code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def A_ ( _lowerCAmelCase ) -> int: UpperCamelCase : Any = len(_lowerCAmelCase ) UpperCamelCase : Any = len(matrix[0] ) UpperCamelCase : Union[str, Any] = min(_lowerCAmelCase , _lowerCAmelCase ) for row in range(_lowerCAmelCase ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , _lowerCAmelCase ): UpperCamelCase : Any = matrix[col][row] / matrix[row][row] for i in range(_lowerCAmelCase , _lowerCAmelCase ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase : List[Any] = True for i in range(row + 1 , _lowerCAmelCase ): if matrix[i][row] != 0: UpperCamelCase , UpperCamelCase : List[str] = matrix[i], matrix[row] UpperCamelCase : Union[str, Any] = False break if reduce: rank -= 1 for i in range(_lowerCAmelCase ): UpperCamelCase : List[Any] = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
629
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class A__ : @staticmethod def __UpperCamelCase( *A_ , **A_ ): '''simple docstring''' pass def A_ ( _lowerCAmelCase ) -> str: UpperCamelCase : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ ( _lowerCAmelCase ) -> Dict: UpperCamelCase : Dict = np.array(_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = npimg.shape return {"hash": hashimage(_lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class A__ ( unittest.TestCase ): _UpperCAmelCase :Any = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _UpperCAmelCase :str = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = MaskGenerationPipeline(model=A_ , image_processor=A_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def __UpperCamelCase( self ): '''simple docstring''' pass @slow @require_torch def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) UpperCamelCase : Tuple = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=256 ) # Shortening by hashing UpperCamelCase : str = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(A_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.04_44}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_21}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.01_67}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.01_32}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.00_53}, {"mask": {"hash": "e2d0b7a0b7", "shape": (480, 640)}, "scores": 0.99_67}, {"mask": {"hash": "453c7844bd", "shape": (480, 640)}, "scores": 0.9_93}, {"mask": {"hash": "3d44f2926d", "shape": (480, 640)}, "scores": 0.99_09}, {"mask": {"hash": "64033ddc3f", "shape": (480, 640)}, "scores": 0.98_79}, {"mask": {"hash": "801064ff79", "shape": (480, 640)}, "scores": 0.98_34}, {"mask": {"hash": "6172f276ef", "shape": (480, 640)}, "scores": 0.97_16}, {"mask": {"hash": "b49e60e084", "shape": (480, 640)}, "scores": 0.96_12}, {"mask": {"hash": "a811e775fd", "shape": (480, 640)}, "scores": 0.95_99}, {"mask": {"hash": "a6a8ebcf4b", "shape": (480, 640)}, "scores": 0.95_52}, {"mask": {"hash": "9d8257e080", "shape": (480, 640)}, "scores": 0.95_32}, {"mask": {"hash": "32de6454a8", "shape": (480, 640)}, "scores": 0.95_16}, {"mask": {"hash": "af3d4af2c8", "shape": (480, 640)}, "scores": 0.94_99}, {"mask": {"hash": "3c6db475fb", "shape": (480, 640)}, "scores": 0.94_83}, {"mask": {"hash": "c290813fb9", "shape": (480, 640)}, "scores": 0.94_64}, {"mask": {"hash": "b6f0b8f606", "shape": (480, 640)}, "scores": 0.9_43}, {"mask": {"hash": "92ce16bfdf", "shape": (480, 640)}, "scores": 0.9_43}, {"mask": {"hash": "c749b25868", "shape": (480, 640)}, "scores": 0.94_08}, {"mask": {"hash": "efb6cab859", "shape": (480, 640)}, "scores": 0.93_35}, {"mask": {"hash": "1ff2eafb30", "shape": (480, 640)}, "scores": 0.93_26}, {"mask": {"hash": "788b798e24", "shape": (480, 640)}, "scores": 0.92_62}, {"mask": {"hash": "abea804f0e", "shape": (480, 640)}, "scores": 0.89_99}, {"mask": {"hash": "7b9e8ddb73", "shape": (480, 640)}, "scores": 0.89_86}, {"mask": {"hash": "cd24047c8a", "shape": (480, 640)}, "scores": 0.89_84}, {"mask": {"hash": "6943e6bcbd", "shape": (480, 640)}, "scores": 0.88_73}, {"mask": {"hash": "b5f47c9191", "shape": (480, 640)}, "scores": 0.88_71} ] , ) # fmt: on @require_torch @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = "facebook/sam-vit-huge" UpperCamelCase : str = pipeline("mask-generation" , model=A_ ) UpperCamelCase : str = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing UpperCamelCase : Tuple = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(A_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.04_44}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.02_10}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.01_67}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.01_32}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.00_53}, ] , )
629
1
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def A__ ( A__ , A__ , A__ , A__ , A__ ) -> Tuple: '''simple docstring''' _UpperCAmelCase = TapasConfig.from_json_file(A__ ) # set absolute/relative position embeddings parameter _UpperCAmelCase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _UpperCAmelCase = TapasForQuestionAnswering(config=A__ ) elif task == "WTQ": # run_task_main.py hparams _UpperCAmelCase = 4 _UpperCAmelCase = True # hparam_utils.py hparams _UpperCAmelCase = 0.664694 _UpperCAmelCase = 0.207951 _UpperCAmelCase = 0.121194 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = 0.0352513 _UpperCAmelCase = TapasForQuestionAnswering(config=A__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _UpperCAmelCase = 4 _UpperCAmelCase = False # hparam_utils.py hparams _UpperCAmelCase = 36.4519 _UpperCAmelCase = 0.903421 _UpperCAmelCase = 222.088 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 0.763141 _UpperCAmelCase = TapasForQuestionAnswering(config=A__ ) elif task == "TABFACT": _UpperCAmelCase = TapasForSequenceClassification(config=A__ ) elif task == "MLM": _UpperCAmelCase = TapasForMaskedLM(config=A__ ) elif task == "INTERMEDIATE_PRETRAINING": _UpperCAmelCase = TapasModel(config=A__ ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(A__ , A__ , A__ ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A__ ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) _UpperCAmelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=512 ) tokenizer.save_pretrained(A__ ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.''' ) parser.add_argument( '''--reset_position_index_per_cell''', default=False, action='''store_true''', help='''Whether to use relative position embeddings or not. Defaults to True.''', ) parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--tapas_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained TAPAS model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
579
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files" , [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ] , ) def A__ ( A__ , A__ ) -> Tuple: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json" , "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase = DatasetInfosDict.from_directory(A__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info" , [ DatasetInfo(), DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=42 , ), ] , ) def A__ ( A__ , A__ ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = str(A__ ) dataset_info.write_to_directory(A__ ) _UpperCAmelCase = DatasetInfo.from_directory(A__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(A__ , "dataset_info.json" ) ) def A__ ( ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = DatasetInfo( description="foo" , citation="bar" , homepage="https://foo.bar" , license="CC0" , features=Features({"a": Value("int32" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train", "num_examples": 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) _UpperCAmelCase = dataset_info._to_yaml_dict() assert sorted(A__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _UpperCAmelCase = yaml.safe_dump(A__ ) _UpperCAmelCase = yaml.safe_load(A__ ) assert dataset_info_yaml_dict == reloaded def A__ ( ) -> int: '''simple docstring''' _UpperCAmelCase = DatasetInfo() _UpperCAmelCase = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict" , [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=42 , ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1337 ), } ), ] , ) def A__ ( A__ , A__ ) -> Dict: '''simple docstring''' _UpperCAmelCase = str(A__ ) dataset_infos_dict.write_to_directory(A__ ) _UpperCAmelCase = DatasetInfosDict.from_directory(A__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(A__ , "README.md" ) )
579
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a: Union[str, Any] = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: List[str] = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Union[str, Any] = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys __a: str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
108
from __future__ import annotations class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Optional[Any] , lowerCamelCase : list[list[int]] ) -> Any: """simple docstring""" _UpperCAmelCase = TypeError( """Matrices must be formed from a list of zero or more lists containing at """ """least one and the same number of values, each of which must be of type """ """int or float.""" ) if len(lowerCamelCase ) != 0: _UpperCAmelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowerCamelCase ) != cols: raise error for value in row: if not isinstance(lowerCamelCase , (int, float) ): raise error _UpperCAmelCase = rows else: _UpperCAmelCase = [] def lowerCamelCase ( self : Optional[Any] ) -> list[list[int]]: """simple docstring""" return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def lowerCamelCase ( self : int ) -> int: """simple docstring""" return len(self.rows ) @property def lowerCamelCase ( self : int ) -> int: """simple docstring""" return len(self.rows[0] ) @property def lowerCamelCase ( self : Tuple ) -> tuple[int, int]: """simple docstring""" return (self.num_rows, self.num_columns) @property def lowerCamelCase ( self : Tuple ) -> bool: """simple docstring""" return self.order[0] == self.order[1] def lowerCamelCase ( self : Optional[int] ) -> Matrix: """simple docstring""" _UpperCAmelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowerCamelCase ) def lowerCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def lowerCamelCase ( self : Optional[Any] ) -> bool: """simple docstring""" return bool(self.determinant() ) def lowerCamelCase ( self : Tuple , lowerCamelCase : int , lowerCamelCase : int ) -> int: """simple docstring""" _UpperCAmelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowerCamelCase ).determinant() def lowerCamelCase ( self : int , lowerCamelCase : int , lowerCamelCase : int ) -> int: """simple docstring""" if (row + column) % 2 == 0: return self.get_minor(lowerCamelCase , lowerCamelCase ) return -1 * self.get_minor(lowerCamelCase , lowerCamelCase ) def lowerCamelCase ( self : str ) -> Matrix: """simple docstring""" return Matrix( [ [self.get_minor(lowerCamelCase , lowerCamelCase ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def lowerCamelCase ( self : Dict ) -> Matrix: """simple docstring""" return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def lowerCamelCase ( self : Optional[Any] ) -> Matrix: """simple docstring""" _UpperCAmelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowerCamelCase ) def lowerCamelCase ( self : Any ) -> Matrix: """simple docstring""" _UpperCAmelCase = self.determinant() if not determinant: raise TypeError("""Only matrices with a non-zero determinant have an inverse""" ) return self.adjugate() * (1 / determinant) def __repr__( self : List[str] ) -> str: """simple docstring""" return str(self.rows ) def __str__( self : Optional[Any] ) -> str: """simple docstring""" if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ """[""" + """. """.join([str(lowerCamelCase ) for value in row] ) + """.]""" for row in self.rows ] ) + "]" ) def lowerCamelCase ( self : Tuple , lowerCamelCase : list[int] , lowerCamelCase : int | None = None ) -> None: """simple docstring""" _UpperCAmelCase = TypeError("""Row must be a list containing all ints and/or floats""" ) if not isinstance(lowerCamelCase , lowerCamelCase ): raise type_error for value in row: if not isinstance(lowerCamelCase , (int, float) ): raise type_error if len(lowerCamelCase ) != self.num_columns: raise ValueError( """Row must be equal in length to the other rows in the matrix""" ) if position is None: self.rows.append(lowerCamelCase ) else: _UpperCAmelCase = self.rows[0:position] + [row] + self.rows[position:] def lowerCamelCase ( self : List[Any] , lowerCamelCase : list[int] , lowerCamelCase : int | None = None ) -> None: """simple docstring""" _UpperCAmelCase = TypeError( """Column must be a list containing all ints and/or floats""" ) if not isinstance(lowerCamelCase , lowerCamelCase ): raise type_error for value in column: if not isinstance(lowerCamelCase , (int, float) ): raise type_error if len(lowerCamelCase ) != self.num_rows: raise ValueError( """Column must be equal in length to the other columns in the matrix""" ) if position is None: _UpperCAmelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: _UpperCAmelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Dict , lowerCamelCase : object ) -> bool: """simple docstring""" if not isinstance(lowerCamelCase , lowerCamelCase ): return NotImplemented return self.rows == other.rows def __ne__( self : List[str] , lowerCamelCase : object ) -> bool: """simple docstring""" return not self == other def __neg__( self : Union[str, Any] ) -> Matrix: """simple docstring""" return self * -1 def __add__( self : Any , lowerCamelCase : Matrix ) -> Matrix: """simple docstring""" if self.order != other.order: raise ValueError("""Addition requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Optional[Any] , lowerCamelCase : Matrix ) -> Matrix: """simple docstring""" if self.order != other.order: raise ValueError("""Subtraction requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : List[Any] , lowerCamelCase : Matrix | int | float ) -> Matrix: """simple docstring""" if isinstance(lowerCamelCase , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowerCamelCase , lowerCamelCase ): if self.num_columns != other.num_rows: raise ValueError( """The number of columns in the first matrix must """ """be equal to the number of rows in the second""" ) return Matrix( [ [Matrix.dot_product(lowerCamelCase , lowerCamelCase ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( """A Matrix can only be multiplied by an int, float, or another matrix""" ) def __pow__( self : Any , lowerCamelCase : int ) -> Matrix: """simple docstring""" if not isinstance(lowerCamelCase , lowerCamelCase ): raise TypeError("""A Matrix can only be raised to the power of an int""" ) if not self.is_square: raise ValueError("""Only square matrices can be raised to a power""" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( """Only invertable matrices can be raised to a negative power""" ) _UpperCAmelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def lowerCamelCase ( cls : Tuple , lowerCamelCase : list[int] , lowerCamelCase : list[int] ) -> int: """simple docstring""" return sum(row[i] * column[i] for i in range(len(lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
108
1
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _lowerCamelCase : Union[str, Any] = get_logger(__name__) class lowercase : def __init__( self : Dict , _UpperCamelCase : Optional[str] = None ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = ( os.path.join(__a , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) SCREAMING_SNAKE_CASE = Extractor def __snake_case( self : Optional[int] , _UpperCamelCase : str ) -> str: '''simple docstring''' from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" SCREAMING_SNAKE_CASE = os.path.abspath(__a ) return os.path.join(self.extract_dir , hash_url_to_filename(__a ) ) def __snake_case( self : str , _UpperCamelCase : str , _UpperCamelCase : bool ) -> bool: '''simple docstring''' return force_extract or ( not os.path.isfile(__a ) and not (os.path.isdir(__a ) and os.listdir(__a )) ) def __snake_case( self : str , _UpperCamelCase : str , _UpperCamelCase : bool = False ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.extractor.infer_extractor_format(__a ) if not extractor_format: return input_path SCREAMING_SNAKE_CASE = self._get_output_path(__a ) if self._do_extract(__a , __a ): self.extractor.extract(__a , __a , __a ) return output_path class lowercase ( __lowercase ): @classmethod @abstractmethod def __snake_case( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Union[str, Any] ) -> bool: '''simple docstring''' ... @staticmethod @abstractmethod def __snake_case( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) -> None: '''simple docstring''' ... class lowercase ( __lowercase , __lowercase ): lowercase__ : List[bytes] = [] @staticmethod def __snake_case( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) -> List[Any]: '''simple docstring''' with open(__a , "rb" ) as f: return f.read(__a ) @classmethod def __snake_case( cls : Dict , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) -> bool: '''simple docstring''' if not magic_number: SCREAMING_SNAKE_CASE = max(len(__a ) for cls_magic_number in cls.magic_numbers ) try: SCREAMING_SNAKE_CASE = cls.read_magic_number(__a , __a ) except OSError: return False return any(magic_number.startswith(__a ) for cls_magic_number in cls.magic_numbers ) class lowercase ( __lowercase ): @classmethod def __snake_case( cls : Any , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Dict ) -> bool: '''simple docstring''' return tarfile.is_tarfile(__a ) @staticmethod def __snake_case( _UpperCamelCase : Any , _UpperCamelCase : Any ) -> int: '''simple docstring''' def resolved(_UpperCamelCase : str ) -> str: return os.path.realpath(os.path.abspath(__a ) ) def badpath(_UpperCamelCase : str , _UpperCamelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__a , __a ) ).startswith(__a ) def badlink(_UpperCamelCase : int , _UpperCamelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link SCREAMING_SNAKE_CASE = resolved(os.path.join(__a , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=__a ) SCREAMING_SNAKE_CASE = resolved(__a ) for finfo in members: if badpath(finfo.name , __a ): logger.error(F"Extraction of {finfo.name} is blocked (illegal path)" ) elif finfo.issym() and badlink(__a , __a ): logger.error(F"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}" ) elif finfo.islnk() and badlink(__a , __a ): logger.error(F"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}" ) else: yield finfo @staticmethod def __snake_case( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) -> None: '''simple docstring''' os.makedirs(__a , exist_ok=__a ) SCREAMING_SNAKE_CASE = tarfile.open(__a ) tar_file.extractall(__a , members=TarExtractor.safemembers(__a , __a ) ) tar_file.close() class lowercase ( __lowercase ): lowercase__ : Tuple = [B'''\x1F\x8B'''] @staticmethod def __snake_case( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) -> None: '''simple docstring''' with gzip.open(__a , "rb" ) as gzip_file: with open(__a , "wb" ) as extracted_file: shutil.copyfileobj(__a , __a ) class lowercase ( __lowercase ): lowercase__ : Any = [ B'''PK\x03\x04''', B'''PK\x05\x06''', # empty archive B'''PK\x07\x08''', # spanned archive ] @classmethod def __snake_case( cls : Any , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) -> bool: '''simple docstring''' if super().is_extractable(__a , magic_number=__a ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__a , "rb" ) as fp: SCREAMING_SNAKE_CASE = _EndRecData(__a ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: SCREAMING_SNAKE_CASE = fp.read(__a ) # CD is where we expect it to be if len(__a ) == sizeCentralDir: SCREAMING_SNAKE_CASE = struct.unpack(__a , __a ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def __snake_case( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) -> None: '''simple docstring''' os.makedirs(__a , exist_ok=__a ) with zipfile.ZipFile(__a , "r" ) as zip_file: zip_file.extractall(__a ) zip_file.close() class lowercase ( __lowercase ): lowercase__ : Dict = [B'''\xFD\x37\x7A\x58\x5A\x00'''] @staticmethod def __snake_case( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) -> None: '''simple docstring''' with lzma.open(__a ) as compressed_file: with open(__a , "wb" ) as extracted_file: shutil.copyfileobj(__a , __a ) class lowercase ( __lowercase ): lowercase__ : int = [B'''Rar!\x1a\x07\x00''', B'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID @staticmethod def __snake_case( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) -> None: '''simple docstring''' if not config.RARFILE_AVAILABLE: raise ImportError("Please pip install rarfile" ) import rarfile os.makedirs(__a , exist_ok=__a ) SCREAMING_SNAKE_CASE = rarfile.RarFile(__a ) rf.extractall(__a ) rf.close() class lowercase ( __lowercase ): lowercase__ : Union[str, Any] = [B'''\x28\xb5\x2F\xFD'''] @staticmethod def __snake_case( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) -> None: '''simple docstring''' if not config.ZSTANDARD_AVAILABLE: raise ImportError("Please pip install zstandard" ) import zstandard as zstd SCREAMING_SNAKE_CASE = zstd.ZstdDecompressor() with open(__a , "rb" ) as ifh, open(__a , "wb" ) as ofh: dctx.copy_stream(__a , __a ) class lowercase ( __lowercase ): lowercase__ : Optional[int] = [B'''\x42\x5A\x68'''] @staticmethod def __snake_case( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) -> None: '''simple docstring''' with bza.open(__a , "rb" ) as compressed_file: with open(__a , "wb" ) as extracted_file: shutil.copyfileobj(__a , __a ) class lowercase ( __lowercase ): lowercase__ : str = [B'''\x37\x7A\xBC\xAF\x27\x1C'''] @staticmethod def __snake_case( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) -> None: '''simple docstring''' if not config.PY7ZR_AVAILABLE: raise ImportError("Please pip install py7zr" ) import pyazr os.makedirs(__a , exist_ok=__a ) with pyazr.SevenZipFile(__a , "r" ) as archive: archive.extractall(__a ) class lowercase ( __lowercase ): lowercase__ : Optional[Any] = [B'''\x04\x22\x4D\x18'''] @staticmethod def __snake_case( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) -> None: '''simple docstring''' if not config.LZ4_AVAILABLE: raise ImportError("Please pip install lz4" ) import lza.frame with lza.frame.open(__a , "rb" ) as compressed_file: with open(__a , "wb" ) as extracted_file: shutil.copyfileobj(__a , __a ) class lowercase : lowercase__ : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def __snake_case( cls : Optional[int] ) -> List[str]: '''simple docstring''' return max( len(__a ) for extractor in cls.extractors.values() if issubclass(__a , __a ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def __snake_case( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) -> List[Any]: '''simple docstring''' try: return MagicNumberBaseExtractor.read_magic_number(__a , magic_number_length=__a ) except OSError: return b"" @classmethod def __snake_case( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bool = False ) -> bool: '''simple docstring''' warnings.warn( "Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'infer_extractor_format' instead." , category=__a , ) SCREAMING_SNAKE_CASE = cls.infer_extractor_format(__a ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def __snake_case( cls : Tuple , _UpperCamelCase : Union[Path, str] ) -> str: # <Added version="2.4.0"/> '''simple docstring''' SCREAMING_SNAKE_CASE = cls._get_magic_number_max_length() SCREAMING_SNAKE_CASE = cls._read_magic_number(__a , __a ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__a , magic_number=__a ): return extractor_format @classmethod def __snake_case( cls : Any , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[BaseExtractor] = "deprecated" , ) -> None: '''simple docstring''' os.makedirs(os.path.dirname(__a ) , exist_ok=__a ) # Prevent parallel extractions SCREAMING_SNAKE_CASE = str(Path(__a ).with_suffix(".lock" ) ) with FileLock(__a ): shutil.rmtree(__a , ignore_errors=__a ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__a , __a ): # passed as positional arg warnings.warn( "Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'extractor_format' instead." , category=__a , ) SCREAMING_SNAKE_CASE = extractor if extractor != """deprecated""" else extractor_format else: SCREAMING_SNAKE_CASE = cls.extractors[extractor_format] return extractor.extract(__a , __a ) else: warnings.warn( "Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an " "exception in 3.0.0." , category=__a , ) for extractor in cls.extractors.values(): if extractor.is_extractable(__a ): return extractor.extract(__a , __a )
720
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict=False ): SCREAMING_SNAKE_CASE = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : str=False ): for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE = "" else: SCREAMING_SNAKE_CASE = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def __lowerCamelCase (UpperCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : Any ): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. SCREAMING_SNAKE_CASE = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ): SCREAMING_SNAKE_CASE = dct.pop(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = val def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE = ViTMSNConfig() SCREAMING_SNAKE_CASE = 1_0_0_0 SCREAMING_SNAKE_CASE = "datasets/huggingface/label-files" SCREAMING_SNAKE_CASE = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ ) , "r" ) ) SCREAMING_SNAKE_CASE = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE = 3_8_4 SCREAMING_SNAKE_CASE = 1_5_3_6 SCREAMING_SNAKE_CASE = 6 elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE = 1_0_2_4 SCREAMING_SNAKE_CASE = 4_0_9_6 SCREAMING_SNAKE_CASE = 2_4 SCREAMING_SNAKE_CASE = 1_6 SCREAMING_SNAKE_CASE = 0.1 elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE = 4 elif "l7" in checkpoint_url: SCREAMING_SNAKE_CASE = 7 SCREAMING_SNAKE_CASE = 1_0_2_4 SCREAMING_SNAKE_CASE = 4_0_9_6 SCREAMING_SNAKE_CASE = 2_4 SCREAMING_SNAKE_CASE = 1_6 SCREAMING_SNAKE_CASE = 0.1 SCREAMING_SNAKE_CASE = ViTMSNModel(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(UpperCAmelCase__ , map_location="cpu" )["target_encoder"] SCREAMING_SNAKE_CASE = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = create_rename_keys(UpperCAmelCase__ , base_model=UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__ , UpperCAmelCase__ , base_model=UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ) SCREAMING_SNAKE_CASE = ViTImageProcessor( size=config.image_size , image_mean=UpperCAmelCase__ , image_std=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = image_processor(images=UpperCAmelCase__ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE = model(**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: SCREAMING_SNAKE_CASE = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCAmelCase__ , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCAmelCase__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
647
0
"""simple docstring""" from itertools import product def lowerCamelCase__ ( __snake_case, __snake_case ) -> list[int]: """simple docstring""" _UpperCamelCase = sides_number _UpperCamelCase = max_face_number * dice_number _UpperCamelCase = [0] * (max_total + 1) _UpperCamelCase = 1 _UpperCamelCase = range(__snake_case, max_face_number + 1 ) for dice_numbers in product(__snake_case, repeat=__snake_case ): _UpperCamelCase = sum(__snake_case ) totals_frequencies[total] += 1 return totals_frequencies def lowerCamelCase__ ( ) -> float: """simple docstring""" _UpperCamelCase = total_frequency_distribution( sides_number=4, dice_number=9 ) _UpperCamelCase = total_frequency_distribution( sides_number=6, dice_number=6 ) _UpperCamelCase = 0 _UpperCamelCase = 9 _UpperCamelCase = 4 * 9 _UpperCamelCase = 6 for peter_total in range(__snake_case, max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCamelCase = (4**9) * (6**6) _UpperCamelCase = peter_wins_count / total_games_number _UpperCamelCase = round(__snake_case, ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
19
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DPMSolverSDEScheduler,) lowercase__ = 10 def UpperCAmelCase ( self , **__a) -> int: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**__a) return config def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a , use_karras_sigmas=__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2
19
1
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _UpperCAmelCase ( UpperCamelCase: Any , UpperCamelCase: List[Any] ): """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _UpperCAmelCase ( UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Tuple ): """simple docstring""" __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = SqlDatasetReader( "dataset" , "sqlite:///" + sqlite_path , cache_dir=UpperCamelCase , keep_in_memory=UpperCamelCase ).read() _check_sql_dataset(UpperCamelCase , UpperCamelCase ) @require_sqlalchemy @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _UpperCAmelCase ( UpperCamelCase: Optional[int] , UpperCamelCase: Optional[int] , UpperCamelCase: List[str] , UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , features=UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_sql_dataset(UpperCamelCase , UpperCamelCase ) def _UpperCAmelCase ( UpperCamelCase: Optional[int] ): """simple docstring""" with contextlib.closing(sqlitea.connect(UpperCamelCase ) ) as con: __lowerCAmelCase = con.cursor() cur.execute("SELECT * FROM dataset" ) for row in cur: yield row @require_sqlalchemy def _UpperCAmelCase ( UpperCamelCase: Union[str, Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[str] ): """simple docstring""" __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = os.path.join(UpperCamelCase , "tmp.sql" ) __lowerCAmelCase = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=UpperCamelCase ).read() SqlDatasetWriter(UpperCamelCase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=1 ).write() __lowerCAmelCase = iter_sql_file(UpperCamelCase ) __lowerCAmelCase = iter_sql_file(UpperCamelCase ) for rowa, rowa in zip(UpperCamelCase , UpperCamelCase ): assert rowa == rowa @require_sqlalchemy def _UpperCAmelCase ( UpperCamelCase: Any , UpperCamelCase: List[Any] , UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = os.path.join(UpperCamelCase , "tmp.sql" ) __lowerCAmelCase = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=UpperCamelCase ).read() SqlDatasetWriter(UpperCamelCase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=2 ).write() __lowerCAmelCase = iter_sql_file(UpperCamelCase ) __lowerCAmelCase = iter_sql_file(UpperCamelCase ) for rowa, rowa in zip(UpperCamelCase , UpperCamelCase ): assert rowa == rowa @require_sqlalchemy def _UpperCAmelCase ( UpperCamelCase: str , UpperCamelCase: Dict , UpperCamelCase: Any ): """simple docstring""" __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = os.path.join(UpperCamelCase , "tmp.sql" ) __lowerCAmelCase = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=UpperCamelCase ).read() with pytest.raises(UpperCamelCase ): SqlDatasetWriter(UpperCamelCase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=0 ).write()
376
from __future__ import annotations UpperCamelCase_ = list[tuple[int, int]] UpperCamelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class a : def __init__( self : Optional[Any] , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : float , snake_case__ : Node | None , ): """simple docstring""" __lowerCAmelCase = pos_x __lowerCAmelCase = pos_y __lowerCAmelCase = (pos_y, pos_x) __lowerCAmelCase = goal_x __lowerCAmelCase = goal_y __lowerCAmelCase = g_cost __lowerCAmelCase = parent __lowerCAmelCase = self.calculate_heuristic() def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __lowerCAmelCase = abs(self.pos_x - self.goal_x ) __lowerCAmelCase = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Optional[int] , snake_case__ : int ): """simple docstring""" return self.f_cost < other.f_cost class a : def __init__( self : Dict , snake_case__ : tuple[int, int] , snake_case__ : tuple[int, int] ): """simple docstring""" __lowerCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case__ ) __lowerCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , snake_case__ ) __lowerCAmelCase = [self.start] __lowerCAmelCase = [] __lowerCAmelCase = False def UpperCAmelCase__ ( self : Dict ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowerCAmelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __lowerCAmelCase = True return self.retrace_path(snake_case__ ) self.closed_nodes.append(snake_case__ ) __lowerCAmelCase = self.get_successors(snake_case__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case__ ) else: # retrieve the best current path __lowerCAmelCase = self.open_nodes.pop(self.open_nodes.index(snake_case__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case__ ) else: self.open_nodes.append(snake_case__ ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase__ ( self : int , snake_case__ : Node ): """simple docstring""" __lowerCAmelCase = [] for action in delta: __lowerCAmelCase = parent.pos_x + action[1] __lowerCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case__ , snake_case__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case__ , ) ) return successors def UpperCAmelCase__ ( self : List[str] , snake_case__ : Node | None ): """simple docstring""" __lowerCAmelCase = node __lowerCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowerCAmelCase = current_node.parent path.reverse() return path if __name__ == "__main__": UpperCamelCase_ = (0, 0) UpperCamelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") UpperCamelCase_ = GreedyBestFirst(init, goal) UpperCamelCase_ = greedy_bf.search() if path: for pos_x, pos_y in path: UpperCamelCase_ = 2 for elem in grid: print(elem)
376
1
def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> str: lowercase__ : int = "" for word_or_phrase in separated: if not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": from doctest import testmod testmod()
397
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __a : Tuple = Mapping[str, np.ndarray] __a : int = Mapping[str, Any] # Is a nested dict. __a : Union[str, Any] = 0.01 @dataclasses.dataclass(frozen=snake_case_ ) class UpperCAmelCase: """simple docstring""" a : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. a : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. a : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. a : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. a : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions a : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files a : Optional[str] = None # Templates used to generate this protein (prediction-only) a : Optional[Sequence[str]] = None # Chain corresponding to each parent a : Optional[Sequence[int]] = None def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Protein: lowercase__ : str = r"(\[[A-Z]+\]\n)" lowercase__ : List[str] = [tag.strip() for tag in re.split(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0] lowercase__ : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] ,[l.split("\n" ) for l in tags[1::2]] ) lowercase__ : List[str] = ["N", "CA", "C"] lowercase__ : Optional[int] = None lowercase__ : List[Any] = None lowercase__ : Optional[Any] = None for g in groups: if "[PRIMARY]" == g[0]: lowercase__ : List[Any] = g[1][0].strip() for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if seq[i] not in residue_constants.restypes: lowercase__ : Optional[int] = "X" # FIXME: strings are immutable lowercase__ : List[str] = np.array( [residue_constants.restype_order.get(SCREAMING_SNAKE_CASE_ ,residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase__ : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(SCREAMING_SNAKE_CASE_ ,g[1][axis].split() ) ) ) lowercase__ : Tuple = np.array(SCREAMING_SNAKE_CASE_ ) lowercase__ : int = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(SCREAMING_SNAKE_CASE_ ): lowercase__ : Tuple = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase__ : int = np.array(list(map({"-": 0, "+": 1}.get ,g[1][0].strip() ) ) ) lowercase__ : Tuple = np.zeros( ( len(SCREAMING_SNAKE_CASE_ ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(SCREAMING_SNAKE_CASE_ ): lowercase__ : Optional[int] = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=SCREAMING_SNAKE_CASE_ ,atom_mask=SCREAMING_SNAKE_CASE_ ,aatype=SCREAMING_SNAKE_CASE_ ,residue_index=np.arange(len(SCREAMING_SNAKE_CASE_ ) ) ,b_factors=SCREAMING_SNAKE_CASE_ ,) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = 0 ) -> List[str]: lowercase__ : List[str] = [] lowercase__ : Union[str, Any] = prot.remark if remark is not None: pdb_headers.append(F"""REMARK {remark}""" ) lowercase__ : List[Any] = prot.parents lowercase__ : Any = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase__ : List[str] = [p for i, p in zip(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if i == chain_id] if parents is None or len(SCREAMING_SNAKE_CASE_ ) == 0: lowercase__ : List[str] = ["N/A"] pdb_headers.append(F"""PARENT {" ".join(SCREAMING_SNAKE_CASE_ )}""" ) return pdb_headers def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> str: lowercase__ : List[str] = [] lowercase__ : Optional[Any] = pdb_str.split("\n" ) lowercase__ : Any = prot.remark if remark is not None: out_pdb_lines.append(F"""REMARK {remark}""" ) lowercase__ : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: lowercase__ : Optional[int] = [] if prot.parents_chain_index is not None: lowercase__ : Dict[str, List[str]] = {} for p, i in zip(prot.parents ,prot.parents_chain_index ): parent_dict.setdefault(str(SCREAMING_SNAKE_CASE_ ) ,[] ) parent_dict[str(SCREAMING_SNAKE_CASE_ )].append(SCREAMING_SNAKE_CASE_ ) lowercase__ : int = max([int(SCREAMING_SNAKE_CASE_ ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase__ : List[Any] = parent_dict.get(str(SCREAMING_SNAKE_CASE_ ) ,["N/A"] ) parents_per_chain.append(SCREAMING_SNAKE_CASE_ ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase__ : List[str] = [["N/A"]] def make_parent_line(SCREAMING_SNAKE_CASE_ ) -> str: return F"""PARENT {" ".join(SCREAMING_SNAKE_CASE_ )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase__ : Dict = 0 for i, l in enumerate(SCREAMING_SNAKE_CASE_ ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(SCREAMING_SNAKE_CASE_ ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(SCREAMING_SNAKE_CASE_ ): lowercase__ : int = parents_per_chain[chain_counter] else: lowercase__ : Any = ["N/A"] out_pdb_lines.append(make_parent_line(SCREAMING_SNAKE_CASE_ ) ) return "\n".join(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> str: lowercase__ : List[str] = residue_constants.restypes + ["X"] def res_atoa(SCREAMING_SNAKE_CASE_ ) -> str: return residue_constants.restype_atoa.get(restypes[r] ,"UNK" ) lowercase__ : Optional[int] = residue_constants.atom_types lowercase__ : List[str] = [] lowercase__ : int = prot.atom_mask lowercase__ : str = prot.aatype lowercase__ : List[str] = prot.atom_positions lowercase__ : Optional[Any] = prot.residue_index.astype(np.intaa ) lowercase__ : Tuple = prot.b_factors lowercase__ : Union[str, Any] = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) lowercase__ : List[Any] = get_pdb_headers(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: pdb_lines.extend(SCREAMING_SNAKE_CASE_ ) lowercase__ : Tuple = aatype.shape[0] lowercase__ : List[str] = 1 lowercase__ : Tuple = 0 lowercase__ : List[str] = string.ascii_uppercase lowercase__ : Optional[int] = None # Add all atom sites. for i in range(SCREAMING_SNAKE_CASE_ ): lowercase__ : Dict = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(SCREAMING_SNAKE_CASE_ ,atom_positions[i] ,atom_mask[i] ,b_factors[i] ): if mask < 0.5: continue lowercase__ : Tuple = "ATOM" lowercase__ : Optional[int] = atom_name if len(SCREAMING_SNAKE_CASE_ ) == 4 else F""" {atom_name}""" lowercase__ : List[Any] = "" lowercase__ : int = "" lowercase__ : Any = 1.00 lowercase__ : Optional[Any] = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase__ : Optional[int] = "" lowercase__ : int = "A" if chain_index is not None: lowercase__ : Dict = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase__ : Optional[int] = ( F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" F"""{res_name_a:>3} {chain_tag:>1}""" F"""{residue_index[i]:>4}{insertion_code:>1} """ F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" F"""{occupancy:>6.2f}{b_factor:>6.2f} """ F"""{element:>2}{charge:>2}""" ) pdb_lines.append(SCREAMING_SNAKE_CASE_ ) atom_index += 1 lowercase__ : Dict = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase__ : Any = True lowercase__ : int = chain_index[i + 1] if should_terminate: # Close the chain. lowercase__ : List[str] = "TER" lowercase__ : str = ( F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(SCREAMING_SNAKE_CASE_ ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,) -> Protein: return Protein( aatype=features["aatype"] ,atom_positions=result["final_atom_positions"] ,atom_mask=result["final_atom_mask"] ,residue_index=features["residue_index"] + 1 ,b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) ,chain_index=SCREAMING_SNAKE_CASE_ ,remark=SCREAMING_SNAKE_CASE_ ,parents=SCREAMING_SNAKE_CASE_ ,parents_chain_index=SCREAMING_SNAKE_CASE_ ,)
397
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
718
import string import numpy def SCREAMING_SNAKE_CASE__ ( snake_case__ :int , snake_case__ :int ) -> int: return b if a == 0 else greatest_common_divisor(b % a , snake_case__ ) class A_ : """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) SCREAMING_SNAKE_CASE_ : Dict = numpy.vectorize(lambda UpperCAmelCase : x % 3_6 ) SCREAMING_SNAKE_CASE_ : List[Any] = numpy.vectorize(UpperCAmelCase ) def __init__( self : Optional[Any] ,__A : numpy.ndarray ) -> None: _lowercase = self.modulus(__A ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _lowercase = encrypt_key.shape[0] def __UpperCAmelCase ( self : Tuple ,__A : str ) -> int: return self.key_string.index(__A ) def __UpperCAmelCase ( self : Optional[int] ,__A : int ) -> str: return self.key_string[round(__A )] def __UpperCAmelCase ( self : str ) -> None: _lowercase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _lowercase = det % len(self.key_string ) _lowercase = len(self.key_string ) if greatest_common_divisor(__A ,len(self.key_string ) ) != 1: _lowercase = ( F"""determinant modular {req_l} of encryption key({det}) """ F"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(__A ) def __UpperCAmelCase ( self : Any ,__A : str ) -> str: _lowercase = [char for char in text.upper() if char in self.key_string] _lowercase = chars[-1] while len(__A ) % self.break_key != 0: chars.append(__A ) return "".join(__A ) def __UpperCAmelCase ( self : Optional[int] ,__A : str ) -> str: _lowercase = self.process_text(text.upper() ) _lowercase = '' for i in range(0 ,len(__A ) - self.break_key + 1 ,self.break_key ): _lowercase = text[i : i + self.break_key] _lowercase = [self.replace_letters(__A ) for char in batch] _lowercase = numpy.array([vec] ).T _lowercase = self.modulus(self.encrypt_key.dot(__A ) ).T.tolist()[ 0 ] _lowercase = ''.join( self.replace_digits(__A ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def __UpperCAmelCase ( self : List[Any] ) -> numpy.ndarray: _lowercase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _lowercase = det % len(self.key_string ) _lowercase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: _lowercase = i break _lowercase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__A ) ) def __UpperCAmelCase ( self : Tuple ,__A : str ) -> str: _lowercase = self.make_decrypt_key() _lowercase = self.process_text(text.upper() ) _lowercase = '' for i in range(0 ,len(__A ) - self.break_key + 1 ,self.break_key ): _lowercase = text[i : i + self.break_key] _lowercase = [self.replace_letters(__A ) for char in batch] _lowercase = numpy.array([vec] ).T _lowercase = self.modulus(decrypt_key.dot(__A ) ).T.tolist()[0] _lowercase = ''.join( self.replace_digits(__A ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def SCREAMING_SNAKE_CASE__ ( ) -> None: _lowercase = int(input('Enter the order of the encryption key: ' ) ) _lowercase = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(snake_case__ ): _lowercase = [int(snake_case__ ) for x in input().split()] hill_matrix.append(snake_case__ ) _lowercase = HillCipher(numpy.array(snake_case__ ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) _lowercase = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": _lowercase = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(snake_case__ ) ) elif option == "2": _lowercase = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
535
0
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase: List[str] = logging.get_logger(__name__) lowerCAmelCase: List[str] = '▁' lowerCAmelCase: int = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'} lowerCAmelCase: Optional[Any] = { 'sentencepiece_model_file': 'sentencepiece.bpe.model', 'vocab_file': 'vocab.txt', } lowerCAmelCase: List[str] = { 'vocab_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', }, 'sentencepiece_model_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', }, } lowerCAmelCase: Union[str, Any] = { 'ernie-m-base': 5_1_4, 'ernie-m-large': 5_1_4, } lowerCAmelCase: Optional[int] = { 'ernie-m-base': {'do_lower_case': False}, 'ernie-m-large': {'do_lower_case': False}, } class a__( lowerCamelCase__ ): lowercase__ = ["input_ids"] lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = RESOURCE_FILES_NAMES def __init__( self : int , __snake_case : List[str] , __snake_case : List[Any]=None , __snake_case : List[str]=False , __snake_case : Dict="utf8" , __snake_case : Any="[UNK]" , __snake_case : List[Any]="[SEP]" , __snake_case : List[str]="[PAD]" , __snake_case : Optional[Any]="[CLS]" , __snake_case : Tuple="[MASK]" , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : List[Any] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. a : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , vocab_file=__snake_case , encoding=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) a : Optional[int] = do_lower_case a : Union[str, Any] = sentencepiece_model_ckpt a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__snake_case ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: a : Dict = self.load_vocab(filepath=__snake_case ) else: a : Union[str, Any] = {self.sp_model.id_to_piece(__snake_case ): id for id in range(self.sp_model.get_piece_size() )} a : Any = {v: k for k, v in self.vocab.items()} def lowercase_ ( self : Dict , __snake_case : Union[str, Any] ): if text is None: return None a : List[Any] = self.tokenize(__snake_case ) a , a : Any = '', [] for i, ch in enumerate(__snake_case ): if ch in self.SP_CHAR_MAPPING: a : int = self.SP_CHAR_MAPPING.get(__snake_case ) else: a : Tuple = unicodedata.normalize('NFKC' , __snake_case ) if self.is_whitespace(__snake_case ): continue normalized_text += ch char_mapping.extend([i] * len(__snake_case ) ) a , a , a : List[str] = normalized_text, [], 0 if self.do_lower_case: a : Optional[int] = text.lower() for token in split_tokens: if token[:1] == "▁": a : Optional[int] = token[1:] a : List[Any] = text[offset:].index(__snake_case ) + offset a : Union[str, Any] = start + len(__snake_case ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) a : List[Any] = end return token_mapping @property def lowercase_ ( self : Tuple ): return len(self.vocab ) def lowercase_ ( self : Optional[Any] ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : Union[str, Any] ): a : str = self.__dict__.copy() a : List[Any] = None return state def __setstate__( self : List[str] , __snake_case : str ): a : Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): a : List[Any] = {} a : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def lowercase_ ( self : str , __snake_case : Optional[Any] ): return "".join((self.SP_CHAR_MAPPING.get(__snake_case , __snake_case ) for c in text) ) def lowercase_ ( self : int , __snake_case : Any , __snake_case : List[str]=False , __snake_case : Optional[Any]=64 , __snake_case : Union[str, Any]=0.1 ): if self.sp_model_kwargs.get('enable_sampling' ) is True: a : Union[str, Any] = True if self.sp_model_kwargs.get('alpha' ) is not None: a : List[Any] = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: a : Union[str, Any] = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: a : Optional[Any] = self.sp_model.EncodeAsPieces(__snake_case ) else: a : List[Any] = self.sp_model.SampleEncodeAsPieces(__snake_case , __snake_case , __snake_case ) a : Any = [] for pi, piece in enumerate(__snake_case ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__snake_case ) and pi != 0: new_pieces.append(__snake_case ) continue else: continue a : List[str] = 0 for i, chunk in enumerate(__snake_case ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__snake_case ) or self.is_punct(__snake_case ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__snake_case ) a : Optional[Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) a : Union[str, Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) a : str = i if len(__snake_case ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def lowercase_ ( self : Union[str, Any] , __snake_case : Any ): a : List[Any] = ''.join(__snake_case ).replace(__snake_case , ' ' ).strip() return out_string def lowercase_ ( self : List[str] , __snake_case : Dict ): a : Union[str, Any] = self.convert_ids_to_tokens(__snake_case ) a : List[str] = ''.join(__snake_case ).replace(__snake_case , ' ' ).strip() return out_string def lowercase_ ( self : str , __snake_case : List[str] ): return self.vocab.get(__snake_case , self.vocab.get(self.unk_token ) ) def lowercase_ ( self : Optional[Any] , __snake_case : str ): return self.reverse_vocab.get(__snake_case , self.unk_token ) def lowercase_ ( self : str , __snake_case : Any , __snake_case : List[str]=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a : Optional[int] = [self.cls_token_id] a : Optional[int] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def lowercase_ ( self : Dict , __snake_case : Tuple , __snake_case : Optional[int]=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def lowercase_ ( self : Dict , __snake_case : Optional[int] , __snake_case : Union[str, Any]=None , __snake_case : str=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] def lowercase_ ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(__snake_case ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__snake_case ) + 1) + [1] * (len(__snake_case ) + 3) def lowercase_ ( self : List[str] , __snake_case : List[Any] ): if "\u4e00" <= char <= "\u9fff": return True return False def lowercase_ ( self : Any , __snake_case : Optional[Any] ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def lowercase_ ( self : Any , __snake_case : Optional[int] ): if char in ",;:.?!~,;:。?!《》【】": return True return False def lowercase_ ( self : Optional[Any] , __snake_case : List[Any] ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__snake_case ) == 1: a : Optional[Any] = unicodedata.category(__snake_case ) if cat == "Zs": return True return False def lowercase_ ( self : Any , __snake_case : List[str] ): a : str = {} with io.open(__snake_case , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(__snake_case ): a : Any = line.rstrip('\n' ) a : str = int(__snake_case ) return token_to_idx def lowercase_ ( self : str , __snake_case : str , __snake_case : Optional[str] = None ): a : Optional[int] = 0 if os.path.isdir(__snake_case ): a : Tuple = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: a : Optional[int] = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(__snake_case , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!' ) a : Tuple = token_index writer.write(token + '\n' ) index += 1 a : int = os.path.join(__snake_case , 'sentencepiece.bpe.model' ) with open(__snake_case , 'wb' ) as fi: a : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (vocab_file,)
526
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__( lowerCamelCase__ ): lowercase__ = """naver-clova-ix/donut-base-finetuned-docvqa""" lowercase__ = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) lowercase__ = """document_qa""" lowercase__ = AutoProcessor lowercase__ = VisionEncoderDecoderModel lowercase__ = ["""image""", """text"""] lowercase__ = ["""text"""] def __init__( self : str , *__snake_case : Any , **__snake_case : List[Any] ): if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*__snake_case , **__snake_case ) def lowercase_ ( self : Union[str, Any] , __snake_case : "Image" , __snake_case : str ): a : Union[str, Any] = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' a : Any = task_prompt.replace('{user_input}' , __snake_case ) a : Dict = self.pre_processor.tokenizer( __snake_case , add_special_tokens=__snake_case , return_tensors='pt' ).input_ids a : Tuple = self.pre_processor(__snake_case , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowercase_ ( self : Any , __snake_case : int ): return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__snake_case , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__snake_case , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__snake_case , ).sequences def lowercase_ ( self : List[str] , __snake_case : Tuple ): a : str = self.pre_processor.batch_decode(__snake_case )[0] a : str = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) a : Union[str, Any] = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) a : List[str] = re.sub(r'<.*?>' , '' , __snake_case , count=1 ).strip() # remove first task start token a : Dict = self.pre_processor.tokenajson(__snake_case ) return sequence["answer"]
526
1
from ..utils import DummyObject, requires_backends class __A ( metaclass=a ): """simple docstring""" UpperCamelCase__ : Union[str, Any] =["""transformers""", """torch""", """note_seq"""] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def __lowercase ( cls , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def __lowercase ( cls , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
154
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __A ( a ): """simple docstring""" UpperCamelCase__ : Union[str, Any] ="""dandelin/vilt-b32-finetuned-vqa""" UpperCamelCase__ : str =( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) UpperCamelCase__ : Any ="""image_qa""" UpperCamelCase__ : int =AutoProcessor UpperCamelCase__ : Optional[Any] =AutoModelForVisualQuestionAnswering UpperCamelCase__ : Dict =["""image""", """text"""] UpperCamelCase__ : List[Any] =["""text"""] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" requires_backends(self , ['vision'] ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return self.pre_processor(lowerCamelCase__ , lowerCamelCase__ , return_tensors='pt' ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" with torch.no_grad(): return self.model(**lowerCamelCase__ ).logits def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[str] =outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
154
1
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder ): """simple docstring""" def A ( self : List[Any] ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=UpperCamelCase__ , ) def A ( self : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def A ( self : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(UpperCamelCase__ ) class SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder ): """simple docstring""" def A ( self : str ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=UpperCamelCase__ , ) def A ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] ): """simple docstring""" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def A ( self : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(UpperCamelCase__ ) def __lowerCamelCase ( ) -> Tuple: """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] def __lowerCamelCase ( ) -> int: """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" @require_beam def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase = DummyBeamDataset(cache_dir=UpperCamelCase__ , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(UpperCamelCase__ , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase = builder.as_dataset() self.assertEqual(dset['train'].num_rows , UpperCamelCase__ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , UpperCamelCase__ ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(UpperCamelCase__ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def A ( self : Any ): """simple docstring""" import apache_beam as beam UpperCamelCase = beam.io.parquetio.WriteToParquet UpperCamelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase = DummyBeamDataset(cache_dir=UpperCamelCase__ , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: UpperCamelCase = partial(UpperCamelCase__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( UpperCamelCase__ , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( UpperCamelCase__ , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase = builder.as_dataset() self.assertEqual(dset['train'].num_rows , UpperCamelCase__ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , UpperCamelCase__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(UpperCamelCase__ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def A ( self : Optional[int] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase = DummyBeamDataset(cache_dir=UpperCamelCase__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase = NestedBeamDataset(cache_dir=UpperCamelCase__ , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(UpperCamelCase__ , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) UpperCamelCase = builder.as_dataset() self.assertEqual(dset['train'].num_rows , UpperCamelCase__ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , UpperCamelCase__ ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(UpperCamelCase__ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
430
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase : List[Any] = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
430
1
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , ) ->List[str]: SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : List[Any] = 13 SCREAMING_SNAKE_CASE : Dict = 7 SCREAMING_SNAKE_CASE : Optional[Any] = 30 SCREAMING_SNAKE_CASE : str = self.seq_length + self.mem_len SCREAMING_SNAKE_CASE : Dict = 15 SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Dict = 99 SCREAMING_SNAKE_CASE : int = [10, 50, 80] SCREAMING_SNAKE_CASE : Optional[int] = 32 SCREAMING_SNAKE_CASE : List[str] = 32 SCREAMING_SNAKE_CASE : List[Any] = 4 SCREAMING_SNAKE_CASE : int = 8 SCREAMING_SNAKE_CASE : Dict = 128 SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Union[str, Any] = 1 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Optional[Any] = 3 SCREAMING_SNAKE_CASE : Optional[Any] = self.vocab_size - 1 SCREAMING_SNAKE_CASE : List[str] = 0.0_1 def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Any = None if self.use_labels: SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __lowerCAmelCase ( self ) ->str: random.seed(self.seed ) tf.random.set_seed(self.seed ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = TFTransfoXLModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = model(_lowerCamelCase ).to_tuple() SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': input_ids_a, '''mems''': mems_a} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = model(_lowerCamelCase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->str: SCREAMING_SNAKE_CASE : str = TFTransfoXLLMHeadModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase ).to_tuple() SCREAMING_SNAKE_CASE : Tuple = {'''input_ids''': input_ids_a, '''labels''': lm_labels} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = model(_lowerCamelCase ).to_tuple() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = model([input_ids_a, mems_a] ).to_tuple() SCREAMING_SNAKE_CASE : Optional[Any] = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = model(_lowerCamelCase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = TFTransfoXLForSequenceClassification(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : List[str] = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE : Dict = () if is_tf_available() else () __SCREAMING_SNAKE_CASE : List[Any] = ( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Optional[int] = TFTransfoXLModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , d_embed=37 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) ->str: self.model_tester.set_seed() SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: self.model_tester.set_seed() SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Tuple = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = model_class(_lowerCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: SCREAMING_SNAKE_CASE : List[str] = model.get_output_embeddings() assert isinstance(_lowerCamelCase , tf.keras.layers.Layer ) SCREAMING_SNAKE_CASE : Optional[Any] = model.get_bias() assert name is None else: SCREAMING_SNAKE_CASE : List[Any] = model.get_output_embeddings() assert x is None SCREAMING_SNAKE_CASE : int = model.get_bias() assert name is None def __lowerCAmelCase ( self ) ->Union[str, Any]: # TODO JP: Make TransfoXL XLA compliant pass @slow def __lowerCAmelCase ( self ) ->int: for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : int = TFTransfoXLModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def __lowerCAmelCase ( self ) ->int: pass @require_tf class a_ ( unittest.TestCase ): """simple docstring""" @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : str = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off SCREAMING_SNAKE_CASE : Optional[Any] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off SCREAMING_SNAKE_CASE : Tuple = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> SCREAMING_SNAKE_CASE : Optional[int] = model.generate(_lowerCamelCase , max_length=200 , do_sample=_lowerCamelCase ) self.assertListEqual(output_ids[0].numpy().tolist() , _lowerCamelCase )
333
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=[30, 30] , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=8 , _lowerCamelCase=10 , ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Optional[int] = image_size SCREAMING_SNAKE_CASE : str = patch_size SCREAMING_SNAKE_CASE : List[str] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = is_training SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = scope SCREAMING_SNAKE_CASE : Any = n_targets SCREAMING_SNAKE_CASE : Optional[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens SCREAMING_SNAKE_CASE : Dict = (image_size[1] // patch_size) * (image_size[0] // patch_size) SCREAMING_SNAKE_CASE : int = num_patches + 1 + self.num_detection_tokens def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) SCREAMING_SNAKE_CASE : Optional[Any] = [] for i in range(self.batch_size ): SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : Any = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.rand(self.n_targets , 4 , device=_lowerCamelCase ) labels.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->int: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : Union[str, Any] = YolosModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = YolosForObjectDetection(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Any = model(pixel_values=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) SCREAMING_SNAKE_CASE : Optional[Any] = model(pixel_values=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[str] = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : List[str] = False def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": SCREAMING_SNAKE_CASE : Any = [] for i in range(self.model_tester.batch_size ): SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : List[str] = torch.ones( size=(self.model_tester.n_targets,) , device=_lowerCamelCase , dtype=torch.long ) SCREAMING_SNAKE_CASE : List[Any] = torch.ones( self.model_tester.n_targets , 4 , device=_lowerCamelCase , dtype=torch.float ) labels.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = labels return inputs_dict def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Union[str, Any] = YolosModelTester(self ) SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->Tuple: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) ->Optional[int]: # YOLOS does not use inputs_embeds pass def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Any = True # in YOLOS, the seq_len is different SCREAMING_SNAKE_CASE : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Tuple = False SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Any = outputs.attentions self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.attentions self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = len(_lowerCamelCase ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Tuple = 1 self.assertEqual(out_len + added_hidden_states , len(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Any = outputs.attentions self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __lowerCAmelCase ( self ) ->Optional[int]: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Any = outputs.hidden_states SCREAMING_SNAKE_CASE : Optional[int] = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # YOLOS has a different seq_length SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : List[str] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_lowerCamelCase ) @slow def __lowerCAmelCase ( self ) ->List[Any]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Tuple = YolosModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ) ->Dict: return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.default_image_processor SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Dict = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(inputs.pixel_values ) # verify outputs SCREAMING_SNAKE_CASE : int = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) # verify postprocessing SCREAMING_SNAKE_CASE : List[str] = image_processor.post_process_object_detection( _lowerCamelCase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] SCREAMING_SNAKE_CASE : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = [75, 75, 17, 63, 17] SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(_lowerCamelCase ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , _lowerCamelCase , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , _lowerCamelCase ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , _lowerCamelCase ) )
333
1
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __magic_name__ ( *lowercase_ ) -> Dict: '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ): UpperCamelCase = list(lowercase_ ) for i in range(len(lowercase_ ) ): UpperCamelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __magic_name__ ( lowercase_ ) -> bool: '''simple docstring''' UpperCamelCase = [ "CUDA out of memory.", # CUDA OOM "cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU "DefaultCPUAllocator: can't allocate memory", # CPU OOM ] if isinstance(lowercase_ , lowercase_ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __magic_name__ ( lowercase_ = None , lowercase_ = 128 ) -> Union[str, Any]: '''simple docstring''' if function is None: return functools.partial(lowercase_ , starting_batch_size=lowercase_ ) UpperCamelCase = starting_batch_size def decorator(*lowercase_ , **lowercase_ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() UpperCamelCase = list(inspect.signature(lowercase_ ).parameters.keys() ) # Guard against user error if len(lowercase_ ) < (len(lowercase_ ) + 1): UpperCamelCase = ", ".join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("No executable batch size found, reached zero." ) try: return function(lowercase_ , *lowercase_ , **lowercase_ ) except Exception as e: if should_reduce_batch_size(lowercase_ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
606
def __magic_name__ ( lowercase_ ) -> tuple[int, int]: '''simple docstring''' try: UpperCamelCase = float(lowercase_ ) except ValueError: raise ValueError("Please enter a valid number" ) UpperCamelCase = decimal - int(lowercase_ ) if fractional_part == 0: return int(lowercase_ ), 1 else: UpperCamelCase = len(str(lowercase_ ).split("." )[1] ) UpperCamelCase = int(decimal * (10**number_of_frac_digits) ) UpperCamelCase = 10**number_of_frac_digits UpperCamelCase , UpperCamelCase = denominator, numerator while True: UpperCamelCase = dividend % divisor if remainder == 0: break UpperCamelCase , UpperCamelCase = divisor, remainder UpperCamelCase , UpperCamelCase = numerator / divisor, denominator / divisor return int(lowercase_ ), int(lowercase_ ) if __name__ == "__main__": print(F'{decimal_to_fraction(2) = }') print(F'{decimal_to_fraction(89.0) = }') print(F'{decimal_to_fraction("67") = }') print(F'{decimal_to_fraction("45.0") = }') print(F'{decimal_to_fraction(1.5) = }') print(F'{decimal_to_fraction("6.25") = }') print(F'{decimal_to_fraction("78td") = }')
606
1
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=4 , ) -> Dict: UpperCAmelCase : Any = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : List[str] = seq_length UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : str = use_attention_mask UpperCAmelCase : Dict = use_token_type_ids UpperCAmelCase : Optional[Any] = use_labels UpperCAmelCase : Dict = vocab_size UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Dict = hidden_act UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : Dict = type_vocab_size UpperCAmelCase : List[str] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : Optional[int] = num_choices def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_attention_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase( self ) -> int: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = True lowercase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase( self ) -> int: UpperCAmelCase : Dict = FlaxRoFormerModelTester(self ) @slow def _lowercase( self ) -> int: for model_class_name in self.all_model_classes: UpperCAmelCase : str = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=A ) UpperCAmelCase : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : int = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) UpperCAmelCase : List[str] = jnp.array([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase : List[Any] = model(A )[0] UpperCAmelCase : Dict = 50000 UpperCAmelCase : Any = (1, 6, vocab_size) self.assertEqual(output.shape , A ) UpperCAmelCase : int = jnp.array( [[[-0.1_2_0_5, -1.0_2_6_5, 0.2_9_2_2], [-1.5_1_3_4, 0.1_9_7_4, 0.1_5_1_9], [-5.0_1_3_5, -3.9_0_0_3, -0.8_4_0_4]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , A , atol=1e-4 ) )
672
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
1
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class A ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : float ) -> float: """simple docstring""" return 0.0 def UpperCamelCase ( __magic_name__ : np.ndarray , __magic_name__ : int ) -> tuple[int | float, int | float]: """simple docstring""" lowercase__ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowercase__ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def UpperCamelCase ( __magic_name__ : FilterType , __magic_name__ : int ) -> None: """simple docstring""" lowercase__ = 512 lowercase__ = [1] + [0] * (size - 1) lowercase__ = [filter_type.process(__magic_name__ ) for item in inputs] lowercase__ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase__ = np.abs(np.fft.fft(__magic_name__ ) ) lowercase__ = 20 * np.logaa(__magic_name__ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds lowercase__ = get_bounds(__magic_name__ , __magic_name__ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__magic_name__ ) plt.show() def UpperCamelCase ( __magic_name__ : FilterType , __magic_name__ : int ) -> None: """simple docstring""" lowercase__ = 512 lowercase__ = [1] + [0] * (size - 1) lowercase__ = [filter_type.process(__magic_name__ ) for item in inputs] lowercase__ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase__ = np.angle(np.fft.fft(__magic_name__ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__magic_name__ , -2 * pi ) ) plt.show()
15
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Tuple = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''ibert''' def __init__(self : int , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]="none" , **_UpperCAmelCase : List[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = quant_mode lowercase__ = force_dequant class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
15
1
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } lowerCAmelCase__ = { '''b0''': { '''hidden_dim''': 1_280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1_280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1_408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1_536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1_792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2_048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2_304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2_560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : int = EfficientNetConfig() lowerCAmelCase : Optional[int] = CONFIG_MAP[model_name]["hidden_dim"] lowerCAmelCase : List[str] = CONFIG_MAP[model_name]["width_coef"] lowerCAmelCase : int = CONFIG_MAP[model_name]["depth_coef"] lowerCAmelCase : Union[str, Any] = CONFIG_MAP[model_name]["image_size"] lowerCAmelCase : List[Any] = CONFIG_MAP[model_name]["dropout_rate"] lowerCAmelCase : Dict = CONFIG_MAP[model_name]["dw_padding"] lowerCAmelCase : str = "huggingface/label-files" lowerCAmelCase : Optional[int] = "imagenet-1k-id2label.json" lowerCAmelCase : Dict = 1_0_0_0 lowerCAmelCase : Tuple = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) lowerCAmelCase : List[str] = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCAmelCase : str = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} return config def a__ ( ): '''simple docstring''' lowerCAmelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase : Any = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[str] = CONFIG_MAP[model_name]["image_size"] lowerCAmelCase : Optional[int] = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=SCREAMING_SNAKE_CASE , ) return preprocessor def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : Tuple = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] lowerCAmelCase : Optional[int] = sorted(set(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : int = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = {b: str(SCREAMING_SNAKE_CASE ) for b, i in zip(SCREAMING_SNAKE_CASE , range(SCREAMING_SNAKE_CASE ) )} lowerCAmelCase : Dict = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: lowerCAmelCase : List[Any] = block_name_mapping[b] rename_keys.append((f"""block{b}_expand_conv/kernel:0""", f"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((f"""block{b}_expand_bn/gamma:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((f"""block{b}_expand_bn/beta:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (f"""block{b}_dwconv/depthwise_kernel:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((f"""block{b}_bn/gamma:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((f"""block{b}_bn/beta:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (f"""block{b}_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (f"""block{b}_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((f"""block{b}_se_reduce/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((f"""block{b}_se_reduce/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((f"""block{b}_se_expand/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((f"""block{b}_se_expand/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (f"""block{b}_project_conv/kernel:0""", f"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((f"""block{b}_project_bn/gamma:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((f"""block{b}_project_bn/beta:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (f"""block{b}_project_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (f"""block{b}_project_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) lowerCAmelCase : str = {} for item in rename_keys: if item[0] in original_param_names: lowerCAmelCase : Optional[int] = "efficientnet." + item[1] lowerCAmelCase : int = "classifier.weight" lowerCAmelCase : Union[str, Any] = "classifier.bias" return key_mapping def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue lowerCAmelCase : str = key_mapping[key] if "_conv" in key and "kernel" in key: lowerCAmelCase : Union[str, Any] = torch.from_numpy(SCREAMING_SNAKE_CASE ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowerCAmelCase : List[Any] = torch.from_numpy(SCREAMING_SNAKE_CASE ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowerCAmelCase : Any = torch.from_numpy(np.transpose(SCREAMING_SNAKE_CASE ) ) else: lowerCAmelCase : Any = torch.from_numpy(SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(SCREAMING_SNAKE_CASE ) @torch.no_grad() def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : Optional[int] = model_classes[model_name]( include_top=SCREAMING_SNAKE_CASE , weights="imagenet" , input_tensor=SCREAMING_SNAKE_CASE , input_shape=SCREAMING_SNAKE_CASE , pooling=SCREAMING_SNAKE_CASE , classes=1_0_0_0 , classifier_activation="softmax" , ) lowerCAmelCase : str = original_model.trainable_variables lowerCAmelCase : Union[str, Any] = original_model.non_trainable_variables lowerCAmelCase : int = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowerCAmelCase : int = param.numpy() lowerCAmelCase : Optional[int] = list(tf_params.keys() ) # Load HuggingFace model lowerCAmelCase : Tuple = get_efficientnet_config(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = EfficientNetForImageClassification(SCREAMING_SNAKE_CASE ).eval() lowerCAmelCase : List[Any] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) lowerCAmelCase : Optional[int] = rename_keys(SCREAMING_SNAKE_CASE ) replace_params(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image lowerCAmelCase : int = convert_image_processor(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = hf_model(**SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = outputs.logits.detach().numpy() # Original model inference lowerCAmelCase : int = False lowerCAmelCase : Any = CONFIG_MAP[model_name]["image_size"] lowerCAmelCase : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowerCAmelCase : Dict = image.img_to_array(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = np.expand_dims(SCREAMING_SNAKE_CASE , axis=0 ) lowerCAmelCase : Any = original_model.predict(SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(SCREAMING_SNAKE_CASE ): os.mkdir(SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(f"""Pushing converted {model_name} to the hub...""" ) lowerCAmelCase : Union[str, Any] = f"""efficientnet-{model_name}""" preprocessor.push_to_hub(SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') lowerCAmelCase__ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
704
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0_0 ): '''simple docstring''' return sum(e for e in range(3 , SCREAMING_SNAKE_CASE ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
681
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _lowercase ( unittest.TestCase ): def lowercase__ ( self ): debug_launcher(test_script.main ) def lowercase__ ( self ): debug_launcher(test_ops.main )
385
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowerCamelCase : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""GPTSw3Tokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys __lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
385
1
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def __lowerCAmelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ) -> Any: if isinstance(UpperCAmelCase__ , torch.Tensor ): return image elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowerCamelCase_ = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCamelCase_ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] lowerCamelCase_ = np.concatenate(UpperCAmelCase__ , axis=0 ) lowerCamelCase_ = np.array(UpperCAmelCase__ ).astype(np.floataa ) / 2_5_5.0 lowerCamelCase_ = image.transpose(0 , 3 , 1 , 2 ) lowerCamelCase_ = 2.0 * image - 1.0 lowerCamelCase_ = torch.from_numpy(UpperCAmelCase__ ) elif isinstance(image[0] , torch.Tensor ): lowerCamelCase_ = torch.cat(UpperCAmelCase__ , dim=0 ) return image def __lowerCAmelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple=0.9_9_9_5 ) -> List[str]: if not isinstance(UpperCAmelCase__ , np.ndarray ): lowerCamelCase_ = True lowerCamelCase_ = va.device lowerCamelCase_ = va.cpu().numpy() lowerCamelCase_ = va.cpu().numpy() lowerCamelCase_ = np.sum(va * va / (np.linalg.norm(UpperCAmelCase__ ) * np.linalg.norm(UpperCAmelCase__ )) ) if np.abs(UpperCAmelCase__ ) > DOT_THRESHOLD: lowerCamelCase_ = (1 - t) * va + t * va else: lowerCamelCase_ = np.arccos(UpperCAmelCase__ ) lowerCamelCase_ = np.sin(UpperCAmelCase__ ) lowerCamelCase_ = theta_a * t lowerCamelCase_ = np.sin(UpperCAmelCase__ ) lowerCamelCase_ = np.sin(theta_a - theta_t ) / sin_theta_a lowerCamelCase_ = sin_theta_t / sin_theta_a lowerCamelCase_ = sa * va + sa * va if inputs_are_torch: lowerCamelCase_ = torch.from_numpy(UpperCAmelCase__ ).to(UpperCAmelCase__ ) return va def __lowerCAmelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any ) -> List[Any]: lowerCamelCase_ = F.normalize(UpperCAmelCase__ , dim=-1 ) lowerCamelCase_ = F.normalize(UpperCAmelCase__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def __lowerCAmelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] ) -> Dict: for param in model.parameters(): lowerCamelCase_ = value class __A( UpperCAmelCase ): def __init__( self : Optional[int] , __UpperCamelCase : AutoencoderKL , __UpperCamelCase : CLIPTextModel , __UpperCamelCase : CLIPModel , __UpperCamelCase : CLIPTokenizer , __UpperCamelCase : UNetaDConditionModel , __UpperCamelCase : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , __UpperCamelCase : CLIPFeatureExtractor , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Optional[Any]=None , ): super().__init__() self.register_modules( vae=__UpperCamelCase , text_encoder=__UpperCamelCase , clip_model=__UpperCamelCase , tokenizer=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase , feature_extractor=__UpperCamelCase , coca_model=__UpperCamelCase , coca_tokenizer=__UpperCamelCase , coca_transform=__UpperCamelCase , ) lowerCamelCase_ = ( feature_extractor.size if isinstance(feature_extractor.size , __UpperCamelCase ) else feature_extractor.size["""shortest_edge"""] ) lowerCamelCase_ = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __UpperCamelCase ) set_requires_grad(self.clip_model , __UpperCamelCase ) def lowercase__ ( self : int , __UpperCamelCase : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCamelCase ) def lowercase__ ( self : int ): self.enable_attention_slicing(__UpperCamelCase ) def lowercase__ ( self : Dict ): set_requires_grad(self.vae , __UpperCamelCase ) def lowercase__ ( self : List[Any] ): set_requires_grad(self.vae , __UpperCamelCase ) def lowercase__ ( self : Tuple ): set_requires_grad(self.unet , __UpperCamelCase ) def lowercase__ ( self : Dict ): set_requires_grad(self.unet , __UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : Any ): # get the original timestep using init_timestep lowerCamelCase_ = min(int(num_inference_steps * strength ) , __UpperCamelCase ) lowerCamelCase_ = max(num_inference_steps - init_timestep , 0 ) lowerCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase__ ( self : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : str=None ): if not isinstance(__UpperCamelCase , torch.Tensor ): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(__UpperCamelCase )}''' ) lowerCamelCase_ = image.to(device=__UpperCamelCase , dtype=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ): lowerCamelCase_ = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__UpperCamelCase ) ] lowerCamelCase_ = torch.cat(__UpperCamelCase , dim=0 ) else: lowerCamelCase_ = self.vae.encode(__UpperCamelCase ).latent_dist.sample(__UpperCamelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ = 0.18215 * init_latents lowerCamelCase_ = init_latents.repeat_interleave(__UpperCamelCase , dim=0 ) lowerCamelCase_ = randn_tensor(init_latents.shape , generator=__UpperCamelCase , device=__UpperCamelCase , dtype=__UpperCamelCase ) # get latents lowerCamelCase_ = self.scheduler.add_noise(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = init_latents return latents def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[Any] ): lowerCamelCase_ = self.coca_transform(__UpperCamelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowerCamelCase_ = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) lowerCamelCase_ = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any ): lowerCamelCase_ = self.feature_extractor.preprocess(__UpperCamelCase ) lowerCamelCase_ = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() lowerCamelCase_ = self.clip_model.get_image_features(__UpperCamelCase ) lowerCamelCase_ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__UpperCamelCase ) lowerCamelCase_ = image_embeddings_clip.repeat_interleave(__UpperCamelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def lowercase__ ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : Tuple , ): lowerCamelCase_ = latents.detach().requires_grad_() lowerCamelCase_ = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual lowerCamelCase_ = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowerCamelCase_ = self.scheduler.alphas_cumprod[timestep] lowerCamelCase_ = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase_ = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowerCamelCase_ = torch.sqrt(__UpperCamelCase ) lowerCamelCase_ = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __UpperCamelCase ): lowerCamelCase_ = self.scheduler.sigmas[index] lowerCamelCase_ = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ = 1 / 0.18215 * sample lowerCamelCase_ = self.vae.decode(__UpperCamelCase ).sample lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ = transforms.Resize(self.feature_extractor_size )(__UpperCamelCase ) lowerCamelCase_ = self.normalize(__UpperCamelCase ).to(latents.dtype ) lowerCamelCase_ = self.clip_model.get_image_features(__UpperCamelCase ) lowerCamelCase_ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__UpperCamelCase ) lowerCamelCase_ = spherical_dist_loss(__UpperCamelCase , __UpperCamelCase ).mean() * clip_guidance_scale lowerCamelCase_ = -torch.autograd.grad(__UpperCamelCase , __UpperCamelCase )[0] if isinstance(self.scheduler , __UpperCamelCase ): lowerCamelCase_ = latents.detach() + grads * (sigma**2) lowerCamelCase_ = noise_pred_original else: lowerCamelCase_ = noise_pred_original - torch.sqrt(__UpperCamelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : List[Any] , __UpperCamelCase : Union[torch.FloatTensor, PIL.Image.Image] , __UpperCamelCase : Union[torch.FloatTensor, PIL.Image.Image] , __UpperCamelCase : Optional[str] = None , __UpperCamelCase : Optional[str] = None , __UpperCamelCase : Optional[int] = 5_1_2 , __UpperCamelCase : Optional[int] = 5_1_2 , __UpperCamelCase : float = 0.6 , __UpperCamelCase : Optional[int] = 5_0 , __UpperCamelCase : Optional[float] = 7.5 , __UpperCamelCase : Optional[int] = 1 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : Optional[float] = 1_0_0 , __UpperCamelCase : Optional[torch.Generator] = None , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , __UpperCamelCase : float = 0.8 , __UpperCamelCase : float = 0.1 , __UpperCamelCase : float = 0.1 , ): if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(__UpperCamelCase )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(__UpperCamelCase , torch.Generator ) and batch_size > 1: lowerCamelCase_ = [generator] + [None] * (batch_size - 1) lowerCamelCase_ = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] lowerCamelCase_ = [x[0] for x in coca_is_none if x[1]] lowerCamelCase_ = """, """.join(__UpperCamelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__UpperCamelCase ): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) lowerCamelCase_ = self.get_image_description(__UpperCamelCase ) if style_prompt is None: if len(__UpperCamelCase ): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) lowerCamelCase_ = self.get_image_description(__UpperCamelCase ) # get prompt text embeddings for content and style lowerCamelCase_ = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=__UpperCamelCase , return_tensors="""pt""" , ) lowerCamelCase_ = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowerCamelCase_ = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=__UpperCamelCase , return_tensors="""pt""" , ) lowerCamelCase_ = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowerCamelCase_ = slerp(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # duplicate text embeddings for each generation per prompt lowerCamelCase_ = text_embeddings.repeat_interleave(__UpperCamelCase , dim=0 ) # set timesteps lowerCamelCase_ = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowerCamelCase_ = {} if accepts_offset: lowerCamelCase_ = 1 self.scheduler.set_timesteps(__UpperCamelCase , **__UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowerCamelCase_ , lowerCamelCase_ = self.get_timesteps(__UpperCamelCase , __UpperCamelCase , self.device ) lowerCamelCase_ = timesteps[:1].repeat(__UpperCamelCase ) # Preprocess image lowerCamelCase_ = preprocess(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = self.prepare_latents( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , text_embeddings.dtype , self.device , __UpperCamelCase ) lowerCamelCase_ = preprocess(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = self.prepare_latents( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , text_embeddings.dtype , self.device , __UpperCamelCase ) lowerCamelCase_ = slerp(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if clip_guidance_scale > 0: lowerCamelCase_ = self.get_clip_image_embeddings(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = self.get_clip_image_embeddings(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = slerp( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ = content_text_input.input_ids.shape[-1] lowerCamelCase_ = self.tokenizer([""""""] , padding="""max_length""" , max_length=__UpperCamelCase , return_tensors="""pt""" ) lowerCamelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowerCamelCase_ = uncond_embeddings.repeat_interleave(__UpperCamelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase_ = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowerCamelCase_ = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device="""cpu""" , dtype=__UpperCamelCase ).to( self.device ) else: lowerCamelCase_ = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowerCamelCase_ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase_ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase_ = {} if accepts_eta: lowerCamelCase_ = eta # check if the scheduler accepts generator lowerCamelCase_ = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowerCamelCase_ = generator with self.progress_bar(total=__UpperCamelCase ): for i, t in enumerate(__UpperCamelCase ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual lowerCamelCase_ = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ , lowerCamelCase_ = noise_pred.chunk(2 ) lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowerCamelCase_ = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowerCamelCase_ , lowerCamelCase_ = self.cond_fn( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ = 1 / 0.18215 * latents lowerCamelCase_ = self.vae.decode(__UpperCamelCase ).sample lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__UpperCamelCase , nsfw_content_detected=__UpperCamelCase )
103
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer lowercase = logging.get_logger(__name__) lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } lowercase = {'''mobilebert-uncased''': 5_1_2} lowercase = {} class __A( UpperCAmelCase ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = MobileBertTokenizer def __init__( self : Union[str, Any] , __UpperCamelCase : str=None , __UpperCamelCase : str=None , __UpperCamelCase : Dict=True , __UpperCamelCase : Any="[UNK]" , __UpperCamelCase : str="[SEP]" , __UpperCamelCase : Dict="[PAD]" , __UpperCamelCase : List[str]="[CLS]" , __UpperCamelCase : Any="[MASK]" , __UpperCamelCase : Any=True , __UpperCamelCase : int=None , **__UpperCamelCase : Dict , ): super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , tokenize_chinese_chars=__UpperCamelCase , strip_accents=__UpperCamelCase , **__UpperCamelCase , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCamelCase ) != tokenize_chinese_chars ): lowerCamelCase_ = getattr(__UpperCamelCase , normalizer_state.pop("""type""" ) ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = strip_accents lowerCamelCase_ = tokenize_chinese_chars lowerCamelCase_ = normalizer_class(**__UpperCamelCase ) lowerCamelCase_ = do_lower_case def lowercase__ ( self : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict=None ): lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : Tuple , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): lowerCamelCase_ = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase )
103
1
"""simple docstring""" from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if not arr: return None, None, 0 if low == high: return low, high, arr[low] SCREAMING_SNAKE_CASE__ = (low + high) // 2 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = max_subarray(snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = max_subarray(snake_case__ , mid + 1 , snake_case__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = max_cross_sum(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = float("""-inf""" ), -1 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = float("""-inf""" ), -1 SCREAMING_SNAKE_CASE__ = 0 for i in range(snake_case__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: SCREAMING_SNAKE_CASE__ = summ SCREAMING_SNAKE_CASE__ = i SCREAMING_SNAKE_CASE__ = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: SCREAMING_SNAKE_CASE__ = summ SCREAMING_SNAKE_CASE__ = i return max_left, max_right, (left_sum + right_sum) def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [randint(1 , snake_case__ ) for _ in range(snake_case__ )] SCREAMING_SNAKE_CASE__ = time.time() max_subarray(snake_case__ , 0 , input_size - 1 ) SCREAMING_SNAKE_CASE__ = time.time() return end - start def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [10, 1_00, 10_00, 1_00_00, 5_00_00, 10_00_00, 20_00_00, 30_00_00, 40_00_00, 50_00_00] SCREAMING_SNAKE_CASE__ = [time_max_subarray(snake_case__ ) for input_size in input_sizes] print("""No of Inputs\t\tTime Taken""" ) for input_size, runtime in zip(snake_case__ , snake_case__ ): print(snake_case__ , """\t\t""" , snake_case__ ) plt.plot(snake_case__ , snake_case__ ) plt.xlabel("""Number of Inputs""" ) plt.ylabel("""Time taken in seconds""" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
196
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowerCamelCase (A__ ,unittest.TestCase ): lowerCamelCase__ : Union[str, Any] = BertJapaneseTokenizer lowerCamelCase__ : str = False lowerCamelCase__ : Optional[int] = True def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: super().setUp() SCREAMING_SNAKE_CASE__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ = """こんにちは、世界。 \nこんばんは、世界。""" SCREAMING_SNAKE_CASE__ = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.get_input_output_texts(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.decode(__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) return text, ids def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" ) self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" ) self.assertIsNotNone(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = """こんにちは、世界。\nこんばんは、世界。""" SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__UpperCAmelCase , """wb""" ) as handle: pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(__UpperCAmelCase , """rb""" ) as handle: SCREAMING_SNAKE_CASE__ = pickle.load(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_new.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: try: SCREAMING_SNAKE_CASE__ = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: try: SCREAMING_SNAKE_CASE__ = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = MecabTokenizer(do_lower_case=__UpperCAmelCase , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: try: SCREAMING_SNAKE_CASE__ = MecabTokenizer( do_lower_case=__UpperCAmelCase , normalize_text=__UpperCAmelCase , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = MecabTokenizer(normalize_text=__UpperCAmelCase , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = """こんにちは、世界。\nこんばんは、世界。""" SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__UpperCAmelCase , """wb""" ) as handle: pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(__UpperCAmelCase , """rb""" ) as handle: SCREAMING_SNAKE_CASE__ = pickle.load(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_new.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(do_lower_case=__UpperCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(normalize_text=__UpperCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(trim_whitespace=__UpperCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = """こんにちは、世界。\nこんばんは、世界。""" SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__UpperCAmelCase , """wb""" ) as handle: pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(__UpperCAmelCase , """rb""" ) as handle: SCREAMING_SNAKE_CASE__ = pickle.load(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_new.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: SCREAMING_SNAKE_CASE__ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ = JumanppTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = JumanppTokenizer(normalize_text=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = JumanppTokenizer(trim_whitespace=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] SCREAMING_SNAKE_CASE__ = {} for i, token in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = i SCREAMING_SNAKE_CASE__ = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) SCREAMING_SNAKE_CASE__ = tokenizer.subword_tokenizer SCREAMING_SNAKE_CASE__ = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" ) self.assertListEqual(__UpperCAmelCase , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] ) SCREAMING_SNAKE_CASE__ = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" ) self.assertListEqual(__UpperCAmelCase , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("""ありがとう。""" , add_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCamelCase (A__ ,unittest.TestCase ): lowerCamelCase__ : Dict = BertJapaneseTokenizer lowerCamelCase__ : Tuple = False def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: super().setUp() SCREAMING_SNAKE_CASE__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , **__UpperCAmelCase : List[Any] ) -> List[Any]: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ = """こんにちは、世界。 \nこんばんは、世界。""" SCREAMING_SNAKE_CASE__ = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" ) self.assertListEqual( __UpperCAmelCase , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2] ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] SCREAMING_SNAKE_CASE__ = {} for i, token in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = i SCREAMING_SNAKE_CASE__ = CharacterTokenizer(vocab=__UpperCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] ) self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("""ありがとう。""" , add_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE__ = """cl-tohoku/bert-base-japanese""" SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(__UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) SCREAMING_SNAKE_CASE__ = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(__UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
196
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
51
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ["model.decoder.embed_positions.weights"] def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" if "emb" in name: _UpperCamelCase : List[str] = name.replace("emb" ,"model.decoder.embed_tokens" ) if "transformer" in name: _UpperCamelCase : Optional[int] = name.replace("transformer" ,"model.decoder" ) if "cross_attention" in name: _UpperCamelCase : Optional[int] = name.replace("cross_attention" ,"encoder_attn" ) if "linear1" in name: _UpperCamelCase : Optional[Any] = name.replace("linear1" ,"fc1" ) if "linear2" in name: _UpperCamelCase : Union[str, Any] = name.replace("linear2" ,"fc2" ) if "norm1" in name: _UpperCamelCase : Optional[Any] = name.replace("norm1" ,"self_attn_layer_norm" ) if "norm_cross" in name: _UpperCamelCase : Dict = name.replace("norm_cross" ,"encoder_attn_layer_norm" ) if "norm2" in name: _UpperCamelCase : Union[str, Any] = name.replace("norm2" ,"final_layer_norm" ) if "out_norm" in name: _UpperCamelCase : Union[str, Any] = name.replace("out_norm" ,"model.decoder.layer_norm" ) if "linears" in name: _UpperCamelCase : List[str] = name.replace("linears" ,"lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _UpperCamelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" ,"enc_to_dec_proj" ) return name def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple[Dict, Dict]: """simple docstring""" _UpperCamelCase : str = list(state_dict.keys() ) _UpperCamelCase : Optional[Any] = {} for key in keys: _UpperCamelCase : Optional[int] = state_dict.pop(lowercase_ ) _UpperCamelCase : List[Any] = rename_keys(lowercase_ ) if "in_proj_weight" in key: # split fused qkv proj _UpperCamelCase : Tuple = val[:hidden_size, :] _UpperCamelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] _UpperCamelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _UpperCamelCase : Optional[Any] = val else: _UpperCamelCase : List[str] = val return state_dict, enc_dec_proj_state_dict def lowercase__ ( lowercase_ ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values _UpperCamelCase : List[Any] = 1_024 _UpperCamelCase : List[str] = 24 _UpperCamelCase : Any = 16 elif checkpoint == "medium": _UpperCamelCase : Tuple = 1_536 _UpperCamelCase : Dict = 48 _UpperCamelCase : Tuple = 24 elif checkpoint == "large": _UpperCamelCase : int = 2_048 _UpperCamelCase : Optional[int] = 48 _UpperCamelCase : Dict = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) _UpperCamelCase : str = MusicgenDecoderConfig( hidden_size=lowercase_ ,ffn_dim=hidden_size * 4 ,num_hidden_layers=lowercase_ ,num_attention_heads=lowercase_ ,) return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_="cpu" ) -> List[str]: """simple docstring""" _UpperCamelCase : str = MusicGen.get_pretrained(lowercase_ ,device=lowercase_ ) _UpperCamelCase : Union[str, Any] = decoder_config_from_checkpoint(lowercase_ ) _UpperCamelCase : Optional[int] = fairseq_model.lm.state_dict() _UpperCamelCase, _UpperCamelCase : Optional[Any] = rename_state_dict( lowercase_ ,hidden_size=decoder_config.hidden_size ) _UpperCamelCase : Tuple = TaEncoderModel.from_pretrained("t5-base" ) _UpperCamelCase : Union[str, Any] = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _UpperCamelCase : str = MusicgenForCausalLM(lowercase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _UpperCamelCase, _UpperCamelCase : str = decoder.load_state_dict(lowercase_ ,strict=lowercase_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase_ ) if len(lowercase_ ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(lowercase_ ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model _UpperCamelCase : str = MusicgenForConditionalGeneration(text_encoder=lowercase_ ,audio_encoder=lowercase_ ,decoder=lowercase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase_ ) # check we can do a forward pass _UpperCamelCase : List[str] = torch.arange(0 ,8 ,dtype=torch.long ).reshape(2 ,-1 ) _UpperCamelCase : Dict = input_ids.reshape(2 * 4 ,-1 ) with torch.no_grad(): _UpperCamelCase : Tuple = model(input_ids=lowercase_ ,decoder_input_ids=lowercase_ ).logits if logits.shape != (8, 1, 2_048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _UpperCamelCase : int = AutoTokenizer.from_pretrained("t5-base" ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" ,padding_side="left" ) _UpperCamelCase : Optional[int] = MusicgenProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) # set the appropriate bos/pad token ids _UpperCamelCase : str = 2_048 _UpperCamelCase : str = 2_048 # set other default generation config params _UpperCamelCase : Optional[Any] = int(30 * audio_encoder.config.frame_rate ) _UpperCamelCase : List[str] = True _UpperCamelCase : int = 3.0 if pytorch_dump_folder is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(lowercase_ ) processor.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowerCamelCase__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
51
1
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=14 , UpperCamelCase=7 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=99 , UpperCamelCase=32 , UpperCamelCase=5 , UpperCamelCase=4 , UpperCamelCase=37 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=512 , UpperCamelCase=16 , UpperCamelCase=2 , UpperCamelCase=0.02 , UpperCamelCase=3 , UpperCamelCase=4 , UpperCamelCase=None , ): """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_labels lowerCamelCase_ = use_mc_token_ids lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope lowerCamelCase_ = self.vocab_size - 1 def snake_case ( self ): """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None if self.use_mc_token_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() lowerCamelCase_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def snake_case ( self ): """simple docstring""" return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , *UpperCamelCase ): """simple docstring""" lowerCamelCase_ = CTRLModel(config=_snake_case ) model.to(_snake_case ) model.eval() model(_snake_case , token_type_ids=_snake_case , head_mask=_snake_case ) model(_snake_case , token_type_ids=_snake_case ) lowerCamelCase_ = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , *UpperCamelCase ): """simple docstring""" lowerCamelCase_ = CTRLLMHeadModel(_snake_case ) model.to(_snake_case ) model.eval() lowerCamelCase_ = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( lowerCamelCase_ ) = config_and_inputs lowerCamelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , *UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = CTRLForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class snake_case ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () _lowerCamelCase = (CTRLLMHeadModel,) if is_torch_available() else () _lowerCamelCase = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = CTRLModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=_snake_case , n_embd=37 ) def snake_case ( self ): """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_snake_case ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_snake_case ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def snake_case ( self ): """simple docstring""" pass @slow def snake_case ( self ): """simple docstring""" for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = CTRLModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def snake_case ( self ): """simple docstring""" pass @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = CTRLLMHeadModel.from_pretrained("ctrl" ) model.to(_snake_case ) lowerCamelCase_ = torch.tensor( [[1_1859, 0, 1611, 8]] , dtype=torch.long , device=_snake_case ) # Legal the president is lowerCamelCase_ = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowerCamelCase_ = model.generate(_snake_case , do_sample=_snake_case ) self.assertListEqual(output_ids[0].tolist() , _snake_case )
675
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : Any = Mock() _lowerCAmelCase : Dict = conn, Mock() _lowerCAmelCase : Optional[int] = iter([1, None] ) _lowerCAmelCase : Union[str, Any] = lambda lowerCAmelCase__ : next(lowerCAmelCase__ ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=lowerCAmelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
424
0
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py UpperCAmelCase_ : Union[str, Any] = """src/diffusers""" # Matches is_xxx_available() UpperCAmelCase_ : int = re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla UpperCAmelCase_ : List[str] = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") UpperCAmelCase_ : List[Any] = """ {0} = None """ UpperCAmelCase_ : Tuple = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ UpperCAmelCase_ : Optional[int] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def _lowerCAmelCase ( _a : Dict ) -> Dict: lowerCAmelCase_ : Optional[Any] = _re_backend.findall(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) == 0: return None return "_and_".join(UpperCAmelCase__ ) def _lowerCAmelCase ( ) -> Optional[int]: with open(os.path.join(UpperCAmelCase__ , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCAmelCase_ : List[Any] = f.readlines() # Get to the point we do the actual imports for type checking lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : str = {} # Go through the end of the file while line_index < len(UpperCAmelCase__ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCAmelCase_ : str = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 lowerCAmelCase_ : str = [] # Until we unindent, add backend objects to the list while line_index < len(UpperCAmelCase__ ) and len(lines[line_index] ) > 1: lowerCAmelCase_ : Tuple = lines[line_index] lowerCAmelCase_ : str = _re_single_line_import.search(UpperCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(UpperCAmelCase__ ) > 0: lowerCAmelCase_ : Tuple = objects else: line_index += 1 return backend_specific_objects def _lowerCAmelCase ( _a : List[str] , _a : List[str] ) -> List[Any]: if name.isupper(): return DUMMY_CONSTANT.format(UpperCAmelCase__ ) elif name.islower(): return DUMMY_FUNCTION.format(UpperCAmelCase__ , UpperCAmelCase__ ) else: return DUMMY_CLASS.format(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowerCAmelCase ( _a : Tuple=None ) -> Any: if backend_specific_objects is None: lowerCAmelCase_ : Optional[int] = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCAmelCase_ : Dict = {} for backend, objects in backend_specific_objects.items(): lowerCAmelCase_ : int = """[""" + """, """.join(F'"{b}"' for b in backend.split("""_and_""" ) ) + """]""" lowerCAmelCase_ : Dict = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(UpperCAmelCase__ , UpperCAmelCase__ ) for o in objects] ) lowerCAmelCase_ : int = dummy_file return dummy_files def _lowerCAmelCase ( _a : Union[str, Any]=False ) -> Optional[Any]: lowerCAmelCase_ : Union[str, Any] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCAmelCase_ : str = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. lowerCAmelCase_ : Union[str, Any] = os.path.join(UpperCAmelCase__ , """utils""" ) lowerCAmelCase_ : Tuple = { backend: os.path.join(UpperCAmelCase__ , F'dummy_{short_names.get(UpperCAmelCase__ , UpperCAmelCase__ )}_objects.py' ) for backend in dummy_files.keys() } lowerCAmelCase_ : Optional[Any] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(UpperCAmelCase__ ): with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCAmelCase_ : Dict = f.read() else: lowerCAmelCase_ : List[Any] = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(UpperCAmelCase__ , UpperCAmelCase__ )}_objects.py as the main ' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ F'diffusers.utils.dummy_{short_names.get(UpperCAmelCase__ , UpperCAmelCase__ )}_objects.py. Run `make fix-copies` ' """to fix this.""" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCAmelCase_ : Optional[int] = parser.parse_args() check_dummies(args.fix_and_overwrite)
715
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase_ : Tuple = """src/diffusers""" UpperCAmelCase_ : str = """.""" # This is to make sure the diffusers module imported is the one in the repo. UpperCAmelCase_ : Any = importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCAmelCase_ : Union[str, Any] = spec.loader.load_module() def _lowerCAmelCase ( _a : Optional[int] , _a : Optional[int] ) -> Tuple: return line.startswith(_a ) or len(_a ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , _a ) is not None def _lowerCAmelCase ( _a : List[Any] ) -> int: lowerCAmelCase_ : List[str] = object_name.split(""".""" ) lowerCAmelCase_ : List[Any] = 0 # First let's find the module where our object lives. lowerCAmelCase_ : Optional[int] = parts[i] while i < len(_a ) and not os.path.isfile(os.path.join(_a , F'{module}.py' ) ): i += 1 if i < len(_a ): lowerCAmelCase_ : Dict = os.path.join(_a , parts[i] ) if i >= len(_a ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(_a , F'{module}.py' ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCAmelCase_ : Union[str, Any] = f.readlines() # Now let's find the class / func in the code! lowerCAmelCase_ : List[Any] = """""" lowerCAmelCase_ : Optional[int] = 0 for name in parts[i + 1 :]: while ( line_index < len(_a ) and re.search(RF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_a ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowerCAmelCase_ : str = line_index while line_index < len(_a ) and _should_continue(lines[line_index] , _a ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowerCAmelCase_ : int = lines[start_index:line_index] return "".join(_a ) UpperCAmelCase_ : str = re.compile(r"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") UpperCAmelCase_ : int = re.compile(r"""^\s*(\S+)->(\S+)(\s+.*|$)""") UpperCAmelCase_ : List[str] = re.compile(r"""<FILL\s+[^>]*>""") def _lowerCAmelCase ( _a : Dict ) -> List[Any]: lowerCAmelCase_ : int = code.split("""\n""" ) lowerCAmelCase_ : Any = 0 while idx < len(_a ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_a ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def _lowerCAmelCase ( _a : Optional[int] ) -> Union[str, Any]: lowerCAmelCase_ : Tuple = len(get_indent(_a ) ) > 0 if has_indent: lowerCAmelCase_ : Union[str, Any] = F'class Bla:\n{code}' lowerCAmelCase_ : Tuple = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=_a ) lowerCAmelCase_ : str = black.format_str(_a , mode=_a ) lowerCAmelCase_ , lowerCAmelCase_ : List[str] = style_docstrings_in_code(_a ) return result[len("""class Bla:\n""" ) :] if has_indent else result def _lowerCAmelCase ( _a : Tuple , _a : str=False ) -> Tuple: with open(_a , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCAmelCase_ : List[str] = f.readlines() lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : Dict = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_a ): lowerCAmelCase_ : str = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = search.groups() lowerCAmelCase_ : List[Any] = find_code_in_diffusers(_a ) lowerCAmelCase_ : Tuple = get_indent(_a ) lowerCAmelCase_ : Union[str, Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 lowerCAmelCase_ : str = theoretical_indent lowerCAmelCase_ : Tuple = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowerCAmelCase_ : List[Any] = True while line_index < len(_a ) and should_continue: line_index += 1 if line_index >= len(_a ): break lowerCAmelCase_ : List[Any] = lines[line_index] lowerCAmelCase_ : Tuple = _should_continue(_a , _a ) and re.search(F'^{indent}# End copy' , _a ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowerCAmelCase_ : str = lines[start_index:line_index] lowerCAmelCase_ : Optional[Any] = """""".join(_a ) # Remove any nested `Copied from` comments to avoid circular copies lowerCAmelCase_ : Optional[int] = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(_a ) is None] lowerCAmelCase_ : str = """\n""".join(_a ) # Before comparing, use the `replace_pattern` on the original code. if len(_a ) > 0: lowerCAmelCase_ : List[str] = replace_pattern.replace("""with""" , """""" ).split(""",""" ) lowerCAmelCase_ : Any = [_re_replace_pattern.search(_a ) for p in patterns] for pattern in patterns: if pattern is None: continue lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pattern.groups() lowerCAmelCase_ : Union[str, Any] = re.sub(_a , _a , _a ) if option.strip() == "all-casing": lowerCAmelCase_ : Dict = re.sub(obja.lower() , obja.lower() , _a ) lowerCAmelCase_ : Dict = re.sub(obja.upper() , obja.upper() , _a ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowerCAmelCase_ : str = blackify(lines[start_index - 1] + theoretical_code ) lowerCAmelCase_ : Optional[Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: lowerCAmelCase_ : Any = lines[:start_index] + [theoretical_code] + lines[line_index:] lowerCAmelCase_ : Dict = start_index + 1 if overwrite and len(_a ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(_a , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_a ) return diffs def _lowerCAmelCase ( _a : bool = False ) -> List[Any]: lowerCAmelCase_ : Optional[Any] = glob.glob(os.path.join(_a , """**/*.py""" ) , recursive=_a ) lowerCAmelCase_ : Union[str, Any] = [] for filename in all_files: lowerCAmelCase_ : Union[str, Any] = is_copy_consistent(_a , _a ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(_a ) > 0: lowerCAmelCase_ : List[Any] = """\n""".join(_a ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCAmelCase_ : List[str] = parser.parse_args() check_copies(args.fix_and_overwrite)
440
0
"""simple docstring""" def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' while a != 0: lowerCAmelCase , lowerCAmelCase :Dict = b % a, a return b def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' if gcd(a__ , a__ ) != 1: lowerCAmelCase :Optional[Any] = F"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(a__ ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase :str = 1, 0, a lowerCAmelCase , lowerCAmelCase , lowerCAmelCase :Dict = 0, 1, m while va != 0: lowerCAmelCase :Dict = ua // va lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase :Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
553
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class __UpperCamelCase : def __init__( self : Union[str, Any] , UpperCAmelCase : List[Any] ) -> List[str]: lowerCAmelCase :Dict = str(id_ ) lowerCAmelCase :str = None lowerCAmelCase :Any = None lowerCAmelCase :List[str] = [] lowerCAmelCase :List[Any] = {} # {vertex:distance} def __lt__( self : Union[str, Any] , UpperCAmelCase : Any ) -> str: return self.key < other.key def __repr__( self : Union[str, Any] ) -> Dict: return self.id def UpperCAmelCase__ ( self : Any , UpperCAmelCase : Tuple ) -> List[str]: self.neighbors.append(UpperCAmelCase ) def UpperCAmelCase__ ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] ) -> Optional[int]: lowerCAmelCase :str = weight def UpperCAmelCase ( a__ , a__ , a__ , a__ ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , a__ ) graph[b - 1].add_edge(graph[a - 1] , a__ ) def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' lowerCAmelCase :List[str] = [] for u in graph: lowerCAmelCase :Tuple = math.inf lowerCAmelCase :Any = None lowerCAmelCase :Dict = 0 lowerCAmelCase :int = graph[:] while q: lowerCAmelCase :str = min(a__ ) q.remove(a__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowerCAmelCase :List[str] = u lowerCAmelCase :List[Any] = u.edges[v.id] for i in range(1 , len(a__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' for u in graph: lowerCAmelCase :List[str] = math.inf lowerCAmelCase :str = None lowerCAmelCase :Optional[int] = 0 lowerCAmelCase :Dict = list(a__ ) hq.heapify(a__ ) while h: lowerCAmelCase :Union[str, Any] = hq.heappop(a__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowerCAmelCase :int = u lowerCAmelCase :List[Any] = u.edges[v.id] hq.heapify(a__ ) for i in range(1 , len(a__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
553
1
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : Optional[int] = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowerCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
512
'''simple docstring''' import math def _lowerCAmelCase ( __a ) -> str: '''simple docstring''' _UpperCamelCase :Dict =0 _UpperCamelCase :List[str] =0 while num > 0: _UpperCamelCase :Any =num % 8 _UpperCamelCase :str =octal + (remainder * math.floor(math.pow(10 , __a ) )) counter += 1 _UpperCamelCase :int =math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'''0o{int(__a )}''' def _lowerCAmelCase ( ) -> None: '''simple docstring''' print("""\n2 in octal is:""" ) print(decimal_to_octal(2 ) ) # = 2 print("""\n8 in octal is:""" ) print(decimal_to_octal(8 ) ) # = 10 print("""\n65 in octal is:""" ) print(decimal_to_octal(65 ) ) # = 101 print("""\n216 in octal is:""" ) print(decimal_to_octal(2_16 ) ) # = 330 print("""\n512 in octal is:""" ) print(decimal_to_octal(5_12 ) ) # = 1000 print("""\n""" ) if __name__ == "__main__": main()
512
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A = logging.get_logger(__name__) __A = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "focalnet" def __init__(self : List[Any] , UpperCAmelCase_ : List[str]=224 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : Any=96 , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=[192, 384, 768, 768] , UpperCAmelCase_ : Optional[Any]=[2, 2, 6, 2] , UpperCAmelCase_ : Optional[Any]=[2, 2, 2, 2] , UpperCAmelCase_ : int=[3, 3, 3, 3] , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Optional[Any]=4.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : List[Any]=1E-4 , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Tuple=None , **UpperCAmelCase_ : Tuple , ) ->Optional[int]: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: str =image_size lowerCamelCase__: Tuple =patch_size lowerCamelCase__: List[str] =num_channels lowerCamelCase__: Dict =embed_dim lowerCamelCase__: str =use_conv_embed lowerCamelCase__: Union[str, Any] =hidden_sizes lowerCamelCase__: Optional[Any] =depths lowerCamelCase__: Union[str, Any] =focal_levels lowerCamelCase__: Optional[Any] =focal_windows lowerCamelCase__: Tuple =hidden_act lowerCamelCase__: List[str] =mlp_ratio lowerCamelCase__: Optional[int] =hidden_dropout_prob lowerCamelCase__: int =drop_path_rate lowerCamelCase__: List[str] =use_layerscale lowerCamelCase__: Optional[Any] =layerscale_value lowerCamelCase__: Dict =use_post_layernorm lowerCamelCase__: Any =use_post_layernorm_in_modulation lowerCamelCase__: List[Any] =normalize_modulator lowerCamelCase__: Union[str, Any] =initializer_range lowerCamelCase__: List[str] =layer_norm_eps lowerCamelCase__: Dict =encoder_stride lowerCamelCase__: Optional[Any] =["stem"] + [F"""stage{idx}""" for idx in range(1 , len(self.depths) + 1)] lowerCamelCase__ , lowerCamelCase__: Any =get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names)
59
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase_ (__A ): def __init__( self : List[Any] , lowerCAmelCase_ : TransformeraDModel , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : KarrasDiffusionSchedulers , lowerCAmelCase_ : Optional[Dict[int, str]] = None , ) -> List[Any]: super().__init__() self.register_modules(transformer=lowerCAmelCase_ , vae=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) # create a imagenet -> id dictionary for easier use UpperCAmelCase_ : str = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): UpperCAmelCase_ : Union[str, Any] = int(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = dict(sorted(self.labels.items() ) ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Union[str, List[str]] ) -> List[int]: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : str = list(lowerCAmelCase_ ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : float = 4.0 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : int = 50 , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase_ : Optional[int] = len(lowerCAmelCase_ ) UpperCAmelCase_ : int = self.transformer.config.sample_size UpperCAmelCase_ : Optional[Any] = self.transformer.config.in_channels UpperCAmelCase_ : Tuple = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowerCAmelCase_ , device=self.device , dtype=self.transformer.dtype , ) UpperCAmelCase_ : str = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents UpperCAmelCase_ : List[Any] = torch.tensor(lowerCAmelCase_ , device=self.device ).reshape(-1 ) UpperCAmelCase_ : Optional[Any] = torch.tensor([1_000] * batch_size , device=self.device ) UpperCAmelCase_ : int = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowerCAmelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: UpperCAmelCase_ : Optional[Any] = latent_model_input[: len(lowerCAmelCase_ ) // 2] UpperCAmelCase_ : int = torch.cat([half, half] , dim=0 ) UpperCAmelCase_ : Optional[int] = self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = t if not torch.is_tensor(lowerCAmelCase_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) UpperCAmelCase_ : List[Any] = latent_model_input.device.type == "mps" if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : Optional[int] = torch.floataa if is_mps else torch.floataa else: UpperCAmelCase_ : int = torch.intaa if is_mps else torch.intaa UpperCAmelCase_ : Optional[int] = torch.tensor([timesteps] , dtype=lowerCAmelCase_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: UpperCAmelCase_ : List[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ : List[Any] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output UpperCAmelCase_ : List[Any] = self.transformer( lowerCAmelCase_ , timestep=lowerCAmelCase_ , class_labels=lowerCAmelCase_ ).sample # perform guidance if guidance_scale > 1: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = torch.split(lowerCAmelCase_ , len(lowerCAmelCase_ ) // 2 , dim=0 ) UpperCAmelCase_ : Optional[Any] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) UpperCAmelCase_ : Tuple = torch.cat([half_eps, half_eps] , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = torch.split(lowerCAmelCase_ , lowerCAmelCase_ , dim=1 ) else: UpperCAmelCase_ : Optional[Any] = noise_pred # compute previous image: x_t -> x_t-1 UpperCAmelCase_ : Union[str, Any] = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample if guidance_scale > 1: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = latent_model_input.chunk(2 , dim=0 ) else: UpperCAmelCase_ : Optional[int] = latent_model_input UpperCAmelCase_ : Dict = 1 / self.vae.config.scaling_factor * latents UpperCAmelCase_ : Dict = self.vae.decode(lowerCAmelCase_ ).sample UpperCAmelCase_ : Tuple = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase_ : Optional[Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Optional[int] = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowerCAmelCase_ )
95
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = '▁' _lowerCAmelCase = {'vocab_file': 'spiece.model'} _lowerCAmelCase = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } _lowerCAmelCase = { 'google/reformer-crime-and-punishment': 52_42_88, } class UpperCamelCase (__snake_case ): _SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Any = ["""input_ids""", """attention_mask"""] def __init__( self :List[Any] , __magic_name__ :List[Any] , __magic_name__ :Union[str, Any]="</s>" , __magic_name__ :List[str]="<unk>" , __magic_name__ :List[Any]=[] , __magic_name__ :Optional[Dict[str, Any]] = None , **__magic_name__ :Optional[Any] , ) ->None: lowercase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__magic_name__ , unk_token=__magic_name__ , additional_special_tokens=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) lowercase : Tuple = vocab_file lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__magic_name__ ) @property def __snake_case ( self :Optional[int] ) ->Any: return self.sp_model.get_piece_size() def __snake_case ( self :Optional[Any] ) ->Dict[str, int]: lowercase : Union[str, Any] = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Union[str, Any] ) ->List[str]: lowercase : Tuple = self.__dict__.copy() lowercase : Optional[Any] = None return state def __setstate__( self :List[Any] , __magic_name__ :Optional[int] ) ->List[str]: lowercase : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase : int = {} lowercase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __snake_case ( self :Any , __magic_name__ :str ) ->List[str]: return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) def __snake_case ( self :Optional[Any] , __magic_name__ :Any ) ->Tuple: return self.sp_model.piece_to_id(__magic_name__ ) def __snake_case ( self :Dict , __magic_name__ :List[Any] ) ->Union[str, Any]: if index < self.sp_model.get_piece_size(): lowercase : Optional[Any] = self.sp_model.IdToPiece(__magic_name__ ) return token def __snake_case ( self :Tuple , __magic_name__ :Optional[int] ) ->Optional[int]: lowercase : Optional[int] = [] lowercase : List[Any] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__magic_name__ ) + token lowercase : int = [] else: current_sub_tokens.append(__magic_name__ ) out_string += self.sp_model.decode(__magic_name__ ) return out_string.strip() def __snake_case ( self :Optional[int] , __magic_name__ :str , __magic_name__ :Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(__magic_name__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : Any = os.path.join( __magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , """wb""" ) as fi: lowercase : List[str] = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,)
348
"""simple docstring""" import argparse import os import re import packaging.version _lowerCAmelCase = 'examples/' _lowerCAmelCase = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } _lowerCAmelCase = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } _lowerCAmelCase = 'README.md' def UpperCamelCase ( _A , _A , _A ) -> Optional[int]: with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase : str = f.read() lowercase , lowercase : Optional[int] = REPLACE_PATTERNS[pattern] lowercase : Optional[Any] = replace.replace("""VERSION""" , _A ) lowercase : Tuple = re_pattern.sub(_A , _A ) with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_A ) def UpperCamelCase ( _A ) -> List[str]: for folder, directories, fnames in os.walk(_A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_A , _A ) , _A , pattern="""examples""" ) def UpperCamelCase ( _A , _A=False ) -> Optional[Any]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_A , _A , _A ) if not patch: update_version_in_examples(_A ) def UpperCamelCase ( ) -> Any: lowercase : Any = """🤗 Transformers currently provides the following architectures""" lowercase : Dict = """1. Want to contribute a new model?""" with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase : str = f.readlines() # Find the start of the list. lowercase : int = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowercase : Optional[int] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): lowercase : List[str] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_A ) def UpperCamelCase ( ) -> Tuple: with open(REPLACE_FILES["""init"""] , """r""" ) as f: lowercase : List[str] = f.read() lowercase : List[Any] = REPLACE_PATTERNS["""init"""][0].search(_A ).groups()[0] return packaging.version.parse(_A ) def UpperCamelCase ( _A=False ) -> List[Any]: lowercase : str = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: lowercase : Union[str, Any] = default_version.base_version elif patch: lowercase : Optional[Any] = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: lowercase : List[str] = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. lowercase : Optional[int] = input(F"""Which version are you releasing? [{default_version}]""" ) if len(_A ) == 0: lowercase : Optional[int] = default_version print(F"""Updating version to {version}.""" ) global_version_update(_A , patch=_A ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def UpperCamelCase ( ) -> Tuple: lowercase : Any = get_version() lowercase : Optional[int] = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" lowercase : Dict = current_version.base_version # Check with the user we got that right. lowercase : List[Any] = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(_A ) == 0: lowercase : int = dev_version print(F"""Updating version to {version}.""" ) global_version_update(_A ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') _lowerCAmelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
348
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : Tuple = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : int = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys __UpperCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
241
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _snake_case ( _A ): _A = 'Speech2TextFeatureExtractor' _A = 'Speech2TextTokenizer' def __init__( self ,UpperCamelCase ,UpperCamelCase ) -> int: super().__init__(UpperCamelCase ,UpperCamelCase ) snake_case__ :int = self.feature_extractor snake_case__ :Any = False def __call__( self ,*UpperCamelCase ,**UpperCamelCase ) -> Optional[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCamelCase ,**UpperCamelCase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) snake_case__ :int = kwargs.pop("raw_speech" ) else: snake_case__ :Tuple = kwargs.pop("audio" ,UpperCamelCase ) snake_case__ :List[Any] = kwargs.pop("sampling_rate" ,UpperCamelCase ) snake_case__ :Tuple = kwargs.pop("text" ,UpperCamelCase ) if len(UpperCamelCase ) > 0: snake_case__ :str = args[0] snake_case__ :Tuple = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: snake_case__ :List[Any] = self.feature_extractor(UpperCamelCase ,*UpperCamelCase ,sampling_rate=UpperCamelCase ,**UpperCamelCase ) if text is not None: snake_case__ :List[Any] = self.tokenizer(UpperCamelCase ,**UpperCamelCase ) if text is None: return inputs elif audio is None: return encodings else: snake_case__ :Optional[Any] = encodings["input_ids"] return inputs def lowerCAmelCase_ ( self ,*UpperCamelCase ,**UpperCamelCase ) -> Any: return self.tokenizer.batch_decode(*UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,*UpperCamelCase ,**UpperCamelCase ) -> Optional[Any]: return self.tokenizer.decode(*UpperCamelCase ,**UpperCamelCase ) @contextmanager def lowerCAmelCase_ ( self ) -> Union[str, Any]: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) snake_case__ :Optional[int] = True snake_case__ :str = self.tokenizer yield snake_case__ :Optional[Any] = self.feature_extractor snake_case__ :Tuple = False
241
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCamelCase ( lowercase ): lowerCamelCase__: Optional[Any] = ['''image_processor''', '''tokenizer'''] lowerCamelCase__: Tuple = '''ChineseCLIPImageProcessor''' lowerCamelCase__: int = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , __snake_case=None , __snake_case=None , **__snake_case ) -> Tuple: """simple docstring""" UpperCAmelCase: str = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __snake_case , ) UpperCAmelCase: Any = kwargs.pop("feature_extractor" ) UpperCAmelCase: Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__snake_case , __snake_case ) UpperCAmelCase: Dict = self.image_processor def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case ) -> Dict: """simple docstring""" if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: UpperCAmelCase: str = self.tokenizer(__snake_case , return_tensors=__snake_case , **__snake_case ) if images is not None: UpperCAmelCase: Tuple = self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case ) if text is not None and images is not None: UpperCAmelCase: int = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__snake_case ) , tensor_type=__snake_case ) def A__ ( self , *__snake_case , **__snake_case ) -> Dict: """simple docstring""" return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def A__ ( self , *__snake_case , **__snake_case ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def A__ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase: Union[str, Any] = self.tokenizer.model_input_names UpperCAmelCase: Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A__ ( self ) -> List[str]: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __snake_case , ) return self.image_processor_class
166
from collections import deque class __lowerCamelCase : def __init__( self , __snake_case , __snake_case , __snake_case ) -> None: """simple docstring""" UpperCAmelCase: Tuple = process_name # process name UpperCAmelCase: Optional[int] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time UpperCAmelCase: Tuple = arrival_time UpperCAmelCase: List[Any] = burst_time # remaining burst time UpperCAmelCase: Optional[Any] = 0 # total time of the process wait in ready queue UpperCAmelCase: List[Any] = 0 # time from arrival time to completion time class __lowerCamelCase : def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" UpperCAmelCase: str = number_of_queues # time slice of queues that round robin algorithm applied UpperCAmelCase: str = time_slices # unfinished process is in this ready_queue UpperCAmelCase: Union[str, Any] = queue # current time UpperCAmelCase: Any = current_time # finished process is in this sequence queue UpperCAmelCase: deque[Process] = deque() def A__ ( self ) -> list[str]: """simple docstring""" UpperCAmelCase: str = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def A__ ( self , __snake_case ) -> list[int]: """simple docstring""" UpperCAmelCase: List[Any] = [] for i in range(len(__snake_case ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def A__ ( self , __snake_case ) -> list[int]: """simple docstring""" UpperCAmelCase: List[Any] = [] for i in range(len(__snake_case ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def A__ ( self , __snake_case ) -> list[int]: """simple docstring""" UpperCAmelCase: Tuple = [] for i in range(len(__snake_case ) ): completion_times.append(queue[i].stop_time ) return completion_times def A__ ( self , __snake_case ) -> list[int]: """simple docstring""" return [q.burst_time for q in queue] def A__ ( self , __snake_case ) -> int: """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def A__ ( self , __snake_case ) -> deque[Process]: """simple docstring""" UpperCAmelCase: deque[Process] = deque() # sequence deque of finished process while len(__snake_case ) != 0: UpperCAmelCase: Union[str, Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__snake_case ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 UpperCAmelCase: Optional[int] = 0 # set the process's turnaround time because it is finished UpperCAmelCase: Union[str, Any] = self.current_time - cp.arrival_time # set the completion time UpperCAmelCase: str = self.current_time # add the process to queue that has finished queue finished.append(__snake_case ) self.finish_queue.extend(__snake_case ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def A__ ( self , __snake_case , __snake_case ) -> tuple[deque[Process], deque[Process]]: """simple docstring""" UpperCAmelCase: deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__snake_case ) ): UpperCAmelCase: Optional[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__snake_case ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time UpperCAmelCase: Union[str, Any] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__snake_case ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished UpperCAmelCase: Optional[Any] = 0 # set the finish time UpperCAmelCase: Dict = self.current_time # update the process' turnaround time because it is finished UpperCAmelCase: Optional[Any] = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__snake_case ) self.finish_queue.extend(__snake_case ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def A__ ( self ) -> deque[Process]: """simple docstring""" for i in range(self.number_of_queues - 1 ): UpperCAmelCase , UpperCAmelCase: Dict = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest snake_case_ : Tuple = Process('P1', 0, 5_3) snake_case_ : List[str] = Process('P2', 0, 1_7) snake_case_ : Optional[Any] = Process('P3', 0, 6_8) snake_case_ : int = Process('P4', 0, 2_4) snake_case_ : Optional[Any] = 3 snake_case_ : Union[str, Any] = [1_7, 2_5] snake_case_ : Any = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) snake_case_ : List[Any] = Process('P1', 0, 5_3) snake_case_ : Optional[Any] = Process('P2', 0, 1_7) snake_case_ : Optional[int] = Process('P3', 0, 6_8) snake_case_ : List[Any] = Process('P4', 0, 2_4) snake_case_ : Tuple = 3 snake_case_ : Union[str, Any] = [1_7, 2_5] snake_case_ : Optional[int] = deque([Pa, Pa, Pa, Pa]) snake_case_ : Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) snake_case_ : int = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
166
1
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _a : Dict = logging.get_logger(__name__) def _a (lowercase__ : str , lowercase__ : str ) -> Tuple: """simple docstring""" __snake_case = RobertaPreLayerNormConfig.from_pretrained( lowercase__ , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __snake_case = torch.load(hf_hub_download(repo_id=lowercase__ , filename='pytorch_model.bin' ) ) __snake_case = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __snake_case = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __snake_case = tensor_value __snake_case = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowercase__ , config=lowercase__ , state_dict=lowercase__ ) model.save_pretrained(lowercase__ ) # convert tokenizer __snake_case = AutoTokenizer.from_pretrained(lowercase__ ) tokenizer.save_pretrained(lowercase__ ) if __name__ == "__main__": _a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _a : List[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
56
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=2 , lowerCAmelCase_=56 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=32 , lowerCAmelCase_=2 , lowerCAmelCase_=2 , lowerCAmelCase_=7 , lowerCAmelCase_="gelu_new" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=512 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=4 , lowerCAmelCase_="block_sparse" , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=2 , lowerCAmelCase_=3 , ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_attention_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_choices __lowercase = rescale_embeddings __lowercase = attention_type __lowercase = use_bias __lowercase = block_size __lowercase = num_random_blocks def snake_case__ ( self ): __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_attention_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self ): __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class snake_case ( __snake_case ,unittest.TestCase ): """simple docstring""" __lowerCAmelCase = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) __lowerCAmelCase = False __lowerCAmelCase = False def snake_case__ ( self ): __lowercase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self ): super().test_hidden_states_output() @slow def snake_case__ ( self ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(lowerCAmelCase_ ) def snake_case__ ( self ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ , lowerCAmelCase_=None , **lowerCAmelCase_ ): return model(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1E-5 , lowerCAmelCase_="outputs" , lowerCAmelCase_=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
321
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class lowercase : '''simple docstring''' lowerCAmelCase__ = MBartConfig lowerCAmelCase__ = {} lowerCAmelCase__ = "gelu" def __init__( self : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any]=13 , __lowerCamelCase : int=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : List[str]=False , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : int=37 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : List[Any]=20 , __lowerCamelCase : int=2 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : Optional[int]=0 , ) -> List[str]: '''simple docstring''' lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = eos_token_id lowerCamelCase__ = pad_token_id lowerCamelCase__ = bos_token_id def a__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase__ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase__ = prepare_mbart_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def a__ ( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : str ) -> Dict: '''simple docstring''' lowerCamelCase__ = TFMBartModel(config=__lowerCamelCase ).get_decoder() lowerCamelCase__ = inputs_dict["input_ids"] lowerCamelCase__ = input_ids[:1, :] lowerCamelCase__ = inputs_dict["attention_mask"][:1, :] lowerCamelCase__ = inputs_dict["head_mask"] lowerCamelCase__ = 1 # first forward pass lowerCamelCase__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ = outputs.to_tuple() lowerCamelCase__ = past_key_values[1] def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , ): if attention_mask is None: lowerCamelCase__ = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id) , tf.inta) if decoder_attention_mask is None: lowerCamelCase__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta), ] , axis=-1 , ) if head_mask is None: lowerCamelCase__ = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: lowerCamelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: lowerCamelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCAmelCase__ = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase__ = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False def a__ ( self : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Any ) -> List[str]: '''simple docstring''' if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def a__ ( self : str ) -> str: '''simple docstring''' lowerCamelCase__ = TFMBartModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=__lowerCamelCase ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def a__ ( self : Tuple ) -> List[str]: '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = [ " UN Chief Says There Is No Military Solution in Syria", ] lowerCAmelCase__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] lowerCAmelCase__ = "facebook/mbart-large-en-ro" @cached_property def a__ ( self : Dict ) -> int: '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def a__ ( self : Dict ) -> Optional[int]: '''simple docstring''' lowerCamelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def a__ ( self : str , **__lowerCamelCase : Dict ) -> Any: '''simple docstring''' lowerCamelCase__ = self.translate_src_text(**__lowerCamelCase ) self.assertListEqual(self.expected_text , __lowerCamelCase ) def a__ ( self : Any , **__lowerCamelCase : str ) -> Optional[int]: '''simple docstring''' lowerCamelCase__ = self.tokenizer(self.src_text , **__lowerCamelCase , return_tensors="tf" ) lowerCamelCase__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) lowerCamelCase__ = self.tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) return generated_words @slow def a__ ( self : Tuple ) -> Tuple: '''simple docstring''' self._assert_generated_batch_equal_expected()
187
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class lowercase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int=1 , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Dict ) -> str: '''simple docstring''' super().__init__(**__lowerCamelCase ) lowerCamelCase__ = vocab_size lowerCamelCase__ = d_embed lowerCamelCase__ = d_proj lowerCamelCase__ = cutoffs + [vocab_size] lowerCamelCase__ = [0] + self.cutoffs lowerCamelCase__ = div_val lowerCamelCase__ = self.cutoffs[0] lowerCamelCase__ = len(self.cutoffs ) - 1 lowerCamelCase__ = self.shortlist_size + self.n_clusters lowerCamelCase__ = keep_order lowerCamelCase__ = [] lowerCamelCase__ = [] def a__ ( self : Optional[int] , __lowerCamelCase : str ) -> List[str]: '''simple docstring''' if self.n_clusters > 0: lowerCamelCase__ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="zeros" , trainable=__lowerCamelCase , name="cluster_weight" ) lowerCamelCase__ = self.add_weight( shape=(self.n_clusters,) , initializer="zeros" , trainable=__lowerCamelCase , name="cluster_bias" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: lowerCamelCase__ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_projs_._{i}''' , ) self.out_projs.append(__lowerCamelCase ) else: self.out_projs.append(__lowerCamelCase ) lowerCamelCase__ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_layers_._{i}_._weight''' , ) lowerCamelCase__ = self.add_weight( shape=(self.vocab_size,) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): lowerCamelCase__ , lowerCamelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCamelCase__ = self.d_embed // (self.div_val**i) lowerCamelCase__ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_projs_._{i}''' ) self.out_projs.append(__lowerCamelCase ) lowerCamelCase__ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_layers_._{i}_._weight''' , ) lowerCamelCase__ = self.add_weight( shape=(r_idx - l_idx,) , initializer="zeros" , trainable=__lowerCamelCase , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(__lowerCamelCase ) @staticmethod def a__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str]=None ) -> str: '''simple docstring''' lowerCamelCase__ = x if proj is not None: lowerCamelCase__ = tf.einsum("ibd,ed->ibe" , __lowerCamelCase , __lowerCamelCase ) return tf.einsum("ibd,nd->ibn" , __lowerCamelCase , __lowerCamelCase ) + b @staticmethod def a__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = shape_list(__lowerCamelCase ) lowerCamelCase__ = tf.range(lp_size[0] , dtype=target.dtype ) lowerCamelCase__ = tf.stack([r, target] , 1 ) return tf.gather_nd(__lowerCamelCase , __lowerCamelCase ) def a__ ( self : Any , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : str=True , __lowerCamelCase : Tuple=False ) -> int: '''simple docstring''' lowerCamelCase__ = 0 if self.n_clusters == 0: lowerCamelCase__ = self._logit(__lowerCamelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: lowerCamelCase__ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=__lowerCamelCase , logits=__lowerCamelCase ) lowerCamelCase__ = tf.nn.log_softmax(__lowerCamelCase , axis=-1 ) else: lowerCamelCase__ = shape_list(__lowerCamelCase ) lowerCamelCase__ = [] lowerCamelCase__ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): lowerCamelCase__ , lowerCamelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: lowerCamelCase__ = (target >= l_idx) & (target < r_idx) lowerCamelCase__ = tf.where(__lowerCamelCase ) lowerCamelCase__ = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) - l_idx if self.div_val == 1: lowerCamelCase__ = self.out_layers[0][0][l_idx:r_idx] lowerCamelCase__ = self.out_layers[0][1][l_idx:r_idx] else: lowerCamelCase__ = self.out_layers[i][0] lowerCamelCase__ = self.out_layers[i][1] if i == 0: lowerCamelCase__ = tf.concat([cur_W, self.cluster_weight] , 0 ) lowerCamelCase__ = tf.concat([cur_b, self.cluster_bias] , 0 ) lowerCamelCase__ = self._logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.out_projs[0] ) lowerCamelCase__ = tf.nn.log_softmax(__lowerCamelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: lowerCamelCase__ = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ = self._gather_logprob(__lowerCamelCase , __lowerCamelCase ) else: lowerCamelCase__ = self._logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.out_projs[i] ) lowerCamelCase__ = tf.nn.log_softmax(__lowerCamelCase ) lowerCamelCase__ = self.cutoffs[0] + i - 1 # No probability for the head cluster lowerCamelCase__ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(__lowerCamelCase ) if target is not None: lowerCamelCase__ = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ = self._gather_logprob(__lowerCamelCase , __lowerCamelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(__lowerCamelCase , -cur_logprob , shape_list(__lowerCamelCase ) ) lowerCamelCase__ = tf.concat(__lowerCamelCase , axis=-1 ) if target is not None: if return_mean: lowerCamelCase__ = tf.reduce_mean(__lowerCamelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(__lowerCamelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(__lowerCamelCase , name=self.name , aggregation="mean" if return_mean else "" ) return out
187
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ : Union[str, Any] = logging.get_logger(__name__) lowercase_ : List[str] = {'''vocab_file''': '''spiece.model'''} lowercase_ : str = { '''vocab_file''': { '''bert_for_seq_generation''': ( '''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model''' ), } } lowercase_ : List[Any] = {'''bert_for_seq_generation''': 5_12} class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = [] A__ = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case__ , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<::::>" , snake_case__ = None , **snake_case__ , ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) _SCREAMING_SNAKE_CASE : Dict = vocab_file _SCREAMING_SNAKE_CASE : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" return self.sp_model.get_piece_size() def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = self.__dict__.copy() _SCREAMING_SNAKE_CASE : List[Any] = None return state def __setstate__( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _SCREAMING_SNAKE_CASE : Union[str, Any] = {} _SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" return self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) return token def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : Union[str, Any] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token _SCREAMING_SNAKE_CASE : Tuple = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _SCREAMING_SNAKE_CASE : int = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , "wb" ) as fi: _SCREAMING_SNAKE_CASE : Dict = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
572
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCamelCase ( UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = KandinskyVaaImgaImgPipeline snake_case = ["image_embeds", "negative_image_embeds", "image"] snake_case = [ "image_embeds", "negative_image_embeds", "image", ] snake_case = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case = False @property def _snake_case ( self )->Optional[int]: '''simple docstring''' return 32 @property def _snake_case ( self )->Optional[Any]: '''simple docstring''' return 32 @property def _snake_case ( self )->List[Any]: '''simple docstring''' return self.time_input_dim @property def _snake_case ( self )->str: '''simple docstring''' return self.time_input_dim * 4 @property def _snake_case ( self )->Union[str, Any]: '''simple docstring''' return 100 @property def _snake_case ( self )->Optional[int]: '''simple docstring''' torch.manual_seed(0 ) A_ : Optional[int] = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } A_ : Tuple = UNetaDConditionModel(**_SCREAMING_SNAKE_CASE ) return model @property def _snake_case ( self )->int: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _snake_case ( self )->Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ : int = VQModel(**self.dummy_movq_kwargs ) return model def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Dict = self.dummy_unet A_ : Optional[int] = self.dummy_movq A_ : Dict = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } A_ : List[Any] = DDIMScheduler(**_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 )->List[str]: '''simple docstring''' A_ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) A_ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _SCREAMING_SNAKE_CASE ) # create init_image A_ : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) A_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ : Optional[int] = Image.fromarray(np.uinta(_SCREAMING_SNAKE_CASE ) ).convert('''RGB''' ).resize((256, 256) ) if str(_SCREAMING_SNAKE_CASE ).startswith('''mps''' ): A_ : Optional[int] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: A_ : Tuple = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) A_ : Dict = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Any = '''cpu''' A_ : List[str] = self.get_dummy_components() A_ : Any = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) A_ : int = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : List[str] = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) A_ : Optional[Any] = output.images A_ : Union[str, Any] = pipe( **self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) , return_dict=_SCREAMING_SNAKE_CASE , )[0] A_ : Any = image[0, -3:, -3:, -1] A_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : Any = np.array( [0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self )->Dict: '''simple docstring''' A_ : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) A_ : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) A_ : Dict = '''A red cartoon frog, 4k''' A_ : List[str] = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_SCREAMING_SNAKE_CASE ) A_ : int = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) A_ : int = pipeline.to(_SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = torch.Generator(device='''cpu''' ).manual_seed(0 ) A_ , A_ : Optional[Any] = pipe_prior( _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() A_ : List[Any] = pipeline( image=_SCREAMING_SNAKE_CASE , image_embeds=_SCREAMING_SNAKE_CASE , negative_image_embeds=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) A_ : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
590
0
import numpy as np def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = int(np.ceil((x_end - xa) / h ) ) lowerCamelCase_ = np.zeros((n + 1,) ) lowerCamelCase_ = ya lowerCamelCase_ = xa for k in range(lowerCamelCase__ ): lowerCamelCase_ = f(lowerCamelCase__ , y[k] ) lowerCamelCase_ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowerCamelCase_ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowerCamelCase_ = f(x + h , y[k] + h * ka ) lowerCamelCase_ = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
313
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A =logging.get_logger(__name__) __A ={ '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'vit' def __init__( self , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.0_2 , lowercase=1e-12 , lowercase=224 , lowercase=16 , lowercase=3 , lowercase=True , lowercase=16 , **lowercase , ) -> int: super().__init__(**lowercase ) lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = qkv_bias lowerCamelCase_ = encoder_stride class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE_( self ) -> float: return 1e-4
313
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class _A: """simple docstring""" def __init__( self , _A , _A=13 , _A=7 , _A=False , _A=True , _A=False , _A=False , _A=19 , _A=32 , _A=5 , _A=4 , _A=37 , _A="gelu" , _A=0.1 , _A=0.1 , _A=512 , _A=16 , _A=2 , _A=0.0_2 , _A=3 , _A=4 , _A=None , ): __A : int = parent __A : Dict = batch_size __A : List[str] = seq_length __A : str = is_training __A : str = use_input_mask __A : Optional[Any] = use_token_type_ids __A : List[Any] = use_labels __A : int = vocab_size __A : List[Any] = hidden_size __A : Optional[Any] = num_hidden_layers __A : Any = num_attention_heads __A : Optional[int] = intermediate_size __A : int = hidden_act __A : Dict = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[int] = max_position_embeddings __A : Optional[Any] = type_vocab_size __A : Optional[Any] = type_sequence_label_size __A : Tuple = initializer_range __A : Dict = num_labels __A : List[Any] = num_choices __A : Union[str, Any] = scope def UpperCAmelCase_ ( self ): __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : List[Any] = None if self.use_input_mask: __A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __A : Union[str, Any] = None __A : Optional[int] = None __A : int = None if self.use_labels: __A : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A : Dict = ids_tensor([self.batch_size] , self.num_choices ) __A : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self ): __A : Any = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=_A , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A ): __A : Union[str, Any] = EsmForProteinFolding(config=_A ).float() model.to(_A ) model.eval() __A : Optional[int] = model(_A , attention_mask=_A ) __A : Tuple = model(_A ) __A : Tuple = model(_A ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def UpperCAmelCase_ ( self ): __A : Optional[int] = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) : Tuple = config_and_inputs __A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _A( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Union[str, Any] = False UpperCamelCase : Dict = (EsmForProteinFolding,) if is_torch_available() else () UpperCamelCase : Dict = () UpperCamelCase : Optional[int] = {} if is_torch_available() else {} UpperCamelCase : str = False def UpperCAmelCase_ ( self ): __A : Union[str, Any] = EsmFoldModelTester(self ) __A : Dict = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCAmelCase_ ( self ): self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ): __A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) @unittest.skip('Does not support attention outputs' ) def UpperCAmelCase_ ( self ): pass @unittest.skip def UpperCAmelCase_ ( self ): pass @unittest.skip('Esm does not support embedding resizing' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('Esm does not support embedding resizing' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('ESMFold does not support passing input embeds!' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('ESMFold does not support head pruning.' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('ESMFold does not support head pruning.' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('ESMFold does not support head pruning.' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('ESMFold does not support head pruning.' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('ESMFold does not support head pruning.' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('ESMFold only has one output format.' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('ESMFold does not support input chunking.' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase_ ( self ): pass @require_torch class _A( snake_case__ ): """simple docstring""" @slow def UpperCAmelCase_ ( self ): __A : List[Any] = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() __A : Optional[Any] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __A : Any = model(_A )['positions'] __A : Union[str, Any] = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -1_0.9_3_3_4] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , _A , atol=1e-4 ) )
239
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Any = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class _A( snake_case__ ): """simple docstring""" UpperCamelCase : Any = '''fnet''' def __init__( self , _A=32000 , _A=768 , _A=12 , _A=3072 , _A="gelu_new" , _A=0.1 , _A=512 , _A=4 , _A=0.0_2 , _A=1e-1_2 , _A=False , _A=512 , _A=3 , _A=1 , _A=2 , **_A , ): super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) __A : str = vocab_size __A : Union[str, Any] = max_position_embeddings __A : Union[str, Any] = hidden_size __A : Optional[int] = num_hidden_layers __A : str = intermediate_size __A : Tuple = hidden_act __A : Tuple = hidden_dropout_prob __A : List[Any] = initializer_range __A : List[str] = type_vocab_size __A : Optional[Any] = layer_norm_eps __A : Tuple = use_tpu_fourier_optimizations __A : Optional[int] = tpu_short_seq_length
239
1
"""simple docstring""" import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1024 , lowerCAmelCase__=1024 , lowerCAmelCase__=False , **lowerCAmelCase__ ): UpperCAmelCase_ = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ = SeqaSeqDataset(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , type_path="train" , **lowerCAmelCase__ ) UpperCAmelCase_ = tok.pad_token_id def get_lens(lowerCAmelCase__ ): UpperCAmelCase_ = tqdm( DataLoader(lowerCAmelCase__ , batch_size=512 , num_workers=8 , shuffle=lowerCAmelCase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ = [] for batch in dl: UpperCAmelCase_ = batch["input_ids"].ne(lowerCAmelCase__ ).sum(1 ).tolist() UpperCAmelCase_ = batch["labels"].ne(lowerCAmelCase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowerCAmelCase__ , lowerCAmelCase__ ): max_lens.append(max(lowerCAmelCase__ , lowerCAmelCase__ ) ) else: max_lens.extend(lowerCAmelCase__ ) return max_lens UpperCAmelCase_ = get_lens(lowerCAmelCase__ ) UpperCAmelCase_ = SeqaSeqDataset(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , type_path="val" , **lowerCAmelCase__ ) UpperCAmelCase_ = get_lens(lowerCAmelCase__ ) pickle_save(lowerCAmelCase__ , train_ds.len_file ) pickle_save(lowerCAmelCase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
703
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) == 0: return [] UpperCAmelCase_ , UpperCAmelCase_ = min(lowerCAmelCase__ ), max(lowerCAmelCase__ ) UpperCAmelCase_ = int(max_value - min_value ) + 1 UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )] for i in my_list: buckets[int(i - min_value )].append(lowerCAmelCase__ ) return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
14
0
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowercase ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Tuple = MobileBertTokenizer _UpperCamelCase : List[Any] = MobileBertTokenizerFast _UpperCamelCase : List[Any] = True _UpperCamelCase : Optional[int] = True _UpperCamelCase : List[str] = filter_non_english _UpperCamelCase : Any = """google/mobilebert-uncased""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().setUp() _snake_case : Tuple = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) _snake_case : Optional[Any] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __UpperCAmelCase ( self : str , lowerCamelCase_ : Dict ): '''simple docstring''' _snake_case : Any = """UNwant\u00E9d,running""" _snake_case : Optional[Any] = """unwanted, running""" return input_text, output_text def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : List[str] = self.tokenizer_class(self.vocab_file ) _snake_case : Union[str, Any] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(snake_case__ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [9, 6, 7, 12, 10, 11] ) def __UpperCAmelCase ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return _snake_case : int = self.get_tokenizer() _snake_case : int = self.get_rust_tokenizer() _snake_case : List[Any] = """UNwant\u00E9d,running""" _snake_case : Tuple = tokenizer.tokenize(snake_case__ ) _snake_case : str = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) _snake_case : Union[str, Any] = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) _snake_case : Any = rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) _snake_case : int = self.get_rust_tokenizer() _snake_case : Any = tokenizer.encode(snake_case__ ) _snake_case : Tuple = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # With lower casing _snake_case : List[Any] = self.get_tokenizer(do_lower_case=snake_case__ ) _snake_case : Any = self.get_rust_tokenizer(do_lower_case=snake_case__ ) _snake_case : Any = """UNwant\u00E9d,running""" _snake_case : List[str] = tokenizer.tokenize(snake_case__ ) _snake_case : List[str] = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) _snake_case : Any = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) _snake_case : str = rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) _snake_case : List[Any] = self.get_rust_tokenizer() _snake_case : Tuple = tokenizer.encode(snake_case__ ) _snake_case : str = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : str = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : List[Any] = BasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : List[str] = BasicTokenizer(do_lower_case=snake_case__ , strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = BasicTokenizer(do_lower_case=snake_case__ , strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : str = BasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = BasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : List[Any] = BasicTokenizer(do_lower_case=snake_case__ , strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Tuple = BasicTokenizer(do_lower_case=snake_case__ , strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = BasicTokenizer(do_lower_case=snake_case__ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _snake_case : Union[str, Any] = {} for i, token in enumerate(snake_case__ ): _snake_case : int = i _snake_case : Union[str, Any] = WordpieceTokenizer(vocab=snake_case__ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def __UpperCAmelCase ( self : int ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = self.get_tokenizer() _snake_case : int = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(snake_case__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(snake_case__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : List[str] = self.tokenizer_class.from_pretrained('google/mobilebert-uncased' ) _snake_case : Optional[int] = tokenizer.encode('sequence builders' , add_special_tokens=snake_case__ ) _snake_case : Optional[Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=snake_case__ ) _snake_case : int = tokenizer.build_inputs_with_special_tokens(snake_case__ ) _snake_case : Any = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case : Any = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _snake_case : Any = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _snake_case : Dict = tokenizer_r.encode_plus( snake_case__ , return_attention_mask=snake_case__ , return_token_type_ids=snake_case__ , return_offsets_mapping=snake_case__ , add_special_tokens=snake_case__ , ) _snake_case : str = tokenizer_r.do_lower_case if hasattr(snake_case__ , 'do_lower_case' ) else False _snake_case : Any = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : str = ["""的""", """人""", """有"""] _snake_case : Optional[int] = """""".join(snake_case__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case : Tuple = True _snake_case : List[str] = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _snake_case : int = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _snake_case : Dict = tokenizer_p.encode(snake_case__ , add_special_tokens=snake_case__ ) _snake_case : int = tokenizer_r.encode(snake_case__ , add_special_tokens=snake_case__ ) _snake_case : Tuple = tokenizer_r.convert_ids_to_tokens(snake_case__ ) _snake_case : Any = tokenizer_p.convert_ids_to_tokens(snake_case__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) _snake_case : Union[str, Any] = False _snake_case : Dict = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _snake_case : str = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _snake_case : int = tokenizer_r.encode(snake_case__ , add_special_tokens=snake_case__ ) _snake_case : Tuple = tokenizer_p.encode(snake_case__ , add_special_tokens=snake_case__ ) _snake_case : Optional[Any] = tokenizer_r.convert_ids_to_tokens(snake_case__ ) _snake_case : Optional[int] = tokenizer_p.convert_ids_to_tokens(snake_case__ ) # it is expected that only the first Chinese character is not preceded by "##". _snake_case : Dict = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(snake_case__ ) ] self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ )
304
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' @register_to_config def __init__( self, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ = False, ) -> Any: """simple docstring""" super().__init__() lowercase_ : str = nn.Embedding(snake_case__, snake_case__ ) lowercase_ : Dict = nn.Embedding(snake_case__, snake_case__ ) lowercase_ : List[str] = False lowercase_ : Optional[int] = nn.Dropout(p=snake_case__ ) lowercase_ : Any = TaConfig( vocab_size=snake_case__, d_model=snake_case__, num_heads=snake_case__, d_kv=snake_case__, d_ff=snake_case__, dropout_rate=snake_case__, feed_forward_proj=snake_case__, is_decoder=snake_case__, is_encoder_decoder=snake_case__, ) lowercase_ : List[Any] = nn.ModuleList() for lyr_num in range(snake_case__ ): lowercase_ : List[str] = TaBlock(snake_case__ ) self.encoders.append(snake_case__ ) lowercase_ : Tuple = TaLayerNorm(snake_case__ ) lowercase_ : Dict = nn.Dropout(p=snake_case__ ) def snake_case__ ( self, snake_case__, snake_case__ ) -> Union[str, Any]: """simple docstring""" lowercase_ : Union[str, Any] = self.token_embedder(snake_case__ ) lowercase_ : Tuple = encoder_input_tokens.shape[1] lowercase_ : List[str] = torch.arange(snake_case__, device=encoder_input_tokens.device ) x += self.position_encoding(snake_case__ ) lowercase_ : Union[str, Any] = self.dropout_pre(snake_case__ ) # inverted the attention mask lowercase_ : List[str] = encoder_input_tokens.size() lowercase_ : Union[str, Any] = self.get_extended_attention_mask(snake_case__, snake_case__ ) for lyr in self.encoders: lowercase_ : Optional[Any] = lyr(snake_case__, snake_case__ )[0] lowercase_ : Dict = self.layer_norm(snake_case__ ) return self.dropout_post(snake_case__ ), encoder_inputs_mask
458
0
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance UpperCAmelCase__ : Optional[Any] =6_378_137.0 UpperCAmelCase__ : Any =6_356_752.314_245 UpperCAmelCase__ : Optional[int] =6_37_81_37 def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float: lowerCamelCase =(AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude lowerCamelCase =atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) lowerCamelCase =atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius lowerCamelCase =haversine_distance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values lowerCamelCase =(b_lata + b_lata) / 2 lowerCamelCase =(b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) lowerCamelCase =(sin(_UpperCAmelCase ) ** 2) * (cos(_UpperCAmelCase ) ** 2) lowerCamelCase =cos(sigma / 2 ) ** 2 lowerCamelCase =(sigma - sin(_UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) lowerCamelCase =(cos(_UpperCAmelCase ) ** 2) * (sin(_UpperCAmelCase ) ** 2) lowerCamelCase =sin(sigma / 2 ) ** 2 lowerCamelCase =(sigma + sin(_UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
269
from math import sqrt def _lowercase ( _UpperCAmelCase ) -> int: lowerCamelCase =0 for i in range(1 , int(sqrt(_UpperCAmelCase ) + 1 ) ): if n % i == 0 and i != sqrt(_UpperCAmelCase ): total += i + n // i elif i == sqrt(_UpperCAmelCase ): total += i return total - n def _lowercase ( _UpperCAmelCase = 1_00_00 ) -> int: lowerCamelCase =sum( i for i in range(1 , _UpperCAmelCase ) if sum_of_divisors(sum_of_divisors(_UpperCAmelCase ) ) == i and sum_of_divisors(_UpperCAmelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
269
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : List[Any] = '''dandelin/vilt-b32-finetuned-vqa''' UpperCamelCase_ : int = ( '''This is a tool that answers a question about an image. It takes an input named `image` which should be the ''' '''image containing the information, as well as a `question` which should be the question in English. It ''' '''returns a text that is the answer to the question.''' ) UpperCamelCase_ : int = '''image_qa''' UpperCamelCase_ : int = AutoProcessor UpperCamelCase_ : List[Any] = AutoModelForVisualQuestionAnswering UpperCamelCase_ : Optional[int] = ['''image''', '''text'''] UpperCamelCase_ : Optional[Any] = ['''text'''] def __init__( self : Optional[Any] , *A_ : Union[str, Any] , **A_ : Dict ) -> Optional[Any]: requires_backends(self , ['''vision'''] ) super().__init__(*A_ , **A_ ) def lowercase ( self : Union[str, Any] , A_ : "Image" , A_ : str ) -> Optional[int]: return self.pre_processor(A_ , A_ , return_tensors='''pt''' ) def lowercase ( self : str , A_ : Dict ) -> Tuple: with torch.no_grad(): return self.model(**A_ ).logits def lowercase ( self : Union[str, Any] , A_ : Any ) -> Dict: __snake_case = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
564
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = '''segformer''' def __init__( self : Optional[Any] , A_ : Tuple=3 , A_ : int=4 , A_ : int=[2, 2, 2, 2] , A_ : Any=[8, 4, 2, 1] , A_ : str=[32, 64, 160, 256] , A_ : str=[7, 3, 3, 3] , A_ : Dict=[4, 2, 2, 2] , A_ : List[str]=[1, 2, 5, 8] , A_ : Union[str, Any]=[4, 4, 4, 4] , A_ : Union[str, Any]="gelu" , A_ : int=0.0 , A_ : Tuple=0.0 , A_ : List[str]=0.1 , A_ : Tuple=0.02 , A_ : Optional[Any]=0.1 , A_ : int=1E-6 , A_ : Optional[int]=256 , A_ : Tuple=255 , **A_ : str , ) -> str: super().__init__(**A_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( '''Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be''' ''' removed, as the behaviour will default to that of reshape_last_stage = True.''' , A_ , ) __snake_case = num_channels __snake_case = num_encoder_blocks __snake_case = depths __snake_case = sr_ratios __snake_case = hidden_sizes __snake_case = patch_sizes __snake_case = strides __snake_case = mlp_ratios __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = classifier_dropout_prob __snake_case = initializer_range __snake_case = drop_path_rate __snake_case = layer_norm_eps __snake_case = decoder_hidden_size __snake_case = kwargs.get('''reshape_last_stage''' , A_ ) __snake_case = semantic_loss_ignore_index class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = version.parse('''1.11''' ) @property def lowercase ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase ( self : List[Any] ) -> float: return 1E-4 @property def lowercase ( self : Any ) -> int: return 12
564
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) a_ : Optional[Any] = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = ['LayoutLMv2FeatureExtractor'] a_ : int = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys a_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
708
a_ : Dict = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) a_ : str = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 12, 'Pm': 15, 'Em': 18, 'Zm': 21, 'Ym': 24, } def _SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : str , snake_case_ : str ): __magic_name__ = from_type.lower().strip('''s''' ) __magic_name__ = to_type.lower().strip('''s''' ) __magic_name__ = UNIT_SYMBOL.get(snake_case_ , snake_case_ ) __magic_name__ = UNIT_SYMBOL.get(snake_case_ , snake_case_ ) if from_sanitized not in METRIC_CONVERSION: __magic_name__ = ( f'Invalid \'from_type\' value: {from_type!r}.\n' f'Conversion abbreviations are: {", ".join(snake_case_ )}' ) raise ValueError(snake_case_ ) if to_sanitized not in METRIC_CONVERSION: __magic_name__ = ( f'Invalid \'to_type\' value: {to_type!r}.\n' f'Conversion abbreviations are: {", ".join(snake_case_ )}' ) raise ValueError(snake_case_ ) __magic_name__ = METRIC_CONVERSION[from_sanitized] __magic_name__ = METRIC_CONVERSION[to_sanitized] __magic_name__ = 1 if from_exponent > to_exponent: __magic_name__ = from_exponent - to_exponent else: __magic_name__ = -(to_exponent - from_exponent) return value * pow(10 , snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
678
0
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def a__ ( *snake_case ): """simple docstring""" with open(snake_case , '''r''' ) as fh: fcntl.flock(snake_case , fcntl.LOCK_EX ) try: print(*snake_case ) finally: fcntl.flock(snake_case , fcntl.LOCK_UN ) lowercase_ = int(os.environ["""LOCAL_RANK"""]) torch.cuda.set_device(local_rank) lowercase_ = torch.device("""cuda""", local_rank) lowercase_ = socket.gethostname() lowercase_ = f'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group("""nccl""") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank lowercase_ = dist.get_rank() lowercase_ = dist.get_world_size() printflock(f'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(f'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(f'''{gpu} is broken''') raise
74
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _snake_case : Optional[int] = logging.get_logger(__name__) class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Optional[Any] , *lowerCamelCase : Any , **lowerCamelCase : Union[str, Any] ) -> None: warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
81
0
__lowercase : List[Any] = '''Input must be a string of 8 numbers plus letter''' __lowercase : List[str] = '''TRWAGMYFPDXBNJZSQVHLCKE''' def lowercase ( __A : str ) -> bool: '''simple docstring''' if not isinstance(__A , __A ): snake_case : Dict = f"""Expected string as input, found {type(__A ).__name__}""" raise TypeError(__A ) snake_case : List[str] = spanish_id.replace("""-""" , """""" ).upper() if len(__A ) != 9: raise ValueError(__A ) try: snake_case : Optional[int] = int(spanish_id_clean[0:8] ) snake_case : Dict = spanish_id_clean[8] except ValueError as ex: raise ValueError(__A ) from ex if letter.isdigit(): raise ValueError(__A ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
315
def lowercase ( __A : int = 100_0000 ) -> int: '''simple docstring''' snake_case : Union[str, Any] = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __A ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
315
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[str] = DebertaTokenizer A_ : Union[str, Any] = True A_ : Union[str, Any] = DebertaTokenizerFast def a (self : List[str] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __snake_case = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __snake_case = {'''unk_token''': '''[UNK]'''} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(a__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(a__ ) ) def a (self : List[str] , **a__ : Tuple ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **a__ ) def a (self : Union[str, Any] , a__ : str ): """simple docstring""" __snake_case = '''lower newer''' __snake_case = '''lower newer''' return input_text, output_text def a (self : List[Any] ): """simple docstring""" __snake_case = self.get_tokenizer() __snake_case = '''lower newer''' __snake_case = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def a (self : Any ): """simple docstring""" __snake_case = self.get_tokenizer() __snake_case = tokenizer('''Hello''' , '''World''' ) __snake_case = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , a__ ) @slow def a (self : List[Any] ): """simple docstring""" __snake_case = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __snake_case = tokenizer.encode('''sequence builders''' , add_special_tokens=a__ ) __snake_case = tokenizer.encode('''multi-sequence build''' , add_special_tokens=a__ ) __snake_case = tokenizer.encode( '''sequence builders''' , add_special_tokens=a__ , add_prefix_space=a__ ) __snake_case = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=a__ , add_prefix_space=a__ ) __snake_case = tokenizer.build_inputs_with_special_tokens(a__ ) __snake_case = tokenizer.build_inputs_with_special_tokens(a__ , a__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def a (self : List[str] ): """simple docstring""" __snake_case = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __snake_case = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __snake_case = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __snake_case = tokenizer(a__ , padding=a__ ) __snake_case = [tokenizer.decode(a__ , skip_special_tokens=a__ ) for seq in encoding['''input_ids''']] # fmt: off __snake_case = { '''input_ids''': [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __snake_case = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , a__ ) for expected, decoded in zip(a__ , a__ ): self.assertEqual(a__ , a__ )
592
from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: dict , SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: set , SCREAMING_SNAKE_CASE_: set , SCREAMING_SNAKE_CASE_: dict , SCREAMING_SNAKE_CASE_: dict , SCREAMING_SNAKE_CASE_: PriorityQueue , SCREAMING_SNAKE_CASE_: dict , SCREAMING_SNAKE_CASE_: float | int , ) -> float | int: '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue A__ = cst_fwd.get(SCREAMING_SNAKE_CASE_ , np.inf ) A__ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A__ = new_cost_f A__ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A__ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: dict , SCREAMING_SNAKE_CASE_: dict ) -> int: '''simple docstring''' A__ = -1 A__ = set() A__ = set() A__ = {source: 0} A__ = {destination: 0} A__ = {source: None} A__ = {destination: None} A__ = PriorityQueue() A__ = PriorityQueue() A__ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A__ , A__ = queue_forward.get() visited_forward.add(SCREAMING_SNAKE_CASE_ ) A__ , A__ = queue_backward.get() visited_backward.add(SCREAMING_SNAKE_CASE_ ) A__ = pass_and_relaxation( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) A__ = pass_and_relaxation( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A__ = shortest_distance return shortest_path_distance lowerCAmelCase__ = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } lowerCAmelCase__ = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
514
0
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowercase = False lowercase = logging.get_logger(__name__) lowercase = '''ybelkada/fonts''' def UpperCAmelCase_ ( ): '''simple docstring''' if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ "Pix2StructImageProcessor. Please upgrade torch." ) def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' requires_backends(lowercase__ , ["torch"] ) _check_torch_version() a_ =image_tensor.unsqueeze(0 ) a_ =torch.nn.functional.unfold(lowercase__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) a_ =patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , lowercase__ , lowercase__ , -1 ) a_ =patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase_ ( lowercase__ , lowercase__ = 3_6 , lowercase__ = "black" , lowercase__ = "white" , lowercase__ = 5 , lowercase__ = 5 , lowercase__ = 5 , lowercase__ = 5 , lowercase__ = None , lowercase__ = None , ): '''simple docstring''' requires_backends(lowercase__ , "vision" ) # Add new lines so that each line is no more than 80 characters. a_ =textwrap.TextWrapper(width=8_0 ) a_ =wrapper.wrap(text=lowercase__ ) a_ ="\n".join(lowercase__ ) if font_bytes is not None and font_path is None: a_ =io.BytesIO(lowercase__ ) elif font_path is not None: a_ =font_path else: a_ =hf_hub_download(lowercase__ , "Arial.TTF" ) a_ =ImageFont.truetype(lowercase__ , encoding="UTF-8" , size=lowercase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. a_ =ImageDraw.Draw(Image.new("RGB" , (1, 1) , lowercase__ ) ) a_ , a_ , a_ , a_ =temp_draw.textbbox((0, 0) , lowercase__ , lowercase__ ) # Create the actual image with a bit of padding around the text. a_ =text_width + left_padding + right_padding a_ =text_height + top_padding + bottom_padding a_ =Image.new("RGB" , (image_width, image_height) , lowercase__ ) a_ =ImageDraw.Draw(lowercase__ ) draw.text(xy=(left_padding, top_padding) , text=lowercase__ , fill=lowercase__ , font=lowercase__ ) return image def UpperCAmelCase_ ( lowercase__ , lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(lowercase__ , "vision" ) # Convert to PIL image if necessary a_ =to_pil_image(lowercase__ ) a_ =render_text(lowercase__ , **lowercase__ ) a_ =max(header_image.width , image.width ) a_ =int(image.height * (new_width / image.width) ) a_ =int(header_image.height * (new_width / header_image.width) ) a_ =Image.new("RGB" , (new_width, new_height + new_header_height) , "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary a_ =to_numpy_array(lowercase__ ) if infer_channel_dimension_format(lowercase__ ) == ChannelDimension.LAST: a_ =to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) return new_image class UpperCAmelCase ( __a): '''simple docstring''' __magic_name__ : int = ["flattened_patches"] def __init__( self , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = 2_0_4_8 , lowerCAmelCase_ = False , **lowerCAmelCase_ , ) -> None: """simple docstring""" super().__init__(**lowerCAmelCase_) a_ =patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} a_ =do_normalize a_ =do_convert_rgb a_ =max_patches a_ =is_vqa def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_) -> np.ndarray: """simple docstring""" requires_backends(self.extract_flattened_patches , "torch") _check_torch_version() # convert to torch a_ =to_channel_dimension_format(lowerCAmelCase_ , ChannelDimension.FIRST) a_ =torch.from_numpy(lowerCAmelCase_) a_ , a_ =patch_size["height"], patch_size["width"] a_ , a_ =get_image_size(lowerCAmelCase_) # maximize scale s.t. a_ =math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width)) a_ =max(min(math.floor(scale * image_height / patch_height) , lowerCAmelCase_) , 1) a_ =max(min(math.floor(scale * image_width / patch_width) , lowerCAmelCase_) , 1) a_ =max(num_feasible_rows * patch_height , 1) a_ =max(num_feasible_cols * patch_width , 1) a_ =torch.nn.functional.interpolate( image.unsqueeze(0) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=lowerCAmelCase_ , antialias=lowerCAmelCase_ , ).squeeze(0) # [1, rows, columns, patch_height * patch_width * image_channels] a_ =torch_extract_patches(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) a_ =patches.shape a_ =patches_shape[1] a_ =patches_shape[2] a_ =patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] a_ =patches.reshape([rows * columns, depth]) # [rows * columns, 1] a_ =torch.arange(lowerCAmelCase_).reshape([rows, 1]).repeat(1 , lowerCAmelCase_).reshape([rows * columns, 1]) a_ =torch.arange(lowerCAmelCase_).reshape([1, columns]).repeat(lowerCAmelCase_ , 1).reshape([rows * columns, 1]) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] a_ =row_ids.to(torch.floataa) a_ =col_ids.to(torch.floataa) # [rows * columns, 2 + patch_height * patch_width * image_channels] a_ =torch.cat([row_ids, col_ids, patches] , -1) # [max_patches, 2 + patch_height * patch_width * image_channels] a_ =torch.nn.functional.pad(lowerCAmelCase_ , [0, 0, 0, max_patches - (rows * columns)]).float() a_ =to_numpy_array(lowerCAmelCase_) return result def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_) -> np.ndarray: """simple docstring""" if image.dtype == np.uinta: a_ =image.astype(np.floataa) # take mean across the whole `image` a_ =np.mean(lowerCAmelCase_) a_ =np.std(lowerCAmelCase_) a_ =max(lowerCAmelCase_ , 1.0 / math.sqrt(np.prod(image.shape))) return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , **lowerCAmelCase_) def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , **lowerCAmelCase_ , ) -> ImageInput: """simple docstring""" a_ =do_normalize if do_normalize is not None else self.do_normalize a_ =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb a_ =patch_size if patch_size is not None else self.patch_size a_ =max_patches if max_patches is not None else self.max_patches a_ =self.is_vqa if kwargs.get("data_format" , lowerCAmelCase_) is not None: raise ValueError("data_format is not an accepted input as the outputs are ") a_ =make_list_of_images(lowerCAmelCase_) if not valid_images(lowerCAmelCase_): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") # PIL RGBA images are converted to RGB if do_convert_rgb: a_ =[convert_to_rgb(lowerCAmelCase_) for image in images] # All transformations expect numpy arrays. a_ =[to_numpy_array(lowerCAmelCase_) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models.") a_ =kwargs.pop("font_bytes" , lowerCAmelCase_) a_ =kwargs.pop("font_path" , lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_): a_ =[header_text] * len(lowerCAmelCase_) a_ =[ render_header(lowerCAmelCase_ , header_text[i] , font_bytes=lowerCAmelCase_ , font_path=lowerCAmelCase_) for i, image in enumerate(lowerCAmelCase_) ] if do_normalize: a_ =[self.normalize(image=lowerCAmelCase_) for image in images] # convert to torch tensor and permute a_ =[ self.extract_flattened_patches(image=lowerCAmelCase_ , max_patches=lowerCAmelCase_ , patch_size=lowerCAmelCase_) for image in images ] # create attention mask in numpy a_ =[(image.sum(axis=-1) != 0).astype(np.floataa) for image in images] a_ =BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=lowerCAmelCase_) return encoded_outputs
720
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowercase = logging.get_logger(__name__) set_seed(770) lowercase = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } lowercase = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } lowercase = os.path.dirname(os.path.abspath(__file__)) lowercase = os.path.join(os.path.expanduser('''~'''), '''.cache''') lowercase = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def UpperCAmelCase_ ( lowercase__ , lowercase__=False ): '''simple docstring''' a_ =model_type if use_small: key += "_small" return os.path.join(lowercase__ , REMOTE_MODEL_PATHS[key]["file_name"] ) def UpperCAmelCase_ ( lowercase__ , lowercase__ ): '''simple docstring''' os.makedirs(lowercase__ , exist_ok=lowercase__ ) hf_hub_download(repo_id=lowercase__ , filename=lowercase__ , local_dir=lowercase__ ) def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__=False , lowercase__="text" ): '''simple docstring''' if model_type == "text": a_ =BarkSemanticModel a_ =BarkSemanticConfig a_ =BarkSemanticGenerationConfig elif model_type == "coarse": a_ =BarkCoarseModel a_ =BarkCoarseConfig a_ =BarkCoarseGenerationConfig elif model_type == "fine": a_ =BarkFineModel a_ =BarkFineConfig a_ =BarkFineGenerationConfig else: raise NotImplementedError() a_ =F"""{model_type}_small""" if use_small else model_type a_ =REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowercase__ ): logger.info(F"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info["repo_id"] , model_info["file_name"] ) a_ =torch.load(lowercase__ , map_location=lowercase__ ) # this is a hack a_ =checkpoint["model_args"] if "input_vocab_size" not in model_args: a_ =model_args["vocab_size"] a_ =model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments a_ =model_args.pop("n_head" ) a_ =model_args.pop("n_embd" ) a_ =model_args.pop("n_layer" ) a_ =ConfigClass(**checkpoint["model_args"] ) a_ =ModelClass(config=lowercase__ ) a_ =GenerationConfigClass() a_ =model_generation_config a_ =checkpoint["model"] # fixup checkpoint a_ ="_orig_mod." for k, v in list(state_dict.items() ): if k.startswith(lowercase__ ): # replace part of the key with corresponding layer name in HF implementation a_ =k[len(lowercase__ ) :] for old_layer_name in new_layer_name_dict: a_ =new_k.replace(lowercase__ , new_layer_name_dict[old_layer_name] ) a_ =state_dict.pop(lowercase__ ) a_ =set(state_dict.keys() ) - set(model.state_dict().keys() ) a_ ={k for k in extra_keys if not k.endswith(".attn.bias" )} a_ =set(model.state_dict().keys() ) - set(state_dict.keys() ) a_ ={k for k in missing_keys if not k.endswith(".attn.bias" )} if len(lowercase__ ) != 0: raise ValueError(F"""extra keys found: {extra_keys}""" ) if len(lowercase__ ) != 0: raise ValueError(F"""missing keys: {missing_keys}""" ) model.load_state_dict(lowercase__ , strict=lowercase__ ) a_ =model.num_parameters(exclude_embeddings=lowercase__ ) a_ =checkpoint["best_val_loss"].item() logger.info(F"""model loaded: {round(n_params/1E6 , 1 )}M params, {round(lowercase__ , 3 )} loss""" ) model.eval() model.to(lowercase__ ) del checkpoint, state_dict return model def UpperCAmelCase_ ( lowercase__ , lowercase__=False , lowercase__="text" ): '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() a_ ="cpu" # do conversion on cpu a_ =_get_ckpt_path(lowercase__ , use_small=lowercase__ ) a_ =_load_model(lowercase__ , lowercase__ , model_type=lowercase__ , use_small=lowercase__ ) # load bark initial model a_ =_bark_load_model(lowercase__ , "cpu" , model_type=lowercase__ , use_small=lowercase__ ) if model_type == "text": a_ =bark_model["model"] if model.num_parameters(exclude_embeddings=lowercase__ ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model a_ =5 a_ =1_0 if model_type in ["text", "coarse"]: a_ =torch.randint(2_5_6 , (batch_size, sequence_length) , dtype=torch.int ) a_ =bark_model(lowercase__ )[0] a_ =model(lowercase__ ) # take last logits a_ =output_new_model_total.logits[:, [-1], :] else: a_ =3 a_ =8 a_ =torch.randint(2_5_6 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) a_ =model(lowercase__ , lowercase__ ) a_ =bark_model(lowercase__ , lowercase__ ) a_ =output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("initial and new outputs are not equal" ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): '''simple docstring''' a_ =os.path.join(lowercase__ , lowercase__ ) a_ =BarkSemanticConfig.from_pretrained(os.path.join(lowercase__ , "config.json" ) ) a_ =BarkCoarseConfig.from_pretrained(os.path.join(lowercase__ , "config.json" ) ) a_ =BarkFineConfig.from_pretrained(os.path.join(lowercase__ , "config.json" ) ) a_ =EncodecConfig.from_pretrained("facebook/encodec_24khz" ) a_ =BarkSemanticModel.from_pretrained(lowercase__ ) a_ =BarkCoarseModel.from_pretrained(lowercase__ ) a_ =BarkFineModel.from_pretrained(lowercase__ ) a_ =EncodecModel.from_pretrained("facebook/encodec_24khz" ) a_ =BarkConfig.from_sub_model_configs( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) a_ =BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) a_ =BarkModel(lowercase__ ) a_ =semantic a_ =coarseAcoustic a_ =fineAcoustic a_ =codec a_ =bark_generation_config Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) bark.save_pretrained(lowercase__ , repo_id=lowercase__ , push_to_hub=lowercase__ ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') lowercase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
41
0
def __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: _lowercase: Any = mf_knapsack(i - 1 , __magic_name__ , __magic_name__ , __magic_name__ ) else: _lowercase: Dict = max( mf_knapsack(i - 1 , __magic_name__ , __magic_name__ , __magic_name__ ) , mf_knapsack(i - 1 , __magic_name__ , __magic_name__ , j - wt[i - 1] ) + val[i - 1] , ) _lowercase: str = val return f[i][j] def __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): _lowercase: Optional[int] = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: _lowercase: str = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: _lowercase: str = dp[i - 1][w_] return dp[n][w_], dp def __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ ): if not (isinstance(__magic_name__ , (list, tuple) ) and isinstance(__magic_name__ , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) _lowercase: Optional[int] = len(__magic_name__ ) if num_items != len(__magic_name__ ): _lowercase: List[str] = ( "The number of weights must be the same as the number of values.\n" f"But got {num_items} weights and {len(__magic_name__ )} values" ) raise ValueError(__magic_name__ ) for i in range(__magic_name__ ): if not isinstance(wt[i] , __magic_name__ ): _lowercase: List[Any] = ( "All weights must be integers but got weight of " f"type {type(wt[i] )} at index {i}" ) raise TypeError(__magic_name__ ) _lowercase , _lowercase: int = knapsack(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowercase: int = set() _construct_solution(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) return optimal_val, example_optional_set def __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(__magic_name__ , __magic_name__ , i - 1 , __magic_name__ , __magic_name__ ) else: optimal_set.add(__magic_name__ ) _construct_solution(__magic_name__ , __magic_name__ , i - 1 , j - wt[i - 1] , __magic_name__ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[Any] = [3, 2, 4, 4] _SCREAMING_SNAKE_CASE : Union[str, Any] = [4, 3, 2, 3] _SCREAMING_SNAKE_CASE : Optional[int] = 4 _SCREAMING_SNAKE_CASE : Optional[int] = 6 _SCREAMING_SNAKE_CASE : Tuple = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _SCREAMING_SNAKE_CASE : str = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _SCREAMING_SNAKE_CASE : Dict = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
226
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration SCREAMING_SNAKE_CASE__:str = HfArgumentParser(InitializationArguments) SCREAMING_SNAKE_CASE__:List[str] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization SCREAMING_SNAKE_CASE__:List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks SCREAMING_SNAKE_CASE__:Union[str, Any] = { """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) SCREAMING_SNAKE_CASE__:Optional[int] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config SCREAMING_SNAKE_CASE__:Tuple = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
528
0
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowercase ( UpperCamelCase_ ): _lowerCamelCase : BigBirdConfig _lowerCamelCase : jnp.dtype= jnp.floataa _lowerCamelCase : bool= True def _snake_case ( self) -> Dict: super().setup() UpperCAmelCase_ : str = nn.Dense(5 , dtype=self.dtype) def __call__( self , *_snake_case , **_snake_case) -> List[Any]: UpperCAmelCase_ : Optional[Any] = super().__call__(*_a , **_a) UpperCAmelCase_ : List[Any] = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class lowercase ( UpperCamelCase_ ): _lowerCamelCase : List[str]= FlaxBigBirdForNaturalQuestionsModule def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' def cross_entropy(UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ): UpperCAmelCase_ : Dict = logits.shape[-1] UpperCAmelCase_ : str = (labels[..., None] == jnp.arange(__lowerCAmelCase )[None]).astype('f4' ) UpperCAmelCase_ : Optional[Any] = jax.nn.log_softmax(__lowerCAmelCase ,axis=-1 ) UpperCAmelCase_ : int = -jnp.sum(labels * logits ,axis=-1 ) if reduction is not None: UpperCAmelCase_ : str = reduction(__lowerCAmelCase ) return loss UpperCAmelCase_ : List[str] = partial(__lowerCAmelCase ,reduction=jnp.mean ) UpperCAmelCase_ : str = cross_entropy(__lowerCAmelCase ,__lowerCAmelCase ) UpperCAmelCase_ : Union[str, Any] = cross_entropy(__lowerCAmelCase ,__lowerCAmelCase ) UpperCAmelCase_ : List[Any] = cross_entropy(__lowerCAmelCase ,__lowerCAmelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowercase : _lowerCamelCase : str= "google/bigbird-roberta-base" _lowerCamelCase : int= 3000 _lowerCamelCase : int= 10500 _lowerCamelCase : int= 128 _lowerCamelCase : int= 3 _lowerCamelCase : int= 1 _lowerCamelCase : int= 5 # tx_args _lowerCamelCase : float= 3e-5 _lowerCamelCase : float= 0.0 _lowerCamelCase : int= 20000 _lowerCamelCase : float= 0.0095 _lowerCamelCase : str= "bigbird-roberta-natural-questions" _lowerCamelCase : str= "training-expt" _lowerCamelCase : str= "data/nq-training.jsonl" _lowerCamelCase : str= "data/nq-validation.jsonl" def _snake_case ( self) -> Optional[int]: os.makedirs(self.base_dir , exist_ok=_a) UpperCAmelCase_ : Tuple = os.path.join(self.base_dir , self.save_dir) UpperCAmelCase_ : Optional[int] = self.batch_size_per_device * jax.device_count() @dataclass class lowercase : _lowerCamelCase : int _lowerCamelCase : int= 4096 # no dynamic padding on TPUs def __call__( self , _snake_case) -> int: UpperCAmelCase_ : int = self.collate_fn(_a) UpperCAmelCase_ : List[str] = jax.tree_util.tree_map(_a , _a) return batch def _snake_case ( self , _snake_case) -> Optional[int]: UpperCAmelCase_ : int = self.fetch_inputs(features['input_ids']) UpperCAmelCase_ : Tuple = { """input_ids""": jnp.array(_a , dtype=jnp.intaa), """attention_mask""": jnp.array(_a , dtype=jnp.intaa), """start_labels""": jnp.array(features['start_token'] , dtype=jnp.intaa), """end_labels""": jnp.array(features['end_token'] , dtype=jnp.intaa), """pooled_labels""": jnp.array(features['category'] , dtype=jnp.intaa), } return batch def _snake_case ( self , _snake_case) -> List[str]: UpperCAmelCase_ : str = [self._fetch_inputs(_a) for ids in input_ids] return zip(*_a) def _snake_case ( self , _snake_case) -> int: UpperCAmelCase_ : List[str] = [1 for _ in range(len(_a))] while len(_a) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ) -> List[str]: '''simple docstring''' if seed is not None: UpperCAmelCase_ : Optional[int] = dataset.shuffle(seed=__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) // batch_size ): UpperCAmelCase_ : Optional[int] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(__lowerCAmelCase ) @partial(jax.pmap ,axis_name='batch' ) def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ) -> Tuple: '''simple docstring''' def loss_fn(UpperCamelCase ): UpperCAmelCase_ : Any = model_inputs.pop('start_labels' ) UpperCAmelCase_ : Optional[int] = model_inputs.pop('end_labels' ) UpperCAmelCase_ : str = model_inputs.pop('pooled_labels' ) UpperCAmelCase_ : Dict = state.apply_fn(**__lowerCAmelCase ,params=__lowerCAmelCase ,dropout_rng=__lowerCAmelCase ,train=__lowerCAmelCase ) UpperCAmelCase_ : List[str] = outputs return state.loss_fn( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,) UpperCAmelCase_ : Union[str, Any] = jax.random.split(__lowerCAmelCase ) UpperCAmelCase_ : int = jax.value_and_grad(__lowerCAmelCase ) UpperCAmelCase_ : Tuple = grad_fn(state.params ) UpperCAmelCase_ : Optional[int] = jax.lax.pmean({'loss': loss} ,axis_name='batch' ) UpperCAmelCase_ : int = jax.lax.pmean(__lowerCAmelCase ,'batch' ) UpperCAmelCase_ : Optional[int] = state.apply_gradients(grads=__lowerCAmelCase ) return state, metrics, new_drp_rng @partial(jax.pmap ,axis_name='batch' ) def SCREAMING_SNAKE_CASE( UpperCamelCase ,**UpperCamelCase ) -> str: '''simple docstring''' UpperCAmelCase_ : Dict = model_inputs.pop('start_labels' ) UpperCAmelCase_ : Optional[int] = model_inputs.pop('end_labels' ) UpperCAmelCase_ : List[str] = model_inputs.pop('pooled_labels' ) UpperCAmelCase_ : Dict = state.apply_fn(**__lowerCAmelCase ,params=state.params ,train=__lowerCAmelCase ) UpperCAmelCase_ : Optional[Any] = outputs UpperCAmelCase_ : Any = state.loss_fn(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) UpperCAmelCase_ : List[str] = jax.lax.pmean({'loss': loss} ,axis_name='batch' ) return metrics class lowercase ( train_state.TrainState ): _lowerCamelCase : Callable= struct.field(pytree_node=UpperCamelCase_ ) @dataclass class lowercase : _lowerCamelCase : Args _lowerCamelCase : Callable _lowerCamelCase : Callable _lowerCamelCase : Callable _lowerCamelCase : Callable _lowerCamelCase : wandb _lowerCamelCase : Callable= None def _snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case=None) -> str: UpperCAmelCase_ : List[Any] = model.params UpperCAmelCase_ : Any = TrainState.create( apply_fn=model.__call__ , params=_a , tx=_a , loss_fn=_a , ) if ckpt_dir is not None: UpperCAmelCase_ : List[str] = restore_checkpoint(_a , _a) UpperCAmelCase_ : str = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } UpperCAmelCase_ : Union[str, Any] = build_tx(**_a) UpperCAmelCase_ : int = train_state.TrainState( step=_a , apply_fn=model.__call__ , params=_a , tx=_a , opt_state=_a , ) UpperCAmelCase_ : int = args UpperCAmelCase_ : Optional[Any] = data_collator UpperCAmelCase_ : Union[str, Any] = lr UpperCAmelCase_ : int = params UpperCAmelCase_ : str = jax_utils.replicate(_a) return state def _snake_case ( self , _snake_case , _snake_case , _snake_case) -> Optional[Any]: UpperCAmelCase_ : int = self.args UpperCAmelCase_ : int = len(_a) // args.batch_size UpperCAmelCase_ : Union[str, Any] = jax.random.PRNGKey(0) UpperCAmelCase_ : Union[str, Any] = jax.random.split(_a , jax.device_count()) for epoch in range(args.max_epochs): UpperCAmelCase_ : Optional[int] = jnp.array(0 , dtype=jnp.floataa) UpperCAmelCase_ : int = get_batched_dataset(_a , args.batch_size , seed=_a) UpperCAmelCase_ : int = 0 for batch in tqdm(_a , total=_a , desc=F"""Running EPOCH-{epoch}"""): UpperCAmelCase_ : Union[str, Any] = self.data_collator(_a) UpperCAmelCase_ : Dict = self.train_step_fn(_a , _a , **_a) running_loss += jax_utils.unreplicate(metrics['loss']) i += 1 if i % args.logging_steps == 0: UpperCAmelCase_ : Any = jax_utils.unreplicate(state.step) UpperCAmelCase_ : Optional[Any] = running_loss.item() / i UpperCAmelCase_ : Dict = self.scheduler_fn(state_step - 1) UpperCAmelCase_ : Optional[Any] = self.evaluate(_a , _a) UpperCAmelCase_ : Optional[int] = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(_a)) self.logger.log(_a , commit=_a) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=_a) def _snake_case ( self , _snake_case , _snake_case) -> int: UpperCAmelCase_ : Optional[Any] = get_batched_dataset(_a , self.args.batch_size) UpperCAmelCase_ : Optional[Any] = len(_a) // self.args.batch_size UpperCAmelCase_ : Optional[Any] = jnp.array(0 , dtype=jnp.floataa) UpperCAmelCase_ : Union[str, Any] = 0 for batch in tqdm(_a , total=_a , desc='Evaluating ... '): UpperCAmelCase_ : Optional[Any] = self.data_collator(_a) UpperCAmelCase_ : List[str] = self.val_step_fn(_a , **_a) running_loss += jax_utils.unreplicate(metrics['loss']) i += 1 return running_loss / i def _snake_case ( self , _snake_case , _snake_case) -> List[str]: UpperCAmelCase_ : Dict = jax_utils.unreplicate(_a) print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=' ... ') self.model_save_fn(_a , params=state.params) with open(os.path.join(_a , 'opt_state.msgpack') , 'wb') as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(_a , 'args.joblib')) joblib.dump(self.data_collator , os.path.join(_a , 'data_collator.joblib')) with open(os.path.join(_a , 'training_state.json') , 'w') as f: json.dump({'step': state.step.item()} , _a) print('DONE') def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ) -> str: '''simple docstring''' print(f"""RESTORING CHECKPOINT FROM {save_dir}""" ,end=' ... ' ) with open(os.path.join(__lowerCAmelCase ,'flax_model.msgpack' ) ,'rb' ) as f: UpperCAmelCase_ : Optional[Any] = from_bytes(state.params ,f.read() ) with open(os.path.join(__lowerCAmelCase ,'opt_state.msgpack' ) ,'rb' ) as f: UpperCAmelCase_ : Dict = from_bytes(state.opt_state ,f.read() ) UpperCAmelCase_ : Any = joblib.load(os.path.join(__lowerCAmelCase ,'args.joblib' ) ) UpperCAmelCase_ : Dict = joblib.load(os.path.join(__lowerCAmelCase ,'data_collator.joblib' ) ) with open(os.path.join(__lowerCAmelCase ,'training_state.json' ) ,'r' ) as f: UpperCAmelCase_ : str = json.load(__lowerCAmelCase ) UpperCAmelCase_ : Optional[Any] = training_state["""step"""] print('DONE' ) return params, opt_state, step, args, data_collator def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> str: '''simple docstring''' UpperCAmelCase_ : int = num_train_steps - warmup_steps UpperCAmelCase_ : Union[str, Any] = optax.linear_schedule(init_value=__lowerCAmelCase ,end_value=__lowerCAmelCase ,transition_steps=__lowerCAmelCase ) UpperCAmelCase_ : int = optax.linear_schedule(init_value=__lowerCAmelCase ,end_value=1e-7 ,transition_steps=__lowerCAmelCase ) UpperCAmelCase_ : Dict = optax.join_schedules(schedules=[warmup_fn, decay_fn] ,boundaries=[warmup_steps] ) return lr def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[Any]: '''simple docstring''' def weight_decay_mask(UpperCamelCase ): UpperCAmelCase_ : List[str] = traverse_util.flatten_dict(__lowerCAmelCase ) UpperCAmelCase_ : Dict = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(__lowerCAmelCase ) UpperCAmelCase_ : List[Any] = scheduler_fn(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) UpperCAmelCase_ : List[str] = optax.adamw(learning_rate=__lowerCAmelCase ,weight_decay=__lowerCAmelCase ,mask=__lowerCAmelCase ) return tx, lr
712
'''simple docstring''' import numpy class lowercase : def __init__( self , _snake_case , _snake_case) -> None: UpperCAmelCase_ : Optional[Any] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. UpperCAmelCase_ : Tuple = numpy.random.rand( self.input_array.shape[1] , 4) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. UpperCAmelCase_ : List[str] = numpy.random.rand( 4 , 3) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. UpperCAmelCase_ : Dict = numpy.random.rand(3 , 1) # Real output values provided. UpperCAmelCase_ : str = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. UpperCAmelCase_ : Union[str, Any] = numpy.zeros(output_array.shape) def _snake_case ( self) -> numpy.ndarray: UpperCAmelCase_ : Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights)) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. UpperCAmelCase_ : Tuple = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , )) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. UpperCAmelCase_ : int = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , )) return self.layer_between_second_hidden_layer_and_output def _snake_case ( self) -> None: UpperCAmelCase_ : Optional[int] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , ) UpperCAmelCase_ : Any = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer) , ) UpperCAmelCase_ : Tuple = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def _snake_case ( self , _snake_case , _snake_case , _snake_case) -> None: for iteration in range(1 , iterations + 1): UpperCAmelCase_ : int = self.feedforward() self.back_propagation() if give_loss: UpperCAmelCase_ : List[Any] = numpy.mean(numpy.square(output - self.feedforward())) print(F"""Iteration {iteration} Loss: {loss}""") def _snake_case ( self , _snake_case) -> int: UpperCAmelCase_ : Optional[int] = input_arr UpperCAmelCase_ : Tuple = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights)) UpperCAmelCase_ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , )) UpperCAmelCase_ : int = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , )) return int(self.layer_between_second_hidden_layer_and_output > 0.6) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> numpy.ndarray: return (value) * (1 - (value)) def SCREAMING_SNAKE_CASE( ) -> int: UpperCAmelCase_ : Optional[int] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) ,dtype=numpy.floataa ,) # True output values for the given input values. UpperCAmelCase_ : Dict = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) ,dtype=numpy.floataa ) # Calling neural network class. UpperCAmelCase_ : List[str] = TwoHiddenLayerNeuralNetwork( input_array=UpperCamelCase ,output_array=UpperCamelCase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=UpperCamelCase ,iterations=1_0 ,give_loss=UpperCamelCase ) return neural_network.predict(numpy.array(([1, 1, 1]) ,dtype=numpy.floataa ) ) if __name__ == "__main__": example()
471
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch a_ = logging.get_logger(__name__) class lowercase__ ( _a ): a_ =['''pixel_values'''] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , )-> None: '''simple docstring''' super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ = size if size is not None else {'''shortest_edge''': 224} lowerCAmelCase__ = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) lowerCAmelCase__ = crop_size if crop_size is not None else {'''height''': 256, '''width''': 256} lowerCAmelCase__ = get_size_dict(__UpperCAmelCase , param_name="crop_size" ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = resample lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_center_crop lowerCAmelCase__ = crop_size lowerCAmelCase__ = do_flip_channel_order def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PIL.Image.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , )-> np.ndarray: '''simple docstring''' lowerCAmelCase__ = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}" ) lowerCAmelCase__ = get_resize_output_image_size(__UpperCAmelCase , size=size["shortest_edge"] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , )-> np.ndarray: '''simple docstring''' lowerCAmelCase__ = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(__UpperCAmelCase , size=(size["height"], size["width"]) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , )-> Optional[int]: '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> np.ndarray: '''simple docstring''' return flip_channel_order(__UpperCAmelCase , data_format=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , )-> PIL.Image.Image: '''simple docstring''' lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) lowerCAmelCase__ = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ = get_size_dict(__UpperCAmelCase , param_name="crop_size" ) lowerCAmelCase__ = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: lowerCAmelCase__ = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: lowerCAmelCase__ = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: lowerCAmelCase__ = [self.flip_channel_order(image=__UpperCAmelCase ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] lowerCAmelCase__ = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(__UpperCAmelCase ): lowerCAmelCase__ = target_sizes.numpy() lowerCAmelCase__ = [] for idx in range(len(__UpperCAmelCase ) ): lowerCAmelCase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=__UpperCAmelCase ) lowerCAmelCase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__UpperCAmelCase ) else: lowerCAmelCase__ = logits.argmax(dim=1 ) lowerCAmelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
339
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase_ ( _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" return getitem, k def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Any: """simple docstring""" return setitem, k, v def lowerCamelCase_ ( _UpperCamelCase ) -> Tuple: """simple docstring""" return delitem, k def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , *_UpperCamelCase ) -> str: """simple docstring""" try: return fun(_UpperCamelCase , *_UpperCamelCase ), None except Exception as e: return None, e lowerCAmelCase_ = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) lowerCAmelCase_ = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] lowerCAmelCase_ = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] lowerCAmelCase_ = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] lowerCAmelCase_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( '''operations''' , ( pytest.param(_add_items , id='''add items''' ), pytest.param(_overwrite_items , id='''overwrite items''' ), pytest.param(_delete_items , id='''delete items''' ), pytest.param(_access_absent_items , id='''access absent items''' ), pytest.param(_add_with_resize_up , id='''add with resize up''' ), pytest.param(_add_with_resize_down , id='''add with resize down''' ), ) , ) def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" snake_case_ : Any = HashMap(initial_block_size=4 ) snake_case_ : Union[str, Any] = {} for _, (fun, *args) in enumerate(_UpperCamelCase ): snake_case_ , snake_case_ : str = _run_operation(_UpperCamelCase , _UpperCamelCase , *_UpperCamelCase ) snake_case_ , snake_case_ : List[Any] = _run_operation(_UpperCamelCase , _UpperCamelCase , *_UpperCamelCase ) assert my_res == py_res assert str(_UpperCamelCase ) == str(_UpperCamelCase ) assert set(_UpperCamelCase ) == set(_UpperCamelCase ) assert len(_UpperCamelCase ) == len(_UpperCamelCase ) assert set(my.items() ) == set(py.items() ) def lowerCamelCase_ ( ) -> Any: """simple docstring""" def is_public(_UpperCamelCase ) -> bool: return not name.startswith('''_''' ) snake_case_ : str = {name for name in dir({} ) if is_public(_UpperCamelCase )} snake_case_ : str = {name for name in dir(HashMap() ) if is_public(_UpperCamelCase )} assert dict_public_names > hash_public_names
60
0
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str ): """simple docstring""" def get_matched_characters(lowerCamelCase_ : str , lowerCamelCase_ : str ) -> str: UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Dict = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): UpperCAmelCase_ : List[Any] = int(max(0 , i - limit ) ) UpperCAmelCase_ : str = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = F'''{_stra[0:_stra.index(lowerCamelCase_ )]} {_stra[_stra.index(lowerCamelCase_ ) + 1:]}''' return "".join(lowerCamelCase_ ) # matching characters UpperCAmelCase_ : Union[str, Any] = get_matched_characters(lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase_ : Dict = get_matched_characters(lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase_ : List[str] = len(lowerCamelCase_ ) # transposition UpperCAmelCase_ : int = ( len([(ca, ca) for ca, ca in zip(lowerCamelCase_ , lowerCamelCase_ ) if ca != ca] ) // 2 ) if not match_count: UpperCAmelCase_ : int = 0.0 else: UpperCAmelCase_ : Optional[Any] = ( 1 / 3 * ( match_count / len(lowerCamelCase_ ) + match_count / len(lowerCamelCase_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters UpperCAmelCase_ : Optional[int] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('''hello''', '''world'''))
389
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(lowerCamelCase_ ): for j in range(lowerCamelCase_ ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : List[Any] ): """simple docstring""" UpperCAmelCase_ : int = [[float('inf' ) for _ in range(lowerCamelCase_ )] for _ in range(lowerCamelCase_ )] for i in range(lowerCamelCase_ ): for j in range(lowerCamelCase_ ): UpperCAmelCase_ : int = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(lowerCamelCase_ ): # looping through rows of graph array for i in range(lowerCamelCase_ ): # looping through columns of graph array for j in range(lowerCamelCase_ ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): UpperCAmelCase_ : Optional[int] = dist[i][k] + dist[k][j] _print_dist(lowerCamelCase_ , lowerCamelCase_ ) return dist, v if __name__ == "__main__": snake_case__ : List[Any] = int(input('''Enter number of vertices: ''')) snake_case__ : List[Any] = int(input('''Enter number of edges: ''')) snake_case__ : str = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): snake_case__ : Optional[int] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) snake_case__ : List[str] = int(input('''Enter source:''')) snake_case__ : Tuple = int(input('''Enter destination:''')) snake_case__ : List[str] = float(input('''Enter weight:''')) snake_case__ : Optional[Any] = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
389
1
import math import flax.linen as nn import jax.numpy as jnp def UpperCAmelCase__ ( lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int , lowerCamelCase_ : float = 1 , lowerCamelCase_ : float = 1 , lowerCamelCase_ : float = 1.0e4 , lowerCamelCase_ : bool = False , lowerCamelCase_ : float = 1.0 , ): assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f'''Embedding dimension {embedding_dim} should be even''' __a : Dict = float(embedding_dim // 2 ) __a : str = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) __a : Any = min_timescale * jnp.exp(jnp.arange(lowerCamelCase_ , dtype=jnp.floataa ) * -log_timescale_increment ) __a : List[Any] = jnp.expand_dims(lowerCamelCase_ , 1 ) * jnp.expand_dims(lowerCamelCase_ , 0 ) # scale embeddings __a : Optional[int] = scale * emb if flip_sin_to_cos: __a : Any = jnp.concatenate([jnp.cos(lowerCamelCase_ ), jnp.sin(lowerCamelCase_ )] , axis=1 ) else: __a : Tuple = jnp.concatenate([jnp.sin(lowerCamelCase_ ), jnp.cos(lowerCamelCase_ )] , axis=1 ) __a : str = jnp.reshape(lowerCamelCase_ , [jnp.shape(lowerCamelCase_ )[0], embedding_dim] ) return signal class _UpperCamelCase( nn.Module ): __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa @nn.compact def __call__( self : List[str] , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a : int = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(SCREAMING_SNAKE_CASE__ ) __a : str = nn.silu(SCREAMING_SNAKE_CASE__ ) __a : Tuple = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(SCREAMING_SNAKE_CASE__ ) return temb class _UpperCamelCase( nn.Module ): __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : float = 1 @nn.compact def __call__( self : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return get_sinusoidal_embeddings( SCREAMING_SNAKE_CASE__ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
47
import os UpperCamelCase__ = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1_000} def UpperCamelCase__ ( UpperCAmelCase_ ) -> int: '''simple docstring''' _lowercase : Optional[int] = 0 _lowercase : Dict = 0 while index < len(UpperCAmelCase_ ) - 1: _lowercase : Any = SYMBOLS[numerals[index]] _lowercase : List[Any] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCamelCase__ ( UpperCAmelCase_ ) -> str: '''simple docstring''' _lowercase : List[str] = '''''' _lowercase : Union[str, Any] = num // 1000 numerals += m_count * "M" num %= 1000 _lowercase : Tuple = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _lowercase : int = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCamelCase__ ( UpperCAmelCase_ = "/p089_roman.txt" ) -> int: '''simple docstring''' _lowercase : List[str] = 0 with open(os.path.dirname(UpperCAmelCase_ ) + roman_numerals_filename ) as filea: _lowercase : Optional[Any] = filea.readlines() for line in lines: _lowercase : int = line.strip() _lowercase : Dict = parse_roman_numerals(UpperCAmelCase_ ) _lowercase : Optional[Any] = generate_roman_numerals(UpperCAmelCase_ ) savings += len(UpperCAmelCase_ ) - len(UpperCAmelCase_ ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
322
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = UnCLIPImageVariationPipeline __UpperCAmelCase : Optional[int] = IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''guidance_scale'''} __UpperCAmelCase : Tuple = IMAGE_VARIATION_BATCH_PARAMS __UpperCAmelCase : int = [ '''generator''', '''return_dict''', '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] __UpperCAmelCase : str = False @property def __lowercase ( self : List[Any] ): '''simple docstring''' return 32 @property def __lowercase ( self : Optional[int] ): '''simple docstring''' return 32 @property def __lowercase ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim @property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def __lowercase ( self : Tuple ): '''simple docstring''' return 100 @property def __lowercase ( self : Dict ): '''simple docstring''' _a : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def __lowercase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _a : List[str] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModelWithProjection(_a ) @property def __lowercase ( self : int ): '''simple docstring''' torch.manual_seed(0 ) _a : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,num_hidden_layers=5 ,num_attention_heads=4 ,image_size=32 ,intermediate_size=37 ,patch_size=1 ,) return CLIPVisionModelWithProjection(_a ) @property def __lowercase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) _a : List[str] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } _a : int = UnCLIPTextProjModel(**_a ) return model @property def __lowercase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) _a : Any = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } _a : Optional[int] = UNetaDConditionModel(**_a ) return model @property def __lowercase ( self : str ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def __lowercase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) _a : Optional[Any] = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def __lowercase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(1 ) _a : List[Any] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Optional[Any] = self.dummy_decoder _a : Dict = self.dummy_text_proj _a : str = self.dummy_text_encoder _a : Any = self.dummy_tokenizer _a : List[Any] = self.dummy_super_res_first _a : Any = self.dummy_super_res_last _a : Optional[Any] = UnCLIPScheduler( variance_type='learned_range' ,prediction_type='epsilon' ,num_train_timesteps=1000 ,) _a : Union[str, Any] = UnCLIPScheduler( variance_type='fixed_small_log' ,prediction_type='epsilon' ,num_train_timesteps=1000 ,) _a : Tuple = CLIPImageProcessor(crop_size=32 ,size=32 ) _a : List[Any] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def __lowercase ( self : int ,_a : str ,_a : Any=0 ,_a : str=True ): '''simple docstring''' _a : Union[str, Any] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith('mps' ): _a : int = torch.manual_seed(_a ) else: _a : Any = torch.Generator(device=_a ).manual_seed(_a ) if pil_image: _a : Tuple = input_image * 0.5 + 0.5 _a : Optional[Any] = input_image.clamp(0 ,1 ) _a : int = input_image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() _a : List[Any] = DiffusionPipeline.numpy_to_pil(_a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def __lowercase ( self : int ): '''simple docstring''' _a : Dict = 'cpu' _a : str = self.get_dummy_components() _a : Optional[int] = self.pipeline_class(**_a ) _a : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : str = self.get_dummy_inputs(_a ,pil_image=_a ) _a : int = pipe(**_a ) _a : Any = output.images _a : Optional[Any] = self.get_dummy_inputs(_a ,pil_image=_a ) _a : Tuple = pipe( **_a ,return_dict=_a ,)[0] _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a : Dict = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowercase ( self : int ): '''simple docstring''' _a : Optional[Any] = 'cpu' _a : Optional[Any] = self.get_dummy_components() _a : Optional[int] = self.pipeline_class(**_a ) _a : Optional[int] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Optional[int] = self.get_dummy_inputs(_a ,pil_image=_a ) _a : Any = pipe(**_a ) _a : Dict = output.images _a : Optional[Any] = self.get_dummy_inputs(_a ,pil_image=_a ) _a : Union[str, Any] = pipe( **_a ,return_dict=_a ,)[0] _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a : Dict = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowercase ( self : Tuple ): '''simple docstring''' _a : List[str] = 'cpu' _a : List[Any] = self.get_dummy_components() _a : int = self.pipeline_class(**_a ) _a : Any = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Tuple = self.get_dummy_inputs(_a ,pil_image=_a ) _a : str = [ pipeline_inputs['image'], pipeline_inputs['image'], ] _a : List[Any] = pipe(**_a ) _a : List[Any] = output.images _a : Dict = self.get_dummy_inputs(_a ,pil_image=_a ) _a : Optional[int] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] _a : List[str] = pipe( **_a ,return_dict=_a ,)[0] _a : List[str] = image[0, -3:, -3:, -1] _a : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) _a : str = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowercase ( self : List[Any] ): '''simple docstring''' _a : str = torch.device('cpu' ) class UpperCAmelCase__ : """simple docstring""" __UpperCAmelCase : List[Any] = 1 _a : Any = self.get_dummy_components() _a : int = self.pipeline_class(**_a ) _a : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Optional[Any] = torch.Generator(device=_a ).manual_seed(0 ) _a : Optional[Any] = pipe.decoder.dtype _a : Tuple = 1 _a : Dict = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) _a : Any = pipe.prepare_latents( _a ,dtype=_a ,device=_a ,generator=_a ,latents=_a ,scheduler=DummyScheduler() ) _a : str = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) _a : int = pipe.prepare_latents( _a ,dtype=_a ,device=_a ,generator=_a ,latents=_a ,scheduler=DummyScheduler() ) _a : Union[str, Any] = self.get_dummy_inputs(_a ,pil_image=_a ) _a : Any = pipe( **_a ,decoder_latents=_a ,super_res_latents=_a ).images _a : List[str] = self.get_dummy_inputs(_a ,pil_image=_a ) # Don't pass image, instead pass embedding _a : Optional[int] = pipeline_inputs.pop('image' ) _a : str = pipe.image_encoder(_a ).image_embeds _a : Union[str, Any] = pipe( **_a ,decoder_latents=_a ,super_res_latents=_a ,image_embeddings=_a ,).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : int = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor _a : Tuple = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=_a ,expected_max_diff=_a ) @skip_mps def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : str = torch_device == 'cpu' _a : Tuple = True _a : Optional[Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=_a ,relax_max_difference=_a ,additional_params_copy_to_batched_inputs=_a ,) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Union[str, Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes _a : Dict = [2, 3] self._test_inference_batch_consistent( batch_sizes=_a ,additional_params_copy_to_batched_inputs=_a ,) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=_a ) @skip_mps def __lowercase ( self : List[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def __lowercase ( self : List[str] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowercase ( self : Tuple ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) _a : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) _a : Any = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' ,torch_dtype=torch.floataa ) _a : List[Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _a : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _a : Optional[int] = pipeline( _a ,generator=_a ,output_type='np' ,) _a : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(_a ,_a ,15 )
319
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
1
'''simple docstring''' def A_ ( SCREAMING_SNAKE_CASE_ = 1_00 ) ->int: lowercase_ = 0 lowercase_ = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
451
'''simple docstring''' import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __snake_case = logging.get_logger(__name__) class _a ( __a ): """simple docstring""" def __init__( self : int , *lowercase_ : Tuple , **lowercase_ : List[Any] ): '''simple docstring''' warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
451
1
'''simple docstring''' import os import sys lowercase__ : List[Any] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowercase__ : Any = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def __lowerCamelCase ( *_UpperCamelCase : int , **_UpperCamelCase : int ): '''simple docstring''' return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __lowerCamelCase ( *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Union[str, Any] ): '''simple docstring''' return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __lowerCamelCase ( *_UpperCamelCase : str , **_UpperCamelCase : str ): '''simple docstring''' return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __lowerCamelCase ( *_UpperCamelCase : Optional[int] , **_UpperCamelCase : List[str] ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __lowerCamelCase ( *_UpperCamelCase : str , **_UpperCamelCase : List[Any] ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __lowerCamelCase ( *_UpperCamelCase : int , **_UpperCamelCase : Any ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __lowerCamelCase ( *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Optional[int] ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
719
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __lowerCamelCase ( _UpperCamelCase : Union[str, Any] ): '''simple docstring''' for param in module.parameters(): UpperCAmelCase_ = False def __lowerCamelCase ( ): '''simple docstring''' UpperCAmelCase_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCAmelCase_ = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def __lowerCamelCase ( _UpperCamelCase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ = plt.imshow(_UpperCamelCase ) fig.axes.get_xaxis().set_visible(_UpperCamelCase ) fig.axes.get_yaxis().set_visible(_UpperCamelCase ) plt.show() def __lowerCamelCase ( ): '''simple docstring''' UpperCAmelCase_ = datetime.now() UpperCAmelCase_ = current_time.strftime('''%H:%M:%S''' ) return timestamp
43
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class _UpperCamelCase ( __lowerCAmelCase ): '''simple docstring''' a_ : Optional[int] = "table-transformer" a_ : List[str] = ["past_key_values"] a_ : Any = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Dict , _lowerCamelCase : Dict=True , _lowerCamelCase : Union[str, Any]=None , _lowerCamelCase : List[Any]=3 , _lowerCamelCase : List[str]=1_0_0 , _lowerCamelCase : Optional[Any]=6 , _lowerCamelCase : Optional[int]=2_0_4_8 , _lowerCamelCase : Optional[Any]=8 , _lowerCamelCase : int=6 , _lowerCamelCase : Optional[Any]=2_0_4_8 , _lowerCamelCase : List[Any]=8 , _lowerCamelCase : Optional[Any]=0.0 , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Optional[Any]="relu" , _lowerCamelCase : List[str]=2_5_6 , _lowerCamelCase : Optional[int]=0.1 , _lowerCamelCase : int=0.0 , _lowerCamelCase : str=0.0 , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : Tuple=1.0 , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : int="sine" , _lowerCamelCase : Union[str, Any]="resnet50" , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Any=False , _lowerCamelCase : List[str]=1 , _lowerCamelCase : List[str]=5 , _lowerCamelCase : Any=2 , _lowerCamelCase : Union[str, Any]=1 , _lowerCamelCase : Optional[int]=1 , _lowerCamelCase : Optional[Any]=5 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Any=0.1 , **_lowerCamelCase : Any , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __lowerCamelCase : int = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): __lowerCamelCase : Optional[Any] = backbone_config.get("""model_type""" ) __lowerCamelCase : List[Any] = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase : Any = config_class.from_dict(lowerCamelCase_ ) # set timm attributes to None __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = None, None, None __lowerCamelCase : Optional[int] = use_timm_backbone __lowerCamelCase : Optional[int] = backbone_config __lowerCamelCase : str = num_channels __lowerCamelCase : Union[str, Any] = num_queries __lowerCamelCase : Optional[int] = d_model __lowerCamelCase : Any = encoder_ffn_dim __lowerCamelCase : Tuple = encoder_layers __lowerCamelCase : Dict = encoder_attention_heads __lowerCamelCase : str = decoder_ffn_dim __lowerCamelCase : int = decoder_layers __lowerCamelCase : Union[str, Any] = decoder_attention_heads __lowerCamelCase : Dict = dropout __lowerCamelCase : List[str] = attention_dropout __lowerCamelCase : Optional[int] = activation_dropout __lowerCamelCase : Optional[Any] = activation_function __lowerCamelCase : Any = init_std __lowerCamelCase : List[Any] = init_xavier_std __lowerCamelCase : int = encoder_layerdrop __lowerCamelCase : Tuple = decoder_layerdrop __lowerCamelCase : Dict = encoder_layers __lowerCamelCase : Optional[int] = auxiliary_loss __lowerCamelCase : int = position_embedding_type __lowerCamelCase : int = backbone __lowerCamelCase : Optional[Any] = use_pretrained_backbone __lowerCamelCase : Dict = dilation # Hungarian matcher __lowerCamelCase : List[Any] = class_cost __lowerCamelCase : List[str] = bbox_cost __lowerCamelCase : Union[str, Any] = giou_cost # Loss coefficients __lowerCamelCase : Union[str, Any] = mask_loss_coefficient __lowerCamelCase : Union[str, Any] = dice_loss_coefficient __lowerCamelCase : Optional[int] = bbox_loss_coefficient __lowerCamelCase : Any = giou_loss_coefficient __lowerCamelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=lowerCamelCase_ , **lowerCamelCase_ ) @property def _snake_case ( self : Dict ): '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : Any ): '''simple docstring''' return self.d_model class _UpperCamelCase ( __lowerCAmelCase ): '''simple docstring''' a_ : Dict = version.parse("1.11" ) @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self : List[str] ): '''simple docstring''' return 1E-5 @property def _snake_case ( self : Tuple ): '''simple docstring''' return 1_2
519
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = 3 UpperCamelCase = 250 UpperCamelCase = ids_tensor((batch_size, length) , lowerCamelCase_ ) UpperCamelCase = torch.ones((batch_size, length) , device=lowerCamelCase_ , dtype=torch.float ) / length return input_ids, scores def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) UpperCamelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = MaxLengthCriteria(max_length=10 ) UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) UpperCamelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCamelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCamelCase_ ) , 1 )
537
0
"""simple docstring""" import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __lowerCamelCase : Optional[Any] = AutoencoderKL __lowerCamelCase : str = "sample" __lowerCamelCase : int = 1e-2 @property def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: '''simple docstring''' a__ : str = 4 a__ : str = 3 a__ : Union[str, Any] = (32, 32) a__ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(a_ ) return {"sample": image} @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return (3, 32, 32) @property def UpperCAmelCase ( self : Any ) -> Optional[Any]: '''simple docstring''' return (3, 32, 32) def UpperCAmelCase ( self : Tuple ) -> Tuple: '''simple docstring''' a__ : int = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } a__ : List[Any] = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' pass @unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" ) def UpperCAmelCase ( self : int ) -> int: '''simple docstring''' a__ : Optional[Any] = self.prepare_init_args_and_inputs_for_common() a__ : int = self.model_class(**a_ ) model.to(a_ ) assert not model.is_gradient_checkpointing and model.training a__ : int = model(**a_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() a__ : Optional[int] = torch.randn_like(a_ ) a__ : List[Any] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing a__ : Union[str, Any] = self.model_class(**a_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(a_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training a__ : Tuple = model_a(**a_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() a__ : str = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) a__ : Any = dict(model.named_parameters() ) a__ : Any = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' a__ : Optional[Any] = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(a_ ) a__ : str = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' a__ : Dict = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) a__ : List[str] = model.to(a_ ) model.eval() if torch_device == "mps": a__ : Any = torch.manual_seed(0 ) else: a__ : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) a__ : Optional[Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) a__ : Any = image.to(a_ ) with torch.no_grad(): a__ : str = model(a_ , sample_posterior=a_ , generator=a_ ).sample a__ : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": a__ : Dict = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": a__ : Dict = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: a__ : List[str] = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(a_ , a_ , rtol=1E-2 ) ) @slow class __UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self : Tuple , a_ : Union[str, Any] , a_ : List[Any] ) -> str: '''simple docstring''' return F"gaussian_noise_s={seed}_shape={'_'.join([str(a_ ) for s in shape] )}.npy" def UpperCAmelCase ( self : Tuple ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Optional[int] , a_ : Optional[int]=0 , a_ : Optional[Any]=(4, 3, 5_12, 5_12) , a_ : Optional[int]=False ) -> Any: '''simple docstring''' a__ : Dict = torch.floataa if fpaa else torch.floataa a__ : int = torch.from_numpy(load_hf_numpy(self.get_file_format(a_ , a_ ) ) ).to(a_ ).to(a_ ) return image def UpperCAmelCase ( self : Tuple , a_ : Tuple="CompVis/stable-diffusion-v1-4" , a_ : int=False ) -> Optional[int]: '''simple docstring''' a__ : List[str] = "fp16" if fpaa else None a__ : int = torch.floataa if fpaa else torch.floataa a__ : Union[str, Any] = AutoencoderKL.from_pretrained( a_ , subfolder="vae" , torch_dtype=a_ , revision=a_ , ) model.to(a_ ).eval() return model def UpperCAmelCase ( self : Optional[Any] , a_ : Tuple=0 ) -> int: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(a_ ) return torch.Generator(device=a_ ).manual_seed(a_ ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def UpperCAmelCase ( self : Tuple , a_ : Tuple , a_ : str , a_ : str ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = self.get_sd_vae_model() a__ : int = self.get_sd_image(a_ ) a__ : Tuple = self.get_generator(a_ ) with torch.no_grad(): a__ : int = model(a_ , generator=a_ , sample_posterior=a_ ).sample assert sample.shape == image.shape a__ : int = sample[-1, -2:, -2:, :2].flatten().float().cpu() a__ : str = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(a_ , a_ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def UpperCAmelCase ( self : int , a_ : Optional[int] , a_ : List[Any] ) -> Any: '''simple docstring''' a__ : int = self.get_sd_vae_model(fpaa=a_ ) a__ : List[Any] = self.get_sd_image(a_ , fpaa=a_ ) a__ : Tuple = self.get_generator(a_ ) with torch.no_grad(): a__ : str = model(a_ , generator=a_ , sample_posterior=a_ ).sample assert sample.shape == image.shape a__ : int = sample[-1, -2:, :2, -2:].flatten().float().cpu() a__ : List[str] = torch.tensor(a_ ) assert torch_all_close(a_ , a_ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def UpperCAmelCase ( self : Dict , a_ : Optional[int] , a_ : List[str] , a_ : Dict ) -> List[str]: '''simple docstring''' a__ : Any = self.get_sd_vae_model() a__ : Union[str, Any] = self.get_sd_image(a_ ) with torch.no_grad(): a__ : Optional[Any] = model(a_ ).sample assert sample.shape == image.shape a__ : str = sample[-1, -2:, -2:, :2].flatten().float().cpu() a__ : List[Any] = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(a_ , a_ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def UpperCAmelCase ( self : int , a_ : int , a_ : Union[str, Any] ) -> str: '''simple docstring''' a__ : Any = self.get_sd_vae_model() a__ : List[str] = self.get_sd_image(a_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): a__ : Union[str, Any] = model.decode(a_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] a__ : List[str] = sample[-1, -2:, :2, -2:].flatten().cpu() a__ : Optional[Any] = torch.tensor(a_ ) assert torch_all_close(a_ , a_ , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def UpperCAmelCase ( self : int , a_ : Dict , a_ : Any ) -> str: '''simple docstring''' a__ : int = self.get_sd_vae_model(fpaa=a_ ) a__ : Optional[Any] = self.get_sd_image(a_ , shape=(3, 4, 64, 64) , fpaa=a_ ) with torch.no_grad(): a__ : Dict = model.decode(a_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] a__ : List[str] = sample[-1, -2:, :2, -2:].flatten().float().cpu() a__ : str = torch.tensor(a_ ) assert torch_all_close(a_ , a_ , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def UpperCAmelCase ( self : Optional[int] , a_ : Tuple ) -> str: '''simple docstring''' a__ : List[str] = self.get_sd_vae_model(fpaa=a_ ) a__ : List[Any] = self.get_sd_image(a_ , shape=(3, 4, 64, 64) , fpaa=a_ ) with torch.no_grad(): a__ : Dict = model.decode(a_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): a__ : Any = model.decode(a_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(a_ , a_ , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def UpperCAmelCase ( self : Optional[int] , a_ : List[Any] ) -> Any: '''simple docstring''' a__ : str = self.get_sd_vae_model() a__ : Optional[int] = self.get_sd_image(a_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): a__ : Dict = model.decode(a_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): a__ : Any = model.decode(a_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(a_ , a_ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def UpperCAmelCase ( self : Dict , a_ : Optional[Any] , a_ : Any ) -> Tuple: '''simple docstring''' a__ : int = self.get_sd_vae_model() a__ : List[Any] = self.get_sd_image(a_ ) a__ : Optional[Any] = self.get_generator(a_ ) with torch.no_grad(): a__ : Optional[int] = model.encode(a_ ).latent_dist a__ : Dict = dist.sample(generator=a_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] a__ : List[str] = sample[0, -1, -3:, -3:].flatten().cpu() a__ : Any = torch.tensor(a_ ) a__ : int = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(a_ , a_ , atol=a_ )
721
"""simple docstring""" def lowercase__ ( lowerCAmelCase__ : str , lowerCAmelCase__ : list[str] ) -> str: '''simple docstring''' a__ : List[str] = "" for word_or_phrase in separated: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
251
0
"""simple docstring""" from __future__ import annotations def _snake_case ( snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : list[list[str]] , snake_case__ : int , ): A = len(snake_case__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(snake_case__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , snake_case__ , snake_case__ , ) def _snake_case ( snake_case__ : int ): A = [] depth_first_search([] , [] , [] , snake_case__ , snake_case__ ) # Print all the boards for board in boards: for column in board: print(snake_case__ ) print('' ) print(len(snake_case__ ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
91
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder snake_case_ = datasets.utils.logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ (folder_based_builder.FolderBasedBuilderConfig ): __lowerCamelCase : bool = None __lowerCamelCase : bool = None class SCREAMING_SNAKE_CASE__ (folder_based_builder.FolderBasedBuilder ): __lowerCamelCase : Any = datasets.Audio() __lowerCamelCase : List[Any] = """audio""" __lowerCamelCase : List[Any] = AudioFolderConfig __lowerCamelCase : List[str] # definition at the bottom of the script __lowerCamelCase : List[str] = AudioClassification(audio_column="""audio""" , label_column="""label""" ) snake_case_ = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] snake_case_ = AUDIO_EXTENSIONS
164
0
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar lowerCamelCase__ = TypeVar("""T""") lowerCamelCase__ = TypeVar("""U""") class A__ ( Generic[T, U] ): def __init__( self : Dict , a : T | None , a : U | None ): '''simple docstring''' lowerCAmelCase__ : int = key lowerCAmelCase__ : Dict = val lowerCAmelCase__ : DoubleLinkedListNode[T, U] | None = None lowerCAmelCase__ : DoubleLinkedListNode[T, U] | None = None def __repr__( self : Tuple ): '''simple docstring''' return ( f'''Node: key: {self.key}, val: {self.val}, ''' f'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class A__ ( Generic[T, U] ): def __init__( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(a , a ) lowerCAmelCase__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(a , a ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.rear, self.head def __repr__( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = ['DoubleLinkedList'] lowerCAmelCase__ : Optional[int] = self.head while node.next is not None: rep.append(str(a ) ) lowerCAmelCase__ : int = node.next rep.append(str(self.rear ) ) return ",\n ".join(a ) def _lowerCamelCase ( self : int , a : DoubleLinkedListNode[T, U] ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None lowerCAmelCase__ : Optional[int] = node lowerCAmelCase__ : str = previous lowerCAmelCase__ : Any = node lowerCAmelCase__ : int = self.rear def _lowerCamelCase ( self : List[str] , a : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None lowerCAmelCase__ : List[Any] = node.next lowerCAmelCase__ : List[str] = node.prev lowerCAmelCase__ : Dict = None lowerCAmelCase__ : List[Any] = None return node class A__ ( Generic[T, U] ): lowercase = {} def __init__( self : Tuple , a : int ): '''simple docstring''' lowerCAmelCase__ : DoubleLinkedList[T, U] = DoubleLinkedList() lowerCAmelCase__ : List[Any] = capacity lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self : Union[str, Any] ): '''simple docstring''' return ( f'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' f'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self : Optional[int] , a : T ): '''simple docstring''' return key in self.cache def _lowerCamelCase ( self : List[str] , a : T ): '''simple docstring''' if key in self.cache: self.hits += 1 lowerCAmelCase__ : DoubleLinkedListNode[T, U] = self.cache[key] lowerCAmelCase__ : Optional[int] = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(a ) return node.val self.miss += 1 return None def _lowerCamelCase ( self : List[Any] , a : T , a : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity lowerCAmelCase__ : Any = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(a ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 lowerCAmelCase__ : Optional[Any] = DoubleLinkedListNode(a , a ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value lowerCAmelCase__ : Tuple = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list lowerCAmelCase__ : List[Any] = value self.list.add(a ) @classmethod def _lowerCamelCase ( cls : List[Any] , a : int = 128 ): '''simple docstring''' def cache_decorator_inner(a : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*a : T ) -> U: if func not in cls.decorator_function_to_instance_map: lowerCAmelCase__ : Union[str, Any] = LRUCache(a ) lowerCAmelCase__ : Tuple = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: lowerCAmelCase__ : List[str] = func(*a ) cls.decorator_function_to_instance_map[func].put(args[0] , a ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(a , 'cache_info' , a ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
69
import numpy class A__ : def __init__( self : Tuple , a : numpy.ndarray , a : numpy.ndarray ): '''simple docstring''' lowerCAmelCase__ : int = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCAmelCase__ : Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCAmelCase__ : List[str] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCAmelCase__ : List[Any] = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCAmelCase__ : str = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCAmelCase__ : List[Any] = numpy.zeros(output_array.shape ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : str = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCAmelCase__ : Tuple = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCAmelCase__ : Any = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCAmelCase__ : Optional[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCAmelCase__ : int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def _lowerCamelCase ( self : Optional[int] , a : numpy.ndarray , a : int , a : bool ): '''simple docstring''' for iteration in range(1 , iterations + 1 ): lowerCAmelCase__ : Any = self.feedforward() self.back_propagation() if give_loss: lowerCAmelCase__ : Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f'''Iteration {iteration} Loss: {loss}''' ) def _lowerCamelCase ( self : Optional[Any] , a : numpy.ndarray ): '''simple docstring''' lowerCAmelCase__ : Dict = input_arr lowerCAmelCase__ : Any = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCAmelCase__ : int = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCAmelCase__ : List[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> numpy.ndarray: return (value) * (1 - (value)) def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : Any = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCAmelCase__ : int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowerCAmelCase__ : List[str] = TwoHiddenLayerNeuralNetwork( input_array=SCREAMING_SNAKE_CASE_ , output_array=SCREAMING_SNAKE_CASE_ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=SCREAMING_SNAKE_CASE_ , iterations=10 , give_loss=SCREAMING_SNAKE_CASE_ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
69
1
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase = 16 , lowerCamelCase = 88 , lowerCamelCase = None , lowerCamelCase = 1 , lowerCamelCase = 0.0 , lowerCamelCase = 32 , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = "geglu" , lowerCamelCase = None , ): super().__init__() _snake_case = nn.ModuleList( [ TransformeraDModel( num_attention_heads=lowerCamelCase , attention_head_dim=lowerCamelCase , in_channels=lowerCamelCase , num_layers=lowerCamelCase , dropout=lowerCamelCase , norm_num_groups=lowerCamelCase , cross_attention_dim=lowerCamelCase , attention_bias=lowerCamelCase , sample_size=lowerCamelCase , num_vector_embeds=lowerCamelCase , activation_fn=lowerCamelCase , num_embeds_ada_norm=lowerCamelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _snake_case = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _snake_case = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _snake_case = [1, 0] def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase = True , ): _snake_case = hidden_states _snake_case = [] _snake_case = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _snake_case = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _snake_case = self.transformer_index_for_condition[i] _snake_case = self.transformers[transformer_index]( lowerCamelCase , encoder_hidden_states=lowerCamelCase , timestep=lowerCamelCase , cross_attention_kwargs=lowerCamelCase , return_dict=lowerCamelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _snake_case = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _snake_case = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=lowerCamelCase )
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __magic_name__ : Dict = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : List[str] = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : List[Any] = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __magic_name__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
import os from pathlib import Path def SCREAMING_SNAKE_CASE__ ( ) -> Any: from torch.utils.cpp_extension import load _snake_case = Path(lowerCAmelCase_ ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _snake_case = [ root / filename for filename in [ '''vision.cpp''', os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ), os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ), ] ] load( 'MultiScaleDeformableAttention' , lowerCAmelCase_ , with_cuda=lowerCAmelCase_ , extra_include_paths=[str(lowerCAmelCase_ )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[ '-DCUDA_HAS_FP16=1', '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
703
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCAmelCase : @staticmethod def lowerCamelCase ( *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class __UpperCAmelCase ( unittest.TestCase ): __lowercase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) _snake_case = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = object_detector(examples[0] , threshold=0.0 ) _snake_case = len(lowerCAmelCase_ ) self.assertGreater(lowerCAmelCase_ , 0 ) self.assertEqual( lowerCAmelCase_ , [ { 'score': ANY(lowerCAmelCase_ ), 'label': ANY(lowerCAmelCase_ ), 'box': {'xmin': ANY(lowerCAmelCase_ ), 'ymin': ANY(lowerCAmelCase_ ), 'xmax': ANY(lowerCAmelCase_ ), 'ymax': ANY(lowerCAmelCase_ )}, } for i in range(lowerCAmelCase_ ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def lowerCamelCase ( self ): """simple docstring""" pass @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) _snake_case = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] , ) _snake_case = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] ] , ) @require_torch @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = pipeline('zero-shot-object-detection' ) _snake_case = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ] , ) _snake_case = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def lowerCamelCase ( self ): """simple docstring""" pass @require_torch @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = 0.2 _snake_case = pipeline('zero-shot-object-detection' ) _snake_case = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=lowerCAmelCase_ , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, ] , ) @require_torch @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = 2 _snake_case = pipeline('zero-shot-object-detection' ) _snake_case = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=lowerCAmelCase_ , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, ] , )
542
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __magic_name__ : Union[str, Any] ={ 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Optional[int] =[ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : List[Any] =[ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys __magic_name__ : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
664
'''simple docstring''' from __future__ import annotations def __snake_case ( lowerCamelCase_ : list[int] , lowerCamelCase_ : int ): '''simple docstring''' if len(lowerCamelCase_ ) < k or k < 0: raise ValueError("Invalid Input" ) __magic_name__ = __magic_name__ = sum(array[:k] ) for i in range(len(lowerCamelCase_ ) - k ): __magic_name__ = current_sum - array[i] + array[i + k] __magic_name__ = max(lowerCamelCase_ , lowerCamelCase_ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __magic_name__ : List[str] =[randint(-10_00, 10_00) for i in range(1_00)] __magic_name__ : List[str] =randint(0, 1_10) print(F'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
664
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a__ ( UpperCamelCase__ ): UpperCAmelCase_ : List[str] = ['image_processor', 'tokenizer'] UpperCAmelCase_ : Optional[int] = 'Pix2StructImageProcessor' UpperCAmelCase_ : int = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self , lowercase__ , lowercase__ ) -> Dict: __A = False super().__init__(_a , _a ) def __call__( self , lowercase__=None , lowercase__ = None , lowercase__ = True , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = 2048 , lowercase__ = 0 , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = True , lowercase__ = None , **lowercase__ , ) -> BatchEncoding: if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None and not self.image_processor.is_vqa: __A = self.tokenizer __A = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values __A = self.image_processor( _a , return_tensors=_a , max_patches=_a , **_a ) else: # add pixel_values and bbox __A = self.image_processor( _a , return_tensors=_a , max_patches=_a , header_text=_a , **_a ) if text is not None and not self.image_processor.is_vqa: __A = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) if "attention_mask" in text_encoding: __A = text_encoding.pop("attention_mask" ) if "input_ids" in text_encoding: __A = text_encoding.pop("input_ids" ) else: __A = None if text_encoding is not None: encoding_image_processor.update(_a ) return encoding_image_processor def _lowerCamelCase ( self , *lowercase__ , **lowercase__ ) -> Optional[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def _lowerCamelCase ( self , *lowercase__ , **lowercase__ ) -> Union[str, Any]: return self.tokenizer.decode(*_a , **_a ) @property def _lowerCamelCase ( self ) -> List[Any]: __A = self.tokenizer.model_input_names __A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available snake_case_ : List[str] ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any =['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys snake_case_ : int =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
205
0
'''simple docstring''' import unittest from transformers import DonutProcessor SCREAMING_SNAKE_CASE = 'naver-clova-ix/donut-base' class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : Dict =DonutProcessor.from_pretrained(UpperCAmelCase ) def A__ ( self : Any ) -> Tuple: '''simple docstring''' lowercase : Tuple ={ '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase : List[str] =( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase : Optional[Any] =self.processor.tokenajson(UpperCAmelCase ) self.assertDictEqual(UpperCAmelCase , UpperCAmelCase )
94
'''simple docstring''' from torch import nn class A ( nn.Module ): def __init__( self , snake_case_ , snake_case_ ) -> List[Any]: super().__init__() _a = class_size _a = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) _a = nn.Linear(snake_case_ , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) _a = self.mlp(snake_case_ ) return logits
131
0
'''simple docstring''' def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) snake_case_ : List[str] = sorted(string.lower() ) return len(__SCREAMING_SNAKE_CASE ) == len(set(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": a_ = input("Enter a string ").strip() a_ = is_isogram(input_str) print(f"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
718
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( snake_case__ ): UpperCAmelCase_ = """ClapFeatureExtractor""" UpperCAmelCase_ = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , lowercase_ , lowercase_): super().__init__(lowercase_ , lowercase_) def __call__( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_): snake_case_ : Any = kwargs.pop("sampling_rate" , lowercase_) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none.") if text is not None: snake_case_ : Optional[int] = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_) if audios is not None: snake_case_ : Any = self.feature_extractor( lowercase_ , sampling_rate=lowercase_ , return_tensors=lowercase_ , **lowercase_) if text is not None and audios is not None: snake_case_ : Dict = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_) , tensor_type=lowercase_) def snake_case__ ( self , *lowercase_ , **lowercase_): return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def snake_case__ ( self , *lowercase_ , **lowercase_): return self.tokenizer.decode(*lowercase_ , **lowercase_) @property def snake_case__ ( self): snake_case_ : Union[str, Any] = self.tokenizer.model_input_names snake_case_ : int = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
92
0
'''simple docstring''' from collections.abc import Sequence def lowercase_ ( _lowercase = None ) -> int: '''simple docstring''' if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) lowerCamelCase_ : Any = nums[0] for i in range(1 , len(_lowercase ) ): lowerCamelCase_ : str = nums[i] lowerCamelCase_ : Union[str, Any] = max(_lowercase , ans + num , _lowercase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user __lowercase : List[Any] = int(input('''Enter number of elements : ''').strip()) __lowercase : Optional[int] = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
422
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __lowercase : str = logging.get_logger(__name__) __lowercase : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase : Any = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } __lowercase : List[str] = { '''junnyu/roformer_chinese_small''': 1536, '''junnyu/roformer_chinese_base''': 1536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } __lowercase : Optional[int] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Any = RoFormerTokenizer def __init__(self , A=None , A=None , A=True , A="[UNK]" , A="[SEP]" , A="[PAD]" , A="[CLS]" , A="[MASK]" , A=True , A=None , **A , ): super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) lowerCamelCase_ : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , A ) != do_lower_case or pre_tok_state.get('''strip_accents''' , A ) != strip_accents ): lowerCamelCase_ : Any = getattr(A , pre_tok_state.pop('''type''' ) ) lowerCamelCase_ : Dict = do_lower_case lowerCamelCase_ : List[Any] = strip_accents lowerCamelCase_ : Any = pre_tok_class(**A ) lowerCamelCase_ : str = do_lower_case def __getstate__(self ): lowerCamelCase_ : Optional[Any] = self.__dict__.copy() lowerCamelCase_ : List[Any] = BertPreTokenizer() return state def __setstate__(self , A ): lowerCamelCase_ : str = d lowerCamelCase_ : List[str] = self.__dict__['''_tokenizer'''].get_vocab() lowerCamelCase_ : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(A ) ) def UpperCAmelCase__ (self , A , A=None ): lowerCamelCase_ : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : Optional[int] = [self.sep_token_id] lowerCamelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : Union[str, Any] = self._tokenizer.model.save(A , name=A ) return tuple(A ) def UpperCAmelCase__ (self , A , A=None , A=None , A=False , **A , ): lowerCamelCase_ : str = BertPreTokenizer() return super().save_pretrained(A , A , A , A , **A )
422
1
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _lowerCAmelCase ( __snake_case ): __lowerCAmelCase : Tuple = CustomTokenizer pass
396
"""simple docstring""" # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
396
1
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def UpperCamelCase__ ( UpperCAmelCase_ ) -> Optional[Any]: '''simple docstring''' return 1 / (1 + np.exp(-z )) def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ ) -> List[Any]: '''simple docstring''' return (-y * np.log(UpperCAmelCase_ ) - (1 - y) * np.log(1 - h )).mean() def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Any: '''simple docstring''' _lowercase : Tuple = np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) return np.sum(y * scores - np.log(1 + np.exp(UpperCAmelCase_ ) ) ) def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=70000 ) -> Optional[int]: '''simple docstring''' _lowercase : int = np.zeros(x.shape[1] ) for iterations in range(UpperCAmelCase_ ): _lowercase : Optional[int] = np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) _lowercase : Union[str, Any] = sigmoid_function(UpperCAmelCase_ ) _lowercase : Dict = np.dot(x.T , h - y ) / y.size _lowercase : Optional[Any] = theta - alpha * gradient # updating the weights _lowercase : Tuple = np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) _lowercase : Optional[int] = sigmoid_function(UpperCAmelCase_ ) _lowercase : List[str] = cost_function(UpperCAmelCase_ , UpperCAmelCase_ ) if iterations % 100 == 0: print(F'loss: {j} \t' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase__ = datasets.load_iris() UpperCamelCase__ = iris.data[:, :2] UpperCamelCase__ = (iris.target != 0) * 1 UpperCamelCase__ = 0.1 UpperCamelCase__ = logistic_reg(alpha, x, y, max_iterations=70_000) print('theta: ', theta) # printing the theta i.e our weights vector def UpperCamelCase__ ( UpperCAmelCase_ ) -> Optional[int]: '''simple docstring''' return sigmoid_function( np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase__ = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
322
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase__ ( A_ ): '''simple docstring''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 def __init__( self : Optional[int] , UpperCamelCase : UNetaDModel , UpperCamelCase : KarrasVeScheduler ): """simple docstring""" super().__init__() self.register_modules(unet=UpperCamelCase , scheduler=UpperCamelCase ) @torch.no_grad() def __call__( self : List[str] , UpperCamelCase : int = 1 , UpperCamelCase : int = 50 , UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , **UpperCamelCase : Optional[int] , ): """simple docstring""" _lowercase : Union[str, Any] = self.unet.config.sample_size _lowercase : Dict = (batch_size, 3, img_size, img_size) _lowercase : int = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _lowercase : Any = randn_tensor(UpperCamelCase , generator=UpperCamelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _lowercase : Any = self.scheduler.schedule[t] _lowercase : Tuple = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _lowercase , _lowercase : Any = self.scheduler.add_noise_to_input(UpperCamelCase , UpperCamelCase , generator=UpperCamelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _lowercase : Optional[int] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _lowercase : Dict = self.scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _lowercase : Optional[Any] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample _lowercase : Any = self.scheduler.step_correct( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , step_output.prev_sample , step_output['''derivative'''] , ) _lowercase : Dict = step_output.prev_sample _lowercase : List[Any] = (sample / 2 + 0.5).clamp(0 , 1 ) _lowercase : List[Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowercase : List[Any] = self.numpy_to_pil(UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase )
322
1
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: A__ = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , UpperCAmelCase__ , standard_warn=UpperCAmelCase__ ) A__ = dict(scheduler.config ) A__ = 1 A__ = FrozenDict(UpperCAmelCase__ ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: A__ = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , UpperCAmelCase__ , standard_warn=UpperCAmelCase__ ) A__ = dict(scheduler.config ) A__ = True A__ = FrozenDict(UpperCAmelCase__ ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=UpperCAmelCase__ , segmentation_processor=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ , ) def __A ( self , UpperCAmelCase__ = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def __A ( self ): self.enable_attention_slicing(UpperCAmelCase__ ) def __A ( self ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) A__ = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase__ , UpperCAmelCase__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCAmelCase__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 512 , UpperCAmelCase__ = 512 , UpperCAmelCase__ = 50 , UpperCAmelCase__ = 7.5 , UpperCAmelCase__ = None , UpperCAmelCase__ = 1 , UpperCAmelCase__ = 0.0 , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = "pil" , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = 1 , **UpperCAmelCase__ , ): A__ = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) A__ = self.segmentation_model(**UpperCAmelCase__ ) A__ = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() A__ = self.numpy_to_pil(UpperCAmelCase__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask A__ = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , mask_image=UpperCAmelCase__ , height=UpperCAmelCase__ , width=UpperCAmelCase__ , num_inference_steps=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ , num_images_per_prompt=UpperCAmelCase__ , eta=UpperCAmelCase__ , generator=UpperCAmelCase__ , latents=UpperCAmelCase__ , output_type=UpperCAmelCase__ , return_dict=UpperCAmelCase__ , callback=UpperCAmelCase__ , callback_steps=UpperCAmelCase__ , )
232
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase_ : Optional[int] = 16 UpperCAmelCase_ : List[Any] = 32 def UpperCamelCase ( _A : Accelerator , _A : int = 16 )-> Dict: """simple docstring""" A__ = AutoTokenizer.from_pretrained("bert-base-cased" ) A__ = load_dataset("glue" , "mrpc" ) def tokenize_function(_A : Tuple ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_A , max_length=_A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( _A , batched=_A , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_A : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( _A , padding="longest" , max_length=_A , pad_to_multiple_of=_A , return_tensors="pt" , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets["train"] , shuffle=_A , collate_fn=_A , batch_size=_A , drop_last=_A ) A__ = DataLoader( tokenized_datasets["validation"] , shuffle=_A , collate_fn=_A , batch_size=_A , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def UpperCamelCase ( _A : str , _A : List[str] )-> Union[str, Any]: """simple docstring""" A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config["lr"] A__ = int(config["num_epochs"] ) A__ = int(config["seed"] ) A__ = int(config["batch_size"] ) A__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation A__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ = batch_size // MAX_GPU_BATCH_SIZE A__ = MAX_GPU_BATCH_SIZE set_seed(_A ) A__ , A__ = get_dataloaders(_A , _A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=_A ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=_A , num_warmup_steps=100 , num_training_steps=(len(_A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( _A , _A , _A , _A , _A ) # Now we train the model for epoch in range(_A ): model.train() for step, batch in enumerate(_A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**_A ) A__ = outputs.loss A__ = loss / gradient_accumulation_steps accelerator.backward(_A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**_A ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_A , references=_A , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _A ) def UpperCamelCase ( )-> Any: """simple docstring""" A__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_A , default=_A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) A__ = parser.parse_args() A__ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_A , _A ) if __name__ == "__main__": main()
232
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase_ = None UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "facebook/nllb-large-en-ro": 10_24, "facebook/nllb-200-distilled-600M": 10_24, } # fmt: off UpperCamelCase_ = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class _SCREAMING_SNAKE_CASE ( snake_case ): lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = ['input_ids', 'attention_mask'] lowerCamelCase_ = NllbTokenizer lowerCamelCase_ = [] lowerCamelCase_ = [] def __init__( self : int , snake_case_ : int=None , snake_case_ : List[str]=None , snake_case_ : Any="<s>" , snake_case_ : List[str]="</s>" , snake_case_ : str="</s>" , snake_case_ : Optional[int]="<s>" , snake_case_ : Any="<unk>" , snake_case_ : Any="<pad>" , snake_case_ : Any="<mask>" , snake_case_ : Tuple=None , snake_case_ : Optional[int]=None , snake_case_ : Dict=None , snake_case_ : Union[str, Any]=False , **snake_case_ : List[Any] , ): """simple docstring""" A : Tuple = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token A : Any = legacy_behaviour super().__init__( vocab_file=snake_case_ , tokenizer_file=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , src_lang=snake_case_ , tgt_lang=snake_case_ , additional_special_tokens=snake_case_ , legacy_behaviour=snake_case_ , **snake_case_ , ) A : List[str] = vocab_file A : Union[str, Any] = False if not self.vocab_file else True A : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) A : List[Any] = { lang_code: self.convert_tokens_to_ids(snake_case_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } A : Optional[int] = src_lang if src_lang is not None else '''eng_Latn''' A : List[Any] = self.convert_tokens_to_ids(self._src_lang ) A : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" return self._src_lang @src_lang.setter def _UpperCAmelCase ( self : Any , snake_case_ : str ): """simple docstring""" A : Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCAmelCase ( self : Optional[Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCAmelCase ( self : Tuple , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): """simple docstring""" A : Optional[int] = [self.sep_token_id] A : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self : Dict , snake_case_ : Any , snake_case_ : str , snake_case_ : Optional[str] , snake_case_ : Optional[str] , **snake_case_ : Optional[Any] ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) A : List[Any] = src_lang A : int = self(snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , **snake_case_ ) A : List[Any] = self.convert_tokens_to_ids(snake_case_ ) A : List[str] = tgt_lang_id return inputs def _UpperCAmelCase ( self : Union[str, Any] , snake_case_ : List[str] , snake_case_ : str = "eng_Latn" , snake_case_ : Optional[List[str]] = None , snake_case_ : str = "fra_Latn" , **snake_case_ : Any , ): """simple docstring""" A : Tuple = src_lang A : Union[str, Any] = tgt_lang return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def _UpperCAmelCase ( self : Any ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCAmelCase ( self : Dict , snake_case_ : Any ): """simple docstring""" A : Optional[Any] = self.convert_tokens_to_ids(snake_case_ ) if self.legacy_behaviour: A : Optional[Any] = [] A : int = [self.eos_token_id, self.cur_lang_code] else: A : int = [self.cur_lang_code] A : List[str] = [self.eos_token_id] A : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) A : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) A : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCAmelCase ( self : Union[str, Any] , snake_case_ : str ): """simple docstring""" A : Any = self.convert_tokens_to_ids(snake_case_ ) if self.legacy_behaviour: A : int = [] A : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: A : str = [self.cur_lang_code] A : List[str] = [self.eos_token_id] A : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) A : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens ) A : str = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCAmelCase ( self : int , snake_case_ : str , snake_case_ : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(snake_case_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return A : Tuple = os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
256
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE ( snake_case ): lowerCamelCase_ = 'markuplm' def __init__( self : List[Any] , snake_case_ : List[str]=3_0522 , snake_case_ : str=768 , snake_case_ : str=12 , snake_case_ : Optional[Any]=12 , snake_case_ : Any=3072 , snake_case_ : Dict="gelu" , snake_case_ : Dict=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : int=512 , snake_case_ : Optional[Any]=2 , snake_case_ : int=0.02 , snake_case_ : Optional[Any]=1E-12 , snake_case_ : Dict=0 , snake_case_ : Optional[int]=0 , snake_case_ : Union[str, Any]=2 , snake_case_ : List[Any]=256 , snake_case_ : Union[str, Any]=1024 , snake_case_ : Optional[Any]=216 , snake_case_ : Optional[Any]=1001 , snake_case_ : Tuple=32 , snake_case_ : str=50 , snake_case_ : int="absolute" , snake_case_ : List[Any]=True , snake_case_ : List[Any]=None , **snake_case_ : Optional[Any] , ): """simple docstring""" super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) A : int = vocab_size A : Dict = hidden_size A : str = num_hidden_layers A : List[Any] = num_attention_heads A : int = hidden_act A : List[Any] = intermediate_size A : Optional[Any] = hidden_dropout_prob A : Tuple = attention_probs_dropout_prob A : str = max_position_embeddings A : Dict = type_vocab_size A : Optional[int] = initializer_range A : Optional[Any] = layer_norm_eps A : Any = position_embedding_type A : List[Any] = use_cache A : List[str] = classifier_dropout # additional properties A : Optional[Any] = max_depth A : Tuple = max_xpath_tag_unit_embeddings A : str = max_xpath_subs_unit_embeddings A : Dict = tag_pad_id A : Dict = subs_pad_id A : List[str] = xpath_unit_hidden_size
256
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase ( __magic_name__ ): """simple docstring""" UpperCAmelCase_ : Any = ["image_processor", "tokenizer"] UpperCAmelCase_ : Any = "ViTImageProcessor" UpperCAmelCase_ : Tuple = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , lowercase__=None , lowercase__=None , **lowercase__ ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase__ , ) SCREAMING_SNAKE_CASE = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowercase__ , lowercase__ ) def __call__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ) -> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: SCREAMING_SNAKE_CASE = self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if visual_prompt is not None: SCREAMING_SNAKE_CASE = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: SCREAMING_SNAKE_CASE = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if visual_prompt is not None and images is not None: SCREAMING_SNAKE_CASE = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: SCREAMING_SNAKE_CASE = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: SCREAMING_SNAKE_CASE = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def A ( self , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def A ( self , *lowercase__ , **lowercase__ ) -> Any: """simple docstring""" return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def A ( self ) -> Optional[Any]: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase__ , ) return self.image_processor_class @property def A ( self ) -> Tuple: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase__ , ) return self.image_processor
406
"""simple docstring""" from __future__ import annotations def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_ ): if len(SCREAMING_SNAKE_CASE_ ) == 0: return [] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = int(max_value - min_value ) + 1 SCREAMING_SNAKE_CASE = [[] for _ in range(SCREAMING_SNAKE_CASE_ )] for i in my_list: buckets[int(i - min_value )].append(SCREAMING_SNAKE_CASE_ ) return [v for bucket in buckets for v in sorted(SCREAMING_SNAKE_CASE_ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
406
1
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' @register_to_config def __init__( self : Any , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : float , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : str , lowerCamelCase : bool = False , ) -> Any: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Embedding(lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = nn.Embedding(lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = False _UpperCAmelCase = nn.Dropout(p=lowerCamelCase ) _UpperCAmelCase = TaConfig( vocab_size=lowerCamelCase , d_model=lowerCamelCase , num_heads=lowerCamelCase , d_kv=lowerCamelCase , d_ff=lowerCamelCase , dropout_rate=lowerCamelCase , feed_forward_proj=lowerCamelCase , is_decoder=lowerCamelCase , is_encoder_decoder=lowerCamelCase , ) _UpperCAmelCase = nn.ModuleList() for lyr_num in range(lowerCamelCase ): _UpperCAmelCase = TaBlock(lowerCamelCase ) self.encoders.append(lowerCamelCase ) _UpperCAmelCase = TaLayerNorm(lowerCamelCase ) _UpperCAmelCase = nn.Dropout(p=lowerCamelCase ) def lowerCamelCase ( self : List[str] , lowerCamelCase : int , lowerCamelCase : Tuple ) -> int: """simple docstring""" _UpperCAmelCase = self.token_embedder(lowerCamelCase ) _UpperCAmelCase = encoder_input_tokens.shape[1] _UpperCAmelCase = torch.arange(lowerCamelCase , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCamelCase ) _UpperCAmelCase = self.dropout_pre(lowerCamelCase ) # inverted the attention mask _UpperCAmelCase = encoder_input_tokens.size() _UpperCAmelCase = self.get_extended_attention_mask(lowerCamelCase , lowerCamelCase ) for lyr in self.encoders: _UpperCAmelCase = lyr(lowerCamelCase , lowerCamelCase )[0] _UpperCAmelCase = self.layer_norm(lowerCamelCase ) return self.dropout_post(lowerCamelCase ), encoder_inputs_mask
108
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
347
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Dict = ["pixel_values"] def __init__( self : Union[str, Any] ,_snake_case : bool = True ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : bool = True ,**_snake_case : List[Any] ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : Tuple = size if size is not None else {'''height''': 384, '''width''': 384} lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ) lowercase__ : str = do_resize lowercase__ : Tuple = size lowercase__ : int = resample lowercase__ : Dict = do_rescale lowercase__ : str = rescale_factor lowercase__ : Any = do_normalize lowercase__ : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase__ : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD lowercase__ : str = do_convert_rgb def UpperCAmelCase ( self : Tuple ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : List[Any] ,) -> np.ndarray: """simple docstring""" lowercase__ : int = get_size_dict(_snake_case ,default_to_square=_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) lowercase__ : Optional[int] = (size['''height'''], size['''width''']) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Union[int, float] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Any ,) -> Union[str, Any]: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Union[str, Any] ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : bool = None ,_snake_case : ChannelDimension = ChannelDimension.FIRST ,**_snake_case : Union[str, Any] ,) -> PIL.Image.Image: """simple docstring""" lowercase__ : str = do_resize if do_resize is not None else self.do_resize lowercase__ : Optional[Any] = resample if resample is not None else self.resample lowercase__ : Dict = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Any = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__ : Union[str, Any] = size if size is not None else self.size lowercase__ : str = get_size_dict(_snake_case ,default_to_square=_snake_case ) lowercase__ : int = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__ : Optional[Any] = [convert_to_rgb(_snake_case ) for image in images] # All transformations expect numpy arrays. lowercase__ : Optional[Any] = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : Dict = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_rescale: lowercase__ : str = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: lowercase__ : Optional[Any] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] lowercase__ : Any = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Union[str, Any] = BatchFeature(data={'''pixel_values''': images} ,tensor_type=_snake_case ) return encoded_outputs
122
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowerCAmelCase_ = data_utils.TransfoXLTokenizer lowerCAmelCase_ = data_utils.TransfoXLCorpus lowerCAmelCase_ = data_utils lowerCAmelCase_ = data_utils def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__lowerCamelCase , '''rb''' ) as fp: lowercase__ : Any = pickle.load(__lowerCamelCase , encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) lowercase__ : str = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(f"""Save vocabulary to {pytorch_vocab_dump_path}""" ) lowercase__ : Dict = corpus.vocab.__dict__ torch.save(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Optional[Any] = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , __lowerCamelCase ) lowercase__ : int = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(f"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(__lowerCamelCase , __lowerCamelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model lowercase__ : int = os.path.abspath(__lowerCamelCase ) lowercase__ : List[Any] = os.path.abspath(__lowerCamelCase ) print(f"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": lowercase__ : Union[str, Any] = TransfoXLConfig() else: lowercase__ : str = TransfoXLConfig.from_json_file(__lowerCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) lowercase__ : List[str] = TransfoXLLMHeadModel(__lowerCamelCase ) lowercase__ : Tuple = load_tf_weights_in_transfo_xl(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model lowercase__ : int = os.path.join(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Optional[int] = os.path.join(__lowerCamelCase , __lowerCamelCase ) print(f"""Save PyTorch model to {os.path.abspath(__lowerCamelCase )}""" ) torch.save(model.state_dict() , __lowerCamelCase ) print(f"""Save configuration file to {os.path.abspath(__lowerCamelCase )}""" ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) lowerCAmelCase_ = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
122
1
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1 / sqrt(2 ) ): snake_case_ = tau * frequency / samplerate snake_case_ = sin(SCREAMING_SNAKE_CASE__ ) snake_case_ = cos(SCREAMING_SNAKE_CASE__ ) snake_case_ = _sin / (2 * q_factor) snake_case_ = (1 - _cos) / 2 snake_case_ = 1 - _cos snake_case_ = 1 + alpha snake_case_ = -2 * _cos snake_case_ = 1 - alpha snake_case_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1 / sqrt(2 ) ): snake_case_ = tau * frequency / samplerate snake_case_ = sin(SCREAMING_SNAKE_CASE__ ) snake_case_ = cos(SCREAMING_SNAKE_CASE__ ) snake_case_ = _sin / (2 * q_factor) snake_case_ = (1 + _cos) / 2 snake_case_ = -1 - _cos snake_case_ = 1 + alpha snake_case_ = -2 * _cos snake_case_ = 1 - alpha snake_case_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1 / sqrt(2 ) ): snake_case_ = tau * frequency / samplerate snake_case_ = sin(SCREAMING_SNAKE_CASE__ ) snake_case_ = cos(SCREAMING_SNAKE_CASE__ ) snake_case_ = _sin / (2 * q_factor) snake_case_ = _sin / 2 snake_case_ = 0 snake_case_ = -ba snake_case_ = 1 + alpha snake_case_ = -2 * _cos snake_case_ = 1 - alpha snake_case_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1 / sqrt(2 ) ): snake_case_ = tau * frequency / samplerate snake_case_ = sin(SCREAMING_SNAKE_CASE__ ) snake_case_ = cos(SCREAMING_SNAKE_CASE__ ) snake_case_ = _sin / (2 * q_factor) snake_case_ = 1 - alpha snake_case_ = -2 * _cos snake_case_ = 1 + alpha snake_case_ = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1 / sqrt(2 ) , ): snake_case_ = tau * frequency / samplerate snake_case_ = sin(SCREAMING_SNAKE_CASE__ ) snake_case_ = cos(SCREAMING_SNAKE_CASE__ ) snake_case_ = _sin / (2 * q_factor) snake_case_ = 10 ** (gain_db / 40) snake_case_ = 1 + alpha * big_a snake_case_ = -2 * _cos snake_case_ = 1 - alpha * big_a snake_case_ = 1 + alpha / big_a snake_case_ = -2 * _cos snake_case_ = 1 - alpha / big_a snake_case_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1 / sqrt(2 ) , ): snake_case_ = tau * frequency / samplerate snake_case_ = sin(SCREAMING_SNAKE_CASE__ ) snake_case_ = cos(SCREAMING_SNAKE_CASE__ ) snake_case_ = _sin / (2 * q_factor) snake_case_ = 10 ** (gain_db / 40) snake_case_ = (big_a + 1) - (big_a - 1) * _cos snake_case_ = (big_a + 1) + (big_a - 1) * _cos snake_case_ = (big_a - 1) - (big_a + 1) * _cos snake_case_ = (big_a - 1) + (big_a + 1) * _cos snake_case_ = 2 * sqrt(SCREAMING_SNAKE_CASE__ ) * alpha snake_case_ = big_a * (pmc + aaa) snake_case_ = 2 * big_a * mpc snake_case_ = big_a * (pmc - aaa) snake_case_ = ppmc + aaa snake_case_ = -2 * pmpc snake_case_ = ppmc - aaa snake_case_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1 / sqrt(2 ) , ): snake_case_ = tau * frequency / samplerate snake_case_ = sin(SCREAMING_SNAKE_CASE__ ) snake_case_ = cos(SCREAMING_SNAKE_CASE__ ) snake_case_ = _sin / (2 * q_factor) snake_case_ = 10 ** (gain_db / 40) snake_case_ = (big_a + 1) - (big_a - 1) * _cos snake_case_ = (big_a + 1) + (big_a - 1) * _cos snake_case_ = (big_a - 1) - (big_a + 1) * _cos snake_case_ = (big_a - 1) + (big_a + 1) * _cos snake_case_ = 2 * sqrt(SCREAMING_SNAKE_CASE__ ) * alpha snake_case_ = big_a * (ppmc + aaa) snake_case_ = -2 * big_a * pmpc snake_case_ = big_a * (ppmc - aaa) snake_case_ = pmc + aaa snake_case_ = 2 * mpc snake_case_ = pmc - aaa snake_case_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
39
"""simple docstring""" snake_case_ : List[Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/""" def lowercase_ ( _lowercase : bytes ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): UpperCAmelCase : int = F"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(_lowercase ) UpperCAmelCase : List[Any] = "".join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) UpperCAmelCase : Any = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later UpperCAmelCase : int = B"=" * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: UpperCAmelCase : List[Any] = B"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_lowercase ) , 6 ) ).encode() + padding ) def lowercase_ ( _lowercase : str ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ) and not isinstance(_lowercase , _lowercase ): UpperCAmelCase : Optional[Any] = ( "argument should be a bytes-like object or ASCII string, " F"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase , _lowercase ): try: UpperCAmelCase : List[Any] = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) UpperCAmelCase : List[str] = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCAmelCase : List[str] = encoded_data[:-padding] UpperCAmelCase : Any = "".join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: UpperCAmelCase : Any = "".join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) UpperCAmelCase : str = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_lowercase ) , 8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
595
0
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] , __snake_case : List[Any] ): '''simple docstring''' lowercase = torch.load(__snake_case , map_location='cpu' ) lowercase = chkpt['model'] # We have the base model one level deeper than the original XLM repository lowercase = {} for k, v in state_dict.items(): if "pred_layer" in k: lowercase = v else: lowercase = v lowercase = chkpt['params'] lowercase = {n: v for n, v in config.items() if not isinstance(__snake_case , (torch.FloatTensor, numpy.ndarray) )} lowercase = chkpt['dico_word2id'] lowercase = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model lowercase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowercase = pytorch_dump_folder_path + '/' + CONFIG_NAME lowercase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(__snake_case , __snake_case ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__snake_case , indent=2 ) + '\n' ) print(f'Save vocab file to {pytorch_config_dump_path}' ) with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__snake_case , indent=2 ) + '\n' ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCamelCase : Optional[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
134
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class a : def UpperCamelCase_ ( self ): torch.manual_seed(0 ) lowercase = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) lowercase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) lowercase = UNetaDConditionModel( sample_size=3_2 , layers_per_block=1 , block_out_channels=[3_2, 6_4] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowercase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=_lowerCamelCase , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase_ ( self ): torch.manual_seed(0 ) lowercase = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) lowercase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) lowercase = UNetaDConditionModel( sample_size=3_2 , layers_per_block=[1, 2] , block_out_channels=[3_2, 6_4] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_1_4 , time_embedding_act_fn='gelu' , time_embedding_dim=3_2 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowercase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=_lowerCamelCase , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) lowercase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , ) torch.manual_seed(0 ) lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase_ ( self ): lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase = self.get_dummy_inputs(_lowerCamelCase ) lowercase = inputs['prompt'] lowercase = inputs['generator'] lowercase = inputs['num_inference_steps'] lowercase = inputs['output_type'] if "image" in inputs: lowercase = inputs['image'] else: lowercase = None if "mask_image" in inputs: lowercase = inputs['mask_image'] else: lowercase = None if "original_image" in inputs: lowercase = inputs['original_image'] else: lowercase = None lowercase , lowercase = pipe.encode_prompt(_lowerCamelCase ) # inputs with prompt converted to embeddings lowercase = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: lowercase = image if mask_image is not None: lowercase = mask_image if original_image is not None: lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase = pipe(**_lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowerCamelCase ) lowercase = self.pipeline_class.from_pretrained(_lowerCamelCase ) pipe_loaded.to(_lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=_lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_lowerCamelCase , _lowerCamelCase ) is None , F'`{optional_component}` did not stay set to None after loading.' , ) lowercase = self.get_dummy_inputs(_lowerCamelCase ) lowercase = inputs['generator'] lowercase = inputs['num_inference_steps'] lowercase = inputs['output_type'] # inputs with prompt converted to embeddings lowercase = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: lowercase = image if mask_image is not None: lowercase = mask_image if original_image is not None: lowercase = original_image lowercase = pipe_loaded(**_lowerCamelCase )[0] lowercase = np.abs(to_np(_lowerCamelCase ) - to_np(_lowerCamelCase ) ).max() self.assertLess(_lowerCamelCase , 1e-4 ) def UpperCamelCase_ ( self ): lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase = self.get_dummy_inputs(_lowerCamelCase ) lowercase = pipe(**_lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowerCamelCase ) lowercase = self.pipeline_class.from_pretrained(_lowerCamelCase ) pipe_loaded.to(_lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=_lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests lowercase = self.get_dummy_inputs(_lowerCamelCase ) lowercase = pipe_loaded(**_lowerCamelCase )[0] lowercase = np.abs(to_np(_lowerCamelCase ) - to_np(_lowerCamelCase ) ).max() self.assertLess(_lowerCamelCase , 1e-4 )
134
1
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE: list , SCREAMING_SNAKE_CASE: list , SCREAMING_SNAKE_CASE: int ): """simple docstring""" _lowerCAmelCase = len(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = [[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): _lowerCAmelCase = y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowerCAmelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
580
"""simple docstring""" _snake_case = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 1_0: '''a''', 1_1: '''b''', 1_2: '''c''', 1_3: '''d''', 1_4: '''e''', 1_5: '''f''', } def __snake_case ( SCREAMING_SNAKE_CASE: float ): """simple docstring""" assert type(SCREAMING_SNAKE_CASE ) in (int, float) and decimal == int(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = int(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = '' _lowerCAmelCase = False if decimal < 0: _lowerCAmelCase = True decimal *= -1 while decimal > 0: _lowerCAmelCase , _lowerCAmelCase = divmod(SCREAMING_SNAKE_CASE , 16 ) _lowerCAmelCase = values[remainder] + hexadecimal _lowerCAmelCase = '0x' + hexadecimal if negative: _lowerCAmelCase = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
580
1
"""simple docstring""" import numpy as np def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1e-12 , SCREAMING_SNAKE_CASE_ = 100 , ): assert np.shape(SCREAMING_SNAKE_CASE_ )[0] == np.shape(SCREAMING_SNAKE_CASE_ )[1] # Ensure proper dimensionality. assert np.shape(SCREAMING_SNAKE_CASE_ )[0] == np.shape(SCREAMING_SNAKE_CASE_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(SCREAMING_SNAKE_CASE_ ) == np.iscomplexobj(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Any = np.iscomplexobj(SCREAMING_SNAKE_CASE_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(SCREAMING_SNAKE_CASE_ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _lowerCamelCase : Optional[Any] = False _lowerCamelCase : str = 0 _lowerCamelCase : Any = 0 _lowerCamelCase : Dict = 1e12 while not convergence: # Multiple matrix by the vector. _lowerCamelCase : Optional[Any] = np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Normalize the resulting output vector. _lowerCamelCase : str = w / np.linalg.norm(SCREAMING_SNAKE_CASE_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _lowerCamelCase : List[Any] = vector.conj().T if is_complex else vector.T _lowerCamelCase : Union[str, Any] = np.dot(SCREAMING_SNAKE_CASE_ , np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Check convergence. _lowerCamelCase : Dict = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _lowerCamelCase : List[Any] = True _lowerCamelCase : int = lambda_ if is_complex: _lowerCamelCase : Tuple = np.real(lambda_ ) return lambda_, vector def UpperCamelCase ( ): _lowerCamelCase : int = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _lowerCamelCase : Optional[Any] = np.array([41, 4, 20] ) _lowerCamelCase : Tuple = real_input_matrix.astype(np.complexaaa ) _lowerCamelCase : Optional[Any] = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _lowerCamelCase : Optional[Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _lowerCamelCase : Any = real_input_matrix _lowerCamelCase : Tuple = real_vector elif problem_type == "complex": _lowerCamelCase : Tuple = complex_input_matrix _lowerCamelCase : Dict = complex_vector # Our implementation. _lowerCamelCase : List[Any] = power_iteration(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _lowerCamelCase : List[str] = np.linalg.eigh(SCREAMING_SNAKE_CASE_ ) # Last eigenvalue is the maximum one. _lowerCamelCase : int = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _lowerCamelCase : int = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(SCREAMING_SNAKE_CASE_ ) - np.abs(SCREAMING_SNAKE_CASE_ ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
721
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCAmelCase ( a_ , a_ , a_ ): """simple docstring""" @register_to_config def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = False , ) -> Tuple: super().__init__() _lowerCamelCase : Tuple = nn.Embedding(_lowercase , _lowercase ) _lowerCamelCase : Dict = nn.Embedding(_lowercase , _lowercase ) _lowerCamelCase : Tuple = False _lowerCamelCase : Any = nn.Dropout(p=_lowercase ) _lowerCamelCase : List[Any] = TaConfig( vocab_size=_lowercase , d_model=_lowercase , num_heads=_lowercase , d_kv=_lowercase , d_ff=_lowercase , dropout_rate=_lowercase , feed_forward_proj=_lowercase , is_decoder=_lowercase , is_encoder_decoder=_lowercase , ) _lowerCamelCase : List[Any] = nn.ModuleList() for lyr_num in range(_lowercase ): _lowerCamelCase : Tuple = TaBlock(_lowercase ) self.encoders.append(_lowercase ) _lowerCamelCase : str = TaLayerNorm(_lowercase ) _lowerCamelCase : List[Any] = nn.Dropout(p=_lowercase ) def a__ ( self , _lowercase , _lowercase ) -> Optional[Any]: _lowerCamelCase : List[Any] = self.token_embedder(_lowercase ) _lowerCamelCase : Union[str, Any] = encoder_input_tokens.shape[1] _lowerCamelCase : int = torch.arange(_lowercase , device=encoder_input_tokens.device ) x += self.position_encoding(_lowercase ) _lowerCamelCase : Tuple = self.dropout_pre(_lowercase ) # inverted the attention mask _lowerCamelCase : int = encoder_input_tokens.size() _lowerCamelCase : Union[str, Any] = self.get_extended_attention_mask(_lowercase , _lowercase ) for lyr in self.encoders: _lowerCamelCase : List[Any] = lyr(_lowercase , _lowercase )[0] _lowerCamelCase : str = self.layer_norm(_lowercase ) return self.dropout_post(_lowercase ), encoder_inputs_mask
558
0
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: # Initialise PyTorch model _lowercase : Optional[int] = TaConfig.from_json_file(lowerCamelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) _lowercase : Union[str, Any] = TaForConditionalGeneration(lowerCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
89
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase : str ) -> bool: lowerCamelCase_ = 0 for ch in input_str: lowerCamelCase_ = ord(_lowerCamelCase ) lowerCamelCase_ = pow(2 , _lowerCamelCase ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
549
0
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor UpperCAmelCase_ : Any = logging.get_logger(__name__) class lowercase__ ( __A ): def __init__( self , *_lowercase , **_lowercase ): warnings.warn( """The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use DeformableDetrImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
440
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : int = {"""configuration_plbart""": ["""PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PLBartConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ["""PLBartTokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ """PLBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """PLBartForCausalLM""", """PLBartForConditionalGeneration""", """PLBartForSequenceClassification""", """PLBartModel""", """PLBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys UpperCAmelCase_ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
440
1
"""simple docstring""" from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class __snake_case (lowerCamelCase ): def __lt__( self: str , A_: Union[str, Any] ): return self[-1] < other[-1] def __eq__( self: Optional[int] , A_: Dict ): return self[-1] == other[-1] def a_ ( lowercase__ :list ): __lowerCamelCase = [] # sort into stacks for element in collection: __lowerCamelCase = Stack([element] ) __lowerCamelCase = bisect_left(lowercase__, lowercase__ ) if i != len(lowercase__ ): stacks[i].append(lowercase__ ) else: stacks.append(lowercase__ ) # use a heap-based merge to merge stack efficiently __lowerCamelCase = merge(*(reversed(lowercase__ ) for stack in stacks) ) return collection if __name__ == "__main__": __magic_name__ : Any = input('Enter numbers separated by a comma:\n').strip() __magic_name__ : int = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
281
"""simple docstring""" def a_ ( lowercase__ :str ): __lowerCamelCase = [int(lowercase__ ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(lowercase__ ) == 4 and all(0 <= int(lowercase__ ) <= 254 for octet in octets ) if __name__ == "__main__": __magic_name__ : Tuple = input().strip() __magic_name__ : Optional[int] = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
281
1
def __lowerCAmelCase ( __UpperCamelCase : int = 4_0_0_0_0_0_0 ): '''simple docstring''' snake_case_ : Dict = [0, 1] snake_case_ : str = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 snake_case_ : Optional[int] = 0 for j in range(len(__UpperCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'''{solution() = }''')
704
"""simple docstring""" import math import tensorflow as tf from packaging import version def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : List[Any] = tf.cast(math.pi , x.dtype ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Tuple = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return tf.clip_by_value(_gelu(__UpperCamelCase ) , -1_0 , 1_0 ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=-1 ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) __lowerCAmelCase : int = tf.keras.activations.gelu __lowerCAmelCase : Optional[Any] = approximate_gelu_wrap else: __lowerCAmelCase : List[Any] = _gelu __lowerCAmelCase : Any = _gelu_new __lowerCAmelCase : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
21
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __magic_name__ : Dict = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Dict = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : str = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __magic_name__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
615
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __magic_name__ : List[Any] = logging.get_logger(__name__) def a_ ( __lowerCAmelCase , __lowerCAmelCase ): lowerCAmelCase__ = set() lowerCAmelCase__ = [] def parse_line(__lowerCAmelCase ): for line in fp: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCAmelCase__ = line.decode('''UTF-8''' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' ''' ): # process a single warning and move it to `selected_warnings`. if len(__lowerCAmelCase ) > 0: lowerCAmelCase__ = '''\n'''.join(__lowerCAmelCase ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(__lowerCAmelCase ) buffer.clear() continue else: lowerCAmelCase__ = line.strip() buffer.append(__lowerCAmelCase ) if from_gh: for filename in os.listdir(__lowerCAmelCase ): lowerCAmelCase__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if not os.path.isdir(__lowerCAmelCase ): # read the file if filename != "warnings.txt": continue with open(__lowerCAmelCase ) as fp: parse_line(__lowerCAmelCase ) else: try: with zipfile.ZipFile(__lowerCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__lowerCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(__lowerCAmelCase ) as fp: parse_line(__lowerCAmelCase ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def a_ ( __lowerCAmelCase , __lowerCAmelCase ): lowerCAmelCase__ = set() lowerCAmelCase__ = [os.path.join(__lowerCAmelCase , __lowerCAmelCase ) for p in os.listdir(__lowerCAmelCase ) if (p.endswith('''.zip''' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(__lowerCAmelCase , __lowerCAmelCase ) ) return selected_warnings if __name__ == "__main__": def a_ ( __lowerCAmelCase ): return values.split(''',''' ) __magic_name__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __magic_name__ : Optional[Any] = parser.parse_args() __magic_name__ : Optional[int] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __magic_name__ : Optional[Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __magic_name__ : Optional[Any] = extract_warnings(args.output_dir, args.targets) __magic_name__ : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
615
1
'''simple docstring''' from __future__ import annotations __UpperCAmelCase = [] def _snake_case ( A , A , A ) -> bool: for i in range(len(A ) ): if board[row][i] == 1: return False for i in range(len(A ) ): if board[i][column] == 1: return False for i, j in zip(range(A , -1 , -1 ) , range(A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(A , -1 , -1 ) , range(A , len(A ) ) ): if board[i][j] == 1: return False return True def _snake_case ( A , A ) -> bool: if row >= len(A ): solution.append(A ) printboard(A ) print() return True for i in range(len(A ) ): if is_safe(A , A , A ): lowerCAmelCase__ = 1 solve(A , row + 1 ) lowerCAmelCase__ = 0 return False def _snake_case ( A ) -> None: for i in range(len(A ) ): for j in range(len(A ) ): if board[i][j] == 1: print('''Q''' , end=''' ''' ) else: print('''.''' , end=''' ''' ) print() # n=int(input("The no. of queens")) __UpperCAmelCase = 8 __UpperCAmelCase = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
98
'''simple docstring''' import numpy as np import qiskit def _snake_case ( A = 8 , A = None ) -> str: lowerCAmelCase__ = np.random.default_rng(seed=A ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. lowerCAmelCase__ = 6 * key_len # Measurement basis for Alice's qubits. lowerCAmelCase__ = rng.integers(2 , size=A ) # The set of states Alice will prepare. lowerCAmelCase__ = rng.integers(2 , size=A ) # Measurement basis for Bob's qubits. lowerCAmelCase__ = rng.integers(2 , size=A ) # Quantum Circuit to simulate BB84 lowerCAmelCase__ = qiskit.QuantumCircuit(A , name='''BB84''' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(A ): if alice_state[index] == 1: bbaa_circ.x(A ) if alice_basis[index] == 1: bbaa_circ.h(A ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(A ): if bob_basis[index] == 1: bbaa_circ.h(A ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. lowerCAmelCase__ = qiskit.Aer.get_backend('''aer_simulator''' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. lowerCAmelCase__ = qiskit.execute(A , A , shots=1 , seed_simulator=A ) # Returns the result of measurement. lowerCAmelCase__ = job.result().get_counts(A ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. lowerCAmelCase__ = ''''''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( A , A , A ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. lowerCAmelCase__ = gen_key[:key_len] if len(A ) >= key_len else gen_key.ljust(A , '''0''' ) return key if __name__ == "__main__": print(f"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
98
1
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _a : List[Any] = logging.get_logger(__name__) @add_end_docstrings(a ) class lowercase_ ( a ): '''simple docstring''' def __init__( self , *a_ , **a_ ) -> str: """simple docstring""" super().__init__(*a_ , **a_ ) requires_backends(self , 'decord' ) self.check_model_type(a_ ) def snake_case_ ( self , a_=None , a_=None , a_=None ) -> int: """simple docstring""" UpperCAmelCase = {} if frame_sampling_rate is not None: UpperCAmelCase = frame_sampling_rate if num_frames is not None: UpperCAmelCase = num_frames UpperCAmelCase = {} if top_k is not None: UpperCAmelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self , a_ , **a_ ) -> Union[str, Any]: """simple docstring""" return super().__call__(a_ , **a_ ) def snake_case_ ( self , a_ , a_=None , a_=1 ) -> Tuple: """simple docstring""" if num_frames is None: UpperCAmelCase = self.model.config.num_frames if video.startswith('http://' ) or video.startswith('https://' ): UpperCAmelCase = BytesIO(requests.get(a_ ).content ) UpperCAmelCase = VideoReader(a_ ) videoreader.seek(0 ) UpperCAmelCase = 0 UpperCAmelCase = num_frames * frame_sampling_rate - 1 UpperCAmelCase = np.linspace(a_ , a_ , num=a_ , dtype=np.intaa ) UpperCAmelCase = videoreader.get_batch(a_ ).asnumpy() UpperCAmelCase = list(a_ ) UpperCAmelCase = self.image_processor(a_ , return_tensors=self.framework ) return model_inputs def snake_case_ ( self , a_ ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model(**a_ ) return model_outputs def snake_case_ ( self , a_ , a_=5 ) -> Union[str, Any]: """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase = model_outputs.logits.softmax(-1 )[0] UpperCAmelCase , UpperCAmelCase = probs.topk(a_ ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) UpperCAmelCase = scores.tolist() UpperCAmelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(a_ , a_ )]
447
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger() @dataclass class lowercase_ : '''simple docstring''' __lowerCAmelCase : nn.Module __lowerCAmelCase : List[nn.Module] = field(default_factory=a ) __lowerCAmelCase : list = field(default_factory=a ) def snake_case_ ( self , a_ , a_ , a_ ) -> Tuple: """simple docstring""" UpperCAmelCase = len(list(m.modules() ) ) == 1 or isinstance(a_ , nn.Convad ) or isinstance(a_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(a_ ) def __call__( self , a_ ) -> Union[str, Any]: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a_ ) [x.remove() for x in self.handles] return self @property def snake_case_ ( self ) -> int: """simple docstring""" # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda a_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowercase_ : '''simple docstring''' __lowerCAmelCase : nn.Module __lowerCAmelCase : nn.Module __lowerCAmelCase : int = 0 __lowerCAmelCase : List = field(default_factory=a ) __lowerCAmelCase : List = field(default_factory=a ) def __call__( self , a_ ) -> Dict: """simple docstring""" UpperCAmelCase = Tracker(self.dest )(a_ ).parametrized UpperCAmelCase = Tracker(self.src )(a_ ).parametrized UpperCAmelCase = list(filter(lambda a_ : type(a_ ) not in self.src_skip , a_ ) ) UpperCAmelCase = list(filter(lambda a_ : type(a_ ) not in self.dest_skip , a_ ) ) if len(a_ ) != len(a_ ): raise Exception( F'''Numbers of operations are different. Source module has {len(a_ )} operations while''' F''' destination module has {len(a_ )}.''' ) for dest_m, src_m in zip(a_ , a_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : ResNetConfig , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : bool = True ): print(f'''Converting {name}...''' ) with torch.no_grad(): UpperCAmelCase = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ).eval() UpperCAmelCase = ResNetForImageClassification(SCREAMING_SNAKE_CASE ).eval() UpperCAmelCase = ModuleTransfer(src=SCREAMING_SNAKE_CASE , dest=SCREAMING_SNAKE_CASE ) UpperCAmelCase = torch.randn((1, 3, 224, 224) ) module_transfer(SCREAMING_SNAKE_CASE ) assert torch.allclose(from_model(SCREAMING_SNAKE_CASE ) , our_model(SCREAMING_SNAKE_CASE ).logits ), "The model logits don't match the original one." UpperCAmelCase = f'''resnet{'-'.join(name.split('resnet' ) )}''' print(SCREAMING_SNAKE_CASE ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=SCREAMING_SNAKE_CASE , ) # we can use the convnext one UpperCAmelCase = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=SCREAMING_SNAKE_CASE , ) print(f'''Pushed {checkpoint_name}''' ) def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : str = None , SCREAMING_SNAKE_CASE : bool = True ): UpperCAmelCase = 'imagenet-1k-id2label.json' UpperCAmelCase = 1000 UpperCAmelCase = (1, num_labels) UpperCAmelCase = 'huggingface/label-files' UpperCAmelCase = num_labels UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = partial(SCREAMING_SNAKE_CASE , num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE ) UpperCAmelCase = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(SCREAMING_SNAKE_CASE , names_to_config[model_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return config, expected_shape if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _a : Tuple = parser.parse_args() _a : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
447
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase : int = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
720
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase : Optional[Any] = get_tests_dir('''fixtures/dummy-config.json''') class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> int: snake_case_ : str = 0 def _lowerCAmelCase ( self ) -> str: self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _lowerCAmelCase ( self ) -> int: snake_case_ : List[Any] = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : List[str] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> str: snake_case_ : str = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Dict: snake_case_ : Tuple = AutoConfig.for_model("roberta" ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Tuple: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. snake_case_ : str = os.path.join(_SCREAMING_SNAKE_CASE , "fake-roberta" ) os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , "config.json" ) , "w" ) as f: f.write(json.dumps({} ) ) snake_case_ : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertEqual(type(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Dict: try: AutoConfig.register("custom" , _SCREAMING_SNAKE_CASE ) # Wrong model type will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoConfig.register("model" , _SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoConfig.register("bert" , _SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case_ : Union[str, Any] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowerCAmelCase ( self ) -> int: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , "bert-base is not a local folder and is not a valid model identifier" ): snake_case_ : Optional[Any] = AutoConfig.from_pretrained("bert-base" ) def _lowerCAmelCase ( self ) -> Tuple: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): snake_case_ : List[Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE , revision="aaaaaa" ) def _lowerCAmelCase ( self ) -> str: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ): snake_case_ : Dict = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _lowerCAmelCase ( self ) -> Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_SCREAMING_SNAKE_CASE ): snake_case_ : Tuple = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): snake_case_ : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig" ) def _lowerCAmelCase ( self ) -> Optional[Any]: class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : List[Any] = 'new-model' try: AutoConfig.register("new-model" , _SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local snake_case_ : Union[str, Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote code is disabled, we load the local one. snake_case_ : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote is enabled, we load from the Hub snake_case_ : List[str] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
114
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,**__UpperCamelCase : str ): """simple docstring""" A_ = AutoConfig.from_pretrained(__UpperCamelCase ,**__UpperCamelCase ) A_ = AutoModelForSeqaSeqLM.from_config(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) AutoTokenizer.from_pretrained(__UpperCamelCase ).save_pretrained(__UpperCamelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
86
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __snake_case ( __UpperCamelCase : Dict ): """simple docstring""" A_ , A_ = image.size A_ , A_ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 A_ = image.resize((w, h) ,resample=PIL_INTERPOLATION["lanczos"] ) A_ = np.array(__UpperCamelCase ).astype(np.floataa ) / 255.0 A_ = image[None].transpose(0 ,3 ,1 ,2 ) A_ = torch.from_numpy(__UpperCamelCase ) return 2.0 * image - 1.0 class _a ( snake_case_ ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : VQModel , UpperCAmelCase : UNetaDModel , UpperCAmelCase : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): super().__init__() self.register_modules(vqvae=UpperCAmelCase , unet=UpperCAmelCase , scheduler=UpperCAmelCase ) @torch.no_grad() def __call__( self : int , UpperCAmelCase : Union[torch.Tensor, PIL.Image.Image] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : Optional[int] = 100 , UpperCAmelCase : Optional[float] = 0.0 , UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , ): if isinstance(UpperCAmelCase , PIL.Image.Image ): A_ = 1 elif isinstance(UpperCAmelCase , torch.Tensor ): A_ = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(UpperCAmelCase )}''' ) if isinstance(UpperCAmelCase , PIL.Image.Image ): A_ = preprocess(UpperCAmelCase ) A_ , A_ = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image A_ = (batch_size, self.unet.config.in_channels // 2, height, width) A_ = next(self.unet.parameters() ).dtype A_ = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=self.device , dtype=UpperCAmelCase ) A_ = image.to(device=self.device , dtype=UpperCAmelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(UpperCAmelCase , device=self.device ) A_ = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler A_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ = {} if accepts_eta: A_ = eta for t in self.progress_bar(UpperCAmelCase ): # concat latents and low resolution image in the channel dimension. A_ = torch.cat([latents, image] , dim=1 ) A_ = self.scheduler.scale_model_input(UpperCAmelCase , UpperCAmelCase ) # predict the noise residual A_ = self.unet(UpperCAmelCase , UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 A_ = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample # decode the image latents with the VQVAE A_ = self.vqvae.decode(UpperCAmelCase ).sample A_ = torch.clamp(UpperCAmelCase , -1.0 , 1.0 ) A_ = image / 2 + 0.5 A_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A_ = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
86
1
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def _A ( snake_case__ : Union[str, Any] ): # getting number of pixels in the image snake_case__ ,snake_case__ : Union[str, Any] = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(snake_case__ ): for j in range(snake_case__ ): snake_case__ : List[str] = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image _lowerCAmelCase : Optional[Any] = imread("image_data/lena.jpg", 1) # convert to its negative _lowerCAmelCase : str = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
694
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Any = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
694
1
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) UpperCAmelCase__ = 2_9979_2458 # Symbols UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = symbols('''ct x y z''') def a_ (__A ) -> float: """simple docstring""" if velocity > c: raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("Speed must be greater than or equal to 1!" ) return velocity / c def a_ (__A ) -> float: """simple docstring""" return 1 / sqrt(1 - beta(__A ) ** 2 ) def a_ (__A ) -> np.ndarray: """simple docstring""" return np.array( [ [gamma(__A ), -gamma(__A ) * beta(__A ), 0, 0], [-gamma(__A ) * beta(__A ), gamma(__A ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def a_ (__A , __A = None ) -> np.ndarray: """simple docstring""" # Ensure event is not empty if event is None: __a : List[Any] = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(__A ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: UpperCAmelCase__ = transform(2997_9245) print('''Example of four vector: ''') print(F"ct' = {four_vector[0]}") print(F"x' = {four_vector[1]}") print(F"y' = {four_vector[2]}") print(F"z' = {four_vector[3]}") # Substitute symbols with numerical values UpperCAmelCase__ = {ct: c, x: 1, y: 1, z: 1} UpperCAmelCase__ = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"\n{numerical_vector}")
351
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : """simple docstring""" def __init__(self: Optional[Any] , __UpperCAmelCase: List[str] , __UpperCAmelCase: int=12 , __UpperCAmelCase: Dict=7 , __UpperCAmelCase: str=True , __UpperCAmelCase: Tuple=True , __UpperCAmelCase: Tuple=True , __UpperCAmelCase: Optional[int]=99 , __UpperCAmelCase: str=32 , __UpperCAmelCase: Any=32 , __UpperCAmelCase: int=2 , __UpperCAmelCase: List[str]=4 , __UpperCAmelCase: Tuple=37 , __UpperCAmelCase: Optional[int]=0.1 , __UpperCAmelCase: List[Any]=0.1 , __UpperCAmelCase: Dict=512 , __UpperCAmelCase: Union[str, Any]=0.02 , __UpperCAmelCase: List[Any]=0 , __UpperCAmelCase: str=None , ) -> Tuple: '''simple docstring''' __a : Union[str, Any] = parent __a : Dict = batch_size __a : Optional[Any] = seq_length __a : int = is_training __a : Union[str, Any] = use_input_mask __a : str = use_labels __a : Tuple = vocab_size __a : Dict = hidden_size __a : Optional[int] = projection_dim __a : Tuple = num_hidden_layers __a : Dict = num_attention_heads __a : Any = intermediate_size __a : Optional[int] = dropout __a : Dict = attention_dropout __a : List[Any] = max_position_embeddings __a : Any = initializer_range __a : Tuple = scope __a : Dict = bos_token_id def UpperCAmelCase__ (self: str ) -> Union[str, Any]: '''simple docstring''' __a : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Any = None if self.use_input_mask: __a : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: __a : Tuple = input_mask.numpy() __a , __a : int = input_mask.shape __a : Dict = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __a : Any = 1 __a : int = 0 __a : Union[str, Any] = self.get_config() return config, input_ids, tf.convert_to_tensor(__UpperCAmelCase ) def UpperCAmelCase__ (self: List[str] ) -> Optional[int]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCAmelCase__ (self: List[str] , __UpperCAmelCase: Any , __UpperCAmelCase: Dict , __UpperCAmelCase: str ) -> List[str]: '''simple docstring''' __a : int = TFBlipTextModel(config=__UpperCAmelCase ) __a : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , training=__UpperCAmelCase ) __a : Any = model(__UpperCAmelCase , training=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ (self: List[str] ) -> str: '''simple docstring''' __a : Tuple = self.prepare_config_and_inputs() __a , __a , __a : Dict = config_and_inputs __a : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class snake_case_ ( __UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case__ = (TFBlipTextModel,) if is_tf_available() else () snake_case__ = False snake_case__ = False snake_case__ = False def UpperCAmelCase__ (self: List[str] ) -> Optional[int]: '''simple docstring''' __a : str = BlipTextModelTester(self ) __a : str = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase__ (self: str ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ (self: Any ) -> Union[str, Any]: '''simple docstring''' __a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase__ (self: Tuple ) -> Dict: '''simple docstring''' pass def UpperCAmelCase__ (self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def UpperCAmelCase__ (self: Any ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def UpperCAmelCase__ (self: List[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def UpperCAmelCase__ (self: Union[str, Any] ) -> int: '''simple docstring''' pass @slow def UpperCAmelCase__ (self: Optional[Any] ) -> Tuple: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : List[str] = TFBlipTextModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def UpperCAmelCase__ (self: Dict , __UpperCAmelCase: Optional[Any]=True ) -> Any: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=__UpperCAmelCase )
351
1
"""simple docstring""" from string import ascii_lowercase, ascii_uppercase def _UpperCAmelCase ( __lowerCamelCase : str ) -> str: if not sentence: return "" _snake_case = dict(zip(__lowerCamelCase , __lowerCamelCase ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
704
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : str = "cpu" , __lowerCamelCase : Union[str, None] = None ) -> None: _snake_case = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCamelCase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) _snake_case = v.half() if save_path is None: # overwrite src_path _snake_case = src_path torch.save(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
430
0
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version __magic_name__ = get_logger(__name__) class lowerCAmelCase__ : """simple docstring""" __UpperCAmelCase : str = '''dummy_data''' __UpperCAmelCase : Dict = '''datasets''' __UpperCAmelCase : Union[str, Any] = False def __init__( self , a_ , a_ , a_ , a_ = None , a_ = False , a_ = True , a_ = None , ): lowerCamelCase_ : Tuple = 0 lowerCamelCase_ : List[Any] = dataset_name lowerCamelCase_ : int = cache_dir lowerCamelCase_ : Tuple = use_local_dummy_data lowerCamelCase_ : Tuple = config # download_callbacks take a single url as input lowerCamelCase_ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowerCamelCase_ : int = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowerCamelCase_ : Optional[Any] = str(__SCREAMING_SNAKE_CASE ) # to be downloaded lowerCamelCase_ : Optional[Any] = None lowerCamelCase_ : Optional[Any] = None @property def _UpperCamelCase ( self ): if self._dummy_file is None: lowerCamelCase_ : Optional[int] = self.download_dummy_data() return self._dummy_file @property def _UpperCamelCase ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("dummy" , self.version_name ) @property def _UpperCamelCase ( self ): return os.path.join(self.dummy_data_folder , "dummy_data.zip" ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowerCamelCase_ : Optional[int] = cached_path( __SCREAMING_SNAKE_CASE , cache_dir=self.cache_dir , extract_compressed_file=__SCREAMING_SNAKE_CASE , force_extract=__SCREAMING_SNAKE_CASE ) return os.path.join(__SCREAMING_SNAKE_CASE , self.dummy_file_name ) @property def _UpperCamelCase ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def _UpperCamelCase ( self ): if self._bucket_url is None: lowerCamelCase_ : List[str] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) ) return self._bucket_url @property def _UpperCamelCase ( self ): if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] ) def _UpperCamelCase ( self , a_ , *a_ ): if self.load_existing_dummy_data: # dummy data is downloaded and tested lowerCamelCase_ : List[Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowerCamelCase_ : str = self.dummy_file_name # special case when data_url is a dict if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return self.create_dummy_data_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ): return self.create_dummy_data_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: return self.create_dummy_data_single(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( self , a_ , *a_ ): return self.download_and_extract(__SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( self , a_ , a_ ): return self.download_and_extract(__SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( self , a_ , *a_ , **a_ ): return path def _UpperCamelCase ( self ): return {} def _UpperCamelCase ( self , a_ , a_ ): lowerCamelCase_ : Optional[int] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for single_url in single_urls: download_callback(__SCREAMING_SNAKE_CASE ) else: lowerCamelCase_ : Tuple = single_urls download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowerCamelCase_ : str = [os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) ) for x in single_urls] else: lowerCamelCase_ : str = single_urls lowerCamelCase_ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) ) lowerCamelCase_ : Optional[int] = value # make sure that values are unique if all(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowerCamelCase_ : int = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def _UpperCamelCase ( self , a_ , a_ ): lowerCamelCase_ : Union[str, Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowerCamelCase_ : Any = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , __SCREAMING_SNAKE_CASE ) ) for url in data_url ) lowerCamelCase_ : List[str] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowerCamelCase_ : Any = [data_url[0]] * len(__SCREAMING_SNAKE_CASE ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCamelCase_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(__SCREAMING_SNAKE_CASE ) return dummy_data_list def _UpperCamelCase ( self , a_ , a_ ): for download_callback in self.download_callbacks: download_callback(__SCREAMING_SNAKE_CASE ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCamelCase_ : Union[str, Any] = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(__SCREAMING_SNAKE_CASE ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self , a_ ): def _iter_archive_members(a_ ): # this preserves the order of the members inside the ZIP archive lowerCamelCase_ : Dict = Path(self.dummy_file ).parent lowerCamelCase_ : Tuple = path.relative_to(__SCREAMING_SNAKE_CASE ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowerCamelCase_ : Any = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ : Tuple = Path(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ : Union[str, Any] = _iter_archive_members(__SCREAMING_SNAKE_CASE ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(__SCREAMING_SNAKE_CASE ).as_posix(), file_path.open("rb" ) def _UpperCamelCase ( self , a_ ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowerCamelCase_ : str = [paths] for path in paths: if os.path.isfile(__SCREAMING_SNAKE_CASE ): if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__SCREAMING_SNAKE_CASE ): if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(__SCREAMING_SNAKE_CASE ): if filename.startswith((".", "__") ): continue yield os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
250
def lowercase_ ( SCREAMING_SNAKE_CASE : bytes ): """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE )] ) def lowercase_ ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
381
0
"""simple docstring""" class _SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: lowercase__ : Dict = name lowercase__ : Union[str, Any] = val def __str__( self ) -> Any: return F'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self , lowerCamelCase__ ) -> List[Any]: return self.val < other.val class _SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , lowerCamelCase__ ) -> Optional[Any]: lowercase__ : str = {} lowercase__ : Union[str, Any] = {} lowercase__ : Any = self.build_heap(snake_case_ ) def __getitem__( self , lowerCamelCase__ ) -> Optional[Any]: return self.get_value(snake_case_ ) def UpperCAmelCase__( self , lowerCamelCase__ ) -> Union[str, Any]: return (idx - 1) // 2 def UpperCAmelCase__( self , lowerCamelCase__ ) -> str: return idx * 2 + 1 def UpperCAmelCase__( self , lowerCamelCase__ ) -> Union[str, Any]: return idx * 2 + 2 def UpperCAmelCase__( self , lowerCamelCase__ ) -> Optional[Any]: return self.heap_dict[key] def UpperCAmelCase__( self , lowerCamelCase__ ) -> str: lowercase__ : List[Any] = len(snake_case_ ) - 1 lowercase__ : Any = self.get_parent_idx(snake_case_ ) for idx, i in enumerate(snake_case_ ): lowercase__ : Any = idx lowercase__ : List[Any] = i.val for i in range(snake_case_ , -1 , -1 ): self.sift_down(snake_case_ , snake_case_ ) return array def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: while True: lowercase__ : Any = self.get_left_child_idx(snake_case_ ) # noqa: E741 lowercase__ : List[str] = self.get_right_child_idx(snake_case_ ) lowercase__ : Union[str, Any] = idx if l < len(snake_case_ ) and array[l] < array[idx]: lowercase__ : int = l if r < len(snake_case_ ) and array[r] < array[smallest]: lowercase__ : Dict = r if smallest != idx: lowercase__ , lowercase__ : int = array[smallest], array[idx] ( ( lowercase__ ) , ( lowercase__ ) , ) : List[str] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowercase__ : Any = smallest else: break def UpperCAmelCase__( self , lowerCamelCase__ ) -> str: lowercase__ : List[str] = self.get_parent_idx(snake_case_ ) while p >= 0 and self.heap[p] > self.heap[idx]: lowercase__ , lowercase__ : Tuple = self.heap[idx], self.heap[p] lowercase__ , lowercase__ : Union[str, Any] = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowercase__ : List[Any] = p lowercase__ : List[str] = self.get_parent_idx(snake_case_ ) def UpperCAmelCase__( self ) -> Dict: return self.heap[0] def UpperCAmelCase__( self ) -> int: lowercase__ , lowercase__ : Optional[int] = self.heap[-1], self.heap[0] lowercase__ , lowercase__ : Union[str, Any] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowercase__ : Optional[int] = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def UpperCAmelCase__( self , lowerCamelCase__ ) -> Optional[int]: self.heap.append(snake_case_ ) lowercase__ : Dict = len(self.heap ) - 1 lowercase__ : List[str] = node.val self.sift_up(len(self.heap ) - 1 ) def UpperCAmelCase__( self ) -> Union[str, Any]: return len(self.heap ) == 0 def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowercase__ : str = new_value lowercase__ : Optional[int] = new_value self.sift_up(self.idx_of_element[node] ) __snake_case = Node('R', -1) __snake_case = Node('B', 6) __snake_case = Node('A', 3) __snake_case = Node('X', 1) __snake_case = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __snake_case = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
720
"""simple docstring""" from math import sqrt def _lowerCamelCase ( lowerCamelCase__ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( lowerCamelCase__ : int = 1_00_01 ): lowercase__ : List[str] = 0 lowercase__ : Optional[Any] = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase__ ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase__ ): count += 1 return number if __name__ == "__main__": print(F"{solution() = }")
128
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __UpperCAmelCase = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
329
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _SCREAMING_SNAKE_CASE ( a = 8 ) -> str: __A : Optional[Any] = ascii_letters + digits + punctuation return "".join(secrets.choice(a ) for _ in range(a ) ) def _SCREAMING_SNAKE_CASE ( a , a ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(a ) __A : Dict = i // 3 __A : Any = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) __A : str = ( chars_incl + random(a , quotient + remainder ) + random(a , a ) + random(a , a ) ) __A : int = list(a ) shuffle(a ) return "".join(a ) # random is a generalised function for letters, characters and numbers def _SCREAMING_SNAKE_CASE ( a , a ) -> str: return "".join(secrets.choice(a ) for _ in range(a ) ) def _SCREAMING_SNAKE_CASE ( a , a ) -> List[Any]: pass # Put your code here... def _SCREAMING_SNAKE_CASE ( a , a ) -> int: pass # Put your code here... def _SCREAMING_SNAKE_CASE ( a , a ) -> List[Any]: pass # Put your code here... def _SCREAMING_SNAKE_CASE ( a , a = 8 ) -> bool: if len(a ) < min_length: # Your Password must be at least 8 characters long return False __A : Any = any(char in ascii_uppercase for char in password ) __A : Union[str, Any] = any(char in ascii_lowercase for char in password ) __A : List[str] = any(char in digits for char in password ) __A : Union[str, Any] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _SCREAMING_SNAKE_CASE ( ) -> int: __A : Optional[Any] = int(input('Please indicate the max length of your password: ' ).strip() ) __A : Optional[Any] = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(a ) ) print( 'Alternative Password generated:' , alternative_password_generator(a , a ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
239
0
import qiskit def _UpperCAmelCase ( UpperCamelCase: int , UpperCamelCase: int ): """simple docstring""" __lowerCAmelCase = qiskit.Aer.get_backend("aer_simulator" ) __lowerCAmelCase = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __lowerCAmelCase = qiskit.execute(UpperCamelCase , UpperCamelCase , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment return job.result().get_counts(UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = half_adder(1, 1) print(f'''Half Adder Output Qubit Counts: {counts}''')
376
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class a ( __UpperCAmelCase ): lowercase_ : Union[str, Any] = 'segformer' def __init__( self : List[str] , snake_case__ : Any=3 , snake_case__ : int=4 , snake_case__ : Tuple=[2, 2, 2, 2] , snake_case__ : Optional[int]=[8, 4, 2, 1] , snake_case__ : Union[str, Any]=[32, 64, 160, 256] , snake_case__ : str=[7, 3, 3, 3] , snake_case__ : List[Any]=[4, 2, 2, 2] , snake_case__ : Tuple=[1, 2, 5, 8] , snake_case__ : List[str]=[4, 4, 4, 4] , snake_case__ : Optional[Any]="gelu" , snake_case__ : Optional[Any]=0.0 , snake_case__ : Any=0.0 , snake_case__ : str=0.1 , snake_case__ : List[Any]=0.0_2 , snake_case__ : Any=0.1 , snake_case__ : List[Any]=1E-6 , snake_case__ : Any=256 , snake_case__ : Optional[Any]=255 , **snake_case__ : Union[str, Any] , ): """simple docstring""" super().__init__(**snake_case__ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." , snake_case__ , ) __lowerCAmelCase = num_channels __lowerCAmelCase = num_encoder_blocks __lowerCAmelCase = depths __lowerCAmelCase = sr_ratios __lowerCAmelCase = hidden_sizes __lowerCAmelCase = patch_sizes __lowerCAmelCase = strides __lowerCAmelCase = mlp_ratios __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = classifier_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = drop_path_rate __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = decoder_hidden_size __lowerCAmelCase = kwargs.get("reshape_last_stage" , snake_case__ ) __lowerCAmelCase = semantic_loss_ignore_index class a ( __UpperCAmelCase ): lowercase_ : List[str] = version.parse('1.11' ) @property def UpperCAmelCase__ ( self : Any ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return 1E-4 @property def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" return 12
376
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = {"""vocab_file""": """sentencepiece.bpe.model"""} __A = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, } __A = { """moussaKam/mbarthez""": 1024, """moussaKam/barthez""": 1024, """moussaKam/barthez-orangesum-title""": 1024, } __A = """▁""" class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :str = VOCAB_FILES_NAMES __magic_name__ :Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ :Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :Any = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token lowerCAmelCase__ :Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) lowerCAmelCase__ :Dict = vocab_file lowerCAmelCase__ :Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) lowerCAmelCase__ :Optional[int] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} lowerCAmelCase__ :Tuple = len(self.sp_model ) - 1 lowerCAmelCase__ :Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ :int = [self.cls_token_id] lowerCAmelCase__ :Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = [self.sep_token_id] lowerCAmelCase__ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case ( self ): '''simple docstring''' return len(self.sp_model ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase__ :Any = self.sp_model.PieceToId(__UpperCAmelCase ) return spm_id if spm_id else self.unk_token_id def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Any = [] lowerCAmelCase__ :str = '' lowerCAmelCase__ :Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token lowerCAmelCase__ :List[str] = True lowerCAmelCase__ :List[Any] = [] else: current_sub_tokens.append(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def __getstate__( self ): '''simple docstring''' lowerCAmelCase__ :int = self.__dict__.copy() lowerCAmelCase__ :List[str] = None return state def __setstate__( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase__ :List[Any] = {} lowerCAmelCase__ :Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase__ :Tuple = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , 'wb' ) as fi: lowerCAmelCase__ :List[Any] = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
93
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A ) class lowerCAmelCase ( A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCAmelCase_ = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCAmelCase_ = Features({"text": Value("string" )} ) lowerCAmelCase_ = Features({"summary": Value("string" )} ) lowerCAmelCase_ = "text" lowerCAmelCase_ = "summary" @property def snake_case ( self : int ): """simple docstring""" return {self.text_column: "text", self.summary_column: "summary"}
119
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCamelCase = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase ): lowerCamelCase_ : Optional[Any] = ['pixel_values'] def __init__(self : List[Any] , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = PIL.Image.BICUBIC , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : Union[int, float] = 1 / 255 , _snake_case : bool = True , _snake_case : bool = True , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , **_snake_case : List[Any] , ) -> None: """simple docstring""" super().__init__(**_snake_case ) lowerCamelCase_ : Any = size if size is not None else {'height': 256, 'width': 256} lowerCamelCase_ : Union[str, Any] = get_size_dict(_snake_case ) lowerCamelCase_ : Union[str, Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ : Tuple = get_size_dict(_snake_case , param_name='crop_size' ) lowerCamelCase_ : int = do_resize lowerCamelCase_ : Union[str, Any] = size lowerCamelCase_ : Union[str, Any] = resample lowerCamelCase_ : int = do_center_crop lowerCamelCase_ : Optional[int] = crop_size lowerCamelCase_ : Optional[Any] = do_rescale lowerCamelCase_ : List[Any] = rescale_factor lowerCamelCase_ : Optional[int] = do_normalize lowerCamelCase_ : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase_ : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ (self : int , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : PILImageResampling = PIL.Image.BICUBIC , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Dict , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ : Dict = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( _snake_case , size=(size['height'], size['width']) , resample=_snake_case , data_format=_snake_case , **_snake_case ) def UpperCAmelCase_ (self : Optional[int] , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Dict , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ : Optional[int] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(_snake_case , size=(size['height'], size['width']) , data_format=_snake_case , **_snake_case ) def UpperCAmelCase_ (self : Dict , _snake_case : np.ndarray , _snake_case : Union[int, float] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Any , ) -> Tuple: """simple docstring""" return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def UpperCAmelCase_ (self : Optional[Any] , _snake_case : np.ndarray , _snake_case : Union[float, List[float]] , _snake_case : Union[float, List[float]] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Optional[int] , ) -> np.ndarray: """simple docstring""" return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case ) def UpperCAmelCase_ (self : Tuple , _snake_case : ImageInput , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : str=None , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : bool = None , _snake_case : float = None , _snake_case : bool = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : ChannelDimension = ChannelDimension.FIRST , **_snake_case : Optional[int] , ) -> PIL.Image.Image: """simple docstring""" lowerCamelCase_ : str = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ : str = resample if resample is not None else self.resample lowerCamelCase_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ : Any = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ : str = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ : Tuple = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ : List[str] = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ : Union[str, Any] = image_std if image_std is not None else self.image_std lowerCamelCase_ : Optional[int] = size if size is not None else self.size lowerCamelCase_ : List[str] = get_size_dict(_snake_case ) lowerCamelCase_ : Optional[int] = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ : List[str] = get_size_dict(_snake_case , param_name='crop_size' ) lowerCamelCase_ : List[str] = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ : Optional[int] = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowerCamelCase_ : Optional[Any] = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images] if do_center_crop: lowerCamelCase_ : Tuple = [self.center_crop(image=_snake_case , size=_snake_case ) for image in images] if do_rescale: lowerCamelCase_ : str = [self.rescale(image=_snake_case , scale=_snake_case ) for image in images] if do_normalize: lowerCamelCase_ : Optional[int] = [self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case ) for image in images] lowerCamelCase_ : Dict = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] lowerCamelCase_ : List[Any] = {'pixel_values': images} return BatchFeature(data=_snake_case , tensor_type=_snake_case )
716
from __future__ import annotations import time UpperCamelCase = list[tuple[int, int]] UpperCamelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class lowerCamelCase__ : def __init__(self : Union[str, Any] , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : Node | None ) -> List[str]: """simple docstring""" lowerCamelCase_ : Optional[int] = pos_x lowerCamelCase_ : int = pos_y lowerCamelCase_ : Union[str, Any] = (pos_y, pos_x) lowerCamelCase_ : Optional[int] = goal_x lowerCamelCase_ : Dict = goal_y lowerCamelCase_ : str = parent class lowerCamelCase__ : def __init__(self : Any , _snake_case : tuple[int, int] , _snake_case : tuple[int, int] ) -> int: """simple docstring""" lowerCamelCase_ : Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , _snake_case ) lowerCamelCase_ : Optional[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , _snake_case ) lowerCamelCase_ : List[str] = [self.start] lowerCamelCase_ : str = False def UpperCAmelCase_ (self : Tuple ) -> Path | None: """simple docstring""" while self.node_queue: lowerCamelCase_ : Tuple = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowerCamelCase_ : int = True return self.retrace_path(_snake_case ) lowerCamelCase_ : Tuple = self.get_successors(_snake_case ) for node in successors: self.node_queue.append(_snake_case ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase_ (self : List[str] , _snake_case : Node ) -> list[Node]: """simple docstring""" lowerCamelCase_ : Optional[Any] = [] for action in delta: lowerCamelCase_ : Tuple = parent.pos_x + action[1] lowerCamelCase_ : Optional[int] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_snake_case ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_snake_case , _snake_case , self.target.pos_y , self.target.pos_x , _snake_case ) ) return successors def UpperCAmelCase_ (self : List[Any] , _snake_case : Node | None ) -> Path: """simple docstring""" lowerCamelCase_ : List[Any] = node lowerCamelCase_ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCamelCase_ : Optional[Any] = current_node.parent path.reverse() return path class lowerCamelCase__ : def __init__(self : Optional[int] , _snake_case : Tuple , _snake_case : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ : Optional[Any] = BreadthFirstSearch(_snake_case , _snake_case ) lowerCamelCase_ : Optional[Any] = BreadthFirstSearch(_snake_case , _snake_case ) lowerCamelCase_ : int = False def UpperCAmelCase_ (self : Dict ) -> Path | None: """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowerCamelCase_ : Union[str, Any] = self.fwd_bfs.node_queue.pop(0 ) lowerCamelCase_ : Optional[int] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowerCamelCase_ : List[Any] = True return self.retrace_bidirectional_path( _snake_case , _snake_case ) lowerCamelCase_ : List[str] = current_bwd_node lowerCamelCase_ : Dict = current_fwd_node lowerCamelCase_ : str = { self.fwd_bfs: self.fwd_bfs.get_successors(_snake_case ), self.bwd_bfs: self.bwd_bfs.get_successors(_snake_case ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_snake_case ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCAmelCase_ (self : str , _snake_case : Node , _snake_case : Node ) -> Path: """simple docstring""" lowerCamelCase_ : int = self.fwd_bfs.retrace_path(_snake_case ) lowerCamelCase_ : List[str] = self.bwd_bfs.retrace_path(_snake_case ) bwd_path.pop() bwd_path.reverse() lowerCamelCase_ : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() UpperCamelCase = (0, 0) UpperCamelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase = time.time() UpperCamelCase = BreadthFirstSearch(init, goal) UpperCamelCase = bfs.search() UpperCamelCase = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) UpperCamelCase = time.time() UpperCamelCase = BidirectionalBreadthFirstSearch(init, goal) UpperCamelCase = bd_bfs.search() UpperCamelCase = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
144
0
from __future__ import annotations def _lowercase ( UpperCamelCase_ = 4 ) -> list[list[int]]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = abs(UpperCamelCase_ ) or 4 return [[1 + x + y * row_size for x in range(UpperCamelCase_ )] for y in range(UpperCamelCase_ )] def _lowercase ( UpperCamelCase_ ) -> list[list[int]]: '''simple docstring''' return reverse_row(transpose(UpperCamelCase_ ) ) # OR.. transpose(reverse_column(matrix)) def _lowercase ( UpperCamelCase_ ) -> list[list[int]]: '''simple docstring''' return reverse_row(reverse_column(UpperCamelCase_ ) ) # OR.. reverse_column(reverse_row(matrix)) def _lowercase ( UpperCamelCase_ ) -> list[list[int]]: '''simple docstring''' return reverse_column(transpose(UpperCamelCase_ ) ) # OR.. transpose(reverse_row(matrix)) def _lowercase ( UpperCamelCase_ ) -> list[list[int]]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [list(UpperCamelCase_ ) for x in zip(*UpperCamelCase_ )] return matrix def _lowercase ( UpperCamelCase_ ) -> list[list[int]]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = matrix[::-1] return matrix def _lowercase ( UpperCamelCase_ ) -> list[list[int]]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [x[::-1] for x in matrix] return matrix def _lowercase ( UpperCamelCase_ ) -> None: '''simple docstring''' for i in matrix: print(*UpperCamelCase_ ) if __name__ == "__main__": __snake_case = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 90 counterclockwise:\n""") print_matrix(rotate_aa(matrix)) __snake_case = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 180:\n""") print_matrix(rotate_aaa(matrix)) __snake_case = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 270 counterclockwise:\n""") print_matrix(rotate_aaa(matrix))
472
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = { """configuration_blenderbot""": [ """BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotConfig""", """BlenderbotOnnxConfig""", ], """tokenization_blenderbot""": ["""BlenderbotTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""BlenderbotTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotForCausalLM""", """BlenderbotForConditionalGeneration""", """BlenderbotModel""", """BlenderbotPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """TFBlenderbotForConditionalGeneration""", """TFBlenderbotModel""", """TFBlenderbotPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """FlaxBlenderbotForConditionalGeneration""", """FlaxBlenderbotModel""", """FlaxBlenderbotPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
472
1
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _lowerCAmelCase = 1.054_571_817e-34 # unit of ℏ : J * s _lowerCAmelCase = 3e8 # unit of c : m * s^-1 def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: A_ : Optional[Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_4_0 * (distance) ** 4 ) return {"force": force} elif area == 0: A_ : str = (2_4_0 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: A_ : Optional[Any] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
481
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _UpperCAmelCase : def __init__( self , a__ , a__=13 , a__=10 , a__=3 , a__=2 , a__=2 , a__=2 , a__=True , a__=True , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=10 , a__=0.02 , a__=0.9 , a__=None , ): A_ : Tuple = parent A_ : Union[str, Any] = batch_size A_ : str = image_size A_ : Union[str, Any] = num_channels A_ : List[str] = patch_size A_ : Optional[Any] = tubelet_size A_ : List[Any] = num_frames A_ : str = is_training A_ : List[Any] = use_labels A_ : List[str] = hidden_size A_ : Optional[Any] = num_hidden_layers A_ : str = num_attention_heads A_ : Union[str, Any] = intermediate_size A_ : Dict = hidden_act A_ : int = hidden_dropout_prob A_ : Union[str, Any] = attention_probs_dropout_prob A_ : Union[str, Any] = type_sequence_label_size A_ : int = initializer_range A_ : Dict = mask_ratio A_ : Optional[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame A_ : int = (image_size // patch_size) ** 2 A_ : Dict = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos A_ : Dict = int(mask_ratio * self.seq_length ) def _lowerCamelCase ( self ): A_ : Any = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) A_ : Optional[int] = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : List[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self , a__ , a__ , a__ ): A_ : Dict = VideoMAEModel(config=a__ ) model.to(a__ ) model.eval() A_ : Dict = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , a__ , a__ , a__ ): A_ : Optional[Any] = VideoMAEForPreTraining(a__ ) model.to(a__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch A_ : List[Any] = torch.ones((self.num_masks,) ) A_ : Dict = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) A_ : int = mask.expand(self.batch_size , -1 ).bool() A_ : List[Any] = model(a__ , a__ ) # model only returns predictions for masked patches A_ : Union[str, Any] = mask.sum().item() A_ : Tuple = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _lowerCamelCase ( self ): A_ : Union[str, Any] = self.prepare_config_and_inputs() A_ , A_ , A_ : Optional[Any] = config_and_inputs A_ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): a = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) a = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) a = False a = False a = False a = False def _lowerCamelCase ( self ): A_ : int = VideoMAEModelTester(self ) A_ : Any = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def _lowerCamelCase ( self , a__ , a__ , a__=False ): A_ : Optional[Any] = copy.deepcopy(a__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch A_ : List[Any] = torch.ones((self.model_tester.num_masks,) ) A_ : List[str] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) A_ : Union[str, Any] = mask.expand(self.model_tester.batch_size , -1 ).bool() A_ : int = bool_masked_pos.to(a__ ) if return_labels: if model_class in [ *get_values(a__ ), ]: A_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) return inputs_dict def _lowerCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Tuple = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def _lowerCamelCase ( self ): A_ , A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[str] = model_class(a__ ) A_ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Dict = [*signature.parameters.keys()] A_ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) def _lowerCamelCase ( self ): A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def _lowerCamelCase ( self ): A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a__ ) @slow def _lowerCamelCase ( self ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Any = VideoMAEModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def _lowerCamelCase ( self ): if not self.has_attentions: pass else: A_ , A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[int] = True for model_class in self.all_model_classes: A_ : str = self.model_tester.seq_length - self.model_tester.num_masks A_ : List[Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) A_ : Optional[int] = True A_ : Optional[Any] = False A_ : List[Any] = True A_ : List[str] = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): A_ : List[Any] = model(**self._prepare_for_class(a__ , a__ ) ) A_ : Dict = outputs.attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A_ : List[Any] = True A_ : List[str] = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): A_ : int = model(**self._prepare_for_class(a__ , a__ ) ) A_ : Any = outputs.attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A_ : Union[str, Any] = len(a__ ) # Check attention is always last and order is fine A_ : Optional[Any] = True A_ : int = True A_ : List[str] = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): A_ : Tuple = model(**self._prepare_for_class(a__ , a__ ) ) self.assertEqual(out_len + 1 , len(a__ ) ) A_ : Optional[Any] = outputs.attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _lowerCamelCase ( self ): def check_hidden_states_output(a__ , a__ , a__ ): A_ : str = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): A_ : Union[str, Any] = model(**self._prepare_for_class(a__ , a__ ) ) A_ : Optional[Any] = outputs.hidden_states A_ : Union[str, Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(a__ ) , a__ ) A_ : str = self.model_tester.seq_length - self.model_tester.num_masks A_ : str = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Union[str, Any] = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : Tuple = True check_hidden_states_output(a__ , a__ , a__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowerCamelCase ( self ): pass def _lowerCAmelCase ( ): '''simple docstring''' A_ : int = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" ,filename="""eating_spaghetti.npy""" ,repo_type="""dataset""" ) A_ : Optional[int] = np.load(_lowerCAmelCase ) return list(_lowerCAmelCase ) @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self ): A_ : List[str] = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( a__ ) A_ : Any = self.default_image_processor A_ : Optional[Any] = prepare_video() A_ : Union[str, Any] = image_processor(a__ , return_tensors="""pt""" ).to(a__ ) # forward pass with torch.no_grad(): A_ : Any = model(**a__ ) # verify the logits A_ : List[str] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , a__ ) A_ : Optional[Any] = torch.tensor([0.3669, -0.0688, -0.2421] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) ) @slow def _lowerCamelCase ( self ): A_ : int = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(a__ ) A_ : str = self.default_image_processor A_ : Any = prepare_video() A_ : Union[str, Any] = image_processor(a__ , return_tensors="""pt""" ).to(a__ ) # add boolean mask, indicating which patches to mask A_ : Optional[Any] = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) A_ : Dict = torch.load(a__ ) # forward pass with torch.no_grad(): A_ : Optional[int] = model(**a__ ) # verify the logits A_ : int = torch.Size([1, 1408, 1536] ) A_ : Union[str, Any] = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=a__ ) self.assertEqual(outputs.logits.shape , a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a__ , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) A_ : Optional[Any] = torch.tensor([0.5142] , device=a__ ) self.assertTrue(torch.allclose(outputs.loss , a__ , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) A_ : Optional[int] = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=a__ ).to( a__ ) with torch.no_grad(): A_ : Optional[Any] = model(**a__ ) A_ : List[Any] = torch.tensor(torch.tensor([0.6469] ) , device=a__ ) self.assertTrue(torch.allclose(outputs.loss , a__ , atol=1E-4 ) )
481
1
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class _lowercase ( __UpperCAmelCase ): _lowerCamelCase = 0 _lowerCamelCase = False _lowerCamelCase = 3.0 class _lowercase ( unittest.TestCase ): def lowerCAmelCase__ ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=UpperCamelCase_ ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {'''a''': 2, '''c''': 2.2_5} ) @require_cuda def lowerCAmelCase__ ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __magic_name__ = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() __magic_name__ = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __magic_name__ = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_0_2_4.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , UpperCamelCase_ ) @require_multi_gpu def lowerCAmelCase__ ( self ): __magic_name__ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(UpperCamelCase_ , env=os.environ.copy() ) if __name__ == "__main__": __lowerCamelCase = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) __lowerCamelCase = Accelerator(kwargs_handlers=[ddp_scaler]) __lowerCamelCase = torch.nn.Linear(1_00, 2_00) __lowerCamelCase = accelerator.prepare(model) # Check the values changed in kwargs __lowerCamelCase = "" __lowerCamelCase = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
490
"""simple docstring""" def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> Tuple: __magic_name__ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: __magic_name__ = 0 while b > 0: if b & 1: __magic_name__ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
490
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
503
def _snake_case ( SCREAMING_SNAKE_CASE ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError("Limit for the Catalan sequence must be ≥ 0" ) _lowerCAmelCase : Optional[Any] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 _lowerCAmelCase : Optional[int] = 1 if upper_limit > 0: _lowerCAmelCase : Any = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(SCREAMING_SNAKE_CASE ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: __UpperCAmelCase = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
503
1
def UpperCamelCase ( _A : str , _A : Optional[Any] )-> str: """simple docstring""" A__ = [[] for _ in range(_A )] A__ = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1 or len(_A ) <= key: return input_string for position, character in enumerate(_A ): A__ = position % (lowest * 2) # puts it in bounds A__ = min(_A , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(_A ) A__ = ["".join(_A ) for row in temp_grid] A__ = "".join(_A ) return output_string def UpperCamelCase ( _A : List[str] , _A : Union[str, Any] )-> str: """simple docstring""" A__ = [] A__ = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1: return input_string A__ = [[] for _ in range(_A )] # generates template for position in range(len(_A ) ): A__ = position % (lowest * 2) # puts it in bounds A__ = min(_A , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("*" ) A__ = 0 for row in temp_grid: # fills in the characters A__ = input_string[counter : counter + len(_A )] grid.append(list(_A ) ) counter += len(_A ) A__ = "" # reads as zigzag for position in range(len(_A ) ): A__ = position % (lowest * 2) # puts it in bounds A__ = min(_A , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def UpperCamelCase ( _A : Dict )-> dict[int, str]: """simple docstring""" A__ = {} for key_guess in range(1 , len(_A ) ): # tries every key A__ = decrypt(_A , _A ) return results if __name__ == "__main__": import doctest doctest.testmod()
491
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor __UpperCAmelCase =transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __a ( A ) -> Dict: '''simple docstring''' if isinstance(A , torch.Tensor ): return image elif isinstance(A , PIL.Image.Image ): A__ = [image] A__ = [trans(img.convert("RGB" ) ) for img in image] A__ = torch.stack(A ) return image class lowerCAmelCase__ ( UpperCAmelCase_ ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM A__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(f"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = min(int(num_inference_steps * strength ) , UpperCamelCase__ ) A__ = max(num_inference_steps - init_timestep , 0 ) A__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ): '''simple docstring''' if not isinstance(UpperCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCamelCase__ )}""" ) A__ = image.to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(UpperCamelCase__ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) A__ = init_latents.shape A__ = randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__ , device=UpperCamelCase__ , dtype=UpperCamelCase__ ) # get latents print("add noise to latents at timestep" , UpperCamelCase__ ) A__ = self.scheduler.add_noise(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ = init_latents return latents @torch.no_grad() def __call__( self , UpperCamelCase__ = None , UpperCamelCase__ = 0.8 , UpperCamelCase__ = 1 , UpperCamelCase__ = None , UpperCamelCase__ = 0.0 , UpperCamelCase__ = 50 , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , ): '''simple docstring''' self.check_inputs(UpperCamelCase__ ) # 2. Preprocess image A__ = preprocess(UpperCamelCase__ ) # 3. set timesteps self.scheduler.set_timesteps(UpperCamelCase__ , device=self.device ) A__ , A__ = self.get_timesteps(UpperCamelCase__ , UpperCamelCase__ , self.device ) A__ = timesteps[:1].repeat(UpperCamelCase__ ) # 4. Prepare latent variables A__ = self.prepare_latents(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.unet.dtype , self.device , UpperCamelCase__ ) A__ = latents # 5. Denoising loop for t in self.progress_bar(UpperCamelCase__ ): # 1. predict noise model_output A__ = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A__ = self.scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , eta=UpperCamelCase__ , use_clipped_model_output=UpperCamelCase__ , generator=UpperCamelCase__ , ).prev_sample A__ = (image / 2 + 0.5).clamp(0 , 1 ) A__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A__ = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=UpperCamelCase__ )
337
0
from math import ceil def _a ( lowercase__ : int , lowercase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = list(range(0 , lowercase__ ) ) SCREAMING_SNAKE_CASE__ : List[Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check SCREAMING_SNAKE_CASE__ : Any = [] for i in device_map_blocks: if device_map_blocks.count(lowercase__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowercase__ ) # Missing blocks SCREAMING_SNAKE_CASE__ : Union[str, Any] = [i for i in blocks if i not in device_map_blocks] SCREAMING_SNAKE_CASE__ : Any = [i for i in device_map_blocks if i not in blocks] if len(lowercase__ ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(lowercase__ ) ) if len(lowercase__ ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(lowercase__ ) ) if len(lowercase__ ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(lowercase__ ) ) def _a ( lowercase__ : str , lowercase__ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = list(range(lowercase__ ) ) SCREAMING_SNAKE_CASE__ : List[Any] = int(ceil(n_layers / len(lowercase__ ) ) ) SCREAMING_SNAKE_CASE__ : Tuple = [layers[i : i + n_blocks] for i in range(0 , lowercase__ , lowercase__ )] return dict(zip(lowercase__ , lowercase__ ) )
636
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) def _a ( lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any]=False , lowercase__ : str=False , lowercase__ : Dict=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _a ( lowercase__ : List[str] , lowercase__ : Dict ): '''simple docstring''' for i in range(config.num_hidden_layers ): SCREAMING_SNAKE_CASE__ : Dict = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ : Optional[Any] = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ : Any = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE__ : List[str] = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE__ : Tuple = in_proj_bias[-config.hidden_size :] def _a ( lowercase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def _a ( lowercase__ : int , lowercase__ : int , lowercase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = dct.pop(lowercase__ ) SCREAMING_SNAKE_CASE__ : Any = val @torch.no_grad() def _a ( lowercase__ : Dict , lowercase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=lowercase__ ) SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : str = False if "vqa" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : str = 31_29 SCREAMING_SNAKE_CASE__ : Optional[Any] = 'huggingface/label-files' SCREAMING_SNAKE_CASE__ : int = 'vqa2-id2label.json' SCREAMING_SNAKE_CASE__ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {int(lowercase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : Dict = idalabel SCREAMING_SNAKE_CASE__ : str = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : List[str] = ViltForQuestionAnswering(lowercase__ ) elif "nlvr" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Optional[int] = True SCREAMING_SNAKE_CASE__ : List[str] = 2 SCREAMING_SNAKE_CASE__ : Dict = {0: 'False', 1: 'True'} SCREAMING_SNAKE_CASE__ : Dict = {v: k for k, v in config.idalabel.items()} SCREAMING_SNAKE_CASE__ : Tuple = 3 SCREAMING_SNAKE_CASE__ : int = ViltForImagesAndTextClassification(lowercase__ ) elif "irtr" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : str = ViltForImageAndTextRetrieval(lowercase__ ) elif "mlm_itm" in checkpoint_url: SCREAMING_SNAKE_CASE__ : int = True SCREAMING_SNAKE_CASE__ : Optional[int] = ViltForMaskedLM(lowercase__ ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE__ : Any = torch.hub.load_state_dict_from_url(lowercase__ , map_location='cpu' )['state_dict'] SCREAMING_SNAKE_CASE__ : Any = create_rename_keys(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ ) if mlm_model or irtr_model: SCREAMING_SNAKE_CASE__ : Any = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) # load state dict into HuggingFace model model.eval() if mlm_model: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = model.load_state_dict(lowercase__ , strict=lowercase__ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(lowercase__ ) # Define processor SCREAMING_SNAKE_CASE__ : str = ViltImageProcessor(size=3_84 ) SCREAMING_SNAKE_CASE__ : List[Any] = BertTokenizer.from_pretrained('bert-base-uncased' ) SCREAMING_SNAKE_CASE__ : List[Any] = ViltProcessor(lowercase__ , lowercase__ ) # Forward pass on example inputs (image + text) if nlvr_model: SCREAMING_SNAKE_CASE__ : List[str] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowercase__ ).raw ) SCREAMING_SNAKE_CASE__ : Any = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowercase__ ).raw ) SCREAMING_SNAKE_CASE__ : Tuple = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) SCREAMING_SNAKE_CASE__ : List[Any] = processor(lowercase__ , lowercase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ : List[str] = processor(lowercase__ , lowercase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ : List[Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: SCREAMING_SNAKE_CASE__ : Tuple = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=lowercase__ ).raw ) if mlm_model: SCREAMING_SNAKE_CASE__ : Optional[Any] = 'a bunch of [MASK] laying on a [MASK].' else: SCREAMING_SNAKE_CASE__ : Optional[Any] = 'How many cats are there?' SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(lowercase__ , lowercase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ : str = model(**lowercase__ ) # Verify outputs if mlm_model: SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.Size([1, 11, 3_05_22] ) SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowercase__ , atol=1E-4 ) # verify masked token prediction equals "cats" SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: SCREAMING_SNAKE_CASE__ : str = torch.Size([1, 31_29] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowercase__ , atol=1E-4 ) # verify vqa prediction equals "2" SCREAMING_SNAKE_CASE__ : List[Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Size([1, 2] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
636
1
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
import numpy as np class A_ : '''simple docstring''' def __init__( self: Optional[int] ): __lowerCamelCase : int = (0, 0) __lowerCamelCase : List[str] = None __lowerCamelCase : int = 0 __lowerCamelCase : int = 0 __lowerCamelCase : Union[str, Any] = 0 def __eq__( self: Optional[int] , a: List[Any] ): return self.position == cell.position def _snake_case ( self: Any ): print(self.position ) class A_ : '''simple docstring''' def __init__( self: str , a: List[str]=(5, 5) ): __lowerCamelCase : Optional[Any] = np.zeros(a ) __lowerCamelCase : List[str] = world_size[0] __lowerCamelCase : Optional[int] = world_size[1] def _snake_case ( self: List[Any] ): print(self.w ) def _snake_case ( self: Optional[int] , a: str ): __lowerCamelCase : Tuple = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] __lowerCamelCase : Optional[int] = cell.position[0] __lowerCamelCase : List[str] = cell.position[1] __lowerCamelCase : Dict = [] for n in neughbour_cord: __lowerCamelCase : Dict = current_x + n[0] __lowerCamelCase : Optional[Any] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: __lowerCamelCase : Optional[Any] = Cell() __lowerCamelCase : Any = (x, y) __lowerCamelCase : Dict = cell neighbours.append(a ) return neighbours def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : str = [] __lowerCamelCase : int = [] _open.append(SCREAMING_SNAKE_CASE__ ) while _open: __lowerCamelCase : Union[str, Any] = np.argmin([n.f for n in _open] ) __lowerCamelCase : int = _open[min_f] _closed.append(_open.pop(SCREAMING_SNAKE_CASE__ ) ) if current == goal: break for n in world.get_neigbours(SCREAMING_SNAKE_CASE__ ): for c in _closed: if c == n: continue __lowerCamelCase : Optional[int] = current.g + 1 __lowerCamelCase , __lowerCamelCase : int = n.position __lowerCamelCase , __lowerCamelCase : Tuple = goal.position __lowerCamelCase : Dict = (ya - ya) ** 2 + (xa - xa) ** 2 __lowerCamelCase : str = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[int] = [] while current.parent is not None: path.append(current.position ) __lowerCamelCase : int = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": lowercase_ = Gridworld() # Start position and goal lowercase_ = Cell() lowercase_ = (0, 0) lowercase_ = Cell() lowercase_ = (4, 4) print(F"""path from {start.position} to {goal.position}""") lowercase_ = astar(world, start, goal) # Just for visual reasons. for i in s: lowercase_ = 1 print(world.w)
669
0
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) __snake_case : int = parser.parse_args() __snake_case : int = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __snake_case : int = CLIPImageProcessor() __snake_case : Any = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') __snake_case : List[str] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
687
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __snake_case : Optional[int] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __snake_case : Tuple = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') __snake_case : int = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') __snake_case : Optional[Any] = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') __snake_case : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') __snake_case : Tuple = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
687
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { 'salesforce/blip2-opt-2.7b': 'https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json', } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = "blip_2_vision_model" def __init__( self : Any , A__ : Tuple=1_4_0_8 , A__ : Optional[int]=6_1_4_4 , A__ : Any=3_9 , A__ : Optional[int]=1_6 , A__ : Union[str, Any]=2_2_4 , A__ : Tuple=1_4 , A__ : Union[str, Any]="gelu" , A__ : int=0.00_001 , A__ : Any=0.0 , A__ : Union[str, Any]=1E-10 , A__ : List[Any]=True , **A__ : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__(**_lowerCamelCase ) a__ : Optional[Any] = hidden_size a__ : Optional[int] = intermediate_size a__ : str = num_hidden_layers a__ : List[str] = num_attention_heads a__ : List[Any] = patch_size a__ : Optional[int] = image_size a__ : Any = initializer_range a__ : Optional[Any] = attention_dropout a__ : Any = layer_norm_eps a__ : Dict = hidden_act a__ : str = qkv_bias @classmethod def __lowerCAmelCase ( cls : List[str] , A__ : Union[str, os.PathLike] , **A__ : int ) -> List[Any]: '''simple docstring''' cls._set_token_in_kwargs(_lowerCamelCase ) a__ , a__ : Optional[Any] = cls.get_config_dict(_lowerCamelCase , **_lowerCamelCase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": a__ : Any = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowerCamelCase , **_lowerCamelCase ) class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = "blip_2_qformer" def __init__( self : Union[str, Any] , A__ : int=3_0_5_2_2 , A__ : List[str]=7_6_8 , A__ : Union[str, Any]=1_2 , A__ : Tuple=1_2 , A__ : Any=3_0_7_2 , A__ : Optional[Any]="gelu" , A__ : List[Any]=0.1 , A__ : Any=0.1 , A__ : Optional[Any]=5_1_2 , A__ : Dict=0.02 , A__ : Optional[int]=1E-12 , A__ : Union[str, Any]=0 , A__ : List[str]="absolute" , A__ : Dict=2 , A__ : Tuple=1_4_0_8 , **A__ : Any , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase ) a__ : List[Any] = vocab_size a__ : List[Any] = hidden_size a__ : int = num_hidden_layers a__ : List[Any] = num_attention_heads a__ : Optional[Any] = hidden_act a__ : Optional[Any] = intermediate_size a__ : List[Any] = hidden_dropout_prob a__ : Optional[int] = attention_probs_dropout_prob a__ : Tuple = max_position_embeddings a__ : List[str] = initializer_range a__ : Optional[int] = layer_norm_eps a__ : str = position_embedding_type a__ : int = cross_attention_frequency a__ : int = encoder_hidden_size @classmethod def __lowerCAmelCase ( cls : Any , A__ : Union[str, os.PathLike] , **A__ : Optional[int] ) -> str: '''simple docstring''' cls._set_token_in_kwargs(_lowerCamelCase ) a__ , a__ : Any = cls.get_config_dict(_lowerCamelCase , **_lowerCamelCase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": a__ : Optional[Any] = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowerCamelCase , **_lowerCamelCase ) class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = "blip-2" __UpperCamelCase = True def __init__( self : Dict , A__ : List[str]=None , A__ : Any=None , A__ : Dict=None , A__ : Dict=3_2 , **A__ : str ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowerCamelCase ) if vision_config is None: a__ : str = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: a__ : str = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: a__ : Any = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) a__ : Tuple = BlipaVisionConfig(**_lowerCamelCase ) a__ : int = BlipaQFormerConfig(**_lowerCamelCase ) a__ : List[Any] = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' a__ : Any = CONFIG_MAPPING[text_model_type](**_lowerCamelCase ) a__ : Tuple = self.text_config.tie_word_embeddings a__ : List[Any] = self.text_config.is_encoder_decoder a__ : List[Any] = num_query_tokens a__ : List[str] = self.vision_config.hidden_size a__ : Tuple = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES a__ : List[str] = 1.0 a__ : Any = 0.02 @classmethod def __lowerCAmelCase ( cls : int , A__ : BlipaVisionConfig , A__ : BlipaQFormerConfig , A__ : PretrainedConfig , **A__ : Optional[Any] , ) -> Dict: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_lowerCamelCase , ) def __lowerCAmelCase ( self : int ) -> Optional[Any]: '''simple docstring''' a__ : Optional[Any] = copy.deepcopy(self.__dict__ ) a__ : Any = self.vision_config.to_dict() a__ : str = self.qformer_config.to_dict() a__ : Tuple = self.text_config.to_dict() a__ : Any = self.__class__.model_type return output
688
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a_ ( __a ): return 1 / (1 + np.exp(-z )) def a_ ( __a , __a ): return (-y * np.log(__a ) - (1 - y) * np.log(1 - h )).mean() def a_ ( __a , __a , __a ): A__ = np.dot(__a , __a ) return np.sum(y * scores - np.log(1 + np.exp(__a ) ) ) def a_ ( __a , __a , __a , __a=7_0000 ): A__ = np.zeros(x.shape[1] ) for iterations in range(__a ): A__ = np.dot(__a , __a ) A__ = sigmoid_function(__a ) A__ = np.dot(x.T , h - y ) / y.size A__ = theta - alpha * gradient # updating the weights A__ = np.dot(__a , __a ) A__ = sigmoid_function(__a ) A__ = cost_function(__a , __a ) if iterations % 100 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __snake_case : List[Any] = datasets.load_iris() __snake_case : List[Any] = iris.data[:, :2] __snake_case : List[str] = (iris.target != 0) * 1 __snake_case : List[Any] = 0.1 __snake_case : Optional[Any] = logistic_reg(alpha, x, y, max_iterations=70_000) print('theta: ', theta) # printing the theta i.e our weights vector def a_ ( __a ): return sigmoid_function( np.dot(__a , __a ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((__snake_case) , (__snake_case)) : Tuple = (x[:, 0].min(), x[:, 0].max()) ((__snake_case) , (__snake_case)) : Tuple = (x[:, 1].min(), x[:, 1].max()) ((__snake_case) , (__snake_case)) : Optional[Any] = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __snake_case : int = np.c_[xxa.ravel(), xxa.ravel()] __snake_case : Dict = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
571
0
'''simple docstring''' import re import subprocess import sys _lowercase : Union[str, Any] =subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") _lowercase : Union[str, Any] =subprocess.check_output(F"git diff --name-only {fork_point_sha}".split()).decode("utf-8").split() _lowercase : List[str] ="|".join(sys.argv[1:]) _lowercase : List[str] =re.compile(RF"^({joined_dirs}).*?\.py$") _lowercase : Union[str, Any] =[x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : str ={ "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str =["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str =[ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] =[ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys _lowercase : Any =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
574
0