __lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __lowerCamelCase , atol=1e-3 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> int: A : str = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) A : List[Any] = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house A : Optional[Any] = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim A : List[Any] = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): A : Optional[int] = model(__lowerCamelCase )["last_hidden_state"].detach() self.assertEqual(output.shape , __lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __lowerCamelCase , atol=1e-3 ) )
17
0
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( __snake_case : int | str ) -> bool: """simple docstring""" A__ : Dict =str(__snake_case ) return n == n[::-1] def __lowerCamelCase ( __snake_case : int = 1_000_000 ) -> Any: """simple docstring""" A__ : str =0 for i in range(1, __snake_case ): if is_palindrome(__snake_case ) and is_palindrome(bin(__snake_case ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
215
'''simple docstring''' import argparse import os import re __snake_case : Dict = 'src/diffusers' # Pattern that looks at the indentation in a line. __snake_case : Optional[Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. __snake_case : Tuple = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __snake_case : Dict = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. __snake_case : Union[str, Any] = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __snake_case : Any = re.compile(r'\[([^\]]+)\]') def __lowerCamelCase ( __snake_case : Optional[int] ) -> Any: """simple docstring""" A__ : Optional[int] =_re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def __lowerCamelCase ( __snake_case : str, __snake_case : Union[str, Any]="", __snake_case : Tuple=None, __snake_case : Tuple=None ) -> List[str]: """simple docstring""" A__ : str =0 A__ : List[Any] =code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 A__ : Union[str, Any] =["""\n""".join(lines[:index] )] else: A__ : Tuple =[] # We split into blocks until we get to the `end_prompt` (or the end of the block). A__ : int =[lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(__snake_case ) ) if index < len(__snake_case ) - 1: A__ : Any =[lines[index + 1]] index += 1 else: A__ : List[str] =[] else: blocks.append("""\n""".join(__snake_case ) ) A__ : Any =[lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append("""\n""".join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def __lowerCamelCase ( __snake_case : Dict ) -> Dict: """simple docstring""" def _inner(__snake_case : List[Any] ): return key(__snake_case ).lower().replace("""_""", """""" ) return _inner def __lowerCamelCase ( __snake_case : List[str], __snake_case : Union[str, Any]=None ) -> List[Any]: """simple docstring""" def noop(__snake_case : int ): return x if key is None: A__ : Optional[int] =noop # Constants are all uppercase, they go first. A__ : Tuple =[obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. A__ : List[str] =[obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. A__ : Union[str, Any] =[obj for obj in objects if not key(__snake_case )[0].isupper()] A__ : Union[str, Any] =ignore_underscore(__snake_case ) return sorted(__snake_case, key=__snake_case ) + sorted(__snake_case, key=__snake_case ) + sorted(__snake_case, key=__snake_case ) def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> Tuple: """simple docstring""" def _replace(__snake_case : Any ): A__ : str =match.groups()[0] if "," not in imports: return f"[{imports}]" A__ : Tuple =[part.strip().replace("""\"""", """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A__ : int =keys[:-1] return "[" + ", ".join([f"\"{k}\"" for k in sort_objects(__snake_case )] ) + "]" A__ : int =import_statement.split("""\n""" ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. A__ : Optional[int] =2 if lines[1].strip() == """[""" else 1 A__ : Optional[int] =[(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] A__ : List[str] =sort_objects(__snake_case, key=lambda __snake_case : x[1] ) A__ : Tuple =[lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: A__ : List[Any] =_re_bracket_content.sub(_replace, lines[1] ) else: A__ : List[str] =[part.strip().replace("""\"""", """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A__ : List[Any] =keys[:-1] A__ : List[Any] =get_indent(lines[1] ) + """, """.join([f"\"{k}\"" for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line A__ : Union[str, Any] =_re_bracket_content.sub(_replace, __snake_case ) return import_statement def __lowerCamelCase ( __snake_case : List[str], __snake_case : str=True ) -> Optional[int]: """simple docstring""" with open(__snake_case, """r""" ) as f: A__ : str =f.read() if "_import_structure" not in code: return # Blocks of indent level 0 A__ : Any =split_code_in_indented_blocks( __snake_case, start_prompt="""_import_structure = {""", end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1, len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. A__ : Optional[Any] =main_blocks[block_idx] A__ : Optional[Any] =block.split("""\n""" ) # Get to the start of the imports. A__ : Optional[Any] =0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: A__ : Dict =len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. A__ : str ="""\n""".join(block_lines[line_idx:-1] ) A__ : Dict =get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. A__ : Dict =split_code_in_indented_blocks(__snake_case, indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend A__ : int =_re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. A__ : int =[(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. A__ : str =[(i, key) for i, key in enumerate(__snake_case ) if key is not None] A__ : Optional[int] =[x[0] for x in sorted(__snake_case, key=lambda __snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. A__ : Optional[Any] =0 A__ : int =[] for i in range(len(__snake_case ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: A__ : Union[str, Any] =sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. A__ : Any ="""\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(f"Overwriting {file}." ) with open(__snake_case, """w""" ) as f: f.write("""\n""".join(__snake_case ) ) def __lowerCamelCase ( __snake_case : Dict=True ) -> Any: """simple docstring""" A__ : Optional[Any] =[] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: A__ : Tuple =sort_imports(os.path.join(__snake_case, """__init__.py""" ), check_only=__snake_case ) if result: A__ : str =[os.path.join(__snake_case, """__init__.py""" )] if len(__snake_case ) > 0: raise ValueError(f"Would overwrite {len(__snake_case )} files, run `make style`." ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') __snake_case : int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
215
1
'''simple docstring''' def __UpperCamelCase ( _UpperCAmelCase ): if not isinstance(_UpperCAmelCase, _UpperCAmelCase ): raise TypeError("only integers accepted as input" ) else: __UpperCAmelCase : Tuple = str(abs(_UpperCAmelCase ) ) __UpperCAmelCase : Tuple = [list(_UpperCAmelCase ) for char in range(len(_UpperCAmelCase ) )] for index in range(len(_UpperCAmelCase ) ): num_transpositions[index].pop(_UpperCAmelCase ) return max( int("".join(list(_UpperCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
329
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : """simple docstring""" @staticmethod def lowerCamelCase_ ( *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Tuple ): """simple docstring""" pass def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : Any = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowerCamelCase_ ( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] ): """simple docstring""" __UpperCAmelCase : int = DepthEstimationPipeline(model=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] ): """simple docstring""" __UpperCAmelCase : Tuple = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , UpperCAmelCase_ ) import datasets __UpperCAmelCase : str = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) __UpperCAmelCase : Dict = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , UpperCAmelCase_ , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass @slow @require_torch def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase : List[str] = "Intel/dpt-large" __UpperCAmelCase : Optional[int] = pipeline("depth-estimation" , model=UpperCAmelCase_ ) __UpperCAmelCase : Any = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) __UpperCAmelCase : str = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.662 ) @require_torch def lowerCamelCase_ ( self : List[str] ): """simple docstring""" # This is highly irregular to have no small tests. self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
329
1
__snake_case :Optional[Any] ={ 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def lowerCamelCase_ ( lowerCAmelCase__ : dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any ) -> list[str]: '''simple docstring''' A = set() # keep track of all the paths to be checked A = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue A = queue.pop(0 ) # get the last node from the path A = path[-1] if node not in explored: A = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: A = list(lowerCAmelCase__ ) new_path.append(lowerCAmelCase__ ) queue.append(lowerCAmelCase__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowerCAmelCase__ ) # in case there's no path between the 2 nodes return [] def lowerCamelCase_ ( lowerCAmelCase__ : dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ) -> int: '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 A = [start] A = set(lowerCAmelCase__ ) # Keep tab on distances from `start` node. A = {start: 0, target: -1} while queue: A = queue.pop(0 ) if node == target: A = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowerCAmelCase__ ) queue.append(lowerCAmelCase__ ) A = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
106
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def a ( ) -> None: """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
697
0
"""simple docstring""" import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def UpperCAmelCase ( A__: Optional[int] , A__: Optional[Any]=() , A__: List[str]=None , A__: Any="no" , A__: Any="29500" ) -> List[Any]: __lowerCamelCase : Any = False __lowerCamelCase : Any = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): __lowerCamelCase : Optional[Any] = True elif "IPython" in sys.modules: __lowerCamelCase : Tuple = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: __lowerCamelCase : Any = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , A__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: __lowerCamelCase : Any = 8 __lowerCamelCase : List[Any] = PrepareForLaunch(A__ , distributed_type='TPU' ) print(f'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(A__ , args=A__ , nprocs=A__ , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*A__ ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=A__ , master_addr='127.0.01' , master_port=A__ , mixed_precision=A__ ): __lowerCamelCase : Dict = PrepareForLaunch(A__ , distributed_type='MULTI_GPU' ) print(f'''Launching training on {num_processes} GPUs.''' ) try: start_processes(A__ , args=A__ , nprocs=A__ , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): __lowerCamelCase : List[str] = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*A__ ) def UpperCAmelCase ( A__: Dict , A__: Dict=() , A__: List[Any]=2 ) -> str: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=A__ , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): __lowerCamelCase : List[Any] = PrepareForLaunch(A__ , debug=A__ ) start_processes(A__ , args=A__ , nprocs=A__ , start_method='fork' )
706
"""simple docstring""" from __future__ import annotations import pandas as pd def UpperCAmelCase ( A__: list[int] , A__: list[int] , A__: int ) -> list[int]: __lowerCamelCase : List[Any] = [0] * no_of_processes __lowerCamelCase : Any = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(A__ ): __lowerCamelCase : Dict = burst_time[i] __lowerCamelCase : Any = 0 __lowerCamelCase : Tuple = 0 __lowerCamelCase : Union[str, Any] = 999999999 __lowerCamelCase : str = 0 __lowerCamelCase : Optional[int] = False # Process until all processes are completed while complete != no_of_processes: for j in range(A__ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __lowerCamelCase : List[Any] = remaining_time[j] __lowerCamelCase : List[str] = j __lowerCamelCase : Optional[int] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __lowerCamelCase : Optional[Any] = remaining_time[short] if minm == 0: __lowerCamelCase : Optional[int] = 999999999 if remaining_time[short] == 0: complete += 1 __lowerCamelCase : List[str] = False # Find finish time of current process __lowerCamelCase : Dict = increment_time + 1 # Calculate waiting time __lowerCamelCase : Any = finish_time - arrival_time[short] __lowerCamelCase : Dict = finar - burst_time[short] if waiting_time[short] < 0: __lowerCamelCase : Optional[Any] = 0 # Increment time increment_time += 1 return waiting_time def UpperCAmelCase ( A__: list[int] , A__: int , A__: list[int] ) -> list[int]: __lowerCamelCase : List[Any] = [0] * no_of_processes for i in range(A__ ): __lowerCamelCase : Tuple = burst_time[i] + waiting_time[i] return turn_around_time def UpperCAmelCase ( A__: list[int] , A__: list[int] , A__: int ) -> None: __lowerCamelCase : int = 0 __lowerCamelCase : Dict = 0 for i in range(A__ ): __lowerCamelCase : str = total_waiting_time + waiting_time[i] __lowerCamelCase : Union[str, Any] = total_turn_around_time + turn_around_time[i] print(f'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') a_ : int = int(input()) a_ : List[str] = [0] * no_of_processes a_ : int = [0] * no_of_processes a_ : int = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) a_ , a_ : Union[str, Any] = map(int, input().split()) a_ : Any = calculate_waitingtime(arrival_time, burst_time, no_of_processes) a_ : List[str] = burst_time a_ : List[Any] = no_of_processes a_ : Tuple = waiting_time a_ : Optional[Any] = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) a_ : List[Any] = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
263
0
'''simple docstring''' def lowercase_ ( ) -> int: '''simple docstring''' for n in range(1 , 1_000_000 ): yield n * (n + 1) // 2 def lowercase_ ( _lowercase ) -> int: '''simple docstring''' lowerCamelCase_ : str = 1 lowerCamelCase_ : str = 2 while i * i <= n: lowerCamelCase_ : int = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowercase_ ( ) -> Optional[int]: '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(__UpperCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
422
"""simple docstring""" lowercase__ = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ lowercase__ = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowercase__ = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
610
0
'''simple docstring''' from collections import Counter from timeit import timeit def UpperCamelCase ( lowercase_ : str = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def UpperCamelCase ( lowercase_ : str = "" ) -> bool: '''simple docstring''' if len(lowercase_ ) == 0: return True lowercase =input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string lowercase ={} for character in lower_case_input_str: lowercase =character_freq_dict.get(lowercase_ , 0 ) + 1 lowercase =0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def UpperCamelCase ( lowercase_ : str = "" ) -> None: '''simple docstring''' print('''\nFor string = ''' , lowercase_ , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(lowercase_ ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(lowercase_ ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = input( '''Enter string to determine if it can be rearranged as a palindrome or not: ''' ).strip() benchmark(check_str) _UpperCAmelCase : Tuple = can_string_be_rearranged_as_palindrome_counter(check_str) print(F"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
145
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase ='''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase =Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert('''RGB''' ) lowercase =transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3) , (0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1) ), ] ) lowercase =transform(lowercase_ ).unsqueeze(0 ).to(lowercase_ ) return image def UpperCamelCase ( lowercase_ : Optional[int] ) -> Tuple: '''simple docstring''' if "visual_encoder" in key: lowercase =re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowercase_ ) if "blocks" in key: lowercase =re.sub(R'''blocks''' , '''layers''' , lowercase_ ) if "attn" in key: lowercase =re.sub(R'''attn''' , '''self_attn''' , lowercase_ ) if "norm1" in key: lowercase =re.sub(R'''norm1''' , '''layer_norm1''' , lowercase_ ) if "norm2" in key: lowercase =re.sub(R'''norm2''' , '''layer_norm2''' , lowercase_ ) if "encoder.norm" in key: lowercase =re.sub(R'''encoder.norm''' , '''post_layernorm''' , lowercase_ ) if "encoder.patch_embed.proj" in key: lowercase =re.sub(R'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowercase_ ) if "encoder.pos_embed" in key: lowercase =re.sub(R'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowercase_ ) if "encoder.cls_token" in key: lowercase =re.sub(R'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowercase_ ) if "self_attn" in key: lowercase =re.sub(R'''self_attn.proj''' , '''self_attn.projection''' , lowercase_ ) return key @torch.no_grad() def UpperCamelCase ( lowercase_ : Union[str, Any] , lowercase_ : int=None ) -> str: '''simple docstring''' if config_path is not None: lowercase =BlipConfig.from_pretrained(lowercase_ ) else: lowercase =BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) lowercase =BlipForConditionalGeneration(lowercase_ ).eval() lowercase ='''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase =blip_decoder(pretrained=lowercase_ , image_size=3_8_4 , vit='''base''' ) lowercase =pt_model.eval() lowercase =pt_model.state_dict() for key in modified_state_dict.copy(): lowercase =modified_state_dict.pop(lowercase_ ) lowercase =rename_key(lowercase_ ) lowercase =value hf_model.load_state_dict(lowercase_ ) lowercase =3_8_4 lowercase =load_demo_image(image_size=lowercase_ , device='''cpu''' ) lowercase =BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase =tokenizer(['''a picture of'''] ).input_ids lowercase =hf_model.generate(lowercase_ , lowercase_ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] lowercase =hf_model.generate(lowercase_ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowercase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase =( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase =blip_vqa(pretrained=lowercase_ , image_size=lowercase_ , vit='''base''' ) vqa_model.eval() lowercase =vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase =modified_state_dict.pop(lowercase_ ) lowercase =rename_key(lowercase_ ) lowercase =value lowercase =BlipForQuestionAnswering(lowercase_ ) hf_vqa_model.load_state_dict(lowercase_ ) lowercase =['''How many dogs are in this image?'''] lowercase =tokenizer(lowercase_ , return_tensors='''pt''' ).input_ids lowercase =hf_vqa_model.generate(lowercase_ , lowercase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase ='''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase =blip_itm(pretrained=lowercase_ , image_size=lowercase_ , vit='''base''' ) itm_model.eval() lowercase =itm_model.state_dict() for key in modified_state_dict.copy(): lowercase =modified_state_dict.pop(lowercase_ ) lowercase =rename_key(lowercase_ ) lowercase =value lowercase =BlipForImageTextRetrieval(lowercase_ ) lowercase =['''A picture of a woman with a dog sitting in a beach'''] lowercase =tokenizer( lowercase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowercase_ , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(lowercase_ ) hf_itm_model.eval() lowercase =hf_itm_model(lowercase_ , lowercase_ , use_itm_head=lowercase_ ) lowercase =hf_itm_model(lowercase_ , lowercase_ , use_itm_head=lowercase_ ) assert out[0].item() == 0.2_1_1_0_6_8_7_4_9_4_2_7_7_9_5_4 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5_6_9_8_8_4_5_3_8_6_5_0_5_1_2_7 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') _UpperCAmelCase : Optional[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
145
1
'''simple docstring''' # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _A = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") _A = subprocess.check_output(f'git diff --name-only {fork_point_sha}'.split()).decode("""utf-8""").split() _A = """|""".join(sys.argv[1:]) _A = re.compile(Rf'^({joined_dirs}).*?\.py$') _A = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
158
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _A = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def A_ ( __SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: for pegasus_name, hf_name in PATTERNS: __SCREAMING_SNAKE_CASE : List[str] = k.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return k def A_ ( __SCREAMING_SNAKE_CASE : dict , __SCREAMING_SNAKE_CASE : dict ) -> PegasusForConditionalGeneration: __SCREAMING_SNAKE_CASE : Tuple = DEFAULTS.copy() cfg_kwargs.update(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Union[str, Any] = PegasusConfig(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : List[Any] = PegasusForConditionalGeneration(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Tuple = torch_model.model.state_dict() __SCREAMING_SNAKE_CASE : Dict = {} for k, v in tf_weights.items(): __SCREAMING_SNAKE_CASE : List[str] = rename_state_dict_key(__SCREAMING_SNAKE_CASE ) if new_k not in sd: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __SCREAMING_SNAKE_CASE : Dict = v.T __SCREAMING_SNAKE_CASE : Any = torch.tensor(__SCREAMING_SNAKE_CASE , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __SCREAMING_SNAKE_CASE : int = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __SCREAMING_SNAKE_CASE : Optional[Any] = mapping['''shared.weight'''] __SCREAMING_SNAKE_CASE : Tuple = mapping['''shared.weight'''] __SCREAMING_SNAKE_CASE : List[Any] = {k: torch.zeros_like(__SCREAMING_SNAKE_CASE ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = torch_model.model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : List[Any] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def A_ ( __SCREAMING_SNAKE_CASE : Union[str, Any]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: __SCREAMING_SNAKE_CASE : Any = tf.train.list_variables(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Optional[int] = {} __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(__SCREAMING_SNAKE_CASE , desc='''converting tf checkpoint to dict''' ): __SCREAMING_SNAKE_CASE : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue __SCREAMING_SNAKE_CASE : Any = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Dict = array return tf_weights def A_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ) -> Optional[int]: # save tokenizer first __SCREAMING_SNAKE_CASE : List[str] = Path(__SCREAMING_SNAKE_CASE ).parent.name __SCREAMING_SNAKE_CASE : Optional[int] = task_specific_params[f"""summarization_{dataset}"""]['''max_position_embeddings'''] __SCREAMING_SNAKE_CASE : List[str] = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=__SCREAMING_SNAKE_CASE ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__SCREAMING_SNAKE_CASE ) # convert model __SCREAMING_SNAKE_CASE : Any = get_tf_weights_as_numpy(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : str = task_specific_params[f"""summarization_{dataset}"""] if dataset == "large": __SCREAMING_SNAKE_CASE : Dict = task_specific_params __SCREAMING_SNAKE_CASE : Optional[int] = convert_pegasus(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) torch_model.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : List[Any] = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(__SCREAMING_SNAKE_CASE , Path(__SCREAMING_SNAKE_CASE ) / '''pytorch_model.bin''' ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") _A = parser.parse_args() if args.save_dir is None: _A = Path(args.tf_ckpt_path).parent.name _A = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
158
1
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _a ( __lowercase ) -> Any: """simple docstring""" __UpperCamelCase = VideoMAEConfig() set_architecture_configs(__lowercase , __lowercase ) if "finetuned" not in model_name: __UpperCamelCase = False if "finetuned" in model_name: __UpperCamelCase = 'huggingface/label-files' if "kinetics" in model_name: __UpperCamelCase = 400 __UpperCamelCase = 'kinetics400-id2label.json' elif "ssv2" in model_name: __UpperCamelCase = 174 __UpperCamelCase = 'something-something-v2-id2label.json' else: raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' ) __UpperCamelCase = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase = {int(__lowercase ): v for k, v in idalabel.items()} __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} return config def _a ( __lowercase , __lowercase ) -> Dict: """simple docstring""" if "small" in model_name: __UpperCamelCase = 384 __UpperCamelCase = 1536 __UpperCamelCase = 12 __UpperCamelCase = 16 __UpperCamelCase = 12 __UpperCamelCase = 3 __UpperCamelCase = 192 __UpperCamelCase = 768 elif "large" in model_name: __UpperCamelCase = 1024 __UpperCamelCase = 4096 __UpperCamelCase = 24 __UpperCamelCase = 16 __UpperCamelCase = 12 __UpperCamelCase = 8 __UpperCamelCase = 512 __UpperCamelCase = 2048 elif "huge" in model_name: __UpperCamelCase = 1280 __UpperCamelCase = 5120 __UpperCamelCase = 32 __UpperCamelCase = 16 __UpperCamelCase = 12 __UpperCamelCase = 8 __UpperCamelCase = 640 __UpperCamelCase = 2560 elif "base" not in model_name: raise ValueError('Model name should include either "small", "base", "large", or "huge"' ) def _a ( __lowercase ) -> Tuple: """simple docstring""" if "encoder." in name: __UpperCamelCase = name.replace('encoder.' , '' ) if "cls_token" in name: __UpperCamelCase = name.replace('cls_token' , 'videomae.embeddings.cls_token' ) if "decoder_pos_embed" in name: __UpperCamelCase = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: __UpperCamelCase = name.replace('pos_embed' , 'videomae.embeddings.position_embeddings' ) if "patch_embed.proj" in name: __UpperCamelCase = name.replace('patch_embed.proj' , 'videomae.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __UpperCamelCase = name.replace('patch_embed.norm' , 'videomae.embeddings.norm' ) if "decoder.blocks" in name: __UpperCamelCase = name.replace('decoder.blocks' , 'decoder.decoder_layers' ) if "blocks" in name: __UpperCamelCase = name.replace('blocks' , 'videomae.encoder.layer' ) if "attn.proj" in name: __UpperCamelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "bias" not in name: __UpperCamelCase = name.replace('attn' , 'attention.self' ) if "attn" in name: __UpperCamelCase = name.replace('attn' , 'attention.attention' ) if "norm1" in name: __UpperCamelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __UpperCamelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __UpperCamelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __UpperCamelCase = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: __UpperCamelCase = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: __UpperCamelCase = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: __UpperCamelCase = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __UpperCamelCase = name.replace('norm.weight' , 'videomae.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __UpperCamelCase = name.replace('norm.bias' , 'videomae.layernorm.bias' ) if "head" in name and "decoder" not in name: __UpperCamelCase = name.replace('head' , 'classifier' ) return name def _a ( __lowercase , __lowercase ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): __UpperCamelCase = orig_state_dict.pop(__lowercase ) if key.startswith('encoder.' ): __UpperCamelCase = key.replace('encoder.' , '' ) if "qkv" in key: __UpperCamelCase = key.split('.' ) if key.startswith('decoder.blocks' ): __UpperCamelCase = config.decoder_hidden_size __UpperCamelCase = int(key_split[2] ) __UpperCamelCase = 'decoder.decoder_layers.' if "weight" in key: __UpperCamelCase = val[:dim, :] __UpperCamelCase = val[dim : dim * 2, :] __UpperCamelCase = val[-dim:, :] else: __UpperCamelCase = config.hidden_size __UpperCamelCase = int(key_split[1] ) __UpperCamelCase = 'videomae.encoder.layer.' if "weight" in key: __UpperCamelCase = val[:dim, :] __UpperCamelCase = val[dim : dim * 2, :] __UpperCamelCase = val[-dim:, :] else: __UpperCamelCase = val return orig_state_dict def _a ( ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) __UpperCamelCase = np.load(__lowercase ) return list(__lowercase ) def _a ( __lowercase , __lowercase , __lowercase , __lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = get_videomae_config(__lowercase ) if "finetuned" in model_name: __UpperCamelCase = VideoMAEForVideoClassification(__lowercase ) else: __UpperCamelCase = VideoMAEForPreTraining(__lowercase ) # download original checkpoint, hosted on Google Drive __UpperCamelCase = 'pytorch_model.bin' gdown.cached_download(__lowercase , __lowercase , quiet=__lowercase ) __UpperCamelCase = torch.load(__lowercase , map_location='cpu' ) if "model" in files: __UpperCamelCase = files['model'] else: __UpperCamelCase = files['module'] __UpperCamelCase = convert_state_dict(__lowercase , __lowercase ) model.load_state_dict(__lowercase ) model.eval() # verify model on basic input __UpperCamelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __UpperCamelCase = prepare_video() __UpperCamelCase = image_processor(__lowercase , return_tensors='pt' ) if "finetuned" not in model_name: __UpperCamelCase = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) __UpperCamelCase = torch.load(__lowercase ) __UpperCamelCase = model(**__lowercase ) __UpperCamelCase = outputs.logits __UpperCamelCase = [ 'videomae-small-finetuned-kinetics', 'videomae-small-finetuned-ssv2', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) 'videomae-base-short', 'videomae-base-short-finetuned-kinetics', 'videomae-base', 'videomae-base-finetuned-kinetics', 'videomae-large', 'videomae-large-finetuned-kinetics', 'videomae-huge-finetuned-kinetics', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) 'videomae-base-short-ssv2', 'videomae-base-short-finetuned-ssv2', 'videomae-base-ssv2', 'videomae-base-finetuned-ssv2', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __UpperCamelCase = torch.Size([1, 400] ) __UpperCamelCase = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": __UpperCamelCase = torch.Size([1, 174] ) __UpperCamelCase = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": __UpperCamelCase = torch.Size([1, 1408, 1536] ) __UpperCamelCase = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": __UpperCamelCase = torch.Size([1, 1408, 1536] ) __UpperCamelCase = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one __UpperCamelCase = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": __UpperCamelCase = torch.Size([1, 1408, 1536] ) __UpperCamelCase = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": __UpperCamelCase = torch.Size([1, 400] ) __UpperCamelCase = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": __UpperCamelCase = torch.Size([1, 400] ) __UpperCamelCase = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": __UpperCamelCase = torch.Size([1, 400] ) __UpperCamelCase = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": __UpperCamelCase = torch.Size([1, 400] ) __UpperCamelCase = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": __UpperCamelCase = torch.Size([1, 1408, 1536] ) __UpperCamelCase = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __UpperCamelCase = torch.Size([1, 174] ) __UpperCamelCase = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": __UpperCamelCase = torch.Size([1, 1408, 1536] ) __UpperCamelCase = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": __UpperCamelCase = torch.Size([1, 174] ) __UpperCamelCase = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F"""Model name not supported. Should be one of {model_names}""" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , __lowercase , atol=1e-4 ) else: print('Logits:' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) print('Logits ok!' ) # verify loss, if applicable if model_name == "videomae-base-short": __UpperCamelCase = outputs.loss assert torch.allclose(__lowercase , __lowercase , atol=1e-4 ) print('Loss ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowercase ) model.save_pretrained(__lowercase ) if push_to_hub: print('Pushing to the hub...' ) model.push_to_hub(__lowercase , organization='nielsr' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
567
def _a ( __lowercase , __lowercase ) -> str: """simple docstring""" return "\n".join( F"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
567
1
from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter _lowerCamelCase : Dict = 'Create a default config file for Accelerate with only a few flags set.' def _lowerCAmelCase ( __magic_name__ :str="no" , __magic_name__ :Dict = default_json_config_file , __magic_name__ :List[str] = False ): UpperCAmelCase_ = Path(lowercase__ ) path.parent.mkdir(parents=lowercase__ , exist_ok=lowercase__ ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False UpperCAmelCase_ = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) UpperCAmelCase_ = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase_ = torch.cuda.device_count() UpperCAmelCase_ = num_gpus UpperCAmelCase_ = False if num_gpus > 1: UpperCAmelCase_ = 'MULTI_GPU' else: UpperCAmelCase_ = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase_ = torch.xpu.device_count() UpperCAmelCase_ = num_xpus UpperCAmelCase_ = False if num_xpus > 1: UpperCAmelCase_ = 'MULTI_XPU' else: UpperCAmelCase_ = 'NO' elif is_npu_available(): UpperCAmelCase_ = torch.npu.device_count() UpperCAmelCase_ = num_npus UpperCAmelCase_ = False if num_npus > 1: UpperCAmelCase_ = 'MULTI_NPU' else: UpperCAmelCase_ = 'NO' else: UpperCAmelCase_ = 0 UpperCAmelCase_ = True UpperCAmelCase_ = 1 UpperCAmelCase_ = 'NO' UpperCAmelCase_ = ClusterConfig(**lowercase__ ) config.to_json_file(lowercase__ ) return path def _lowerCAmelCase ( __magic_name__ :int , __magic_name__ :List[Any] ): UpperCAmelCase_ = parser.add_parser('''default''' , parents=lowercase__ , help=lowercase__ , formatter_class=lowercase__ ) parser.add_argument( '''--config_file''' , default=lowercase__ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=lowercase__ , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=lowercase__ ) return parser def _lowerCAmelCase ( __magic_name__ :Dict ): UpperCAmelCase_ = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
121
"""simple docstring""" import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=99 , lowercase=64 , lowercase=5 , lowercase=4 , lowercase=64 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ): _lowerCamelCase : List[str] = parent _lowerCamelCase : List[str] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : List[Any] = is_training _lowerCamelCase : int = use_input_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : List[str] = intermediate_size _lowerCamelCase : int = hidden_act _lowerCamelCase : Optional[int] = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : Optional[int] = type_sequence_label_size _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : Tuple = num_labels _lowerCamelCase : int = num_choices _lowerCamelCase : int = scope def A_ ( self ): return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def A_ ( self ): _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : Dict = None if self.use_input_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : int = None _lowerCamelCase : List[str] = None _lowerCamelCase : Any = None if self.use_labels: _lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self ): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = MPNetModel(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Tuple = model(lowercase , lowercase ) _lowerCamelCase : Tuple = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : str = MPNetForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : str = model( lowercase , attention_mask=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = self.num_labels _lowerCamelCase : int = MPNetForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : List[str] = self.num_choices _lowerCamelCase : List[str] = MPNetForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : Any = model( lowercase , attention_mask=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Any = self.num_labels _lowerCamelCase : Union[str, Any] = MPNetForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Union[str, Any] = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self ): _lowerCamelCase : Dict = self.prepare_config_and_inputs() ((_lowerCamelCase), (_lowerCamelCase), (_lowerCamelCase), (_lowerCamelCase), (_lowerCamelCase), (_lowerCamelCase)) : List[Any] = config_and_inputs _lowerCamelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) lowerCamelCase__ = ( { """feature-extraction""": MPNetModel, """fill-mask""": MPNetForMaskedLM, """question-answering""": MPNetForQuestionAnswering, """text-classification""": MPNetForSequenceClassification, """token-classification""": MPNetForTokenClassification, """zero-shot""": MPNetForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = True def A_ ( self ): _lowerCamelCase : Union[str, Any] = MPNetModelTester(self ) _lowerCamelCase : List[Any] = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowercase ) def A_ ( self ): _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowercase ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Optional[Any] = MPNetModel.from_pretrained('microsoft/mpnet-base' ) _lowerCamelCase : Optional[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _lowerCamelCase : Any = model(lowercase )[0] _lowerCamelCase : Dict = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[Any] = torch.tensor( [[[-0.05_50, 0.19_43, -0.07_40], [-0.05_62, 0.22_11, -0.05_79], [-0.04_37, 0.33_37, -0.06_41]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) )
630
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: __lowerCamelCase : Union[str, Any] = None __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : List[str] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase : int = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } __lowerCamelCase : int = { '''camembert-base''': 5_12, } __lowerCamelCase : Any = '''▁''' class a__ ( _UpperCamelCase ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ["input_ids", "attention_mask"] A = CamembertTokenizer def __init__( self : List[Any],_A : int=None,_A : str=None,_A : Optional[int]="<s>",_A : Dict="</s>",_A : List[Any]="</s>",_A : List[str]="<s>",_A : List[str]="<unk>",_A : List[Any]="<pad>",_A : List[Any]="<mask>",_A : Tuple=["<s>NOTUSED", "</s>NOTUSED"],**_A : Optional[Any],): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = AddedToken(__a,lstrip=__a,rstrip=__a ) if isinstance(__a,__a ) else mask_token super().__init__( __a,tokenizer_file=__a,bos_token=__a,eos_token=__a,sep_token=__a,cls_token=__a,unk_token=__a,pad_token=__a,mask_token=__a,additional_special_tokens=__a,**__a,) SCREAMING_SNAKE_CASE_ : List[Any] = vocab_file SCREAMING_SNAKE_CASE_ : Tuple = False if not self.vocab_file else True def __UpperCamelCase ( self : Optional[int],_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : Tuple,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : str,_A : str,_A : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__a ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join( __a,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file,__a ) return (out_vocab_file,)
707
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : str = { '''configuration_xlm_roberta_xl''': [ '''XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaXLConfig''', '''XLMRobertaXLOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ '''XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaXLForCausalLM''', '''XLMRobertaXLForMaskedLM''', '''XLMRobertaXLForMultipleChoice''', '''XLMRobertaXLForQuestionAnswering''', '''XLMRobertaXLForSequenceClassification''', '''XLMRobertaXLForTokenClassification''', '''XLMRobertaXLModel''', '''XLMRobertaXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
316
0
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a__ ( __magic_name__ ): def __init__( self : Dict , *UpperCamelCase_ : Any , UpperCamelCase_ : int=None , UpperCamelCase_ : Dict=None , **UpperCamelCase_ : int): """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_) __UpperCAmelCase : Tuple = eval_examples __UpperCAmelCase : int = post_process_function def a_ ( self : Optional[int] , UpperCamelCase_ : Optional[Dataset] = None , UpperCamelCase_ : int=None , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "eval" , **UpperCamelCase_ : Dict , ): """simple docstring""" __UpperCAmelCase : str = gen_kwargs.copy() __UpperCAmelCase : Tuple = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length") is not None else self.args.generation_max_length ) __UpperCAmelCase : List[str] = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.args.generation_num_beams ) __UpperCAmelCase : Union[str, Any] = gen_kwargs __UpperCAmelCase : Optional[int] = self.eval_dataset if eval_dataset is None else eval_dataset __UpperCAmelCase : List[Any] = self.get_eval_dataloader(UpperCamelCase_) __UpperCAmelCase : List[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __UpperCAmelCase : Optional[int] = self.compute_metrics __UpperCAmelCase : str = None __UpperCAmelCase : List[str] = time.time() __UpperCAmelCase : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __UpperCAmelCase : Dict = eval_loop( UpperCamelCase_ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: __UpperCAmelCase : Optional[Any] = compute_metrics __UpperCAmelCase : List[str] = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __UpperCAmelCase : int = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) __UpperCAmelCase : List[Any] = self.compute_metrics(UpperCamelCase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __UpperCAmelCase : List[Any] = metrics.pop(UpperCamelCase_) metrics.update(output.metrics) else: __UpperCAmelCase : Tuple = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase_) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) __UpperCAmelCase : Dict = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_) return metrics def a_ ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any=None , UpperCamelCase_ : str = "test" , **UpperCamelCase_ : List[str]): """simple docstring""" __UpperCAmelCase : Dict = gen_kwargs.copy() __UpperCAmelCase : Dict = self.get_test_dataloader(UpperCamelCase_) # Temporarily disable metric computation, we will do it in the loop here. __UpperCAmelCase : Optional[int] = self.compute_metrics __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : str = time.time() __UpperCAmelCase : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __UpperCAmelCase : List[str] = eval_loop( UpperCamelCase_ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: __UpperCAmelCase : Optional[Any] = compute_metrics __UpperCAmelCase : Optional[int] = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output __UpperCAmelCase : Optional[Any] = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , "predict") __UpperCAmelCase : Optional[int] = self.compute_metrics(UpperCamelCase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __UpperCAmelCase : Union[str, Any] = metrics.pop(UpperCamelCase_) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_)
77
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def _A ( UpperCAmelCase ,UpperCAmelCase=False ): '''simple docstring''' A__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" A__ = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def _A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: A__ = '' else: A__ = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) A__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[ : config.hidden_size, : ] A__ = in_proj_bias[: config.hidden_size] A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = in_proj_bias[-config.hidden_size :] def _A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' A__ = dct.pop(UpperCAmelCase ) A__ = val def _A ( ): '''simple docstring''' A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' A__ = Image.open(requests.get(UpperCAmelCase ,stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def _A ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' A__ = DeiTConfig() # all deit models have fine-tuned heads A__ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size A__ = 1000 A__ = 'huggingface/label-files' A__ = 'imagenet-1k-id2label.json' A__ = json.load(open(hf_hub_download(UpperCAmelCase ,UpperCAmelCase ,repo_type='dataset' ) ,'r' ) ) A__ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} A__ = int(deit_name[-6:-4] ) A__ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): A__ = 192 A__ = 768 A__ = 12 A__ = 3 elif deit_name[9:].startswith('small' ): A__ = 384 A__ = 1536 A__ = 12 A__ = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): A__ = 1024 A__ = 4096 A__ = 24 A__ = 16 # load original model from timm A__ = timm.create_model(UpperCAmelCase ,pretrained=UpperCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ = timm_model.state_dict() A__ = create_rename_keys(UpperCAmelCase ,UpperCAmelCase ) for src, dest in rename_keys: rename_key(UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) read_in_q_k_v(UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) # load HuggingFace model A__ = DeiTForImageClassificationWithTeacher(UpperCAmelCase ).eval() model.load_state_dict(UpperCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor A__ = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 A__ = DeiTImageProcessor(size=UpperCAmelCase ,crop_size=config.image_size ) A__ = image_processor(images=prepare_img() ,return_tensors='pt' ) A__ = encoding['pixel_values'] A__ = model(UpperCAmelCase ) A__ = timm_model(UpperCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase ,outputs.logits ,atol=1e-3 ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(F"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase_ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
531
0
'''simple docstring''' from math import pi def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
172
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _A : '''simple docstring''' @staticmethod def __lowerCAmelCase ( *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Union[str, Any] )-> Dict: pass def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowerCAmelCase__ = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _A ( unittest.TestCase ): '''simple docstring''' _lowercase = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __lowerCAmelCase ( self : Optional[int] , lowerCamelCase : Any , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any] )-> Optional[int]: snake_case__ : Union[str, Any] = pipeline( """document-question-answering""" , model=lowerCamelCase , tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) snake_case__ : int = INVOICE_URL snake_case__ : List[Any] = list(zip(*apply_tesseract(load_image(lowerCamelCase ) , lowerCamelCase , """""" ) ) ) snake_case__ : Dict = """What is the placebo?""" snake_case__ : int = [ { """image""": load_image(lowerCamelCase ), """question""": question, }, { """image""": image, """question""": question, }, { """image""": image, """question""": question, """word_boxes""": word_boxes, }, ] return dqa_pipeline, examples def __lowerCAmelCase ( self : int , lowerCamelCase : str , lowerCamelCase : List[str] )-> Union[str, Any]: snake_case__ : List[Any] = dqa_pipeline(lowerCamelCase , top_k=2 ) self.assertEqual( lowerCamelCase , [ [ {"""score""": ANY(lowerCamelCase ), """answer""": ANY(lowerCamelCase ), """start""": ANY(lowerCamelCase ), """end""": ANY(lowerCamelCase )}, {"""score""": ANY(lowerCamelCase ), """answer""": ANY(lowerCamelCase ), """start""": ANY(lowerCamelCase ), """end""": ANY(lowerCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __lowerCAmelCase ( self : int )-> List[Any]: snake_case__ : List[Any] = pipeline("""document-question-answering""" , model="""hf-internal-testing/tiny-random-layoutlmv2""" ) snake_case__ : int = INVOICE_URL snake_case__ : List[Any] = """How many cats are there?""" snake_case__ : Optional[int] = [ {"""score""": 0.0_001, """answer""": """oy 2312/2019""", """start""": 38, """end""": 39}, {"""score""": 0.0_001, """answer""": """oy 2312/2019 DUE""", """start""": 38, """end""": 40}, ] snake_case__ : Dict = dqa_pipeline(image=lowerCamelCase , question=lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(lowerCamelCase , decimals=4 ) , lowerCamelCase ) snake_case__ : str = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCamelCase , decimals=4 ) , lowerCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably snake_case__ : Optional[Any] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" snake_case__ : Union[str, Any] = dqa_pipeline(image=lowerCamelCase , question=lowerCamelCase , top_k=2 ) self.assertEqual(lowerCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes snake_case__ : Tuple = """./tests/fixtures/tests_samples/COCO/000000039769.png""" snake_case__ : Optional[int] = [] snake_case__ : List[Any] = [] snake_case__ : Tuple = dqa_pipeline(image=lowerCamelCase , question=lowerCamelCase , words=lowerCamelCase , boxes=lowerCamelCase , top_k=2 ) self.assertEqual(lowerCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __lowerCAmelCase ( self : int )-> Any: snake_case__ : List[str] = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , ) snake_case__ : List[Any] = INVOICE_URL snake_case__ : Optional[Any] = """What is the invoice number?""" snake_case__ : Any = dqa_pipeline(image=lowerCamelCase , question=lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) snake_case__ : Union[str, Any] = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) snake_case__ : Dict = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 16, """end""": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __lowerCAmelCase ( self : List[Any] )-> Any: snake_case__ : Optional[Any] = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , max_seq_len=50 , ) snake_case__ : Dict = INVOICE_URL snake_case__ : Tuple = """What is the invoice number?""" snake_case__ : Optional[Any] = dqa_pipeline(image=lowerCamelCase , question=lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) snake_case__ : int = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) snake_case__ : List[Any] = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __lowerCAmelCase ( self : List[str] )-> Dict: snake_case__ : Optional[Any] = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=lowerCamelCase ) snake_case__ : Tuple = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=lowerCamelCase , revision="""3dc6de3""" , ) snake_case__ : Optional[int] = INVOICE_URL snake_case__ : Union[str, Any] = """What is the invoice number?""" snake_case__ : Dict = dqa_pipeline(image=lowerCamelCase , question=lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) snake_case__ : int = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) snake_case__ : int = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] ] * 2 , ) snake_case__ : Tuple = list(zip(*apply_tesseract(load_image(lowerCamelCase ) , lowerCamelCase , """""" ) ) ) # This model should also work if `image` is set to None snake_case__ : Dict = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __lowerCAmelCase ( self : int )-> str: snake_case__ : Dict = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=lowerCamelCase ) snake_case__ : List[Any] = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=lowerCamelCase , revision="""3dc6de3""" , max_seq_len=50 , ) snake_case__ : Any = INVOICE_URL snake_case__ : List[Any] = """What is the invoice number?""" snake_case__ : int = dqa_pipeline(image=lowerCamelCase , question=lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) snake_case__ : str = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) snake_case__ : Dict = list(zip(*apply_tesseract(load_image(lowerCamelCase ) , lowerCamelCase , """""" ) ) ) # This model should also work if `image` is set to None snake_case__ : Optional[Any] = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) @slow @require_torch def __lowerCAmelCase ( self : int )-> Tuple: snake_case__ : Optional[int] = pipeline( """document-question-answering""" , model="""naver-clova-ix/donut-base-finetuned-docvqa""" , tokenizer=AutoTokenizer.from_pretrained("""naver-clova-ix/donut-base-finetuned-docvqa""" ) , feature_extractor="""naver-clova-ix/donut-base-finetuned-docvqa""" , ) snake_case__ : str = INVOICE_URL snake_case__ : Tuple = """What is the invoice number?""" snake_case__ : Tuple = dqa_pipeline(image=lowerCamelCase , question=lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(lowerCamelCase , decimals=4 ) , [{"""answer""": """us-001"""}] ) @require_tf @unittest.skip("""Document question answering not implemented in TF""" ) def __lowerCAmelCase ( self : int )-> List[Any]: pass
172
1
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Any = None __lowerCamelCase : Optional[Any] = None @property def a_ ( self : Optional[Any] ) -> int: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def a_ ( self : Optional[int] ) -> str: """simple docstring""" A__ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__lowerCAmelCase , """feature_size""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """sampling_rate""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """padding_value""" ) ) def a_ ( self : str ) -> int: """simple docstring""" A__ = self.feat_extract_tester.prepare_inputs_for_common() A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__lowerCAmelCase ) == len(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase , processed_features[input_name] ) ) ) A__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__lowerCAmelCase ) A__ = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) A__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: A__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def a_ ( self : int ) -> Tuple: """simple docstring""" A__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__lowerCAmelCase ) A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) A__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: A__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def a_ ( self : Union[str, Any] ) -> str: """simple docstring""" A__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__lowerCAmelCase ) A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} , tensor_type="""tf""" ) A__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: A__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def a_ ( self : int , __lowerCAmelCase : List[Any]=False ) -> int: """simple docstring""" def _inputs_have_equal_length(__lowerCAmelCase : Union[str, Any] ): A__ = len(input[0] ) for input_slice in input[1:]: if len(__lowerCAmelCase ) != length: return False return True def _inputs_are_equal(__lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ): if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): return False for input_slice_a, input_slice_a in zip(__lowerCAmelCase , __lowerCAmelCase ): if not np.allclose(np.asarray(__lowerCAmelCase ) , np.asarray(__lowerCAmelCase ) , atol=1e-3 ): return False return True A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=__lowerCAmelCase ) A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) A__ = self.feat_extract_tester.seq_length_diff A__ = self.feat_extract_tester.max_seq_length + pad_diff A__ = self.feat_extract_tester.min_seq_length A__ = self.feat_extract_tester.batch_size A__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy A__ = feat_extract.pad(__lowerCAmelCase , padding=__lowerCAmelCase ) A__ = input_a[input_name] A__ = feat_extract.pad(__lowerCAmelCase , padding="""longest""" ) A__ = input_a[input_name] A__ = feat_extract.pad(__lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[-1] ) ) A__ = input_a[input_name] A__ = feat_extract.pad(__lowerCAmelCase , padding="""longest""" , return_tensors="""np""" ) A__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(__lowerCAmelCase ): feat_extract.pad(__lowerCAmelCase , padding="""max_length""" )[input_name] A__ = feat_extract.pad( __lowerCAmelCase , padding="""max_length""" , max_length=__lowerCAmelCase , return_tensors="""np""" ) A__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(__lowerCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(__lowerCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(__lowerCAmelCase ) ) self.assertTrue(_inputs_are_equal(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy A__ = feat_extract.pad(__lowerCAmelCase , pad_to_multiple_of=10 ) A__ = input_a[input_name] A__ = feat_extract.pad(__lowerCAmelCase , padding="""longest""" , pad_to_multiple_of=10 ) A__ = input_a[input_name] A__ = feat_extract.pad( __lowerCAmelCase , padding="""max_length""" , pad_to_multiple_of=10 , max_length=__lowerCAmelCase ) A__ = input_a[input_name] A__ = feat_extract.pad( __lowerCAmelCase , padding="""max_length""" , pad_to_multiple_of=10 , max_length=__lowerCAmelCase , return_tensors="""np""" , ) A__ = input_a[input_name] self.assertTrue(all(len(__lowerCAmelCase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(__lowerCAmelCase , __lowerCAmelCase ) ) A__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(__lowerCAmelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct A__ = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def a_ ( self : Tuple , __lowerCAmelCase : List[str]=False ) -> int: """simple docstring""" def _inputs_have_equal_length(__lowerCAmelCase : Tuple ): A__ = len(input[0] ) for input_slice in input[1:]: if len(__lowerCAmelCase ) != length: return False return True def _inputs_are_equal(__lowerCAmelCase : int , __lowerCAmelCase : int ): if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): return False for input_slice_a, input_slice_a in zip(__lowerCAmelCase , __lowerCAmelCase ): if not np.allclose(np.asarray(__lowerCAmelCase ) , np.asarray(__lowerCAmelCase ) , atol=1e-3 ): return False return True A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=__lowerCAmelCase ) A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) # truncate to smallest A__ = feat_extract.pad( __lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , truncation=__lowerCAmelCase ) A__ = input_a[input_name] A__ = feat_extract.pad(__lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) ) A__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__lowerCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(__lowerCAmelCase ) ) # truncate to smallest with np A__ = feat_extract.pad( __lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" , truncation=__lowerCAmelCase , ) A__ = input_a[input_name] A__ = feat_extract.pad( __lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" ) A__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__lowerCAmelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__lowerCAmelCase ) ) # truncate to middle A__ = feat_extract.pad( __lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=__lowerCAmelCase , return_tensors="""np""" , ) A__ = input_a[input_name] A__ = feat_extract.pad( __lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=__lowerCAmelCase ) A__ = input_a[input_name] A__ = feat_extract.pad( __lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , return_tensors="""np""" ) A__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(__lowerCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(__lowerCAmelCase ) ) self.assertTrue(_inputs_are_equal(__lowerCAmelCase , __lowerCAmelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__lowerCAmelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(__lowerCAmelCase ): feat_extract.pad(__lowerCAmelCase , truncation=__lowerCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__lowerCAmelCase ): feat_extract.pad(__lowerCAmelCase , padding="""longest""" , truncation=__lowerCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__lowerCAmelCase ): feat_extract.pad(__lowerCAmelCase , padding="""longest""" , truncation=__lowerCAmelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(__lowerCAmelCase ): feat_extract.pad(__lowerCAmelCase , padding="""max_length""" , truncation=__lowerCAmelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy A__ = 12 A__ = feat_extract.pad( __lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__lowerCAmelCase , truncation=__lowerCAmelCase , ) A__ = input_a[input_name] A__ = feat_extract.pad( __lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__lowerCAmelCase , ) A__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of A__ = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: A__ = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(__lowerCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(__lowerCAmelCase ) ) def a_ ( self : List[str] ) -> List[Any]: """simple docstring""" self._check_padding(numpify=__lowerCAmelCase ) def a_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" self._check_padding(numpify=__lowerCAmelCase ) def a_ ( self : Optional[Any] ) -> List[str]: """simple docstring""" self._check_truncation(numpify=__lowerCAmelCase ) def a_ ( self : Tuple ) -> List[Any]: """simple docstring""" self._check_truncation(numpify=__lowerCAmelCase ) @require_torch def a_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = self.feat_extract_tester.prepare_inputs_for_common() A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) A__ = feat_extract.pad(__lowerCAmelCase , padding="""longest""" , return_tensors="""np""" )[input_name] A__ = feat_extract.pad(__lowerCAmelCase , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def a_ ( self : str ) -> Dict: """simple docstring""" A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = self.feat_extract_tester.prepare_inputs_for_common() A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) A__ = feat_extract.pad(__lowerCAmelCase , padding="""longest""" , return_tensors="""np""" )[input_name] A__ = feat_extract.pad(__lowerCAmelCase , padding="""longest""" , return_tensors="""tf""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def a_ ( self : Dict ) -> Dict: """simple docstring""" A__ = self.feat_extract_dict A__ = True A__ = self.feature_extraction_class(**__lowerCAmelCase ) A__ = self.feat_extract_tester.prepare_inputs_for_common() A__ = [len(__lowerCAmelCase ) for x in speech_inputs] A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) A__ = feat_extract.pad(__lowerCAmelCase , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , __lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __lowerCAmelCase ) def a_ ( self : Any ) -> Optional[int]: """simple docstring""" A__ = self.feat_extract_dict A__ = True A__ = self.feature_extraction_class(**__lowerCAmelCase ) A__ = self.feat_extract_tester.prepare_inputs_for_common() A__ = [len(__lowerCAmelCase ) for x in speech_inputs] A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) A__ = min(__lowerCAmelCase ) A__ = feat_extract.pad( __lowerCAmelCase , padding="""max_length""" , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors="""np""" ) self.assertIn("""attention_mask""" , __lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
176
def __lowerCamelCase ( __a :int , __a :int ) -> Optional[Any]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__a , int(b / 2 ) ) * actual_power(__a , int(b / 2 ) ) else: return a * actual_power(__a , int(b / 2 ) ) * actual_power(__a , int(b / 2 ) ) def __lowerCamelCase ( __a :int , __a :int ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(__a , __a ) return actual_power(__a , __a ) if __name__ == "__main__": print(power(-2, -3))
176
1
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _UpperCAmelCase ( __A : Union[str, Any] , __A : Any , __A : Dict , __A : Tuple , __A : Tuple ): a_ : List[Any] = StableDiffusionPipeline.from_pretrained(__A , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors a_ : str = load_file(__A ) a_ : int = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: a_ : Union[str, Any] = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) a_ : Any = pipeline.text_encoder else: a_ : Union[str, Any] = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) a_ : Any = pipeline.unet # find the target layer a_ : Any = layer_infos.pop(0 ) while len(__A ) > -1: try: a_ : List[Any] = curr_layer.__getattr__(__A ) if len(__A ) > 0: a_ : List[Any] = layer_infos.pop(0 ) elif len(__A ) == 0: break except Exception: if len(__A ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: a_ : Union[str, Any] = layer_infos.pop(0 ) a_ : Optional[Any] = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(__A ) else: pair_keys.append(__A ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: a_ : int = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) a_ : Optional[Any] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__A , __A ).unsqueeze(2 ).unsqueeze(3 ) else: a_ : Tuple = state_dict[pair_keys[0]].to(torch.floataa ) a_ : Optional[Any] = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__A , __A ) # update visited list for item in pair_keys: visited.append(__A ) return pipeline if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = args.base_model_path __lowerCAmelCase = args.checkpoint_path __lowerCAmelCase = args.dump_path __lowerCAmelCase = args.lora_prefix_unet __lowerCAmelCase = args.lora_prefix_text_encoder __lowerCAmelCase = args.alpha __lowerCAmelCase = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __lowerCAmelCase = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
715
'''simple docstring''' import re import string import numpy as np import datasets __lowerCAmelCase = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Dict=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: a_ : Optional[Any] = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in predictions] ) a_ : int = np.array([re.sub(__SCREAMING_SNAKE_CASE , '''''' , __SCREAMING_SNAKE_CASE ) for x in references] ) else: a_ : List[str] = np.asarray(__SCREAMING_SNAKE_CASE ) a_ : Any = np.asarray(__SCREAMING_SNAKE_CASE ) if ignore_case: a_ : List[str] = np.char.lower(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.char.lower(__SCREAMING_SNAKE_CASE ) if ignore_punctuation: a_ : Any = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) a_ : Union[str, Any] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : int = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) if ignore_numbers: a_ : int = string.digits.maketrans('''''' , '''''' , string.digits ) a_ : Optional[int] = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Dict = np.char.translate(__SCREAMING_SNAKE_CASE , table=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = predictions == references return {"exact_match": np.mean(__SCREAMING_SNAKE_CASE ) * 100}
666
0
'''simple docstring''' from __future__ import annotations class _a : '''simple docstring''' def __init__( self ,__a = 0 ) -> str: snake_case : List[Any] = key def snake_case_ ( self ,__a ,__a ) -> list[str]: assert isinstance(__a ,__a ) and isinstance(__a ,__a ) snake_case : Tuple = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__a ) ^ key ) for ch in content] def snake_case_ ( self ,__a ,__a ) -> list[str]: assert isinstance(__a ,__a ) and isinstance(__a ,__a ) snake_case : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__a ) ^ key ) for ch in content] def snake_case_ ( self ,__a ,__a = 0 ) -> str: assert isinstance(__a ,__a ) and isinstance(__a ,__a ) snake_case : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned snake_case : List[str] = """""" for ch in content: ans += chr(ord(__a ) ^ key ) return ans def snake_case_ ( self ,__a ,__a = 0 ) -> str: assert isinstance(__a ,__a ) and isinstance(__a ,__a ) snake_case : Any = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned snake_case : List[str] = """""" for ch in content: ans += chr(ord(__a ) ^ key ) return ans def snake_case_ ( self ,__a ,__a = 0 ) -> bool: assert isinstance(__a ,__a ) and isinstance(__a ,__a ) try: with open(__a ) as fin, open("""encrypt.out""" ,"""w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__a ,__a ) ) except OSError: return False return True def snake_case_ ( self ,__a ,__a ) -> bool: assert isinstance(__a ,__a ) and isinstance(__a ,__a ) try: with open(__a ) as fin, open("""decrypt.out""" ,"""w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__a ,__a ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
116
'''simple docstring''' from ..utils import DummyObject, requires_backends class _a (metaclass=a__ ): '''simple docstring''' lowerCAmelCase_ : Any = ["""flax"""] def __init__( self ,*__a ,**__a ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> Tuple: requires_backends(cls ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> Dict: requires_backends(cls ,["""flax"""] ) class _a (metaclass=a__ ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = ["""flax"""] def __init__( self ,*__a ,**__a ) -> List[Any]: requires_backends(self ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> str: requires_backends(cls ,["""flax"""] ) class _a (metaclass=a__ ): '''simple docstring''' lowerCAmelCase_ : Any = ["""flax"""] def __init__( self ,*__a ,**__a ) -> Any: requires_backends(self ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> List[Any]: requires_backends(cls ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> Any: requires_backends(cls ,["""flax"""] ) class _a (metaclass=a__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = ["""flax"""] def __init__( self ,*__a ,**__a ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> Dict: requires_backends(cls ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> int: requires_backends(cls ,["""flax"""] ) class _a (metaclass=a__ ): '''simple docstring''' lowerCAmelCase_ : int = ["""flax"""] def __init__( self ,*__a ,**__a ) -> Optional[int]: requires_backends(self ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> Optional[Any]: requires_backends(cls ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> List[str]: requires_backends(cls ,["""flax"""] ) class _a (metaclass=a__ ): '''simple docstring''' lowerCAmelCase_ : Dict = ["""flax"""] def __init__( self ,*__a ,**__a ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> List[Any]: requires_backends(cls ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> int: requires_backends(cls ,["""flax"""] ) class _a (metaclass=a__ ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = ["""flax"""] def __init__( self ,*__a ,**__a ) -> List[str]: requires_backends(self ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> Optional[Any]: requires_backends(cls ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> str: requires_backends(cls ,["""flax"""] ) class _a (metaclass=a__ ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = ["""flax"""] def __init__( self ,*__a ,**__a ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> str: requires_backends(cls ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) class _a (metaclass=a__ ): '''simple docstring''' lowerCAmelCase_ : List[Any] = ["""flax"""] def __init__( self ,*__a ,**__a ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> Optional[Any]: requires_backends(cls ,["""flax"""] ) class _a (metaclass=a__ ): '''simple docstring''' lowerCAmelCase_ : Dict = ["""flax"""] def __init__( self ,*__a ,**__a ) -> Dict: requires_backends(self ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> Optional[Any]: requires_backends(cls ,["""flax"""] ) class _a (metaclass=a__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = ["""flax"""] def __init__( self ,*__a ,**__a ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> Tuple: requires_backends(cls ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _a (metaclass=a__ ): '''simple docstring''' lowerCAmelCase_ : Tuple = ["""flax"""] def __init__( self ,*__a ,**__a ) -> List[str]: requires_backends(self ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> Dict: requires_backends(cls ,["""flax"""] ) class _a (metaclass=a__ ): '''simple docstring''' lowerCAmelCase_ : Tuple = ["""flax"""] def __init__( self ,*__a ,**__a ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def snake_case_ ( cls ,*__a ,**__a ) -> int: requires_backends(cls ,["""flax"""] )
116
1
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase_ ( A ): def __init__( self , *__A , __A=None , __A=None , **__A ) -> List[Any]: super().__init__(*__A , **__A ) SCREAMING_SNAKE_CASE_ : Any =eval_examples SCREAMING_SNAKE_CASE_ : List[str] =post_process_function def _snake_case ( self , __A = None , __A=None , __A = None , __A = "eval" , **__A , ) -> Dict[str, float]: SCREAMING_SNAKE_CASE_ : str =gen_kwargs.copy() SCREAMING_SNAKE_CASE_ : Any =( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE_ : Optional[int] =( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE_ : List[str] =gen_kwargs SCREAMING_SNAKE_CASE_ : Optional[Any] =self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE_ : List[Any] =self.get_eval_dataloader(__A ) SCREAMING_SNAKE_CASE_ : str =self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE_ : Tuple =self.compute_metrics SCREAMING_SNAKE_CASE_ : str =None SCREAMING_SNAKE_CASE_ : Optional[int] =time.time() SCREAMING_SNAKE_CASE_ : Dict =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE_ : Any =eval_loop( __A , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__A , metric_key_prefix=__A , ) finally: SCREAMING_SNAKE_CASE_ : Optional[int] =compute_metrics SCREAMING_SNAKE_CASE_ : Dict =self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __A , __A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE_ : Tuple =self.post_process_function(__A , __A , __A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =self.compute_metrics(__A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): SCREAMING_SNAKE_CASE_ : Dict =metrics.pop(__A ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] =output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__A ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE_ : Optional[Any] =self.callback_handler.on_evaluate(self.args , self.state , self.control , __A ) return metrics def _snake_case ( self , __A , __A , __A=None , __A = "test" , **__A ) -> List[str]: SCREAMING_SNAKE_CASE_ : Union[str, Any] =gen_kwargs.copy() SCREAMING_SNAKE_CASE_ : List[str] =self.get_test_dataloader(__A ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE_ : List[Any] =self.compute_metrics SCREAMING_SNAKE_CASE_ : Any =None SCREAMING_SNAKE_CASE_ : Optional[int] =time.time() SCREAMING_SNAKE_CASE_ : Optional[int] =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE_ : List[str] =eval_loop( __A , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__A , metric_key_prefix=__A , ) finally: SCREAMING_SNAKE_CASE_ : Optional[int] =compute_metrics SCREAMING_SNAKE_CASE_ : Dict =self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __A , __A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE_ : Dict =self.post_process_function(__A , __A , __A , '''predict''' ) SCREAMING_SNAKE_CASE_ : Tuple =self.compute_metrics(__A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): SCREAMING_SNAKE_CASE_ : List[str] =metrics.pop(__A ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__A )
431
import copy import re class lowercase_ : __lowerCamelCase = "hp" __lowerCamelCase = {} __lowerCamelCase = None @classmethod def _snake_case ( cls , __A , __A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : Dict =prefix SCREAMING_SNAKE_CASE_ : Optional[Any] =defaults cls.build_naming_info() @staticmethod def _snake_case ( __A , __A ) -> str: if len(__A ) == 0: return "" SCREAMING_SNAKE_CASE_ : Any =None if any(char.isdigit() for char in word ): raise Exception(F'Parameters should not contain numbers: \'{word}\' contains a number' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(__A ) + 1 ): SCREAMING_SNAKE_CASE_ : List[str] =word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: SCREAMING_SNAKE_CASE_ : int =prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__A ): SCREAMING_SNAKE_CASE_ : Optional[Any] ='''''' while integer != 0: SCREAMING_SNAKE_CASE_ : Union[str, Any] =chr(ord('''A''' ) + integer % 10 ) + s integer //= 10 return s SCREAMING_SNAKE_CASE_ : Dict =0 while True: SCREAMING_SNAKE_CASE_ : Optional[int] =word + '''#''' + int_to_alphabetic(__A ) if sword in info["reverse_short_word"]: continue else: SCREAMING_SNAKE_CASE_ : Tuple =sword break SCREAMING_SNAKE_CASE_ : List[str] =short_word SCREAMING_SNAKE_CASE_ : str =word return short_word @staticmethod def _snake_case ( __A , __A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : str =param_name.split('''_''' ) SCREAMING_SNAKE_CASE_ : str =[TrialShortNamer.shortname_for_word(__A , __A ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name SCREAMING_SNAKE_CASE_ : Tuple =['''''', '''_'''] for separator in separators: SCREAMING_SNAKE_CASE_ : Dict =separator.join(__A ) if shortname not in info["reverse_short_param"]: SCREAMING_SNAKE_CASE_ : List[str] =shortname SCREAMING_SNAKE_CASE_ : Any =param_name return shortname return param_name @staticmethod def _snake_case ( __A , __A ) -> int: SCREAMING_SNAKE_CASE_ : Union[str, Any] =TrialShortNamer.shortname_for_key(__A , __A ) SCREAMING_SNAKE_CASE_ : Any =short_name SCREAMING_SNAKE_CASE_ : Dict =param_name @classmethod def _snake_case ( cls ) -> Optional[int]: if cls.NAMING_INFO is not None: return SCREAMING_SNAKE_CASE_ : Optional[Any] ={ '''short_word''': {}, '''reverse_short_word''': {}, '''short_param''': {}, '''reverse_short_param''': {}, } SCREAMING_SNAKE_CASE_ : Tuple =list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(__A , __A ) SCREAMING_SNAKE_CASE_ : str =info @classmethod def _snake_case ( cls , __A ) -> List[str]: cls.build_naming_info() assert cls.PREFIX is not None SCREAMING_SNAKE_CASE_ : int =[copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F'You should provide a default value for the param name {k} with value {v}' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue SCREAMING_SNAKE_CASE_ : Optional[int] =cls.NAMING_INFO['''short_param'''][k] if isinstance(__A , __A ): SCREAMING_SNAKE_CASE_ : List[Any] =1 if v else 0 SCREAMING_SNAKE_CASE_ : List[Any] ='''''' if isinstance(__A , (int, float) ) else '''-''' SCREAMING_SNAKE_CASE_ : Optional[Any] =F'{key}{sep}{v}' name.append(__A ) return "_".join(__A ) @classmethod def _snake_case ( cls , __A ) -> Dict: SCREAMING_SNAKE_CASE_ : Optional[int] =repr[len(cls.PREFIX ) + 1 :] if repr == "": SCREAMING_SNAKE_CASE_ : Union[str, Any] =[] else: SCREAMING_SNAKE_CASE_ : Tuple =repr.split('''_''' ) SCREAMING_SNAKE_CASE_ : List[Any] ={} for value in values: if "-" in value: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] =value.split('''-''' ) else: SCREAMING_SNAKE_CASE_ : Any =re.sub('''[0-9.]''' , '''''' , __A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =float(re.sub('''[^0-9.]''' , '''''' , __A ) ) SCREAMING_SNAKE_CASE_ : List[Any] =cls.NAMING_INFO['''reverse_short_param'''][p_k] SCREAMING_SNAKE_CASE_ : Optional[Any] =p_v for k in cls.DEFAULTS: if k not in parameters: SCREAMING_SNAKE_CASE_ : Tuple =cls.DEFAULTS[k] return parameters
431
1
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __a = logging.get_logger(__name__) class __a( _a ): """simple docstring""" def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> None: warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' ,_SCREAMING_SNAKE_CASE ,) super().__init__(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE )
30
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase ( _snake_case : float ,_snake_case : int ): '''simple docstring''' lowercase__ = u for i in range(1 ,_snake_case ): lowercase__ = temp * (u - i) return temp def lowerCamelCase ( ): '''simple docstring''' lowercase__ = int(input("enter the numbers of values: " ) ) lowercase__ = [] for _ in range(_snake_case ): y.append([] ) for i in range(_snake_case ): for j in range(_snake_case ): y[i].append(_snake_case ) lowercase__ = 0 print("enter the values of parameters in a list: " ) lowercase__ = list(map(_snake_case ,input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(_snake_case ): lowercase__ = float(input() ) lowercase__ = int(input("enter the value to interpolate: " ) ) lowercase__ = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 ,_snake_case ): for j in range(n - i ): lowercase__ = y[j + 1][i - 1] - y[j][i - 1] lowercase__ = y[0][0] for i in range(1 ,_snake_case ): summ += (ucal(_snake_case ,_snake_case ) * y[0][i]) / math.factorial(_snake_case ) print(f'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
267
0
import math def __lowerCamelCase ( __lowerCAmelCase : int = 100 ) -> int: __UpperCamelCase : Union[str, Any] = sum(i * i for i in range(1 , n + 1 ) ) __UpperCamelCase : str = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
515
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class _A ( UpperCAmelCase_ ): def __init__( self : Tuple , *lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : List[Any] ): """simple docstring""" super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) requires_backends(self , """decord""" ) self.check_model_type(lowerCamelCase__ ) def a ( self : Tuple , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Tuple=None ): """simple docstring""" __UpperCamelCase : Tuple = {} if frame_sampling_rate is not None: __UpperCamelCase : Dict = frame_sampling_rate if num_frames is not None: __UpperCamelCase : Optional[int] = num_frames __UpperCamelCase : Dict = {} if top_k is not None: __UpperCamelCase : Dict = top_k return preprocess_params, {}, postprocess_params def __call__( self : Any , lowerCamelCase__ : Union[str, List[str]] , **lowerCamelCase__ : Any ): """simple docstring""" return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def a ( self : int , lowerCamelCase__ : str , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Tuple=1 ): """simple docstring""" if num_frames is None: __UpperCamelCase : Union[str, Any] = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): __UpperCamelCase : Tuple = BytesIO(requests.get(lowerCamelCase__ ).content ) __UpperCamelCase : Dict = VideoReader(lowerCamelCase__ ) videoreader.seek(0 ) __UpperCamelCase : Optional[int] = 0 __UpperCamelCase : Any = num_frames * frame_sampling_rate - 1 __UpperCamelCase : Dict = np.linspace(lowerCamelCase__ , lowerCamelCase__ , num=lowerCamelCase__ , dtype=np.intaa ) __UpperCamelCase : Any = videoreader.get_batch(lowerCamelCase__ ).asnumpy() __UpperCamelCase : Dict = list(lowerCamelCase__ ) __UpperCamelCase : List[str] = self.image_processor(lowerCamelCase__ , return_tensors=self.framework ) return model_inputs def a ( self : Dict , lowerCamelCase__ : Optional[Any] ): """simple docstring""" __UpperCamelCase : str = self.model(**lowerCamelCase__ ) return model_outputs def a ( self : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int=5 ): """simple docstring""" if top_k > self.model.config.num_labels: __UpperCamelCase : Optional[Any] = self.model.config.num_labels if self.framework == "pt": __UpperCamelCase : str = model_outputs.logits.softmax(-1 )[0] __UpperCamelCase , __UpperCamelCase : Any = probs.topk(lowerCamelCase__ ) else: raise ValueError(f'Unsupported framework: {self.framework}' ) __UpperCamelCase : List[Any] = scores.tolist() __UpperCamelCase : Optional[Any] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase__ , lowerCamelCase__ )]
515
1
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE ) ->Tuple: """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(_SCREAMING_SNAKE_CASE ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("""Hey wollef sroirraw"""))
93
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : List[Any] = MobileBertTokenizer __magic_name__ : str = MobileBertTokenizerFast __magic_name__ : Optional[int] = True __magic_name__ : List[Any] = True __magic_name__ : Dict = filter_non_english __magic_name__ : str = "google/mobilebert-uncased" def a__( self : Dict )-> Any: """simple docstring""" super().setUp() UpperCAmelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) UpperCAmelCase = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def a__( self : Any , lowerCAmelCase : Tuple )-> List[Any]: """simple docstring""" UpperCAmelCase = '''UNwant\u00E9d,running''' UpperCAmelCase = '''unwanted, running''' return input_text, output_text def a__( self : List[str] )-> List[str]: """simple docstring""" UpperCAmelCase = self.tokenizer_class(self.vocab_file ) UpperCAmelCase = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(lowerCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def a__( self : str )-> str: """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = '''UNwant\u00E9d,running''' UpperCAmelCase = tokenizer.tokenize(lowerCAmelCase ) UpperCAmelCase = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(lowerCAmelCase ) UpperCAmelCase = rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # With lower casing UpperCAmelCase = self.get_tokenizer(do_lower_case=lowerCAmelCase ) UpperCAmelCase = self.get_rust_tokenizer(do_lower_case=lowerCAmelCase ) UpperCAmelCase = '''UNwant\u00E9d,running''' UpperCAmelCase = tokenizer.tokenize(lowerCAmelCase ) UpperCAmelCase = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(lowerCAmelCase ) UpperCAmelCase = rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def a__( self : str )-> int: """simple docstring""" UpperCAmelCase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def a__( self : Dict )-> Optional[Any]: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a__( self : str )-> List[str]: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def a__( self : Dict )-> Dict: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a__( self : Tuple )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a__( self : Tuple )-> int: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a__( self : str )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a__( self : int )-> Any: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def a__( self : Any )-> int: """simple docstring""" UpperCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] UpperCAmelCase = {} for i, token in enumerate(lowerCAmelCase ): UpperCAmelCase = i UpperCAmelCase = WordpieceTokenizer(vocab=lowerCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def a__( self : Optional[int] )-> int: """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def a__( self : int )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def a__( self : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCAmelCase ) UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCAmelCase ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def a__( self : Any )-> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCAmelCase = tokenizer_r.encode_plus( lowerCAmelCase , return_attention_mask=lowerCAmelCase , return_token_type_ids=lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , add_special_tokens=lowerCAmelCase , ) UpperCAmelCase = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase , '''do_lower_case''' ) else False UpperCAmelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = ['''的''', '''人''', '''有'''] UpperCAmelCase = ''''''.join(lowerCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase = True UpperCAmelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = tokenizer_p.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase = tokenizer_r.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase ) UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = False UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = tokenizer_r.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase = tokenizer_p.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase ) UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowerCAmelCase ) ] self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase )
210
0
'''simple docstring''' def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> List[str]: """simple docstring""" assert x is not None assert y is not None SCREAMING_SNAKE_CASE_ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) # declaring the array for storing the dp values SCREAMING_SNAKE_CASE_ : int = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): SCREAMING_SNAKE_CASE_ : Any = 1 if x[i - 1] == y[j - 1] else 0 SCREAMING_SNAKE_CASE_ : Optional[Any] = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) SCREAMING_SNAKE_CASE_ : Optional[int] = "" SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : int = m, n while i > 0 and j > 0: SCREAMING_SNAKE_CASE_ : Any = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: SCREAMING_SNAKE_CASE_ : List[str] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": snake_case_ = 'AGGTAB' snake_case_ = 'GXTXAYB' snake_case_ = 4 snake_case_ = 'GTAB' snake_case_ , snake_case_ = longest_common_subsequence(a, b) print('len =', ln, ', sub-sequence =', subseq) import doctest doctest.testmod()
68
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = logging.get_logger() # the current default level is logging.WARNING SCREAMING_SNAKE_CASE_ : Optional[int] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(lowercase__ ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = logging.get_verbosity() SCREAMING_SNAKE_CASE_ : List[Any] = logging.get_logger("transformers.models.bart.tokenization_bart" ) SCREAMING_SNAKE_CASE_ : List[Any] = "Testing 1, 2, 3" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(lowercase__ ) as cl: logger.warning(lowercase__ ) self.assertEqual(cl.out , msg + "\n" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(lowercase__ ) as cl: logger.warning(lowercase__ ) self.assertEqual(cl.out , "" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(lowercase__ ) as cl: logger.warning(lowercase__ ) self.assertEqual(cl.out , msg + "\n" ) # restore to the original level logging.set_verbosity(lowercase__ ) @mockenv(TRANSFORMERS_VERBOSITY="error" ) def __lowerCamelCase ( self ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() # this action activates the env var SCREAMING_SNAKE_CASE_ : Tuple = logging.get_logger("transformers.models.bart.tokenization_bart" ) SCREAMING_SNAKE_CASE_ : int = os.getenv("TRANSFORMERS_VERBOSITY" , lowercase__ ) SCREAMING_SNAKE_CASE_ : Dict = logging.log_levels[env_level_str] SCREAMING_SNAKE_CASE_ : str = logging.get_verbosity() self.assertEqual( lowercase__ , lowercase__ , F"TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}" , ) # restore to the original level SCREAMING_SNAKE_CASE_ : Optional[int] = "" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="super-error" ) def __lowerCamelCase ( self ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() SCREAMING_SNAKE_CASE_ : List[Any] = logging.logging.getLogger() with CaptureLogger(lowercase__ ) as cl: # this action activates the env var logging.get_logger("transformers.models.bart.tokenization_bart" ) self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error" , cl.out ) # no need to restore as nothing was changed def __lowerCamelCase ( self ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() SCREAMING_SNAKE_CASE_ : str = logging.get_logger("transformers.models.bart.tokenization_bart" ) SCREAMING_SNAKE_CASE_ : List[Any] = "Testing 1, 2, 3" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1" ): # nothing should be logged as env var disables this method with CaptureLogger(lowercase__ ) as cl: logger.warning_advice(lowercase__ ) self.assertEqual(cl.out , "" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(lowercase__ ) as cl: logger.warning_advice(lowercase__ ) self.assertEqual(cl.out , msg + "\n" ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
68
1
import json import sys def lowercase__ ( __snake_case : Optional[Any] , __snake_case : str ): '''simple docstring''' with open(a__ , encoding='utf-8' ) as f: UpperCAmelCase_ : int = json.load(a__ ) UpperCAmelCase_ : List[str] = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(a__ ): UpperCAmelCase_ : Tuple = results[benchmark_name] UpperCAmelCase_ : str = benchmark_name.split('/' )[-1] output_md.append(F"### Benchmark: {benchmark_file_name}" ) UpperCAmelCase_ : Tuple = '| metric |' UpperCAmelCase_ : Optional[int] = '|--------|' UpperCAmelCase_ : Optional[int] = '| new / old (diff) |' for metric_name in sorted(a__ ): UpperCAmelCase_ : Dict = benchmark_res[metric_name] UpperCAmelCase_ : List[str] = metric_vals['new'] UpperCAmelCase_ : Any = metric_vals.get('old' , a__ ) UpperCAmelCase_ : Optional[int] = metric_vals.get('diff' , a__ ) UpperCAmelCase_ : Union[str, Any] = F" {new_val:f}" if isinstance(a__ , (int, float) ) else 'None' if old_val is not None: val_str += F" / {old_val:f}" if isinstance(a__ , (int, float) ) else "None" if dif_val is not None: val_str += F" ({dif_val:f})" if isinstance(a__ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(a__ , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(a__ ) ) if __name__ == "__main__": __UpperCAmelCase = sys.argv[1] __UpperCAmelCase = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
406
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE_ = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE_ = { "facebook/nllb-large-en-ro": 1_024, "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off SCREAMING_SNAKE_CASE_ = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Any = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE__ : Optional[int] = NllbTokenizer SCREAMING_SNAKE_CASE__ : List[int] = [] SCREAMING_SNAKE_CASE__ : List[int] = [] def __init__( self : Dict , snake_case : Union[str, Any]=None , snake_case : Union[str, Any]=None , snake_case : Dict="<s>" , snake_case : Optional[int]="</s>" , snake_case : str="</s>" , snake_case : Dict="<s>" , snake_case : Tuple="<unk>" , snake_case : List[str]="<pad>" , snake_case : Union[str, Any]="<mask>" , snake_case : Dict=None , snake_case : List[Any]=None , snake_case : Optional[Any]=None , snake_case : Union[str, Any]=False , **snake_case : List[Any] , ): """simple docstring""" _snake_case : List[Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token _snake_case : Optional[int] = legacy_behaviour super().__init__( vocab_file=snake_case , tokenizer_file=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , src_lang=snake_case , tgt_lang=snake_case , additional_special_tokens=snake_case , legacy_behaviour=snake_case , **snake_case , ) _snake_case : Dict = vocab_file _snake_case : List[str] = False if not self.vocab_file else True _snake_case : Tuple = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _snake_case : Optional[int] = { lang_code: self.convert_tokens_to_ids(snake_case ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _snake_case : Tuple = src_lang if src_lang is not None else 'eng_Latn' _snake_case : Tuple = self.convert_tokens_to_ids(self._src_lang ) _snake_case : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" return self._src_lang @src_lang.setter def __UpperCAmelCase ( self : List[str] , snake_case : str ): """simple docstring""" _snake_case : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self : Optional[int] , snake_case : List[int] , snake_case : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self : List[str] , snake_case : List[int] , snake_case : Optional[List[int]] = None ): """simple docstring""" _snake_case : str = [self.sep_token_id] _snake_case : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : List[Any] , snake_case : Union[str, Any] , snake_case : str , snake_case : Optional[str] , snake_case : Optional[str] , **snake_case : Any ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _snake_case : Optional[Any] = src_lang _snake_case : str = self(snake_case , add_special_tokens=snake_case , return_tensors=snake_case , **snake_case ) _snake_case : Dict = self.convert_tokens_to_ids(snake_case ) _snake_case : Tuple = tgt_lang_id return inputs def __UpperCAmelCase ( self : Optional[Any] , snake_case : List[str] , snake_case : str = "eng_Latn" , snake_case : Optional[List[str]] = None , snake_case : str = "fra_Latn" , **snake_case : Any , ): """simple docstring""" _snake_case : Dict = src_lang _snake_case : List[Any] = tgt_lang return super().prepare_seqaseq_batch(snake_case , snake_case , **snake_case ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self : int , snake_case : Any ): """simple docstring""" _snake_case : int = self.convert_tokens_to_ids(snake_case ) if self.legacy_behaviour: _snake_case : Any = [] _snake_case : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: _snake_case : int = [self.cur_lang_code] _snake_case : List[str] = [self.eos_token_id] _snake_case : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _snake_case : str = self.convert_ids_to_tokens(self.suffix_tokens ) _snake_case : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self : int , snake_case : str ): """simple docstring""" _snake_case : Any = self.convert_tokens_to_ids(snake_case ) if self.legacy_behaviour: _snake_case : Dict = [] _snake_case : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: _snake_case : Any = [self.cur_lang_code] _snake_case : str = [self.eos_token_id] _snake_case : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) _snake_case : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _snake_case : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self : Any , snake_case : str , snake_case : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return _snake_case : Any = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ): copyfile(self.vocab_file , snake_case ) return (out_vocab_file,)
517
0
def lowerCamelCase__ ( _lowerCamelCase = 1000 ) ->int: _UpperCAmelCase =2**power _UpperCAmelCase =str(_lowerCamelCase ) _UpperCAmelCase =list(_lowerCamelCase ) _UpperCAmelCase =0 for i in list_num: sum_of_num += int(_lowerCamelCase ) return sum_of_num if __name__ == "__main__": snake_case__ : List[str] = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) snake_case__ : Union[str, Any] = solution(power) print('Sum of the digits is: ', result)
592
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =1 _UpperCAmelCase =3 _UpperCAmelCase =(32, 32) _UpperCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_snake_case ) return image @property def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) _UpperCAmelCase =UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=_snake_case , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) _UpperCAmelCase =AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) _UpperCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) return CLIPTextModel(_snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase ="cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase =self.dummy_cond_unet_upscale _UpperCAmelCase =DDPMScheduler() _UpperCAmelCase =DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase =self.dummy_vae _UpperCAmelCase =self.dummy_text_encoder _UpperCAmelCase =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase =Image.fromarray(np.uinta(_snake_case ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _UpperCAmelCase =StableDiffusionUpscalePipeline( unet=_snake_case , low_res_scheduler=_snake_case , scheduler=_snake_case , vae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , max_noise_level=350 , ) _UpperCAmelCase =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase ="A painting of a squirrel eating a burger" _UpperCAmelCase =torch.Generator(device=_snake_case ).manual_seed(0 ) _UpperCAmelCase =sd_pipe( [prompt] , image=_snake_case , generator=_snake_case , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase =output.images _UpperCAmelCase =torch.Generator(device=_snake_case ).manual_seed(0 ) _UpperCAmelCase =sd_pipe( [prompt] , image=_snake_case , generator=_snake_case , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=_snake_case , )[0] _UpperCAmelCase =image[0, -3:, -3:, -1] _UpperCAmelCase =image_from_tuple[0, -3:, -3:, -1] _UpperCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _UpperCAmelCase =np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase ="cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase =self.dummy_cond_unet_upscale _UpperCAmelCase =DDPMScheduler() _UpperCAmelCase =DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase =self.dummy_vae _UpperCAmelCase =self.dummy_text_encoder _UpperCAmelCase =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase =Image.fromarray(np.uinta(_snake_case ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _UpperCAmelCase =StableDiffusionUpscalePipeline( unet=_snake_case , low_res_scheduler=_snake_case , scheduler=_snake_case , vae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , max_noise_level=350 , ) _UpperCAmelCase =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase ="A painting of a squirrel eating a burger" _UpperCAmelCase =sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase =output.images assert image.shape[0] == 2 _UpperCAmelCase =torch.Generator(device=_snake_case ).manual_seed(0 ) _UpperCAmelCase =sd_pipe( [prompt] , image=_snake_case , generator=_snake_case , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase =output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.dummy_cond_unet_upscale _UpperCAmelCase =DDPMScheduler() _UpperCAmelCase =DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase =self.dummy_vae _UpperCAmelCase =self.dummy_text_encoder _UpperCAmelCase =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase =Image.fromarray(np.uinta(_snake_case ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _UpperCAmelCase =unet.half() _UpperCAmelCase =text_encoder.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase =StableDiffusionUpscalePipeline( unet=_snake_case , low_res_scheduler=_snake_case , scheduler=_snake_case , vae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , max_noise_level=350 , ) _UpperCAmelCase =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase ="A painting of a squirrel eating a burger" _UpperCAmelCase =torch.manual_seed(0 ) _UpperCAmelCase =sd_pipe( [prompt] , image=_snake_case , generator=_snake_case , num_inference_steps=2 , output_type="np" , ).images _UpperCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) _UpperCAmelCase ="stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() _UpperCAmelCase ="a cat sitting on a park bench" _UpperCAmelCase =torch.manual_seed(0 ) _UpperCAmelCase =pipe( prompt=_snake_case , image=_snake_case , generator=_snake_case , output_type="np" , ) _UpperCAmelCase =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) _UpperCAmelCase ="stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( _snake_case , torch_dtype=torch.floataa , ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() _UpperCAmelCase ="a cat sitting on a park bench" _UpperCAmelCase =torch.manual_seed(0 ) _UpperCAmelCase =pipe( prompt=_snake_case , image=_snake_case , generator=_snake_case , output_type="np" , ) _UpperCAmelCase =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def SCREAMING_SNAKE_CASE ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase ="stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( _snake_case , torch_dtype=torch.floataa , ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCAmelCase ="a cat sitting on a park bench" _UpperCAmelCase =torch.manual_seed(0 ) _UpperCAmelCase =pipe( prompt=_snake_case , image=_snake_case , generator=_snake_case , num_inference_steps=5 , output_type="np" , ) _UpperCAmelCase =torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
592
1
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset __lowerCamelCase = """bert-base-cased""" __lowerCamelCase = """google/pegasus-xsum""" __lowerCamelCase = [""" Sam ate lunch today.""", """Sams lunch ingredients."""] __lowerCamelCase = ["""A very interesting story about what I ate for lunch.""", """Avocado, celery, turkey, coffee"""] __lowerCamelCase = """patrickvonplaten/t5-tiny-random""" __lowerCamelCase = """sshleifer/bart-tiny-random""" __lowerCamelCase = """sshleifer/tiny-mbart""" __lowerCamelCase = """sshleifer/tiny-marian-en-de""" def UpperCAmelCase__ ( __snake_case , __snake_case ) -> Optional[int]: _A = '''\n'''.join(__snake_case ) Path(__snake_case ).open('''w''' ).writelines(__snake_case ) def UpperCAmelCase__ ( __snake_case ) -> str: for split in ["train", "val", "test"]: _dump_articles(os.path.join(__snake_case , F'''{split}.source''' ) , __snake_case ) _dump_articles(os.path.join(__snake_case , F'''{split}.target''' ) , __snake_case ) return tmp_dir class _snake_case ( lowerCamelCase ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def lowercase_ ( self , a ) -> Optional[int]: """simple docstring""" _A = AutoTokenizer.from_pretrained(a ) _A = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _A = max(len(tokenizer.encode(a ) ) for a in ARTICLES ) _A = max(len(tokenizer.encode(a ) ) for a in SUMMARIES ) _A = 4 _A = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _A , _A = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. _A = SeqaSeqDataset( a , data_dir=a , type_path='''train''' , max_source_length=a , max_target_length=a , src_lang=a , tgt_lang=a , ) _A = DataLoader(a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(a , a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _A = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def lowercase_ ( self , a ) -> List[str]: """simple docstring""" _A = AutoTokenizer.from_pretrained(a ) _A = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _A = max(len(tokenizer.encode(a ) ) for a in ARTICLES ) _A = max(len(tokenizer.encode(a ) ) for a in SUMMARIES ) _A = 4 _A = LegacySeqaSeqDataset( a , data_dir=a , type_path='''train''' , max_source_length=2_0 , max_target_length=a , ) _A = DataLoader(a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def lowercase_ ( self ) -> List[Any]: """simple docstring""" _A = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) _A = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _A = tmp_dir.joinpath('''train.source''' ).open().readlines() _A = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(a , a , 1_2_8 , a ) _A = {x.name for x in tmp_dir.iterdir()} _A = {x.name for x in save_dir.iterdir()} _A = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(a ) < len(a ) assert len(a ) == 1 assert len(packed_examples[0] ) == sum(len(a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def lowercase_ ( self ) -> List[Any]: """simple docstring""" if not FAIRSEQ_AVAILABLE: return _A , _A , _A = self._get_dataset(max_len=6_4 ) _A = 6_4 _A = ds.make_dynamic_sampler(a , required_batch_size_multiple=a ) _A = [len(a ) for x in batch_sampler] assert len(set(a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(a ) == len(a ) # no dropped or added examples _A = DataLoader(a , batch_sampler=a , collate_fn=ds.collate_fn , num_workers=2 ) _A = [] _A = [] for batch in data_loader: _A = batch['''input_ids'''].shape _A = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _A = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(a ) if num_src_tokens > (max_tokens * 1.1): failures.append(a ) assert num_src_per_batch[0] == max(a ) if failures: raise AssertionError(f'''too many tokens in {len(a )} batches''' ) def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" _A , _A , _A = self._get_dataset(max_len=5_1_2 ) _A = 2 _A = ds.make_sortish_sampler(a , shuffle=a ) _A = DataLoader(a , batch_size=a , collate_fn=ds.collate_fn , num_workers=2 ) _A = DataLoader(a , batch_size=a , collate_fn=ds.collate_fn , num_workers=2 , sampler=a ) _A = tokenizer.pad_token_id def count_pad_tokens(a , a="input_ids" ): return [batch[k].eq(a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(a , k='''labels''' ) ) < sum(count_pad_tokens(a , k='''labels''' ) ) assert sum(count_pad_tokens(a ) ) < sum(count_pad_tokens(a ) ) assert len(a ) == len(a ) def lowercase_ ( self , a=1_0_0_0 , a=1_2_8 ) -> List[Any]: """simple docstring""" if os.getenv('''USE_REAL_DATA''' , a ): _A = '''examples/seq2seq/wmt_en_ro''' _A = max_len * 2 * 6_4 if not Path(a ).joinpath('''train.len''' ).exists(): save_len_file(a , a ) else: _A = '''examples/seq2seq/test_data/wmt_en_ro''' _A = max_len * 4 save_len_file(a , a ) _A = AutoTokenizer.from_pretrained(a ) _A = SeqaSeqDataset( a , data_dir=a , type_path='''train''' , max_source_length=a , max_target_length=a , n_obs=a , ) return ds, max_tokens, tokenizer def lowercase_ ( self ) -> str: """simple docstring""" _A , _A , _A = self._get_dataset() _A = set(DistributedSortishSampler(a , 2_5_6 , num_replicas=2 , rank=0 , add_extra_examples=a ) ) _A = set(DistributedSortishSampler(a , 2_5_6 , num_replicas=2 , rank=1 , add_extra_examples=a ) ) assert idsa.intersection(a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def lowercase_ ( self , a ) -> Union[str, Any]: """simple docstring""" _A = AutoTokenizer.from_pretrained(a , use_fast=a ) if tok_name == MBART_TINY: _A = SeqaSeqDataset( a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) _A = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _A = SeqaSeqDataset( a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) _A = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(a ) == 1 if tok_name == BART_TINY else len(a ) == 0
317
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __lowerCamelCase = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _snake_case ( lowerCamelCase ): """simple docstring""" lowerCamelCase_ = field(default=lowerCamelCase ,metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCamelCase_ = field( default=lowerCamelCase ,metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCamelCase_ = field( default=lowerCamelCase ,metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } ,) lowerCamelCase_ = field( default=lowerCamelCase ,metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } ,) lowerCamelCase_ = field( default=lowerCamelCase ,metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } ,) def lowercase_ ( self ) -> str: """simple docstring""" _A = super().to_dict() for k, v in d.items(): if isinstance(a , a ): _A = v.to_dict() return d
317
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ = 100_0000 ): '''simple docstring''' A : Tuple = limit + 1 A : Any = [0] * limit for first_term in range(1 , snake_case__ ): for n in range(snake_case__ , snake_case__ , snake_case__ ): A : Any = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a A : List[Any] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f'''{solution() = }''')
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase : Tuple = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
343
0
'''simple docstring''' def _A ( A__ , A__ ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def _A ( ): """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
41
'''simple docstring''' import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available __lowerCAmelCase : int = logging.getLogger(__name__) @dataclass class A : a_ = 42 a_ = 42 a_ = 42 @dataclass class A : a_ = 42 a_ = 42 a_ = None a_ = None class A ( UpperCAmelCase ): a_ = '''train''' a_ = '''dev''' a_ = '''test''' class A : @staticmethod def snake_case__ ( __a : List[Any] , __a : Union[Split, str] ) -> List[InputExample]: raise NotImplementedError @staticmethod def snake_case__ ( __a : str ) -> List[str]: raise NotImplementedError @staticmethod def snake_case__ ( __a : List[InputExample] , __a : List[str] , __a : int , __a : PreTrainedTokenizer , __a : Dict=False , __a : int="[CLS]" , __a : Dict=1 , __a : Tuple="[SEP]" , __a : Any=False , __a : Union[str, Any]=False , __a : Any=0 , __a : Optional[int]=0 , __a : Tuple=-1_0_0 , __a : Optional[Any]=0 , __a : int=True , ) -> List[InputFeatures]: __UpperCAmelCase = {label: i for i, label in enumerate(__a )} __UpperCAmelCase = [] for ex_index, example in enumerate(__a ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d of %d''' , __a , len(__a ) ) __UpperCAmelCase = [] __UpperCAmelCase = [] for word, label in zip(example.words , example.labels ): __UpperCAmelCase = tokenizer.tokenize(__a ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(__a ) > 0: tokens.extend(__a ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(__a ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. __UpperCAmelCase = tokenizer.num_special_tokens_to_add() if len(__a ) > max_seq_length - special_tokens_count: __UpperCAmelCase = tokens[: (max_seq_length - special_tokens_count)] __UpperCAmelCase = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] __UpperCAmelCase = [sequence_a_segment_id] * len(__a ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: __UpperCAmelCase = [cls_token] + tokens __UpperCAmelCase = [pad_token_label_id] + label_ids __UpperCAmelCase = [cls_token_segment_id] + segment_ids __UpperCAmelCase = tokenizer.convert_tokens_to_ids(__a ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. __UpperCAmelCase = [1 if mask_padding_with_zero else 0] * len(__a ) # Zero-pad up to the sequence length. __UpperCAmelCase = max_seq_length - len(__a ) if pad_on_left: __UpperCAmelCase = ([pad_token] * padding_length) + input_ids __UpperCAmelCase = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask __UpperCAmelCase = ([pad_token_segment_id] * padding_length) + segment_ids __UpperCAmelCase = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(__a ) == max_seq_length assert len(__a ) == max_seq_length assert len(__a ) == max_seq_length assert len(__a ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(__a ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(__a ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(__a ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(__a ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(__a ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: __UpperCAmelCase = None features.append( InputFeatures( input_ids=__a , attention_mask=__a , token_type_ids=__a , label_ids=__a ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class A ( UpperCAmelCase ): a_ = 42 a_ = nn.CrossEntropyLoss().ignore_index def __init__( self : List[Any] , __a : TokenClassificationTask , __a : str , __a : PreTrainedTokenizer , __a : List[str] , __a : str , __a : Optional[int] = None , __a : Dict=False , __a : Split = Split.train , ) -> Optional[int]: # Load data features from cache or dataset file __UpperCAmelCase = os.path.join( __a , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(__a ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __UpperCAmelCase = cached_features_file + '''.lock''' with FileLock(__a ): if os.path.exists(__a ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __UpperCAmelCase = torch.load(__a ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __UpperCAmelCase = token_classification_task.read_examples_from_file(__a , __a ) # TODO clean up all this to leverage built-in features of tokenizers __UpperCAmelCase = token_classification_task.convert_examples_to_features( __a , __a , __a , __a , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__a , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , __a ) def __len__( self : List[Any] ) -> Union[str, Any]: return len(self.features ) def __getitem__( self : int , __a : int ) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class A : a_ = 42 a_ = -1_0_0 def __init__( self : Union[str, Any] , __a : TokenClassificationTask , __a : str , __a : PreTrainedTokenizer , __a : List[str] , __a : str , __a : Optional[int] = None , __a : Any=False , __a : Split = Split.train , ) -> Union[str, Any]: __UpperCAmelCase = token_classification_task.read_examples_from_file(__a , __a ) # TODO clean up all this to leverage built-in features of tokenizers __UpperCAmelCase = token_classification_task.convert_examples_to_features( __a , __a , __a , __a , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__a , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: __UpperCAmelCase = tf.data.Dataset.from_generator( __a , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: __UpperCAmelCase = tf.data.Dataset.from_generator( __a , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : int ) -> str: return len(self.features ) def __getitem__( self : int , __a : List[Any] ) -> InputFeatures: return self.features[i]
262
0
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: __A : int = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] __A : Union[str, Any] = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } __A : List[Any] = F"{src_lang}-{tgt_lang}" __A : Union[str, Any] = F"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=_lowercase , exist_ok=_lowercase ) __A : Tuple = os.path.join(_lowercase , "README.md" ) print(F"Generating {path}" ) with open(_lowercase , "w" , encoding="utf-8" ) as f: f.write(_lowercase ) # make sure we are under the root of the project UpperCamelCase = Path(__file__).resolve().parent.parent.parent UpperCamelCase = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCamelCase = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
387
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _a : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=[0, 1, 2, 3] , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=[1, 384, 24, 24] , __UpperCAmelCase=True , __UpperCAmelCase=None , ): __A : Dict = parent __A : Union[str, Any] = batch_size __A : str = image_size __A : Optional[Any] = patch_size __A : str = num_channels __A : str = is_training __A : Optional[Any] = use_labels __A : Union[str, Any] = hidden_size __A : int = num_hidden_layers __A : List[Any] = backbone_out_indices __A : Dict = num_attention_heads __A : Dict = intermediate_size __A : Tuple = hidden_act __A : List[str] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : int = initializer_range __A : List[str] = num_labels __A : str = backbone_featmap_shape __A : int = scope __A : Dict = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __A : Optional[Any] = (image_size // patch_size) ** 2 __A : List[Any] = num_patches + 1 def __UpperCAmelCase( self ): __A : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A : Tuple = None if self.use_labels: __A : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __A : Union[str, Any] = self.get_config() return config, pixel_values, labels def __UpperCAmelCase( self ): __A : Any = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCAmelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : Tuple = DPTModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __A : int = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : Dict = self.num_labels __A : Optional[int] = DPTForDepthEstimation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __A : Dict = model(__UpperCAmelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : int = self.num_labels __A : List[Any] = DPTForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __A : Union[str, Any] = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __UpperCAmelCase( self ): __A : int = self.prepare_config_and_inputs() __A , __A , __A : Dict = config_and_inputs __A : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _a ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Tuple = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCamelCase_ : Dict = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase_ : Tuple = False lowerCamelCase_ : Union[str, Any] = False lowerCamelCase_ : Optional[Any] = False def __UpperCAmelCase( self ): __A : str = DPTModelTester(self ) __A : Dict = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def __UpperCAmelCase( self ): self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def __UpperCAmelCase( self ): pass def __UpperCAmelCase( self ): __A , __A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __A : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def __UpperCAmelCase( self ): __A , __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(__UpperCAmelCase ) __A : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : Any = [*signature.parameters.keys()] __A : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __UpperCAmelCase( self ): __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __UpperCAmelCase( self ): __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__UpperCAmelCase ) def __UpperCAmelCase( self ): __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def __UpperCAmelCase( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __A , __A : str = self.model_tester.prepare_config_and_inputs_for_common() __A : int = True if model_class in get_values(__UpperCAmelCase ): continue __A : Dict = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __A : str = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __A : Optional[Any] = model(**__UpperCAmelCase ).loss loss.backward() def __UpperCAmelCase( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __A , __A : str = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = False __A : Optional[int] = True if model_class in get_values(__UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue __A : Tuple = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.train() __A : Any = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __A : List[Any] = model(**__UpperCAmelCase ).loss loss.backward() def __UpperCAmelCase( self ): __A , __A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __A : str = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __A : List[Any] = model_class(config=__UpperCAmelCase ) # Skip the check for the backbone __A : List[str] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __A : Any = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __UpperCAmelCase( self ): pass @slow def __UpperCAmelCase( self ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __A : Tuple = DPTModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __UpperCAmelCase( self ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type __A , __A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __A : Dict = "add" with self.assertRaises(__UpperCAmelCase ): __A : int = DPTForDepthEstimation(__UpperCAmelCase ) def lowerCamelCase_ ( ) -> Optional[Any]: __A : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class _a ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase( self ): __A : List[str] = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) __A : List[Any] = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(__UpperCAmelCase ) __A : Dict = prepare_img() __A : Optional[int] = image_processor(images=__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __A : List[str] = model(**__UpperCAmelCase ) __A : str = outputs.predicted_depth # verify the predicted depth __A : Optional[int] = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __UpperCAmelCase ) __A : Any = torch.tensor( [[[5.64_37, 5.61_46, 5.65_11], [5.43_71, 5.56_49, 5.59_58], [5.52_15, 5.51_84, 5.52_93]]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __UpperCAmelCase , atol=1e-4 ) )
387
1
'''simple docstring''' from collections.abc import Sequence def a__ ( lowercase : Sequence[int] | None = None ) -> int: """simple docstring""" if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) _UpperCamelCase = nums[0] for i in range(1, len(lowercase ) ): _UpperCamelCase = nums[i] _UpperCamelCase = max(lowercase, ans + num, lowercase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowercase__ : Optional[Any] = int(input('Enter number of elements : ').strip()) lowercase__ : List[Any] = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
98
'''simple docstring''' def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): return base * power(UpperCAmelCase_ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('Raise base to the power of exponent using recursion...') snake_case_ : int = int(input('Enter the base: ').strip()) snake_case_ : Optional[int] = int(input('Enter the exponent: ').strip()) snake_case_ : Optional[int] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents snake_case_ : List[Any] = 1 / result print(F"""{base} to the power of {exponent} is {result}""")
195
0
"""simple docstring""" import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): # Initialise PyTorch model __lowerCAmelCase : Tuple = BigBirdConfig.from_json_file(_UpperCamelCase ) print(F"Building PyTorch model from configuration: {config}" ) if is_trivia_qa: __lowerCAmelCase : str = BigBirdForQuestionAnswering(_UpperCamelCase ) else: __lowerCAmelCase : Optional[Any] = BigBirdForPreTraining(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(_UpperCamelCase , _UpperCamelCase , is_trivia_qa=_UpperCamelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) lowerCamelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
549
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class A__ : def __init__( self ): __lowerCAmelCase : Any = {} def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = {} def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if nodea not in self.connections: self.add_node(_SCREAMING_SNAKE_CASE ) if nodea not in self.connections: self.add_node(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = probability def __lowerCamelCase ( self ): return list(self.connections ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[str] = 0 __lowerCAmelCase : List[Any] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Optional[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase : str = Counter(graph.get_nodes() ) __lowerCAmelCase : Tuple = start for _ in range(_UpperCamelCase ): __lowerCAmelCase : int = graph.transition(_UpperCamelCase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
549
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) _UpperCamelCase = get_activation("""gelu""" ) self.assertTrue(torch.allclose(gelu_python(a ) , torch_builtin(a ) ) ) self.assertFalse(torch.allclose(gelu_python(a ) , gelu_new(a ) ) ) def A_ ( self ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) _UpperCamelCase = get_activation("""gelu""" ) _UpperCamelCase = get_activation("""gelu_10""" ) _UpperCamelCase = torch_builtin(a ) _UpperCamelCase = geluaa(a ) _UpperCamelCase = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(a ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def A_ ( self ) -> Any: '''simple docstring''' get_activation("""gelu""" ) get_activation("""gelu_10""" ) get_activation("""gelu_fast""" ) get_activation("""gelu_new""" ) get_activation("""gelu_python""" ) get_activation("""gelu_pytorch_tanh""" ) get_activation("""linear""" ) get_activation("""mish""" ) get_activation("""quick_gelu""" ) get_activation("""relu""" ) get_activation("""sigmoid""" ) get_activation("""silu""" ) get_activation("""swish""" ) get_activation("""tanh""" ) with self.assertRaises(a ): get_activation("""bogus""" ) with self.assertRaises(a ): get_activation(a ) def A_ ( self ) -> List[Any]: '''simple docstring''' _UpperCamelCase = get_activation("""gelu""" ) _UpperCamelCase = 1 _UpperCamelCase = get_activation("""gelu""" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(a ): _UpperCamelCase = acta.a
612
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class lowerCAmelCase__ ( __lowercase ): UpperCamelCase_ : Union[str, Any] = "pix2struct_text_model" UpperCamelCase_ : str = ["past_key_values"] UpperCamelCase_ : str = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , a=5_02_44 , a=7_68 , a=64 , a=20_48 , a=12 , a=12 , a=32 , a=1_28 , a=0.1 , a=1e-6 , a=1.0 , a="gelu_new" , a=0 , a=False , a=0 , a=1 , a=False , a=True , **a , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = d_kv _UpperCamelCase = d_ff _UpperCamelCase = num_layers _UpperCamelCase = num_heads _UpperCamelCase = relative_attention_num_buckets _UpperCamelCase = relative_attention_max_distance _UpperCamelCase = dropout_rate _UpperCamelCase = layer_norm_epsilon _UpperCamelCase = initializer_factor _UpperCamelCase = use_cache _UpperCamelCase = eos_token_id _UpperCamelCase = decoder_start_token_id # for backwards compatibility _UpperCamelCase = dense_act_fn super().__init__( pad_token_id=a , eos_token_id=a , decoder_start_token_id=a , tie_word_embeddings=a , is_decoder=a , **a , ) @classmethod def A_ ( cls , a , **a ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(a ) _UpperCamelCase , _UpperCamelCase = cls.get_config_dict(a , **a ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": _UpperCamelCase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a , **a ) class lowerCAmelCase__ ( __lowercase ): UpperCamelCase_ : int = "pix2struct_vision_model" def __init__( self , a=7_68 , a=7_68 , a=20_48 , a=64 , a=12 , a=12 , a="gelu_new" , a=1e-6 , a=0.0 , a=0.0 , a=1e-10 , a=1.0 , a=40_96 , a=32 , a=1_28 , **a , ) -> Tuple: '''simple docstring''' super().__init__(**a ) _UpperCamelCase = hidden_size _UpperCamelCase = patch_embed_hidden_size _UpperCamelCase = d_ff _UpperCamelCase = dropout_rate _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = initializer_range _UpperCamelCase = initializer_factor _UpperCamelCase = attention_dropout _UpperCamelCase = layer_norm_eps _UpperCamelCase = dense_act_fn _UpperCamelCase = seq_len _UpperCamelCase = relative_attention_num_buckets _UpperCamelCase = relative_attention_max_distance _UpperCamelCase = d_kv @classmethod def A_ ( cls , a , **a ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(a ) _UpperCamelCase , _UpperCamelCase = cls.get_config_dict(a , **a ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": _UpperCamelCase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a , **a ) class lowerCAmelCase__ ( __lowercase ): UpperCamelCase_ : Dict = "pix2struct" UpperCamelCase_ : int = True def __init__( self , a=None , a=None , a=1.0 , a=0.02 , a=False , a=False , a=True , **a , ) -> Optional[Any]: '''simple docstring''' super().__init__(tie_word_embeddings=a , is_encoder_decoder=a , **a ) if text_config is None: _UpperCamelCase = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: _UpperCamelCase = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) _UpperCamelCase = PixaStructTextConfig(**a ) _UpperCamelCase = PixaStructVisionConfig(**a ) _UpperCamelCase = self.text_config.decoder_start_token_id _UpperCamelCase = self.text_config.pad_token_id _UpperCamelCase = self.text_config.eos_token_id _UpperCamelCase = initializer_factor _UpperCamelCase = initializer_range _UpperCamelCase = self.initializer_range _UpperCamelCase = self.initializer_range _UpperCamelCase = is_vqa @classmethod def A_ ( cls , a , a , **a ) -> str: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a ) def A_ ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.text_config.to_dict() _UpperCamelCase = self.vision_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
612
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} __magic_name__ = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } __magic_name__ = { '''moussaKam/mbarthez''': 1_0_2_4, '''moussaKam/barthez''': 1_0_2_4, '''moussaKam/barthez-orangesum-title''': 1_0_2_4, } __magic_name__ = '''▁''' class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" __UpperCAmelCase : str = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self , a_ , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_ = None , **a_ , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : str = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token lowerCamelCase_ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , cls_token=a_ , pad_token=a_ , mask_token=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) lowerCamelCase_ : List[Any] = vocab_file lowerCamelCase_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a_ ) ) lowerCamelCase_ : Union[str, Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} lowerCamelCase_ : List[Any] = len(self.sp_model ) - 1 lowerCamelCase_ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _UpperCamelCase ( self , a_ , a_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ : Any = [self.cls_token_id] lowerCamelCase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCamelCase ( self , a_ , a_ = None , a_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is None: return [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1, 1] + ([0] * len(a_ )) + [1] def _UpperCamelCase ( self , a_ , a_ = None ): lowerCamelCase_ : List[Any] = [self.sep_token_id] lowerCamelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCamelCase ( self ): return len(self.sp_model ) def _UpperCamelCase ( self ): lowerCamelCase_ : int = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self , a_ ): return self.sp_model.encode(a_ , out_type=a_ ) def _UpperCamelCase ( self , a_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase_ : List[Any] = self.sp_model.PieceToId(a_ ) return spm_id if spm_id else self.unk_token_id def _UpperCamelCase ( self , a_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(a_ ) def _UpperCamelCase ( self , a_ ): lowerCamelCase_ : Any = [] lowerCamelCase_ : str = "" lowerCamelCase_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a_ ) + token lowerCamelCase_ : Dict = True lowerCamelCase_ : Any = [] else: current_sub_tokens.append(a_ ) lowerCamelCase_ : Optional[int] = False out_string += self.sp_model.decode(a_ ) return out_string.strip() def __getstate__( self ): lowerCamelCase_ : Union[str, Any] = self.__dict__.copy() lowerCamelCase_ : Dict = None return state def __setstate__( self , a_ ): lowerCamelCase_ : Dict = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase_ : List[str] = {} lowerCamelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self , a_ , a_ = None ): if not os.path.isdir(a_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ : Optional[int] = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , "wb" ) as fi: lowerCamelCase_ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
73
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( __lowerCamelCase, __lowerCamelCase, unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = StableDiffusionDiffEditPipeline __UpperCAmelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} __UpperCAmelCase : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} __UpperCAmelCase : List[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : List[str] = frozenset([] ) def _UpperCamelCase ( self ): torch.manual_seed(0 ) lowerCamelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a_ , ) lowerCamelCase_ : str = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=a_ , set_alpha_to_one=a_ , ) lowerCamelCase_ : Dict = DDIMInverseScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=a_ , set_alpha_to_zero=a_ , ) torch.manual_seed(0 ) lowerCamelCase_ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) lowerCamelCase_ : Optional[Any] = CLIPTextModel(a_ ) lowerCamelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase_ : Optional[Any] = { "unet": unet, "scheduler": scheduler, "inverse_scheduler": inverse_scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _UpperCamelCase ( self , a_ , a_=0 ): lowerCamelCase_ : str = floats_tensor((1, 16, 16) , rng=random.Random(a_ ) ).to(a_ ) lowerCamelCase_ : List[Any] = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(a_ ) ).to(a_ ) if str(a_ ).startswith("mps" ): lowerCamelCase_ : List[Any] = torch.manual_seed(a_ ) else: lowerCamelCase_ : List[str] = torch.Generator(device=a_ ).manual_seed(a_ ) lowerCamelCase_ : Tuple = { "prompt": "a dog and a newt", "mask_image": mask, "image_latents": latents, "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _UpperCamelCase ( self , a_ , a_=0 ): lowerCamelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(a_ ) ).to(a_ ) lowerCamelCase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ : Any = Image.fromarray(np.uinta(a_ ) ).convert("RGB" ) if str(a_ ).startswith("mps" ): lowerCamelCase_ : Tuple = torch.manual_seed(a_ ) else: lowerCamelCase_ : List[Any] = torch.Generator(device=a_ ).manual_seed(a_ ) lowerCamelCase_ : int = { "image": image, "source_prompt": "a cat and a frog", "target_prompt": "a dog and a newt", "generator": generator, "num_inference_steps": 2, "num_maps_per_mask": 2, "mask_encode_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _UpperCamelCase ( self , a_ , a_=0 ): lowerCamelCase_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(a_ ) ).to(a_ ) lowerCamelCase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ : Optional[int] = Image.fromarray(np.uinta(a_ ) ).convert("RGB" ) if str(a_ ).startswith("mps" ): lowerCamelCase_ : Optional[int] = torch.manual_seed(a_ ) else: lowerCamelCase_ : Tuple = torch.Generator(device=a_ ).manual_seed(a_ ) lowerCamelCase_ : Union[str, Any] = { "image": image, "prompt": "a cat and a frog", "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "decode_latents": True, "output_type": "numpy", } return inputs def _UpperCamelCase ( self ): if not hasattr(self.pipeline_class , "_optional_components" ): return lowerCamelCase_ : List[Any] = self.get_dummy_components() lowerCamelCase_ : int = self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(a_ , a_ , a_ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowerCamelCase_ : int = self.get_dummy_inputs(a_ ) lowerCamelCase_ : int = pipe(**a_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a_ ) lowerCamelCase_ : Optional[int] = self.pipeline_class.from_pretrained(a_ ) pipe_loaded.to(a_ ) pipe_loaded.set_progress_bar_config(disable=a_ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(a_ , a_ ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) lowerCamelCase_ : List[str] = self.get_dummy_inputs(a_ ) lowerCamelCase_ : Optional[int] = pipe_loaded(**a_ )[0] lowerCamelCase_ : Optional[int] = np.abs(output - output_loaded ).max() self.assertLess(a_ , 1E-4 ) def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[int] = "cpu" lowerCamelCase_ : int = self.get_dummy_components() lowerCamelCase_ : List[Any] = self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCamelCase_ : Any = self.get_dummy_mask_inputs(a_ ) lowerCamelCase_ : int = pipe.generate_mask(**a_ ) lowerCamelCase_ : List[Any] = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowerCamelCase_ : List[str] = np.array([0] * 9 ) lowerCamelCase_ : Optional[int] = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(a_ , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[int] = "cpu" lowerCamelCase_ : Union[str, Any] = self.get_dummy_components() lowerCamelCase_ : Union[str, Any] = self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCamelCase_ : Dict = self.get_dummy_inversion_inputs(a_ ) lowerCamelCase_ : Dict = pipe.invert(**a_ ).images lowerCamelCase_ : str = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCamelCase_ : Dict = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99] , ) lowerCamelCase_ : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a_ , 1E-3 ) def _UpperCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[Any] = "cpu" lowerCamelCase_ : int = self.get_dummy_components() lowerCamelCase_ : int = {"beta_start": 0.0_00_85, "beta_end": 0.0_12, "beta_schedule": "scaled_linear"} lowerCamelCase_ : Optional[Any] = DPMSolverMultistepScheduler(**a_ ) lowerCamelCase_ : List[str] = DPMSolverMultistepInverseScheduler(**a_ ) lowerCamelCase_ : Union[str, Any] = self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCamelCase_ : int = self.get_dummy_inversion_inputs(a_ ) lowerCamelCase_ : str = pipe.invert(**a_ ).images lowerCamelCase_ : int = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCamelCase_ : Union[str, Any] = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99] , ) lowerCamelCase_ : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a_ , 1E-3 ) @require_torch_gpu @slow class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def _UpperCamelCase ( cls ): lowerCamelCase_ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) lowerCamelCase_ : int = raw_image.convert("RGB" ).resize((768, 768) ) lowerCamelCase_ : List[Any] = raw_image def _UpperCamelCase ( self ): lowerCamelCase_ : Dict = torch.manual_seed(0 ) lowerCamelCase_ : Tuple = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=a_ , torch_dtype=torch.floataa ) lowerCamelCase_ : str = DDIMScheduler.from_config(pipe.scheduler.config ) lowerCamelCase_ : Optional[int] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a_ ) lowerCamelCase_ : str = "a bowl of fruit" lowerCamelCase_ : Optional[int] = "a bowl of pears" lowerCamelCase_ : List[Any] = pipe.generate_mask( image=self.raw_image , source_prompt=a_ , target_prompt=a_ , generator=a_ , ) lowerCamelCase_ : str = pipe.invert( prompt=a_ , image=self.raw_image , inpaint_strength=0.7 , generator=a_ ).latents lowerCamelCase_ : List[str] = pipe( prompt=a_ , mask_image=a_ , image_latents=a_ , generator=a_ , negative_prompt=a_ , inpaint_strength=0.7 , output_type="numpy" , ).images[0] lowerCamelCase_ : List[str] = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[Any] = torch.manual_seed(0 ) lowerCamelCase_ : str = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=a_ , torch_dtype=torch.floataa ) lowerCamelCase_ : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowerCamelCase_ : str = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a_ ) lowerCamelCase_ : Any = "a bowl of fruit" lowerCamelCase_ : Dict = "a bowl of pears" lowerCamelCase_ : Optional[Any] = pipe.generate_mask( image=self.raw_image , source_prompt=a_ , target_prompt=a_ , generator=a_ , ) lowerCamelCase_ : str = pipe.invert( prompt=a_ , image=self.raw_image , inpaint_strength=0.7 , generator=a_ , num_inference_steps=25 , ).latents lowerCamelCase_ : Any = pipe( prompt=a_ , mask_image=a_ , image_latents=a_ , generator=a_ , negative_prompt=a_ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="numpy" , ).images[0] lowerCamelCase_ : List[str] = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
73
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCamelCase__ : str = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class _snake_case ( UpperCAmelCase_ ): def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) requires_backends(self , """vision""") self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING) def lowercase__ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : Union[str, Any] = {} lowercase__ : Optional[Any] = {} if prompt is not None: lowercase__ : Tuple = prompt if generate_kwargs is not None: lowercase__ : List[str] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase__ : int = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""") lowercase__ : Tuple = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : Any = load_image(SCREAMING_SNAKE_CASE_) if prompt is not None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): raise ValueError( f'Received an invalid text input, got - {type(SCREAMING_SNAKE_CASE_)} - but expected a single string. ' """Note also that one single text can be provided for conditional image to text generation.""") lowercase__ : Optional[Any] = self.model.config.model_type if model_type == "git": lowercase__ : Tuple = self.image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) lowercase__ : str = self.tokenizer(text=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_).input_ids lowercase__ : Tuple = [self.tokenizer.cls_token_id] + input_ids lowercase__ : Dict = torch.tensor(SCREAMING_SNAKE_CASE_).unsqueeze(0) model_inputs.update({"""input_ids""": input_ids}) elif model_type == "pix2struct": lowercase__ : int = self.image_processor(images=SCREAMING_SNAKE_CASE_ , header_text=SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase__ : str = self.image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) lowercase__ : Optional[int] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) model_inputs.update(SCREAMING_SNAKE_CASE_) else: raise ValueError(f'Model type {model_type} does not support conditional text generation') else: lowercase__ : Union[str, Any] = self.image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) if self.model.config.model_type == "git" and prompt is None: lowercase__ : Union[str, Any] = None return model_inputs def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , SCREAMING_SNAKE_CASE_) and all(x is None for x in model_inputs["""input_ids"""]) ): lowercase__ : Optional[Any] = None if generate_kwargs is None: lowercase__ : Any = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase__ : Union[str, Any] = model_inputs.pop(self.model.main_input_name) lowercase__ : Optional[Any] = self.model.generate(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) return model_outputs def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Optional[Any] = [] for output_ids in model_outputs: lowercase__ : int = { """generated_text""": self.tokenizer.decode( SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , ) } records.append(SCREAMING_SNAKE_CASE_) return records
12
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowercase__ : Optional[int] = 4 lowercase__ : Optional[Any] = 48 lowercase__ : int = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : List[str] = [6, 6, 6, 6] lowercase__ : Any = 60 lowercase__ : Tuple = [6, 6, 6, 6] lowercase__ : Dict = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = 4 lowercase__ : Any = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowercase__ : str = 1 lowercase__ : Optional[int] = 1 lowercase__ : Optional[int] = 1_26 lowercase__ : Any = 7 lowercase__ : int = 255.0 lowercase__ : List[Any] = """""" return config def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowercase__ : Union[str, Any] = """layernorm.weight""" if name == "norm.bias": lowercase__ : List[str] = """layernorm.bias""" if "conv_first" in name: lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowercase__ : List[str] = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowercase__ : str = """swin2sr.""" + name return name def UpperCamelCase ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase__ : str = orig_state_dict.pop(lowercase_ ) if "qkv" in key: lowercase__ : Any = key.split(""".""" ) lowercase__ : List[Any] = int(key_split[1] ) lowercase__ : Dict = int(key_split[4] ) lowercase__ : Optional[Any] = config.embed_dim if "weight" in key: lowercase__ : List[str] = val[:dim, :] lowercase__ : List[str] = val[dim : dim * 2, :] lowercase__ : Optional[Any] = val[-dim:, :] else: lowercase__ : Optional[Any] = val[:dim] lowercase__ : List[Any] = val[dim : dim * 2] lowercase__ : Optional[int] = val[-dim:] pass else: lowercase__ : Optional[Any] = val return orig_state_dict def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Dict = get_config(lowercase_ ) lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ ) model.eval() lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ ) lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ ) if len(lowercase_ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" ) lowercase__ : Any = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56 lowercase__ : Union[str, Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 ) if config.num_channels == 1: lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) lowercase__ : Union[str, Any] = model(lowercase_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : Optional[Any] = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : int = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 ) print("""Looks ok!""" ) lowercase__ : str = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } lowercase__ : str = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") lowerCamelCase__ : Any = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
12
1
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a = logging.get_logger(__name__) a = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( _a ): _a = 'codegen' _a = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : List[Any] , lowerCAmelCase : int=5_0400 , lowerCAmelCase : Any=2048 , lowerCAmelCase : Optional[Any]=2048 , lowerCAmelCase : Dict=4096 , lowerCAmelCase : Optional[int]=28 , lowerCAmelCase : Tuple=16 , lowerCAmelCase : Union[str, Any]=64 , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Optional[Any]="gelu_new" , lowerCAmelCase : Tuple=0.0 , lowerCAmelCase : Any=0.0 , lowerCAmelCase : Tuple=0.0 , lowerCAmelCase : Any=1e-5 , lowerCAmelCase : Optional[int]=0.02 , lowerCAmelCase : List[str]=True , lowerCAmelCase : Any=5_0256 , lowerCAmelCase : Optional[Any]=5_0256 , lowerCAmelCase : List[str]=False , **lowerCAmelCase : int , ): lowerCAmelCase = vocab_size lowerCAmelCase = n_ctx lowerCAmelCase = n_positions lowerCAmelCase = n_embd lowerCAmelCase = n_layer lowerCAmelCase = n_head lowerCAmelCase = n_inner lowerCAmelCase = rotary_dim lowerCAmelCase = activation_function lowerCAmelCase = resid_pdrop lowerCAmelCase = embd_pdrop lowerCAmelCase = attn_pdrop lowerCAmelCase = layer_norm_epsilon lowerCAmelCase = initializer_range lowerCAmelCase = use_cache lowerCAmelCase = bos_token_id lowerCAmelCase = eos_token_id super().__init__( bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , **lowerCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _a ): def __init__( self : Any , lowerCAmelCase : PretrainedConfig , lowerCAmelCase : str = "default" , lowerCAmelCase : List[PatchingSpec] = None , lowerCAmelCase : bool = False , ): super().__init__(lowerCAmelCase , task=lowerCAmelCase , patching_specs=lowerCAmelCase , use_past=lowerCAmelCase ) if not getattr(self._config , """pad_token_id""" , lowerCAmelCase ): # TODO: how to do that better? lowerCAmelCase = 0 @property def __lowercase ( self : List[str] ): lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction="""inputs""" ) lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def __lowercase ( self : Union[str, Any] ): return self._config.n_layer @property def __lowercase ( self : List[Any] ): return self._config.n_head def __lowercase ( self : int , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , ): lowerCAmelCase = super(lowerCAmelCase , self ).generate_dummy_inputs( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase , lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase = seqlen + 2 lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase = [ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 ) return ordered_inputs @property def __lowercase ( self : Optional[Any] ): return 13
529
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a = 1_6 a = 3_2 def lowercase (snake_case__ : Accelerator , snake_case__ : int = 16 ) -> Dict: '''simple docstring''' lowerCAmelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(snake_case__ : List[Any] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(snake_case__ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase = 8 else: lowerCAmelCase = None return tokenizer.pad( snake_case__ , padding="""longest""" , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCAmelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) lowerCAmelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a = mocked_dataloaders # noqa: F811 def lowercase (snake_case__ : int , snake_case__ : Tuple ) -> int: '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , snake_case__ ) == "1": lowerCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowerCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: lowerCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase = config["""lr"""] lowerCAmelCase = int(config["""num_epochs"""] ) lowerCAmelCase = int(config["""seed"""] ) lowerCAmelCase = int(config["""batch_size"""] ) set_seed(snake_case__ ) lowerCAmelCase , lowerCAmelCase = get_dataloaders(snake_case__ , snake_case__ ) lowerCAmelCase = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowerCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=snake_case__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase = AdamW(params=model.parameters() , lr=snake_case__ ) # Instantiate scheduler lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=100 , num_training_steps=(len(snake_case__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowerCAmelCase = os.path.split(snake_case__ )[-1].split(""".""" )[0] accelerator.init_trackers(snake_case__ , snake_case__ ) # Now we train the model for epoch in range(snake_case__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowerCAmelCase = 0 for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase = model(**snake_case__ ) lowerCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase = model(**snake_case__ ) lowerCAmelCase = outputs.logits.argmax(dim=-1 ) lowerCAmelCase , lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , snake_case__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { """accuracy""": eval_metric["""accuracy"""], """f1""": eval_metric["""f1"""], """train_loss""": total_loss.item() / len(snake_case__ ), """epoch""": epoch, } , step=snake_case__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowercase () -> str: '''simple docstring''' lowerCAmelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=snake_case__ , default=snake_case__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=snake_case__ , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
529
1