code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __SCREAMING_SNAKE_CASE = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } __SCREAMING_SNAKE_CASE = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } __SCREAMING_SNAKE_CASE = """▁""" # Segments (not really needed) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = 4 class __snake_case ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase_ : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase_ : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : List[Any] = 'left' lowerCAmelCase_ : List[str] = XLNetTokenizer def __init__( self :Union[str, Any] , UpperCamelCase__ :Optional[Any]=None , UpperCamelCase__ :Optional[int]=None , UpperCamelCase__ :Union[str, Any]=False , UpperCamelCase__ :int=True , UpperCamelCase__ :Union[str, Any]=False , UpperCamelCase__ :int="<s>" , UpperCamelCase__ :Any="</s>" , UpperCamelCase__ :List[Any]="<unk>" , UpperCamelCase__ :List[str]="<sep>" , UpperCamelCase__ :Optional[int]="<pad>" , UpperCamelCase__ :Dict="<cls>" , UpperCamelCase__ :str="<mask>" , UpperCamelCase__ :Tuple=["<eop>", "<eod>"] , **UpperCamelCase__ :Optional[int] , ): # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( vocab_file=UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) _a = 3 _a = do_lower_case _a = remove_space _a = keep_accents _a = vocab_file _a = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE_ ( self :Optional[int] , UpperCamelCase__ :List[int] , UpperCamelCase__ :Optional[List[int]] = None ): _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE_ ( self :Any , UpperCamelCase__ :List[int] , UpperCamelCase__ :Optional[List[int]] = None ): _a = [self.sep_token_id] _a = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE_ ( self :Any , UpperCamelCase__ :str , UpperCamelCase__ :Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _a = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) return (out_vocab_file,)
388
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __SCREAMING_SNAKE_CASE = False class __snake_case ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE_ ( self :List[str] ): return 12 @property def SCREAMING_SNAKE_CASE_ ( self :int ): return 12 @property def SCREAMING_SNAKE_CASE_ ( self :Dict ): return 32 @property def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): torch.manual_seed(0 ) _a = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def SCREAMING_SNAKE_CASE_ ( self :Dict ): _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCamelCase__ ) @property def SCREAMING_SNAKE_CASE_ ( self :str ): torch.manual_seed(0 ) _a = 12 _a = 12 _a = { "attention_bias": True, "cross_attention_dim": 32, "attention_head_dim": height * width, "num_attention_heads": 1, "num_vector_embeds": self.num_embed, "num_embeds_ada_norm": self.num_embeds_ada_norm, "norm_num_groups": 32, "sample_size": width, "activation_fn": "geglu-approximate", } _a = TransformeraDModel(**UpperCamelCase__ ) return model def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): _a = "cpu" _a = self.dummy_vqvae _a = self.dummy_text_encoder _a = self.dummy_tokenizer _a = self.dummy_transformer _a = VQDiffusionScheduler(self.num_embed ) _a = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCamelCase__ ) _a = VQDiffusionPipeline( vqvae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , transformer=UpperCamelCase__ , scheduler=UpperCamelCase__ , learned_classifier_free_sampling_embeddings=UpperCamelCase__ , ) _a = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _a = "teddy bear playing in the pool" _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _a = pipe([prompt] , generator=UpperCamelCase__ , num_inference_steps=2 , output_type="np" ) _a = output.images _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _a = pipe( [prompt] , generator=UpperCamelCase__ , output_type="np" , return_dict=UpperCamelCase__ , num_inference_steps=2 )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _a = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): _a = "cpu" _a = self.dummy_vqvae _a = self.dummy_text_encoder _a = self.dummy_tokenizer _a = self.dummy_transformer _a = VQDiffusionScheduler(self.num_embed ) _a = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCamelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) _a = VQDiffusionPipeline( vqvae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , transformer=UpperCamelCase__ , scheduler=UpperCamelCase__ , learned_classifier_free_sampling_embeddings=UpperCamelCase__ , ) _a = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _a = "teddy bear playing in the pool" _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _a = pipe([prompt] , generator=UpperCamelCase__ , num_inference_steps=2 , output_type="np" ) _a = output.images _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _a = pipe( [prompt] , generator=UpperCamelCase__ , output_type="np" , return_dict=UpperCamelCase__ , num_inference_steps=2 )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _a = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" ) _a = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq" ) _a = pipeline.to(UpperCamelCase__ ) pipeline.set_progress_bar_config(disable=UpperCamelCase__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _a = pipeline( "teddy bear playing in the pool" , num_images_per_prompt=1 , generator=UpperCamelCase__ , output_type="np" , ) _a = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
388
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class a_ ( UpperCamelCase_ ): _snake_case = """glpn""" def __init__(self , __a=3 , __a=4 , __a=[2, 2, 2, 2] , __a=[8, 4, 2, 1] , __a=[3_2, 6_4, 1_6_0, 2_5_6] , __a=[7, 3, 3, 3] , __a=[4, 2, 2, 2] , __a=[1, 2, 5, 8] , __a=[4, 4, 4, 4] , __a="gelu" , __a=0.0 , __a=0.0 , __a=0.02 , __a=0.1 , __a=1E-6 , __a=6_4 , __a=1_0 , __a=-1 , **__a , ) -> List[str]: """simple docstring""" super().__init__(**__a) __snake_case : int = num_channels __snake_case : int = num_encoder_blocks __snake_case : Union[str, Any] = depths __snake_case : Optional[Any] = sr_ratios __snake_case : Optional[Any] = hidden_sizes __snake_case : Tuple = patch_sizes __snake_case : str = strides __snake_case : List[str] = mlp_ratios __snake_case : Tuple = num_attention_heads __snake_case : Optional[int] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : int = initializer_range __snake_case : Optional[Any] = drop_path_rate __snake_case : Optional[int] = layer_norm_eps __snake_case : List[Any] = decoder_hidden_size __snake_case : Tuple = max_depth __snake_case : Optional[int] = head_in_index
704
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __A = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _SCREAMING_SNAKE_CASE ( A : Tuple ) -> str: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(A ) def _SCREAMING_SNAKE_CASE ( A : int ) -> Optional[int]: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main __snake_case : Any = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(A , id=A )
61
0
from __future__ import annotations __a = tuple[int, int, int] __a = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase __a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- __a = 'EGZWVONAHDCLFQMSIPJBYUKXTR' __a = 'FOBHMDKEXQNRAULPGSJVTYICZW' __a = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- __a = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- __a = 'RMDJXFUWGISLHVTCQNKYPBEZOA' __a = 'SGLCPQWZHKXAREONTFBVIYJUDM' __a = 'HVSICLTYKQUBXDWAJZOMFGPREN' __a = 'RZWQHFMVDBKICJLNTUXAGYPSOE' __a = 'LFKIJODBEGAMQPXVUHYSTCZRWN' __a = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def a ( snake_case__: RotorPositionT , snake_case__: RotorSelectionT , snake_case__: str ): '''simple docstring''' # Checks if there are 3 unique rotors if (unique_rotsel := len(set(snake_case__ ) )) < 3: lowercase_ = F'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(snake_case__ ) # Checks if rotor positions are valid lowercase_ , lowercase_ , lowercase_ = rotpos if not 0 < rotorposa <= len(snake_case__ ): lowercase_ = F'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(snake_case__ ) if not 0 < rotorposa <= len(snake_case__ ): lowercase_ = F'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(snake_case__ ) if not 0 < rotorposa <= len(snake_case__ ): lowercase_ = F'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(snake_case__ ) # Validates string and returns dict lowercase_ = _plugboard(snake_case__ ) return rotpos, rotsel, pbdict def a ( snake_case__: str ): '''simple docstring''' # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(snake_case__ , snake_case__ ): lowercase_ = F'''Plugboard setting isn\'t type string ({type(snake_case__ )})''' raise TypeError(snake_case__ ) elif len(snake_case__ ) % 2 != 0: lowercase_ = F'''Odd number of symbols ({len(snake_case__ )})''' raise Exception(snake_case__ ) elif pbstring == "": return {} pbstring.replace(''' ''' , '''''' ) # Checks if all characters are unique lowercase_ = set() for i in pbstring: if i not in abc: lowercase_ = F'''\'{i}\' not in list of symbols''' raise Exception(snake_case__ ) elif i in tmppbl: lowercase_ = F'''Duplicate symbol ({i})''' raise Exception(snake_case__ ) else: tmppbl.add(snake_case__ ) del tmppbl # Created the dictionary lowercase_ = {} for j in range(0 , len(snake_case__ ) - 1 , 2 ): lowercase_ = pbstring[j + 1] lowercase_ = pbstring[j] return pb def a ( snake_case__: str , snake_case__: RotorPositionT , snake_case__: RotorSelectionT = (rotora, rotora, rotora) , snake_case__: str = "" , ): '''simple docstring''' lowercase_ = text.upper() lowercase_ , lowercase_ , lowercase_ = _validator( snake_case__ , snake_case__ , plugb.upper() ) lowercase_ , lowercase_ , lowercase_ = rotor_position lowercase_ , lowercase_ , lowercase_ = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowercase_ = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowercase_ = plugboard[symbol] # rotor ra -------------------------- lowercase_ = abc.index(snake_case__ ) + rotorposa lowercase_ = rotora[index % len(snake_case__ )] # rotor rb -------------------------- lowercase_ = abc.index(snake_case__ ) + rotorposa lowercase_ = rotora[index % len(snake_case__ )] # rotor rc -------------------------- lowercase_ = abc.index(snake_case__ ) + rotorposa lowercase_ = rotora[index % len(snake_case__ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowercase_ = reflector[symbol] # 2nd rotors lowercase_ = abc[rotora.index(snake_case__ ) - rotorposa] lowercase_ = abc[rotora.index(snake_case__ ) - rotorposa] lowercase_ = abc[rotora.index(snake_case__ ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowercase_ = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(snake_case__ ): lowercase_ = 0 rotorposa += 1 if rotorposa >= len(snake_case__ ): lowercase_ = 0 rotorposa += 1 if rotorposa >= len(snake_case__ ): lowercase_ = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(snake_case__ ) return "".join(snake_case__ ) if __name__ == "__main__": __a = 'This is my Python script that emulates the Enigma machine from WWII.' __a = (1, 1, 1) __a = 'pictures' __a = (rotora, rotora, rotora) __a = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
97
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy-config.json""") class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = 0 def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase = WavaVecaFeatureExtractor(**lowerCamelCase_ ) # save in new folder model_config.save_pretrained(lowerCamelCase_ ) config.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) # make sure private variable is not incorrectly saved UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCamelCase_ ( self : str ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" ) def lowerCamelCase_ ( self : Any ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase = CustomFeatureExtractor.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Dict ): """simple docstring""" class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = True try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # If remote code is not set, the default is to use local UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
537
0
'''simple docstring''' import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline _A : List[str] = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def UpperCamelCase_ ( snake_case_ : Optional[Any] , snake_case_ : tuple , snake_case_ : Path , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Optional[Any]=False , ) -> Optional[int]: '''simple docstring''' output_path.parent.mkdir(parents=snake_case_ , exist_ok=snake_case_ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( snake_case_ , snake_case_ , f=output_path.as_posix() , input_names=snake_case_ , output_names=snake_case_ , dynamic_axes=snake_case_ , do_constant_folding=snake_case_ , use_external_data_format=snake_case_ , enable_onnx_checker=snake_case_ , opset_version=snake_case_ , ) else: export( snake_case_ , snake_case_ , f=output_path.as_posix() , input_names=snake_case_ , output_names=snake_case_ , dynamic_axes=snake_case_ , do_constant_folding=snake_case_ , opset_version=snake_case_ , ) @torch.no_grad() def UpperCamelCase_ ( snake_case_ : str , snake_case_ : str , snake_case_ : int , snake_case_ : bool = False ) -> Any: '''simple docstring''' __lowerCAmelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowerCAmelCase = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: __lowerCAmelCase = """cpu""" __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(snake_case_ , torch_dtype=snake_case_ ).to(snake_case_ ) __lowerCAmelCase = Path(snake_case_ ) # TEXT ENCODER __lowerCAmelCase = pipeline.text_encoder.config.max_position_embeddings __lowerCAmelCase = pipeline.text_encoder.config.hidden_size __lowerCAmelCase = pipeline.tokenizer( """A sample prompt""" , padding="""max_length""" , max_length=pipeline.tokenizer.model_max_length , truncation=snake_case_ , return_tensors="""pt""" , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=snake_case_ , dtype=torch.intaa )) , output_path=output_path / """text_encoder""" / """model.onnx""" , ordered_input_names=["""input_ids"""] , output_names=["""last_hidden_state""", """pooler_output"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """sequence"""}, } , opset=snake_case_ , ) del pipeline.text_encoder # UNET __lowerCAmelCase = pipeline.unet.config.in_channels __lowerCAmelCase = pipeline.unet.config.sample_size __lowerCAmelCase = output_path / """unet""" / """model.onnx""" onnx_export( pipeline.unet , model_args=( torch.randn(2 , snake_case_ , snake_case_ , snake_case_ ).to(device=snake_case_ , dtype=snake_case_ ), torch.randn(2 ).to(device=snake_case_ , dtype=snake_case_ ), torch.randn(2 , snake_case_ , snake_case_ ).to(device=snake_case_ , dtype=snake_case_ ), False, ) , output_path=snake_case_ , ordered_input_names=["""sample""", """timestep""", """encoder_hidden_states""", """return_dict"""] , output_names=["""out_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """timestep""": {0: """batch"""}, """encoder_hidden_states""": {0: """batch""", 1: """sequence"""}, } , opset=snake_case_ , use_external_data_format=snake_case_ , ) __lowerCAmelCase = str(unet_path.absolute().as_posix() ) __lowerCAmelCase = os.path.dirname(snake_case_ ) __lowerCAmelCase = onnx.load(snake_case_ ) # clean up existing tensor files shutil.rmtree(snake_case_ ) os.mkdir(snake_case_ ) # collate external tensor files into one onnx.save_model( snake_case_ , snake_case_ , save_as_external_data=snake_case_ , all_tensors_to_one_file=snake_case_ , location="""weights.pb""" , convert_attribute=snake_case_ , ) del pipeline.unet # VAE ENCODER __lowerCAmelCase = pipeline.vae __lowerCAmelCase = vae_encoder.config.in_channels __lowerCAmelCase = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder __lowerCAmelCase = lambda snake_case_ , snake_case_ : vae_encoder.encode(snake_case_ , snake_case_ )[0].sample() onnx_export( snake_case_ , model_args=( torch.randn(1 , snake_case_ , snake_case_ , snake_case_ ).to(device=snake_case_ , dtype=snake_case_ ), False, ) , output_path=output_path / """vae_encoder""" / """model.onnx""" , ordered_input_names=["""sample""", """return_dict"""] , output_names=["""latent_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=snake_case_ , ) # VAE DECODER __lowerCAmelCase = pipeline.vae __lowerCAmelCase = vae_decoder.config.latent_channels __lowerCAmelCase = vae_decoder.config.out_channels # forward only through the decoder part __lowerCAmelCase = vae_encoder.decode onnx_export( snake_case_ , model_args=( torch.randn(1 , snake_case_ , snake_case_ , snake_case_ ).to(device=snake_case_ , dtype=snake_case_ ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=snake_case_ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: __lowerCAmelCase = pipeline.safety_checker __lowerCAmelCase = safety_checker.config.vision_config.num_channels __lowerCAmelCase = safety_checker.config.vision_config.image_size __lowerCAmelCase = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , snake_case_ , snake_case_ , snake_case_ , ).to(device=snake_case_ , dtype=snake_case_ ), torch.randn(1 , snake_case_ , snake_case_ , snake_case_ ).to(device=snake_case_ , dtype=snake_case_ ), ) , output_path=output_path / """safety_checker""" / """model.onnx""" , ordered_input_names=["""clip_input""", """images"""] , output_names=["""out_images""", """has_nsfw_concepts"""] , dynamic_axes={ """clip_input""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """images""": {0: """batch""", 1: """height""", 2: """width""", 3: """channels"""}, } , opset=snake_case_ , ) del pipeline.safety_checker __lowerCAmelCase = OnnxRuntimeModel.from_pretrained(output_path / """safety_checker""" ) __lowerCAmelCase = pipeline.feature_extractor else: __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_encoder""" ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_decoder""" ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / """text_encoder""" ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / """unet""" ) , scheduler=pipeline.scheduler , safety_checker=snake_case_ , feature_extractor=snake_case_ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(snake_case_ ) print("""ONNX pipeline saved to""" , snake_case_ ) del pipeline del onnx_pipeline __lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(snake_case_ , provider="""CPUExecutionProvider""" ) print("""ONNX pipeline is loadable""" ) if __name__ == "__main__": _A : str = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') _A : Dict = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
330
'''simple docstring''' import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A : str = logging.get_logger(__name__) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<pad>" , SCREAMING_SNAKE_CASE__ : Tuple=1_25 , SCREAMING_SNAKE_CASE__ : Dict=None , **SCREAMING_SNAKE_CASE__ : Dict , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __lowerCAmelCase = [f"""<extra_id_{i}>""" for i in range(SCREAMING_SNAKE_CASE__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __lowerCAmelCase = len(set(filter(lambda SCREAMING_SNAKE_CASE__ : bool("""extra_id""" in str(SCREAMING_SNAKE_CASE__ ) ) , SCREAMING_SNAKE_CASE__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" """ provided to ByT5Tokenizer. In this case the additional_special_tokens must include the""" """ extra_ids tokens""" ) __lowerCAmelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else pad_token __lowerCAmelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else eos_token __lowerCAmelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else unk_token super().__init__( eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , extra_ids=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCAmelCase = extra_ids __lowerCAmelCase = 2**8 # utf is 8 bits # define special tokens dict __lowerCAmelCase = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } __lowerCAmelCase = len(self.special_tokens_encoder ) __lowerCAmelCase = len(SCREAMING_SNAKE_CASE__ ) for i, token in enumerate(SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = self.vocab_size + i - n __lowerCAmelCase = {v: k for k, v in self.special_tokens_encoder.items()} @property def a ( self : str ) -> Tuple: return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def a ( self : Any , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def a ( self : str , SCREAMING_SNAKE_CASE__ : List[int] ) -> List[int]: if len(SCREAMING_SNAKE_CASE__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = self._add_eos_if_not_present(SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return token_ids_a else: __lowerCAmelCase = self._add_eos_if_not_present(SCREAMING_SNAKE_CASE__ ) return token_ids_a + token_ids_a def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: __lowerCAmelCase = [chr(SCREAMING_SNAKE_CASE__ ) for i in text.encode("""utf-8""" )] return tokens def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Any ) -> Tuple: if token in self.special_tokens_encoder: __lowerCAmelCase = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: __lowerCAmelCase = self.added_tokens_encoder[token] elif len(SCREAMING_SNAKE_CASE__ ) != 1: __lowerCAmelCase = self.unk_token_id else: __lowerCAmelCase = ord(SCREAMING_SNAKE_CASE__ ) + self._num_special_tokens return token_id def a ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: if index in self.special_tokens_decoder: __lowerCAmelCase = self.special_tokens_decoder[index] else: __lowerCAmelCase = chr(index - self._num_special_tokens ) return token def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: __lowerCAmelCase = B"""""" for token in tokens: if token in self.special_tokens_decoder: __lowerCAmelCase = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.added_tokens_decoder: __lowerCAmelCase = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.special_tokens_encoder: __lowerCAmelCase = token.encode("""utf-8""" ) elif token in self.added_tokens_encoder: __lowerCAmelCase = token.encode("""utf-8""" ) else: __lowerCAmelCase = bytes([ord(SCREAMING_SNAKE_CASE__ )] ) bstring += tok_string __lowerCAmelCase = bstring.decode("""utf-8""" , errors="""ignore""" ) return string def a ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: return ()
330
1
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) # TODO Update this _lowerCAmelCase = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Optional[int] = """esm""" def __init__( self : str , a__ : Optional[int]=None , a__ : Any=None , a__ : int=None , a__ : List[Any]=768 , a__ : Any=12 , a__ : Optional[int]=12 , a__ : List[str]=3072 , a__ : Dict=0.1 , a__ : Any=0.1 , a__ : Union[str, Any]=1026 , a__ : str=0.02 , a__ : str=1E-12 , a__ : List[Any]="absolute" , a__ : Optional[int]=True , a__ : str=None , a__ : Tuple=False , a__ : List[Any]=False , a__ : List[Any]=None , a__ : Tuple=None , **a__ : Union[str, Any] , ): super().__init__(pad_token_id=a_ , mask_token_id=a_ , **a_ ) __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = position_embedding_type __magic_name__ = use_cache __magic_name__ = emb_layer_norm_before __magic_name__ = token_dropout __magic_name__ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) __magic_name__ = EsmFoldConfig() elif isinstance(a_ , a_ ): __magic_name__ = EsmFoldConfig(**a_ ) __magic_name__ = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) __magic_name__ = get_default_vocab_list() else: __magic_name__ = vocab_list else: __magic_name__ = None __magic_name__ = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , a_ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def snake_case__ ( self : int ): __magic_name__ = super().to_dict() if isinstance(self.esmfold_config , a_ ): __magic_name__ = self.esmfold_config.to_dict() return output @dataclass class _SCREAMING_SNAKE_CASE : __SCREAMING_SNAKE_CASE :str = None __SCREAMING_SNAKE_CASE :Optional[int] = True __SCREAMING_SNAKE_CASE :List[Any] = False __SCREAMING_SNAKE_CASE :Union[str, Any] = False __SCREAMING_SNAKE_CASE :List[Any] = False __SCREAMING_SNAKE_CASE :Any = 0 __SCREAMING_SNAKE_CASE :Any = True __SCREAMING_SNAKE_CASE :List[Any] = False __SCREAMING_SNAKE_CASE :Dict = 128 __SCREAMING_SNAKE_CASE :Optional[int] = None def snake_case__ ( self : Any ): if self.trunk is None: __magic_name__ = TrunkConfig() elif isinstance(self.trunk , a_ ): __magic_name__ = TrunkConfig(**self.trunk ) def snake_case__ ( self : Tuple ): __magic_name__ = asdict(self ) __magic_name__ = self.trunk.to_dict() return output @dataclass class _SCREAMING_SNAKE_CASE : __SCREAMING_SNAKE_CASE :Union[str, Any] = 48 __SCREAMING_SNAKE_CASE :Any = 1024 __SCREAMING_SNAKE_CASE :List[str] = 128 __SCREAMING_SNAKE_CASE :Optional[Any] = 32 __SCREAMING_SNAKE_CASE :str = 32 __SCREAMING_SNAKE_CASE :Optional[Any] = 32 __SCREAMING_SNAKE_CASE :Optional[Any] = 0 __SCREAMING_SNAKE_CASE :Tuple = 0 __SCREAMING_SNAKE_CASE :Optional[Any] = False __SCREAMING_SNAKE_CASE :Tuple = 4 __SCREAMING_SNAKE_CASE :Tuple = 128 __SCREAMING_SNAKE_CASE :Tuple = None def snake_case__ ( self : List[Any] ): if self.structure_module is None: __magic_name__ = StructureModuleConfig() elif isinstance(self.structure_module , a_ ): __magic_name__ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) __magic_name__ = self.sequence_state_dim // self.sequence_head_width __magic_name__ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def snake_case__ ( self : List[Any] ): __magic_name__ = asdict(self ) __magic_name__ = self.structure_module.to_dict() return output @dataclass class _SCREAMING_SNAKE_CASE : __SCREAMING_SNAKE_CASE :List[str] = 384 __SCREAMING_SNAKE_CASE :Union[str, Any] = 128 __SCREAMING_SNAKE_CASE :str = 16 __SCREAMING_SNAKE_CASE :Optional[Any] = 128 __SCREAMING_SNAKE_CASE :Optional[Any] = 12 __SCREAMING_SNAKE_CASE :Dict = 4 __SCREAMING_SNAKE_CASE :Any = 8 __SCREAMING_SNAKE_CASE :List[Any] = 0.1 __SCREAMING_SNAKE_CASE :Dict = 8 __SCREAMING_SNAKE_CASE :Optional[Any] = 1 __SCREAMING_SNAKE_CASE :List[Any] = 2 __SCREAMING_SNAKE_CASE :str = 7 __SCREAMING_SNAKE_CASE :str = 10 __SCREAMING_SNAKE_CASE :Any = 1E-8 __SCREAMING_SNAKE_CASE :List[Any] = 1E5 def snake_case__ ( self : Any ): return asdict(self ) def UpperCamelCase ( ) -> Optional[Any]: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
432
"""simple docstring""" import string import numpy def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , snake_case__ ) class lowercase: '''simple docstring''' lowercase__ = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowercase__ = numpy.vectorize(lambda __a : x % 36 ) lowercase__ = numpy.vectorize(__a ) def __init__( self: str, a_: numpy.ndarray ): '''simple docstring''' _snake_case : Optional[Any] = self.modulus(a_ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _snake_case : Tuple = encrypt_key.shape[0] def UpperCamelCase_ ( self: Dict, a_: str ): '''simple docstring''' return self.key_string.index(a_ ) def UpperCamelCase_ ( self: List[Any], a_: int ): '''simple docstring''' return self.key_string[round(a_ )] def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Optional[int] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _snake_case : str = det % len(self.key_string ) _snake_case : List[Any] = len(self.key_string ) if greatest_common_divisor(a_, len(self.key_string ) ) != 1: _snake_case : Optional[Any] = ( f"determinant modular {req_l} of encryption key({det}) " f"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(a_ ) def UpperCamelCase_ ( self: Union[str, Any], a_: str ): '''simple docstring''' _snake_case : Dict = [char for char in text.upper() if char in self.key_string] _snake_case : str = chars[-1] while len(a_ ) % self.break_key != 0: chars.append(a_ ) return "".join(a_ ) def UpperCamelCase_ ( self: List[Any], a_: str ): '''simple docstring''' _snake_case : List[Any] = self.process_text(text.upper() ) _snake_case : Any = """""" for i in range(0, len(a_ ) - self.break_key + 1, self.break_key ): _snake_case : List[Any] = text[i : i + self.break_key] _snake_case : Dict = [self.replace_letters(a_ ) for char in batch] _snake_case : List[Any] = numpy.array([vec] ).T _snake_case : List[Any] = self.modulus(self.encrypt_key.dot(a_ ) ).T.tolist()[ 0 ] _snake_case : str = """""".join( self.replace_digits(a_ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : str = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _snake_case : Any = det % len(self.key_string ) _snake_case : Dict = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: _snake_case : List[str] = i break _snake_case : List[Any] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(a_ ) ) def UpperCamelCase_ ( self: int, a_: str ): '''simple docstring''' _snake_case : List[str] = self.make_decrypt_key() _snake_case : List[str] = self.process_text(text.upper() ) _snake_case : Any = """""" for i in range(0, len(a_ ) - self.break_key + 1, self.break_key ): _snake_case : Union[str, Any] = text[i : i + self.break_key] _snake_case : int = [self.replace_letters(a_ ) for char in batch] _snake_case : Optional[Any] = numpy.array([vec] ).T _snake_case : List[Any] = self.modulus(decrypt_key.dot(a_ ) ).T.tolist()[0] _snake_case : Dict = """""".join( self.replace_digits(a_ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[str] = int(input("""Enter the order of the encryption key: """ ) ) _snake_case : int = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(snake_case__ ): _snake_case : List[Any] = [int(snake_case__ ) for x in input().split()] hill_matrix.append(snake_case__ ) _snake_case : Any = HillCipher(numpy.array(snake_case__ ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) _snake_case : Any = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": _snake_case : Optional[Any] = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(snake_case__ ) ) elif option == "2": _snake_case : List[Any] = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
609
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[Any]: # Initialise PyTorch model UpperCamelCase = MobileBertConfig.from_json_file(_lowercase ) print(F'Building PyTorch model from configuration: {config}' ) UpperCamelCase = MobileBertForPreTraining(_lowercase ) # Load weights from tf checkpoint UpperCamelCase = load_tf_weights_in_mobilebert(_lowercase , _lowercase , _lowercase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , _lowercase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
170
import cva import numpy as np class _lowerCAmelCase : """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if k in (0.04, 0.06): UpperCamelCase = k UpperCamelCase = window_size else: raise ValueError('invalid k value' ) def __str__( self : Any ): """simple docstring""" return str(self.k ) def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" UpperCamelCase = cva.imread(SCREAMING_SNAKE_CASE__ , 0 ) UpperCamelCase , UpperCamelCase = img.shape UpperCamelCase = [] UpperCamelCase = img.copy() UpperCamelCase = cva.cvtColor(SCREAMING_SNAKE_CASE__ , cva.COLOR_GRAY2RGB ) UpperCamelCase , UpperCamelCase = np.gradient(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = dx**2 UpperCamelCase = dy**2 UpperCamelCase = dx * dy UpperCamelCase = 0.04 UpperCamelCase = self.window_size // 2 for y in range(SCREAMING_SNAKE_CASE__ , h - offset ): for x in range(SCREAMING_SNAKE_CASE__ , w - offset ): UpperCamelCase = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase = (wxx * wyy) - (wxy**2) UpperCamelCase = wxx + wyy UpperCamelCase = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": _snake_case = HarrisCorner(0.04, 3) _snake_case , _snake_case = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
170
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class A__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase( self : List[Any] ): a__ : Union[str, Any] = inspect.getfile(accelerate.test_utils ) a__ : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) a__ : List[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) a__ : Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def _UpperCamelCase( self : Optional[int] ): print(f'''Found {torch.cuda.device_count()} devices.''' ) a__ : int = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) @require_multi_gpu def _UpperCamelCase( self : Optional[int] ): print(f'''Found {torch.cuda.device_count()} devices.''' ) a__ : Tuple = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(f'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) @require_multi_gpu def _UpperCamelCase( self : Tuple ): a__ : List[str] = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) @require_multi_gpu def _UpperCamelCase( self : Any ): print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) a__ : Optional[int] = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) if __name__ == "__main__": UpperCamelCase : str = Accelerator() UpperCamelCase : int = (accelerator.state.process_index + 2, 10) UpperCamelCase : Optional[Any] = torch.randint(0, 10, shape).to(accelerator.device) UpperCamelCase : Optional[int] = """""" UpperCamelCase : Union[str, Any] = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCamelCase : int = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCamelCase : Tuple = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
37
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() SCREAMING_SNAKE_CASE :List[str] = logging.get_logger("""transformers.models.encodec""") SCREAMING_SNAKE_CASE :Tuple = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } SCREAMING_SNAKE_CASE :List[str] = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } SCREAMING_SNAKE_CASE :Union[str, Any] = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } SCREAMING_SNAKE_CASE :Optional[Any] = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } SCREAMING_SNAKE_CASE :Optional[int] = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } SCREAMING_SNAKE_CASE :List[Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } SCREAMING_SNAKE_CASE :int = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } SCREAMING_SNAKE_CASE :Dict = [] SCREAMING_SNAKE_CASE :int = [] def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> List[Any]: """simple docstring""" for attribute in key.split("." ): UpperCamelCase_ = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if weight_type is not None: UpperCamelCase_ = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).shape else: UpperCamelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCamelCase_ = value elif weight_type == "weight_g": UpperCamelCase_ = value elif weight_type == "weight_v": UpperCamelCase_ = value elif weight_type == "bias": UpperCamelCase_ = value elif weight_type == "running_mean": UpperCamelCase_ = value elif weight_type == "running_var": UpperCamelCase_ = value elif weight_type == "num_batches_tracked": UpperCamelCase_ = value elif weight_type == "weight_ih_l0": UpperCamelCase_ = value elif weight_type == "weight_hh_l0": UpperCamelCase_ = value elif weight_type == "bias_ih_l0": UpperCamelCase_ = value elif weight_type == "bias_hh_l0": UpperCamelCase_ = value elif weight_type == "weight_ih_l1": UpperCamelCase_ = value elif weight_type == "weight_hh_l1": UpperCamelCase_ = value elif weight_type == "bias_ih_l1": UpperCamelCase_ = value elif weight_type == "bias_hh_l1": UpperCamelCase_ = value else: UpperCamelCase_ = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int: """simple docstring""" for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCamelCase_ , UpperCamelCase_ = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int: """simple docstring""" UpperCamelCase_ = [] if model_name == "encodec_24khz" or "encodec_32khz": UpperCamelCase_ = MAPPING_24K elif model_name == "encodec_48khz": UpperCamelCase_ = MAPPING_48K else: raise ValueError(f"Unsupported model: {model_name}" ) for name, value in orig_dict.items(): if should_ignore(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): logger.info(f"{name} was ignored" ) continue UpperCamelCase_ = False for key, mapped_key in MAPPING.items(): if "*" in key: UpperCamelCase_ , UpperCamelCase_ = key.split(".*." ) if prefix in name and suffix in name: UpperCamelCase_ = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue UpperCamelCase_ = True if "*" in mapped_key: UpperCamelCase_ = name.split(SCREAMING_SNAKE_CASE_ )[0].split("." )[-2] UpperCamelCase_ = mapped_key.replace("*" , SCREAMING_SNAKE_CASE_ ) if "weight_g" in name: UpperCamelCase_ = "weight_g" elif "weight_v" in name: UpperCamelCase_ = "weight_v" elif "weight_ih_l0" in name: UpperCamelCase_ = "weight_ih_l0" elif "weight_hh_l0" in name: UpperCamelCase_ = "weight_hh_l0" elif "bias_ih_l0" in name: UpperCamelCase_ = "bias_ih_l0" elif "bias_hh_l0" in name: UpperCamelCase_ = "bias_hh_l0" elif "weight_ih_l1" in name: UpperCamelCase_ = "weight_ih_l1" elif "weight_hh_l1" in name: UpperCamelCase_ = "weight_hh_l1" elif "bias_ih_l1" in name: UpperCamelCase_ = "bias_ih_l1" elif "bias_hh_l1" in name: UpperCamelCase_ = "bias_hh_l1" elif "bias" in name: UpperCamelCase_ = "bias" elif "weight" in name: UpperCamelCase_ = "weight" elif "running_mean" in name: UpperCamelCase_ = "running_mean" elif "running_var" in name: UpperCamelCase_ = "running_var" elif "num_batches_tracked" in name: UpperCamelCase_ = "num_batches_tracked" else: UpperCamelCase_ = None set_recursively(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE_ ) logger.warning(f"Unused weights: {unused_weights}" ) @torch.no_grad() def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , )-> Union[str, Any]: """simple docstring""" if config_path is not None: UpperCamelCase_ = EncodecConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase_ = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": UpperCamelCase_ = [8, 5, 4, 4] UpperCamelCase_ = [2.2] UpperCamelCase_ = 6_4 UpperCamelCase_ = 3_2_0_0_0 UpperCamelCase_ = 2_0_4_8 UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False elif model_name == "encodec_48khz": UpperCamelCase_ = [8, 5, 4, 2] UpperCamelCase_ = [3.0, 6.0, 12.0, 24.0] UpperCamelCase_ = 4_8_0_0_0 UpperCamelCase_ = 2 UpperCamelCase_ = False UpperCamelCase_ = "time_group_norm" UpperCamelCase_ = True UpperCamelCase_ = 1.0 UpperCamelCase_ = 0.01 else: raise ValueError(f"Unknown model name: {model_name}" ) UpperCamelCase_ = EncodecModel(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = torch.load(SCREAMING_SNAKE_CASE_ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights UpperCamelCase_ = original_checkpoint["best_state"] recursively_load_weights(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(SCREAMING_SNAKE_CASE_ ) model.push_to_hub(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) SCREAMING_SNAKE_CASE :Dict = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
628
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self : Any ): '''simple docstring''' __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) __a = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] ) @require_multi_gpu def __a ( self : Dict ): '''simple docstring''' print(f'''Found {torch.cuda.device_count()} devices.''' ) __a = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) @require_multi_gpu def __a ( self : Optional[Any] ): '''simple docstring''' print(f'''Found {torch.cuda.device_count()} devices.''' ) __a = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(f'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) @require_multi_gpu def __a ( self : Tuple ): '''simple docstring''' __a = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) @require_multi_gpu def __a ( self : str ): '''simple docstring''' print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) __a = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="""0,1""" ): execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = Accelerator() SCREAMING_SNAKE_CASE_ = (accelerator.state.process_index + 2, 10) SCREAMING_SNAKE_CASE_ = torch.randint(0, 10, shape).to(accelerator.device) SCREAMING_SNAKE_CASE_ = '' SCREAMING_SNAKE_CASE_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." SCREAMING_SNAKE_CASE_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." SCREAMING_SNAKE_CASE_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
707
'''simple docstring''' def __lowercase ( __SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" __a = [] __a = set({"""(""", """[""", """{"""} ) __a = set({""")""", """]""", """}"""} ) __a = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(__SCREAMING_SNAKE_CASE ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(__SCREAMING_SNAKE_CASE ) == 0 or (len(__SCREAMING_SNAKE_CASE ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(__SCREAMING_SNAKE_CASE ) == 0 def __lowercase ( ) -> List[str]: """simple docstring""" __a = input("""Enter sequence of brackets: """ ) if is_balanced(__SCREAMING_SNAKE_CASE ): print(__SCREAMING_SNAKE_CASE , """is balanced""" ) else: print(__SCREAMING_SNAKE_CASE , """is not balanced""" ) if __name__ == "__main__": main()
201
0
'''simple docstring''' from math import pow, sqrt def _UpperCamelCase ( *__UpperCamelCase ) -> bool: lowerCamelCase_ = len(__UpperCamelCase ) > 0 and all(value > 0.0 for value in values ) return result def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> float | ValueError: return ( round(sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(__UpperCamelCase ,__UpperCamelCase ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> float | ValueError: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> float | ValueError: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> float | ValueError: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a ,2 ) ,6 ) if validate(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> float | ValueError: return ( round(pow(effusion_rate_a / effusion_rate_a ,2 ) / molar_mass ,6 ) if validate(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
42
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = GPTSanJapaneseTokenizer SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = {'do_clean_text': False, 'add_prefix_space': False} def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' super().setUp() # fmt: off lowerCamelCase_ = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on lowerCamelCase_ = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 lowerCamelCase_ = {'unk_token': '<unk>'} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = 'こんにちは、世界。 \nこんばんは、㔺界。😀' lowerCamelCase_ = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.get_input_output_texts(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) return text, ids def UpperCamelCase( self ) -> Tuple: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass # TODO add if relevant def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。 こんばんは、㔺界。' lowerCamelCase_ = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] lowerCamelCase_ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids without special tokens lowerCamelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids with special tokens lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() # Testing tokenization lowerCamelCase_ = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' lowerCamelCase_ = 'こんにちは、、、、世界。こんばんは、、、、世界。' lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。' lowerCamelCase_ = 'こんばんは、㔺界。😀' lowerCamelCase_ = 'こんにちは、世界。こんばんは、世界。😀' lowerCamelCase_ = tokenizer.encode(prefix_text + input_text ) lowerCamelCase_ = tokenizer.encode('' , prefix_text=prefix_text + input_text ) lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization lowerCamelCase_ = 'こんにちは、世界。' lowerCamelCase_ = 'こんばんは、㔺界。😀' lowerCamelCase_ = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 lowerCamelCase_ = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 lowerCamelCase_ = [1] + [0] * (len_prefix + len_text + 1) lowerCamelCase_ = [1] * (len_prefix + len_text + 1) + [0] lowerCamelCase_ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowerCamelCase_ = tokenizer(prefix_text + input_text ).token_type_ids lowerCamelCase_ = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ).token_type_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) lowerCamelCase_ = tokenizer.encode('あンいワ' ) lowerCamelCase_ = tokenizer.encode('' , prefix_text='あンいワ' ) lowerCamelCase_ = tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) lowerCamelCase_ = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) # fmt: off lowerCamelCase_ = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] lowerCamelCase_ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowerCamelCase_ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.attention_mask , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.attention_mask , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Any: '''simple docstring''' pass def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass
42
1
import math lowerCamelCase__ = 10 lowerCamelCase__ = 7 lowerCamelCase__ = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( snake_case__ : int = 20 ): '''simple docstring''' __snake_case :Dict = math.comb(snake_case__ ,snake_case__ ) __snake_case :int = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,snake_case__ ) __snake_case :List[str] = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
720
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCamelCase__ = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class snake_case__ ( unittest.TestCase , lowercase_): '''simple docstring''' def __lowercase ( self ) -> List[str]: '''simple docstring''' __snake_case :int = load_tool("""text-question-answering""" ) self.tool.setup() __snake_case :Tuple = load_tool("""text-question-answering""" , remote=a__ ) def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :List[str] = self.tool(a__ , """What did Hugging Face do in April 2021?""" ) self.assertEqual(a__ , """launched the BigScience Research Workshop""" ) def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :List[str] = self.remote_tool(a__ , """What did Hugging Face do in April 2021?""" ) self.assertEqual(a__ , """launched the BigScience Research Workshop""" ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :Optional[int] = self.tool(text=a__ , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(a__ , """launched the BigScience Research Workshop""" ) def __lowercase ( self ) -> Tuple: '''simple docstring''' __snake_case :List[str] = self.remote_tool(text=a__ , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(a__ , """launched the BigScience Research Workshop""" )
291
0
'''simple docstring''' from __future__ import annotations import math def lowercase__( __UpperCamelCase: int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True UpperCamelCase_ = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def lowercase__( __UpperCamelCase: int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) SCREAMING_SNAKE_CASE : Optional[Any] = [] for num in range(len(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE : List[Any] = 0 while 2 * i * i <= odd_composites[num]: SCREAMING_SNAKE_CASE : Any = odd_composites[num] - 2 * i * i if is_prime(__UpperCamelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__UpperCamelCase ) == n: return list_nums return [] def lowercase__( ): """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
28
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=10 , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase="divided_space_time" , _UpperCAmelCase=None , ): lowercase__: Tuple = parent lowercase__: Optional[int] = batch_size lowercase__: Tuple = image_size lowercase__: Dict = num_channels lowercase__: Tuple = patch_size lowercase__: Optional[Any] = num_frames lowercase__: str = is_training lowercase__: int = use_labels lowercase__: Dict = hidden_size lowercase__: str = num_hidden_layers lowercase__: Dict = num_attention_heads lowercase__: Optional[int] = intermediate_size lowercase__: Optional[int] = hidden_act lowercase__: str = hidden_dropout_prob lowercase__: List[Any] = attention_probs_dropout_prob lowercase__: Union[str, Any] = attention_type lowercase__: List[Any] = initializer_range lowercase__: Optional[int] = scope lowercase__: int = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token lowercase__: Optional[Any] = (image_size // patch_size) ** 2 lowercase__: Tuple = (num_frames) * self.num_patches_per_frame + 1 def _snake_case ( self ): lowercase__: Tuple = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase__: Optional[int] = None if self.use_labels: lowercase__: List[Any] = ids_tensor([self.batch_size] , self.num_labels ) lowercase__: List[Any] = self.get_config() return config, pixel_values, labels def _snake_case ( self ): lowercase__: Optional[Any] = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) lowercase__: int = self.num_labels return config def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = TimesformerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Optional[int] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[int] = TimesformerForVideoClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__: Tuple = model(_UpperCAmelCase ) # verify the logits shape lowercase__: List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: int = self.prepare_config_and_inputs() lowercase__, lowercase__, lowercase__: Any = config_and_inputs lowercase__: Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :List[Any] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () _UpperCAmelCase :Optional[Any] = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) _UpperCAmelCase :Optional[Any] = False _UpperCAmelCase :List[Any] = False _UpperCAmelCase :List[str] = False _UpperCAmelCase :Optional[int] = False def _snake_case ( self ): lowercase__: str = TimesformerModelTester(self ) lowercase__: Tuple = ConfigTester( self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): lowercase__: str = copy.deepcopy(_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): lowercase__: List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def _snake_case ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def _snake_case ( self ): pass def _snake_case ( self ): lowercase__, lowercase__: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__: List[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__: int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def _snake_case ( self ): lowercase__, lowercase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__: Union[str, Any] = model_class(_UpperCAmelCase ) lowercase__: Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__: Any = [*signature.parameters.keys()] lowercase__: List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*_UpperCAmelCase ) @slow def _snake_case ( self ): for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: List[Any] = TimesformerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _snake_case ( self ): if not self.has_attentions: pass else: lowercase__, lowercase__: int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__: Optional[Any] = True for model_class in self.all_model_classes: lowercase__: Union[str, Any] = self.model_tester.seq_length lowercase__: Any = self.model_tester.num_frames lowercase__: Optional[Any] = True lowercase__: Optional[int] = False lowercase__: Dict = True lowercase__: Tuple = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__: Tuple = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__: Any = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__: List[Any] = True lowercase__: str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__: int = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__: Any = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) lowercase__: List[str] = len(_UpperCAmelCase ) # Check attention is always last and order is fine lowercase__: List[Any] = True lowercase__: Any = True lowercase__: str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__: Tuple = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + 1 , len(_UpperCAmelCase ) ) lowercase__: List[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _snake_case ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__: Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__: List[str] = outputs.hidden_states lowercase__: Tuple = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) lowercase__: Tuple = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__, lowercase__: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__: Union[str, Any] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__: List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: lowercase__: Dict = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) lowercase__: Optional[Any] = np.load(__UpperCAmelCase ) return list(__UpperCAmelCase ) @require_torch @require_vision class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _snake_case ( self ): lowercase__: Optional[int] = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( _UpperCAmelCase ) lowercase__: Optional[Any] = self.default_image_processor lowercase__: int = prepare_video() lowercase__: Any = image_processor(video[:8] , return_tensors='''pt''' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__: Union[str, Any] = model(**_UpperCAmelCase ) # verify the logits lowercase__: Dict = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase__: Any = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
586
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = tempfile.mkdtemp() # fmt: off lowerCamelCase__ : int = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCamelCase__ : Union[str, Any] = dict(zip(lowerCamelCase_, range(len(lowerCamelCase_ ) ) ) ) lowerCamelCase__ : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCamelCase__ : str = {'unk_token': '<unk>'} lowerCamelCase__ : Dict = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ : str = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase_ ) ) lowerCamelCase__ : Union[str, Any] = { 'do_resize': True, 'size': 2_0, 'do_center_crop': True, 'crop_size': 1_8, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCamelCase__ : Tuple = os.path.join(self.tmpdirname, lowerCamelCase_ ) with open(self.image_processor_file, 'w', encoding='utf-8' ) as fp: json.dump(lowerCamelCase_, lowerCamelCase_ ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = [np.random.randint(2_5_5, size=(3, 3_0, 4_0_0), dtype=np.uinta )] lowerCamelCase__ : Tuple = [Image.fromarray(np.moveaxis(lowerCamelCase_, 0, -1 ) ) for x in image_inputs] return image_inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.get_tokenizer() lowerCamelCase__ : Optional[int] = self.get_rust_tokenizer() lowerCamelCase__ : Any = self.get_image_processor() lowerCamelCase__ : Dict = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase__ : Dict = CLIPProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, lowerCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer, lowerCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, lowerCamelCase_ ) self.assertIsInstance(processor_fast.image_processor, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = CLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : List[Any] = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' ) lowerCamelCase__ : Optional[Any] = self.get_image_processor(do_normalize=lowerCamelCase_, padding_value=1.0 ) lowerCamelCase__ : int = CLIPProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowerCamelCase_, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.get_image_processor() lowerCamelCase__ : Any = self.get_tokenizer() lowerCamelCase__ : List[str] = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = self.prepare_image_inputs() lowerCamelCase__ : int = image_processor(lowerCamelCase_, return_tensors='np' ) lowerCamelCase__ : Optional[Any] = processor(images=lowerCamelCase_, return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.get_image_processor() lowerCamelCase__ : str = self.get_tokenizer() lowerCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = 'lower newer' lowerCamelCase__ : Optional[int] = processor(text=lowerCamelCase_ ) lowerCamelCase__ : Dict = tokenizer(lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_image_processor() lowerCamelCase__ : Tuple = self.get_tokenizer() lowerCamelCase__ : List[Any] = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : str = 'lower newer' lowerCamelCase__ : Optional[Any] = self.prepare_image_inputs() lowerCamelCase__ : Tuple = processor(text=lowerCamelCase_, images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ), ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.get_image_processor() lowerCamelCase__ : Optional[int] = self.get_tokenizer() lowerCamelCase__ : Tuple = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ : Union[str, Any] = processor.batch_decode(lowerCamelCase_ ) lowerCamelCase__ : Tuple = tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_image_processor() lowerCamelCase__ : str = self.get_tokenizer() lowerCamelCase__ : int = CLIPProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : str = 'lower newer' lowerCamelCase__ : List[Any] = self.prepare_image_inputs() lowerCamelCase__ : Dict = processor(text=lowerCamelCase_, images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
721
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A_ : str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=1 ): '''simple docstring''' lowerCamelCase__ : Any = tokenizer lowerCamelCase__ : Optional[Any] = dataset lowerCamelCase__ : int = len(lowerCamelCase_ ) if n_tasks is None else n_tasks lowerCamelCase__ : Any = n_copies def __iter__(self ): '''simple docstring''' lowerCamelCase__ : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ : Optional[int] = self.tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = start_length lowerCamelCase__ : List[str] = eof_strings lowerCamelCase__ : List[str] = tokenizer def __call__(self, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ : Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ): lowerCamelCase__ : List[str] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): lowerCamelCase__ : str = batch['ids'].shape[-1] lowerCamelCase__ : int = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times lowerCamelCase__ : Optional[Any] = batch['task_id'].repeat(_lowerCamelCase ) lowerCamelCase__ : List[Any] = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ : List[Any] = generated_tokens.cpu().numpy() lowerCamelCase__ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) lowerCamelCase__ : str = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ : Optional[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase_ ( ): # Setup configuration lowerCamelCase__ : int = HfArgumentParser(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ : Tuple = 'false' if args.num_workers is None: lowerCamelCase__ : List[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ : List[Any] = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ : Optional[int] = tokenizer.eos_token lowerCamelCase__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ : Optional[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric lowerCamelCase__ : Any = load_dataset('openai_humaneval' ) lowerCamelCase__ : Optional[int] = load_metric('code_eval' ) lowerCamelCase__ : List[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ : Optional[int] = args.n_samples // args.batch_size lowerCamelCase__ : Tuple = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ : Union[str, Any] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ : List[Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ : str = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: lowerCamelCase__ : List[str] = [] for task in tqdm(range(_lowerCamelCase ) ): lowerCamelCase__ : int = human_eval['test'][task]['test'] lowerCamelCase__ : Union[str, Any] = f'''check({human_eval['test'][task]['entry_point']})''' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ : Any = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
696
0
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _A = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def SCREAMING_SNAKE_CASE ( __UpperCAmelCase = "dhaka" , __UpperCAmelCase = 5 ) -> int: SCREAMING_SNAKE_CASE__ = min(__snake_case , 50 ) # Prevent abuse! SCREAMING_SNAKE_CASE__ = { "q": query, "tbm": "isch", "hl": "en", "ijn": "0", } SCREAMING_SNAKE_CASE__ = requests.get("https://www.google.com/search" , params=__snake_case , headers=__snake_case ) SCREAMING_SNAKE_CASE__ = BeautifulSoup(html.text , "html.parser" ) SCREAMING_SNAKE_CASE__ = "".join( re.findall(R"AF_initDataCallback\(([^<]+)\);" , str(soup.select("script" ) ) ) ) SCREAMING_SNAKE_CASE__ = json.dumps(__snake_case ) SCREAMING_SNAKE_CASE__ = json.loads(__snake_case ) SCREAMING_SNAKE_CASE__ = re.findall( R"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\"," , __snake_case , ) if not matched_google_image_data: return 0 SCREAMING_SNAKE_CASE__ = re.sub( R"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]" , "" , str(__snake_case ) , ) SCREAMING_SNAKE_CASE__ = re.findall( R"(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]" , __snake_case , ) for index, fixed_full_res_image in enumerate(__snake_case ): if index >= max_images: return index SCREAMING_SNAKE_CASE__ = bytes(__snake_case , "ascii" ).decode( "unicode-escape" ) SCREAMING_SNAKE_CASE__ = bytes(__snake_case , "ascii" ).decode( "unicode-escape" ) SCREAMING_SNAKE_CASE__ = urllib.request.build_opener() SCREAMING_SNAKE_CASE__ = [ ( "User-Agent", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582", ) ] urllib.request.install_opener(__snake_case ) SCREAMING_SNAKE_CASE__ = F"""query_{query.replace(" " , "_" )}""" if not os.path.exists(__snake_case ): os.makedirs(__snake_case ) urllib.request.urlretrieve( # noqa: S310 __snake_case , F"""{path_name}/original_size_img_{index}.jpg""" ) return index if __name__ == "__main__": try: _A = download_images_from_google_query(sys.argv[1]) print(F'{image_count} images were downloaded to disk.') except IndexError: print('Please provide a search term.') raise
159
def _SCREAMING_SNAKE_CASE ( __snake_case = 1_0_0_0 ) -> int: _UpperCAmelCase , _UpperCAmelCase = 1, 1 _UpperCAmelCase = [] for i in range(1 , n + 1 ): _UpperCAmelCase = prev_numerator + 2 * prev_denominator _UpperCAmelCase = prev_numerator + prev_denominator if len(str(__snake_case ) ) > len(str(__snake_case ) ): result.append(__snake_case ) _UpperCAmelCase = numerator _UpperCAmelCase = denominator return len(__snake_case ) if __name__ == "__main__": print(F"{solution() = }")
108
0
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: # Initialise PyTorch model lowerCAmelCase__ : int = TaConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(F'''Building PyTorch model from configuration: {config}''' ) lowerCAmelCase__ : Tuple = TaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint load_tf_weights_in_ta(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
69
from itertools import permutations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCAmelCase__ : str = [7, 11, 13, 17] for i, test in enumerate(SCREAMING_SNAKE_CASE_ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = 10 ) -> int: return sum( int(''.join(map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) for num in permutations(range(SCREAMING_SNAKE_CASE_ ) ) if is_substring_divisible(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": print(F"""{solution() = }""")
69
1
'''simple docstring''' UpperCAmelCase_ : Any = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def A_ ( _lowerCAmelCase : dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Any = set() # keep track of all the paths to be checked _lowerCamelCase : Tuple = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _lowerCamelCase : Tuple = queue.pop(0 ) # get the last node from the path _lowerCamelCase : List[Any] = path[-1] if node not in explored: _lowerCamelCase : Optional[Any] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _lowerCamelCase : Any = list(_lowerCAmelCase ) new_path.append(_lowerCAmelCase ) queue.append(_lowerCAmelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_lowerCAmelCase ) # in case there's no path between the 2 nodes return [] def A_ ( _lowerCAmelCase : dict , _lowerCAmelCase : Any , _lowerCAmelCase : int ): """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _lowerCamelCase : Tuple = [start] _lowerCamelCase : List[str] = set(_lowerCAmelCase ) # Keep tab on distances from `start` node. _lowerCamelCase : Dict = {start: 0, target: -1} while queue: _lowerCamelCase : Any = queue.pop(0 ) if node == target: _lowerCamelCase : Optional[Any] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_lowerCAmelCase ) queue.append(_lowerCAmelCase ) _lowerCamelCase : Dict = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
44
'''simple docstring''' UpperCAmelCase_ : Union[str, Any] = range(2, 20 + 1) UpperCAmelCase_ : str = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = sum(a_i[j] for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ) ) _lowerCamelCase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ) , _lowerCAmelCase ) ) ) _lowerCamelCase , _lowerCamelCase : int = 0, 0 _lowerCamelCase : Dict = n - i _lowerCamelCase : int = memo.get(_lowerCAmelCase ) if sub_memo is not None: _lowerCamelCase : List[str] = sub_memo.get(_lowerCAmelCase ) if jumps is not None and len(_lowerCAmelCase ) > 0: # find and make the largest jump without going over _lowerCamelCase : List[Any] = -1 for _k in range(len(_lowerCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCamelCase : Any = _k break if max_jump >= 0: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCamelCase : str = diff + c for j in range(min(_lowerCAmelCase , len(_lowerCAmelCase ) ) ): _lowerCamelCase , _lowerCamelCase : List[Any] = divmod(_lowerCAmelCase , 10 ) if new_c > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCamelCase : int = [] else: _lowerCamelCase : Tuple = {c: []} _lowerCamelCase : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCamelCase , _lowerCamelCase : Optional[int] = next_term(_lowerCAmelCase , k - 1 , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCamelCase , _lowerCamelCase : List[str] = compute(_lowerCAmelCase , _lowerCAmelCase , i + dn , _lowerCAmelCase ) diff += _diff dn += terms_jumped _lowerCamelCase : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCamelCase : int = 0 while j < len(_lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCAmelCase , (diff, dn, k) ) return (diff, dn) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): """simple docstring""" if i >= n: return 0, i if k > len(_lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCamelCase : List[str] = i _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = 0, 0, 0 for j in range(len(_lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCamelCase : int = ds_c + ds_b diff += addend _lowerCamelCase : List[str] = 0 for j in range(_lowerCAmelCase ): _lowerCamelCase : List[Any] = a_i[j] + addend _lowerCamelCase , _lowerCamelCase : Any = divmod(_lowerCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return diff, i - start_i def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): """simple docstring""" for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : Tuple = digits[j] + addend if s >= 10: _lowerCamelCase , _lowerCamelCase : Optional[int] = divmod(_lowerCAmelCase , 10 ) _lowerCamelCase : Any = addend // 10 + quotient else: _lowerCamelCase : Tuple = s _lowerCamelCase : List[Any] = addend // 10 if addend == 0: break while addend > 0: _lowerCamelCase , _lowerCamelCase : str = divmod(_lowerCAmelCase , 10 ) digits.append(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : int = 10**15 ): """simple docstring""" _lowerCamelCase : Tuple = [1] _lowerCamelCase : List[Any] = 1 _lowerCamelCase : List[str] = 0 while True: _lowerCamelCase , _lowerCamelCase : Dict = next_term(_lowerCAmelCase , 20 , i + dn , _lowerCAmelCase ) dn += terms_jumped if dn == n - i: break _lowerCamelCase : Optional[Any] = 0 for j in range(len(_lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
44
1
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0 ): # Format the message. if name is None: __snake_case : Optional[Any] = None else: __snake_case : Dict = "." * max(0 , spaces - 2 ) + "# {:" + str(5_0 - spaces ) + "s}" __snake_case : Dict = fmt.format(__lowerCamelCase ) # Print and recurse (if needed). if isinstance(__lowerCamelCase , __lowerCamelCase ): if msg is not None: print(__lowerCamelCase ) for k in val.keys(): recursive_print(__lowerCamelCase , val[k] , spaces + 2 ) elif isinstance(__lowerCamelCase , torch.Tensor ): print(__lowerCamelCase , ":" , val.size() ) else: print(__lowerCamelCase , ":" , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. __snake_case : Union[str, Any] = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] __snake_case : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] __snake_case : int = param.view(*__lowerCamelCase ) __snake_case : List[Any] = param.transpose(0 , 2 ) __snake_case : Optional[int] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] __snake_case : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] __snake_case : List[str] = param.view(*__lowerCamelCase ) __snake_case : str = param.transpose(0 , 1 ).contiguous() __snake_case : Any = param.view(*__lowerCamelCase ) return param def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # The converted output model. __snake_case : List[Any] = {} # old versions did not store training args __snake_case : List[str] = input_state_dict.get("args" , __lowerCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) __snake_case : Union[str, Any] = ds_args.padded_vocab_size __snake_case : int = ds_args.max_position_embeddings __snake_case : List[Any] = ds_args.hidden_size __snake_case : List[Any] = ds_args.num_layers __snake_case : Optional[Any] = ds_args.num_attention_heads __snake_case : Dict = ds_args.ffn_hidden_size # pprint(config) # The number of heads. __snake_case : str = config.n_head # The hidden_size per head. __snake_case : int = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): __snake_case : Tuple = input_state_dict["checkpoint_version"] else: __snake_case : Any = 0.0 # The model. __snake_case : Dict = input_state_dict["model"] # The language model. __snake_case : str = model["language_model"] # The embeddings. __snake_case : List[str] = lm["embedding"] # The word embeddings. __snake_case : Any = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. __snake_case : Tuple = word_embeddings[: config.vocab_size, :] __snake_case : Tuple = word_embeddings # The position embeddings. __snake_case : Tuple = embeddings["position_embeddings"]["weight"] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] __snake_case : Dict = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. __snake_case : Union[str, Any] = pos_embeddings # The transformer. __snake_case : List[str] = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. __snake_case : Optional[int] = re.compile(R"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" ) # The simple map of names for "automated" rules. __snake_case : Optional[Any] = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } # Extract the layers. for key, val in transformer.items(): # Match the name. __snake_case : List[str] = layer_re.match(__lowerCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. __snake_case : int = int(m.group(1 ) ) # The name of the operation. __snake_case : Dict = m.group(2 ) # Is it a weight or a bias? __snake_case : Any = m.group(3 ) # The name of the layer. __snake_case : List[Any] = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm" ): __snake_case : Optional[int] = "ln_1" if op_name.startswith("input" ) else "ln_2" __snake_case : Optional[Any] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. __snake_case : Dict = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __lowerCamelCase , __lowerCamelCase ) __snake_case : List[str] = causal_mask # Insert a "dummy" tensor for masked_bias. __snake_case : Union[str, Any] = torch.tensor(-1e4 , dtype=torch.floataa ) __snake_case : Dict = masked_bias __snake_case : Tuple = fix_query_key_value_ordering(__lowerCamelCase , __lowerCamelCase , 3 , __lowerCamelCase , __lowerCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. __snake_case : List[Any] = out_val.transpose(0 , 1 ).contiguous() # Store. __snake_case : Optional[int] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": __snake_case : Any = fix_query_key_value_ordering(__lowerCamelCase , __lowerCamelCase , 3 , __lowerCamelCase , __lowerCamelCase ) # Store. No change of shape. __snake_case : Any = out_val # Transpose the weights. elif weight_or_bias == "weight": __snake_case : str = megatron_to_transformers[op_name] __snake_case : Union[str, Any] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": __snake_case : Any = megatron_to_transformers[op_name] __snake_case : List[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. __snake_case : List[Any] = transformer["final_layernorm.weight"] __snake_case : List[str] = transformer["final_layernorm.bias"] # For LM head, transformers' wants the matrix to weight embeddings. __snake_case : Tuple = word_embeddings # It should be done! return output_state_dict def lowerCAmelCase_ ( ): # Create the argument parser. __snake_case : int = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" , action="store_true" ) parser.add_argument( "path_to_checkpoint" , type=__lowerCamelCase , help="Path to the checkpoint file (.zip archive or direct .pt file)" , ) parser.add_argument( "--config_file" , default="" , type=__lowerCamelCase , help="An optional config json file describing the pre-trained model." , ) __snake_case : Optional[Any] = parser.parse_args() # Extract the basename. __snake_case : int = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(".zip" ): with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict: __snake_case : List[Any] = torch.load(__lowerCamelCase , map_location="cpu" ) else: __snake_case : Any = torch.load(args.path_to_checkpoint , map_location="cpu" ) __snake_case : List[str] = input_state_dict.get("args" , __lowerCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: __snake_case : List[str] = "gelu_fast" elif ds_args.openai_gelu: __snake_case : Optional[int] = "gelu_new" else: __snake_case : int = "gelu" else: # in the very early days this used to be "gelu_new" __snake_case : Tuple = "gelu_new" # Spell out all parameters in case the defaults change. __snake_case : Dict = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.0_2 , summary_type="cls_index" , summary_use_proj=__lowerCamelCase , summary_activation=__lowerCamelCase , summary_proj_to_labels=__lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__lowerCamelCase , use_cache=__lowerCamelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: __snake_case : List[str] = GPTaConfig.from_json_file(args.config_file ) __snake_case : Tuple = ["GPT2LMHeadModel"] # Convert. print("Converting" ) __snake_case : Union[str, Any] = convert_megatron_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__lowerCamelCase , __lowerCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: __snake_case : Union[str, Any] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": __snake_case : Optional[int] = "gpt2" elif tokenizer_type == "PretrainedFromHF": __snake_case : Any = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: __snake_case : Optional[int] = "gpt2" __snake_case : Optional[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase ) __snake_case : List[str] = type(__lowerCamelCase ).__name__ __snake_case : Optional[int] = tokenizer_class # Store the config to file. print("Saving config" ) config.save_pretrained(__lowerCamelCase ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__lowerCamelCase ) # Store the state_dict to file. __snake_case : Optional[int] = os.path.join(__lowerCamelCase , "pytorch_model.bin" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__lowerCamelCase , __lowerCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
714
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _snake_case : int = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } _snake_case : Dict = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase=False ): __snake_case , __snake_case : Any = create_model( "HTSAT-tiny" , "roberta" , __lowerCamelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=__lowerCamelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : int = {} __snake_case : List[Any] = R".*sequential.(\d+).*" __snake_case : Any = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __snake_case : Optional[int] = key.replace(__lowerCamelCase , __lowerCamelCase ) if re.match(__lowerCamelCase , __lowerCamelCase ): # replace sequential layers with list __snake_case : List[Any] = re.match(__lowerCamelCase , __lowerCamelCase ).group(1 ) __snake_case : str = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(__lowerCamelCase )//3}.linear.' ) elif re.match(__lowerCamelCase , __lowerCamelCase ): __snake_case : Any = int(re.match(__lowerCamelCase , __lowerCamelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __snake_case : List[str] = 1 if projecton_layer == 0 else 2 __snake_case : Tuple = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value __snake_case : List[str] = value __snake_case : Optional[int] = mixed_qkv.size(0 ) // 3 __snake_case : List[str] = mixed_qkv[:qkv_dim] __snake_case : int = mixed_qkv[qkv_dim : qkv_dim * 2] __snake_case : str = mixed_qkv[qkv_dim * 2 :] __snake_case : int = query_layer __snake_case : Tuple = key_layer __snake_case : List[str] = value_layer else: __snake_case : Tuple = value return model_state_dict def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ): __snake_case , __snake_case : List[str] = init_clap(__lowerCamelCase , enable_fusion=__lowerCamelCase ) clap_model.eval() __snake_case : Union[str, Any] = clap_model.state_dict() __snake_case : Any = rename_state_dict(__lowerCamelCase ) __snake_case : Dict = ClapConfig() __snake_case : Dict = enable_fusion __snake_case : Optional[Any] = ClapModel(__lowerCamelCase ) # ignore the spectrogram embedding layer model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) transformers_config.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _snake_case : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") _snake_case : Tuple = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
203
0
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _snake_case = _symbol_database.Default() _snake_case = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _snake_case = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _snake_case = None _snake_case = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _snake_case = 45 _snake_case = 1581 _snake_case = 1517 _snake_case = 1570 _snake_case = 1584 _snake_case = 1793 _snake_case = 1795 _snake_case = 1916 _snake_case = 1864 _snake_case = 1905 _snake_case = 1919 _snake_case = 2429 _snake_case = 2208 _snake_case = 2418 _snake_case = 2323 _snake_case = 2407 # @@protoc_insertion_point(module_scope)
655
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self :List[str] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: lowercase__ = AutoConfig.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) lowercase__ = TFAutoModel.from_pretrained(_lowercase , from_pt=_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) lowercase__ = AutoModel.from_pretrained(_lowercase , from_tf=_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) @slow def UpperCAmelCase ( self :List[str] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: lowercase__ = AutoConfig.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) lowercase__ = TFAutoModelForPreTraining.from_pretrained(_lowercase , from_pt=_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) lowercase__ = AutoModelForPreTraining.from_pretrained(_lowercase , from_tf=_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) @slow def UpperCAmelCase ( self :Tuple ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AutoConfig.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) lowercase__ = TFAutoModelForCausalLM.from_pretrained(_lowercase , from_pt=_lowercase ) lowercase__ , lowercase__ = TFAutoModelForCausalLM.from_pretrained( _lowercase , output_loading_info=_lowercase , from_pt=_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) lowercase__ = AutoModelForCausalLM.from_pretrained(_lowercase , from_tf=_lowercase ) lowercase__ , lowercase__ = AutoModelForCausalLM.from_pretrained( _lowercase , output_loading_info=_lowercase , from_tf=_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) @slow def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AutoConfig.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) lowercase__ = TFAutoModelWithLMHead.from_pretrained(_lowercase , from_pt=_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) lowercase__ = AutoModelWithLMHead.from_pretrained(_lowercase , from_tf=_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) @slow def UpperCAmelCase ( self :List[str] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AutoConfig.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) lowercase__ = TFAutoModelForMaskedLM.from_pretrained(_lowercase , from_pt=_lowercase ) lowercase__ , lowercase__ = TFAutoModelForMaskedLM.from_pretrained( _lowercase , output_loading_info=_lowercase , from_pt=_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) lowercase__ = AutoModelForMaskedLM.from_pretrained(_lowercase , from_tf=_lowercase ) lowercase__ , lowercase__ = AutoModelForMaskedLM.from_pretrained( _lowercase , output_loading_info=_lowercase , from_tf=_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) @slow def UpperCAmelCase ( self :Tuple ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AutoConfig.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) lowercase__ = TFAutoModelForSeqaSeqLM.from_pretrained(_lowercase , from_pt=_lowercase ) lowercase__ , lowercase__ = TFAutoModelForSeqaSeqLM.from_pretrained( _lowercase , output_loading_info=_lowercase , from_pt=_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) lowercase__ = AutoModelForSeqaSeqLM.from_pretrained(_lowercase , from_tf=_lowercase ) lowercase__ , lowercase__ = AutoModelForSeqaSeqLM.from_pretrained( _lowercase , output_loading_info=_lowercase , from_tf=_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) @slow def UpperCAmelCase ( self :str ): '''simple docstring''' for model_name in ["bert-base-uncased"]: lowercase__ = AutoConfig.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) lowercase__ = TFAutoModelForSequenceClassification.from_pretrained(_lowercase , from_pt=_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) lowercase__ = AutoModelForSequenceClassification.from_pretrained(_lowercase , from_tf=_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) @slow def UpperCAmelCase ( self :str ): '''simple docstring''' for model_name in ["bert-base-uncased"]: lowercase__ = AutoConfig.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) lowercase__ = TFAutoModelForQuestionAnswering.from_pretrained(_lowercase , from_pt=_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) lowercase__ = AutoModelForQuestionAnswering.from_pretrained(_lowercase , from_tf=_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = TFAutoModelWithLMHead.from_pretrained(_lowercase , from_pt=_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_lowercase ) , 1_44_10 ) lowercase__ = AutoModelWithLMHead.from_pretrained(_lowercase , from_tf=_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_lowercase ) , 1_44_10 ) def UpperCAmelCase ( self :List[str] ): '''simple docstring''' lowercase__ = TFAutoModelWithLMHead.from_pretrained(_lowercase , from_pt=_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_lowercase ) , 1_44_10 ) lowercase__ = AutoModelWithLMHead.from_pretrained(_lowercase , from_tf=_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_lowercase ) , 1_44_10 )
655
1
def UpperCAmelCase ( A__ , A__ ) -> Any: _snake_case : List[Any] = [0 for i in range(r + 1 )] # nc0 = 1 _snake_case : List[str] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _snake_case : Optional[Any] = min(A__ , A__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
717
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput UpperCAmelCase_ = '''scheduler_config.json''' class __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 5 @dataclass class __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 class __SCREAMING_SNAKE_CASE : """simple docstring""" SCREAMING_SNAKE_CASE_ = SCHEDULER_CONFIG_NAME SCREAMING_SNAKE_CASE_ = ['dtype'] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = True @classmethod def __lowerCamelCase( cls , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" _snake_case , _snake_case : List[str] = cls.load_config( pretrained_model_name_or_path=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , return_unused_kwargs=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) _snake_case , _snake_case : Dict = cls.from_config(SCREAMING_SNAKE_CASE__ , return_unused_kwargs=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """create_state""" ) and getattr(SCREAMING_SNAKE_CASE__ , """has_state""" , SCREAMING_SNAKE_CASE__ ): _snake_case : int = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def __lowerCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False , **SCREAMING_SNAKE_CASE__ ): """simple docstring""" self.save_config(save_directory=SCREAMING_SNAKE_CASE__ , push_to_hub=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __lowerCamelCase( self ): """simple docstring""" return self._get_compatibles() @classmethod def __lowerCamelCase( cls ): """simple docstring""" _snake_case : Dict = list(set([cls.__name__] + cls._compatibles ) ) _snake_case : Union[str, Any] = importlib.import_module(__name__.split(""".""" )[0] ) _snake_case : List[str] = [ getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for c in compatible_classes_str if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ] return compatible_classes def UpperCAmelCase ( A__ , A__ ) -> jnp.ndarray: assert len(A__ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(A__ ) - x.ndim) ) , A__ ) def UpperCAmelCase ( A__ , A__=0.999 , A__=jnp.floataa ) -> jnp.ndarray: def alpha_bar(A__ ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 _snake_case : List[Any] = [] for i in range(A__ ): _snake_case : Optional[Any] = i / num_diffusion_timesteps _snake_case : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(A__ ) / alpha_bar(A__ ) , A__ ) ) return jnp.array(A__ , dtype=A__ ) @flax.struct.dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 @classmethod def __lowerCamelCase( cls , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _snake_case : List[Any] = scheduler.config if config.trained_betas is not None: _snake_case : Optional[Any] = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": _snake_case : str = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _snake_case : Tuple = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _snake_case : Any = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) _snake_case : str = 1.0 - betas _snake_case : Dict = jnp.cumprod(SCREAMING_SNAKE_CASE__ , axis=0 ) return cls( alphas=SCREAMING_SNAKE_CASE__ , betas=SCREAMING_SNAKE_CASE__ , alphas_cumprod=SCREAMING_SNAKE_CASE__ , ) def UpperCAmelCase ( A__ , A__ , A__ , A__ ) -> List[str]: _snake_case : Union[str, Any] = state.alphas_cumprod _snake_case : Tuple = alphas_cumprod[timesteps] ** 0.5 _snake_case : Union[str, Any] = sqrt_alpha_prod.flatten() _snake_case : Optional[Any] = broadcast_to_shape_from_left(A__ , original_samples.shape ) _snake_case : Tuple = (1 - alphas_cumprod[timesteps]) ** 0.5 _snake_case : List[str] = sqrt_one_minus_alpha_prod.flatten() _snake_case : Any = broadcast_to_shape_from_left(A__ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def UpperCAmelCase ( A__ , A__ , A__ , A__ ) -> Optional[int]: _snake_case , _snake_case : Optional[Any] = get_sqrt_alpha_prod(A__ , A__ , A__ , A__ ) _snake_case : List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def UpperCAmelCase ( A__ , A__ , A__ , A__ ) -> int: _snake_case , _snake_case : Union[str, Any] = get_sqrt_alpha_prod(A__ , A__ , A__ , A__ ) _snake_case : List[str] = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
519
0
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
549
import os import pytest from attr import dataclass SCREAMING_SNAKE_CASE__ : int = "us-east-1" # defaults region @dataclass class snake_case : lowercase_ = 42 lowercase_ = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' lowercase_ = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5_500, } lowercase_ = {**hyperparameters, 'max_steps': 1_000} @property def __lowercase( self : List[str] )-> str: """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def __lowercase( self : Union[str, Any] )-> str: """simple docstring""" return F'''{self.framework}-transfromers-test''' @property def __lowercase( self : int )-> str: """simple docstring""" return F'''./tests/sagemaker/scripts/{self.framework}''' @property def __lowercase( self : Tuple )-> str: """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def _a ( lowercase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
85
0
def __UpperCamelCase ( a) ->float: return 10 - x * x def __UpperCamelCase ( a, a) ->float: # Bolzano theory in order to find if there is a root between a and b if equation(a) * equation(a) >= 0: raise ValueError("Wrong space!") lowerCamelCase__ = a while (b - a) >= 0.0_1: # Find middle point lowerCamelCase__ = (a + b) / 2 # Check if middle point is root if equation(a) == 0.0: break # Decide the side to repeat the steps if equation(a) * equation(a) < 0: lowerCamelCase__ = c else: lowerCamelCase__ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
360
def __UpperCamelCase ( a, a, a=False) ->Dict: if isinstance(a, a) and isinstance(a, a): lowerCamelCase__ = len(set_a.intersection(a)) if alternative_union: lowerCamelCase__ = len(a) + len(a) else: lowerCamelCase__ = len(set_a.union(a)) return intersection / union if isinstance(a, (list, tuple)) and isinstance(a, (list, tuple)): lowerCamelCase__ = [element for element in set_a if element in set_b] if alternative_union: lowerCamelCase__ = len(a) + len(a) return len(a) / union else: lowerCamelCase__ = set_a + [element for element in set_b if element not in set_a] return len(a) / len(a) return len(a) / len(a) return None if __name__ == "__main__": A_ = {"a", "b", "c", "d", "e"} A_ = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
360
1
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Any: SCREAMING_SNAKE_CASE_ : List[str] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' f'{test_file} instead.' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = components[-1] if not test_fn.endswith('py' ): raise ValueError(f'`test_file` should be a python file. Got {test_fn} instead.' ) if not test_fn.startswith('test_modeling_' ): raise ValueError( f'`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.' ) SCREAMING_SNAKE_CASE_ : Dict = components[:-1] + [test_fn.replace('.py' , '' )] SCREAMING_SNAKE_CASE_ : List[str] = '.'.join(SCREAMING_SNAKE_CASE ) return test_module_path def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> int: SCREAMING_SNAKE_CASE_ : Optional[int] = get_module_path(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = importlib.import_module(SCREAMING_SNAKE_CASE ) return test_module def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : Optional[int] = [] SCREAMING_SNAKE_CASE_ : Tuple = get_test_module(SCREAMING_SNAKE_CASE ) for attr in dir(SCREAMING_SNAKE_CASE ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # sort with class names return sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x.__name__ ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Any: SCREAMING_SNAKE_CASE_ : Optional[int] = [] SCREAMING_SNAKE_CASE_ : str = get_test_module(SCREAMING_SNAKE_CASE ) for attr in dir(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : List[str] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(SCREAMING_SNAKE_CASE , 'all_model_classes' , [] ) if len(SCREAMING_SNAKE_CASE ) > 0: test_classes.append(SCREAMING_SNAKE_CASE ) # sort with class names return sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x.__name__ ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : Optional[int] = get_test_classes(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x.__name__ ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Dict: SCREAMING_SNAKE_CASE_ : List[Any] = test_class() if hasattr(SCREAMING_SNAKE_CASE , 'setUp' ): test.setUp() SCREAMING_SNAKE_CASE_ : List[str] = None if hasattr(SCREAMING_SNAKE_CASE , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = test.model_tester.__class__ return model_tester def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : Any = get_test_classes(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(SCREAMING_SNAKE_CASE ) # sort with class names return sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x.__name__ ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : List[str] = get_test_classes_for_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = [] for test_class in test_classes: SCREAMING_SNAKE_CASE_ : Tuple = get_model_tester_from_test_class(SCREAMING_SNAKE_CASE ) if tester_class is not None: tester_classes.append(SCREAMING_SNAKE_CASE ) # sort with class names return sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x.__name__ ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> str: SCREAMING_SNAKE_CASE_ : str = get_test_classes(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = {test_class: get_model_tester_from_test_class(SCREAMING_SNAKE_CASE ) for test_class in test_classes} return test_tester_mapping def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Dict: SCREAMING_SNAKE_CASE_ : Any = get_model_classes(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = { model_class: get_test_classes_for_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for model_class in model_classes } return model_test_mapping def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> int: SCREAMING_SNAKE_CASE_ : str = get_model_classes(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = { model_class: get_tester_classes_for_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for model_class in model_classes } return model_to_tester_mapping def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Any: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return o elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return o.__name__ elif isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ): return [to_json(SCREAMING_SNAKE_CASE ) for x in o] elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return {to_json(SCREAMING_SNAKE_CASE ): to_json(SCREAMING_SNAKE_CASE ) for k, v in o.items()} else: return o
345
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class snake_case_ ( lowerCAmelCase , unittest.TestCase ): __lowerCamelCase : Any = TransfoXLTokenizer __lowerCamelCase : int = False __lowerCamelCase : str = False def __A ( self ): super().setUp() SCREAMING_SNAKE_CASE_ : int = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __A ( self , **__lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Dict = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = '<unk> UNwanted , running' SCREAMING_SNAKE_CASE_ : List[str] = '<unk> unwanted, running' return input_text, output_text def __A ( self ): SCREAMING_SNAKE_CASE_ : Tuple = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(__lowerCAmelCase , ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [0, 4, 8, 7] ) def __A ( self ): SCREAMING_SNAKE_CASE_ : int = TransfoXLTokenizer(lower_case=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = TransfoXLTokenizer(lower_case=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = TransfoXLTokenizer(lower_case=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' SCREAMING_SNAKE_CASE_ : Dict = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(__lowerCAmelCase ) , __lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(__lowerCAmelCase ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__lowerCAmelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , 'new1' )
345
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : Optional[Any] = BlipImageProcessor() __SCREAMING_SNAKE_CASE : str = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) __SCREAMING_SNAKE_CASE : Optional[int] = BlipProcessor(_lowerCAmelCase , _lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self : List[str] , **lowerCAmelCase__ : List[str] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).tokenizer def UpperCamelCase__ ( self : Tuple , **lowerCAmelCase__ : Any ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).image_processor def UpperCamelCase__ ( self : Tuple ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE : str = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 ) __SCREAMING_SNAKE_CASE : Tuple = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) def UpperCamelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : List[str] = BlipProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE : Any = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(_lowerCAmelCase , return_tensors="""np""" ) __SCREAMING_SNAKE_CASE : int = processor(images=_lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() __SCREAMING_SNAKE_CASE : str = BlipProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = """lower newer""" __SCREAMING_SNAKE_CASE : Optional[Any] = processor(text=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE : int = tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[int] = BlipProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE : Tuple = """lower newer""" __SCREAMING_SNAKE_CASE : str = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : List[str] = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def UpperCamelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.get_image_processor() __SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : List[Any] = BlipProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE : Union[str, Any] = processor.batch_decode(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE : int = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def UpperCamelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Union[str, Any] = BlipProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE : Tuple = """lower newer""" __SCREAMING_SNAKE_CASE : Dict = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : List[Any] = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
709
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor UpperCamelCase__ : List[str] = logging.get_logger(__name__) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , *lowerCAmelCase__ : str , **lowerCAmelCase__ : Any ): """simple docstring""" warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
178
0
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __A ( *a_ :Union[str, Any]) -> Union[str, Any]: with open(a_ , '''r''') as fh: fcntl.flock(a_ , fcntl.LOCK_EX) try: print(*a_) finally: fcntl.flock(a_ , fcntl.LOCK_UN) A = int(os.environ['''LOCAL_RANK''']) torch.cuda.set_device(local_rank) A = torch.device('''cuda''', local_rank) A = socket.gethostname() A = F'[{hostname}-{local_rank}]' try: # test distributed dist.init_process_group('''nccl''') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank A = dist.get_rank() A = dist.get_world_size() printflock(F'{gpu} is OK (global rank: {rank}/{world_size})') dist.barrier() if rank == 0: printflock(F'pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}') except Exception: printflock(F'{gpu} is broken') raise
52
"""simple docstring""" __A : int = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Any = frozenset(["prompt", "negative_prompt"]) __A : Optional[Any] = frozenset([]) __A : List[Any] = frozenset(["image"]) __A : int = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __A : Any = frozenset(["image"]) __A : Optional[int] = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Any = frozenset(["prompt", "image", "negative_prompt"]) __A : Dict = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : str = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __A : List[Any] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : Union[str, Any] = frozenset(["image", "mask_image"]) __A : Tuple = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : int = frozenset(["example_image", "image", "mask_image"]) __A : Union[str, Any] = frozenset(["class_labels"]) __A : Union[str, Any] = frozenset(["class_labels"]) __A : List[Any] = frozenset(["batch_size"]) __A : Optional[int] = frozenset([]) __A : Tuple = frozenset(["batch_size"]) __A : Union[str, Any] = frozenset([]) __A : List[str] = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Tuple = frozenset(["prompt", "negative_prompt"]) __A : Dict = frozenset(["input_tokens"]) __A : List[str] = frozenset(["input_tokens"])
602
0
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __lowerCamelCase : List[str] = logging.get_logger('''transformers.models.speecht5''') __lowerCamelCase : Union[str, Any] = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __lowerCamelCase : Any = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __lowerCamelCase : str = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __lowerCamelCase : List[str] = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __lowerCamelCase : Optional[int] = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __lowerCamelCase : Tuple = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __lowerCamelCase : Tuple = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __lowerCamelCase : Union[str, Any] = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __lowerCamelCase : Optional[int] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __lowerCamelCase : Optional[int] = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __lowerCamelCase : Dict = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __lowerCamelCase : str = [] __lowerCamelCase : Dict = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __lowerCamelCase : List[str] = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __lowerCamelCase : str = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __lowerCamelCase : Optional[Any] = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] ) -> str: """simple docstring""" for attribute in key.split(""".""" ): SCREAMING_SNAKE_CASE__ = getattr(a_ , a_ ) if weight_type is not None: SCREAMING_SNAKE_CASE__ = getattr(a_ , a_ ).shape else: SCREAMING_SNAKE_CASE__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE__ = value elif weight_type == "bias": SCREAMING_SNAKE_CASE__ = value elif weight_type == "running_mean": SCREAMING_SNAKE_CASE__ = value elif weight_type == "running_var": SCREAMING_SNAKE_CASE__ = value elif weight_type == "num_batches_tracked": SCREAMING_SNAKE_CASE__ = value else: SCREAMING_SNAKE_CASE__ = value logger.info(f"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[int] ) -> int: """simple docstring""" for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: SCREAMING_SNAKE_CASE__ = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = [] if task == "s2t": SCREAMING_SNAKE_CASE__ = hf_model.speechta.encoder.prenet.feature_encoder SCREAMING_SNAKE_CASE__ = MAPPING_S2T SCREAMING_SNAKE_CASE__ = IGNORE_KEYS_S2T elif task == "t2s": SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = MAPPING_T2S SCREAMING_SNAKE_CASE__ = IGNORE_KEYS_T2S elif task == "s2s": SCREAMING_SNAKE_CASE__ = hf_model.speechta.encoder.prenet.feature_encoder SCREAMING_SNAKE_CASE__ = MAPPING_S2S SCREAMING_SNAKE_CASE__ = IGNORE_KEYS_S2S else: raise ValueError(f"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(a_ , a_ ): logger.info(f"""{name} was ignored""" ) continue SCREAMING_SNAKE_CASE__ = False if "conv_layers" in name: load_conv_layer( a_ , a_ , a_ , a_ , hf_model.config.feat_extract_norm == """group""" , ) SCREAMING_SNAKE_CASE__ = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: SCREAMING_SNAKE_CASE__ = key.split(""".*.""" ) if prefix in name and suffix in name: SCREAMING_SNAKE_CASE__ = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: SCREAMING_SNAKE_CASE__ = True if "*" in mapped_key: SCREAMING_SNAKE_CASE__ = name.split(a_ )[0].split(""".""" )[-2] SCREAMING_SNAKE_CASE__ = mapped_key.replace("""*""" , a_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE__ = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE__ = '''weight_v''' elif "bias" in name: SCREAMING_SNAKE_CASE__ = '''bias''' elif "weight" in name: SCREAMING_SNAKE_CASE__ = '''weight''' elif "running_mean" in name: SCREAMING_SNAKE_CASE__ = '''running_mean''' elif "running_var" in name: SCREAMING_SNAKE_CASE__ = '''running_var''' elif "num_batches_tracked" in name: SCREAMING_SNAKE_CASE__ = '''num_batches_tracked''' else: SCREAMING_SNAKE_CASE__ = None set_recursively(a_ , a_ , a_ , a_ , a_ ) continue if not is_used: unused_weights.append(a_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = full_name.split("""conv_layers.""" )[-1] SCREAMING_SNAKE_CASE__ = name.split(""".""" ) SCREAMING_SNAKE_CASE__ = int(items[0] ) SCREAMING_SNAKE_CASE__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(a_ ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Any=None , __UpperCamelCase : Union[str, Any]=None , ) -> Optional[Any]: """simple docstring""" if config_path is not None: SCREAMING_SNAKE_CASE__ = SpeechTaConfig.from_pretrained(a_ ) else: SCREAMING_SNAKE_CASE__ = SpeechTaConfig() if task == "s2t": SCREAMING_SNAKE_CASE__ = config.max_text_positions SCREAMING_SNAKE_CASE__ = SpeechTaForSpeechToText(a_ ) elif task == "t2s": SCREAMING_SNAKE_CASE__ = 18_76 SCREAMING_SNAKE_CASE__ = 6_00 SCREAMING_SNAKE_CASE__ = config.max_speech_positions SCREAMING_SNAKE_CASE__ = SpeechTaForTextToSpeech(a_ ) elif task == "s2s": SCREAMING_SNAKE_CASE__ = 18_76 SCREAMING_SNAKE_CASE__ = config.max_speech_positions SCREAMING_SNAKE_CASE__ = SpeechTaForSpeechToSpeech(a_ ) else: raise ValueError(f"""Unknown task name: {task}""" ) if vocab_path: SCREAMING_SNAKE_CASE__ = SpeechTaTokenizer(a_ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ = AddedToken("""<mask>""" , lstrip=a_ , rstrip=a_ ) SCREAMING_SNAKE_CASE__ = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) SCREAMING_SNAKE_CASE__ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE__ = SpeechTaProcessor(tokenizer=a_ , feature_extractor=a_ ) processor.save_pretrained(a_ ) SCREAMING_SNAKE_CASE__ = torch.load(a_ ) recursively_load_weights(fairseq_checkpoint["""model"""] , a_ , a_ ) model.save_pretrained(a_ ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(a_ ) model.push_to_hub(a_ ) if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __lowerCamelCase : Any = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
713
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> int: """simple docstring""" return 1 / (1 + np.exp(-z )) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return (-y * np.log(__UpperCamelCase ) - (1 - y) * np.log(1 - h )).mean() def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = np.dot(__UpperCamelCase , __UpperCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(__UpperCamelCase ) ) ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=7_00_00 ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = np.zeros(x.shape[1] ) for iterations in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = np.dot(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE__ = sigmoid_function(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = np.dot(x.T , h - y ) / y.size SCREAMING_SNAKE_CASE__ = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE__ = np.dot(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE__ = sigmoid_function(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = cost_function(__UpperCamelCase , __UpperCamelCase ) if iterations % 1_00 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __lowerCamelCase : List[Any] = datasets.load_iris() __lowerCamelCase : List[Any] = iris.data[:, :2] __lowerCamelCase : Dict = (iris.target != 0) * 1 __lowerCamelCase : List[str] = 0.1 __lowerCamelCase : str = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Tuple: """simple docstring""" return sigmoid_function( np.dot(__UpperCamelCase , __UpperCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((__lowerCamelCase) , (__lowerCamelCase)) : int = (x[:, 0].min(), x[:, 0].max()) ((__lowerCamelCase) , (__lowerCamelCase)) : List[Any] = (x[:, 1].min(), x[:, 1].max()) ((__lowerCamelCase) , (__lowerCamelCase)) : List[Any] = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __lowerCamelCase : Optional[int] = np.c_[xxa.ravel(), xxa.ravel()] __lowerCamelCase : Optional[int] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
379
0
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available lowercase__ : int = logging.getLogger(__name__) @dataclass class lowercase_ : """simple docstring""" UpperCAmelCase_ : str UpperCAmelCase_ : List[str] UpperCAmelCase_ : Optional[List[str]] @dataclass class lowercase_ : """simple docstring""" UpperCAmelCase_ : List[int] UpperCAmelCase_ : List[int] UpperCAmelCase_ : Optional[List[int]] = None UpperCAmelCase_ : Optional[List[int]] = None class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = """train""" UpperCAmelCase_ : Any = """dev""" UpperCAmelCase_ : int = """test""" class lowercase_ : """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->List[InputExample]: raise NotImplementedError @staticmethod def SCREAMING_SNAKE_CASE_ ( __SCREAMING_SNAKE_CASE ) ->List[str]: raise NotImplementedError @staticmethod def SCREAMING_SNAKE_CASE_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=-100 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=True , ) ->List[InputFeatures]: lowerCAmelCase = {label: i for i, label in enumerate(__SCREAMING_SNAKE_CASE )} lowerCAmelCase = [] for ex_index, example in enumerate(__SCREAMING_SNAKE_CASE ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' , __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = [] lowerCAmelCase = [] for word, label in zip(example.words , example.labels ): lowerCAmelCase = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(__SCREAMING_SNAKE_CASE ) > 0: tokens.extend(__SCREAMING_SNAKE_CASE ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(__SCREAMING_SNAKE_CASE ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. lowerCAmelCase = tokenizer.num_special_tokens_to_add() if len(__SCREAMING_SNAKE_CASE ) > max_seq_length - special_tokens_count: lowerCAmelCase = tokens[: (max_seq_length - special_tokens_count)] lowerCAmelCase = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] lowerCAmelCase = [sequence_a_segment_id] * len(__SCREAMING_SNAKE_CASE ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: lowerCAmelCase = [cls_token] + tokens lowerCAmelCase = [pad_token_label_id] + label_ids lowerCAmelCase = [cls_token_segment_id] + segment_ids lowerCAmelCase = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. lowerCAmelCase = [1 if mask_padding_with_zero else 0] * len(__SCREAMING_SNAKE_CASE ) # Zero-pad up to the sequence length. lowerCAmelCase = max_seq_length - len(__SCREAMING_SNAKE_CASE ) if pad_on_left: lowerCAmelCase = ([pad_token] * padding_length) + input_ids lowerCAmelCase = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask lowerCAmelCase = ([pad_token_segment_id] * padding_length) + segment_ids lowerCAmelCase = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(__SCREAMING_SNAKE_CASE ) == max_seq_length assert len(__SCREAMING_SNAKE_CASE ) == max_seq_length assert len(__SCREAMING_SNAKE_CASE ) == max_seq_length assert len(__SCREAMING_SNAKE_CASE ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(__SCREAMING_SNAKE_CASE ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(__SCREAMING_SNAKE_CASE ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(__SCREAMING_SNAKE_CASE ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(__SCREAMING_SNAKE_CASE ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(__SCREAMING_SNAKE_CASE ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: lowerCAmelCase = None features.append( InputFeatures( input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , label_ids=__SCREAMING_SNAKE_CASE ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : List[InputFeatures] UpperCAmelCase_ : int = nn.CrossEntropyLoss().ignore_index def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE = Split.train , ) ->Any: # Load data features from cache or dataset file lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(__SCREAMING_SNAKE_CASE ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase = cached_features_file + '''.lock''' with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not overwrite_cache: logger.info(F"Loading features from cached file {cached_features_file}" ) lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE ) else: logger.info(F"Creating features from dataset file at {data_dir}" ) lowerCAmelCase = token_classification_task.read_examples_from_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # TODO clean up all this to leverage built-in features of tokenizers lowerCAmelCase = token_classification_task.convert_examples_to_features( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__SCREAMING_SNAKE_CASE , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F"Saving features into cached file {cached_features_file}" ) torch.save(self.features , __SCREAMING_SNAKE_CASE ) def __len__( self ) ->str: return len(self.features ) def __getitem__( self , __SCREAMING_SNAKE_CASE ) ->InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class lowercase_ : """simple docstring""" UpperCAmelCase_ : List[InputFeatures] UpperCAmelCase_ : int = -100 def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE = Split.train , ) ->List[Any]: lowerCAmelCase = token_classification_task.read_examples_from_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # TODO clean up all this to leverage built-in features of tokenizers lowerCAmelCase = token_classification_task.convert_examples_to_features( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__SCREAMING_SNAKE_CASE , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: lowerCAmelCase = tf.data.Dataset.from_generator( __SCREAMING_SNAKE_CASE , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: lowerCAmelCase = tf.data.Dataset.from_generator( __SCREAMING_SNAKE_CASE , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: lowerCAmelCase = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self ) ->Union[str, Any]: return len(self.features ) def __getitem__( self , __SCREAMING_SNAKE_CASE ) ->InputFeatures: return self.features[i]
312
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys lowercase__ : Dict = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') lowercase__ : str = subprocess.check_output(f'git diff --name-only {fork_point_sha}'.split()).decode('''utf-8''').split() lowercase__ : List[Any] = '''|'''.join(sys.argv[1:]) lowercase__ : Tuple = re.compile(Rf'^({joined_dirs}).*?\.py$') lowercase__ : Tuple = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
312
1
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase_ : Any = '▁' lowerCAmelCase_ : int = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase_ : List[Any] = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } lowerCAmelCase_ : Optional[int] = { 'facebook/m2m100_418M': 10_24, } # fmt: off lowerCAmelCase_ : Optional[int] = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =VOCAB_FILES_NAMES __a =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a =PRETRAINED_VOCAB_FILES_MAP __a =['input_ids', 'attention_mask'] __a =[] __a =[] def __init__( self : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : Optional[Any]=None , __a : List[Any]=None , __a : Dict="<s>" , __a : Optional[Any]="</s>" , __a : Any="</s>" , __a : int="<pad>" , __a : str="<unk>" , __a : int="m2m100" , __a : Optional[Dict[str, Any]] = None , __a : int=8 , **__a : List[Any] , ): _a = {} if sp_model_kwargs is None else sp_model_kwargs _a = language_codes _a = FAIRSEQ_LANGUAGE_CODES[language_codes] _a = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} _a = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__a ) for lang_code in fairseq_language_code if self.get_lang_token(__a ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__a , tgt_lang=__a , bos_token=__a , eos_token=__a , sep_token=__a , unk_token=__a , pad_token=__a , language_codes=__a , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__a , **__a , ) _a = vocab_file _a = load_json(__a ) _a = {v: k for k, v in self.encoder.items()} _a = spm_file _a = load_spm(__a , self.sp_model_kwargs ) _a = len(self.encoder ) _a = { self.get_lang_token(__a ): self.encoder_size + i for i, lang_code in enumerate(__a ) } _a = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__a )} _a = {v: k for k, v in self.lang_token_to_id.items()} _a = src_lang if src_lang is not None else "en" _a = tgt_lang _a = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _a = num_madeup_words @property def UpperCamelCase__ ( self : int ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def UpperCamelCase__ ( self : str ): return self._src_lang @src_lang.setter def UpperCamelCase__ ( self : Tuple , __a : str ): _a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase__ ( self : Any , __a : str ): return self.sp_model.encode(__a , out_type=__a ) def UpperCamelCase__ ( self : Dict , __a : Dict ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__a , self.encoder[self.unk_token] ) def UpperCamelCase__ ( self : Union[str, Any] , __a : int ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__a , self.unk_token ) def UpperCamelCase__ ( self : List[Any] , __a : Dict ): _a = [] _a = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__a ) + token _a = [] else: current_sub_tokens.append(__a ) out_string += self.sp_model.decode(__a ) return out_string.strip() def UpperCamelCase__ ( self : Optional[Any] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) _a = [1] * len(self.prefix_tokens ) _a = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__a )) + suffix_ones return prefix_ones + ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones def UpperCamelCase__ ( self : Dict , __a : List[int] , __a : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase__ ( self : Optional[int] ): _a = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : int ): _a = self.__dict__.copy() _a = None return state def __setstate__( self : int , __a : Dict ): _a = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _a = {} _a = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCamelCase__ ( self : Any , __a : str , __a : Optional[str] = None ): _a = Path(__a ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) _a = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) _a = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , __a ) if os.path.abspath(self.spm_file ) != os.path.abspath(__a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __a ) elif not os.path.isfile(self.spm_file ): with open(__a , "wb" ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(__a ) return (str(__a ), str(__a )) def UpperCamelCase__ ( self : Tuple , __a : List[str] , __a : str = "en" , __a : Optional[List[str]] = None , __a : str = "ro" , **__a : Union[str, Any] , ): _a = src_lang _a = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__a , __a , **__a ) def UpperCamelCase__ ( self : Tuple , __a : int , __a : Optional[str] , __a : Optional[str] , **__a : int ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) _a = src_lang _a = self(__a , add_special_tokens=__a , **__a ) _a = self.get_lang_id(__a ) _a = tgt_lang_id return inputs def UpperCamelCase__ ( self : Any ): self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase__ ( self : Optional[Any] ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase__ ( self : Optional[Any] , __a : str ): _a = self.get_lang_token(__a ) _a = self.lang_token_to_id[lang_token] _a = [self.cur_lang_id] _a = [self.eos_token_id] def UpperCamelCase__ ( self : Optional[int] , __a : str ): _a = self.get_lang_token(__a ) _a = self.lang_token_to_id[lang_token] _a = [self.cur_lang_id] _a = [self.eos_token_id] def UpperCamelCase__ ( self : List[Any] , __a : str ): return self.lang_code_to_token[lang] def UpperCamelCase__ ( self : Optional[Any] , __a : str ): _a = self.get_lang_token(__a ) return self.lang_token_to_id[lang_token] def _lowerCamelCase ( lowercase : str , lowercase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: _a = sentencepiece.SentencePieceProcessor(**lowercase ) spm.Load(str(lowercase ) ) return spm def _lowerCamelCase ( lowercase : str ) -> Union[Dict, List]: with open(lowercase , "r" ) as f: return json.load(lowercase ) def _lowerCamelCase ( lowercase : int , lowercase : str ) -> None: with open(lowercase , "w" ) as f: json.dump(lowercase , lowercase , indent=2 )
706
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline lowerCAmelCase_ : Any = 'path-to-your-trained-model' lowerCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('cuda') lowerCAmelCase_ : Optional[Any] = 'A photo of sks dog in a bucket' lowerCAmelCase_ : Tuple = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('dog-bucket.png')
521
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCAmelCase : Dict = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def A_( A : str , A : Tuple=None , A : int=None , A : Union[str, Any]=None): UpperCamelCase = True while ask_again: UpperCamelCase = input(A) try: if default is not None and len(A) == 0: return default return convert_value(A) if convert_value is not None else result except Exception: if error_message is not None: print(A) def A_( A : Any , A : Union[str, Any]=[] , A : Dict=None , A : List[str]=0): UpperCamelCase = BulletMenu(A , A) UpperCamelCase = menu.run(default_choice=A) return convert_value(A) if convert_value is not None else result def A_( A : Tuple): UpperCamelCase = int(A) return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value]) def A_( A : List[str]): UpperCamelCase = int(A) return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value]) def A_( A : str): UpperCamelCase = int(A) return DynamoBackend(DYNAMO_BACKENDS[value]).value def A_( A : Any): UpperCamelCase = int(A) return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value]) def A_( A : Optional[Any]): UpperCamelCase = int(A) return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value]) def A_( A : int): return {"yes": True, "no": False}[value.lower()] class SCREAMING_SNAKE_CASE__ ( argparse.RawDescriptionHelpFormatter): def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> int: '''simple docstring''' UpperCamelCase = super()._format_usage(A_ , A_ , A_ , A_ ) UpperCamelCase = usage.replace('<command> [<args>] ' , '' ) return usage
3
from typing import List from .keymap import KEYMAP, get_character def _snake_case ( __snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += [key] setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator def _snake_case ( *__snake_case ): def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case , '''handle_key''' , [] ) handle += keys setattr(__snake_case , '''handle_key''' , __snake_case ) return func return decorator class lowerCAmelCase_ ( __lowercase ): def __new__( cls : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = super().__new__(cls , _A , _A , _A ) if not hasattr(_A , '''key_handler''' ): setattr(_A , '''key_handler''' , {} ) setattr(_A , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCamelCase = getattr(_A , '''handle_key''' , [] ) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str ): _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(_A ) _UpperCamelCase = cls.key_handler.get(_A ) if handler: _UpperCamelCase = char return handler(cls ) else: return None def _snake_case ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
10
0
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowerCAmelCase : str = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _lowerCAmelCase : Any = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def lowerCAmelCase ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = SavedModel() UpperCAmelCase__ = [] with open(os.path.join(snake_case__ , "utils" , "tf_ops" , "onnx.json" ) ) as f: UpperCAmelCase__ = json.load(snake_case__ )["opsets"] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(snake_case__ )] ) with open(snake_case__ , "rb" ) as f: saved_model.ParseFromString(f.read() ) UpperCAmelCase__ = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCAmelCase__ = sorted(snake_case__ ) UpperCAmelCase__ = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(snake_case__ ) if strict and len(snake_case__ ) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(snake_case__ ) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''' ) print(*snake_case__ , sep="\n" ) else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=1_2, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) _lowerCAmelCase : Optional[Any] = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
717
import math def lowerCAmelCase ( _lowerCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def lowerCAmelCase ( _lowerCAmelCase : float = 1 / 1_2345 ): """simple docstring""" UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 3 while True: UpperCAmelCase__ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): UpperCAmelCase__ = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
364
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Any = logging.get_logger(__name__) lowercase : List[str] = { """google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _a (__A ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = """pegasus""" lowerCAmelCase_ : List[Any] = ["""past_key_values"""] lowerCAmelCase_ : Tuple = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self ,__a=50_265 ,__a=1_024 ,__a=12 ,__a=4_096 ,__a=16 ,__a=12 ,__a=4_096 ,__a=16 ,__a=0.0 ,__a=0.0 ,__a=True ,__a=True ,__a="gelu" ,__a=1_024 ,__a=0.1 ,__a=0.0 ,__a=0.0 ,__a=0.02 ,__a=0 ,__a=False ,__a=0 ,__a=1 ,__a=1 ,**__a ,) -> Tuple: snake_case : Tuple = vocab_size snake_case : int = max_position_embeddings snake_case : List[str] = d_model snake_case : Tuple = encoder_ffn_dim snake_case : Optional[Any] = encoder_layers snake_case : List[str] = encoder_attention_heads snake_case : Any = decoder_ffn_dim snake_case : List[str] = decoder_layers snake_case : Any = decoder_attention_heads snake_case : List[Any] = dropout snake_case : Dict = attention_dropout snake_case : Tuple = activation_dropout snake_case : str = activation_function snake_case : Tuple = init_std snake_case : List[Any] = encoder_layerdrop snake_case : List[Any] = decoder_layerdrop snake_case : str = use_cache snake_case : Tuple = encoder_layers snake_case : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__A ,eos_token_id=__A ,is_encoder_decoder=__A ,decoder_start_token_id=__A ,forced_eos_token_id=__A ,**__A ,) @property def snake_case_ ( self ) -> Union[str, Any]: return self.encoder_attention_heads @property def snake_case_ ( self ) -> Optional[int]: return self.d_model
116
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset SCREAMING_SNAKE_CASE = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class __UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , __A ): super().__init__() __a = torchvision.models.resnetaaa(pretrained=__A ) __a = list(model.children() )[:-2] __a = nn.Sequential(*__A ) __a = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def snake_case_ ( self , __A ): # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 __a = self.pool(self.model(__A ) ) __a = torch.flatten(__A , start_dim=2 ) __a = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class __UpperCAmelCase ( __A ): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ): __a = [json.loads(__A ) for l in open(__A )] __a = os.path.dirname(__A ) __a = tokenizer __a = labels __a = len(__A ) __a = max_seq_length __a = transforms def __len__( self ): return len(self.data ) def __getitem__( self , __A ): __a = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=__A ) ) __a , __a , __a = sentence[0], sentence[1:-1], sentence[-1] __a = sentence[: self.max_seq_length] __a = torch.zeros(self.n_classes ) __a = 1 __a = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) __a = self.transforms(__A ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def snake_case_ ( self ): __a = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def a (lowerCAmelCase__ ): __a = [len(row["""sentence"""] ) for row in batch] __a , __a = len(lowerCAmelCase__ ), max(lowerCAmelCase__ ) __a = torch.zeros(lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.long ) __a = torch.zeros(lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ): __a = input_row["""sentence"""] __a = 1 __a = torch.stack([row["""image"""] for row in batch] ) __a = torch.stack([row["""label"""] for row in batch] ) __a = torch.stack([row["""image_start_token"""] for row in batch] ) __a = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def a (): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def a (): return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4_6_7_7_7_0_4_4, 0.4_4_5_3_1_4_2_9, 0.4_0_6_6_1_0_1_7] , std=[0.1_2_2_2_1_9_9_4, 0.1_2_1_4_5_8_3_5, 0.1_4_3_8_0_4_6_9] , ), ] )
99
0
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE : def __init__( self , lowerCamelCase , lowerCamelCase=12 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=32 , lowerCamelCase=2 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=5_12 , lowerCamelCase=0.0_2 , lowerCamelCase=0 , lowerCamelCase=None , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = projection_dim snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = dropout snake_case__ = attention_dropout snake_case__ = max_position_embeddings snake_case__ = initializer_range snake_case__ = scope snake_case__ = bos_token_id def A_ ( self ): snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: snake_case__ = input_mask.numpy() snake_case__ , snake_case__ = input_mask.shape snake_case__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase ): snake_case__ = 1 snake_case__ = 0 snake_case__ = self.get_config() return config, input_ids, tf.convert_to_tensor(lowerCamelCase ) def A_ ( self ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): snake_case__ = TFBlipTextModel(config=lowerCamelCase ) snake_case__ = model(lowerCamelCase , attention_mask=lowerCamelCase , training=lowerCamelCase ) snake_case__ = model(lowerCamelCase , training=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A_ ( self ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( __UpperCamelCase , unittest.TestCase ): _A : Dict = (TFBlipTextModel,) if is_tf_available() else () _A : int = False _A : Tuple = False _A : int = False def A_ ( self ): snake_case__ = BlipTextModelTester(self ) snake_case__ = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def A_ ( self ): pass def A_ ( self ): pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def A_ ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def A_ ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def A_ ( self ): pass @slow def A_ ( self ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = TFBlipTextModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def A_ ( self , lowerCamelCase=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=lowerCamelCase )
530
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): snake_case__ , snake_case__ = set(__lowerCAmelCase ), [start] while stack: snake_case__ = stack.pop() explored.add(__lowerCAmelCase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__lowerCAmelCase ) return explored __magic_name__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
530
1
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger SCREAMING_SNAKE_CASE__ : Dict = get_logger(__name__) class UpperCAmelCase_ ( enum.Enum ): __lowerCamelCase = 'all_checks' __lowerCamelCase = 'basic_checks' __lowerCamelCase = 'no_checks' class UpperCAmelCase_ ( __lowerCamelCase ): pass class UpperCAmelCase_ ( __lowerCamelCase ): pass class UpperCAmelCase_ ( __lowerCamelCase ): pass class UpperCAmelCase_ ( __lowerCamelCase ): pass def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None ) -> Any: '''simple docstring''' if expected_checksums is None: logger.info("""Unable to verify checksums.""" ) return if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) UpperCAmelCase__ : str = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] UpperCAmelCase__ : Dict = """ for """ + verification_name if verification_name is not None else """""" if len(__lowerCamelCase ) > 0: raise NonMatchingChecksumError( F"Checksums didn't match{for_verification_name}:\n" F"{bad_urls}\n" """Set `verification_mode='no_checks'` to skip checksums verification and ignore this error""" ) logger.info("""All the checksums matched successfully""" + for_verification_name ) class UpperCAmelCase_ ( __lowerCamelCase ): pass class UpperCAmelCase_ ( __lowerCamelCase ): pass class UpperCAmelCase_ ( __lowerCamelCase ): pass class UpperCAmelCase_ ( __lowerCamelCase ): pass def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' if expected_splits is None: logger.info("""Unable to verify splits sizes.""" ) return if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise UnexpectedSplits(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) UpperCAmelCase__ : List[Any] = [ {"""expected""": expected_splits[name], """recorded""": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__lowerCamelCase ) > 0: raise NonMatchingSplitsSizesError(str(__lowerCamelCase ) ) logger.info("""All the splits matched successfully.""" ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase = True ) -> dict: '''simple docstring''' if record_checksum: UpperCAmelCase__ : List[Any] = shaaaa() with open(__lowerCamelCase , """rb""" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B"""""" ): m.update(__lowerCamelCase ) UpperCAmelCase__ : int = m.hexdigest() else: UpperCAmelCase__ : Dict = None return {"num_bytes": os.path.getsize(__lowerCamelCase ), "checksum": checksum} def _lowerCamelCase ( __lowerCamelCase ) -> List[Any]: '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
79
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCamelCase__ ( a_): """simple docstring""" def __init__( self : Union[str, Any] ): '''simple docstring''' __magic_name__ = [] def a__ ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , **UpperCamelCase_ : int ): '''simple docstring''' self.events.append('on_init_end' ) def a__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , **UpperCamelCase_ : str ): '''simple docstring''' self.events.append('on_train_begin' ) def a__ ( self : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Dict ): '''simple docstring''' self.events.append('on_train_end' ) def a__ ( self : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , **UpperCamelCase_ : Optional[Any] ): '''simple docstring''' self.events.append('on_epoch_begin' ) def a__ ( self : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , **UpperCamelCase_ : List[Any] ): '''simple docstring''' self.events.append('on_epoch_end' ) def a__ ( self : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Optional[Any] ): '''simple docstring''' self.events.append('on_step_begin' ) def a__ ( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Any , **UpperCamelCase_ : List[Any] ): '''simple docstring''' self.events.append('on_step_end' ) def a__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , **UpperCamelCase_ : Dict ): '''simple docstring''' self.events.append('on_evaluate' ) def a__ ( self : str , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , **UpperCamelCase_ : Any ): '''simple docstring''' self.events.append('on_predict' ) def a__ ( self : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , **UpperCamelCase_ : Optional[int] ): '''simple docstring''' self.events.append('on_save' ) def a__ ( self : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Optional[int] ): '''simple docstring''' self.events.append('on_log' ) def a__ ( self : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , **UpperCamelCase_ : List[Any] ): '''simple docstring''' self.events.append('on_prediction_step' ) @require_torch class UpperCamelCase__ ( unittest.TestCase): """simple docstring""" def a__ ( self : Optional[Any] ): '''simple docstring''' __magic_name__ = tempfile.mkdtemp() def a__ ( self : List[Any] ): '''simple docstring''' shutil.rmtree(self.output_dir ) def a__ ( self : List[str] , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : List[Any]=0 , UpperCamelCase_ : Optional[int]=6_4 , UpperCamelCase_ : Optional[int]=6_4 , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[Any]=False , **UpperCamelCase_ : str ): '''simple docstring''' __magic_name__ = RegressionDataset(length=UpperCamelCase_ ) __magic_name__ = RegressionDataset(length=UpperCamelCase_ ) __magic_name__ = RegressionModelConfig(a=UpperCamelCase_ , b=UpperCamelCase_ ) __magic_name__ = RegressionPreTrainedModel(UpperCamelCase_ ) __magic_name__ = TrainingArguments(self.output_dir , disable_tqdm=UpperCamelCase_ , report_to=[] , **UpperCamelCase_ ) return Trainer( UpperCamelCase_ , UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , callbacks=UpperCamelCase_ , ) def a__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Dict ): '''simple docstring''' self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) # Order doesn't matter __magic_name__ = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : cb.__name__ if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cb.__class__.__name__ ) __magic_name__ = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : cb.__name__ if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cb.__class__.__name__ ) for cba, cba in zip(UpperCamelCase_ , UpperCamelCase_ ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and not isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(UpperCamelCase_ , cba.__class__ ) elif not isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(cba.__class__ , UpperCamelCase_ ) else: self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def a__ ( self : Union[str, Any] , UpperCamelCase_ : Any ): '''simple docstring''' __magic_name__ = ['on_init_end', 'on_train_begin'] __magic_name__ = 0 __magic_name__ = len(trainer.get_eval_dataloader() ) __magic_name__ = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(UpperCamelCase_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def a__ ( self : List[Any] ): '''simple docstring''' __magic_name__ = self.get_trainer() __magic_name__ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) # Callbacks passed at init are added to the default callbacks __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __magic_name__ = self.get_trainer(disable_tqdm=UpperCamelCase_ ) __magic_name__ = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) def a__ ( self : List[str] ): '''simple docstring''' __magic_name__ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __magic_name__ = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(UpperCamelCase_ ) expected_callbacks.remove(UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) __magic_name__ = self.get_trainer() __magic_name__ = trainer.pop_callback(UpperCamelCase_ ) self.assertEqual(cb.__class__ , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) trainer.add_callback(UpperCamelCase_ ) expected_callbacks.insert(0 , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) # We can also add, pop, or remove by instance __magic_name__ = self.get_trainer() __magic_name__ = trainer.callback_handler.callbacks[0] trainer.remove_callback(UpperCamelCase_ ) expected_callbacks.remove(UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) __magic_name__ = self.get_trainer() __magic_name__ = trainer.callback_handler.callbacks[0] __magic_name__ = trainer.pop_callback(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) trainer.add_callback(UpperCamelCase_ ) expected_callbacks.insert(0 , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) def a__ ( self : Any ): '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=UpperCamelCase_ ) __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) # Independent log/save/eval __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) # A bit of everything __magic_name__ = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: __magic_name__ = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(UpperCamelCase_ ) in warn_mock.call_args[0][0]
545
0
import math import flax.linen as nn import jax.numpy as jnp def a ( snake_case__: jnp.ndarray , snake_case__: int , snake_case__: float = 1 , snake_case__: float = 1 , snake_case__: float = 1.0e4 , snake_case__: bool = False , snake_case__: float = 1.0 , ): '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F'''Embedding dimension {embedding_dim} should be even''' lowercase_ = float(embedding_dim // 2 ) lowercase_ = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowercase_ = min_timescale * jnp.exp(jnp.arange(snake_case__ , dtype=jnp.floataa ) * -log_timescale_increment ) lowercase_ = jnp.expand_dims(snake_case__ , 1 ) * jnp.expand_dims(snake_case__ , 0 ) # scale embeddings lowercase_ = scale * emb if flip_sin_to_cos: lowercase_ = jnp.concatenate([jnp.cos(snake_case__ ), jnp.sin(snake_case__ )] , axis=1 ) else: lowercase_ = jnp.concatenate([jnp.sin(snake_case__ ), jnp.cos(snake_case__ )] , axis=1 ) lowercase_ = jnp.reshape(snake_case__ , [jnp.shape(snake_case__ )[0], embedding_dim] ) return signal class lowercase__( nn.Module ): """simple docstring""" a :int = 32 a :jnp.dtype = jnp.floataa @nn.compact def __call__( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[str]: lowercase_ = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_1''' )(SCREAMING_SNAKE_CASE_ ) lowercase_ = nn.silu(SCREAMING_SNAKE_CASE_ ) lowercase_ = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_2''' )(SCREAMING_SNAKE_CASE_ ) return temb class lowercase__( nn.Module ): """simple docstring""" a :int = 32 a :bool = False a :float = 1 @nn.compact def __call__( self : Any , SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: return get_sinusoidal_embeddings( SCREAMING_SNAKE_CASE_ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
720
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('''socket.socket''' ) @patch('''builtins.open''' ) def a ( snake_case__: Optional[int] , snake_case__: List[Any] ): '''simple docstring''' # ===== initialization ===== lowercase_ = Mock() lowercase_ = conn, Mock() lowercase_ = iter([1, None] ) lowercase_ = lambda snake_case__ : next(snake_case__ ) # ===== invoke ===== send_file(filename='''mytext.txt''' , testing=snake_case__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
409
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class _snake_case ( _a ): '''simple docstring''' UpperCamelCase__ ="distilbert" UpperCamelCase__ ={ "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self : Union[str, Any] , snake_case : List[str]=30_522 , snake_case : str=512 , snake_case : Optional[int]=False , snake_case : Optional[Any]=6 , snake_case : Optional[int]=12 , snake_case : Any=768 , snake_case : Optional[int]=4 * 768 , snake_case : Tuple=0.1 , snake_case : Optional[Any]=0.1 , snake_case : Tuple="gelu" , snake_case : int=0.02 , snake_case : List[Any]=0.1 , snake_case : Any=0.2 , snake_case : Dict=0 , **snake_case : Any , ): UpperCAmelCase_ :List[str] = vocab_size UpperCAmelCase_ :int = max_position_embeddings UpperCAmelCase_ :List[str] = sinusoidal_pos_embds UpperCAmelCase_ :List[Any] = n_layers UpperCAmelCase_ :List[Any] = n_heads UpperCAmelCase_ :Any = dim UpperCAmelCase_ :Dict = hidden_dim UpperCAmelCase_ :Any = dropout UpperCAmelCase_ :Union[str, Any] = attention_dropout UpperCAmelCase_ :Optional[int] = activation UpperCAmelCase_ :List[Any] = initializer_range UpperCAmelCase_ :int = qa_dropout UpperCAmelCase_ :str = seq_classif_dropout super().__init__(**snake_case , pad_token_id=snake_case ) class _snake_case ( _a ): '''simple docstring''' @property def snake_case_ ( self : Any ): if self.task == "multiple-choice": UpperCAmelCase_ :str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase_ :str = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
608
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : List[str] = logging.get_logger(__name__) _UpperCamelCase : List[str] = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( _a): lowerCamelCase__ : List[str] = "decision_transformer" lowerCamelCase__ : int = ["past_key_values"] lowerCamelCase__ : Tuple = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , a=1_7 , a=4 , a=1_2_8 , a=4_0_9_6 , a=True , a=1 , a=1_0_2_4 , a=3 , a=1 , a=None , a="relu" , a=0.1 , a=0.1 , a=0.1 , a=1e-5 , a=0.02 , a=True , a=True , a=5_0_2_5_6 , a=5_0_2_5_6 , a=False , a=False , **a , ) -> Any: lowercase__ : Optional[Any] = state_dim lowercase__ : Tuple = act_dim lowercase__ : Any = hidden_size lowercase__ : Tuple = max_ep_len lowercase__ : Optional[Any] = action_tanh lowercase__ : Union[str, Any] = vocab_size lowercase__ : Tuple = n_positions lowercase__ : Tuple = n_layer lowercase__ : Tuple = n_head lowercase__ : Union[str, Any] = n_inner lowercase__ : Dict = activation_function lowercase__ : int = resid_pdrop lowercase__ : List[str] = embd_pdrop lowercase__ : int = attn_pdrop lowercase__ : Any = layer_norm_epsilon lowercase__ : Any = initializer_range lowercase__ : Any = scale_attn_weights lowercase__ : Optional[int] = use_cache lowercase__ : Optional[Any] = scale_attn_by_inverse_layer_idx lowercase__ : Tuple = reorder_and_upcast_attn lowercase__ : Union[str, Any] = bos_token_id lowercase__ : List[Any] = eos_token_id super().__init__(bos_token_id=a , eos_token_id=a , **a )
599
0
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a_ : int = logging.get_logger(__name__) class __UpperCamelCase ( lowerCamelCase__ ): def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[Any]: if isinstance(__lowerCamelCase , __lowerCamelCase ): a__ = [label.strip() for label in labels.split(''',''' ) if label.strip()] return labels def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: if len(__lowerCamelCase ) == 0 or len(__lowerCamelCase ) == 0: raise ValueError('''You must include at least one label and at least one sequence.''' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( '''The provided hypothesis_template "{}" was not able to be formatted with the target labels. ''' '''Make sure the passed template includes formatting syntax such as {{}} where the label should go.''' ).format(__lowerCamelCase ) ) if isinstance(__lowerCamelCase , __lowerCamelCase ): a__ = [sequences] a__ = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__lowerCamelCase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(lowerCamelCase__ ) class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self , SCREAMING_SNAKE_CASE=ZeroShotClassificationArgumentHandler() , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple: a__ = args_parser super().__init__(*__lowerCamelCase , **__lowerCamelCase ) if self.entailment_id == -1: logger.warning( '''Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ''' '''-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.''' ) @property def _UpperCAmelCase ( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('''entail''' ): return ind return -1 def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=TruncationStrategy.ONLY_FIRST , **SCREAMING_SNAKE_CASE ) -> Optional[int]: a__ = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( '''Tokenizer was not supporting padding necessary for zero-shot, attempting to use ''' ''' `pad_token=eos_token`''' ) a__ = self.tokenizer.eos_token try: a__ = self.tokenizer( __lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , ) except Exception as e: if "too short" in str(__lowerCamelCase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. a__ = self.tokenizer( __lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , padding=__lowerCamelCase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _UpperCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if kwargs.get('''multi_class''' , __lowerCamelCase ) is not None: a__ = kwargs['''multi_class'''] logger.warning( '''The `multi_class` argument has been deprecated and renamed to `multi_label`. ''' '''`multi_class` will be removed in a future version of Transformers.''' ) a__ = {} if "candidate_labels" in kwargs: a__ = self._args_parser._parse_labels(kwargs['''candidate_labels'''] ) if "hypothesis_template" in kwargs: a__ = kwargs['''hypothesis_template'''] a__ = {} if "multi_label" in kwargs: a__ = kwargs['''multi_label'''] return preprocess_params, {}, postprocess_params def __call__( self , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Dict: if len(__lowerCamelCase ) == 0: pass elif len(__lowerCamelCase ) == 1 and "candidate_labels" not in kwargs: a__ = args[0] else: raise ValueError(f"Unable to understand extra arguments {args}" ) return super().__call__(__lowerCamelCase , **__lowerCamelCase ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="This example is {}." ) -> Optional[Any]: a__ = self._args_parser(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i, (candidate_label, sequence_pair) in enumerate(zip(__lowerCamelCase , __lowerCamelCase ) ): a__ = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__lowerCamelCase ) - 1, **model_input, } def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Tuple: a__ = inputs['''candidate_label'''] a__ = inputs['''sequence'''] a__ = {k: inputs[k] for k in self.tokenizer.model_input_names} a__ = self.model(**__lowerCamelCase ) a__ = { '''candidate_label''': candidate_label, '''sequence''': sequence, '''is_last''': inputs['''is_last'''], **outputs, } return model_outputs def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Dict: a__ = [outputs['''candidate_label'''] for outputs in model_outputs] a__ = [outputs['''sequence'''] for outputs in model_outputs] a__ = np.concatenate([output['''logits'''].numpy() for output in model_outputs] ) a__ = logits.shape[0] a__ = len(__lowerCamelCase ) a__ = N // n a__ = logits.reshape((num_sequences, n, -1) ) if multi_label or len(__lowerCamelCase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently a__ = self.entailment_id a__ = -1 if entailment_id == 0 else 0 a__ = reshaped_outputs[..., [contradiction_id, entailment_id]] a__ = np.exp(__lowerCamelCase ) / np.exp(__lowerCamelCase ).sum(-1 , keepdims=__lowerCamelCase ) a__ = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels a__ = reshaped_outputs[..., self.entailment_id] a__ = np.exp(__lowerCamelCase ) / np.exp(__lowerCamelCase ).sum(-1 , keepdims=__lowerCamelCase ) a__ = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
702
from __future__ import annotations from collections.abc import Iterator from typing import Any class __UpperCamelCase : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE ) -> Dict: a__ = data a__ = None class __UpperCamelCase : """simple docstring""" def __init__( self ) -> Optional[int]: a__ = None a__ = None def __iter__( self ) -> Iterator[Any]: a__ = self.head while self.head: yield node.data a__ = node.next if node == self.head: break def __len__( self ) -> int: return sum(1 for _ in self ) def __repr__( self ) -> int: return "->".join(str(SCREAMING_SNAKE_CASE ) for item in iter(self ) ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> None: self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> None: self.insert_nth(0 , SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: if index < 0 or index > len(self ): raise IndexError('''list index out of range.''' ) a__ = Node(SCREAMING_SNAKE_CASE ) if self.head is None: a__ = new_node # first node points itself a__ = a__ = new_node elif index == 0: # insert at head a__ = self.head a__ = a__ = new_node else: a__ = self.head for _ in range(index - 1 ): a__ = temp.next a__ = temp.next a__ = new_node if index == len(self ) - 1: # insert at tail a__ = new_node def _UpperCAmelCase ( self ) -> int: return self.delete_nth(0 ) def _UpperCAmelCase ( self ) -> Any: return self.delete_nth(len(self ) - 1 ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE = 0 ) -> Any: if not 0 <= index < len(self ): raise IndexError('''list index out of range.''' ) a__ = self.head if self.head == self.tail: # just one node a__ = a__ = None elif index == 0: # delete head node a__ = self.tail.next.next a__ = self.head.next else: a__ = self.head for _ in range(index - 1 ): a__ = temp.next a__ = temp.next a__ = temp.next.next if index == len(self ) - 1: # delete at tail a__ = temp return delete_node.data def _UpperCAmelCase ( self ) -> bool: return len(self ) == 0 def __a ( ): a__ = CircularLinkedList() assert len(__UpperCAmelCase ) == 0 assert circular_linked_list.is_empty() is True assert str(__UpperCAmelCase ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(__UpperCAmelCase ) == i circular_linked_list.insert_nth(__UpperCAmelCase , i + 1 ) assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
148
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : int = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
170
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case__ ( UpperCamelCase_ ): def __init__( self : List[str] , _lowerCamelCase : NestedDataStructureLike[PathLike] , _lowerCamelCase : Optional[NamedSplit] = None , _lowerCamelCase : Optional[Features] = None , _lowerCamelCase : str = None , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[int] = None , **_lowerCamelCase : Optional[int] , ): super().__init__( _lowerCamelCase , split=_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase , streaming=_lowerCamelCase , num_proc=_lowerCamelCase , **_lowerCamelCase , ) snake_case__ : Tuple = path_or_paths if isinstance(_lowerCamelCase , _lowerCamelCase ) else {self.split: path_or_paths} snake_case__ : Any = Text( cache_dir=_lowerCamelCase , data_files=_lowerCamelCase , features=_lowerCamelCase , **_lowerCamelCase , ) def UpperCAmelCase__ ( self : Union[str, Any] ): # Build iterable dataset if self.streaming: snake_case__ : Dict = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: snake_case__ : List[Any] = None snake_case__ : List[str] = None snake_case__ : int = None snake_case__ : Dict = None self.builder.download_and_prepare( download_config=_lowerCamelCase , download_mode=_lowerCamelCase , verification_mode=_lowerCamelCase , base_path=_lowerCamelCase , num_proc=self.num_proc , ) snake_case__ : str = self.builder.as_dataset( split=self.split , verification_mode=_lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
170
1
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowercase_ ( __snake_case : List[str] ) -> Tuple: '''simple docstring''' if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def lowercase_ ( __snake_case : str ) -> Union[str, Any]: '''simple docstring''' for char in word: snake_case__ :Union[str, Any] = ord(_A ) if not _is_chinese_char(_A ): return 0 return 1 def lowercase_ ( __snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case__ :Any = set() for token in tokens: snake_case__ :Optional[int] = len(_A ) > 1 and is_chinese(_A ) if chinese_word: word_set.add(_A ) snake_case__ :Dict = list(_A ) return word_list def lowercase_ ( __snake_case : List[str] , __snake_case : set() ) -> str: '''simple docstring''' if not chinese_word_set: return bert_tokens snake_case__ :List[str] = max([len(_A ) for w in chinese_word_set] ) snake_case__ :Tuple = bert_tokens snake_case__ :Tuple = 0, len(_A ) while start < end: snake_case__ :Optional[Any] = True if is_chinese(bert_word[start] ): snake_case__ :Any = min(end - start , _A ) for i in range(_A , 1 , -1 ): snake_case__ :Tuple = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case__ :Dict = "##" + bert_word[j] snake_case__ :str = start + i snake_case__ :List[str] = False break if single_word: start += 1 return bert_word def lowercase_ ( __snake_case : List[str] , __snake_case : LTP , __snake_case : BertTokenizer ) -> str: '''simple docstring''' snake_case__ :Optional[Any] = [] for i in range(0 , len(_A ) , 1_00 ): snake_case__ :Optional[Any] = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] snake_case__ :int = [get_chinese_word(_A ) for r in res] ltp_res.extend(_A ) assert len(_A ) == len(_A ) snake_case__ :Union[str, Any] = [] for i in range(0 , len(_A ) , 1_00 ): snake_case__ :int = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=_A , truncation=_A , max_length=5_12 ) bert_res.extend(res["input_ids"] ) assert len(_A ) == len(_A ) snake_case__ :List[str] = [] for input_ids, chinese_word in zip(_A , _A ): snake_case__ :Union[str, Any] = [] for id in input_ids: snake_case__ :List[Any] = bert_tokenizer._convert_id_to_token(_A ) input_tokens.append(_A ) snake_case__ :int = add_sub_symbol(_A , _A ) snake_case__ :List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_A ): if token[:2] == "##": snake_case__ :Any = token[2:] # save chinese tokens' pos if len(_A ) == 1 and _is_chinese_char(ord(_A ) ): ref_id.append(_A ) ref_ids.append(_A ) assert len(_A ) == len(_A ) return ref_ids def lowercase_ ( __snake_case : Dict ) -> List[Any]: '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: snake_case__ :Dict = f.readlines() snake_case__ :List[Any] = [line.strip() for line in data if len(_A ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case__ :List[str] = LTP(args.ltp ) # faster in GPU device snake_case__ :Any = BertTokenizer.from_pretrained(args.bert ) snake_case__ :Dict = prepare_ref(_A , _A , _A ) with open(args.save_path , "w" , encoding="utf-8" ) as f: snake_case__ :List[str] = [json.dumps(_A ) + "\n" for ref in ref_ids] f.writelines(_A ) if __name__ == "__main__": __UpperCAmelCase : Optional[int] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") __UpperCAmelCase : Any = parser.parse_args() main(args)
705
def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case__ :List[str] = 4 snake_case__ :Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ :List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
57
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase_ = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class A__ : def __init__( self , lowerCamelCase = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) __magic_name__ : Optional[int] = primes[group]['''prime'''] __magic_name__ : List[str] = primes[group]['''generator'''] __magic_name__ : Any = int(hexlify(urandom(32 ) ) , base=16 ) def lowercase ( self ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def lowercase ( self ) -> str: """simple docstring""" __magic_name__ : Any = pow(self.generator , self.__private_key , self.prime ) return hex(lowerCamelCase )[2:] def lowercase ( self , lowerCamelCase ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def lowercase ( self , lowerCamelCase ) -> str: """simple docstring""" __magic_name__ : str = int(lowerCamelCase , base=16 ) if not self.is_valid_public_key(lowerCamelCase ): raise ValueError('''Invalid public key''' ) __magic_name__ : int = pow(lowerCamelCase , self.__private_key , self.prime ) return shaaaa(str(lowerCamelCase ).encode() ).hexdigest() @staticmethod def lowercase ( lowerCamelCase , lowerCamelCase ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase , (prime - 1) // 2 , lowerCamelCase ) == 1 ) @staticmethod def lowercase ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 14 ) -> str: """simple docstring""" __magic_name__ : Dict = int(lowerCamelCase , base=16 ) __magic_name__ : int = int(lowerCamelCase , base=16 ) __magic_name__ : str = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase , lowerCamelCase ): raise ValueError('''Invalid public key''' ) __magic_name__ : int = pow(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return shaaaa(str(lowerCamelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
154
def lowerCAmelCase ( UpperCAmelCase = 6008_5147_5143 ) ->int: """simple docstring""" try: __magic_name__ : Optional[int] = int(UpperCAmelCase ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) __magic_name__ : List[str] = 2 __magic_name__ : Optional[int] = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __magic_name__ : Any = i while n % i == 0: __magic_name__ : Union[str, Any] = n // i i += 1 return int(UpperCAmelCase ) if __name__ == "__main__": print(f"{solution() = }")
154
1
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCamelCase__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' debug_launcher(test_script.main ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' debug_launcher(test_ops.main )
702
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class lowerCamelCase__ ( _a ): def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' __lowercase = tempfile.mkdtemp() __lowercase = 5 # Realm tok __lowercase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """test""", """question""", """this""", """is""", """the""", """first""", """second""", """third""", """fourth""", """fifth""", """record""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __lowercase = os.path.join(self.tmpdirname , """realm_tokenizer""" ) os.makedirs(A_ , exist_ok=A_ ) __lowercase = os.path.join(A_ , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __lowercase = os.path.join(self.tmpdirname , """realm_block_records""" ) os.makedirs(A_ , exist_ok=A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , """realm_tokenizer""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' __lowercase = RealmConfig(num_block_records=self.num_block_records ) return config def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' __lowercase = Dataset.from_dict( { """id""": ["""0""", """1"""], """question""": ["""foo""", """bar"""], """answers""": [["""Foo""", """Bar"""], ["""Bar"""]], } ) return dataset def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' __lowercase = np.array( [ B"""This is the first record""", B"""This is the second record""", B"""This is the third record""", B"""This is the fourth record""", B"""This is the fifth record""", B"""This is a longer longer longer record""", ] , dtype=A_ , ) return block_records def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = self.get_config() __lowercase = self.get_dummy_retriever() __lowercase = retriever.tokenizer __lowercase = np.array([0, 3] , dtype="""long""" ) __lowercase = tokenizer(["""Test question"""] ).input_ids __lowercase = tokenizer( ["""the fourth"""] , add_special_tokens=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , ).input_ids __lowercase = config.reader_seq_len __lowercase , __lowercase , __lowercase , __lowercase = retriever( A_ , A_ , answer_ids=A_ , max_length=A_ , return_tensors="""np""" ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] , ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = self.get_config() __lowercase = self.get_dummy_retriever() __lowercase = retriever.tokenizer __lowercase = np.array([0, 3, 5] , dtype="""long""" ) __lowercase = tokenizer(["""Test question"""] ).input_ids __lowercase = tokenizer( ["""the fourth""", """longer longer"""] , add_special_tokens=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , ).input_ids __lowercase = config.reader_seq_len __lowercase , __lowercase , __lowercase , __lowercase = retriever( A_ , A_ , answer_ids=A_ , max_length=A_ , return_tensors="""np""" ) self.assertEqual([False, True, True] , A_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , A_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) # Test local path __lowercase = retriever.from_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) self.assertEqual(retriever.block_records[0] , B"""This is the first record""" ) # Test mocked remote path with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download: __lowercase = os.path.join( os.path.join(self.tmpdirname , """realm_block_records""" ) , _REALM_BLOCK_RECORDS_FILENAME ) __lowercase = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" ) self.assertEqual(retriever.block_records[0] , B"""This is the first record""" )
442
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Tuple = AltDiffusionPipeline _UpperCamelCase : Dict = TEXT_TO_IMAGE_PARAMS _UpperCamelCase : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCamelCase : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : str = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__ ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCamelCase__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case , set_alpha_to_one=snake_case , ) torch.manual_seed(0 ) UpperCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) UpperCamelCase__ = CLIPTextModel(snake_case ) UpperCamelCase__ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) UpperCamelCase__ = 77 UpperCamelCase__ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def snake_case__ ( self , snake_case , snake_case=0 ): '''simple docstring''' if str(snake_case ).startswith("mps" ): UpperCamelCase__ = torch.manual_seed(snake_case ) else: UpperCamelCase__ = torch.Generator(device=snake_case ).manual_seed(snake_case ) UpperCamelCase__ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def snake_case__ ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def snake_case__ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.get_dummy_components() torch.manual_seed(0 ) UpperCamelCase__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase__ = RobertaSeriesModelWithTransformation(snake_case ) UpperCamelCase__ = text_encoder UpperCamelCase__ = AltDiffusionPipeline(**snake_case ) UpperCamelCase__ = alt_pipe.to(snake_case ) alt_pipe.set_progress_bar_config(disable=snake_case ) UpperCamelCase__ = self.get_dummy_inputs(snake_case ) UpperCamelCase__ = "A photo of an astronaut" UpperCamelCase__ = alt_pipe(**snake_case ) UpperCamelCase__ = output.images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = PNDMScheduler(skip_prk_steps=snake_case ) torch.manual_seed(0 ) UpperCamelCase__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase__ = RobertaSeriesModelWithTransformation(snake_case ) UpperCamelCase__ = text_encoder UpperCamelCase__ = AltDiffusionPipeline(**snake_case ) UpperCamelCase__ = alt_pipe.to(snake_case ) alt_pipe.set_progress_bar_config(disable=snake_case ) UpperCamelCase__ = self.get_dummy_inputs(snake_case ) UpperCamelCase__ = alt_pipe(**snake_case ) UpperCamelCase__ = output.images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=snake_case ) UpperCamelCase__ = alt_pipe.to(snake_case ) alt_pipe.set_progress_bar_config(disable=snake_case ) UpperCamelCase__ = "A painting of a squirrel eating a burger" UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = alt_pipe([prompt] , generator=snake_case , guidance_scale=6.0 , num_inference_steps=20 , output_type="np" ) UpperCamelCase__ = output.images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler" ) UpperCamelCase__ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=snake_case , safety_checker=snake_case ) UpperCamelCase__ = alt_pipe.to(snake_case ) alt_pipe.set_progress_bar_config(disable=snake_case ) UpperCamelCase__ = "A painting of a squirrel eating a burger" UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = alt_pipe([prompt] , generator=snake_case , num_inference_steps=2 , output_type="numpy" ) UpperCamelCase__ = output.images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
551
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) __UpperCamelCase = logging.getLogger() __UpperCamelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" def snake_case__ ( self , snake_case ): '''simple docstring''' os.makedirs(snake_case , exist_ok=snake_case ) UpperCamelCase__ = {"source": "What is love ?", "target": "life"} UpperCamelCase__ = {"train": 12, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase__ = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case , F'''{split}.{field}''' ) , "w" ) as f: f.write(snake_case ) def snake_case__ ( self , snake_case , snake_case = "pytorch" ): '''simple docstring''' UpperCamelCase__ = self.get_auto_remove_tmp_dir() UpperCamelCase__ = os.path.join(snake_case , "output" ) UpperCamelCase__ = os.path.join(snake_case , "data" ) self._create_dummy_data(data_dir=snake_case ) UpperCamelCase__ = F''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(F'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) UpperCamelCase__ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case , env=self.get_env() ) UpperCamelCase__ = os.path.join(snake_case , "metrics.json" ) with open(snake_case ) as f: UpperCamelCase__ = json.load(snake_case ) return result @require_torch_gpu def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
551
1
def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: if b == 0: return 1 if (b % 2) == 0: return actual_power(_UpperCAmelCase , int(b / 2 ) ) * actual_power(_UpperCAmelCase , int(b / 2 ) ) else: return a * actual_power(_UpperCAmelCase , int(b / 2 ) ) * actual_power(_UpperCAmelCase , int(b / 2 ) ) def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase ) -> str: if b < 0: return 1 / actual_power(_UpperCAmelCase , _UpperCAmelCase ) return actual_power(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
703
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
584
0
'''simple docstring''' import argparse import json import subprocess def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = [] _SCREAMING_SNAKE_CASE : int = ( f"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = subprocess.run(SCREAMING_SNAKE_CASE__ , shell=SCREAMING_SNAKE_CASE__ , stdout=subprocess.PIPE ) _SCREAMING_SNAKE_CASE : int = output.stdout.decode("""utf-8""" ) _SCREAMING_SNAKE_CASE : List[Any] = json.loads(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : List[str] = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(SCREAMING_SNAKE_CASE__ ) # save the result so we can report them on Slack with open("""offline_runners.txt""" , """w""" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) ) if len(SCREAMING_SNAKE_CASE__ ) > 0: _SCREAMING_SNAKE_CASE : str = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" return values.split(""",""" ) UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) UpperCAmelCase_ : Dict = parser.parse_args() get_runner_status(args.target_runners, args.token)
533
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } UpperCAmelCase_ : Tuple = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" for attribute in key.split(""".""" ): _SCREAMING_SNAKE_CASE : List[Any] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: _SCREAMING_SNAKE_CASE : int = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: _SCREAMING_SNAKE_CASE : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": _SCREAMING_SNAKE_CASE : int = value elif weight_type == "weight_g": _SCREAMING_SNAKE_CASE : List[str] = value elif weight_type == "weight_v": _SCREAMING_SNAKE_CASE : Union[str, Any] = value elif weight_type == "bias": _SCREAMING_SNAKE_CASE : Tuple = value elif weight_type == "running_mean": _SCREAMING_SNAKE_CASE : Tuple = value elif weight_type == "running_var": _SCREAMING_SNAKE_CASE : Optional[Any] = value elif weight_type == "num_batches_tracked": _SCREAMING_SNAKE_CASE : Any = value elif weight_type == "inv_freq": _SCREAMING_SNAKE_CASE : List[str] = value else: _SCREAMING_SNAKE_CASE : List[Any] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = [] _SCREAMING_SNAKE_CASE : Optional[Any] = fairseq_model.state_dict() _SCREAMING_SNAKE_CASE : Any = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _SCREAMING_SNAKE_CASE : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , ) _SCREAMING_SNAKE_CASE : str = True else: for key, mapped_key in MAPPING.items(): _SCREAMING_SNAKE_CASE : List[Any] = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _SCREAMING_SNAKE_CASE : List[str] = True if "*" in mapped_key: _SCREAMING_SNAKE_CASE : Union[str, Any] = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2] _SCREAMING_SNAKE_CASE : Optional[Any] = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ ) if "pos_bias_u" in name: _SCREAMING_SNAKE_CASE : Optional[Any] = None elif "pos_bias_v" in name: _SCREAMING_SNAKE_CASE : Optional[int] = None elif "weight_g" in name: _SCREAMING_SNAKE_CASE : int = """weight_g""" elif "weight_v" in name: _SCREAMING_SNAKE_CASE : Any = """weight_v""" elif "bias" in name: _SCREAMING_SNAKE_CASE : Dict = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _SCREAMING_SNAKE_CASE : int = """weight""" elif "running_mean" in name: _SCREAMING_SNAKE_CASE : Optional[Any] = """running_mean""" elif "inv_freq" in name: _SCREAMING_SNAKE_CASE : int = """inv_freq""" elif "running_var" in name: _SCREAMING_SNAKE_CASE : int = """running_var""" elif "num_batches_tracked" in name: _SCREAMING_SNAKE_CASE : Tuple = """num_batches_tracked""" else: _SCREAMING_SNAKE_CASE : Dict = None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = full_name.split("""conv_layers.""" )[-1] _SCREAMING_SNAKE_CASE : Tuple = name.split(""".""" ) _SCREAMING_SNAKE_CASE : Any = int(items[0] ) _SCREAMING_SNAKE_CASE : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _SCREAMING_SNAKE_CASE : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _SCREAMING_SNAKE_CASE : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _SCREAMING_SNAKE_CASE : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _SCREAMING_SNAKE_CASE : str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True ): """simple docstring""" if config_path is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(SCREAMING_SNAKE_CASE__ , hidden_act="""swish""" ) else: _SCREAMING_SNAKE_CASE : List[str] = WavaVecaConformerConfig() if "rope" in checkpoint_path: _SCREAMING_SNAKE_CASE : List[str] = """rotary""" if is_finetuned: if dict_path: _SCREAMING_SNAKE_CASE : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _SCREAMING_SNAKE_CASE : Optional[int] = target_dict.pad_index _SCREAMING_SNAKE_CASE : int = target_dict.bos_index _SCREAMING_SNAKE_CASE : Any = target_dict.eos_index _SCREAMING_SNAKE_CASE : List[str] = len(target_dict.symbols ) _SCREAMING_SNAKE_CASE : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Dict = target_dict.indices # fairseq has the <pad> and <s> switched _SCREAMING_SNAKE_CASE : Optional[Any] = 0 _SCREAMING_SNAKE_CASE : List[Any] = 1 with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Tuple = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=SCREAMING_SNAKE_CASE__ , ) _SCREAMING_SNAKE_CASE : Optional[int] = True if config.feat_extract_norm == """layer""" else False _SCREAMING_SNAKE_CASE : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) _SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : str = WavaVecaConformerForCTC(SCREAMING_SNAKE_CASE__ ) else: _SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaConformerForPreTraining(SCREAMING_SNAKE_CASE__ ) if is_finetuned: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _SCREAMING_SNAKE_CASE : Tuple = argparse.Namespace(task="""audio_pretraining""" ) _SCREAMING_SNAKE_CASE : List[str] = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Optional[int] = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , not is_finetuned ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) UpperCAmelCase_ : List[Any] = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
533
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule _UpperCAmelCase = {"""tokenization_bertweet""": ["""BertweetTokenizer"""]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
702
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =[] SCREAMING_SNAKE_CASE_: List[str] =[] SCREAMING_SNAKE_CASE_: Any =[] for rt in rc.restypes: SCREAMING_SNAKE_CASE_: Optional[int] =rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) SCREAMING_SNAKE_CASE_: Any ={name: i for i, name in enumerate(lowercase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.tensor( lowercase , dtype=torch.intaa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: Optional[Any] =torch.tensor( lowercase , dtype=torch.intaa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: List[str] =torch.tensor( lowercase , dtype=torch.floataa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: Optional[Any] =protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein SCREAMING_SNAKE_CASE_: List[str] =restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_: Any =restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_: Tuple =residx_atomaa_mask SCREAMING_SNAKE_CASE_: Dict =residx_atomaa_to_atomaa.long() # create the gather indices for mapping back SCREAMING_SNAKE_CASE_: Dict =restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_: Optional[int] =residx_atomaa_to_atomaa.long() # create the corresponding mask SCREAMING_SNAKE_CASE_: Optional[int] =torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): SCREAMING_SNAKE_CASE_: int =rc.restype_atoa[restype_letter] SCREAMING_SNAKE_CASE_: Any =rc.residue_atoms[restype_name] for atom_name in atom_names: SCREAMING_SNAKE_CASE_: Optional[int] =rc.atom_order[atom_name] SCREAMING_SNAKE_CASE_: Dict =1 SCREAMING_SNAKE_CASE_: List[str] =restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_: List[Any] =residx_atomaa_mask return protein def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =tree_map(lambda lowercase : torch.tensor(lowercase , device=batch["""aatype"""].device ) , lowercase , np.ndarray ) SCREAMING_SNAKE_CASE_: int =tensor_tree_map(lambda lowercase : np.array(lowercase ) , make_atomaa_masks(lowercase ) ) return out
36
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a__ : List[Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["pixel_values"] def __init__( self : Tuple , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BICUBIC , a__ : bool = True , a__ : Union[int, float] = 1 / 255 , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : bool = True , **a__ : Optional[int] , ): super().__init__(**a__ ) UpperCAmelCase = size if size is not None else {'''height''': 384, '''width''': 384} UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase = do_convert_rgb def __snake_case ( self : Tuple , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BICUBIC , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[Any] , ): UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) UpperCAmelCase = (size['''height'''], size['''width''']) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def __snake_case ( self : Optional[Any] , a__ : np.ndarray , a__ : Union[int, float] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : str , ): return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def __snake_case ( self : Any , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : int , ): return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def __snake_case ( self : List[Any] , a__ : ImageInput , a__ : Optional[bool] = None , a__ : Optional[Dict[str, int]] = None , a__ : PILImageResampling = None , a__ : Optional[bool] = None , a__ : Optional[float] = None , a__ : Optional[bool] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : bool = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Dict , ): UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) UpperCAmelCase = make_list_of_images(a__ ) if not valid_images(a__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase = [convert_to_rgb(a__ ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(a__ ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=a__ , size=a__ , resample=a__ ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=a__ , scale=a__ ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=a__ , mean=a__ , std=a__ ) for image in images] UpperCAmelCase = [to_channel_dimension_format(a__ , a__ ) for image in images] UpperCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=a__ ) return encoded_outputs
51
"""simple docstring""" import os def UpperCamelCase (): UpperCamelCase : Union[str, Any] = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE ) , """num.txt""" ) with open(SCREAMING_SNAKE_CASE ) as file_hand: return str(sum(int(SCREAMING_SNAKE_CASE ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
102
0
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase__ : def __init__( self : Any , __UpperCamelCase : Any , __UpperCamelCase : Dict=13 , __UpperCamelCase : Dict=30 , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : int=3 , __UpperCamelCase : Any=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : List[str]=32 , __UpperCamelCase : str=2 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : List[str]=37 , __UpperCamelCase : Dict="gelu" , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : List[str]=10 , __UpperCamelCase : Union[str, Any]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Optional[Any]=None , ) -> Any: A = parent A = batch_size A = image_size A = patch_size A = num_channels A = is_training A = use_labels A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = type_sequence_label_size A = initializer_range A = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A = (image_size // patch_size) ** 2 A = num_patches + 1 def __UpperCamelCase ( self : Tuple ) -> Dict: A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict ) -> str: A = TFViTModel(config=__UpperCamelCase ) A = model(__UpperCamelCase , training=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. A = self.image_size // 2 A = pixel_values[:, :, :image_size, :image_size] A = model(__UpperCamelCase , interpolate_pos_encoding=__UpperCamelCase , training=__UpperCamelCase ) A = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] ) -> Union[str, Any]: A = self.type_sequence_label_size A = TFViTForImageClassification(__UpperCamelCase ) A = model(__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. A = self.image_size // 2 A = pixel_values[:, :, :image_size, :image_size] A = model(__UpperCamelCase , interpolate_pos_encoding=__UpperCamelCase , training=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A = 1 A = TFViTForImageClassification(__UpperCamelCase ) A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self : Tuple ) -> List[Any]: A = self.prepare_config_and_inputs() A , A , A = config_and_inputs A = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): A_ : List[str] = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () A_ : Optional[int] = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) A_ : Tuple = False A_ : Optional[int] = False A_ : Any = False def __UpperCamelCase ( self : List[Any] ) -> Any: A = TFViTModelTester(self ) A = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __UpperCamelCase ( self : List[str] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def __UpperCamelCase ( self : str ) -> Any: pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def __UpperCamelCase ( self : Any ) -> Union[str, Any]: pass def __UpperCamelCase ( self : Optional[Any] ) -> Any: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , tf.keras.layers.Layer ) ) def __UpperCamelCase ( self : int ) -> Optional[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__UpperCamelCase ) A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __UpperCamelCase ( self : int ) -> Optional[int]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __UpperCamelCase ( self : str ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def __UpperCamelCase ( self : Tuple ) -> str: A = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(__UpperCamelCase ) def lowerCamelCase_ ( ) -> Tuple: '''simple docstring''' A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : str ) -> Optional[Any]: return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: A = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) A = self.default_image_processor A = prepare_img() A = image_processor(images=__UpperCamelCase , return_tensors='tf' ) # forward pass A = model(**__UpperCamelCase ) # verify the logits A = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) A = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 )
224
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase__ : def __init__( self : int , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any]=100 , __UpperCamelCase : Optional[int]=13 , __UpperCamelCase : Optional[Any]=30 , __UpperCamelCase : Any=2 , __UpperCamelCase : List[str]=3 , __UpperCamelCase : Tuple=True , __UpperCamelCase : str=True , __UpperCamelCase : int=32 , __UpperCamelCase : int=4 , __UpperCamelCase : int=4 , __UpperCamelCase : Tuple=37 , __UpperCamelCase : Union[str, Any]="gelu" , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : str=0.1 , __UpperCamelCase : Tuple=10 , __UpperCamelCase : Tuple=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : List[str]=[0, 1, 2, 3] , ) -> List[Any]: A = parent A = 100 A = batch_size A = image_size A = patch_size A = num_channels A = is_training A = use_labels A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = type_sequence_label_size A = initializer_range A = scope A = out_indices A = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A = (image_size // patch_size) ** 2 A = num_patches + 1 def __UpperCamelCase ( self : List[Any] ) -> Any: A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCamelCase ( self : List[Any] ) -> List[Any]: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __UpperCamelCase ( self : Any , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : str ) -> List[str]: A = BeitModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] ) -> Tuple: A = BeitForMaskedImageModeling(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __UpperCamelCase ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] ) -> Union[str, Any]: A = self.type_sequence_label_size A = BeitForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A = 1 A = BeitForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : List[str] ) -> List[Any]: A = self.num_labels A = BeitForSemanticSegmentation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) A = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __UpperCamelCase ( self : Dict ) -> List[Any]: A = self.prepare_config_and_inputs() A , A , A , A = config_and_inputs A = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): A_ : int = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) A_ : Union[str, Any] = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) A_ : Optional[Any] = False A_ : str = False A_ : Any = False def __UpperCamelCase ( self : str ) -> Optional[int]: A = BeitModelTester(self ) A = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def __UpperCamelCase ( self : List[str] ) -> Any: pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def __UpperCamelCase ( self : Dict ) -> Optional[int]: pass def __UpperCamelCase ( self : Any ) -> Optional[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __UpperCamelCase ( self : Dict ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__UpperCamelCase ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __UpperCamelCase ( self : List[Any] ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __UpperCamelCase ( self : List[str] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def __UpperCamelCase ( self : Tuple ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) def __UpperCamelCase ( self : Tuple ) -> Optional[int]: if not self.model_tester.is_training: return A , A = self.model_tester.prepare_config_and_inputs_for_common() A = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCamelCase ), BeitForMaskedImageModeling]: continue A = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() A = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) A = model(**__UpperCamelCase ).loss loss.backward() def __UpperCamelCase ( self : List[str] ) -> Tuple: A , A = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return A = False A = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCamelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue A = model_class(__UpperCamelCase ) model.gradient_checkpointing_enable() model.to(__UpperCamelCase ) model.train() A = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) A = model(**__UpperCamelCase ).loss loss.backward() def __UpperCamelCase ( self : str ) -> Optional[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() A = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: A = model_class(config=__UpperCamelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def __UpperCamelCase ( self : Optional[int] ) -> str: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = BeitModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowerCamelCase_ ( ) -> Dict: '''simple docstring''' A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : List[Any] ) -> Tuple: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def __UpperCamelCase ( self : Dict ) -> Dict: A = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__UpperCamelCase ) A = self.default_image_processor A = prepare_img() A = image_processor(images=__UpperCamelCase , return_tensors='pt' ).pixel_values.to(__UpperCamelCase ) # prepare bool_masked_pos A = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): A = model(pixel_values=__UpperCamelCase , bool_masked_pos=__UpperCamelCase ) A = outputs.logits # verify the logits A = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , __UpperCamelCase ) A = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCamelCase , atol=1e-2 ) ) @slow def __UpperCamelCase ( self : str ) -> Dict: A = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__UpperCamelCase ) A = self.default_image_processor A = prepare_img() A = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): A = model(**__UpperCamelCase ) A = outputs.logits # verify the logits A = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , __UpperCamelCase ) A = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1e-4 ) ) A = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCamelCase ) @slow def __UpperCamelCase ( self : Union[str, Any] ) -> str: A = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( __UpperCamelCase ) A = self.default_image_processor A = prepare_img() A = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): A = model(**__UpperCamelCase ) A = outputs.logits # verify the logits A = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , __UpperCamelCase ) A = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1e-4 ) ) A = 2_396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCamelCase ) @slow def __UpperCamelCase ( self : Optional[int] ) -> str: A = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) A = model.to(__UpperCamelCase ) A = BeitImageProcessor(do_resize=__UpperCamelCase , size=640 , do_center_crop=__UpperCamelCase ) A = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) A = Image.open(ds[0]['file'] ) A = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): A = model(**__UpperCamelCase ) A = outputs.logits # verify the logits A = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCamelCase ) A = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: A = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=__UpperCamelCase , ) else: A = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=__UpperCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCamelCase , atol=1e-4 ) ) @slow def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: A = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) A = model.to(__UpperCamelCase ) A = BeitImageProcessor(do_resize=__UpperCamelCase , size=640 , do_center_crop=__UpperCamelCase ) A = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) A = Image.open(ds[0]['file'] ) A = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): A = model(**__UpperCamelCase ) A = outputs.logits.detach().cpu() A = image_processor.post_process_semantic_segmentation(outputs=__UpperCamelCase , target_sizes=[(500, 300)] ) A = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCamelCase ) A = image_processor.post_process_semantic_segmentation(outputs=__UpperCamelCase ) A = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCamelCase )
224
1
"""simple docstring""" import numpy as np def lowerCamelCase__ ( __snake_case ) -> np.array: """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
19
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" for char in word: _UpperCamelCase = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def lowerCamelCase__ ( __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = set() for token in tokens: _UpperCamelCase = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) _UpperCamelCase = list(__snake_case ) return word_list def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" if not chinese_word_set: return bert_tokens _UpperCamelCase = max([len(__snake_case ) for w in chinese_word_set] ) _UpperCamelCase = bert_tokens _UpperCamelCase , _UpperCamelCase = 0, len(__snake_case ) while start < end: _UpperCamelCase = True if is_chinese(bert_word[start] ): _UpperCamelCase = min(end - start, __snake_case ) for i in range(__snake_case, 1, -1 ): _UpperCamelCase = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _UpperCamelCase = '''##''' + bert_word[j] _UpperCamelCase = start + i _UpperCamelCase = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _UpperCamelCase = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=__snake_case, truncation=__snake_case, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for input_ids, chinese_word in zip(__snake_case, __snake_case ): _UpperCamelCase = [] for id in input_ids: _UpperCamelCase = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) _UpperCamelCase = add_sub_symbol(__snake_case, __snake_case ) _UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": _UpperCamelCase = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _UpperCamelCase = LTP(args.ltp ) # faster in GPU device _UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) _UpperCamelCase = prepare_ref(__snake_case, __snake_case, __snake_case ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _UpperCamelCase = [json.dumps(__snake_case ) + '''\n''' for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) _a = parser.parse_args() main(args)
19
1
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case : def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE_=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="relu" , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels def _lowercase (self ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TFRegNetModel(config=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = TFRegNetForImageClassification(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class snake_case ( __lowercase , __lowercase , unittest.TestCase ): UpperCAmelCase__ = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () UpperCAmelCase__ = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TFRegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _lowercase (self ): """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def _lowercase (self ): """simple docstring""" super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _lowercase (self ): """simple docstring""" pass def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" def check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , training=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE_ = layer_type SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ): SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) , msg=( '''Tuple and dict output are not equal. Difference:''' f' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}' ) , ) recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'''output_hidden_states''': True} ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'''output_hidden_states''': True} ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def _lowercase (self ): """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = TFRegNetModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def _lowerCamelCase ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): @cached_property def _lowercase (self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''tf''' ) # forward pass SCREAMING_SNAKE_CASE_ = model(**SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) # verify the logits SCREAMING_SNAKE_CASE_ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = tf.constant([-0.41_80, -1.50_51, -3.48_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
714
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class snake_case ( __lowercase ): UpperCAmelCase__ = (DDIMParallelScheduler,) UpperCAmelCase__ = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def _lowercase (self , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**SCREAMING_SNAKE_CASE_ ) return config def _lowercase (self , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = 10, 0.0 SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample return sample def _lowercase (self ): """simple docstring""" for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config(steps_offset=1 ) SCREAMING_SNAKE_CASE_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def _lowercase (self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , ) def _lowercase (self ): """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = 10, 0.0 scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter + 0.1 SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter - 0.1 SCREAMING_SNAKE_CASE_ = samplea.shape[0] SCREAMING_SNAKE_CASE_ = torch.stack([samplea, samplea, samplea] , dim=0 ) SCREAMING_SNAKE_CASE_ = torch.arange(SCREAMING_SNAKE_CASE_ )[0:3, None].repeat(1 , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) SCREAMING_SNAKE_CASE_ = scheduler.batch_step_no_noise(SCREAMING_SNAKE_CASE_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.full_loop() SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.full_loop(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE_ , beta_start=0.01 ) SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE_ , beta_start=0.01 ) SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
628
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path A = [ {'dataset': 'wikipedia', 'config_name': '20220301.de'}, {'dataset': 'wikipedia', 'config_name': '20220301.en'}, {'dataset': 'wikipedia', 'config_name': '20220301.fr'}, {'dataset': 'wikipedia', 'config_name': '20220301.frr'}, {'dataset': 'wikipedia', 'config_name': '20220301.it'}, {'dataset': 'wikipedia', 'config_name': '20220301.simple'}, {'dataset': 'snli', 'config_name': 'plain_text'}, {'dataset': 'eli5', 'config_name': 'LFQA_reddit'}, {'dataset': 'wiki40b', 'config_name': 'en'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'}, {'dataset': 'natural_questions', 'config_name': 'default'}, ] def lowerCamelCase ( UpperCamelCase : List[str]=True ) -> List[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=SCREAMING_SNAKE_CASE_ ) ) class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = None lowerCAmelCase_ = None def _snake_case ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ) -> List[str]: with TemporaryDirectory() as tmp_dir: _lowerCamelCase = dataset_module_factory(snake_case__ , cache_dir=snake_case__ ) _lowerCamelCase = import_main_class(dataset_module.module_path , dataset=snake_case__ ) _lowerCamelCase = builder_cls( cache_dir=snake_case__ , config_name=snake_case__ , hash=dataset_module.hash , ) _lowerCamelCase = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=snake_case__ ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) _lowerCamelCase = cached_path(snake_case__ , cache_dir=snake_case__ ) self.assertTrue(os.path.exists(snake_case__ ) ) @pytest.mark.integration def lowerCamelCase ( UpperCamelCase : Any ) -> Union[str, Any]: _lowerCamelCase = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' _lowerCamelCase = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase ) _lowerCamelCase = import_main_class(dataset_module.module_path ) _lowerCamelCase = builder_cls( cache_dir=UpperCamelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _lowerCamelCase = None builder_instance.download_and_prepare() _lowerCamelCase = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCamelCase ( UpperCamelCase : List[str] ) -> Any: _lowerCamelCase = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase ) _lowerCamelCase = import_main_class(dataset_module.module_path , dataset=UpperCamelCase ) _lowerCamelCase = builder_cls( cache_dir=UpperCamelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) _lowerCamelCase = builder_instance.as_streaming_dataset() assert ds assert isinstance(UpperCamelCase , UpperCamelCase ) assert "train" in ds assert isinstance(ds['train'] , UpperCamelCase ) assert next(iter(ds['train'] ) )
544
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCAmelCase_ = field( default='cifar10' ,metadata={'help': 'Name of a dataset from the datasets package'} ) lowerCAmelCase_ = field( default=SCREAMING_SNAKE_CASE_ ,metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCAmelCase_ = field( default=SCREAMING_SNAKE_CASE_ ,metadata={'help': 'The column name of the images in the files.'} ) lowerCAmelCase_ = field(default=SCREAMING_SNAKE_CASE_ ,metadata={'help': 'A folder containing the training data.'} ) lowerCAmelCase_ = field(default=SCREAMING_SNAKE_CASE_ ,metadata={'help': 'A folder containing the validation data.'} ) lowerCAmelCase_ = field( default=0.1_5 ,metadata={'help': 'Percent to split off of train for validation.'} ) lowerCAmelCase_ = field( default=SCREAMING_SNAKE_CASE_ ,metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } ,) lowerCAmelCase_ = field( default=SCREAMING_SNAKE_CASE_ ,metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } ,) def _snake_case ( self : Union[str, Any] ) -> Dict: _lowerCamelCase = {} if self.train_dir is not None: _lowerCamelCase = self.train_dir if self.validation_dir is not None: _lowerCamelCase = self.validation_dir _lowerCamelCase = data_files if data_files else None @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCAmelCase_ = field( default=SCREAMING_SNAKE_CASE_ ,metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } ,) lowerCAmelCase_ = field( default=SCREAMING_SNAKE_CASE_ ,metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) lowerCAmelCase_ = field( default=SCREAMING_SNAKE_CASE_ ,metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } ,) lowerCAmelCase_ = field( default=SCREAMING_SNAKE_CASE_ ,metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) lowerCAmelCase_ = field( default='main' ,metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} ,) lowerCAmelCase_ = field(default=SCREAMING_SNAKE_CASE_ ,metadata={'help': 'Name or path of preprocessor config.'} ) lowerCAmelCase_ = field( default=SCREAMING_SNAKE_CASE_ ,metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } ,) lowerCAmelCase_ = field( default=0.7_5 ,metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) lowerCAmelCase_ = field( default=SCREAMING_SNAKE_CASE_ ,metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = field( default=1e-3 ,metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def lowerCamelCase ( UpperCamelCase : Union[str, Any] ) -> int: _lowerCamelCase = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def lowerCamelCase ( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , UpperCamelCase , UpperCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCamelCase = training_args.get_process_log_level() logger.setLevel(UpperCamelCase ) transformers.utils.logging.set_verbosity(UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _lowerCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _lowerCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _lowerCamelCase = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCamelCase ) and data_args.train_val_split > 0.0: _lowerCamelCase = ds['train'].train_test_split(data_args.train_val_split ) _lowerCamelCase = split['train'] _lowerCamelCase = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _lowerCamelCase = ViTMAEConfig.from_pretrained(model_args.config_name , **UpperCamelCase ) elif model_args.model_name_or_path: _lowerCamelCase = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **UpperCamelCase ) else: _lowerCamelCase = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _lowerCamelCase = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCamelCase ) elif model_args.model_name_or_path: _lowerCamelCase = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCamelCase ) else: _lowerCamelCase = ViTImageProcessor() # create model if model_args.model_name_or_path: _lowerCamelCase = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _lowerCamelCase = ViTMAEForPreTraining(UpperCamelCase ) if training_args.do_train: _lowerCamelCase = ds['train'].column_names else: _lowerCamelCase = ds['validation'].column_names if data_args.image_column_name is not None: _lowerCamelCase = data_args.image_column_name elif "image" in column_names: _lowerCamelCase = 'image' elif "img" in column_names: _lowerCamelCase = 'img' else: _lowerCamelCase = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _lowerCamelCase = image_processor.size['shortest_edge'] else: _lowerCamelCase = (image_processor.size['height'], image_processor.size['width']) _lowerCamelCase = Compose( [ Lambda(lambda UpperCamelCase : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(UpperCamelCase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(UpperCamelCase : Tuple ): _lowerCamelCase = [transforms(UpperCamelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _lowerCamelCase = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _lowerCamelCase = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCamelCase ) # Compute absolute learning rate _lowerCamelCase = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _lowerCamelCase = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer _lowerCamelCase = Trainer( model=UpperCamelCase , args=UpperCamelCase , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=UpperCamelCase , data_collator=UpperCamelCase , ) # Training if training_args.do_train: _lowerCamelCase = None if training_args.resume_from_checkpoint is not None: _lowerCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCamelCase = last_checkpoint _lowerCamelCase = trainer.train(resume_from_checkpoint=UpperCamelCase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowerCamelCase = trainer.evaluate() trainer.log_metrics('eval' , UpperCamelCase ) trainer.save_metrics('eval' , UpperCamelCase ) # Write model card and (optionally) push to hub _lowerCamelCase = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase ) else: trainer.create_model_card(**UpperCamelCase ) def lowerCamelCase ( UpperCamelCase : Any ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
544
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCamelCase : List[Any] = logging.get_logger(__name__) class __snake_case (_a ): lowerCAmelCase__ = ["pixel_values"] def __init__( self : int , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) _lowerCAmelCase : List[Any] = size if size is not None else {"""height""": 384, """width""": 384} _lowerCAmelCase : Optional[int] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) _lowerCAmelCase : int = do_resize _lowerCAmelCase : Dict = size _lowerCAmelCase : Optional[Any] = resample _lowerCAmelCase : Dict = do_rescale _lowerCAmelCase : int = rescale_factor _lowerCAmelCase : List[str] = do_normalize _lowerCAmelCase : str = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowerCAmelCase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD _lowerCAmelCase : Tuple = do_convert_rgb def SCREAMING_SNAKE_CASE ( self : Any , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Dict , ) -> np.ndarray: '''simple docstring''' _lowerCAmelCase : Optional[Any] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) _lowerCAmelCase : List[str] = (size["""height"""], size["""width"""]) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> int: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : str , ) -> PIL.Image.Image: '''simple docstring''' _lowerCAmelCase : Dict = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : Optional[Any] = resample if resample is not None else self.resample _lowerCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : Tuple = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : Dict = image_std if image_std is not None else self.image_std _lowerCAmelCase : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCAmelCase : List[Any] = size if size is not None else self.size _lowerCAmelCase : List[str] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) _lowerCAmelCase : int = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCAmelCase : str = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _lowerCAmelCase : Any = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: _lowerCAmelCase : Dict = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: _lowerCAmelCase : Tuple = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: _lowerCAmelCase : Any = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] _lowerCAmelCase : str = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] _lowerCAmelCase : str = BatchFeature(data={"""pixel_values""": images} , tensor_type=_UpperCAmelCase ) return encoded_outputs
196
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __snake_case : def __init__( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : int=13 , _UpperCAmelCase : Union[str, Any]=30 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Tuple=3 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=32 , _UpperCAmelCase : List[Any]=5 , _UpperCAmelCase : int=4 , _UpperCAmelCase : Union[str, Any]=37 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : List[Any]=10 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=0.6 , _UpperCAmelCase : Any=None , ) -> Tuple: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : List[str] = image_size _lowerCAmelCase : Tuple = patch_size _lowerCAmelCase : int = num_channels _lowerCAmelCase : Optional[int] = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : List[str] = hidden_size _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : str = hidden_act _lowerCAmelCase : List[Any] = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : str = type_sequence_label_size _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : Tuple = mask_ratio _lowerCAmelCase : Tuple = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCAmelCase : Any = (image_size // patch_size) ** 2 _lowerCAmelCase : Any = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: '''simple docstring''' _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : int = None if self.use_labels: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : int = ViTMAEModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any ) -> Any: '''simple docstring''' _lowerCAmelCase : Optional[int] = ViTMAEForPreTraining(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase : int = model(_UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = (self.image_size // self.patch_size) ** 2 _lowerCAmelCase : Union[str, Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Dict = ViTMAEForPreTraining(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : str = model(_UpperCAmelCase ) _lowerCAmelCase : Optional[int] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE ( self : int ) -> Any: '''simple docstring''' _lowerCAmelCase : int = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = config_and_inputs _lowerCAmelCase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case (_a , _a , unittest.TestCase ): lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase__ = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : List[str] = ViTMAEModelTester(self ) _lowerCAmelCase : int = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE ( self : str ) -> int: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self : int ) -> Any: '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[Any] = model_class(_UpperCAmelCase ) _lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> List[Any]: '''simple docstring''' np.random.seed(2 ) _lowerCAmelCase : Optional[int] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCAmelCase : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCAmelCase : Tuple = torch.from_numpy(_UpperCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCAmelCase : Any = pt_noise super().check_pt_tf_models(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCAmelCase : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase : List[Any] = outputs[0].cpu().numpy() _lowerCAmelCase : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase ) _lowerCAmelCase : str = model_class.from_pretrained(_UpperCAmelCase ) model.to(_UpperCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCAmelCase : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) # Make sure we don't have nans _lowerCAmelCase : int = after_outputs[0].cpu().numpy() _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_UpperCAmelCase , 1E-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: '''simple docstring''' pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: '''simple docstring''' pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: '''simple docstring''' pass @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : str = ViTMAEModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __snake_case (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: '''simple docstring''' return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: '''simple docstring''' np.random.seed(2 ) _lowerCAmelCase : str = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(_UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = self.default_image_processor _lowerCAmelCase : Optional[int] = prepare_img() _lowerCAmelCase : Any = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCAmelCase : Optional[int] = ViTMAEConfig() _lowerCAmelCase : Any = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCAmelCase : List[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCAmelCase : Dict = model(**_UpperCAmelCase , noise=torch.from_numpy(_UpperCAmelCase ).to(device=_UpperCAmelCase ) ) # verify the logits _lowerCAmelCase : Optional[Any] = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase : str = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_UpperCAmelCase ) , atol=1E-4 ) )
196
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCamelCase__ ( _lowercase : Tuple , _lowercase : Optional[Any] , _lowercase : Any , _lowercase : Tuple , _lowercase : str ) -> Dict: # Load configuration defined in the metadata file with open(lowerCAmelCase__ ) as metadata_file: __UpperCAmelCase: Optional[Any] = json.load(lowerCAmelCase__ ) __UpperCAmelCase: List[Any] = LukeConfig(use_entity_aware_attention=lowerCAmelCase__ , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path __UpperCAmelCase: Optional[Any] = torch.load(lowerCAmelCase__ , map_location="""cpu""" )['module'] # Load the entity vocab file __UpperCAmelCase: Optional[Any] = load_original_entity_vocab(lowerCAmelCase__ ) # add an entry for [MASK2] __UpperCAmelCase: List[Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __UpperCAmelCase: Optional[int] = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks __UpperCAmelCase: Union[str, Any] = AddedToken("""<ent>""" , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) __UpperCAmelCase: Tuple = AddedToken("""<ent2>""" , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , """tokenizer_config.json""" ) , """r""" ) as f: __UpperCAmelCase: Dict = json.load(lowerCAmelCase__ ) __UpperCAmelCase: str = 'MLukeTokenizer' with open(os.path.join(lowerCAmelCase__ , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase: Tuple = MLukeTokenizer.from_pretrained(lowerCAmelCase__ ) # Initialize the embeddings of the special tokens __UpperCAmelCase: int = tokenizer.convert_tokens_to_ids(["""@"""] )[0] __UpperCAmelCase: Any = tokenizer.convert_tokens_to_ids(["""#"""] )[0] __UpperCAmelCase: int = state_dict['embeddings.word_embeddings.weight'] __UpperCAmelCase: str = word_emb[ent_init_index].unsqueeze(0 ) __UpperCAmelCase: Any = word_emb[enta_init_index].unsqueeze(0 ) __UpperCAmelCase: Any = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __UpperCAmelCase: Any = state_dict[bias_name] __UpperCAmelCase: Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) __UpperCAmelCase: List[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) __UpperCAmelCase: str = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __UpperCAmelCase: Union[str, Any] = F'''encoder.layer.{layer_index}.attention.self.''' __UpperCAmelCase: Any = state_dict[prefix + matrix_name] __UpperCAmelCase: int = state_dict[prefix + matrix_name] __UpperCAmelCase: Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __UpperCAmelCase: Optional[Any] = state_dict['entity_embeddings.entity_embeddings.weight'] __UpperCAmelCase: int = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) __UpperCAmelCase: str = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __UpperCAmelCase: Any = state_dict['entity_predictions.bias'] __UpperCAmelCase: Any = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) __UpperCAmelCase: int = torch.cat([entity_prediction_bias, entity_mask_bias] ) __UpperCAmelCase: Dict = LukeForMaskedLM(config=lowerCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) __UpperCAmelCase: List[str] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): __UpperCAmelCase: int = state_dict[key] else: __UpperCAmelCase: Optional[Any] = state_dict[key] __UpperCAmelCase: str = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) if set(lowerCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(lowerCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __UpperCAmelCase: Dict = MLukeTokenizer.from_pretrained(lowerCAmelCase__ , task="""entity_classification""" ) __UpperCAmelCase: Tuple = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' __UpperCAmelCase: int = (0, 9) __UpperCAmelCase: Optional[Any] = tokenizer(lowerCAmelCase__ , entity_spans=[span] , return_tensors="""pt""" ) __UpperCAmelCase: Dict = model(**lowerCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __UpperCAmelCase: Dict = torch.Size((1, 3_3, 7_6_8) ) __UpperCAmelCase: int = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __UpperCAmelCase: List[str] = torch.Size((1, 1, 7_6_8) ) __UpperCAmelCase: str = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __UpperCAmelCase: List[Any] = MLukeTokenizer.from_pretrained(lowerCAmelCase__ ) __UpperCAmelCase: List[Any] = 'Tokyo is the capital of <mask>.' __UpperCAmelCase: Optional[Any] = (2_4, 3_0) __UpperCAmelCase: List[str] = tokenizer(lowerCAmelCase__ , entity_spans=[span] , return_tensors="""pt""" ) __UpperCAmelCase: Optional[int] = model(**lowerCAmelCase__ ) __UpperCAmelCase: Union[str, Any] = encoding['input_ids'][0].tolist() __UpperCAmelCase: Optional[int] = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) __UpperCAmelCase: Union[str, Any] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowerCAmelCase__ ) __UpperCAmelCase: str = outputs.entity_logits[0][0].argmax().item() __UpperCAmelCase: List[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(lowerCAmelCase__ ) ) model.save_pretrained(lowerCAmelCase__ ) def UpperCamelCase__ ( _lowercase : List[str] ) -> Optional[Any]: __UpperCAmelCase: Dict = ['[MASK]', '[PAD]', '[UNK]'] __UpperCAmelCase: Dict = [json.loads(lowerCAmelCase__ ) for line in open(lowerCAmelCase__ )] __UpperCAmelCase: Optional[int] = {} for entry in data: __UpperCAmelCase: int = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __UpperCAmelCase: Tuple = entity_id break __UpperCAmelCase: Dict = F'''{language}:{entity_name}''' __UpperCAmelCase: Union[str, Any] = entity_id return new_mapping if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
523
_lowercase : Any =[0, 2, 4, 6, 8] _lowercase : List[Any] =[1, 3, 5, 7, 9] def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 ,-1 ,-1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowerCamelCase_ : Dict = 0 for digit in range(10 ): lowerCamelCase_ : List[Any] = digit result += reversible_numbers( 0 ,(remainder + 2 * digit) // 10 ,lowerCAmelCase__ ,lowerCAmelCase__ ) return result lowerCamelCase_ : List[str] = 0 for digita in range(10 ): lowerCamelCase_ : Tuple = digita if (remainder + digita) % 2 == 0: lowerCamelCase_ : Dict = ODD_DIGITS else: lowerCamelCase_ : str = EVEN_DIGITS for digita in other_parity_digits: lowerCamelCase_ : Optional[int] = digita result += reversible_numbers( remaining_length - 2 ,(remainder + digita + digita) // 10 ,lowerCAmelCase__ ,lowerCAmelCase__ ,) return result def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ = 9 ): lowerCamelCase_ : int = 0 for length in range(1 ,max_power + 1 ): result += reversible_numbers(lowerCAmelCase__ ,0 ,[0] * length ,lowerCAmelCase__ ) return result if __name__ == "__main__": print(F'''{solution() = }''')
364
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def a__ ( A_, A_, A_=None ): '''simple docstring''' assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' __magic_name__ = nn.Parameter(A_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' __magic_name__ = nn.Parameter(A_ ) def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = np.asarray(weights[0] ) __magic_name__ = np.asarray(weights[1] ) __magic_name__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key, torch.tensor(A_ ).transpose(1, 2 ).contiguous().view(-1, A_ ), ) set_param( torch_layer.self_attention.value, torch.tensor(A_ ).transpose(1, 2 ).contiguous().view(-1, A_ ), ) set_param( torch_layer.output.dense, torch.tensor(A_ ).view(-1, A_ ).contiguous().transpose(0, 1 ), ) def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = np.asarray(weights[0] ) __magic_name__ = np.asarray(weights[1] ) __magic_name__ = np.asarray(weights[2] ) __magic_name__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query, torch.tensor(A_ ).transpose(1, 2 ).contiguous().view(-1, A_ ), ) set_param( torch_layer.self_attention.key, torch.tensor(A_ ).transpose(1, 2 ).contiguous().view(-1, A_ ), ) set_param( torch_layer.self_attention.value, torch.tensor(A_ ).transpose(1, 2 ).contiguous().view(-1, A_ ), ) set_param( torch_layer.output.dense, torch.tensor(A_ ).view(-1, A_ ).contiguous().transpose(0, 1 ), ) def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = weights[0][0][0] __magic_name__ = np.asarray(layer_norm_a[0] ) __magic_name__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm, torch.tensor(A_ ), torch.tensor(A_ ), ) # lsh weights + output __magic_name__ = weights[0][1] if len(A_ ) < 4: set_layer_weights_in_torch_lsh(A_, torch_block.attention, A_ ) else: set_layer_weights_in_torch_local(A_, torch_block.attention, A_ ) # intermediate weighs __magic_name__ = weights[2][0][1][2] # Chunked Feed Forward if len(A_ ) == 4: __magic_name__ = intermediate_weights[2] # layernorm 2 __magic_name__ = np.asarray(intermediate_weights[0][0] ) __magic_name__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm, torch.tensor(A_ ), torch.tensor(A_ ), ) # intermediate dense __magic_name__ = np.asarray(intermediate_weights[1][0] ) __magic_name__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense, torch.tensor(A_ ).transpose(0, 1 ).contiguous(), torch.tensor(A_ ), ) # intermediate out __magic_name__ = np.asarray(intermediate_weights[4][0] ) __magic_name__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense, torch.tensor(A_ ).transpose(0, 1 ).contiguous(), torch.tensor(A_ ), ) def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = torch_model.reformer # word embeds __magic_name__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings, torch.tensor(A_ ), ) if isinstance(weights[3], A_ ): __magic_name__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __magic_name__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' __magic_name__ = nn.Parameter(torch.tensor(A_ ) ) __magic_name__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( A_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __magic_name__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(A_, A_, A_ ) # output layer norm __magic_name__ = np.asarray(weights[7][0] ) __magic_name__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm, torch.tensor(A_ ), torch.tensor(A_ ), ) # output embeddings __magic_name__ = np.asarray(weights[9][0] ) __magic_name__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder, torch.tensor(A_ ).transpose(0, 1 ).contiguous(), torch.tensor(A_ ), ) def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = ReformerConfig.from_json_file(A_ ) print(f'''Building PyTorch model from configuration: {config}''' ) __magic_name__ = ReformerModelWithLMHead(A_ ) with open(A_, """rb""" ) as f: __magic_name__ = pickle.load(A_ )["""weights"""] set_model_weights_in_torch(A_, A_, config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(), A_ ) if __name__ == "__main__": __lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase : int = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
76
import math def a__ ( A_, A_ = 0, A_ = 0 ): '''simple docstring''' __magic_name__ = end or len(A_ ) for i in range(A_, A_ ): __magic_name__ = i __magic_name__ = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __magic_name__ = array[temp_index - 1] temp_index -= 1 __magic_name__ = temp_index_value return array def a__ ( A_, A_, A_ ): # Max Heap '''simple docstring''' __magic_name__ = index __magic_name__ = 2 * index + 1 # Left Node __magic_name__ = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __magic_name__ = left_index if right_index < heap_size and array[largest] < array[right_index]: __magic_name__ = right_index if largest != index: __magic_name__ , __magic_name__ = array[largest], array[index] heapify(A_, A_, A_ ) def a__ ( A_ ): '''simple docstring''' __magic_name__ = len(A_ ) for i in range(n // 2, -1, -1 ): heapify(A_, A_, A_ ) for i in range(n - 1, 0, -1 ): __magic_name__ , __magic_name__ = array[0], array[i] heapify(A_, 0, A_ ) return array def a__ ( A_, A_, A_, A_ ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def a__ ( A_, A_, A_, A_ ): '''simple docstring''' __magic_name__ = low __magic_name__ = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __magic_name__ , __magic_name__ = array[j], array[i] i += 1 def a__ ( A_ ): '''simple docstring''' if len(A_ ) == 0: return array __magic_name__ = 2 * math.ceil(math.loga(len(A_ ) ) ) __magic_name__ = 16 return intro_sort(A_, 0, len(A_ ), A_, A_ ) def a__ ( A_, A_, A_, A_, A_ ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(A_ ) max_depth -= 1 __magic_name__ = median_of_a(A_, A_, start + ((end - start) // 2) + 1, end - 1 ) __magic_name__ = partition(A_, A_, A_, A_ ) intro_sort(A_, A_, A_, A_, A_ ) __magic_name__ = p return insertion_sort(A_, A_, A_ ) if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : str = input('Enter numbers separated by a comma : ').strip() __lowerCAmelCase : List[Any] = [float(item) for item in user_input.split(',')] print(sort(unsorted))
76
1
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class snake_case__(unittest.TestCase ): """simple docstring""" lowercase_ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase_ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): lowercase__ : int = TextaTextGenerationPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) return generator, ["Something to write", "Something else"] def snake_case ( self : Any , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ): lowercase__ : int = generator("Something there" ) self.assertEqual(SCREAMING_SNAKE_CASE , [{"generated_text": ANY(SCREAMING_SNAKE_CASE )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there" ) ) lowercase__ : Tuple = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=SCREAMING_SNAKE_CASE ) self.assertEqual( SCREAMING_SNAKE_CASE , [ [{"generated_text": ANY(SCREAMING_SNAKE_CASE )}, {"generated_text": ANY(SCREAMING_SNAKE_CASE )}], [{"generated_text": ANY(SCREAMING_SNAKE_CASE )}, {"generated_text": ANY(SCREAMING_SNAKE_CASE )}], ] , ) lowercase__ : Optional[Any] = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=SCREAMING_SNAKE_CASE ) self.assertEqual( SCREAMING_SNAKE_CASE , [ [{"generated_text": ANY(SCREAMING_SNAKE_CASE )}, {"generated_text": ANY(SCREAMING_SNAKE_CASE )}], [{"generated_text": ANY(SCREAMING_SNAKE_CASE )}, {"generated_text": ANY(SCREAMING_SNAKE_CASE )}], ] , ) with self.assertRaises(SCREAMING_SNAKE_CASE ): generator(4 ) @require_torch def snake_case ( self : List[str] ): lowercase__ : List[str] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt" ) # do_sample=False necessary for reproducibility lowercase__ : str = generator("Something there" , do_sample=SCREAMING_SNAKE_CASE ) self.assertEqual(SCREAMING_SNAKE_CASE , [{"generated_text": ""}] ) lowercase__ : Dict = 3 lowercase__ : Any = generator( "Something there" , num_return_sequences=SCREAMING_SNAKE_CASE , num_beams=SCREAMING_SNAKE_CASE , ) lowercase__ : Optional[int] = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = generator("This is a test" , do_sample=SCREAMING_SNAKE_CASE , num_return_sequences=2 , return_tensors=SCREAMING_SNAKE_CASE ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ] , ) lowercase__ : Union[str, Any] = generator.model.config.eos_token_id lowercase__ : Tuple = "<pad>" lowercase__ : Any = generator( ["This is a test", "This is a second test"] , do_sample=SCREAMING_SNAKE_CASE , num_return_sequences=2 , batch_size=2 , return_tensors=SCREAMING_SNAKE_CASE , ) self.assertEqual( SCREAMING_SNAKE_CASE , [ [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], ] , ) @require_tf def snake_case ( self : List[Any] ): lowercase__ : Union[str, Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf" ) # do_sample=False necessary for reproducibility lowercase__ : List[Any] = generator("Something there" , do_sample=SCREAMING_SNAKE_CASE ) self.assertEqual(SCREAMING_SNAKE_CASE , [{"generated_text": ""}] )
496
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } lowerCAmelCase__ = { '''b0''': { '''hidden_dim''': 1_2_8_0, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 2_2_4, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1_2_8_0, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 2_4_0, '''dropout_rate''': 0.2, '''dw_padding''': [1_6], }, '''b2''': { '''hidden_dim''': 1_4_0_8, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 2_6_0, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 1_6], }, '''b3''': { '''hidden_dim''': 1_5_3_6, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 3_0_0, '''dropout_rate''': 0.3, '''dw_padding''': [5, 1_8], }, '''b4''': { '''hidden_dim''': 1_7_9_2, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 3_8_0, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2_0_4_8, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 4_5_6, '''dropout_rate''': 0.4, '''dw_padding''': [1_3, 2_7], }, '''b6''': { '''hidden_dim''': 2_3_0_4, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 5_2_8, '''dropout_rate''': 0.5, '''dw_padding''': [3_1], }, '''b7''': { '''hidden_dim''': 2_5_6_0, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 6_0_0, '''dropout_rate''': 0.5, '''dw_padding''': [1_8], }, } def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : str = EfficientNetConfig() lowercase__ : str = CONFIG_MAP[model_name]["hidden_dim"] lowercase__ : Union[str, Any] = CONFIG_MAP[model_name]["width_coef"] lowercase__ : List[Any] = CONFIG_MAP[model_name]["depth_coef"] lowercase__ : Optional[int] = CONFIG_MAP[model_name]["image_size"] lowercase__ : Tuple = CONFIG_MAP[model_name]["dropout_rate"] lowercase__ : Dict = CONFIG_MAP[model_name]["dw_padding"] lowercase__ : str = "huggingface/label-files" lowercase__ : List[Any] = "imagenet-1k-id2label.json" lowercase__ : Any = 1_000 lowercase__ : Any = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowercase__ : Optional[int] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowercase__ : Tuple = idalabel lowercase__ : Dict = {v: k for k, v in idalabel.items()} return config def __lowerCamelCase ( ): """simple docstring""" lowercase__ : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Any = CONFIG_MAP[model_name]["image_size"] lowercase__ : List[str] = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=lowerCamelCase__ , ) return preprocessor def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Tuple = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] lowercase__ : List[str] = sorted(set(lowerCamelCase__ ) ) lowercase__ : Optional[int] = len(lowerCamelCase__ ) lowercase__ : Optional[int] = {b: str(lowerCamelCase__ ) for b, i in zip(lowerCamelCase__ , range(lowerCamelCase__ ) )} lowercase__ : Tuple = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: lowercase__ : Optional[Any] = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) lowercase__ : Any = {} for item in rename_keys: if item[0] in original_param_names: lowercase__ : Optional[Any] = "efficientnet." + item[1] lowercase__ : str = "classifier.weight" lowercase__ : Optional[int] = "classifier.bias" return key_mapping def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue lowercase__ : List[Any] = key_mapping[key] if "_conv" in key and "kernel" in key: lowercase__ : Optional[int] = torch.from_numpy(lowerCamelCase__ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowercase__ : str = torch.from_numpy(lowerCamelCase__ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowercase__ : Tuple = torch.from_numpy(np.transpose(lowerCamelCase__ ) ) else: lowercase__ : Optional[Any] = torch.from_numpy(lowerCamelCase__ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCamelCase__ ) @torch.no_grad() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : str = model_classes[model_name]( include_top=lowerCamelCase__ , weights="imagenet" , input_tensor=lowerCamelCase__ , input_shape=lowerCamelCase__ , pooling=lowerCamelCase__ , classes=1_000 , classifier_activation="softmax" , ) lowercase__ : List[str] = original_model.trainable_variables lowercase__ : Optional[int] = original_model.non_trainable_variables lowercase__ : str = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowercase__ : List[Any] = param.numpy() lowercase__ : Optional[Any] = list(tf_params.keys() ) # Load HuggingFace model lowercase__ : List[Any] = get_efficientnet_config(lowerCamelCase__ ) lowercase__ : Union[str, Any] = EfficientNetForImageClassification(lowerCamelCase__ ).eval() lowercase__ : List[Any] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) lowercase__ : Optional[Any] = rename_keys(lowerCamelCase__ ) replace_params(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Initialize preprocessor and preprocess input image lowercase__ : str = convert_image_processor(lowerCamelCase__ ) lowercase__ : int = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = hf_model(**lowerCamelCase__ ) lowercase__ : Dict = outputs.logits.detach().numpy() # Original model inference lowercase__ : Tuple = False lowercase__ : Dict = CONFIG_MAP[model_name]["image_size"] lowercase__ : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowercase__ : Dict = image.img_to_array(lowerCamelCase__ ) lowercase__ : Optional[int] = np.expand_dims(lowerCamelCase__ , axis=0 ) lowercase__ : Dict = original_model.predict(lowerCamelCase__ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(lowerCamelCase__ ): os.mkdir(lowerCamelCase__ ) # Save converted model and image processor hf_model.save_pretrained(lowerCamelCase__ ) preprocessor.save_pretrained(lowerCamelCase__ ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) lowercase__ : List[Any] = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(lowerCamelCase__ ) hf_model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') lowerCAmelCase__ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
496
1
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _a : Dict = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class __A (__UpperCAmelCase , unittest.TestCase ): snake_case :List[str] = GPTSwaTokenizer snake_case :Dict = False snake_case :int = True snake_case :List[Any] = False def _snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : List[str] = GPTSwaTokenizer(__SCREAMING_SNAKE_CASE , eos_token="<unk>" , bos_token="<unk>" , pad_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Dict = "This is a test" __UpperCAmelCase : List[str] = "This is a test" return input_text, output_text def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = "<s>" __UpperCAmelCase : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): __UpperCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 20_00 ) def _snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 20_00 ) def _snake_case ( self ): __UpperCAmelCase : int = GPTSwaTokenizer(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Union[str, Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [4_65, 2_87, 2_65, 6_31, 8_42] ) __UpperCAmelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) # fmt: off self.assertListEqual( __SCREAMING_SNAKE_CASE , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] , ) # fmt: on __UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] , ) __UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) # fmt: off self.assertListEqual( __SCREAMING_SNAKE_CASE , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] ) # fmt: on def _snake_case ( self ): __UpperCAmelCase : Optional[int] = GPTSwaTokenizer(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Optional[int] = ["This is a test", "I was born in 92000, and this is falsé."] __UpperCAmelCase : Optional[Any] = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertListEqual(tokenizer.encode_fast(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # Test that decode_fast returns the input text for text, token_ids in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(tokenizer.decode_fast(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self ): __UpperCAmelCase : Optional[int] = [ "<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')", "Hey there, how are you doing this fine day?", "This is a text with a trailing spaces followed by a dot .", "Häj sväjs lillebrör! =)", "Det är inget fel på Mr. Cool", ] # fmt: off __UpperCAmelCase : Optional[int] = {"input_ids": [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name="AI-Sweden/gpt-sw3-126m" , sequences=__SCREAMING_SNAKE_CASE , )
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
"""simple docstring""" from __future__ import annotations import math def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__UpperCAmelCase ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , ) def SCREAMING_SNAKE_CASE ( ) -> None: SCREAMING_SNAKE_CASE__ = [90, 23, 6, 33, 21, 65, 123, 34_423] SCREAMING_SNAKE_CASE__ = math.log(len(__UpperCAmelCase ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
159
"""simple docstring""" class lowerCamelCase : '''simple docstring''' def __init__( self : str , _snake_case : list[int] ) -> None: SCREAMING_SNAKE_CASE__ = len(_snake_case ) SCREAMING_SNAKE_CASE__ = [0] * len_array if len_array > 0: SCREAMING_SNAKE_CASE__ = array[0] for i in range(1 , _snake_case ): SCREAMING_SNAKE_CASE__ = self.prefix_sum[i - 1] + array[i] def lowerCAmelCase_ ( self : Union[str, Any] , _snake_case : int , _snake_case : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowerCAmelCase_ ( self : Union[str, Any] , _snake_case : int ) -> bool: SCREAMING_SNAKE_CASE__ = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(_snake_case ) return False if __name__ == "__main__": import doctest doctest.testmod()
159
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase : Optional[int] = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def A_ ( A__ ) -> Optional[int]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(A__ ) def A_ ( A__ ) -> List[str]: from transformers.testing_utils import pytest_terminal_summary_main a__ : List[Any] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(A__ , id=A__ )
392
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase : Optional[int] = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def A_ ( A__ ) -> Optional[int]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(A__ ) def A_ ( A__ ) -> List[str]: from transformers.testing_utils import pytest_terminal_summary_main a__ : List[Any] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(A__ , id=A__ )
392
1
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def a ( __UpperCAmelCase : List[Any] ) -> str: __magic_name__: Union[str, Any] = args.pruning_method __magic_name__: Tuple = args.threshold __magic_name__: Dict = args.model_name_or_path.rstrip("""/""" ) __magic_name__: str = args.target_model_path print(f'Load fine-pruned model from {model_name_or_path}' ) __magic_name__: Optional[Any] = torch.load(os.path.join(__UpperCAmelCase , """pytorch_model.bin""" ) ) __magic_name__: int = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: __magic_name__: List[Any] = tensor print(f'Copied layer {name}' ) elif "classifier" in name or "qa_output" in name: __magic_name__: List[str] = tensor print(f'Copied layer {name}' ) elif "bias" in name: __magic_name__: Union[str, Any] = tensor print(f'Copied layer {name}' ) else: if pruning_method == "magnitude": __magic_name__: str = MagnitudeBinarizer.apply(inputs=__UpperCAmelCase , threshold=__UpperCAmelCase ) __magic_name__: Tuple = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "topK": if "mask_scores" in name: continue __magic_name__: str = name[:-6] __magic_name__: Dict = model[f'{prefix_}mask_scores'] __magic_name__: Any = TopKBinarizer.apply(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: List[Any] = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue __magic_name__: List[Any] = name[:-6] __magic_name__: List[Any] = model[f'{prefix_}mask_scores'] __magic_name__: Tuple = ThresholdBinarizer.apply(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __magic_name__: int = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "l0": if "mask_scores" in name: continue __magic_name__: Dict = name[:-6] __magic_name__: int = model[f'{prefix_}mask_scores'] __magic_name__, __magic_name__: Tuple = -0.1, 1.1 __magic_name__: Tuple = torch.sigmoid(__UpperCAmelCase ) __magic_name__: Any = s * (r - l) + l __magic_name__: Optional[int] = s_bar.clamp(min=0.0 , max=1.0 ) __magic_name__: Union[str, Any] = tensor * mask print(f'Pruned layer {name}' ) else: raise ValueError("""Unknown pruning method""" ) if target_model_path is None: __magic_name__: List[str] = os.path.join( os.path.dirname(__UpperCAmelCase ) , f'bertarized_{os.path.basename(__UpperCAmelCase )}' ) if not os.path.isdir(__UpperCAmelCase ): shutil.copytree(__UpperCAmelCase , __UpperCAmelCase ) print(f'\nCreated folder {target_model_path}' ) torch.save(__UpperCAmelCase , os.path.join(__UpperCAmelCase , """pytorch_model.bin""" ) ) print("""\nPruned model saved! See you later!""" ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) __lowerCamelCase = parser.parse_args() main(args)
96
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __UpperCAmelCase ( unittest.TestCase ): A__ : List[Any] = StableDiffusionLDMaDPipeline A__ : List[str] = TEXT_TO_IMAGE_PARAMS A__ : str = TEXT_TO_IMAGE_BATCH_PARAMS A__ : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self ): torch.manual_seed(0 ) lowerCamelCase__ =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowerCamelCase__ =DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) lowerCamelCase__ =AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase__ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCamelCase__ =CLIPTextModel(_lowerCamelCase ) lowerCamelCase__ =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase__ ={ "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _a ( self , _lowerCamelCase , _lowerCamelCase=0 ): if str(_lowerCamelCase ).startswith("mps" ): lowerCamelCase__ =torch.manual_seed(_lowerCamelCase ) else: lowerCamelCase__ =torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) lowerCamelCase__ ={ "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _a ( self ): lowerCamelCase__ ="cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ =self.get_dummy_components() lowerCamelCase__ =StableDiffusionLDMaDPipeline(**_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe.to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCamelCase__ =self.get_dummy_inputs(_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =rgb[0, -3:, -3:, -1] lowerCamelCase__ =depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCamelCase__ =np.array( [0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] ) lowerCamelCase__ =np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def _a ( self ): lowerCamelCase__ =self.get_dummy_components() lowerCamelCase__ =StableDiffusionLDMaDPipeline(**_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe.to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCamelCase__ =self.get_dummy_inputs(_lowerCamelCase ) lowerCamelCase__ =3 * [inputs["prompt"]] # forward lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =rgb_slice_a[0, -3:, -3:, -1] lowerCamelCase__ =depth_slice_a[0, -3:, -1] lowerCamelCase__ =self.get_dummy_inputs(_lowerCamelCase ) lowerCamelCase__ =3 * [inputs.pop("prompt" )] lowerCamelCase__ =ldmad_pipe.tokenizer( _lowerCamelCase , padding="max_length" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=_lowerCamelCase , return_tensors="pt" , ) lowerCamelCase__ =text_inputs["input_ids"].to(_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe.text_encoder(_lowerCamelCase )[0] lowerCamelCase__ =prompt_embeds # forward lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =rgb_slice_a[0, -3:, -3:, -1] lowerCamelCase__ =depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def _a ( self ): lowerCamelCase__ ="cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ =self.get_dummy_components() lowerCamelCase__ =PNDMScheduler(skip_prk_steps=_lowerCamelCase ) lowerCamelCase__ =StableDiffusionLDMaDPipeline(**_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe.to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCamelCase__ =self.get_dummy_inputs(_lowerCamelCase ) lowerCamelCase__ ="french fries" lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase , negative_prompt=_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =rgb[0, -3:, -3:, -1] lowerCamelCase__ =depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCamelCase__ =np.array( [0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] ) lowerCamelCase__ =np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def _a ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCamelCase , _lowerCamelCase="cpu" , _lowerCamelCase=torch.floataa , _lowerCamelCase=0 ): lowerCamelCase__ =torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) lowerCamelCase__ =np.random.RandomState(_lowerCamelCase ).standard_normal((1, 4, 64, 64) ) lowerCamelCase__ =torch.from_numpy(_lowerCamelCase ).to(device=_lowerCamelCase , dtype=_lowerCamelCase ) lowerCamelCase__ ={ "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _a ( self ): lowerCamelCase__ =StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ) lowerCamelCase__ =ldmad_pipe.to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCamelCase__ =self.get_inputs(_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =rgb[0, -3:, -3:, -1].flatten() lowerCamelCase__ =rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) lowerCamelCase__ =np.array( [0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] ) lowerCamelCase__ =np.array( [0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def _a ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCamelCase , _lowerCamelCase="cpu" , _lowerCamelCase=torch.floataa , _lowerCamelCase=0 ): lowerCamelCase__ =torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) lowerCamelCase__ =np.random.RandomState(_lowerCamelCase ).standard_normal((1, 4, 64, 64) ) lowerCamelCase__ =torch.from_numpy(_lowerCamelCase ).to(device=_lowerCamelCase , dtype=_lowerCamelCase ) lowerCamelCase__ ={ "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _a ( self ): lowerCamelCase__ =StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ).to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCamelCase__ =self.get_inputs(_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =0.4_9_5_5_8_6 lowerCamelCase__ =0.3_3_7_9_5_5_1_5 lowerCamelCase__ =1_1_2.4_8_5_1_8 lowerCamelCase__ =9_8.4_8_9_7_4_6 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def _a ( self ): lowerCamelCase__ =StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d-4c" ).to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCamelCase__ =self.get_inputs(_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =0.4_1_9_4_1_2_7 lowerCamelCase__ =0.3_5_3_7_5_5_8_6 lowerCamelCase__ =0.5_6_3_8_5_0_2 lowerCamelCase__ =0.3_4_6_8_6_1_0_3 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
530
0
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): lowercase__ = LxmertTokenizer lowercase__ = LxmertTokenizerFast lowercase__ = True lowercase__ = True def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() __a : int = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __a : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : List[Any] = """UNwant\u00E9d,running""" __a : List[str] = """unwanted, running""" return input_text, output_text def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.tokenizer_class(self.vocab_file ) __a : Optional[Any] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__UpperCamelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [7, 4, 5, 10, 8, 9] ) def __lowerCamelCase ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return __a : str = self.get_tokenizer() __a : Union[str, Any] = self.get_rust_tokenizer() __a : Union[str, Any] = """I was born in 92000, and this is falsé.""" __a : List[Any] = tokenizer.tokenize(__UpperCamelCase ) __a : List[str] = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) __a : List[Any] = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) __a : str = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) __a : Optional[Any] = self.get_rust_tokenizer() __a : Tuple = tokenizer.encode(__UpperCamelCase ) __a : Dict = rust_tokenizer.encode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
697
'''simple docstring''' from itertools import product def _snake_case ( lowercase , lowercase ) -> list[int]: __a : Optional[int] = sides_number __a : Union[str, Any] = max_face_number * dice_number __a : Optional[Any] = [0] * (max_total + 1) __a : Dict = 1 __a : str = range(lowercase , max_face_number + 1 ) for dice_numbers in product(lowercase , repeat=lowercase ): __a : int = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def _snake_case ( ) -> float: __a : Tuple = total_frequency_distribution( sides_number=4 , dice_number=9 ) __a : Union[str, Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) __a : str = 0 __a : Dict = 9 __a : str = 4 * 9 __a : Any = 6 for peter_total in range(lowercase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __a : str = (4**9) * (6**6) __a : List[Any] = peter_wins_count / total_games_number __a : List[Any] = round(lowercase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'''{solution() = }''')
697
1
'''simple docstring''' from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : List[Any] ): _A = k_size // 2 _A , _A = mgrid[0 - center : k_size - center, 0 - center : k_size - center] _A = 1 / (2 * pi * sigma) * exp(-(square(__snake_case ) + square(__snake_case )) / (2 * square(__snake_case )) ) return g def _SCREAMING_SNAKE_CASE ( __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Tuple ): _A , _A = image.shape[0], image.shape[1] # dst image height and width _A = height - k_size + 1 _A = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows _A = zeros((dst_height * dst_width, k_size * k_size) ) _A = 0 for i, j in product(range(__snake_case ) , range(__snake_case ) ): _A = ravel(image[i : i + k_size, j : j + k_size] ) _A = window row += 1 # turn the kernel into shape(k*k, 1) _A = gen_gaussian_kernel(__snake_case , __snake_case ) _A = ravel(__snake_case ) # reshape and get the dst image _A = dot(__snake_case , __snake_case ).reshape(__snake_case , __snake_case ).astype(__snake_case ) return dst if __name__ == "__main__": # read original image _UpperCAmelCase : List[Any] = imread(r'''../image_data/lena.jpg''') # turn image in gray scale value _UpperCAmelCase : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _UpperCAmelCase : Tuple = gaussian_filter(gray, 3, sigma=1) _UpperCAmelCase : int = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
107
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _UpperCAmelCase : Any = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' _UpperCAmelCase : str = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' _UpperCAmelCase : Union[str, Any] = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : List[Any] ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), id='references' ), } ), ) def __UpperCAmelCase ( self : Dict, UpperCamelCase__ : List[List[List[str]]], UpperCamelCase__ : List[List[str]], UpperCamelCase__ : int = 1, UpperCamelCase__ : int = 4, ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase__, hypotheses=UpperCamelCase__, min_len=UpperCamelCase__, max_len=UpperCamelCase__ ) }
107
1
from typing import TYPE_CHECKING from ..utils import _LazyModule A_ : Tuple ={ """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys A_ : Dict =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
714
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def SCREAMING_SNAKE_CASE_ ( snake_case : Any )-> str: _lowerCamelCase = filter(lambda snake_case : p.requires_grad , model.parameters() ) _lowerCamelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params A_ : List[str] =logging.getLogger(__name__) def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[int] , snake_case : Union[str, Any] )-> Tuple: if metric == "rouge2": _lowerCamelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _lowerCamelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _lowerCamelCase = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) _lowerCamelCase = ModelCheckpoint( dirpath=snake_case , filename=snake_case , monitor=f'val_{metric}' , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def SCREAMING_SNAKE_CASE_ ( snake_case : Union[str, Any] , snake_case : Tuple )-> Optional[Any]: return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=snake_case , verbose=snake_case , ) class __a ( pl.Callback ): def snake_case_ ( self , a__ , a__ ): _lowerCamelCase = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(a__ ) @rank_zero_only def snake_case_ ( self , a__ , a__ , a__ , a__=True ): logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) _lowerCamelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _lowerCamelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": _lowerCamelCase = od / 'test_results.txt' _lowerCamelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _lowerCamelCase = od / F'{type_path}_results/{trainer.global_step:05d}.txt' _lowerCamelCase = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=a__ ) generations_file.parent.mkdir(exist_ok=a__ ) with open(a__ , 'a+' ) as writer: for key in sorted(a__ ): if key in ["log", "progress_bar", "preds"]: continue _lowerCamelCase = metrics[key] if isinstance(a__ , torch.Tensor ): _lowerCamelCase = val.item() _lowerCamelCase = F'{key}: {val:.6f}\n' writer.write(a__ ) if not save_generations: return if "preds" in metrics: _lowerCamelCase = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(a__ ) @rank_zero_only def snake_case_ ( self , a__ , a__ ): try: _lowerCamelCase = pl_module.model.model.num_parameters() except AttributeError: _lowerCamelCase = pl_module.model.num_parameters() _lowerCamelCase = count_trainable_parameters(a__ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1e6, 'grad_mp': n_trainable_pars / 1e6} ) @rank_zero_only def snake_case_ ( self , a__ , a__ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(a__ , a__ , 'test' ) @rank_zero_only def snake_case_ ( self , a__ , a__ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
222
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = AlbertConfig.from_json_file(lowerCamelCase_ ) print(F'Building PyTorch model from configuration: {config}' ) SCREAMING_SNAKE_CASE_ : Any = AlbertForPreTraining(lowerCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_albert(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowerCamelCase_ ) if __name__ == "__main__": UpperCamelCase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase__ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
105
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class A_ (a_ ): """simple docstring""" a__ = '''gpt_bigcode''' a__ = ['''past_key_values'''] a__ = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self :List[Any] , lowerCAmelCase__ :Any=50_257 , lowerCAmelCase__ :Dict=1_024 , lowerCAmelCase__ :Optional[int]=768 , lowerCAmelCase__ :Tuple=12 , lowerCAmelCase__ :int=12 , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :List[str]="gelu_pytorch_tanh" , lowerCAmelCase__ :Tuple=0.1 , lowerCAmelCase__ :Tuple=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Any=1E-5 , lowerCAmelCase__ :Union[str, Any]=0.0_2 , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :int=50_256 , lowerCAmelCase__ :List[str]=50_256 , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :int=True , **lowerCAmelCase__ :Union[str, Any] , ) -> Any: '''simple docstring''' snake_case_ : List[Any] = vocab_size snake_case_ : Any = n_positions snake_case_ : Any = n_embd snake_case_ : Optional[Any] = n_layer snake_case_ : List[Any] = n_head snake_case_ : Tuple = n_inner snake_case_ : str = activation_function snake_case_ : Union[str, Any] = resid_pdrop snake_case_ : Optional[Any] = embd_pdrop snake_case_ : Any = attn_pdrop snake_case_ : List[Any] = layer_norm_epsilon snake_case_ : Tuple = initializer_range snake_case_ : int = scale_attn_weights snake_case_ : Union[str, Any] = use_cache snake_case_ : Dict = attention_softmax_in_fpaa snake_case_ : Any = scale_attention_softmax_in_fpaa snake_case_ : List[str] = multi_query snake_case_ : List[str] = bos_token_id snake_case_ : Any = eos_token_id super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
653
0
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__ ) class __lowerCAmelCase ( UpperCamelCase__ ): '''simple docstring''' __UpperCAmelCase : Any = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) __UpperCAmelCase : List[Any] = Features({'text': Value('string' )} ) __UpperCAmelCase : Optional[int] = Features({'summary': Value('string' )} ) __UpperCAmelCase : Dict = 'text' __UpperCAmelCase : List[Any] = 'summary' @property def __UpperCAmelCase ( self ): return {self.text_column: "text", self.summary_column: "summary"}
710
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> list[str]: if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) __a = number_of_bytes // partitions __a = [] for i in range(lowerCAmelCase__ ): __a = i * bytes_per_partition + 1 __a = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
65
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A =logging.get_logger(__name__) __A ={ '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'data2vec-vision' def __init__( self , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.0_2 , lowercase=1e-12 , lowercase=224 , lowercase=16 , lowercase=3 , lowercase=False , lowercase=False , lowercase=False , lowercase=False , lowercase=0.1 , lowercase=0.1 , lowercase=True , lowercase=[3, 5, 7, 11] , lowercase=[1, 2, 3, 6] , lowercase=True , lowercase=0.4 , lowercase=256 , lowercase=1 , lowercase=False , lowercase=255 , **lowercase , ) -> Optional[int]: super().__init__(**lowercase ) lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = use_mask_token lowerCamelCase_ = use_absolute_position_embeddings lowerCamelCase_ = use_relative_position_bias lowerCamelCase_ = use_shared_relative_position_bias lowerCamelCase_ = layer_scale_init_value lowerCamelCase_ = drop_path_rate lowerCamelCase_ = use_mean_pooling # decode head attributes (semantic segmentation) lowerCamelCase_ = out_indices lowerCamelCase_ = pool_scales # auxiliary head attributes (semantic segmentation) lowerCamelCase_ = use_auxiliary_head lowerCamelCase_ = auxiliary_loss_weight lowerCamelCase_ = auxiliary_channels lowerCamelCase_ = auxiliary_num_convs lowerCamelCase_ = auxiliary_concat_input lowerCamelCase_ = semantic_loss_ignore_index class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE_( self ) -> float: return 1e-4
463
class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase=None , lowercase=None ) -> List[Any]: lowerCamelCase_ = data lowerCamelCase_ = previous lowerCamelCase_ = next_node def __str__( self ) -> str: return f'{self.data}' def SCREAMING_SNAKE_CASE_( self ) -> int: return self.data def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: return self.next def SCREAMING_SNAKE_CASE_( self ) -> int: return self.previous class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase ) -> Optional[int]: lowerCamelCase_ = head def __iter__( self ) -> int: return self def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: if not self.current: raise StopIteration else: lowerCamelCase_ = self.current.get_data() lowerCamelCase_ = self.current.get_next() return value class _SCREAMING_SNAKE_CASE : def __init__( self ) -> Union[str, Any]: lowerCamelCase_ = None # First node in list lowerCamelCase_ = None # Last node in list def __str__( self ) -> Optional[Any]: lowerCamelCase_ = self.head lowerCamelCase_ = [] while current is not None: nodes.append(current.get_data() ) lowerCamelCase_ = current.get_next() return " ".join(str(lowercase ) for node in nodes ) def __contains__( self , lowercase ) -> Optional[int]: lowerCamelCase_ = self.head while current: if current.get_data() == value: return True lowerCamelCase_ = current.get_next() return False def __iter__( self ) -> List[str]: return LinkedListIterator(self.head ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: if self.head: return self.head.get_data() return None def SCREAMING_SNAKE_CASE_( self ) -> Any: if self.tail: return self.tail.get_data() return None def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: if self.head is None: lowerCamelCase_ = node lowerCamelCase_ = node else: self.insert_before_node(self.head , lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: if self.head is None: self.set_head(lowercase ) else: self.insert_after_node(self.tail , lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = Node(lowercase ) if self.head is None: self.set_head(lowercase ) else: self.set_tail(lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> None: lowerCamelCase_ = node lowerCamelCase_ = node.previous if node.get_previous() is None: lowerCamelCase_ = node_to_insert else: lowerCamelCase_ = node_to_insert lowerCamelCase_ = node_to_insert def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> None: lowerCamelCase_ = node lowerCamelCase_ = node.next if node.get_next() is None: lowerCamelCase_ = node_to_insert else: lowerCamelCase_ = node_to_insert lowerCamelCase_ = node_to_insert def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> None: lowerCamelCase_ = 1 lowerCamelCase_ = Node(lowercase ) lowerCamelCase_ = self.head while node: if current_position == position: self.insert_before_node(lowercase , lowercase ) return current_position += 1 lowerCamelCase_ = node.next self.insert_after_node(self.tail , lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Node: lowerCamelCase_ = self.head while node: if node.get_data() == item: return node lowerCamelCase_ = node.get_next() raise Exception("Node not found" ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Union[str, Any]: if (node := self.get_node(lowercase )) is not None: if node == self.head: lowerCamelCase_ = self.head.get_next() if node == self.tail: lowerCamelCase_ = self.tail.get_previous() self.remove_node_pointers(lowercase ) @staticmethod def SCREAMING_SNAKE_CASE_( lowercase ) -> None: if node.get_next(): lowerCamelCase_ = node.previous if node.get_previous(): lowerCamelCase_ = node.next lowerCamelCase_ = None lowerCamelCase_ = None def SCREAMING_SNAKE_CASE_( self ) -> int: return self.head is None def lowerCamelCase_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
463
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Optional[Any] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :str = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :List[Any] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Dict = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Any = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Tuple = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :List[Any] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :int = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :str = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Any = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :str = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) def lowerCamelCase_ ( *_lowerCamelCase : Union[str, Any] , **_lowerCamelCase : Optional[Any] ): requires_backends(_lowerCamelCase , ['''torch'''] ) def lowerCamelCase_ ( *_lowerCamelCase : List[Any] , **_lowerCamelCase : Optional[int] ): requires_backends(_lowerCamelCase , ['''torch'''] ) def lowerCamelCase_ ( *_lowerCamelCase : Optional[int] , **_lowerCamelCase : int ): requires_backends(_lowerCamelCase , ['''torch'''] ) def lowerCamelCase_ ( *_lowerCamelCase : Union[str, Any] , **_lowerCamelCase : Union[str, Any] ): requires_backends(_lowerCamelCase , ['''torch'''] ) def lowerCamelCase_ ( *_lowerCamelCase : str , **_lowerCamelCase : List[Any] ): requires_backends(_lowerCamelCase , ['''torch'''] ) def lowerCamelCase_ ( *_lowerCamelCase : Dict , **_lowerCamelCase : int ): requires_backends(_lowerCamelCase , ['''torch'''] ) def lowerCamelCase_ ( *_lowerCamelCase : Dict , **_lowerCamelCase : List[Any] ): requires_backends(_lowerCamelCase , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Union[str, Any] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :int = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Optional[Any] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Optional[Any] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Any = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :str = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Union[str, Any] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :List[Any] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :str = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :int = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Optional[int] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Optional[int] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :int = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Optional[Any] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :str = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :int = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Optional[int] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Optional[Any] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Optional[int] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Tuple = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :str = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Dict = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Any = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Optional[int] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Optional[int] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :List[str] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Tuple = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Optional[Any] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :str = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :List[Any] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Optional[int] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Any = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :List[Any] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Any = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :int = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Optional[Any] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :Any = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :List[str] = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase ( metaclass=a ): """simple docstring""" __lowercase :str = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def _lowerCAmelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] )
720
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class lowerCAmelCase : """simple docstring""" def __init__( self , UpperCamelCase__ ) -> str: '''simple docstring''' lowerCamelCase_ = str(id_ ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = [] lowerCamelCase_ = {} # {vertex:distance} def __lt__( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' return self.key < other.key def __repr__( self ) -> Union[str, Any]: '''simple docstring''' return self.id def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' self.neighbors.append(UpperCamelCase__ ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' lowerCamelCase_ = weight def lowerCamelCase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : Dict ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _lowerCamelCase ) graph[b - 1].add_edge(graph[a - 1] , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase : list , _lowerCamelCase : Vertex ): lowerCamelCase_ = [] for u in graph: lowerCamelCase_ = math.inf lowerCamelCase_ = None lowerCamelCase_ = 0 lowerCamelCase_ = graph[:] while q: lowerCamelCase_ = min(_lowerCamelCase ) q.remove(_lowerCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowerCamelCase_ = u lowerCamelCase_ = u.edges[v.id] for i in range(1 , len(_lowerCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowerCamelCase_ ( _lowerCamelCase : list , _lowerCamelCase : Vertex ): for u in graph: lowerCamelCase_ = math.inf lowerCamelCase_ = None lowerCamelCase_ = 0 lowerCamelCase_ = list(_lowerCamelCase ) hq.heapify(_lowerCamelCase ) while h: lowerCamelCase_ = hq.heappop(_lowerCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowerCamelCase_ = u lowerCamelCase_ = u.edges[v.id] hq.heapify(_lowerCamelCase ) for i in range(1 , len(_lowerCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowerCamelCase_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
66
0
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=[8, 16, 32, 64] , SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="relu" , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=["stage2", "stage3", "stage4"] , SCREAMING_SNAKE_CASE=[2, 3, 4] , SCREAMING_SNAKE_CASE=1 , ) -> int: """simple docstring""" A : Optional[Any] = parent A : List[Any] = batch_size A : Dict = image_size A : Tuple = num_channels A : Dict = embeddings_size A : Dict = hidden_sizes A : List[Any] = depths A : List[Any] = is_training A : List[str] = use_labels A : List[str] = hidden_act A : Any = num_labels A : str = scope A : int = len(_snake_case ) A : Optional[int] = out_features A : Any = out_indices A : Tuple = num_groups def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A : Tuple = None if self.use_labels: A : str = ids_tensor([self.batch_size] , self.num_labels ) A : List[Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) -> int: """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : List[Any] = BitModel(config=_snake_case ) model.to(_snake_case ) model.eval() A : Optional[int] = model(_snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" A : Any = self.num_labels A : Union[str, Any] = BitForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() A : List[str] = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : int = BitBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() A : Dict = model(_snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None A : Tuple = None A : List[Any] = BitBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() A : Tuple = model(_snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Tuple = self.prepare_config_and_inputs() A : Tuple = config_and_inputs A : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): __magic_name__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __magic_name__ = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Optional[int] = BitModelTester(self ) A : Union[str, Any] = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" pass def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : List[Any] = model_class(_snake_case ) A : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : str = [*signature.parameters.keys()] A : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_snake_case ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : List[str] = model_class(config=_snake_case ) for name, module in model.named_modules(): if isinstance(_snake_case , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" def check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A : Optional[int] = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A : Tuple = self.model_tester.num_stages self.assertEqual(len(_snake_case ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A : Tuple = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: A : Dict = layer_type A : Dict = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A : Tuple = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" pass def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : Tuple = BitModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def lowerCAmelCase_ ( ): '''simple docstring''' A : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self ) -> Any: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Tuple = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_snake_case ) A : Any = self.default_image_processor A : Tuple = prepare_img() A : List[str] = image_processor(images=_snake_case , return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): A : Union[str, Any] = model(**_snake_case ) # verify the logits A : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _snake_case ) A : Optional[int] = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4 ) ) @require_torch class A ( lowerCAmelCase_ , unittest.TestCase ): __magic_name__ = (BitBackbone,) if is_torch_available() else () __magic_name__ = BitConfig __magic_name__ = False def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : List[Any] = BitModelTester(self )
634
def lowercase_ (A : int , A : int ): if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) snake_case__ : List[str] = str(bin(A ) )[2:] # remove the leading "0b" snake_case__ : int = str(bin(A ) )[2:] # remove the leading "0b" snake_case__ : Dict = max(len(A ) , len(A ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(A ) , b_binary.zfill(A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
478
0
from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Dict[Optional[str], Type[Formatter]] = {} a__ : Dict[Optional[str], str] = {} a__ : Dict[Optional[str], Exception] = {} def _lowerCAmelCase ( A__ , A__ , A__ = None , ): lowercase__ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) lowercase__ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) lowercase__ = format_type def _lowerCAmelCase ( A__ , A__ , A__ = None ): lowercase__ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): lowercase__ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: a__ : Optional[Any] = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: a__ : Dict = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: a__ : List[Any] = ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def _lowerCAmelCase ( A__ ): if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _lowerCAmelCase ( A__ , **A__ ): lowercase__ = get_format_type_from_alias(_A ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**_A ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
719
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : str = (DDIMParallelScheduler,) A : Any = (("eta", 0.0), ("num_inference_steps", 50)) def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = { 'num_train_timesteps': 10_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**lowerCAmelCase) return config def UpperCAmelCase ( self : int , **lowerCAmelCase : str) -> Union[str, Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**lowerCAmelCase) lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase) for t in scheduler.timesteps: lowercase__ = model(lowerCAmelCase , lowerCAmelCase) lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase).prev_sample return sample def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase) lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(steps_offset=1) lowercase__ = scheduler_class(**lowerCAmelCase) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1])) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , ) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00]): self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00) - 0.1_47_71)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60) - 0.3_24_60)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86) - 0.0_09_79)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98) - 0.02)) < 1E-5 def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 scheduler.set_timesteps(lowerCAmelCase) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = self.dummy_sample_deter + 0.1 lowercase__ = self.dummy_sample_deter - 0.1 lowercase__ = samplea.shape[0] lowercase__ = torch.stack([samplea, samplea, samplea] , dim=0) lowercase__ = torch.arange(lowerCAmelCase)[0:3, None].repeat(1 , lowerCAmelCase) lowercase__ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowercase__ = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , lowerCAmelCase) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 11_47.79_04) < 1E-2 assert abs(result_mean.item() - 0.49_82) < 1E-3 def UpperCAmelCase ( self : Any) -> int: """simple docstring""" lowercase__ = self.full_loop() lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_72.00_67) < 1E-2 assert abs(result_mean.item() - 0.22_39_67) < 1E-3 def UpperCAmelCase ( self : int) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(prediction_type='v_prediction') lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 52.53_02) < 1E-2 assert abs(result_mean.item() - 0.06_84) < 1E-3 def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.82_95) < 1E-2 assert abs(result_mean.item() - 0.19_51) < 1E-3 def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.07_84) < 1E-2 assert abs(result_mean.item() - 0.19_41) < 1E-3
642
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase = IFInpaintingSuperResolutionPipeline lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) lowerCAmelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _UpperCamelCase ( self ) -> List[str]: return self._get_superresolution_dummy_components() def _UpperCamelCase ( self , a , a=0 ) -> Dict: if str(a ).startswith('mps' ): snake_case_ = torch.manual_seed(a ) else: snake_case_ = torch.Generator(device=a ).manual_seed(a ) snake_case_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(a ) ).to(a ) snake_case_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) snake_case_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _UpperCamelCase ( self ) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _UpperCamelCase ( self ) -> str: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def _UpperCamelCase ( self ) -> Optional[int]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def _UpperCamelCase ( self ) -> Dict: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _UpperCamelCase ( self ) -> Union[str, Any]: self._test_save_load_local() def _UpperCamelCase ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
198
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' lowerCAmelCase = '''transfo-xl''' lowerCAmelCase = ['''mems'''] lowerCAmelCase = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , a=26_77_35 , a=[2_00_00, 4_00_00, 20_00_00] , a=10_24 , a=10_24 , a=16 , a=64 , a=40_96 , a=4 , a=False , a=18 , a=16_00 , a=10_00 , a=True , a=True , a=0 , a=-1 , a=True , a=0.1 , a=0.0 , a=True , a="normal" , a=0.01 , a=0.01 , a=0.02 , a=1E-5 , a=0 , **a , ) -> Union[str, Any]: snake_case_ = vocab_size snake_case_ = [] self.cutoffs.extend(a ) if proj_share_all_but_first: snake_case_ = [False] + [True] * len(self.cutoffs ) else: snake_case_ = [False] + [False] * len(self.cutoffs ) snake_case_ = d_model snake_case_ = d_embed snake_case_ = d_head snake_case_ = d_inner snake_case_ = div_val snake_case_ = pre_lnorm snake_case_ = n_layer snake_case_ = n_head snake_case_ = mem_len snake_case_ = same_length snake_case_ = attn_type snake_case_ = clamp_len snake_case_ = sample_softmax snake_case_ = adaptive snake_case_ = dropout snake_case_ = dropatt snake_case_ = untie_r snake_case_ = init snake_case_ = init_range snake_case_ = proj_init_std snake_case_ = init_std snake_case_ = layer_norm_epsilon super().__init__(eos_token_id=a , **a ) @property def _UpperCamelCase ( self ) -> int: # Message copied from Transformer-XL documentation logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def _UpperCamelCase ( self , a ) -> List[str]: # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
198
1
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). " , A__ , ) class UpperCAmelCase__ ( A__ ): """simple docstring""" a = RobertaConfig a = "roberta" def __init__( self : str , __lowerCamelCase : Optional[int] ) -> Optional[Any]: super().__init__(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = RobertaEmbeddings(__lowerCamelCase ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " , A__ , ) class UpperCAmelCase__ ( A__ ): """simple docstring""" a = RobertaConfig a = "roberta" def __init__( self : Any , __lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: super().__init__(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = config.num_labels SCREAMING_SNAKE_CASE__ = config.num_hidden_layers SCREAMING_SNAKE_CASE__ = DeeRobertaModel(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(config.hidden_dropout_prob ) SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(__lowerCamelCase ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : List[str]=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Any=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : int=-1 , __lowerCamelCase : str=False , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.num_layers try: SCREAMING_SNAKE_CASE__ = self.roberta( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , position_ids=__lowerCamelCase , head_mask=__lowerCamelCase , inputs_embeds=__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = outputs[1] SCREAMING_SNAKE_CASE__ = self.dropout(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.classifier(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: SCREAMING_SNAKE_CASE__ = e.message SCREAMING_SNAKE_CASE__ = e.exit_layer SCREAMING_SNAKE_CASE__ = outputs[0] if not self.training: SCREAMING_SNAKE_CASE__ = entropy(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] if labels is not None: if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE__ = MSELoss() SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits SCREAMING_SNAKE_CASE__ = [] for highway_exit in outputs[-1]: SCREAMING_SNAKE_CASE__ = highway_exit[0] if not self.training: highway_logits_all.append(__lowerCamelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE__ = MSELoss() SCREAMING_SNAKE_CASE__ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__lowerCamelCase ) if train_highway: SCREAMING_SNAKE_CASE__ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: SCREAMING_SNAKE_CASE__ = (loss,) + outputs if not self.training: SCREAMING_SNAKE_CASE__ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: SCREAMING_SNAKE_CASE__ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
472
def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for data in source_data: for i, el in enumerate(_A ): if len(_A ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_A ) ) return data_lists def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for dlist, weight in zip(_A , _A ): SCREAMING_SNAKE_CASE__ = min(_A ) SCREAMING_SNAKE_CASE__ = max(_A ) SCREAMING_SNAKE_CASE__ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: SCREAMING_SNAKE_CASE__ = F'''Invalid weight of {weight:f} provided''' raise ValueError(_A ) score_lists.append(_A ) return score_lists def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_A ): SCREAMING_SNAKE_CASE__ = final_scores[j] + ele return final_scores def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_data(_A ) SCREAMING_SNAKE_CASE__ = calculate_each_score(_A , _A ) SCREAMING_SNAKE_CASE__ = generate_final_scores(_A ) # append scores to source data for i, ele in enumerate(_A ): source_data[i].append(_A ) return source_data
472
1
"""simple docstring""" import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def lowercase__ ( snake_case_ :Any ): __UpperCAmelCase = int(snake_case_ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = t // 3_600, (t // 60) % 60, t % 60 return F'''{h}:{m:02d}:{s:02d}''' if h != 0 else F'''{m:02d}:{s:02d}''' def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] , snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :str=300 ): # docstyle-ignore return F''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def lowercase__ ( snake_case_ :Dict ): __UpperCAmelCase = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __UpperCAmelCase = F'''{elt:.6f}''' if isinstance(snake_case_ , snake_case_ ) else str(snake_case_ ) html_code += F''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _UpperCAmelCase : a__ : str = 5 a__ : Any = 0.2 def __init__( self : List[Any] , _lowercase : int , _lowercase : Optional[str] = None , _lowercase : bool = True , _lowercase : Optional["NotebookTrainingTracker"] = None , _lowercase : int = 3_00 , ): __UpperCAmelCase = total __UpperCAmelCase = '''''' if prefix is None else prefix __UpperCAmelCase = leave __UpperCAmelCase = parent __UpperCAmelCase = width __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None def a ( self : List[str] , _lowercase : int , _lowercase : bool = False , _lowercase : str = None ): __UpperCAmelCase = value if comment is not None: __UpperCAmelCase = comment if self.last_value is None: __UpperCAmelCase = __UpperCAmelCase = time.time() __UpperCAmelCase = __UpperCAmelCase = value __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = self.warmup __UpperCAmelCase = 1 self.update_bar(_lowercase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __UpperCAmelCase = time.time() __UpperCAmelCase = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __UpperCAmelCase = self.elapsed_time / (value - self.start_value) else: __UpperCAmelCase = None if value >= self.total: __UpperCAmelCase = self.total __UpperCAmelCase = None if not self.leave: self.close() elif self.average_time_per_item is not None: __UpperCAmelCase = self.average_time_per_item * (self.total - value) self.update_bar(_lowercase ) __UpperCAmelCase = value __UpperCAmelCase = current_time if self.average_time_per_item is None: __UpperCAmelCase = 1 else: __UpperCAmelCase = max(int(self.update_every / self.average_time_per_item ) , 1 ) def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : List[Any]=None ): __UpperCAmelCase = ''' ''' * (len(str(self.total ) ) - len(str(_lowercase ) )) + str(_lowercase ) if self.elapsed_time is None: __UpperCAmelCase = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: __UpperCAmelCase = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: __UpperCAmelCase = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def a ( self : int ): __UpperCAmelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __UpperCAmelCase = disp.display(disp.HTML(self.html_code ) , display_id=_lowercase ) else: self.output.update(disp.HTML(self.html_code ) ) def a ( self : Any ): if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Optional[Any] , _lowercase : List[str] , _lowercase : str=None ): super().__init__(_lowercase ) __UpperCAmelCase = None if column_names is None else [column_names] __UpperCAmelCase = None def a ( self : List[str] ): __UpperCAmelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __UpperCAmelCase = disp.display(disp.HTML(self.html_code ) , display_id=_lowercase ) else: self.output.update(disp.HTML(self.html_code ) ) def a ( self : str , _lowercase : int ): if self.inner_table is None: __UpperCAmelCase = [list(values.keys() ), list(values.values() )] else: __UpperCAmelCase = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(_lowercase ) __UpperCAmelCase = columns self.inner_table.append([values[c] for c in columns] ) def a ( self : List[str] , _lowercase : List[str] , _lowercase : str=None , _lowercase : int=3_00 ): __UpperCAmelCase = NotebookProgressBar(_lowercase , prefix=_lowercase , parent=self , width=_lowercase ) return self.child_bar def a ( self : Optional[int] ): __UpperCAmelCase = None self.display() class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : List[Any] ): __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = False def a ( self : Tuple , _lowercase : List[Any] , _lowercase : Any , _lowercase : Union[str, Any] , **_lowercase : str ): __UpperCAmelCase = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) __UpperCAmelCase = NotebookTrainingTracker(state.max_steps , _lowercase ) def a ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Tuple , **_lowercase : str ): __UpperCAmelCase = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) __UpperCAmelCase = False def a ( self : Any , _lowercase : List[Any] , _lowercase : List[Any] , _lowercase : int , _lowercase : Union[str, Any]=None , **_lowercase : str ): if not has_length(_lowercase ): return if self.prediction_bar is None: if self.training_tracker is not None: __UpperCAmelCase = self.training_tracker.add_child(len(_lowercase ) ) else: __UpperCAmelCase = NotebookProgressBar(len(_lowercase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def a ( self : List[str] , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Optional[int] , **_lowercase : Dict ): if self.prediction_bar is not None: self.prediction_bar.close() __UpperCAmelCase = None def a ( self : List[str] , _lowercase : int , _lowercase : Tuple , _lowercase : List[str] , _lowercase : int=None , **_lowercase : List[str] ): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __UpperCAmelCase = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy __UpperCAmelCase = state.global_step self.training_tracker.write_line(_lowercase ) def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple , _lowercase : str , _lowercase : int=None , **_lowercase : Union[str, Any] ): if self.training_tracker is not None: __UpperCAmelCase = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: __UpperCAmelCase = log['''loss'''] break if self.first_column == "Epoch": __UpperCAmelCase = int(state.epoch ) else: __UpperCAmelCase = state.global_step __UpperCAmelCase = '''eval''' for k in metrics: if k.endswith('''_loss''' ): __UpperCAmelCase = re.sub(r'''\_loss$''' , '''''' , _lowercase ) __UpperCAmelCase = metrics.pop('''total_flos''' , _lowercase ) __UpperCAmelCase = metrics.pop('''epoch''' , _lowercase ) __UpperCAmelCase = metrics.pop(F'''{metric_key_prefix}_runtime''' , _lowercase ) __UpperCAmelCase = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , _lowercase ) __UpperCAmelCase = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , _lowercase ) __UpperCAmelCase = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , _lowercase ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': __UpperCAmelCase = v else: __UpperCAmelCase = k.split('''_''' ) __UpperCAmelCase = ''' '''.join([part.capitalize() for part in splits[1:]] ) __UpperCAmelCase = v self.training_tracker.write_line(_lowercase ) self.training_tracker.remove_child() __UpperCAmelCase = None # Evaluation takes a long time so we should force the next update. __UpperCAmelCase = True def a ( self : Tuple , _lowercase : Optional[int] , _lowercase : Dict , _lowercase : List[Any] , **_lowercase : List[str] ): self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=_lowercase ) __UpperCAmelCase = None
49
from math import factorial def _a ( UpperCamelCase_ : int = 20 ) -> int: """simple docstring""" lowerCAmelCase__ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... lowerCAmelCase__ = n // 2 return int(factorial(UpperCamelCase_ ) / (factorial(UpperCamelCase_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: a_ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number.''')
339
0
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _lowerCAmelCase = 2 class lowerCAmelCase_: '''simple docstring''' def __init__( self ,*, # begin keyword-only arguments __UpperCAmelCase="<s>" ,__UpperCAmelCase="<pad>" ,__UpperCAmelCase="</s>" ,__UpperCAmelCase="<unk>" ,__UpperCAmelCase=None ,) -> Optional[int]: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = bos, unk, pad, eos lowerCAmelCase__ : Any = [] lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : List[str] = {} lowerCAmelCase__ : List[Any] = self.add_symbol(__UpperCAmelCase ) lowerCAmelCase__ : int = self.add_symbol(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = self.add_symbol(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = self.add_symbol(__UpperCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(__UpperCAmelCase ) lowerCAmelCase__ : int = len(self.symbols ) def __eq__( self ,__UpperCAmelCase ) -> Optional[int]: return self.indices == other.indices def __getitem__( self ,__UpperCAmelCase ) -> Tuple: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ) -> Optional[Any]: return len(self.symbols ) def __contains__( self ,__UpperCAmelCase ) -> int: return sym in self.indices @classmethod def UpperCAmelCase_ ( cls ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : Dict = cls() d.add_from_file(__UpperCAmelCase ) return d def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=1 ,__UpperCAmelCase=False ) -> Dict: if word in self.indices and not overwrite: lowerCAmelCase__ : int = self.indices[word] lowerCAmelCase__ : str = self.count[idx] + n return idx else: lowerCAmelCase__ : Any = len(self.symbols ) lowerCAmelCase__ : Union[str, Any] = idx self.symbols.append(__UpperCAmelCase ) self.count.append(__UpperCAmelCase ) return idx def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: return 0 def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): try: with open(__UpperCAmelCase ,"""r""" ,encoding="""utf-8""" ) as fd: self.add_from_file(__UpperCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(__UpperCAmelCase ) ) return lowerCAmelCase__ : Optional[int] = f.readlines() lowerCAmelCase__ : int = self._load_meta(__UpperCAmelCase ) for line in lines[indices_start_line:]: try: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = line.rstrip().rsplit(""" """ ,1 ) if field == "#fairseq:overwrite": lowerCAmelCase__ : Any = True lowerCAmelCase__ , lowerCAmelCase__ : str = line.rsplit(""" """ ,1 ) else: lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : Union[str, Any] = int(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(__UpperCAmelCase ) ) self.add_symbol(__UpperCAmelCase ,n=__UpperCAmelCase ,overwrite=__UpperCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = dict((re.sub(R"""@@$""" , """""" , UpperCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , UpperCamelCase ), v) for k, v in d.items() ) lowerCAmelCase__ : Optional[Any] = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] lowerCAmelCase__ : Optional[Any] = d[k] # restore return da def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" if not os.path.exists(UpperCamelCase ): raise ValueError(f"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models lowerCAmelCase__ : List[str] = os.path.join(UpperCamelCase , """checkpoint.pt""" ) if not os.path.isfile(UpperCamelCase ): raise ValueError(f"""path to the file {checkpoint_file} does not exist!""" ) lowerCAmelCase__ : List[Any] = torch.load(UpperCamelCase , map_location="""cpu""" ) lowerCAmelCase__ : Optional[int] = chkpt["""cfg"""]["""model"""] # dicts lowerCAmelCase__ : Tuple = os.path.join(UpperCamelCase , """dict.txt""" ) if not os.path.isfile(UpperCamelCase ): raise ValueError(f"""path to the file {dict_file} does not exist!""" ) lowerCAmelCase__ : Any = Dictionary.load(UpperCamelCase ) lowerCAmelCase__ : List[str] = rewrite_dict_keys(src_dict.indices ) lowerCAmelCase__ : Tuple = len(UpperCamelCase ) lowerCAmelCase__ : int = os.path.join(UpperCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(f"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase , ensure_ascii=UpperCamelCase , indent=UpperCamelCase ) ) # merges_file (bpecodes) lowerCAmelCase__ : List[Any] = os.path.join(UpperCamelCase , """bpecodes""" ) if not os.path.isfile(UpperCamelCase ): raise ValueError(f"""path to the file {bpecodes_file} does not exist!""" ) lowerCAmelCase__ : Dict = os.path.join(UpperCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(UpperCamelCase , UpperCamelCase ) # model config lowerCAmelCase__ : List[str] = os.path.join(UpperCamelCase , """config.json""" ) lowerCAmelCase__ : Union[str, Any] = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(f"""Generating {biogpt_model_config_file}""" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase , ensure_ascii=UpperCamelCase , indent=UpperCamelCase ) ) # tokenizer config lowerCAmelCase__ : str = os.path.join(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : str = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(f"""Generating {biogpt_tokenizer_config_file}""" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase , ensure_ascii=UpperCamelCase , indent=UpperCamelCase ) ) # model lowerCAmelCase__ : int = chkpt["""model"""] # remove unneeded keys lowerCAmelCase__ : Dict = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): lowerCAmelCase__ : Dict = model_state_dict.pop(UpperCamelCase ) else: lowerCAmelCase__ : Union[str, Any] = model_state_dict.pop(UpperCamelCase ) lowerCAmelCase__ : str = BioGptConfig.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = BioGptForCausalLM(UpperCamelCase ) # check that it loads ok model_new.load_state_dict(UpperCamelCase ) # save lowerCAmelCase__ : Optional[int] = os.path.join(UpperCamelCase , UpperCamelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(UpperCamelCase , UpperCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCAmelCase = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
160
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = IFImgaImgSuperResolutionPipeline __lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} __lowercase : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) __lowercase : Any = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCAmelCase_ ( self ) -> List[Any]: return self._get_superresolution_dummy_components() def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=0 ) -> List[str]: if str(__UpperCAmelCase ).startswith("""mps""" ): lowerCAmelCase__ : Any = torch.manual_seed(__UpperCAmelCase ) else: lowerCAmelCase__ : Union[str, Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) lowerCAmelCase__ : Any = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = floats_tensor((1, 3, 16, 16) ,rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def UpperCAmelCase_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase_ ( self ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" ,reason="""float16 requires CUDA""" ) def UpperCAmelCase_ ( self ) -> List[str]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase_ ( self ) -> List[str]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase_ ( self ) -> Optional[int]: self._test_save_load_local() def UpperCAmelCase_ ( self ) -> Any: self._test_inference_batch_single_identical( expected_max_diff=1E-2 ,)
160
1
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCAmelCase : Union[str, Any] =2 class a_ : def __init__( self : int , *, # begin keyword-only arguments lowercase : str="<s>" , lowercase : List[str]="<pad>" , lowercase : str="</s>" , lowercase : str="<unk>" , lowercase : List[Any]=None , ): """simple docstring""" lowercase_ , lowercase_ , lowercase_ , lowercase_ :Dict = bos, unk, pad, eos lowercase_ :str = [] lowercase_ :Optional[int] = [] lowercase_ :Union[str, Any] = {} lowercase_ :Any = self.add_symbol(lowercase ) lowercase_ :List[Any] = self.add_symbol(lowercase ) lowercase_ :Optional[int] = self.add_symbol(lowercase ) lowercase_ :int = self.add_symbol(lowercase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowercase ) lowercase_ :Optional[Any] = len(self.symbols ) def __eq__( self : str , lowercase : Dict ): """simple docstring""" return self.indices == other.indices def __getitem__( self : Optional[int] , lowercase : Tuple ): """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Optional[Any] ): """simple docstring""" return len(self.symbols ) def __contains__( self : List[str] , lowercase : Union[str, Any] ): """simple docstring""" return sym in self.indices @classmethod def lowercase__ ( cls : Optional[int] , lowercase : Union[str, Any] ): """simple docstring""" lowercase_ :str = cls() d.add_from_file(lowercase ) return d def lowercase__ ( self : Dict , lowercase : Dict , lowercase : Any=1 , lowercase : str=False ): """simple docstring""" if word in self.indices and not overwrite: lowercase_ :Optional[int] = self.indices[word] lowercase_ :int = self.count[idx] + n return idx else: lowercase_ :int = len(self.symbols ) lowercase_ :List[Any] = idx self.symbols.append(lowercase ) self.count.append(lowercase ) return idx def lowercase__ ( self : List[str] , lowercase : Dict ): """simple docstring""" return 0 def lowercase__ ( self : int , lowercase : List[Any] ): """simple docstring""" if isinstance(lowercase , lowercase ): try: with open(lowercase , "r" , encoding="utf-8" ) as fd: self.add_from_file(lowercase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(lowercase ) ) return lowercase_ :Optional[int] = f.readlines() lowercase_ :Union[str, Any] = self._load_meta(lowercase ) for line in lines[indices_start_line:]: try: lowercase_ , lowercase_ :List[Any] = line.rstrip().rsplit(" " , 1 ) if field == "#fairseq:overwrite": lowercase_ :Optional[int] = True lowercase_ , lowercase_ :List[Any] = line.rsplit(" " , 1 ) else: lowercase_ :str = False lowercase_ :str = int(lowercase ) lowercase_ :Optional[Any] = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(lowercase ) ) self.add_symbol(lowercase , n=lowercase , overwrite=lowercase ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def UpperCAmelCase_ ( __lowerCamelCase : Any ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowercase_ :Dict = dict((re.sub(r"@@$" ,"" ,__lowerCamelCase ), v) if k.endswith("@@" ) else (re.sub(r"$" ,"</w>" ,__lowerCamelCase ), v) for k, v in d.items() ) lowercase_ :Any = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] lowercase_ :str = d[k] # restore return da def UpperCAmelCase_ ( __lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Optional[int] ): # prep if not os.path.exists(__lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(__lowerCamelCase ,exist_ok=__lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models lowercase_ :Dict = os.path.join(__lowerCamelCase ,"checkpoint.pt" ) if not os.path.isfile(__lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) lowercase_ :str = torch.load(__lowerCamelCase ,map_location="cpu" ) lowercase_ :Optional[int] = chkpt["cfg"]["model"] # dicts lowercase_ :str = os.path.join(__lowerCamelCase ,"dict.txt" ) if not os.path.isfile(__lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) lowercase_ :Tuple = Dictionary.load(__lowerCamelCase ) lowercase_ :int = rewrite_dict_keys(src_dict.indices ) lowercase_ :List[Any] = len(__lowerCamelCase ) lowercase_ :Tuple = os.path.join(__lowerCamelCase ,VOCAB_FILES_NAMES["vocab_file"] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(__lowerCamelCase ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(__lowerCamelCase ,ensure_ascii=__lowerCamelCase ,indent=__lowerCamelCase ) ) # merges_file (bpecodes) lowercase_ :Dict = os.path.join(__lowerCamelCase ,"bpecodes" ) if not os.path.isfile(__lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) lowercase_ :List[str] = os.path.join(__lowerCamelCase ,VOCAB_FILES_NAMES["merges_file"] ) shutil.copyfile(__lowerCamelCase ,__lowerCamelCase ) # model config lowercase_ :Optional[Any] = os.path.join(__lowerCamelCase ,"config.json" ) lowercase_ :Union[str, Any] = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1e-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(__lowerCamelCase ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(__lowerCamelCase ,ensure_ascii=__lowerCamelCase ,indent=__lowerCamelCase ) ) # tokenizer config lowercase_ :Dict = os.path.join(__lowerCamelCase ,__lowerCamelCase ) lowercase_ :List[str] = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 10_24, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(__lowerCamelCase ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(__lowerCamelCase ,ensure_ascii=__lowerCamelCase ,indent=__lowerCamelCase ) ) # model lowercase_ :str = chkpt["model"] # remove unneeded keys lowercase_ :str = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(__lowerCamelCase ,__lowerCamelCase ) lowercase_ :Optional[int] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("output_projection.weight" ): lowercase_ :List[Any] = model_state_dict.pop(__lowerCamelCase ) else: lowercase_ :List[Any] = model_state_dict.pop(__lowerCamelCase ) lowercase_ :int = BioGptConfig.from_pretrained(__lowerCamelCase ) lowercase_ :Union[str, Any] = BioGptForCausalLM(__lowerCamelCase ) # check that it loads ok model_new.load_state_dict(__lowerCamelCase ) # save lowercase_ :int = os.path.join(__lowerCamelCase ,__lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(__lowerCamelCase ,__lowerCamelCase ) print("Conversion is done!" ) if __name__ == "__main__": lowerCAmelCase : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase : List[str] =parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
172
'''simple docstring''' from typing import List import numpy as np def UpperCAmelCase_ ( __lowerCamelCase : dict ): lowercase_ :Dict = {key: len(__lowerCamelCase ) for key, value in gen_kwargs.items() if isinstance(__lowerCamelCase ,__lowerCamelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) lowercase_ :Any = max(lists_lengths.values() ,default=0 ) return max(1 ,__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : int ): lowercase_ :Tuple = [] for group_idx in range(__lowerCamelCase ): lowercase_ :Any = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break lowercase_ :Optional[Any] = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 lowercase_ :List[str] = range(__lowerCamelCase ,start + num_shards_to_add ) shards_indices_per_group.append(__lowerCamelCase ) return shards_indices_per_group def UpperCAmelCase_ ( __lowerCamelCase : dict ,__lowerCamelCase : int ): lowercase_ :Dict = _number_of_shards_in_gen_kwargs(__lowerCamelCase ) if num_shards == 1: return [dict(__lowerCamelCase )] else: lowercase_ :Optional[Any] = _distribute_shards(num_shards=__lowerCamelCase ,max_num_jobs=__lowerCamelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__lowerCamelCase ,__lowerCamelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__lowerCamelCase ) ) ] def UpperCAmelCase_ ( __lowerCamelCase : List[dict] ): return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] ,__lowerCamelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def UpperCAmelCase_ ( __lowerCamelCase : np.random.Generator ,__lowerCamelCase : dict ): lowercase_ :Tuple = {len(__lowerCamelCase ) for value in gen_kwargs.values() if isinstance(__lowerCamelCase ,__lowerCamelCase )} lowercase_ :Optional[Any] = {} for size in list_sizes: lowercase_ :int = list(range(__lowerCamelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes lowercase_ :List[Any] = dict(__lowerCamelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__lowerCamelCase ,__lowerCamelCase ): lowercase_ :List[str] = [value[i] for i in indices_per_size[len(__lowerCamelCase )]] return shuffled_kwargs
172
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : int = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ : Optional[int] = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE_ : Any = { '''facebook/nllb-large-en-ro''': 1024, '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off SCREAMING_SNAKE_CASE_ : Optional[int] = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class _A ( __a ): __a = VOCAB_FILES_NAMES __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = PRETRAINED_VOCAB_FILES_MAP __a = ['input_ids', 'attention_mask'] __a = NllbTokenizer __a = [] __a = [] def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="<mask>" , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ) -> Any: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token lowerCamelCase__ = legacy_behaviour super().__init__( vocab_file=SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , src_lang=SCREAMING_SNAKE_CASE__ , tgt_lang=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , legacy_behaviour=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = vocab_file lowerCamelCase__ = False if not self.vocab_file else True lowerCamelCase__ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) lowerCamelCase__ = { lang_code: self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ = src_lang if src_lang is not None else "eng_Latn" lowerCamelCase__ = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowerCamelCase ( self ) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ) -> None: lowerCamelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Any: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCamelCase__ = src_lang lowerCamelCase__ = self(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tgt_lang_id return inputs def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "eng_Latn" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "fra_Latn" , **SCREAMING_SNAKE_CASE__ , ) -> BatchEncoding: lowerCamelCase__ = src_lang lowerCamelCase__ = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _lowerCamelCase ( self ) -> Any: return self.set_src_lang_special_tokens(self.src_lang ) def _lowerCamelCase ( self ) -> Tuple: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ) -> None: lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: lowerCamelCase__ = [] lowerCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ = [self.cur_lang_code] lowerCamelCase__ = [self.eos_token_id] lowerCamelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ) -> None: lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: lowerCamelCase__ = [] lowerCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ = [self.cur_lang_code] lowerCamelCase__ = [self.eos_token_id] lowerCamelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return lowerCamelCase__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
274
"""simple docstring""" def UpperCAmelCase__ ( ) -> int: """simple docstring""" return 1 def UpperCAmelCase__ ( A__ ) -> int: """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def UpperCAmelCase__ ( A__ ) -> int: """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(A__ ) def UpperCAmelCase__ ( A__ ) -> int: """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(A__ ) def UpperCAmelCase__ ( A__ ) -> int: """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(A__ ) def UpperCAmelCase__ ( A__ ) -> int: """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(A__ ) def UpperCAmelCase__ ( A__ ) -> int: """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(A__ ) def UpperCAmelCase__ ( A__ ) -> int: """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(A__ ) def UpperCAmelCase__ ( A__ = 200 ) -> int: """simple docstring""" return two_pound(A__ ) if __name__ == "__main__": print(solution(int(input().strip())))
274
1
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=14 , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Dict=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Dict=512 , UpperCAmelCase_ : Any=0.02 , ) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =parent lowerCamelCase__: Dict =batch_size lowerCamelCase__: Tuple =seq_length lowerCamelCase__: Union[str, Any] =is_training lowerCamelCase__: Tuple =use_input_mask lowerCamelCase__: List[Any] =use_token_type_ids lowerCamelCase__: Union[str, Any] =use_labels lowerCamelCase__: Dict =vocab_size lowerCamelCase__: Optional[Any] =hidden_size lowerCamelCase__: str =rotary_dim lowerCamelCase__: Dict =num_hidden_layers lowerCamelCase__: List[str] =num_attention_heads lowerCamelCase__: List[str] =intermediate_size lowerCamelCase__: Optional[Any] =hidden_act lowerCamelCase__: int =hidden_dropout_prob lowerCamelCase__: Optional[Any] =attention_probs_dropout_prob lowerCamelCase__: Any =max_position_embeddings lowerCamelCase__: Optional[int] =initializer_range lowerCamelCase__: str =None lowerCamelCase__: str =vocab_size - 1 lowerCamelCase__: List[Any] =vocab_size - 1 lowerCamelCase__: int =vocab_size - 1 def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowerCamelCase__: Optional[int] =None if self.use_input_mask: lowerCamelCase__: Any =random_attention_mask([self.batch_size, self.seq_length]) lowerCamelCase__: List[Any] =GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->str: '''simple docstring''' lowerCamelCase__: List[str] =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =config_and_inputs lowerCamelCase__: Optional[int] ={"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =20 lowerCamelCase__: str =model_class_name(UpperCAmelCase_) lowerCamelCase__: Any =model.init_cache(input_ids.shape[0] , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4") lowerCamelCase__: Dict =jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowerCamelCase__: Optional[Any] =model( input_ids[:, :-1] , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Any =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: List[Any] =model( input_ids[:, -1:] , attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase_ , ) lowerCamelCase__: List[str] =model(UpperCAmelCase_) lowerCamelCase__: Dict =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =20 lowerCamelCase__: int =model_class_name(UpperCAmelCase_) lowerCamelCase__: int =jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , ) lowerCamelCase__: int =model.init_cache(input_ids.shape[0] , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowerCamelCase__: List[str] =model( input_ids[:, :-1] , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Any =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: int =model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) lowerCamelCase__: List[str] =model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_) lowerCamelCase__: Tuple =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") @require_flax class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowercase_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =FlaxGPTJModelTester(self) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: int =self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) @tooslow def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left") lowerCamelCase__: Any =tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_) lowerCamelCase__: str =FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B") lowerCamelCase__: Union[str, Any] =False lowerCamelCase__: List[str] =model.config.eos_token_id lowerCamelCase__: Optional[Any] =jax.jit(model.generate) lowerCamelCase__: List[str] =jit_generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id).sequences lowerCamelCase__: Tuple =tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_) lowerCamelCase__: Dict =[ "Hello this is a long string of text.\n\nI'm trying to get the text of the", "Hey, I'm a little late to the party. I'm going to", ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE_ (self : int) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowerCamelCase__: List[Any] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: List[Any] ={k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCamelCase__: Optional[Any] =model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCamelCase__: List[Any] =getattr(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: List[Any] =pt_inputs["input_ids"].shape lowerCamelCase__: Optional[Any] =np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(UpperCAmelCase_): lowerCamelCase__: str =0 lowerCamelCase__: Optional[Any] =1 lowerCamelCase__: int =0 lowerCamelCase__: Union[str, Any] =1 lowerCamelCase__: Dict =pt_model_class(UpperCAmelCase_).eval() lowerCamelCase__: Any =model_class(UpperCAmelCase_ , dtype=jnp.floataa) lowerCamelCase__: str =convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase_) lowerCamelCase__: List[str] =fx_state with torch.no_grad(): lowerCamelCase__: Optional[int] =pt_model(**UpperCAmelCase_).to_tuple() lowerCamelCase__: Dict =fx_model(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_) , "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase_) lowerCamelCase__: Optional[int] =model_class.from_pretrained(UpperCAmelCase_ , from_pt=UpperCAmelCase_) lowerCamelCase__: str =fx_model_loaded(**UpperCAmelCase_).to_tuple() self.assertEqual( len(UpperCAmelCase_) , len(UpperCAmelCase_) , "Output lengths differ between Flax and PyTorch") for fx_output_loaded, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowerCamelCase__: Union[str, Any] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Dict ={k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCamelCase__: Optional[int] =model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCamelCase__: List[Any] =getattr(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =pt_model_class(UpperCAmelCase_).eval() lowerCamelCase__: str =model_class(UpperCAmelCase_ , dtype=jnp.floataa) lowerCamelCase__: Union[str, Any] =load_flax_weights_in_pytorch_model(UpperCAmelCase_ , fx_model.params) lowerCamelCase__ , lowerCamelCase__: Optional[Any] =pt_inputs["input_ids"].shape lowerCamelCase__: List[Any] =np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(UpperCAmelCase_): lowerCamelCase__: str =0 lowerCamelCase__: Union[str, Any] =1 lowerCamelCase__: Dict =0 lowerCamelCase__: int =1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCamelCase__: List[Any] =pt_model(**UpperCAmelCase_).to_tuple() lowerCamelCase__: Optional[int] =fx_model(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_) , "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase_) lowerCamelCase__: str =pt_model_class.from_pretrained(UpperCAmelCase_ , from_flax=UpperCAmelCase_) with torch.no_grad(): lowerCamelCase__: Optional[int] =pt_model_loaded(**UpperCAmelCase_).to_tuple() self.assertEqual( len(UpperCAmelCase_) , len(UpperCAmelCase_) , "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) @tooslow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__: List[Any] =model_class_name.from_pretrained("EleutherAI/gpt-j-6B") lowerCamelCase__: List[str] =model(np.ones((1, 1))) self.assertIsNotNone(UpperCAmelCase_)
59
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def UpperCamelCase( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=10 , ) return model @property def UpperCamelCase( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) lowerCamelCase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowerCamelCase_ = DDPMScheduler() lowerCamelCase_ = AudioDiffusionPipeline(vqvae=SCREAMING_SNAKE_CASE_ , unet=self.dummy_unet , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 ) lowerCamelCase_ = output.audios[0] lowerCamelCase_ = output.images[0] lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 , return_dict=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowerCamelCase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowerCamelCase_ = DDIMScheduler() lowerCamelCase_ = self.dummy_vqvae_and_unet lowerCamelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) lowerCamelCase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(raw_audio=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , start_step=5 , steps=10 ) lowerCamelCase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowerCamelCase_ = self.dummy_unet_condition lowerCamelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=SCREAMING_SNAKE_CASE_ , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) lowerCamelCase_ = torch.rand((1, 1, 10) ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , encoding=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.images[0] lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = torch_device lowerCamelCase_ = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.audios[0] lowerCamelCase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
42
0
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __lowerCAmelCase : List[Any] = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class lowerCamelCase ( __snake_case ): __lowerCamelCase = 'ernie_m' __lowerCamelCase = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , __lowerCamelCase = 25_00_02 , __lowerCamelCase = 7_68 , __lowerCamelCase = 12 , __lowerCamelCase = 12 , __lowerCamelCase = 30_72 , __lowerCamelCase = "gelu" , __lowerCamelCase = 0.1 , __lowerCamelCase = 0.1 , __lowerCamelCase = 5_14 , __lowerCamelCase = 0.02 , __lowerCamelCase = 1 , __lowerCamelCase = 1e-05 , __lowerCamelCase=None , __lowerCamelCase=False , __lowerCamelCase=0.0 , **__lowerCamelCase , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) snake_case: Tuple = vocab_size snake_case: List[Any] = hidden_size snake_case: Union[str, Any] = num_hidden_layers snake_case: List[str] = num_attention_heads snake_case: List[str] = intermediate_size snake_case: Any = hidden_act snake_case: Tuple = hidden_dropout_prob snake_case: Optional[Any] = attention_probs_dropout_prob snake_case: Optional[int] = max_position_embeddings snake_case: Any = initializer_range snake_case: Tuple = layer_norm_eps snake_case: Optional[Any] = classifier_dropout snake_case: Union[str, Any] = is_decoder snake_case: Optional[Any] = act_dropout
164
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowerCamelCase ( __snake_case ): __lowerCamelCase = 'facebook/bart-large-mnli' __lowerCamelCase = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) __lowerCamelCase = 'text_classifier' __lowerCamelCase = AutoTokenizer __lowerCamelCase = AutoModelForSequenceClassification __lowerCamelCase = ['text', ['text']] __lowerCamelCase = ['text'] def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' super().setup() snake_case: Dict = self.model.config snake_case: Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): snake_case: Any = int(__lowerCamelCase ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def lowerCAmelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> str: '''simple docstring''' snake_case: Union[str, Any] = labels return self.pre_processor( [text] * len(__lowerCamelCase ) , [F"This example is {label}" for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def lowerCAmelCase_ ( self , __lowerCamelCase ) -> str: '''simple docstring''' snake_case: List[str] = outputs.logits snake_case: int = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
164
1
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=0.0 , __UpperCAmelCase = None , __UpperCAmelCase = "geglu" , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = "layer_norm" , __UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __lowerCamelCase = only_cross_attention __lowerCamelCase = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' __lowerCamelCase = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __lowerCamelCase = AdaLayerNorm(__UpperCAmelCase , __UpperCAmelCase ) elif self.use_ada_layer_norm_zero: __lowerCamelCase = AdaLayerNormZero(__UpperCAmelCase , __UpperCAmelCase ) else: __lowerCamelCase = nn.LayerNorm(__UpperCAmelCase , elementwise_affine=__UpperCAmelCase ) __lowerCamelCase = Attention( query_dim=__UpperCAmelCase , heads=__UpperCAmelCase , dim_head=__UpperCAmelCase , dropout=__UpperCAmelCase , bias=__UpperCAmelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__UpperCAmelCase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __lowerCamelCase = ( AdaLayerNorm(__UpperCAmelCase , __UpperCAmelCase ) if self.use_ada_layer_norm else nn.LayerNorm(__UpperCAmelCase , elementwise_affine=__UpperCAmelCase ) ) __lowerCamelCase = Attention( query_dim=__UpperCAmelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__UpperCAmelCase , dim_head=__UpperCAmelCase , dropout=__UpperCAmelCase , bias=__UpperCAmelCase , upcast_attention=__UpperCAmelCase , ) # is self-attn if encoder_hidden_states is none else: __lowerCamelCase = None __lowerCamelCase = None # 3. Feed-forward __lowerCamelCase = nn.LayerNorm(__UpperCAmelCase , elementwise_affine=__UpperCAmelCase ) __lowerCamelCase = FeedForward(__UpperCAmelCase , dropout=__UpperCAmelCase , activation_fn=__UpperCAmelCase , final_dropout=__UpperCAmelCase ) # let chunk size default to None __lowerCamelCase = None __lowerCamelCase = 0 def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # Sets chunk feed-forward __lowerCamelCase = chunk_size __lowerCamelCase = dim def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , ): '''simple docstring''' # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: __lowerCamelCase = self.norma(__UpperCAmelCase , __UpperCAmelCase ) elif self.use_ada_layer_norm_zero: __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = self.norma( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hidden_dtype=hidden_states.dtype ) else: __lowerCamelCase = self.norma(__UpperCAmelCase ) __lowerCamelCase = cross_attention_kwargs if cross_attention_kwargs is not None else {} __lowerCamelCase = self.attna( __UpperCAmelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) if self.use_ada_layer_norm_zero: __lowerCamelCase = gate_msa.unsqueeze(1 ) * attn_output __lowerCamelCase = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __lowerCamelCase = ( self.norma(__UpperCAmelCase , __UpperCAmelCase ) if self.use_ada_layer_norm else self.norma(__UpperCAmelCase ) ) __lowerCamelCase = self.attna( __UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) __lowerCamelCase = attn_output + hidden_states # 3. Feed-forward __lowerCamelCase = self.norma(__UpperCAmelCase ) if self.use_ada_layer_norm_zero: __lowerCamelCase = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) __lowerCamelCase = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __lowerCamelCase = torch.cat( [self.ff(__UpperCAmelCase ) for hid_slice in norm_hidden_states.chunk(__UpperCAmelCase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __lowerCamelCase = self.ff(__UpperCAmelCase ) if self.use_ada_layer_norm_zero: __lowerCamelCase = gate_mlp.unsqueeze(1 ) * ff_output __lowerCamelCase = ff_output + hidden_states return hidden_states class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = 4 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = "geglu" , __UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __lowerCamelCase = int(dim * mult ) __lowerCamelCase = dim_out if dim_out is not None else dim if activation_fn == "gelu": __lowerCamelCase = GELU(__UpperCAmelCase , __UpperCAmelCase ) if activation_fn == "gelu-approximate": __lowerCamelCase = GELU(__UpperCAmelCase , __UpperCAmelCase , approximate='''tanh''' ) elif activation_fn == "geglu": __lowerCamelCase = GEGLU(__UpperCAmelCase , __UpperCAmelCase ) elif activation_fn == "geglu-approximate": __lowerCamelCase = ApproximateGELU(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = nn.ModuleList([] ) # project in self.net.append(__UpperCAmelCase ) # project dropout self.net.append(nn.Dropout(__UpperCAmelCase ) ) # project out self.net.append(nn.Linear(__UpperCAmelCase , __UpperCAmelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__UpperCAmelCase ) ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' for module in self.net: __lowerCamelCase = module(__UpperCAmelCase ) return hidden_states class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = "none" ): '''simple docstring''' super().__init__() __lowerCamelCase = nn.Linear(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = approximate def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(__UpperCAmelCase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.proj(__UpperCAmelCase ) __lowerCamelCase = self.gelu(__UpperCAmelCase ) return hidden_states class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() __lowerCamelCase = nn.Linear(__UpperCAmelCase , dim_out * 2 ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(__UpperCAmelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.proj(__UpperCAmelCase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__UpperCAmelCase ) class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() __lowerCamelCase = nn.Linear(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.proj(__UpperCAmelCase ) return x * torch.sigmoid(1.702 * x ) class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() __lowerCamelCase = nn.Embedding(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = nn.SiLU() __lowerCamelCase = nn.Linear(__UpperCAmelCase , embedding_dim * 2 ) __lowerCamelCase = nn.LayerNorm(__UpperCAmelCase , elementwise_affine=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.linear(self.silu(self.emb(__UpperCAmelCase ) ) ) __lowerCamelCase ,__lowerCamelCase = torch.chunk(__UpperCAmelCase , 2 ) __lowerCamelCase = self.norm(__UpperCAmelCase ) * (1 + scale) + shift return x class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() __lowerCamelCase = CombinedTimestepLabelEmbeddings(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = nn.SiLU() __lowerCamelCase = nn.Linear(__UpperCAmelCase , 6 * embedding_dim , bias=__UpperCAmelCase ) __lowerCamelCase = nn.LayerNorm(__UpperCAmelCase , elementwise_affine=__UpperCAmelCase , eps=1E-6 ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = self.linear(self.silu(self.emb(__UpperCAmelCase , __UpperCAmelCase , hidden_dtype=__UpperCAmelCase ) ) ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = emb.chunk(6 , dim=1 ) __lowerCamelCase = self.norm(__UpperCAmelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = 1E-5 ): '''simple docstring''' super().__init__() __lowerCamelCase = num_groups __lowerCamelCase = eps if act_fn is None: __lowerCamelCase = None else: __lowerCamelCase = get_activation(__UpperCAmelCase ) __lowerCamelCase = nn.Linear(__UpperCAmelCase , out_dim * 2 ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self.act: __lowerCamelCase = self.act(__UpperCAmelCase ) __lowerCamelCase = self.linear(__UpperCAmelCase ) __lowerCamelCase = emb[:, :, None, None] __lowerCamelCase ,__lowerCamelCase = emb.chunk(2 , dim=1 ) __lowerCamelCase = F.group_norm(__UpperCAmelCase , self.num_groups , eps=self.eps ) __lowerCamelCase = x * (1 + scale) + shift return x
175
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) a_ = { """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def a__ ( _UpperCamelCase : Optional[Any] ): __lowerCamelCase = {} state_dict.pop('''pixel_mean''' ,_UpperCamelCase ) state_dict.pop('''pixel_std''' ,_UpperCamelCase ) __lowerCamelCase = R'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __lowerCamelCase = key.replace(_UpperCamelCase ,_UpperCamelCase ) if re.match(_UpperCamelCase ,_UpperCamelCase ): __lowerCamelCase = int(re.match(_UpperCamelCase ,_UpperCamelCase ).group(2 ) ) if layer_nb == 0: __lowerCamelCase = key.replace('''layers.0''' ,'''proj_in''' ) elif layer_nb == 1: __lowerCamelCase = key.replace('''layers.1''' ,'''layers.0''' ) elif layer_nb == 2: __lowerCamelCase = key.replace('''layers.2''' ,'''proj_out''' ) __lowerCamelCase = value __lowerCamelCase = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def a__ ( _UpperCamelCase : Tuple ,_UpperCamelCase : Dict ,_UpperCamelCase : Any ,_UpperCamelCase : Optional[int]="ybelkada/segment-anything" ): __lowerCamelCase = hf_hub_download(_UpperCamelCase ,F"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: __lowerCamelCase = SamConfig() elif "sam_vit_l" in model_name: __lowerCamelCase = SamVisionConfig( hidden_size=10_24 ,num_hidden_layers=24 ,num_attention_heads=16 ,global_attn_indexes=[5, 11, 17, 23] ,) __lowerCamelCase = SamConfig( vision_config=_UpperCamelCase ,) elif "sam_vit_h" in model_name: __lowerCamelCase = SamVisionConfig( hidden_size=12_80 ,num_hidden_layers=32 ,num_attention_heads=16 ,global_attn_indexes=[7, 15, 23, 31] ,) __lowerCamelCase = SamConfig( vision_config=_UpperCamelCase ,) __lowerCamelCase = torch.load(_UpperCamelCase ,map_location='''cpu''' ) __lowerCamelCase = replace_keys(_UpperCamelCase ) __lowerCamelCase = SamImageProcessor() __lowerCamelCase = SamProcessor(image_processor=_UpperCamelCase ) __lowerCamelCase = SamModel(_UpperCamelCase ) hf_model.load_state_dict(_UpperCamelCase ) __lowerCamelCase = hf_model.to('''cuda''' ) __lowerCamelCase = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' __lowerCamelCase = Image.open(requests.get(_UpperCamelCase ,stream=_UpperCamelCase ).raw ).convert('''RGB''' ) __lowerCamelCase = [[[4_00, 6_50]]] __lowerCamelCase = [[1]] __lowerCamelCase = processor(images=np.array(_UpperCamelCase ) ,return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): __lowerCamelCase = hf_model(**_UpperCamelCase ) __lowerCamelCase = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_890_251_159_668 __lowerCamelCase = processor( images=np.array(_UpperCamelCase ) ,input_points=_UpperCamelCase ,input_labels=_UpperCamelCase ,return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): __lowerCamelCase = hf_model(**_UpperCamelCase ) __lowerCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_712_603_092_193_604 __lowerCamelCase = ((75, 2_75, 17_25, 8_50),) __lowerCamelCase = processor(images=np.array(_UpperCamelCase ) ,input_boxes=_UpperCamelCase ,return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): __lowerCamelCase = hf_model(**_UpperCamelCase ) __lowerCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_686_015_605_926_514 # Test with 2 points and 1 image. __lowerCamelCase = [[[4_00, 6_50], [8_00, 6_50]]] __lowerCamelCase = [[1, 1]] __lowerCamelCase = processor( images=np.array(_UpperCamelCase ) ,input_points=_UpperCamelCase ,input_labels=_UpperCamelCase ,return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): __lowerCamelCase = hf_model(**_UpperCamelCase ) __lowerCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_936_047_792_434_692 if __name__ == "__main__": a_ = argparse.ArgumentParser() a_ = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) a_ = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
175
1
from __future__ import annotations def a__ (__lowercase :Dict , __lowercase :Any ) -> list[tuple[int, int]]: _A , _A : Any = position _A : Union[str, Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _A : List[str] = [] for position in positions: _A , _A : List[Any] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(UpperCamelCase__ ) return permissible_positions def a__ (__lowercase :Dict ) -> bool: return not any(elem == 0 for row in board for elem in row ) def a__ (__lowercase :List[Any] , __lowercase :Tuple , __lowercase :Optional[int] ) -> bool: if is_complete(UpperCamelCase__ ): return True for position in get_valid_pos(UpperCamelCase__ , len(UpperCamelCase__ ) ): _A , _A : Optional[Any] = position if board[y][x] == 0: _A : str = curr + 1 if open_knight_tour_helper(UpperCamelCase__ , UpperCamelCase__ , curr + 1 ): return True _A : Optional[int] = 0 return False def a__ (__lowercase :Dict ) -> list[list[int]]: _A : Union[str, Any] = [[0 for i in range(UpperCamelCase__ )] for j in range(UpperCamelCase__ )] for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): _A : Union[str, Any] = 1 if open_knight_tour_helper(UpperCamelCase__ , (i, j) , 1 ): return board _A : Union[str, Any] = 0 _A : str = f"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
703
from math import pow, sqrt def a__ (*__lowercase :float ) -> bool: _A : List[str] = len(__lowercase ) > 0 and all(value > 0.0 for value in values ) return result def a__ (__lowercase :float , __lowercase :float ) -> float | ValueError: return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__lowercase , __lowercase ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def a__ (__lowercase :float , __lowercase :float , __lowercase :float ) -> float | ValueError: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__lowercase , __lowercase , __lowercase ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def a__ (__lowercase :float , __lowercase :float , __lowercase :float ) -> float | ValueError: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__lowercase , __lowercase , __lowercase ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def a__ (__lowercase :float , __lowercase :float , __lowercase :float ) -> float | ValueError: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(__lowercase , __lowercase , __lowercase ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def a__ (__lowercase :float , __lowercase :float , __lowercase :float ) -> float | ValueError: return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(__lowercase , __lowercase , __lowercase ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
332
0
"""simple docstring""" def lowerCamelCase_ (UpperCamelCase__ : List[str] ): _UpperCAmelCase : Optional[int] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCamelCase_ (UpperCamelCase__ : List[Any] = 5000 ): _UpperCAmelCase : Any = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE_ )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ): _UpperCAmelCase : Optional[int] = pentagonal_nums[j] _UpperCAmelCase : str = pentagonal_i + pentagonal_j _UpperCAmelCase : int = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE_ ) and is_pentagonal(SCREAMING_SNAKE_CASE_ ): return b return -1 if __name__ == "__main__": print(f"{solution() = }")
506
'''simple docstring''' import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _a (unittest.TestCase): """simple docstring""" def __init__( self , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = parent def UpperCamelCase ( self ) -> Any: return {} def lowerCAmelCase_ ( ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = """<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR=\"FFFFFF\"> <HR> <a href=\"http://google.com\">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style=\"color:#0000FF\"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>""" _SCREAMING_SNAKE_CASE = """ <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> """ return [html_string_a, html_string_a] @require_bsa class _a (_lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = MarkupLMFeatureExtractor if is_bsa_available() else None def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = MarkupLMFeatureExtractionTester(self ) @property def UpperCamelCase ( self ) -> List[str]: return self.feature_extract_tester.prepare_feat_extract_dict() def UpperCamelCase ( self ) -> Optional[Any]: # Initialize feature_extractor _SCREAMING_SNAKE_CASE = self.feature_extraction_class() # Test not batched input _SCREAMING_SNAKE_CASE = get_html_strings()[0] _SCREAMING_SNAKE_CASE = feature_extractor(A__ ) # fmt: off _SCREAMING_SNAKE_CASE = [["""sample document""", """Goog""", """This is one header""", """This is a another Header""", """Travel from""", """SFO to JFK""", """on May 2, 2015 at 2:00 pm. For details go to confirm.com""", """Traveler""", """name""", """is""", """John Doe"""]] _SCREAMING_SNAKE_CASE = [["""/html/head/title""", """/html/body/a""", """/html/body/h1""", """/html/body/h2""", """/html/body/p""", """/html/body/p/p/b[1]""", """/html/body/p/p/b[2]/i""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/b""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/p"""]] # fmt: on self.assertEqual(encoding.nodes , A__ ) self.assertEqual(encoding.xpaths , A__ ) # Test batched _SCREAMING_SNAKE_CASE = get_html_strings() _SCREAMING_SNAKE_CASE = feature_extractor(A__ ) # fmt: off _SCREAMING_SNAKE_CASE = expected_nodes + [["""My First Heading""", """My first paragraph."""]] _SCREAMING_SNAKE_CASE = expected_xpaths + [["""/html/body/h1""", """/html/body/p"""]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , A__ ) self.assertEqual(encoding.xpaths , A__ )
591
0
"""simple docstring""" import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class UpperCamelCase_ : def __init__( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]=14 , lowerCAmelCase_ : Tuple=7 , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Optional[int]=99 , lowerCAmelCase_ : Union[str, Any]=32 , lowerCAmelCase_ : Union[str, Any]=5 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Any=37 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : str=512 , lowerCAmelCase_ : List[str]=16 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : Tuple=0.0_2 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : List[str]=4 , lowerCAmelCase_ : Dict=None , ) -> List[Any]: UpperCAmelCase_ : str = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : Any = seq_length UpperCAmelCase_ : Any = is_training UpperCAmelCase_ : str = use_token_type_ids UpperCAmelCase_ : str = use_input_mask UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : Tuple = use_mc_token_ids UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : str = type_vocab_size UpperCAmelCase_ : Any = type_sequence_label_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Dict = num_labels UpperCAmelCase_ : Optional[Any] = num_choices UpperCAmelCase_ : Optional[int] = scope UpperCAmelCase_ : Any = self.vocab_size - 1 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Any = None if self.use_input_mask: UpperCAmelCase_ : str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_token_type_ids: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Optional[int] = None if self.use_mc_token_ids: UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) UpperCAmelCase_ : str = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Any = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Union[str, Any] = self.get_config() UpperCAmelCase_ : str = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : int ) -> List[str]: UpperCAmelCase_ : str = CTRLModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , *lowerCAmelCase_ : Any ) -> List[Any]: UpperCAmelCase_ : Any = CTRLLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : int = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : List[str] = config_and_inputs UpperCAmelCase_ : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , *lowerCAmelCase_ : List[str] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = self.num_labels UpperCAmelCase_ : Dict = CTRLForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Any = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class UpperCamelCase_ (__A , __A , __A , unittest.TestCase ): __magic_name__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () __magic_name__ = (CTRLLMHeadModel,) if is_torch_available() else () __magic_name__ = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = True __magic_name__ = False __magic_name__ = False def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any ) -> Tuple: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = CTRLModelTester(self ) UpperCAmelCase_ : List[str] = ConfigTester(self , config_class=lowerCAmelCase_ , n_embd=37 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase_ ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: pass @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = CTRLModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: pass @require_torch class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: UpperCAmelCase_ : List[str] = CTRLLMHeadModel.from_pretrained("ctrl" ) model.to(lowerCAmelCase_ ) UpperCAmelCase_ : Any = torch.tensor( [[11_859, 0, 1_611, 8]] , dtype=torch.long , device=lowerCAmelCase_ ) # Legal the president is UpperCAmelCase_ : Dict = [ 11_859, 0, 1_611, 8, 5, 150, 26_449, 2, 19, 348, 469, 3, 2_595, 48, 20_740, 246_533, 246_533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a UpperCAmelCase_ : Union[str, Any] = model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase_ )
463
"""simple docstring""" lowerCamelCase_ = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } lowerCamelCase_ = {value: key for key, value in encode_dict.items()} def snake_case ( A__ ): UpperCAmelCase_ : Union[str, Any] = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces" ) return encoded def snake_case ( A__ ): if set(A__ ) - {"A", "B", " "} != set(): raise Exception("decode() accepts only 'A', 'B' and spaces" ) UpperCAmelCase_ : Dict = "" for word in coded.split(): while len(A__ ) != 0: decoded += decode_dict[word[:5]] UpperCAmelCase_ : str = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
463
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCAmelCase = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } __lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": 5_1_2, """google/realm-cc-news-pretrained-encoder""": 5_1_2, """google/realm-cc-news-pretrained-scorer""": 5_1_2, """google/realm-cc-news-pretrained-openqa""": 5_1_2, """google/realm-orqa-nq-openqa""": 5_1_2, """google/realm-orqa-nq-reader""": 5_1_2, """google/realm-orqa-wq-openqa""": 5_1_2, """google/realm-orqa-wq-reader""": 5_1_2, } __lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class UpperCAmelCase__ ( a_ ): """simple docstring""" __UpperCAmelCase : Dict = VOCAB_FILES_NAMES __UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : str = RealmTokenizer def __init__( self : int ,_a : int=None ,_a : Any=None ,_a : int=True ,_a : str="[UNK]" ,_a : Tuple="[SEP]" ,_a : Tuple="[PAD]" ,_a : Tuple="[CLS]" ,_a : Union[str, Any]="[MASK]" ,_a : List[Any]=True ,_a : int=None ,**_a : Optional[int] ,): '''simple docstring''' super().__init__( _a ,tokenizer_file=_a ,do_lower_case=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,tokenize_chinese_chars=_a ,strip_accents=_a ,**_a ,) _a : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_a ) != do_lower_case or normalizer_state.get('strip_accents' ,_a ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_a ) != tokenize_chinese_chars ): _a : int = getattr(_a ,normalizer_state.pop('type' ) ) _a : Union[str, Any] = do_lower_case _a : Dict = strip_accents _a : Dict = tokenize_chinese_chars _a : str = normalizer_class(**_a ) _a : Dict = do_lower_case def __lowercase ( self : int ,_a : Union[str, Any] ,**_a : Optional[Any] ): '''simple docstring''' _a : Dict = PaddingStrategy.MAX_LENGTH _a : Union[str, Any] = text _a : List[str] = kwargs.pop('text_pair' ,_a ) _a : Optional[int] = kwargs.pop('return_tensors' ,_a ) _a : Optional[Any] = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(_a ): if batch_text_pair is not None: _a : Any = batch_text_pair[idx] else: _a : str = None _a : Optional[Any] = super().__call__(_a ,_a ,return_tensors=_a ,**_a ) _a : Union[str, Any] = encoded_candidates.get('input_ids' ) _a : List[Any] = encoded_candidates.get('attention_mask' ) _a : Optional[Any] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(_a ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_a ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_a ) _a : Union[str, Any] = {key: item for key, item in output_data.items() if len(_a ) != 0} return BatchEncoding(_a ,tensor_type=_a ) def __lowercase ( self : Any ,_a : Dict ,_a : int=None ): '''simple docstring''' _a : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : Union[str, Any] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : Tuple = [self.sep_token_id] _a : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Dict ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' _a : Optional[Any] = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a )
229
"""simple docstring""" from __future__ import annotations def lowercase_ ( __UpperCAmelCase ) -> list[int]: lowerCAmelCase__ : int = 2 lowerCAmelCase__ : int = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__UpperCAmelCase ) if n > 1: factors.append(__UpperCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
299
0
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva _SCREAMING_SNAKE_CASE = "" _SCREAMING_SNAKE_CASE = "" _SCREAMING_SNAKE_CASE = "" _SCREAMING_SNAKE_CASE = 1 # (0 is vertical, 1 is horizontal) def __lowerCamelCase ( ) -> None: snake_case , snake_case = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) print("""Processing...""" ) snake_case , snake_case , snake_case = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' snake_case = random_chars(32 ) snake_case = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0] snake_case = F'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(F'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' ) snake_case = [] for anno in new_annos[index]: snake_case = F'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__lowerCAmelCase ) with open(F'''/{file_root}.txt''' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> tuple[list, list]: snake_case = [] snake_case = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , """*.txt""" ) ): snake_case = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(__lowerCAmelCase ) as in_file: snake_case = in_file.readlines() snake_case = os.path.join(__lowerCAmelCase , F'''{label_name}.jpg''' ) snake_case = [] for obj_list in obj_lists: snake_case = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ) -> tuple[list, list, list]: snake_case = [] snake_case = [] snake_case = [] for idx in range(len(__lowerCAmelCase ) ): snake_case = [] snake_case = img_list[idx] path_list.append(__lowerCAmelCase ) snake_case = anno_list[idx] snake_case = cva.imread(__lowerCAmelCase ) if flip_type == 1: snake_case = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: snake_case = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: snake_case = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: snake_case = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def __lowerCamelCase ( __lowerCAmelCase : int = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" snake_case = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
717
'''simple docstring''' import argparse from collections import defaultdict import yaml _SCREAMING_SNAKE_CASE = "docs/source/en/_toctree.yml" def __lowerCamelCase ( __lowerCAmelCase : Tuple ) -> Optional[int]: snake_case = defaultdict(__lowerCAmelCase ) for doc in model_doc: counts[doc["local"]] += 1 snake_case = [key for key, value in counts.items() if value > 1] snake_case = [] for duplicate_key in duplicates: snake_case = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(__lowerCAmelCase ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : s["title"].lower() ) def __lowerCamelCase ( __lowerCAmelCase : Any=False ) -> Optional[Any]: with open(__lowerCAmelCase , encoding="""utf-8""" ) as f: snake_case = yaml.safe_load(f.read() ) # Get to the API doc snake_case = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case = content[api_idx]["""sections"""] # Then to the model doc snake_case = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 snake_case = api_doc[model_idx]["""sections"""] snake_case = [(idx, section) for idx, section in enumerate(__lowerCAmelCase ) if """sections""" in section] snake_case = False for idx, modality_doc in modalities_docs: snake_case = modality_doc["""sections"""] snake_case = clean_model_doc_toc(__lowerCAmelCase ) if old_modality_doc != new_modality_doc: snake_case = True if overwrite: snake_case = new_modality_doc if diff: if overwrite: snake_case = model_doc snake_case = api_doc with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__lowerCAmelCase , allow_unicode=__lowerCAmelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _SCREAMING_SNAKE_CASE = parser.parse_args() check_model_doc(args.fix_and_overwrite)
517
0
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput _lowerCAmelCase : int ="scheduler_config.json" class __UpperCamelCase ( _a ): '''simple docstring''' __magic_name__ = 1 __magic_name__ = 2 __magic_name__ = 3 __magic_name__ = 4 __magic_name__ = 5 __magic_name__ = 6 __magic_name__ = 7 __magic_name__ = 8 __magic_name__ = 9 __magic_name__ = 1_0 __magic_name__ = 1_1 __magic_name__ = 1_2 __magic_name__ = 1_3 __magic_name__ = 1_4 @dataclass class __UpperCamelCase ( _a ): '''simple docstring''' __magic_name__ = 4_2 class __UpperCamelCase : '''simple docstring''' __magic_name__ = SCHEDULER_CONFIG_NAME __magic_name__ = [] __magic_name__ = True @classmethod def _UpperCAmelCase ( cls , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__=False , **lowerCamelCase__ , ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__: List[str] = cls.load_config( pretrained_model_name_or_path=lowerCamelCase__ , subfolder=lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ , return_commit_hash=lowerCamelCase__ , **lowerCamelCase__ , ) return cls.from_config(lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = False , **lowerCamelCase__ ): self.save_config(save_directory=lowerCamelCase__ , push_to_hub=lowerCamelCase__ , **lowerCamelCase__ ) @property def _UpperCAmelCase ( self ): return self._get_compatibles() @classmethod def _UpperCAmelCase ( cls ): UpperCAmelCase__: Union[str, Any] = list(set([cls.__name__] + cls._compatibles ) ) UpperCAmelCase__: Union[str, Any] = importlib.import_module(__name__.split("." )[0] ) UpperCAmelCase__: List[str] = [ getattr(lowerCamelCase__ , lowerCamelCase__ ) for c in compatible_classes_str if hasattr(lowerCamelCase__ , lowerCamelCase__ ) ] return compatible_classes
113
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __A ( __lowerCamelCase ) -> Optional[int]: a = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): UpperCamelCase__ = StableDiffusionLatentUpscalePipeline UpperCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } UpperCamelCase__ = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} UpperCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase__ = frozenset([] ) UpperCamelCase__ = True @property def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' a = 1 a = 4 a = (16, 16) a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__magic_name__ ) return image def lowerCamelCase__ ( self :Any ): '''simple docstring''' torch.manual_seed(0 ) a = UNetaDConditionModel( act_fn="""gelu""" , attention_head_dim=8 , norm_num_groups=__magic_name__ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( """KDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", ) , in_channels=8 , mid_block_type=__magic_name__ , only_cross_attention=__magic_name__ , out_channels=5 , resnet_time_scale_shift="""scale_shift""" , time_embedding_type="""fourier""" , timestep_post_act="""gelu""" , up_block_types=("""KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KUpBlock2D""") , ) a = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", ] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) a = EulerDiscreteScheduler(prediction_type="""sample""" ) a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""quick_gelu""" , projection_dim=512 , ) a = CLIPTextModel(__magic_name__ ) a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) a = { """unet""": model.eval(), """vae""": vae.eval(), """scheduler""": scheduler, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Optional[int]=0 ): '''simple docstring''' if str(__magic_name__ ).startswith("""mps""" ): a = torch.manual_seed(__magic_name__ ) else: a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) a = { """prompt""": """A painting of a squirrel eating a burger""", """image""": self.dummy_image.cpu(), """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = """cpu""" a = self.get_dummy_components() a = self.pipeline_class(**__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) a = self.get_dummy_inputs(__magic_name__ ) a = pipe(**__magic_name__ ).images a = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) a = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) a = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__magic_name__ , 1E-3 ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def lowerCamelCase__ ( self :str ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3E-3 ) def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' a = [ """DDIMScheduler""", """DDPMScheduler""", """PNDMScheduler""", """HeunDiscreteScheduler""", """EulerAncestralDiscreteScheduler""", """KDPM2DiscreteScheduler""", """KDPM2AncestralDiscreteScheduler""", """DPMSolverSDEScheduler""", ] a = self.get_dummy_components() a = self.pipeline_class(**__magic_name__ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) a = self.get_dummy_inputs(__magic_name__ ) a = 2 a = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue a = getattr(__magic_name__ , scheduler_enum.name ) a = scheduler_cls.from_config(pipe.scheduler.config ) a = pipe(**__magic_name__ )[0] outputs.append(__magic_name__ ) assert check_same_shape(__magic_name__ ) @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = torch.manual_seed(33 ) a = StableDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) a = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) a = """a photo of an astronaut high resolution, unreal engine, ultra realistic""" a = pipe(__magic_name__ , generator=__magic_name__ , output_type="""latent""" ).images a = upscaler( prompt=__magic_name__ , image=__magic_name__ , num_inference_steps=20 , guidance_scale=0 , generator=__magic_name__ , output_type="""np""" , ).images[0] a = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy""" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' a = torch.manual_seed(33 ) a = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) a = """the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas""" a = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png""" ) a = upscaler( prompt=__magic_name__ , image=__magic_name__ , num_inference_steps=20 , guidance_scale=0 , generator=__magic_name__ , output_type="""np""" , ).images[0] a = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy""" ) assert np.abs((expected_image - image).max() ) < 5E-2
468
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a__ : Optional[Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Dict , *a__ : Optional[int] , **a__ : List[Any] ): warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , a__ , ) super().__init__(*a__ , **a__ )
570
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : Union[str, Any] = {'vocab_file': 'vocab.txt'} a__ : List[str] = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } a__ : Any = { 'facebook/esm2_t6_8M_UR50D': 1_024, 'facebook/esm2_t12_35M_UR50D': 1_024, } def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[str]: """simple docstring""" with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as f: UpperCAmelCase = f.read().splitlines() return [l.strip() for l in lines] class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =VOCAB_FILES_NAMES _lowerCamelCase =PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase =["input_ids", "attention_mask"] def __init__( self : Dict , a__ : Optional[int] , a__ : Optional[Any]="<unk>" , a__ : Any="<cls>" , a__ : Dict="<pad>" , a__ : int="<mask>" , a__ : List[Any]="<eos>" , **a__ : List[Any] , ): super().__init__(**a__ ) UpperCAmelCase = load_vocab_file(a__ ) UpperCAmelCase = dict(enumerate(self.all_tokens ) ) UpperCAmelCase = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCAmelCase = unk_token UpperCAmelCase = cls_token UpperCAmelCase = pad_token UpperCAmelCase = mask_token UpperCAmelCase = eos_token UpperCAmelCase = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __snake_case ( self : int , a__ : int ): return self._id_to_token.get(a__ , self.unk_token ) def __snake_case ( self : int , a__ : str ): return self._token_to_id.get(a__ , self._token_to_id.get(self.unk_token ) ) def __snake_case ( self : Any , a__ : str , **a__ : List[str] ): return text.split() def __snake_case ( self : str , a__ : Tuple=False ): return len(self._id_to_token ) def __snake_case ( self : str ): return {token: i for i, token in enumerate(self.all_tokens )} def __snake_case ( self : int , a__ : str ): return self._token_to_id.get(a__ , self._token_to_id.get(self.unk_token ) ) def __snake_case ( self : Dict , a__ : int ): return self._id_to_token.get(a__ , self.unk_token ) def __snake_case ( self : List[Any] , a__ : List[int] , a__ : Optional[List[int]] = None ): UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __snake_case ( self : Optional[int] , a__ : List , a__ : Optional[List] = None , a__ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCAmelCase = [1] + ([0] * len(a__ )) + [1] if token_ids_a is not None: mask += [0] * len(a__ ) + [1] return mask def __snake_case ( self : Tuple , a__ : List[str] , a__ : Dict ): UpperCAmelCase = os.path.join(a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(a__ , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __snake_case ( self : Union[str, Any] ): return self.get_vocab_size(with_added_tokens=a__ ) def __snake_case ( self : int , a__ : Union[List[str], List[AddedToken]] , a__ : bool = False ): return super()._add_tokens(a__ , special_tokens=a__ )
570
1
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _lowercase : def __init__( self : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Union[str, Any]=1_3 , lowerCamelCase__ : Any=7 , lowerCamelCase__ : Any=True , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : List[Any]=9_9 , lowerCamelCase__ : Optional[int]=6_4 , lowerCamelCase__ : Dict=3_2 , lowerCamelCase__ : Union[str, Any]=5 , lowerCamelCase__ : List[str]=4 , lowerCamelCase__ : Any=3_7 , lowerCamelCase__ : Any="gelu" , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : str=0.1 , lowerCamelCase__ : Optional[Any]=5_1_2 , lowerCamelCase__ : List[str]=1_6 , lowerCamelCase__ : Dict=2 , lowerCamelCase__ : Optional[int]=0.02 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Tuple=None , ) -> Any: """simple docstring""" A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = embedding_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope def UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) def UpperCamelCase ( self : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" A_ = MobileBertModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A_ = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) A_ = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : Tuple , lowerCamelCase__ : Dict ) -> Union[str, Any]: """simple docstring""" A_ = MobileBertForMaskedLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A_ = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Tuple , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> Dict: """simple docstring""" A_ = MobileBertForNextSentencePrediction(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A_ = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase ( self : Dict , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Tuple ) -> Dict: """simple docstring""" A_ = MobileBertForPreTraining(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A_ = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , next_sentence_label=lowerCamelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase ( self : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] ) -> List[str]: """simple docstring""" A_ = MobileBertForQuestionAnswering(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A_ = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any , lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[str] ) -> Any: """simple docstring""" A_ = self.num_labels A_ = MobileBertForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A_ = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] ) -> Tuple: """simple docstring""" A_ = self.num_labels A_ = MobileBertForTokenClassification(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A_ = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : Tuple , lowerCamelCase__ : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : int ) -> Optional[Any]: """simple docstring""" A_ = self.num_choices A_ = MobileBertForMultipleChoice(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" A_ = self.prepare_config_and_inputs() ( ( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) , ) = config_and_inputs A_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _lowercase ( __lowerCamelCase,__lowerCamelCase,unittest.TestCase ): _lowercase : Optional[Any] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowercase : List[str] = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowercase : Any = True def UpperCamelCase ( self : str , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict=False ) -> Tuple: """simple docstring""" A_ = super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if model_class in get_values(lowerCamelCase__ ): A_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase__ ) A_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase__ ) return inputs_dict def UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" A_ = MobileBertModelTester(self ) A_ = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=3_7 ) def UpperCamelCase ( self : str ) -> int: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase__ ) def UpperCamelCase ( self : Any ) -> int: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase__ ) def UpperCamelCase ( self : str ) -> int: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase__ ) def UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase__ ) def UpperCamelCase ( self : int ) -> Optional[int]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase__ ) def UpperCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase__ ) def UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase__ ) def UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase__ ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return torch.tensor( SCREAMING_SNAKE_CASE , dtype=torch.long , device=SCREAMING_SNAKE_CASE , ) __lowercase = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): @slow def UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" A_ = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(lowerCamelCase__ ) A_ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): A_ = model(lowerCamelCase__ )[0] A_ = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape , lowerCamelCase__ ) A_ = torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] , device=lowerCamelCase__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE A_ = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) A_ = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
203
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __lowercase = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") __lowercase = ( subprocess.check_output(f'git diff --diff-filter=d --name-only {fork_point_sha}'.split()).decode("""utf-8""").split() ) __lowercase = """|""".join(sys.argv[1:]) __lowercase = re.compile(rf'^({joined_dirs}).*?\.py$') __lowercase = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
203
1
import doctest from collections import deque import numpy as np class _UpperCAmelCase : def __init__( self): A__ = [2, 1, 2, -1] A__ = [1, 2, 3, 4] def snake_case_ ( self): A__ = len(self.first_signal) A__ = len(self.second_signal) A__ = max(a__ , a__) # create a zero matrix of max_length x max_length A__ = [[0] * max_length for i in range(a__)] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(a__): A__ = deque(self.second_signal) rotated_signal.rotate(a__) for j, item in enumerate(a__): matrix[i][j] += item # multiply the matrix with the first signal A__ = np.matmul(np.transpose(a__) , np.transpose(self.first_signal)) # rounding-off to two decimal places return [round(a__ , 2) for i in final_signal] if __name__ == "__main__": doctest.testmod()
526
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
526
1
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=56 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_="gelu_new" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_="block_sparse" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , ) -> List[str]: '''simple docstring''' lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_attention_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_choices lowerCamelCase_ = rescale_embeddings lowerCamelCase_ = attention_type lowerCamelCase_ = use_bias lowerCamelCase_ = block_size lowerCamelCase_ = num_random_blocks def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_attention_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = config_and_inputs lowerCamelCase_ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class UpperCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase( self ) -> Any: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase( self ) -> Dict: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCamelCase( self ) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase_ = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(lowerCAmelCase_ ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCamelCase_ = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ): return model(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('JIT Enabled' ): lowerCamelCase_ = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCamelCase_ = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_="outputs" , SCREAMING_SNAKE_CASE_=None ) -> Any: '''simple docstring''' if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
42
import csv import tweepy # Twitter API credentials lowerCAmelCase__ = '' lowerCAmelCase__ = '' lowerCAmelCase__ = '' lowerCAmelCase__ = '' def __lowercase ( _UpperCAmelCase ) -> None: '''simple docstring''' __lowercase = tweepy.OAuthHandler(_UpperCAmelCase , _UpperCAmelCase ) auth.set_access_token(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = tweepy.API(_UpperCAmelCase ) # initialize a list to hold all the tweepy Tweets __lowercase = [] # make initial request for most recent tweets (200 is the maximum allowed count) __lowercase = api.user_timeline(screen_name=_UpperCAmelCase , count=200 ) # save most recent tweets alltweets.extend(_UpperCAmelCase ) # save the id of the oldest tweet less one __lowercase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_UpperCAmelCase ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates __lowercase = api.user_timeline( screen_name=_UpperCAmelCase , count=200 , max_id=_UpperCAmelCase ) # save most recent tweets alltweets.extend(_UpperCAmelCase ) # update the id of the oldest tweet less one __lowercase = alltweets[-1].id - 1 print(f'''...{len(_UpperCAmelCase )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv __lowercase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' , "w" ) as f: __lowercase = csv.writer(_UpperCAmelCase ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(_UpperCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
321
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : List[str] = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig __a : List[str] = logging.get_logger(__name__) __a : str = "T5Config" def _SCREAMING_SNAKE_CASE ( __lowercase : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ) -> str: """simple docstring""" __A = jnp.zeros_like(UpperCamelCase__ ) __A = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) __A = shifted_input_ids.at[:, 0].set(UpperCamelCase__ ) __A = jnp.where(shifted_input_ids == -1_0_0 , UpperCamelCase__ , UpperCamelCase__ ) return shifted_input_ids class __lowercase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = '''mt5''' SCREAMING_SNAKE_CASE = MTaConfig class __lowercase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = '''mt5''' SCREAMING_SNAKE_CASE = MTaConfig class __lowercase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = '''mt5''' SCREAMING_SNAKE_CASE = MTaConfig
637
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=True , _lowerCamelCase=1 / 255 , _lowerCamelCase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCAmelCase__ : List[str] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} UpperCAmelCase__ : List[Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : List[str] = min_resolution UpperCAmelCase__ : Optional[Any] = max_resolution UpperCAmelCase__ : List[str] = do_resize UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : int = image_mean UpperCAmelCase__ : Dict = image_std UpperCAmelCase__ : Any = do_rescale UpperCAmelCase__ : str = rescale_factor UpperCAmelCase__ : List[str] = do_pad def snake_case__ ( self): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=False): if not batched: UpperCAmelCase__ : List[Any] = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image): UpperCAmelCase__ , UpperCAmelCase__ : str = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : List[Any] = int(self.size["""shortest_edge"""] * h / w) UpperCAmelCase__ : List[str] = self.size["""shortest_edge"""] elif w > h: UpperCAmelCase__ : List[str] = self.size["""shortest_edge"""] UpperCAmelCase__ : Optional[int] = int(self.size["""shortest_edge"""] * w / h) else: UpperCAmelCase__ : List[str] = self.size["""shortest_edge"""] UpperCAmelCase__ : int = self.size["""shortest_edge"""] else: UpperCAmelCase__ : str = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : Any = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) UpperCAmelCase__ : Any = max(_lowerCamelCase , key=lambda _lowerCamelCase: item[0])[0] UpperCAmelCase__ : List[Any] = max(_lowerCamelCase , key=lambda _lowerCamelCase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class _snake_case ( a__ , unittest.TestCase ): lowerCAmelCase :Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = DeformableDetrImageProcessingTester(self) @property def snake_case__ ( self): return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""")) self.assertTrue(hasattr(_lowerCamelCase , """image_std""")) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""")) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""")) self.assertTrue(hasattr(_lowerCamelCase , """do_rescale""")) self.assertTrue(hasattr(_lowerCamelCase , """do_pad""")) self.assertTrue(hasattr(_lowerCamelCase , """size""")) def snake_case__ ( self): UpperCAmelCase__ : int = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333}) self.assertEqual(image_processor.do_pad , _lowerCamelCase) UpperCAmelCase__ : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowerCamelCase) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84}) self.assertEqual(image_processor.do_pad , _lowerCamelCase) def snake_case__ ( self): pass def snake_case__ ( self): # Initialize image_processing UpperCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image) # Test not batched input UpperCAmelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(_lowerCamelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = image_processing(_lowerCamelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self): # Initialize image_processing UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray) # Test not batched input UpperCAmelCase__ : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self): # Initialize image_processing UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor) # Test not batched input UpperCAmelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(_lowerCamelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : int = image_processing(_lowerCamelCase , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case__ ( self): # prepare image and target UpperCAmelCase__ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""") as f: UpperCAmelCase__ : Dict = json.loads(f.read()) UpperCAmelCase__ : int = {"""image_id""": 3_9769, """annotations""": target} # encode them UpperCAmelCase__ : Dict = DeformableDetrImageProcessor() UpperCAmelCase__ : int = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , return_tensors="""pt""") # verify pixel values UpperCAmelCase__ : Tuple = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["""pixel_values"""].shape , _lowerCamelCase) UpperCAmelCase__ : Any = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4)) # verify area UpperCAmelCase__ : List[Any] = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowerCamelCase)) # verify boxes UpperCAmelCase__ : Union[str, Any] = torch.Size([6, 4]) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowerCamelCase) UpperCAmelCase__ : Dict = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowerCamelCase , atol=1e-3)) # verify image_id UpperCAmelCase__ : Optional[int] = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowerCamelCase)) # verify is_crowd UpperCAmelCase__ : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowerCamelCase)) # verify class_labels UpperCAmelCase__ : Any = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowerCamelCase)) # verify orig_size UpperCAmelCase__ : int = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowerCamelCase)) # verify size UpperCAmelCase__ : List[Any] = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowerCamelCase)) @slow def snake_case__ ( self): # prepare image, target and masks_path UpperCAmelCase__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""") as f: UpperCAmelCase__ : Optional[int] = json.loads(f.read()) UpperCAmelCase__ : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} UpperCAmelCase__ : Tuple = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""") # encode them UpperCAmelCase__ : List[str] = DeformableDetrImageProcessor(format="""coco_panoptic""") UpperCAmelCase__ : Tuple = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , masks_path=_lowerCamelCase , return_tensors="""pt""") # verify pixel values UpperCAmelCase__ : str = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["""pixel_values"""].shape , _lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4)) # verify area UpperCAmelCase__ : str = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowerCamelCase)) # verify boxes UpperCAmelCase__ : List[str] = torch.Size([6, 4]) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowerCamelCase) UpperCAmelCase__ : Dict = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowerCamelCase , atol=1e-3)) # verify image_id UpperCAmelCase__ : Tuple = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowerCamelCase)) # verify is_crowd UpperCAmelCase__ : List[str] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowerCamelCase)) # verify class_labels UpperCAmelCase__ : List[Any] = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowerCamelCase)) # verify masks UpperCAmelCase__ : Dict = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , _lowerCamelCase) # verify orig_size UpperCAmelCase__ : Any = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowerCamelCase)) # verify size UpperCAmelCase__ : int = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowerCamelCase))
407
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __lowercase (_UpperCAmelCase ): _UpperCamelCase = 42 _UpperCamelCase = 42 class __lowercase (nn.Module ): _UpperCamelCase = 42 _UpperCamelCase = (16, 32, 96, 256) _UpperCamelCase = jnp.floataa def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : Tuple = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCAmelCase : Any = [] for i in range(len(self.block_out_channels ) - 1 ): __lowerCAmelCase : Tuple = self.block_out_channels[i] __lowerCAmelCase : str = self.block_out_channels[i + 1] __lowerCAmelCase : Optional[int] = nn.Conv( A_ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(A_ ) __lowerCAmelCase : Any = nn.Conv( A_ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(A_ ) __lowerCAmelCase : str = blocks __lowerCAmelCase : Any = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , A_ ) ->Dict: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = self.conv_in(A_ ) __lowerCAmelCase : Dict = nn.silu(A_ ) for block in self.blocks: __lowerCAmelCase : Optional[int] = block(A_ ) __lowerCAmelCase : Tuple = nn.silu(A_ ) __lowerCAmelCase : Dict = self.conv_out(A_ ) return embedding @flax_register_to_config class __lowercase (nn.Module , _UpperCAmelCase , _UpperCAmelCase ): _UpperCamelCase = 32 _UpperCamelCase = 4 _UpperCamelCase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _UpperCamelCase = False _UpperCamelCase = (320, 640, 1280, 1280) _UpperCamelCase = 2 _UpperCamelCase = 8 _UpperCamelCase = None _UpperCamelCase = 1280 _UpperCamelCase = 0.0 _UpperCamelCase = False _UpperCamelCase = jnp.floataa _UpperCamelCase = True _UpperCamelCase = 0 _UpperCamelCase = "rgb" _UpperCamelCase = (16, 32, 96, 256) def UpperCamelCase__ ( self , A_ ) ->FrozenDict: '''simple docstring''' __lowerCAmelCase : Dict = (1, self.in_channels, self.sample_size, self.sample_size) __lowerCAmelCase : int = jnp.zeros(A_ , dtype=jnp.floataa ) __lowerCAmelCase : List[str] = jnp.ones((1,) , dtype=jnp.intaa ) __lowerCAmelCase : str = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __lowerCAmelCase : str = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowerCAmelCase : int = jnp.zeros(A_ , dtype=jnp.floataa ) __lowerCAmelCase, __lowerCAmelCase : int = jax.random.split(A_ ) __lowerCAmelCase : Optional[int] = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(A_ , A_ , A_ , A_ , A_ )["params"] def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = self.block_out_channels __lowerCAmelCase : Any = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowerCAmelCase : Tuple = self.num_attention_heads or self.attention_head_dim # input __lowerCAmelCase : Optional[int] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __lowerCAmelCase : List[str] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __lowerCAmelCase : Tuple = FlaxTimestepEmbedding(A_ , dtype=self.dtype ) __lowerCAmelCase : Tuple = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) __lowerCAmelCase : List[Any] = self.only_cross_attention if isinstance(A_ , A_ ): __lowerCAmelCase : Union[str, Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(A_ , A_ ): __lowerCAmelCase : Optional[int] = (num_attention_heads,) * len(self.down_block_types ) # down __lowerCAmelCase : str = [] __lowerCAmelCase : Union[str, Any] = [] __lowerCAmelCase : List[str] = block_out_channels[0] __lowerCAmelCase : int = nn.Conv( A_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A_ ) for i, down_block_type in enumerate(self.down_block_types ): __lowerCAmelCase : int = output_channel __lowerCAmelCase : Tuple = block_out_channels[i] __lowerCAmelCase : Optional[Any] = i == len(A_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowerCAmelCase : Dict = FlaxCrossAttnDownBlockaD( in_channels=A_ , out_channels=A_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: __lowerCAmelCase : Optional[Any] = FlaxDownBlockaD( in_channels=A_ , out_channels=A_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(A_ ) for _ in range(self.layers_per_block ): __lowerCAmelCase : Optional[Any] = nn.Conv( A_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A_ ) if not is_final_block: __lowerCAmelCase : Any = nn.Conv( A_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A_ ) __lowerCAmelCase : Any = down_blocks __lowerCAmelCase : List[str] = controlnet_down_blocks # mid __lowerCAmelCase : List[Any] = block_out_channels[-1] __lowerCAmelCase : str = FlaxUNetMidBlockaDCrossAttn( in_channels=A_ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) __lowerCAmelCase : List[Any] = nn.Conv( A_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , A_ , A_ , A_ , A_ , A_ = 1.0 , A_ = True , A_ = False , ) ->Union[FlaxControlNetOutput, Tuple]: '''simple docstring''' __lowerCAmelCase : Any = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowerCAmelCase : str = jnp.flip(A_ , axis=1 ) # 1. time if not isinstance(A_ , jnp.ndarray ): __lowerCAmelCase : Any = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(A_ , jnp.ndarray ) and len(timesteps.shape ) == 0: __lowerCAmelCase : Optional[Any] = timesteps.astype(dtype=jnp.floataa ) __lowerCAmelCase : List[Any] = jnp.expand_dims(A_ , 0 ) __lowerCAmelCase : List[Any] = self.time_proj(A_ ) __lowerCAmelCase : List[str] = self.time_embedding(A_ ) # 2. pre-process __lowerCAmelCase : str = jnp.transpose(A_ , (0, 2, 3, 1) ) __lowerCAmelCase : Tuple = self.conv_in(A_ ) __lowerCAmelCase : Union[str, Any] = jnp.transpose(A_ , (0, 2, 3, 1) ) __lowerCAmelCase : Tuple = self.controlnet_cond_embedding(A_ ) sample += controlnet_cond # 3. down __lowerCAmelCase : int = (sample,) for down_block in self.down_blocks: if isinstance(A_ , A_ ): __lowerCAmelCase, __lowerCAmelCase : Dict = down_block(A_ , A_ , A_ , deterministic=not train ) else: __lowerCAmelCase, __lowerCAmelCase : Union[str, Any] = down_block(A_ , A_ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowerCAmelCase : Tuple = self.mid_block(A_ , A_ , A_ , deterministic=not train ) # 5. contronet blocks __lowerCAmelCase : int = () for down_block_res_sample, controlnet_block in zip(A_ , self.controlnet_down_blocks ): __lowerCAmelCase : str = controlnet_block(A_ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowerCAmelCase : Optional[Any] = controlnet_down_block_res_samples __lowerCAmelCase : int = self.controlnet_mid_block(A_ ) # 6. scaling __lowerCAmelCase : Dict = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=A_ , mid_block_res_sample=A_ )
583
from __future__ import annotations def _lowercase ( lowercase__ ): if len(lowercase__ ) == 0: return array __lowerCAmelCase, __lowerCAmelCase : List[str] = min(lowercase__ ), max(lowercase__ ) # Compute the variables __lowerCAmelCase : int = _max - _min + 1 __lowerCAmelCase, __lowerCAmelCase : Union[str, Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: __lowerCAmelCase : Optional[int] = i - _min __lowerCAmelCase : Optional[int] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. __lowerCAmelCase : int = 0 for i in range(lowercase__ ): while holes_repeat[i] > 0: __lowerCAmelCase : List[Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input("Enter numbers separated by comma:\n") _UpperCamelCase = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
583
1
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger("""transformers.models.encodec""") _lowerCAmelCase : List[str] = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } _lowerCAmelCase : str = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } _lowerCAmelCase : str = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } _lowerCAmelCase : List[Any] = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } _lowerCAmelCase : Any = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } _lowerCAmelCase : Optional[Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } _lowerCAmelCase : Optional[int] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Optional[Any] = [] def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : List[Any] , snake_case : Optional[int] , snake_case : List[str] )-> Any: '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase__ : str = getattr(snake_case , snake_case ) if weight_type is not None: UpperCAmelCase__ : Optional[int] = getattr(snake_case , snake_case ).shape else: UpperCAmelCase__ : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCAmelCase__ : List[Any] = value elif weight_type == "weight_g": UpperCAmelCase__ : List[str] = value elif weight_type == "weight_v": UpperCAmelCase__ : str = value elif weight_type == "bias": UpperCAmelCase__ : List[Any] = value elif weight_type == "running_mean": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "running_var": UpperCAmelCase__ : str = value elif weight_type == "num_batches_tracked": UpperCAmelCase__ : Optional[int] = value elif weight_type == "weight_ih_l0": UpperCAmelCase__ : List[str] = value elif weight_type == "weight_hh_l0": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "bias_ih_l0": UpperCAmelCase__ : Any = value elif weight_type == "bias_hh_l0": UpperCAmelCase__ : Optional[Any] = value elif weight_type == "weight_ih_l1": UpperCAmelCase__ : int = value elif weight_type == "weight_hh_l1": UpperCAmelCase__ : Optional[int] = value elif weight_type == "bias_ih_l1": UpperCAmelCase__ : Any = value elif weight_type == "bias_hh_l1": UpperCAmelCase__ : Union[str, Any] = value else: UpperCAmelCase__ : List[Any] = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : List[Any] )-> List[Any]: '''simple docstring''' for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any] , snake_case : Dict )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[Any] = [] if model_name == "encodec_24khz" or "encodec_32khz": UpperCAmelCase__ : Tuple = MAPPING_24K elif model_name == "encodec_48khz": UpperCAmelCase__ : Dict = MAPPING_48K else: raise ValueError(f'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(snake_case , snake_case ): logger.info(f'{name} was ignored' ) continue UpperCAmelCase__ : int = False for key, mapped_key in MAPPING.items(): if "*" in key: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = key.split(".*." ) if prefix in name and suffix in name: UpperCAmelCase__ : int = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue UpperCAmelCase__ : Union[str, Any] = True if "*" in mapped_key: UpperCAmelCase__ : List[Any] = name.split(snake_case )[0].split("." )[-2] UpperCAmelCase__ : List[str] = mapped_key.replace("*" , snake_case ) if "weight_g" in name: UpperCAmelCase__ : int = "weight_g" elif "weight_v" in name: UpperCAmelCase__ : List[Any] = "weight_v" elif "weight_ih_l0" in name: UpperCAmelCase__ : Union[str, Any] = "weight_ih_l0" elif "weight_hh_l0" in name: UpperCAmelCase__ : str = "weight_hh_l0" elif "bias_ih_l0" in name: UpperCAmelCase__ : Any = "bias_ih_l0" elif "bias_hh_l0" in name: UpperCAmelCase__ : Union[str, Any] = "bias_hh_l0" elif "weight_ih_l1" in name: UpperCAmelCase__ : Tuple = "weight_ih_l1" elif "weight_hh_l1" in name: UpperCAmelCase__ : List[Any] = "weight_hh_l1" elif "bias_ih_l1" in name: UpperCAmelCase__ : List[str] = "bias_ih_l1" elif "bias_hh_l1" in name: UpperCAmelCase__ : Optional[int] = "bias_hh_l1" elif "bias" in name: UpperCAmelCase__ : Optional[Any] = "bias" elif "weight" in name: UpperCAmelCase__ : Optional[int] = "weight" elif "running_mean" in name: UpperCAmelCase__ : List[str] = "running_mean" elif "running_var" in name: UpperCAmelCase__ : Dict = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase__ : Tuple = "num_batches_tracked" else: UpperCAmelCase__ : Optional[int] = None set_recursively(snake_case , snake_case , snake_case , snake_case , snake_case ) continue if not is_used: unused_weights.append(snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case : Dict , snake_case : Union[str, Any] , snake_case : int , snake_case : List[str]=None , snake_case : Optional[int]=None , )-> Dict: '''simple docstring''' if config_path is not None: UpperCAmelCase__ : List[Any] = EncodecConfig.from_pretrained(snake_case ) else: UpperCAmelCase__ : Tuple = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": UpperCAmelCase__ : int = [8, 5, 4, 4] UpperCAmelCase__ : int = [2.2] UpperCAmelCase__ : str = 64 UpperCAmelCase__ : Tuple = 3_2000 UpperCAmelCase__ : str = 2048 UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Dict = False elif model_name == "encodec_48khz": UpperCAmelCase__ : int = [8, 5, 4, 2] UpperCAmelCase__ : str = [3.0, 6.0, 12.0, 24.0] UpperCAmelCase__ : Union[str, Any] = 4_8000 UpperCAmelCase__ : Tuple = 2 UpperCAmelCase__ : Any = False UpperCAmelCase__ : Any = "time_group_norm" UpperCAmelCase__ : str = True UpperCAmelCase__ : Tuple = 1.0 UpperCAmelCase__ : str = 0.01 else: raise ValueError(f'Unknown model name: {model_name}' ) UpperCAmelCase__ : List[Any] = EncodecModel(snake_case ) UpperCAmelCase__ : str = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(snake_case ) UpperCAmelCase__ : Optional[Any] = torch.load(snake_case ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights UpperCAmelCase__ : Optional[Any] = original_checkpoint["best_state"] recursively_load_weights(snake_case , snake_case , snake_case ) model.save_pretrained(snake_case ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(snake_case ) model.push_to_hub(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _lowerCAmelCase : Tuple = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
438
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _lowerCAmelCase : Optional[int] = 2 class lowerCAmelCase__ : def __init__( self : Any , *, # begin keyword-only arguments snake_case__ : List[str]="<s>" , snake_case__ : str="<pad>" , snake_case__ : List[str]="</s>" , snake_case__ : Any="<unk>" , snake_case__ : List[Any]=None , ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = bos, unk, pad, eos UpperCAmelCase__ : str = [] UpperCAmelCase__ : Tuple = [] UpperCAmelCase__ : Optional[int] = {} UpperCAmelCase__ : Optional[int] = self.add_symbol(snake_case__ ) UpperCAmelCase__ : Tuple = self.add_symbol(snake_case__ ) UpperCAmelCase__ : str = self.add_symbol(snake_case__ ) UpperCAmelCase__ : Optional[int] = self.add_symbol(snake_case__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(snake_case__ ) UpperCAmelCase__ : List[str] = len(self.symbols ) def __eq__( self : List[Any] , snake_case__ : str ): '''simple docstring''' return self.indices == other.indices def __getitem__( self : Dict , snake_case__ : Union[str, Any] ): '''simple docstring''' if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : int ): '''simple docstring''' return len(self.symbols ) def __contains__( self : Dict , snake_case__ : Optional[Any] ): '''simple docstring''' return sym in self.indices @classmethod def __a ( cls : Optional[int] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = cls() d.add_from_file(snake_case__ ) return d def __a ( self : Optional[Any] , snake_case__ : str , snake_case__ : Dict=1 , snake_case__ : Dict=False ): '''simple docstring''' if word in self.indices and not overwrite: UpperCAmelCase__ : List[Any] = self.indices[word] UpperCAmelCase__ : Dict = self.count[idx] + n return idx else: UpperCAmelCase__ : Optional[Any] = len(self.symbols ) UpperCAmelCase__ : List[str] = idx self.symbols.append(snake_case__ ) self.count.append(snake_case__ ) return idx def __a ( self : Union[str, Any] , snake_case__ : List[Any] ): '''simple docstring''' return 0 def __a ( self : Any , snake_case__ : Dict ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): try: with open(snake_case__ , "r" , encoding="utf-8" ) as fd: self.add_from_file(snake_case__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(snake_case__ ) ) return UpperCAmelCase__ : Optional[int] = f.readlines() UpperCAmelCase__ : Dict = self._load_meta(snake_case__ ) for line in lines[indices_start_line:]: try: UpperCAmelCase__ , UpperCAmelCase__ : str = line.rstrip().rsplit(" " , 1 ) if field == "#fairseq:overwrite": UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ , UpperCAmelCase__ : str = line.rsplit(" " , 1 ) else: UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Any = int(snake_case__ ) UpperCAmelCase__ : List[Any] = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(snake_case__ ) ) self.add_symbol(snake_case__ , n=snake_case__ , overwrite=snake_case__ ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> Tuple: '''simple docstring''' UpperCAmelCase__ : Optional[int] = dict((re.sub(r"@@$" , "" , snake_case ), v) if k.endswith("@@" ) else (re.sub(r"$" , "</w>" , snake_case ), v) for k, v in d.items() ) UpperCAmelCase__ : Optional[int] = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[f'{k}</w>'] UpperCAmelCase__ : List[str] = d[k] # restore return da def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : int )-> Union[str, Any]: '''simple docstring''' if not os.path.exists(snake_case ): raise ValueError(f'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(snake_case , exist_ok=snake_case ) print(f'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models UpperCAmelCase__ : Dict = os.path.join(snake_case , "checkpoint.pt" ) if not os.path.isfile(snake_case ): raise ValueError(f'path to the file {checkpoint_file} does not exist!' ) UpperCAmelCase__ : Optional[int] = torch.load(snake_case , map_location="cpu" ) UpperCAmelCase__ : Optional[int] = chkpt["cfg"]["model"] # dicts UpperCAmelCase__ : Optional[int] = os.path.join(snake_case , "dict.txt" ) if not os.path.isfile(snake_case ): raise ValueError(f'path to the file {dict_file} does not exist!' ) UpperCAmelCase__ : Dict = Dictionary.load(snake_case ) UpperCAmelCase__ : Optional[Any] = rewrite_dict_keys(src_dict.indices ) UpperCAmelCase__ : List[str] = len(snake_case ) UpperCAmelCase__ : Tuple = os.path.join(snake_case , VOCAB_FILES_NAMES["vocab_file"] ) print(f'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # merges_file (bpecodes) UpperCAmelCase__ : List[Any] = os.path.join(snake_case , "bpecodes" ) if not os.path.isfile(snake_case ): raise ValueError(f'path to the file {bpecodes_file} does not exist!' ) UpperCAmelCase__ : int = os.path.join(snake_case , VOCAB_FILES_NAMES["merges_file"] ) shutil.copyfile(snake_case , snake_case ) # model config UpperCAmelCase__ : List[Any] = os.path.join(snake_case , "config.json" ) UpperCAmelCase__ : Any = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-1_2, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(f'Generating {biogpt_model_config_file}' ) with open(snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # tokenizer config UpperCAmelCase__ : List[Any] = os.path.join(snake_case , snake_case ) UpperCAmelCase__ : str = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(f'Generating {biogpt_tokenizer_config_file}' ) with open(snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # model UpperCAmelCase__ : Union[str, Any] = chkpt["model"] # remove unneeded keys UpperCAmelCase__ : Union[str, Any] = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(snake_case , snake_case ) UpperCAmelCase__ : Union[str, Any] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("output_projection.weight" ): UpperCAmelCase__ : int = model_state_dict.pop(snake_case ) else: UpperCAmelCase__ : Tuple = model_state_dict.pop(snake_case ) UpperCAmelCase__ : Any = BioGptConfig.from_pretrained(snake_case ) UpperCAmelCase__ : List[Any] = BioGptForCausalLM(snake_case ) # check that it loads ok model_new.load_state_dict(snake_case ) # save UpperCAmelCase__ : Union[str, Any] = os.path.join(snake_case , snake_case ) print(f'Generating {pytorch_weights_dump_path}' ) torch.save(snake_case , snake_case ) print("Conversion is done!" ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _lowerCAmelCase : List[str] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
438
1
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __snake_case : List[Any] = False class UpperCamelCase__ ( unittest.TestCase): '''simple docstring''' pass @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase): '''simple docstring''' def A__ ( self ) ->List[Any]: UpperCAmelCase__ :str = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase__ :Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) UpperCAmelCase__ :List[Any] = torch.manual_seed(0 ) UpperCAmelCase__ :Union[str, Any] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images UpperCAmelCase__ :Dict = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ :List[str] = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
433
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ : '''simple docstring''' def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=24 , A=2 , A=6 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=None , A=10_00 , ) ->Any: UpperCAmelCase__ :Tuple = parent UpperCAmelCase__ :List[str] = batch_size UpperCAmelCase__ :Optional[int] = seq_length UpperCAmelCase__ :str = is_training UpperCAmelCase__ :Tuple = use_input_mask UpperCAmelCase__ :Optional[int] = use_token_type_ids UpperCAmelCase__ :int = use_labels UpperCAmelCase__ :Tuple = vocab_size UpperCAmelCase__ :int = hidden_size UpperCAmelCase__ :Any = num_hidden_layers UpperCAmelCase__ :List[Any] = num_attention_heads UpperCAmelCase__ :Tuple = intermediate_size UpperCAmelCase__ :List[str] = hidden_act UpperCAmelCase__ :Any = hidden_dropout_prob UpperCAmelCase__ :Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ :List[str] = max_position_embeddings UpperCAmelCase__ :str = type_vocab_size UpperCAmelCase__ :int = type_sequence_label_size UpperCAmelCase__ :int = initializer_range UpperCAmelCase__ :str = num_labels UpperCAmelCase__ :Tuple = scope UpperCAmelCase__ :int = range_bbox def A__ ( self ) ->Union[str, Any]: UpperCAmelCase__ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase__ :List[Any] = bbox[i, j, 3] UpperCAmelCase__ :Union[str, Any] = bbox[i, j, 1] UpperCAmelCase__ :str = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase__ :Any = bbox[i, j, 2] UpperCAmelCase__ :Dict = bbox[i, j, 0] UpperCAmelCase__ :Optional[Any] = t UpperCAmelCase__ :int = None if self.use_input_mask: UpperCAmelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase__ :int = None if self.use_token_type_ids: UpperCAmelCase__ :Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ :List[str] = None UpperCAmelCase__ :List[str] = None if self.use_labels: UpperCAmelCase__ :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ :List[str] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def A__ ( self ) ->Optional[int]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def A__ ( self , A , A , A , A , A , A , A , ) ->Any: UpperCAmelCase__ :Any = LiltModel(config=A ) model.to(A ) model.eval() UpperCAmelCase__ :Tuple = model(A , bbox=A , attention_mask=A , token_type_ids=A ) UpperCAmelCase__ :List[str] = model(A , bbox=A , token_type_ids=A ) UpperCAmelCase__ :int = model(A , bbox=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A__ ( self , A , A , A , A , A , A , A , ) ->Dict: UpperCAmelCase__ :List[str] = self.num_labels UpperCAmelCase__ :Optional[Any] = LiltForTokenClassification(config=A ) model.to(A ) model.eval() UpperCAmelCase__ :Tuple = model( A , bbox=A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , A , A , A , A , A , A , A , ) ->Union[str, Any]: UpperCAmelCase__ :str = LiltForQuestionAnswering(config=A ) model.to(A ) model.eval() UpperCAmelCase__ :str = model( A , bbox=A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self ) ->Dict: UpperCAmelCase__ :List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) :Dict = config_and_inputs UpperCAmelCase__ :Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCamelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase): '''simple docstring''' __a : Union[str, Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __a : Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __a : Optional[Any] = False __a : int = False def A__ ( self , A , A , A , A , A ) ->str: return True def A__ ( self ) ->List[Any]: UpperCAmelCase__ :Dict = LiltModelTester(self ) UpperCAmelCase__ :Optional[int] = ConfigTester(self , config_class=A , hidden_size=37 ) def A__ ( self ) ->Optional[Any]: self.config_tester.run_common_tests() def A__ ( self ) ->List[str]: UpperCAmelCase__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def A__ ( self ) ->Optional[int]: UpperCAmelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ :Optional[int] = type self.model_tester.create_and_check_model(*A ) def A__ ( self ) ->Any: UpperCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def A__ ( self ) ->Optional[int]: UpperCAmelCase__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def A__ ( self ) ->int: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ :Union[str, Any] = LiltModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch @slow class UpperCamelCase__ ( unittest.TestCase): '''simple docstring''' def A__ ( self ) ->int: UpperCAmelCase__ :int = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(A ) UpperCAmelCase__ :List[Any] = torch.tensor([[1, 2]] , device=A ) UpperCAmelCase__ :Optional[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=A ) # forward pass with torch.no_grad(): UpperCAmelCase__ :Union[str, Any] = model(input_ids=A , bbox=A ) UpperCAmelCase__ :Tuple = torch.Size([1, 2, 7_68] ) UpperCAmelCase__ :Any = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=A , ) self.assertTrue(outputs.last_hidden_state.shape , A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , A , atol=1e-3 ) )
433
1
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params A: Tuple = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _snake_case ( UpperCamelCase : Optional[int] ): for pegasus_name, hf_name in PATTERNS: UpperCAmelCase : List[Any] = k.replace(UpperCAmelCase__ , UpperCAmelCase__ ) return k def _snake_case ( UpperCamelCase : str , UpperCamelCase : Dict ): UpperCAmelCase : List[Any] = DEFAULTS.copy() cfg_kwargs.update(UpperCAmelCase__ ) UpperCAmelCase : Dict = PegasusConfig(**UpperCAmelCase__ ) UpperCAmelCase : Optional[int] = PegasusForConditionalGeneration(UpperCAmelCase__ ) UpperCAmelCase : Optional[int] = torch_model.model.state_dict() UpperCAmelCase : Dict = {} for k, v in tf_weights.items(): UpperCAmelCase : int = rename_state_dict_key(UpperCAmelCase__ ) if new_k not in sd: raise ValueError(F"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: UpperCAmelCase : Any = v.T UpperCAmelCase : Tuple = torch.tensor(UpperCAmelCase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected UpperCAmelCase : int = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) UpperCAmelCase : Tuple = mapping["""shared.weight"""] UpperCAmelCase : int = mapping["""shared.weight"""] UpperCAmelCase : List[Any] = {k: torch.zeros_like(UpperCAmelCase__ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**UpperCAmelCase__ ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = torch_model.model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) UpperCAmelCase : str = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F"no matches found for the following torch keys {unexpected_missing}" assert extra == [], F"no matches found for the following tf keys {extra}" return torch_model def _snake_case ( UpperCamelCase : Dict="./ckpt/aeslc/model.ckpt-32000" ): UpperCAmelCase : List[str] = tf.train.list_variables(UpperCAmelCase__ ) UpperCAmelCase : Dict = {} UpperCAmelCase : Optional[int] = ["""Adafactor""", """global_step"""] for name, shape in tqdm(UpperCAmelCase__ , desc="""converting tf checkpoint to dict""" ): UpperCAmelCase : Optional[int] = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase : Any = tf.train.load_variable(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase : List[Any] = array return tf_weights def _snake_case ( UpperCamelCase : Tuple , UpperCamelCase : Tuple ): # save tokenizer first UpperCAmelCase : int = Path(UpperCAmelCase__ ).parent.name UpperCAmelCase : Union[str, Any] = task_specific_params[F"summarization_{dataset}"]["""max_position_embeddings"""] UpperCAmelCase : Union[str, Any] = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=UpperCAmelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCAmelCase__ ) # convert model UpperCAmelCase : str = get_tf_weights_as_numpy(UpperCAmelCase__ ) UpperCAmelCase : List[Any] = task_specific_params[F"summarization_{dataset}"] if dataset == "large": UpperCAmelCase : List[Any] = task_specific_params UpperCAmelCase : int = convert_pegasus(UpperCAmelCase__ , UpperCAmelCase__ ) torch_model.save_pretrained(UpperCAmelCase__ ) UpperCAmelCase : Any = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(UpperCAmelCase__ , Path(UpperCAmelCase__ ) / """pytorch_model.bin""" ) if __name__ == "__main__": A: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") A: Dict = parser.parse_args() if args.save_dir is None: A: Union[str, Any] = Path(args.tf_ckpt_path).parent.name A: Optional[int] = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
160
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue_model_parallelism.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1600, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1600, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, ] ) class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=UpperCamelCase__ , ) assert hasattr(self , """env""" ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Dict ): '''simple docstring''' lowercase_ = { """enabled""": True, """processes_per_host""": 8, } lowercase_ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowercase_ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowercase_ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=UpperCamelCase__ , instance_type=self.instance_type , debugger_hook_config=UpperCamelCase__ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=UpperCamelCase__ , py_version="""py36""" , ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Any ): '''simple docstring''' TrainingJobAnalytics(UpperCamelCase__ ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' lowercase_ = self.create_estimator(UpperCamelCase__ ) # run training estimator.fit() # result dataframe lowercase_ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowercase_ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowercase_ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowercase_ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , UpperCamelCase__ )
412
0
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() _snake_case = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] _snake_case = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : List[str] = { "word_embeddings.weight": "word_embeddings.weight", "word_embeddings.norm.weight": "word_embeddings_layernorm.weight", "word_embeddings.norm.bias": "word_embeddings_layernorm.bias", "weight": "ln_f.weight", "bias": "ln_f.bias", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks lowerCamelCase : List[str] = int(re.match(r".*layer_(\d*).*" , SCREAMING_SNAKE_CASE_ )[1] ) layer_number -= 3 return f"""h.{layer_number}.""" + key def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if dtype == torch.bool: return 1 / 8 lowerCamelCase : str = re.search(r"[^\d](\d+)$" , str(SCREAMING_SNAKE_CASE_ ) ) if bit_search is None: raise ValueError(f"""`dtype` is not a valid dtype: {dtype}.""" ) lowerCamelCase : Tuple = int(bit_search.groups()[0] ) return bit_size // 8 def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if bloom_config_file == "": lowerCamelCase : List[str] = BloomConfig() else: lowerCamelCase : Optional[int] = BloomConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) if shard_model: lowerCamelCase : int = os.listdir(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Any = sorted(filter(lambda SCREAMING_SNAKE_CASE_ : s.startswith("layer" ) and "model_00" in s , SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase : List[str] = {"weight_map": {}, "metadata": {}} lowerCamelCase : Tuple = 0 lowerCamelCase : List[str] = None lowerCamelCase : Any = BloomConfig() for j, file in enumerate(SCREAMING_SNAKE_CASE_ ): print("Processing file: {}".format(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase : List[str] = None for i in range(SCREAMING_SNAKE_CASE_ ): # load all TP files lowerCamelCase : List[str] = file.replace("model_00" , f"""model_0{i}""" ) lowerCamelCase : Any = torch.load(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , map_location="cpu" ) # Rename keys in the transformers names lowerCamelCase : str = list(temp.keys() ) for key in keys: lowerCamelCase : Optional[int] = temp.pop(SCREAMING_SNAKE_CASE_ ) if tensors is None: lowerCamelCase : Union[str, Any] = temp else: for key in tensors.keys(): if any(key.endswith(SCREAMING_SNAKE_CASE_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCamelCase : Optional[Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCamelCase : Dict = torch.cat([tensors[key], temp[key]] , dim=SCREAMING_SNAKE_CASE_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(SCREAMING_SNAKE_CASE_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCamelCase : Tuple = tensors[key] / pretraining_tp torch.save( SCREAMING_SNAKE_CASE_ , os.path.join( SCREAMING_SNAKE_CASE_ , "pytorch_model_{}-of-{}.bin".format(str(j + 1 ).zfill(5 ) , str(len(SCREAMING_SNAKE_CASE_ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): lowerCamelCase : str = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: lowerCamelCase : str = "pytorch_model_{}-of-{}.bin".format( str(j + 1 ).zfill(5 ) , str(len(SCREAMING_SNAKE_CASE_ ) ).zfill(5 ) ) lowerCamelCase : Optional[int] = BloomConfig() lowerCamelCase : List[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME lowerCamelCase : Dict = total_size with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , WEIGHTS_NAME + ".index.json" ) , "w" , encoding="utf-8" ) as f: lowerCamelCase : Optional[int] = json.dumps(SCREAMING_SNAKE_CASE_ , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ ) + "\n" f.write(SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase : Optional[Any] = BloomModel(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[Any] = os.listdir(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Tuple = sorted(filter(lambda SCREAMING_SNAKE_CASE_ : s.startswith("layer" ) and "model_00" in s , SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase : int = None for i, file in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Any = None for i in range(SCREAMING_SNAKE_CASE_ ): # load all TP files lowerCamelCase : Dict = file.replace("model_00" , f"""model_0{i}""" ) lowerCamelCase : Dict = torch.load(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , map_location="cpu" ) # Rename keys in the transformers names lowerCamelCase : Any = list(temp.keys() ) for key in keys: lowerCamelCase : Optional[Any] = temp.pop(SCREAMING_SNAKE_CASE_ ) if tensors is None: lowerCamelCase : Optional[int] = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(SCREAMING_SNAKE_CASE_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCamelCase : List[Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCamelCase : Optional[Any] = torch.cat([tensors[key], temp[key]] , dim=SCREAMING_SNAKE_CASE_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(SCREAMING_SNAKE_CASE_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCamelCase : Any = tensors[key] / pretraining_tp lowerCamelCase : Any = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) assert not other_keys.unexpected_keys, f"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: lowerCamelCase : Any = set(other_keys.missing_keys ) else: lowerCamelCase : List[str] = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[Any] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME lowerCamelCase : Union[str, Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: lowerCamelCase : Any = model.to(config.torch_dtype ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) _snake_case = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
231
from __future__ import annotations import numpy as np def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase , lowerCamelCase : Dict = np.shape(SCREAMING_SNAKE_CASE_ ) if rows != columns: lowerCamelCase : int = ( "'table' has to be of square shaped array but got a " f"""{rows}x{columns} array:\n{table}""" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict = np.zeros((rows, columns) ) lowerCamelCase : List[str] = np.zeros((rows, columns) ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Dict = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE_ ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) lowerCamelCase : Dict = (table[i][j] - total) / upper[j][j] lowerCamelCase : Dict = 1 for j in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase : int = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase : Any = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
231
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def lowerCamelCase_ ( ) -> int: """simple docstring""" snake_case_ : Optional[Any] = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: snake_case_ : Union[str, Any] = get_sagemaker_input() else: snake_case_ : Union[str, Any] = get_cluster_input() return config def lowerCamelCase_ ( _UpperCamelCase=None ) -> Optional[int]: """simple docstring""" if subparsers is not None: snake_case_ : Tuple = subparsers.add_parser('''config''' , description=_UpperCamelCase ) else: snake_case_ : Tuple = argparse.ArgumentParser('''Accelerate config command''' , description=_UpperCamelCase ) parser.add_argument( '''--config_file''' , default=_UpperCamelCase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=_UpperCamelCase ) return parser def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : Any = get_user_input() if args.config_file is not None: snake_case_ : Tuple = args.config_file else: if not os.path.isdir(_UpperCamelCase ): os.makedirs(_UpperCamelCase ) snake_case_ : Tuple = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(_UpperCamelCase ) else: config.to_yaml_file(_UpperCamelCase ) print(f'''accelerate configuration saved at {config_file}''' ) def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" snake_case_ : Union[str, Any] = config_command_parser() snake_case_ : Any = parser.parse_args() config_command(_UpperCamelCase ) if __name__ == "__main__": main()
60
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : Dict ={ 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = '''canine''' def __init__( self :Any , lowerCAmelCase__ :List[Any]=768 , lowerCAmelCase__ :Any=12 , lowerCAmelCase__ :str=12 , lowerCAmelCase__ :Optional[int]=3_072 , lowerCAmelCase__ :str="gelu" , lowerCAmelCase__ :Union[str, Any]=0.1 , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :int=16_384 , lowerCAmelCase__ :Tuple=16 , lowerCAmelCase__ :List[Any]=0.02 , lowerCAmelCase__ :int=1E-1_2 , lowerCAmelCase__ :int=0 , lowerCAmelCase__ :List[Any]=0xe000 , lowerCAmelCase__ :List[str]=0xe001 , lowerCAmelCase__ :str=4 , lowerCAmelCase__ :Any=4 , lowerCAmelCase__ :Union[str, Any]=8 , lowerCAmelCase__ :Optional[int]=16_384 , lowerCAmelCase__ :Any=128 , **lowerCAmelCase__ :Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : int = type_vocab_size __SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps # Character config: __SCREAMING_SNAKE_CASE : Tuple = downsampling_rate __SCREAMING_SNAKE_CASE : Optional[Any] = upsampling_kernel_size __SCREAMING_SNAKE_CASE : Any = num_hash_functions __SCREAMING_SNAKE_CASE : Optional[int] = num_hash_buckets __SCREAMING_SNAKE_CASE : List[str] = local_transformer_stride
696
0
'''simple docstring''' import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): lowerCAmelCase_ : Any =OmegaConf.load(_SCREAMING_SNAKE_CASE ) if display: print(yaml.dump(OmegaConf.to_container(_SCREAMING_SNAKE_CASE ) ) ) return config def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): if conf_path is None: lowerCAmelCase_ : Union[str, Any] ='''./model_checkpoints/vqgan_only.yaml''' lowerCAmelCase_ : Optional[int] =load_config(_SCREAMING_SNAKE_CASE , display=_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Optional[int] =VQModel(**config.model.params ) if ckpt_path is None: lowerCAmelCase_ : Optional[int] ='''./model_checkpoints/vqgan_only.pt''' lowerCAmelCase_ : int =torch.load(_SCREAMING_SNAKE_CASE , map_location=_SCREAMING_SNAKE_CASE ) if ".ckpt" in ckpt_path: lowerCAmelCase_ : Union[str, Any] =sd['''state_dict'''] model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) del sd return model def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] =model.encode(_SCREAMING_SNAKE_CASE ) print(f'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) lowerCAmelCase_ : List[str] =model.decode(_SCREAMING_SNAKE_CASE ) return xrec def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): lowerCAmelCase_ , lowerCAmelCase_ : Tuple =string.rsplit('''.''' , 1 ) if reload: lowerCAmelCase_ : Optional[int] =importlib.import_module(_SCREAMING_SNAKE_CASE ) importlib.reload(_SCREAMING_SNAKE_CASE ) return getattr(importlib.import_module(_SCREAMING_SNAKE_CASE , package=_SCREAMING_SNAKE_CASE ) , cls ) def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True ): lowerCAmelCase_ : Dict =instantiate_from_config(_SCREAMING_SNAKE_CASE ) if sd is not None: model.load_state_dict(_SCREAMING_SNAKE_CASE ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # load the specified checkpoint if ckpt: lowerCAmelCase_ : Optional[Any] =torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' ) lowerCAmelCase_ : Optional[Any] =pl_sd['''global_step'''] print(f'loaded model from global step {global_step}.' ) else: lowerCAmelCase_ : List[Any] ={'''state_dict''': None} lowerCAmelCase_ : Union[str, Any] =None lowerCAmelCase_ : Tuple =load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=_SCREAMING_SNAKE_CASE , eval_mode=_SCREAMING_SNAKE_CASE )['''model'''] return model, global_step
305
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowercase = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''') @require_sentencepiece @require_tokenizers class _snake_case ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : List[Any] = GPTSwaTokenizer _UpperCamelCase : Optional[int] = False _UpperCamelCase : List[Any] = True _UpperCamelCase : List[str] = False def __A ( self : Any ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ : Union[str, Any] =GPTSwaTokenizer(UpperCamelCase_ , eos_token='''<unk>''' , bos_token='''<unk>''' , pad_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self : List[str] , UpperCamelCase_ : str ): lowerCAmelCase_ : Optional[int] ='''This is a test''' lowerCAmelCase_ : int ='''This is a test''' return input_text, output_text def __A ( self : List[str] ): lowerCAmelCase_ : List[str] ='''<s>''' lowerCAmelCase_ : Optional[int] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def __A ( self : Optional[Any] ): lowerCAmelCase_ : Dict =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(UpperCamelCase_ ) , 2000 ) def __A ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def __A ( self : Union[str, Any] ): lowerCAmelCase_ : int =GPTSwaTokenizer(UpperCamelCase_ ) lowerCAmelCase_ : Any =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [465, 287, 265, 631, 842] ) lowerCAmelCase_ : List[Any] =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) # fmt: off self.assertListEqual( UpperCamelCase_ , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] , ) # fmt: on lowerCAmelCase_ : Dict =tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase_ : int =tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) # fmt: off self.assertListEqual( UpperCamelCase_ , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] ) # fmt: on def __A ( self : str ): lowerCAmelCase_ : List[Any] =GPTSwaTokenizer(UpperCamelCase_ ) lowerCAmelCase_ : str =['''This is a test''', '''I was born in 92000, and this is falsé.'''] lowerCAmelCase_ : List[Any] =[ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertListEqual(tokenizer.encode_fast(UpperCamelCase_ ) , UpperCamelCase_ ) # Test that decode_fast returns the input text for text, token_ids in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(tokenizer.decode_fast(UpperCamelCase_ ) , UpperCamelCase_ ) @slow def __A ( self : List[Any] ): lowerCAmelCase_ : Union[str, Any] =[ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off lowerCAmelCase_ : List[str] ={'''input_ids''': [[63423, 5, 6811, 14954, 282, 816, 3821, 63466, 63425, 63462, 18, 63978, 678, 301, 1320, 63423, 63455, 63458, 18, 63982, 4246, 3940, 1901, 47789, 5547, 18994], [19630, 1100, 63446, 1342, 633, 544, 4488, 593, 5102, 2416, 63495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 58593, 22413, 9106, 546, 268, 33213, 63979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55130, 63450, 924, 63449, 2249, 4062, 1558, 318, 63504, 21498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 63443, 26801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name='''AI-Sweden/gpt-sw3-126m''' , sequences=UpperCamelCase_ , )
305
1
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( lowercase__ , unittest.TestCase ): """simple docstring""" a : Dict = KandinskyVaaPriorPipeline a : List[Any] = ['prompt'] a : int = ['prompt', 'negative_prompt'] a : List[str] = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] a : Any = False @property def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: return 32 @property def UpperCAmelCase ( self : Tuple ) -> Any: return 32 @property def UpperCAmelCase ( self : int ) -> List[Any]: return self.time_input_dim @property def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: return self.time_input_dim * 4 @property def UpperCAmelCase ( self : List[Any] ) -> int: return 100 @property def UpperCAmelCase ( self : Any ) -> str: __UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase ( self : Union[str, Any] ) -> int: torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__lowercase ) @property def UpperCAmelCase ( self : List[str] ) -> Any: torch.manual_seed(0 ) __UpperCAmelCase : List[Any] = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } __UpperCAmelCase : Any = PriorTransformer(**__lowercase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __UpperCAmelCase : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCAmelCase ( self : Dict ) -> Dict: torch.manual_seed(0 ) __UpperCAmelCase : List[str] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __UpperCAmelCase : Any = CLIPVisionModelWithProjection(__lowercase ) return model @property def UpperCAmelCase ( self : Any ) -> List[Any]: __UpperCAmelCase : int = CLIPImageProcessor( crop_size=224 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor def UpperCAmelCase ( self : Optional[Any] ) -> Dict: __UpperCAmelCase : str = self.dummy_prior __UpperCAmelCase : List[str] = self.dummy_image_encoder __UpperCAmelCase : List[str] = self.dummy_text_encoder __UpperCAmelCase : Optional[int] = self.dummy_tokenizer __UpperCAmelCase : Any = self.dummy_image_processor __UpperCAmelCase : Tuple = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowercase , clip_sample_range=10.0 , ) __UpperCAmelCase : Optional[Any] = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def UpperCAmelCase ( self : int , __lowercase : Dict , __lowercase : Tuple=0 ) -> int: if str(__lowercase ).startswith("""mps""" ): __UpperCAmelCase : Optional[int] = torch.manual_seed(__lowercase ) else: __UpperCAmelCase : str = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __UpperCAmelCase : str = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __UpperCAmelCase : Dict = """cpu""" __UpperCAmelCase : Any = self.get_dummy_components() __UpperCAmelCase : Optional[Any] = self.pipeline_class(**__lowercase ) __UpperCAmelCase : int = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : int = pipe(**self.get_dummy_inputs(__lowercase ) ) __UpperCAmelCase : Any = output.image_embeds __UpperCAmelCase : str = pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] __UpperCAmelCase : int = image[0, -10:] __UpperCAmelCase : List[Any] = image_from_tuple[0, -10:] assert image.shape == (1, 32) __UpperCAmelCase : str = np.array( [-0.0_532, 1.7_120, 0.3_656, -1.0_852, -0.8_946, -1.1_756, 0.4_348, 0.2_482, 0.5_146, -0.1_156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase ( self : str ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = torch_device == """cpu""" __UpperCAmelCase : List[Any] = True __UpperCAmelCase : List[str] = False self._test_inference_batch_single_identical( test_max_difference=__lowercase , relax_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , ) @skip_mps def UpperCAmelCase ( self : Dict ) -> int: __UpperCAmelCase : Optional[int] = torch_device == """cpu""" __UpperCAmelCase : Union[str, Any] = False self._test_attention_slicing_forward_pass( test_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
63
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class a : """simple docstring""" a : int a : Node | None = None a : Node | None = None def lowerCamelCase__ ( ): __UpperCAmelCase : Tuple = Node(1 ) __UpperCAmelCase : int = Node(2 ) __UpperCAmelCase : Optional[Any] = Node(3 ) __UpperCAmelCase : Dict = Node(4 ) __UpperCAmelCase : Tuple = Node(5 ) return tree def lowerCamelCase__ ( __lowerCamelCase : Node | None ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowerCamelCase__ ( __lowerCamelCase : Node | None ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowerCamelCase__ ( __lowerCamelCase : Node | None ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowerCamelCase__ ( __lowerCamelCase : Node | None ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowerCamelCase__ ( __lowerCamelCase : Node | None ): __UpperCAmelCase : list[Any] = [] if root is None: return output __UpperCAmelCase : Tuple = deque([root] ) while process_queue: __UpperCAmelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowerCamelCase__ ( __lowerCamelCase : Node | None , __lowerCamelCase : int ): __UpperCAmelCase : list[Any] = [] def populate_output(__lowerCamelCase : Node | None , __lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__lowerCamelCase , __lowerCamelCase ) return output def lowerCamelCase__ ( __lowerCamelCase : Node | None , __lowerCamelCase : int ): __UpperCAmelCase : list[Any] = [] def populate_output(__lowerCamelCase : Node | None , __lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__lowerCamelCase , __lowerCamelCase ) return output def lowerCamelCase__ ( __lowerCamelCase : Node | None ): if root is None: return [] __UpperCAmelCase : list[Sequence[Node | None]] = [] __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : int = height(__lowerCamelCase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : List[Any] = 1 else: output.append(get_nodes_from_right_to_left(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : Optional[int] = 0 return output def lowerCamelCase__ ( ): # Main function for testing. __UpperCAmelCase : List[Any] = make_tree() print(f"""In-order Traversal: {inorder(__lowerCamelCase )}""" ) print(f"""Pre-order Traversal: {preorder(__lowerCamelCase )}""" ) print(f"""Post-order Traversal: {postorder(__lowerCamelCase )}""" , """\n""" ) print(f"""Height of Tree: {height(__lowerCamelCase )}""" , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__lowerCamelCase ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__lowerCamelCase ) + 1 ): print(f"""Level {level}:""" , get_nodes_from_left_to_right(__lowerCamelCase , level=__lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
63
1
import math from numpy import inf from scipy.integrate import quad def __lowerCAmelCase ( __lowerCamelCase : float ) -> float: if num <= 0: raise ValueError("""math domain error""" ) return quad(__lowerCamelCase , 0 , __lowerCamelCase , args=(__lowerCamelCase) )[0] def __lowerCAmelCase ( __lowerCamelCase : float , __lowerCamelCase : float ) -> float: return math.pow(__lowerCamelCase , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
712
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowercase_ = logging.get_logger(__name__) class __a ( SCREAMING_SNAKE_CASE ): def __init__( self : Optional[Any] , *snake_case_ : List[str] , **snake_case_ : Union[str, Any])-> None: warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_)
456
0
"""simple docstring""" import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowerCamelCase__ ( unittest.TestCase ): __UpperCAmelCase = inspect.getfile(accelerate.test_utils ) __UpperCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] ) __UpperCAmelCase = ["""accelerate""", """launch"""] __UpperCAmelCase = Path.home() / """.cache/huggingface/accelerate""" __UpperCAmelCase = """default_config.yaml""" __UpperCAmelCase = config_folder / config_file __UpperCAmelCase = config_folder / """_default_config.yaml""" __UpperCAmelCase = Path("""tests/test_configs""" ) @classmethod def _UpperCAmelCase ( cls ) -> int: """simple docstring""" if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def _UpperCAmelCase ( cls ) -> Tuple: """simple docstring""" if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" lowercase : Any = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def _UpperCAmelCase ( self ) -> str: """simple docstring""" for config in sorted(self.test_config_path.glob("""**/*.yaml""" ) ): with self.subTest(config_file=snake_case ): execute_subprocess_async( self.base_cmd + ["""--config_file""", str(snake_case ), self.test_file_path] , env=os.environ.copy() ) def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" execute_subprocess_async(["""accelerate""", """test"""] , env=os.environ.copy() ) class lowerCamelCase__ ( unittest.TestCase ): __UpperCAmelCase = """test-tpu""" __UpperCAmelCase = """us-central1-a""" __UpperCAmelCase = """ls""" __UpperCAmelCase = ["""accelerate""", """tpu-config"""] __UpperCAmelCase = """cd /usr/share""" __UpperCAmelCase = """tests/test_samples/test_command_file.sh""" __UpperCAmelCase = """Running gcloud compute tpus tpu-vm ssh""" def _UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" lowercase : List[str] = run_command( self.cmd + ["""--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug"""] , return_stdout=snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , snake_case , ) def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" lowercase : Dict = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , snake_case , ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" lowercase : List[str] = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--debug"""] , return_stdout=snake_case ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , snake_case , ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" lowercase : int = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--debug"""] , return_stdout=snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , snake_case , ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" lowercase : Union[str, Any] = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--command""", """echo \"Hello World\"""", """--debug""", ] , return_stdout=snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , snake_case , ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" lowercase : List[str] = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command_file""", self.command_file, """--debug"""] , return_stdout=snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , snake_case , ) def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" lowercase : int = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command_file""", self.command_file, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , snake_case , ) def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" lowercase : Union[str, Any] = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--debug"""] , return_stdout=snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , snake_case , ) def _UpperCAmelCase ( self ) -> str: """simple docstring""" lowercase : int = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--accelerate_version""", """12.0.0""", """--debug""", ] , return_stdout=snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , snake_case , )
607
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __snake_case ( __A ,__A = "cpu" ,__A = None ) -> None: lowercase : Optional[int] = torch.load(__A ,map_location=__A ) for k, v in tqdm(state_dict.items() ): if not isinstance(__A ,torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) lowercase : List[str] = v.half() if save_path is None: # overwrite src_path lowercase : List[str] = src_path torch.save(__A ,__A ) if __name__ == "__main__": fire.Fire(convert)
607
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _a ( snake_case_ ): _UpperCamelCase: UNetaDModel _UpperCamelCase: ScoreSdeVeScheduler def __init__( self , lowercase_ , lowercase_ ) -> Dict: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self , lowercase_ = 1 , lowercase_ = 2000 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , **lowercase_ , ) -> Union[ImagePipelineOutput, Tuple]: lowerCAmelCase : List[str] = self.unet.config.sample_size lowerCAmelCase : int = (batch_size, 3, img_size, img_size) lowerCAmelCase : Optional[int] = self.unet lowerCAmelCase : Optional[Any] = randn_tensor(lowercase_ , generator=lowercase_ ) * self.scheduler.init_noise_sigma lowerCAmelCase : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(lowercase_ ) self.scheduler.set_sigmas(lowercase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCAmelCase : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCAmelCase : Tuple = self.unet(lowercase_ , lowercase_ ).sample lowerCAmelCase : List[Any] = self.scheduler.step_correct(lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample # prediction step lowerCAmelCase : Optional[Any] = model(lowercase_ , lowercase_ ).sample lowerCAmelCase : int = self.scheduler.step_pred(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ) lowerCAmelCase , lowerCAmelCase : int = output.prev_sample, output.prev_sample_mean lowerCAmelCase : Optional[int] = sample_mean.clamp(0 , 1 ) lowerCAmelCase : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : int = self.numpy_to_pil(lowercase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowercase_ )
693
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={} class _a ( snake_case_ ): _UpperCamelCase: Tuple = "llama" _UpperCamelCase: List[str] = ["past_key_values"] def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Any = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Any = num_key_value_heads lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : int = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def _snake_case ( self ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ ) lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
693
1
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = {'vocab_file': 'sentencepiece.model'} _lowerCamelCase = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } _lowerCamelCase = { 'google/rembert': 2_56, } class a ( _A ): '''simple docstring''' lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __snake_case : List[Any] , __snake_case : Optional[int]=False , __snake_case : List[str]=True , __snake_case : Optional[int]=True , __snake_case : Any="[CLS]" , __snake_case : Dict="[SEP]" , __snake_case : Dict="[UNK]" , __snake_case : List[str]="[SEP]" , __snake_case : Dict="[PAD]" , __snake_case : Optional[Any]="[CLS]" , __snake_case : str="[MASK]" , **__snake_case : Optional[int] , ): super().__init__( do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor() self.sp_model.Load(__snake_case ) @property def lowerCamelCase_ ( self : Optional[Any] ): return len(self.sp_model ) def lowerCamelCase_ ( self : Dict ): UpperCAmelCase_ = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ): UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self : str , __snake_case : str ): UpperCAmelCase_ = d UpperCAmelCase_ = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def lowerCamelCase_ ( self : List[str] , __snake_case : Optional[int] , __snake_case : Optional[Any]=False ): UpperCAmelCase_ = self.sp_model.EncodeAsPieces(__snake_case ) return pieces def lowerCamelCase_ ( self : Optional[Any] , __snake_case : Optional[int] ): return self.sp_model.PieceToId(__snake_case ) def lowerCamelCase_ ( self : Optional[Any] , __snake_case : Union[str, Any] ): return self.sp_model.IdToPiece(__snake_case ) def lowerCamelCase_ ( self : int , __snake_case : List[Any] ): UpperCAmelCase_ = self.sp_model.decode_pieces(__snake_case ) return out_string def lowerCamelCase_ ( self : Any , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] def lowerCamelCase_ ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : str , __snake_case : str , __snake_case : Optional[str] = None ): if not os.path.isdir(__snake_case ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__snake_case ) ) return UpperCAmelCase_ = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
144
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] ) -> list[int]: UpperCAmelCase_ = len(__UpperCamelCase ) for i in range(__UpperCamelCase ): for j in range(i + 1 , __UpperCamelCase ): if numbers[j] < numbers[i]: UpperCAmelCase_ , UpperCAmelCase_ = numbers[j], numbers[i] return numbers if __name__ == "__main__": _lowerCamelCase = input('Enter numbers separated by a comma:\n').strip() _lowerCamelCase = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
144
1
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __SCREAMING_SNAKE_CASE : Optional[Any] ={ '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def UpperCamelCase__ ( lowerCAmelCase__ ): lowercase = {} state_dict.pop("""pixel_mean""" ,lowerCAmelCase__ ) state_dict.pop("""pixel_std""" ,lowerCAmelCase__ ) lowercase = r""".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*""" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowercase = key.replace(lowerCAmelCase__ ,lowerCAmelCase__ ) if re.match(lowerCAmelCase__ ,lowerCAmelCase__ ): lowercase = int(re.match(lowerCAmelCase__ ,lowerCAmelCase__ ).group(2 ) ) if layer_nb == 0: lowercase = key.replace("""layers.0""" ,"""proj_in""" ) elif layer_nb == 1: lowercase = key.replace("""layers.1""" ,"""layers.0""" ) elif layer_nb == 2: lowercase = key.replace("""layers.2""" ,"""proj_out""" ) lowercase = value lowercase = model_state_dict[ """prompt_encoder.shared_embedding.positional_embedding""" ] return model_state_dict def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__="ybelkada/segment-anything" ): lowercase = hf_hub_download(lowerCAmelCase__ ,f"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: lowercase = SamConfig() elif "sam_vit_l" in model_name: lowercase = SamVisionConfig( hidden_size=1_024 ,num_hidden_layers=24 ,num_attention_heads=16 ,global_attn_indexes=[5, 11, 17, 23] ,) lowercase = SamConfig( vision_config=lowerCAmelCase__ ,) elif "sam_vit_h" in model_name: lowercase = SamVisionConfig( hidden_size=1_280 ,num_hidden_layers=32 ,num_attention_heads=16 ,global_attn_indexes=[7, 15, 23, 31] ,) lowercase = SamConfig( vision_config=lowerCAmelCase__ ,) lowercase = torch.load(lowerCAmelCase__ ,map_location="""cpu""" ) lowercase = replace_keys(lowerCAmelCase__ ) lowercase = SamImageProcessor() lowercase = SamProcessor(image_processor=lowerCAmelCase__ ) lowercase = SamModel(lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) lowercase = hf_model.to("""cuda""" ) lowercase = """https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png""" lowercase = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ).convert("""RGB""" ) lowercase = [[[400, 650]]] lowercase = [[1]] lowercase = processor(images=np.array(lowerCAmelCase__ ) ,return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): lowercase = hf_model(**lowerCAmelCase__ ) lowercase = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_890_251_159_668 lowercase = processor( images=np.array(lowerCAmelCase__ ) ,input_points=lowerCAmelCase__ ,input_labels=lowerCAmelCase__ ,return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): lowercase = hf_model(**lowerCAmelCase__ ) lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_712_603_092_193_604 lowercase = ((75, 275, 1_725, 850),) lowercase = processor(images=np.array(lowerCAmelCase__ ) ,input_boxes=lowerCAmelCase__ ,return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): lowercase = hf_model(**lowerCAmelCase__ ) lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_686_015_605_926_514 # Test with 2 points and 1 image. lowercase = [[[400, 650], [800, 650]]] lowercase = [[1, 1]] lowercase = processor( images=np.array(lowerCAmelCase__ ) ,input_points=lowerCAmelCase__ ,input_labels=lowerCAmelCase__ ,return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): lowercase = hf_model(**lowerCAmelCase__ ) lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_936_047_792_434_692 if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[str] =argparse.ArgumentParser() __SCREAMING_SNAKE_CASE : List[Any] =['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) __SCREAMING_SNAKE_CASE : int =parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
703
import math from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : str =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str ={ '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class A_ ( __a ): _A :Tuple = '''data2vec-audio''' def __init__( self : Optional[Any] , snake_case__ : List[Any]=32 , snake_case__ : List[Any]=7_68 , snake_case__ : int=12 , snake_case__ : Dict=12 , snake_case__ : List[str]=30_72 , snake_case__ : List[str]="gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : Tuple=0.0 , snake_case__ : Tuple=0.1 , snake_case__ : Any=0.1 , snake_case__ : Dict=0.02 , snake_case__ : List[str]=1E-5 , snake_case__ : Optional[Any]="gelu" , snake_case__ : Union[str, Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , snake_case__ : List[str]=(5, 2, 2, 2, 2, 2, 2) , snake_case__ : str=(10, 3, 3, 3, 3, 2, 2) , snake_case__ : Any=False , snake_case__ : List[str]=16 , snake_case__ : Any=19 , snake_case__ : Optional[Any]=5 , snake_case__ : str=0.05 , snake_case__ : Tuple=10 , snake_case__ : Optional[Any]=2 , snake_case__ : Dict=0.0 , snake_case__ : int=10 , snake_case__ : Any=0 , snake_case__ : int="sum" , snake_case__ : str=False , snake_case__ : str=False , snake_case__ : Optional[int]=2_56 , snake_case__ : List[str]=(5_12, 5_12, 5_12, 5_12, 15_00) , snake_case__ : List[str]=(5, 3, 3, 1, 1) , snake_case__ : int=(1, 2, 3, 1, 1) , snake_case__ : Optional[Any]=5_12 , snake_case__ : Dict=0 , snake_case__ : Optional[Any]=1 , snake_case__ : Tuple=2 , snake_case__ : Tuple=False , snake_case__ : List[str]=3 , snake_case__ : List[str]=2 , snake_case__ : Tuple=3 , snake_case__ : List[str]=None , **snake_case__ : str , ): super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) lowercase = hidden_size lowercase = feat_extract_activation lowercase = list(snake_case__ ) lowercase = list(snake_case__ ) lowercase = list(snake_case__ ) lowercase = conv_bias lowercase = num_conv_pos_embeddings lowercase = num_conv_pos_embedding_groups lowercase = conv_pos_kernel_size lowercase = len(self.conv_dim ) lowercase = num_hidden_layers lowercase = intermediate_size lowercase = hidden_act lowercase = num_attention_heads lowercase = hidden_dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = feat_proj_dropout lowercase = final_dropout lowercase = layerdrop lowercase = layer_norm_eps lowercase = initializer_range lowercase = vocab_size lowercase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase = mask_time_prob lowercase = mask_time_length lowercase = mask_time_min_masks lowercase = mask_feature_prob lowercase = mask_feature_length lowercase = mask_feature_min_masks # ctc loss lowercase = ctc_loss_reduction lowercase = ctc_zero_infinity # adapter lowercase = add_adapter lowercase = adapter_kernel_size lowercase = adapter_stride lowercase = num_adapter_layers lowercase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase = list(snake_case__ ) lowercase = list(snake_case__ ) lowercase = list(snake_case__ ) lowercase = xvector_output_dim @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): return math.prod(self.conv_stride )
72
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : List[str] =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __magic_name__ : Union[str, Any] =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: __magic_name__ : Optional[Any] ="""""" else: __magic_name__ : List[Any] ="""vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __magic_name__ : Tuple =state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) __magic_name__ : Optional[Any] =state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __magic_name__ : Union[str, Any] =in_proj_weight[ : config.hidden_size, : ] __magic_name__ : Any =in_proj_bias[: config.hidden_size] __magic_name__ : Any =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __magic_name__ : Any =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __magic_name__ : Union[str, Any] =in_proj_weight[ -config.hidden_size :, : ] __magic_name__ : Any =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : int =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase ): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. __magic_name__ : List[Any] =[ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[Any] =dct.pop(lowerCamelCase ) __magic_name__ : List[str] =val def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : str =ViTMSNConfig() __magic_name__ : str =1000 __magic_name__ : Tuple ="""datasets/huggingface/label-files""" __magic_name__ : Union[str, Any] ="""imagenet-1k-id2label.json""" __magic_name__ : int =json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase ) , """r""" ) ) __magic_name__ : Dict ={int(lowerCamelCase ): v for k, v in idalabel.items()} __magic_name__ : int =idalabel __magic_name__ : List[Any] ={v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: __magic_name__ : int =384 __magic_name__ : List[str] =1536 __magic_name__ : Optional[int] =6 elif "l16" in checkpoint_url: __magic_name__ : Tuple =1024 __magic_name__ : Dict =4096 __magic_name__ : Tuple =24 __magic_name__ : Tuple =16 __magic_name__ : List[str] =0.1 elif "b4" in checkpoint_url: __magic_name__ : str =4 elif "l7" in checkpoint_url: __magic_name__ : List[Any] =7 __magic_name__ : Dict =1024 __magic_name__ : Any =4096 __magic_name__ : Union[str, Any] =24 __magic_name__ : Tuple =16 __magic_name__ : Any =0.1 __magic_name__ : List[str] =ViTMSNModel(lowerCamelCase ) __magic_name__ : str =torch.hub.load_state_dict_from_url(lowerCamelCase , map_location="""cpu""" )["""target_encoder"""] __magic_name__ : Dict =ViTImageProcessor(size=config.image_size ) remove_projection_head(lowerCamelCase ) __magic_name__ : Dict =create_rename_keys(lowerCamelCase , base_model=lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_q_k_v(lowerCamelCase , lowerCamelCase , base_model=lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() __magic_name__ : List[Any] ="""http://images.cocodataset.org/val2017/000000039769.jpg""" __magic_name__ : Dict =Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) __magic_name__ : Tuple =ViTImageProcessor( size=config.image_size , image_mean=lowerCamelCase , image_std=lowerCamelCase ) __magic_name__ : Tuple =image_processor(images=lowerCamelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) __magic_name__ : Dict =model(**lowerCamelCase ) __magic_name__ : List[Any] =outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: __magic_name__ : Any =torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: __magic_name__ : Optional[int] =torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: __magic_name__ : Tuple =torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: __magic_name__ : Tuple =torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: __magic_name__ : List[Any] =torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , lowerCamelCase , atol=1E-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase_ : int = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
21
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __UpperCAmelCase ( __UpperCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): __lowercase : Any = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue __lowercase : Dict = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) __lowercase : Dict = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) __lowercase : Dict = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) __lowercase : Tuple = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) __lowercase : Dict = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) __lowercase : Optional[int] = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) __lowercase : Optional[int] = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) __lowercase : Union[str, Any] = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) __lowercase : str = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) __lowercase : Dict = key.replace('''image_encoder.module''' , '''flava.image_model''' ) __lowercase : str = key.replace('''text_encoder.module''' , '''flava.text_model''' ) __lowercase : Dict = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) __lowercase : Union[str, Any] = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) __lowercase : List[str] = key.replace('''text_projection''' , '''flava.text_projection''' ) __lowercase : Any = key.replace('''image_projection''' , '''flava.image_projection''' ) __lowercase : Tuple = value.float() for key, value in codebook_state_dict.items(): __lowercase : int = value return upgrade @torch.no_grad() def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ): if config_path is not None: __lowercase : Union[str, Any] = FlavaConfig.from_pretrained(__UpperCamelCase ) else: __lowercase : Union[str, Any] = FlavaConfig() __lowercase : Any = FlavaForPreTraining(__UpperCamelCase ).eval() __lowercase : Any = convert_dalle_checkpoint(__UpperCamelCase , __UpperCamelCase , save_checkpoint=__UpperCamelCase ) if os.path.exists(__UpperCamelCase ): __lowercase : Optional[Any] = torch.load(__UpperCamelCase , map_location='''cpu''' ) else: __lowercase : List[Any] = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location='''cpu''' ) __lowercase : Optional[int] = upgrade_state_dict(__UpperCamelCase , __UpperCamelCase ) hf_model.load_state_dict(__UpperCamelCase ) __lowercase : Union[str, Any] = hf_model.state_dict() __lowercase : Optional[Any] = count_parameters(__UpperCamelCase ) __lowercase : List[Any] = count_parameters(__UpperCamelCase ) + count_parameters(__UpperCamelCase ) assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) hf_model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') a_ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
76
0
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , A_ = None , A_ = None , A_ = None , A_ = None , A_ = False , A_ = False , A_ = None , **A_ , ) -> str: """simple docstring""" _lowerCamelCase = path_or_paths _lowerCamelCase = split if split or isinstance(A_ , A_ ) else '''train''' _lowerCamelCase = features _lowerCamelCase = cache_dir _lowerCamelCase = keep_in_memory _lowerCamelCase = streaming _lowerCamelCase = num_proc _lowerCamelCase = kwargs @abstractmethod def UpperCamelCase_ ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: """simple docstring""" pass class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , A_ = None , A_ = None , A_ = False , A_ = False , A_ = None , **A_ , ) -> Any: """simple docstring""" _lowerCamelCase = features _lowerCamelCase = cache_dir _lowerCamelCase = keep_in_memory _lowerCamelCase = streaming _lowerCamelCase = num_proc _lowerCamelCase = kwargs @abstractmethod def UpperCamelCase_ ( self ) -> Union[Dataset, IterableDataset]: """simple docstring""" pass
720
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
638
0